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Abstract

For a Gaussian input distribution, we investigate the
achievable rate of a stationary Rayleigh flat-fading
channel under the assumption of unknown channel
state information at transmitter and receiver side. The
law of the channel is presumed to be known to the re-
ceiver. In addition, we assume the power spectral den-
sity of the fading process to be compactly supported.
The contribution of the present paper is the derivation
of an upper bound on the achievable rate for the special
case of a rectangular power spectral density depending
on the SNR and the spread of the power spectral den-
sity. For comparison, we also give a lower bound on
the achievable rate which is already known from [1]
and holds for an arbitrary power spectral density.

1. INTRODUCTION

The capacity of fading channels where the channel
state information is unknown to the receiver has re-
ceived a lot of attention in the recent literature, e.g.,
[2, 3, 4, 5, 6] as this scenario applies to many realistic
mobile communication systems.

In this paper, we consider a discrete-time single-
input single-output stationary Rayleigh flat-fading
channel with temporal correlation. We assume that the
channel state information is unknown to the transmit-
ter and the receiver, while the receiver is aware of the
channel law. We investigate its achievable rate while
restricting to Gaussian input distributions. We con-
sider a stationary zero-mean jointly proper Gaussian
[7] fading process. In addition, we assume that the
power spectral density (PSD) of the fading process has
compact support.

The contribution of the present paper is the deriva-
tion of an upper bound on the achievable rate for the
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special case of a rectangular PSD, depending on the
SNR and the spread of the PSD. Especially, the there-
for used lower bound on the conditional output entropy
rate h′(y|x) for a rectangular PSD is to the best of
our knowledge new. The assumption of a rectangular
PSD is usually made in typical communication system
design. For comparison, we give a lower bound on the
achievable rate, holding for an arbitrary PSD with com-
pact support, which is already known from [1].

In contrast to existing bounds on the capacity for
flat-fading channels which are asymptotic, e.g., [2] for
the high SNR regime, or tight in a specific SNR regime,
e.g., [5] for the low SNR regime and a peak power con-
straint, our aim is to get bounds on the achievable rate
that are valid over a wide range of the SNR. As the
evaluation of the capacity, including the maximization
of the mutual information over the input distribution,
is very difficult, we restrict to Gaussian input distri-
butions, which are capacity-achieving in case of per-
fect channel state information. However, they are not
optimal for unknown channel state information at the
receiver [8]. In [9], bounds on the mutual information
with Gaussian input distributions have been derived
for a Gauss-Markov fading channel, whose PSD has an
unbounded support. The results in [9] indicate that
at moderate SNR and/or slow fading, Gaussian inputs
still work well.

2. SYSTEM MODEL

We consider an ergodic discrete-time jointly proper
Gaussian flat-fading channel, whose I/O relation is
given by

y = H · x + n = X · h + n (1)

where the the channel output vector is defined by
y = [y1, . . . , yN ]T and yk is the channel output at time
instant k. Analogously, the channel input vector is
given by x = [x1, . . . , xN ]T , and the noise vector is



n = [n1, . . . , nN ]T . The matrix H is diagonal and de-
fined as H = diag(h) with the vector h = [h1, . . . , hN ]T

describing the channel fading process. Here the diag(·)
operator generates a diagonal matrix whose diagonal
elements are given by the argument vector. The diag-
onal matrix X is given by X = diag(x). The quantity
N is the number of considered symbols. Later on, we
investigate the case N → ∞ to evaluate the achievable
rate.

We assume that the noise nk is a sequence of
i.i.d. circularly symmetric complex Gaussian random
variables of zero mean and variance σ2

n, i.e., Rn =
E[nnH ] = σ2

n · IN , where IN is the N × N iden-
tity matrix. The channel fading process {hk} is
zero-mean jointly proper Gaussian. It is time selec-
tive and is characterized by its autocorrelation func-
tion rh(l) = E[hk+l · h

∗
k]. Its variance is given by

rh(0) = σ2
h.

The PSD of the channel fading process is defined as

Sh(f) =

∞
∑

m=−∞

rh(m)e−j2πmf , |f | ≤ 0.5 (2)

where we assume that the PSD exists. For a jointly
proper Gaussian process this implies ergodicity [10].
Because of the limitation of the velocity of the trans-
mitter, the receiver, and of objects in the environment,
the spread of the PSD is limited, and we assume it to be
compactly supported within the interval [−fd, fd], with
0 < fd ≤ 0.5, i.e., Sh(f) = 0 for f /∈ [−fd, fd]. The pa-
rameter fd corresponds to the maximum Doppler shift
and thus indicates the dynamics of the channel. To
ensure ergodicity, we exclude the case fd = 0.

