
Software Parallelization and Distribution for

Heterogeneous Multi-Core Embedded Systems

Von der Fakultät für Elektrotechnik und Informationstechnik
der Rheinisch–Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades
eines Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von
Miguel Angel Aguilar Ulloa, M.Sc.

aus Cartago, Costa Rica

Berichter: Universitätsprofessor Dr. rer. nat. Rainer Leupers

Universitätsprofessor Dr.-Ing. Jeronimo Castrillon

Tag der mündlichen Prüfung: 28.11.2018

Jeronimo Castrillon
Edited version: Thesis Overview

Dedicated to the memory
of my beloved mother

Acknowledgements

This dissertation is the result of my doctoral research work at the Institute for Commu-
nication Technologies and Embedded Systems (ICE) at the RWTH Aachen University.
During the 6 years that I spent at ICE, I was supported by many great people. It is
my pleasure to start this document by expressing my gratitude to them.

First, I would like to thank my advisor Professor Rainer Leupers for giving me the
opportunity to join ICE. His excellent guidance and his trust on my work was decisive
to successfully complete my doctoral degree. One of the most valuable lessons that I
learned from him was to focus my research efforts on practical problems that matter
for industry, instead of focusing on pure theoretical problems with limited applicabil-
ity. I would like to also thank Professor Jeronimo Castrillon for serving as a reviewer
of this dissertation. I have always admired his work, which was a model and a source
of inspiration during my doctoral studies.

During my time at the ICE, I had the pleasure to work together with amazing
colleagues and students that created a friendly and supportive environment. Special
thanks go to María Auras-Rodríguez, Juan Eusse, Luis Murillo, Robert Bücs, Jan We-
instock, Dominik Šišejković and Diego Pala. I am grateful to them for their support
in the ups and downs, great technical discussions, reviewing my publications and
more important for making me feel like at home during these years. I also would like
express my gratitude to the non-scientific staff at ICE, especially to Tanja Palmen and
Elisabeth Böttcher, for helping me with many administrative matters.

I cannot thank enough Diego Pala, Thomas Grass, Maria Auras-Rodríguez, Robert
Bücs and Farhad Merchant for proof-reading this dissertation. Their excellent feed-
back made possible to bring this document into its final state.

My deepest gratitude is for my mother. Without your dedication and sacrifices, I
would have never been in the position to accomplish all what I have done. Loosing
you during my doctoral studies was a very hard moment, but even during your last
days you gave me the courage to complete this. Another extremely important person
in my life is Lena. Along this journey, Lena has both unconditionally supported me
during difficult times and celebrated my accomplishments as if they were her own.
Thanks for making me feel Germany as my home.