The temporal correlation of the fading process can
be expressed by the correlation matrix Rh = E[hhH ],
which has a Hermitian Toeplitz structure. The channel
input x is jointly proper Gaussian and its elements are
independent, yielding Rx = E[xxH ] = σ2

x · IN . The
processes {hk}, {xk}, and {nk} are assumed to be mu-
tually independent.

The mean SNR is given by

ρ =
σ2

xσ2
h

σ2
n

. (3)

3. BOUNDS ON THE ACHIEVABLE RATE

As the PSD of the fading process exists (2) and as
the channel fading process is jointly proper Gaussian,
the channel fading process is ergodic. Therefore, op-
erational and information theoretic capacity coincide
[10]. This allows us to base our following derivations
on the concept of the ergodic capacity.

In this work, we restrict to proper Gaussian input
distributions and do not maximize the mutual informa-
tion I(y;x) over the input distribution. Therefore, we
do not use the term capacity, but the term achievable
rate, given by

R = lim
N→∞

1

N
I(y;x) = I ′(y;x) (4)

being equivalent to the rate of the mutual information.
The mutual information rate can be expanded as

I ′(y;x) = I ′(y;x|h) − I ′(x;h|y) (5)

= h′(y) − h′(y|x) (6)

where I ′(y;x|h) in (5) is the mutual information rate
in case the channel is known at the receiver, i.e., the
mutual information rate of the coherent channel, and
I ′(x;h|y) is the penalty due to the channel uncer-
tainty. We will make use of the separation in (6) to
derive an upper and a lower bound on I ′(y;x). In
(6) h′(·) indicates the differential entropy rate, i.e.,
h′(·) = limN→∞

1
N h(·), where h(·) is the differential

entropy.

3.1. The Received Signal Entropy Rate h′(y)

3.1.1. Lower bound on h′(y)

The mutual information with perfect channel state
information at the receiver can be upper-bounded by

I(y;x|h)=h(y|h)−h(y|h,x)≤h(y)−h(y|h,x) (7)

where we use the fact that conditioning reduces
entropy. Thus, we can lower-bound h′(y) by

h′(y) ≥ I ′(y;x|h) + h′(y|h,x). (8)

The mutual information rate in case the channel is
known at the receiver, i.e., the first term on the RHS
of (8), is given by

I ′(y;x|h) =
1

N
Eh

[

Ey,x

{

log

(

p(y|h,x)

p(y|h)

)∣

∣

∣

∣

h

}]

=

∫ ∞

0

log (ρ · z + 1) e−zdz (9)

and is independent of the temporal correlation of the
channel, see, e.g., [3].

The second term on the RHS of (8) originates from
AWGN and, thus, can be calculated as

h′(y|h,x) = log
(

πeσ2
n

)

. (10)

Using (8), (9), and (10) we get a lower bound h′
L(y)

on the entropy rate

h′(y) ≥ h′
L(y)

=

∫ ∞

0

log (ρ · z + 1) e−zdz + log(πeσ2
n). (11)



3.1.2. Upper bound on h′(y)

In this section we give an upper bound on the
entropy rate h′(y). First, we make use of the fact
that the entropy h(y) of a complex random vector y
of dimension N with nonsingular correlation matrix
Ry = E[yyH ] is upper-bounded by [7]

h(y) ≤ log
[

(πe)N det(Ry)
]

. (12)

Due to the independency of the transmit symbols, the
correlation matrix becomes

Ry = (σ2
xσ2

h + σ2
n)IN . (13)

Hence, an upper bound h′
U (y) on the entropy rate

h′(y) is given by

h′(y) ≤ log
(

πe
(

σ2
xσ2

h + σ2
n

))

= h′
U (y). (14)

3.1.3. Tightness of the upper bound and the lower
bound on h′(y)

The difference between upper bound h′
U (y) and

lower bound h′
L(y) is given by

∆h′(y) = h′
U (y) − h′

L(y)

= log (ρ + 1) −

∫ ∞

0

log (ρ · z + 1) e−zdz (15)

where ρ is the mean SNR defined in (3).
For ρ → 0 the difference of the upper bound and

the lower bound converges to zero, limρ→0 ∆h′(y) = 0.
For ρ → ∞ the difference is given by

lim
ρ→∞

∆h′(y) = γ ≈ 0.57721 [nat]. (16)

where γ is the Euler constant. The limit in (16) can be
found in [8].

It can be shown that ∆h′(y) monotonically increases
with the SNR. Thus, the difference ∆h′(y) is bounded

0 ≤ ∆h′(y) ≤ γ [nat]. (17)

3.2. The Entropy Rate h′(y|x)

3.2.1. Upper bound on h′(y|x)

The probability density function of y conditioned
on x is zero-mean proper Gaussian, thus its entropy is
given by

h(y|x) = Ex

[

log
(

(πe)N det(Ry|x)
)]

(18)

where the covariance matrix Ry|x is given by

Ry|x = Eh,n[yyH ] = Eh[XhhHXH ] + σ2
nIN

= XRhX
H + σ2

nIN . (19)

The channel correlation matrix can be decomposed by
a spectral decomposition as

Rh = UΛhU
H (20)

where the diagonal matrix Λh = diag (λ1, . . . , λN ) con-
tains the eigenvalues λi of Rh and the matrix U is
unitary.

In the following we will upper-bound h′(y|x) in the
same way as it is already known from [1]. The entropy
h(y|x) is upper-bounded by

h(y|x)= Ex

[

log
(

(πe)N det
(

XUΛhU
HXH + σ2

nIN

))]

(21)

(a)
= Ex log

[

det

(

XHXUΛhU
H

σ2
n

+ IN

)]

+N log(πeσ2
n)

(b)

≤ log Ex

[

det

(

XHXUΛhU
H

σ2
n

+ IN

)]

+N log(πeσ2
n)

(c)
= log det

(

σ2
x

σ2
n

UΛhU
H + IN

)

+ N log(πeσ2
n)

=
N
∑

i=1

log

(

σ2
x

σ2
n

λi + 1

)

+ N log(πeσ2
n) (22)

where for (a) the following relation is used

det(AB + I) = det(BA + I) (23)

as AB has the same eigenvalues as BA for A and B
being square matrices, [11, Th. 1.3.20]. (b) is due
to Jensen’s inequality and the concavity of the log-
function. The equality (c) is due to the statistical in-
dependence of the transmit symbols and can be shown
by using the Laplacian expansion by minors1.

To calculate the bound for the entropy rate h′(y|x)
we consider the case N → ∞, i.e., the dimension of the
matrix Λh grows without bound. As Rh is Hermitian
Toeplitz, we can evaluate (22) using Szegö’s theorem
about the asymptotic eigenvalue distribution of Her-
mitian Toeplitz matrices [12]. Consequently

lim
N→∞

1

N

N
∑

i=1

log

(

σ2
x

σ2
n

λi + 1

)

=

∫ 1

2

− 1

2

log

(

σ2
xSh(f)

σ2
n

+ 1

)

df.

(24)

Hence, we get the following upper bound

h′(y|x) ≤ h′
U (y|x)

=

∫ 1

2

− 1

2

log

(

σ2
xSh(f)

σ2
n

+ 1

)

df + log(πeσ2
n). (25)

1(b) and (c) can also be derived jointly using that log det(·)
is concave on the set of positive definite matrices.



3.2.2. Lower bound on h′(y|x) for a rectangular PSD

In this section we give a lower bound for the en-
tropy rate h′(y|x) for the special case of a rectangular
PSD, which is used as an approximation to the actual
PSD. In addition, in typical system design the channel
dynamic is characterized by the sole parameter fd and
the assumption of a rectangular PSD.

We now assume that the eigenvalues λi of Rh are
given by

λi =

{

σ2

h

2·fd

1 ≤ i ≤ 2fd · N

0 otherwise
. (26)

For the case of N → ∞ this corresponds to a rectan-
gular PSD.