Miguel Angel Aguilar Ulloa, January 2019

Contents

1 Introduction 1

1.1 The Challenge: Entering a Heterogeneous Parallel Universe 2

1.1.1 From the Single-Core to the Multi-Core & Heterogeneous Eras . 3

1.1.2 Current Programming Practice: Legacy Sequential Code 7

1.2 The Solution: Tools for Software Parallelization and Distribution 9

1.3 Overview of the Proposed Tool Flow . 10

1.4 Contributions . 11

1.5 Synopsis and Outline . 12

2 Related Work 13

2.1 Software Parallelization . 13

2.1.1 Profile-Driven Parallelization . 13

2.1.2 Pattern-Driven Parallelization . 16

2.2 Software Distribution . 26

2.3 Synopsis . 28

3 Program Model 31

3.1 Notation . 31

3.2 Platform Model . 32

3.3 Hybrid Program Analysis . 34

3.4 Intermediate Representation . 36

3.4.1 Preliminaries . 36

3.4.2 Augmented Dependence Flow Graph (ADFG) 39

3.4.3 Augmented Program Structure Tree (APST) 44

i

ii CONTENTS

3.4.4 Loop Analysis . 45

3.4.5 ADFG and APST Construction . 50

3.5 Multi-Grained Performance Estimation 51

3.5.1 The Granularity Challenge . 52

3.5.2 Performance Estimation Functions 53

3.5.3 Performance Estimation Approach 53

3.5.4 Evaluation . 57

3.6 Dynamic Call Graph (DCG) . 58

3.7 Program Model Definition . 60

3.8 Synopsis and Outlook . 60

4 Software Parallelization: Extraction of Parallel Patterns 61

4.1 Preliminaries . 62

4.1.1 Partitioning . 62

4.1.2 Parallel Annotation . 63

4.2 Data Level Parallelism (DLP) . 63

4.2.1 DLP Pattern Overview . 63

4.2.2 DLP Extraction Approach . 64

4.3 Pipeline Level Parallelism (PLP) . 68

4.3.1 PLP Pattern Overview . 68

4.3.2 PLP Extraction Approach . 70

4.4 Task Level Parallelism (TLP) . 72

4.4.1 TLP Pattern Overview . 72

4.4.2 TLP Extraction Approach . 73

4.5 Recursion Level Parallelism (RLP) . 75

4.5.1 RLP Pattern Overview . 76

4.5.2 RLP Extraction Approach . 77

4.6 Synopsis and Outlook . 82

5 Software Distribution: Accelerator Offloading 83

5.1 Preliminaries . 84

5.1.1 Accelerator Offloading . 84

CONTENTS iii

5.1.2 Motivating Examples . 86

5.1.3 Offloading Annotation . 87

5.2 Performance Estimation Based Offloading Analysis 88

5.2.1 Single-Entry Single-Exit (SESE) Region-Based Performance Com-
parison . 88

5.2.2 Offloading Approach . 89

5.3 Roofline Model Based Offloading Analysis 91

5.3.1 Roofline Model Overview . 92

5.3.2 Offloading Approach . 95

5.4 Synopsis and Outlook . 100

6 Code Generation 101

6.1 Implementation Strategy Patterns . 101

6.2 Source Level Parallelization and Offloading Hints 102

6.3 OpenMP . 103

6.3.1 Paradigm Overview . 103

6.3.2 Pragma Generation . 103

6.3.3 Schedule-Aware Loop Parallelization 106

6.4 OpenCL . 108

6.4.1 Paradigm Overview . 108

6.4.2 Code Generation . 108

6.5 CUDA . 110

6.5.1 Paradigm Overview . 110

6.5.2 Code Generation . 111

6.6 CPN . 113

6.6.1 Paradigm Overview . 113

6.6.2 Code Generation . 114

6.7 Synopsis and Outlook . 114

7 Case Studies 115

7.1 Overview of the Benchmarks . 116

7.2 High Performance Mobile GPUs: Jetson TX1 117

7.2.1 Platform Overview . 118

iv CONTENTS

7.2.2 OpenMP Evaluation . 118

7.2.3 CUDA Evaluation . 120

7.3 Multi-core DSP Platforms: TI Keystone II 122

7.3.1 Platform Overview . 122

7.3.2 OpenMP Evaluation . 123

7.3.3 C for Process Networks (CPN) Evaluation 126

7.4 Android Devices: Nexus 7 Tablet . 128

7.4.1 Tool Flow Adaptations for Android Devices 128

7.4.2 Platform Overview . 129

7.4.3 OpenMP Evaluation . 130

7.4.4 OpenCL Evaluation . 132

7.4.5 CPN Evaluation . 134

7.5 Synopsis . 136

8 Conclusion 137

8.1 Summary . 137

8.2 Conclusions . 139

8.3 Outlook . 140

Appendix 141

A Benchmarks 141

Glossary 143

List of Figures 147

List of Tables 149

List of Algorithms 151

Bibliography 153

Chapter 1

Introduction

For many years during the single-core era, software developers took performance im-
provements for granted thanks to enhanced microarchitectures and increased clock
frequencies in every new processor generation. This trend was enabled by the ever in-
creasing number of transistors in integrated circuits, as described by Moore’s Law [267].
This processor design paradigm was expected to last for many more years. In 2002, it
was predicted that by 2010 processors would be running at 30 GHz [30, 73]. However,
this was never possible due to power consumption and thermal issues associated with
the increasing clock frequencies [303]. Then, in 2005 the end of the single-core era was
described by Herb Sutter as “The free lunch is over” [280]. This crisis motivated a fun-
damental change in the processor design paradigm in which transistors are used to
build architectures with multiple cores, instead of increasing the complexity and per-
formance of a monolithic core. Figure 1.1 illustrates these trends, where after 2004 the
number of cores started to grow, while the single-core performance, frequency and
power consumption started to saturate [258]. This new processor paradigm brought
new eras of computing known as the homogeneous multi-core era (or simply multi-core
era) with the increase in the number of cores and then the heterogeneous multi-core era
(or simply heterogeneous era) with the specialization of the cores [32, 128, 297].