With (26) the entropy given in (21) can be trans-
formed to

h(y|x)
(a)
= Ex

[

log
(

(πe)Ndet
(

ΛhU
HXHXU + σ2

nIN

))]

(b)
= Ex

[

log det

(

σ2
hŨ

HXHXŨ

2fdσ2
n

+I⌊2fdN⌋

)]

+N log(πeσ2
n)

(27)

where for (a) we used (23). Furthermore, for (b) we
used (26) and the matrix Ũ is given by

Ũ =
[

u1, . . . ,u⌊2fdN⌋

]

∈ C
N×⌊2fdN⌋ (28)

where ui are the orthonormal columns of the unitary
matrix U. Now we apply the following inequality
given in [13].
Lemma 1: Let A ∈ C

m×n with orthonormal rows and
m ≤ n. Then

log det
(

Adiag (p1, . . . , pn)AH
)

≥ tr
[

Adiag(log p1, . . . , log pn)AH
]

(29)

if p1, . . . , pn > 0. Here tr denotes the trace of a matrix.
With Lemma 1 we can lower-bound (27) so that

h(y|x) ≥ N log(πeσ2
n)

+Ex

[

tr

[

ŨHdiag

(

log

(

σ2
h|x1|

2

2fdσ2
n

+1

)

, ..,log

(

σ2
h|xN |2

2fdσ2
n

+1

))

Ũ

]]

= N log(πeσ2
n)

+tr

[

ŨHdiag

(

Exlog

(

σ2
h|x1|

2

2fdσ2
n

+1

)

, ..,Exlog

(

σ2
h|xN |2

2fdσ2
n

+1

))

Ũ

]

(a)
=

⌊2fdN⌋
∑

k=1

Ex log

(

σ2
h

2fdσ2
n

|x|2 + 1

)

+N log(πeσ2
n) (30)

where (a) results because all xk are identically
distributed and because the columns of Ũ are or-
thonormal.

For N → ∞ we get

h′(y|x) = lim
N→∞

1

N
h(y|x)

≥ lim
N→∞

1

N

⌊2fdN⌋
∑

k=1

Ex log

(

σ2
h

2fdσ2
n

|x|2 + 1

)

+ log(πeσ2
n)

= 2fdEx log

(

σ2
h

2fdσ2
n

|x|2 + 1

)

+ log(πeσ2
n)

= 2fd

∫ ∞

0

log

(

ρ

2fd
z+1

)

e−zdz+log(πeσ2
n) = h′

L(y|x).

(31)

3.2.3. Tightness of upper and lower bound on h′(y|x)

The difference between the upper bound and the
lower bound on h′(y|x) in case of a rectangular PSD is
given by

∆h′(y|x)=h′
U (y|x)−h′

L(y|x)

= 2fd

∫ ∞

0

log

(

ρ
2fd

+ 1
ρ

2fd

z + 1

)

e−zdz. (32)

For asymptotically small Doppler frequencies we get
limfd→0 ∆h′(y|x) = 0 independent of the SNR ρ. Con-
cerning the dependency of ∆h′(y|x) on the SNR, it
can be shown that limρ→0 ∆h′(y|x) = 0 independent
of fd. For asymptotically high SNR, the difference is
bounded by limρ→∞ ∆h′(y|x) = 2fdγ ≈ 2fd · 0.57721.
As ∆h′(y|x) is monotonic in the SNR, cf. Section 3.1.3,
it is bounded by

0 ≤ ∆h′(y|x) ≤ γ2fd [nat] (33)

enabling a characterization of the tightness of the upper
bound and the lower bound on h′(y|x) for different fd.

3.3. The Achievable Rate

3.3.1. Upper and lower bound

Based on the upper and lower bounds on h′(y) and
h′(y|x), we are now able to give an upper bound and
a lower bound on the achievable rate (4)

I ′
U/L(y;x) = h′

U/L(y) − h′
L/U (y|x). (34)

The lower bound holds for an arbitrary PSD of the
channel fading process, whereas the upper bound is
only valid for a rectangular PSD, as we use this restric-
tion for the derivation of h′

L(y|x).

For a rectangular PSD of the channel fading process
the upper and the lower bound on the achievable rate
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Figure 1: Upper and lower bound for the achievable
rate under the assumption of a Gaussian input distri-
bution of a Rayleigh flat-fading channel with a rectan-
gular PSD depending on fd

are given by

I ′
L(y;x) =

∫ ∞

0

log (ρz + 1) e−zdz − 2fd log

(

ρ

2fd
+ 1

)

(35)

I ′
U (y;x) = log (ρ + 1) − 2fd

∫ ∞

0

log

(

ρ

2fd
z + 1

)

e−zdz.

(36)

Furthermore, we know that the mutual information
rate in case of perfect channel state information at the
receiver (9) always upper-bounds the mutual informa-
tion rate in the absence of channel state information,
I ′(y;x) ≤ I ′(y;x|h). Therefore, we can modify the
upper bound as follows

I ′
Umod

(y;x) = min{I ′
U (y;x), I ′(y;x|h)}. (37)

On the other hand, the mutual information rate must
be non-negative. Thus, we modify the lower bound to

I ′
Lmod

(y;x) = max{I ′
L(y;x), 0}. (38)

Fig. 1 shows the upper bound (37) and the lower
bound (38) on the achievable rate for a rectangular
PSD of the channel fading process as a function of the
channel dynamic, which is characterized by fd.

3.3.2. Tightness of upper and lower bound on I ′(y;x)

For fd → 0 the lower bound I ′
L(y;x) is equivalent to

the mutual information rate in case of perfect channel
knowledge (9)

lim
fd→0

I ′
L(y;x) = I ′(y;x|h). (39)

This corresponds to the physical interpretation that
a channel that changes arbitrarily slowly can be esti-
mated arbitrarily well, and therefore, the penalty term
I ′(x;h|y) in (5) approaches zero.

The difference between the upper bound I ′
U (y;x)

and the lower bound I ′
L(y;x) is given by

∆I′(y;x) = I ′
U (y;x) − I ′

L(y;x) = ∆h′(y) + ∆h′(y|x).

As
lim
ρ→0

∆I′(y;x) = 0

lim
ρ→∞

∆I′(y;x) = γ(1 + 2fd) (40)

and as ∆I′(y;x) monotonically increases with the SNR,
the difference is bounded by

0 ≤ ∆I′(y;x) ≤ γ(1 + 2fd) [nat]. (41)

4. THE ASYMPTOTIC HIGH SNR LIMIT

In this section, we examine the slope of the achiev-
able rate with a Gaussian input distribution over the
SNR for asymptotically large SNRs depending on the
channel dynamics. It can be shown that for a com-
pactly supported PSD as defined in Section 2 the fol-
lowing relation holds

lim
ρ→∞

∂I ′
L(y;x)

∂ log(ρ)
= lim

ρ→∞

∂

∂ log(ρ)

[

∫ ∞

z=0

log(ρz+1)e−zdz

−

∫ 1

2

− 1

2

log

(

Sh(f)

σ2
h

ρ+1

)

df

]

= 1 − 2fd (42)

as Sh(f) 6= 0 for |f | ≤ fd.
The upper bound I ′

U (y;x) holds only for the special
case of a rectangular PSD of the channel fading process.
For this case the difference between the upper bound
I ′

U (y;x) and the lower bound I ′
L(y;x) converges to a

constant for high SNR, cf. (40). Thus, both bounds
must have the same asymptotic high SNR slope and
we conjecture that the achievable rate I ′(y;x) is also
characterized by the same asymptotic SNR slope.

5. COMPARISON TO ASYMPTOTES IN [2]

Fig. 2 shows the comparison of the bounds (37) and
(38) for the achievable rate in case of a Gaussian input
distribution towards the high SNR asymptotes for the
upper bound and the lower bound on the capacity in
the corresponding pre-log case given in [2]. Here it has
to be stated that the bounds on capacity given in [2]
are based on a peak power constraint in addition to
the average power constraint that holds also for the
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Figure 2: Comparison of bounds on the achievable rate
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eq.(33)], which approaches zero for ρ → ∞.)

bounds on the achievable rate in case of a Gaussian
input distribution in the present work. Therefore, this
comparison is only of qualitative nature. Beside the
power constraints [2] does not constrain the input dis-
tribution and therefore delivers bounds for the capac-
ity. For asymptotically large SNR the bounds on the
achievable rate with Gaussian inputs and the bounds
in [2] have the same slope, which corresponds to the
pre-log behavior of capacity as described in [2].

6. SUMMARY

In this paper, we have derived a new non-
asymptotic upper bound on the achievable rate with
Gaussian input distribution for a stationary Rayleigh
flat-fading channel and a rectangular PSD of the chan-
nel fading process. The channel state information is
assumed to be unknown to the transmitter and the re-
ceiver, while the receiver is aware of the channel law.
For comparison, we have also given a lower bound on
the achievable rate for Gaussian input distributions,
which is already known from [1].
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