The multi-core and heterogeneous eras impacted not only desktop and High Per-
formance Computing (HPC) but also embedded computing. In the embedded do-
main, the underlying technologies of the systems evolved into complex heterogeneous
Multi-Processor System-on-Chips (MPSoCs), which combine multiple cores of a vari-
ety of types (e.g., General Purpose Processors (GPPs), Digital Signal Processors (DSPs)
and Graphics Processing Units (GPUs)) [142]. These MPSoCs are able to meet the de-
mands of the embedded market that is continuously pushing for high performance
at lower energy consumption and cost. Nowadays heterogeneous MPSoC are widely
used in the design of devices from smartphones and tablets that provide a rich variety
of services, to cars that are evolving towards autonomous supercomputers on wheels.

This evolution in the processor design paradigm also implied a major change in
the programming paradigm from sequential to parallel. Tim Mattson, a renowned
senior parallel computing scientist, argues that the advent of parallel programming
is not due to an achievement of the software, but instead due to a failure of the
hardware [117]. Parallel programming has shown to be a challenging task [46, 206,
320]. The current practice relies on a manual and error-prone program transformation
process in which a large amount of legacy sequential software has to be migrated
to parallel systems [90, 117, 144, 197, 324]. Therefore, there is an urgent need for
solutions to succeed in this dramatic paradigm shift.

1

2 Chapter 1. Introduction

1975 1980 1985 1990 1995 2000 2005 2010 2015

100

101

102

103

104

105

106

107

End of the Single-Core Era→

Year

Number of Transistors (Thousands)

Single-Core Performance (SpecINT)1

Frequency (MHz)
Power (Watts)
Number of Cores

Figure 1.1: 40 Years of Microprocessor Trend Data (Data from: [258])

This thesis aims at addressing the challenges posed by the multi-core and hete-
rogeneous eras with focus on the embedded domain, to relieve developers from the
hectic and error-prone manual process of software optimization for heterogeneous
multi-core systems. For this purpose, in this thesis a tool flow is proposed based on
novel compiler technologies to automatically optimize legacy sequential programs for
a proper parallel execution. This tool flow builds a model of the programs, which is
then analyzed by multiple heuristics to identify software parallelization and distribu-
tion opportunities. These optimization opportunities are then realized by generating
parallel code in multiple state-of-the-art programming paradigms, which allows to
apply the tool flow to a wide range of relevant commercial platforms.

The remainder of this chapter is organized as follows. Section 1.1 discusses key
aspects of the multi-core and heterogeneous eras. The list of requirements that a tool
for software parallelization and distribution should meet is discussed in Section 1.2.
Section 1.3 presents an overview of the proposed tool flow. The contributions made
in this thesis are stated in Section 1.4. Finally, Section 1.5 concludes with a summary
of the chapter and outlines the rest of the document.

1.1 The Challenge: Entering a Heterogeneous Parallel
Universe

This section discusses key aspects of the multi-core and heterogeneous eras with em-
phasis on the embedded domain. In addition, the challenge of legacy sequential code,
as well as the details of the current parallel programming practice are described.

1 The SPECInt is a benchmark specification for evaluating integer CPU performance [71]

1.1. The Challenge: Entering a Heterogeneous Parallel Universe 3

Multi-Core Era

Described and Enabled by:
 ✔ Moore's Law
 ✔ SMP architecture

Constrained by:
 ✘ Power
 ✘ Complexity

Programmed with:
 • Pthreads
 • OpenMP

L1-I L1-D

CPU

L1-I L1-D

CPU

L1-I L1-D

CPU

L1-I L1-D

CPU

Heterogeneous Era

Enabled by:
 ✔ Data Parallelism
 ✔ GPUs, DSPs, FPGAs, ...
s

Constrained by:
 ✘ Programming Models
 ✘ Offloading Overhead
s

Programmed with:
 • OpenCL
 • CUDA
 • OpenMP
 • OpenACC

L1-I L1-D

CPU

DSP

+

<

-

*

GPU

FPGA

Single-Core Era

Described and Enabled by:
 ✔ Moore's Law
 ✔ Micro-architecture

Constrained by:
 ✘ Power
 ✘ Complexity

Programmed with:
 • C/C++

L1-I L1-D

CPU

Figure 1.2: Eras of Processor Design Paradigms (Adapted from [32])

1.1.1 From the Single-Core to the Multi-Core & Heterogeneous Eras

Figure 1.2 summarizes key aspects of the single-core, multi-core and heterogeneous
eras, such as the enablers, constrainers and their programming paradigms. As pre-
viously discussed, the single-core era was described by Moore’s Law, and enabled
by advances in microarchitecture technologies and increasing clock frequencies. In
addition, currently it is possible to exploit close to the full hardware potential offered
by a single-core. In terms of programming paradigms, a large amount programs were
developed in languages, such as, C and C++, which resulted in what is known today
as legacy sequential software [209]. However, the single-core era hit a limit often referred
as the power wall [303], which opened the doors to parallel computing.

Similarly to the single-core era, the multi-core era is still described by Moore’s
Law, but also enabled by Symmetric Multiprocessing (SMP) architectures. An SMP
system involves two or more tightly coupled homogeneous cores connected to a sin-
gle shared-memory, which is controlled by one single Operating System (OS). In the
embedded domain, the use of homogeneous MPSoCs gained acceptance as the un-
derlying technology to design multi-core devices. On the one hand, MPSoCs pro-
vide a proper trade-off between performance, power consumption and cost. On the
other hand, MPSoCs enable a component reuse strategy known as platform-based de-
sign [266], which helps to reduce the Non-Recurring Engineering (NRE) costs and to
meet the strict time-to-market requirements. Figure 1.3 shows the most recent pre-
diction of the number cores in MPSoCs, published by the International Technology
Roadmap for Semiconductors (ITRS) in 2015 [138]. According to ITRS, by 2027 it is
expected that MPSoCs are going to incorporate over 300 cores. However, currently
there is still a significant gap between the attainable performance of these platforms
and the actual performance that the current software is able to achieve on them [52].
This gap can be closed by means of software parallelization with the extraction of mul-
tiple parallel patterns, which is addressed in Chapter 4.

4 Chapter 1. Introduction

2007 2010 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
0

50
100
150
200
250
300

1 2 4 4 10 18 28 42
67 76 87

135
168

221

283 292 303

N
um

be
r

of
C

or
es

Figure 1.3: ITRS 2.0 Prediction of the Core Count in MPSoCs (Data from: [138])

In terms of programming paradigms, it is worth to mention two widely used ex-
amples in the multi-core era: POSIX Threads (Pthreads) [1] and Open Multi-Processing
(OpenMP) [36]. Pthreads is a library-based programming paradigm for shared mem-
ory systems. It is a low level approach, as the developer has to explicitly perform
thread management, workload partitioning and synchronization. The accesses to
critical sections (shared data) have to be carefully designed to avoid data races and
deadlocks by means of mutual exclusion (mutex). OpenMP is an industry standard
programming model also for shared memory systems based on compiler directives,
originally designed for homogeneous multi-core platforms. The use of compiler di-
rectives is a high-level approach that requires minimal source code modifications in
contrast to Pthreads. In addition, the OpenMP runtime system takes care of the thread
management. Although Pthreads and OpenMP initially targeted desktop computing
and HPC, both have been used in the embedded domain as well [80, 277, 300].

The ever increasing requirements of modern applications pushed yet another ma-
jor change in the processor design paradigm known as the heterogeneous era [32, 255,
322]. Nowadays, mobile devices such as smartphones and tablets provide a wide
range of features beyond calling and texting, which includes video & audio process-
ing, emailing, gaming and navigation among others. These features are enabled by
applications that are diverse in nature. Therefore, this brought a need for specializa-
tion by means of heterogeneous computing, where computationally intensive workloads
can be more efficiently processed in terms of performance and power consumption
on specialized cores. Although the use of these type of cores have been around for
many years, it was until late 2000s when they started to become widely accessible
to the developers as programmable cores [223]. This is exemplified by the advent of
General-Purpose computing on Graphics Processing Units (GPGPU). The heterogene-
ity can be manifested in multiple forms: (i) multiple cores with the same Instruction
Set Architecture (ISA) running at different clock frequencies, (ii) multiple cores with
different ISAs, and (iii) programmable cores combined with Field-Programmable Gate
Arrays (FPGAs). The complexity introduced in this era by the diversity of the cores,
poses new challenges both in terms of hardware and software [322]. In addition,
the performance gap between the hardware platforms and the current software has
grown in contrast to the multi-core era. This gap can be closed by means of software
distribution based on accelerator offloading, which is addressed in Chapter 5.

1.1. The Challenge: Entering a Heterogeneous Parallel Universe 5

It is worth mentioning that in 2012 the Heterogeneous System Architecture (HSA)
foundation appeared as a major effort to simplify this new era of heterogeneous com-
puting through standardization [129]. HSA is a consortium composed of various
semiconductor companies, Intellectual Property (IP) providers, tool providers, soft-
ware vendors, and academic institutions. The HSA foundation strives for improv-
ing heterogeneous computing by providing specifications for multiple aspects of the
systems including the platform architecture, programming model, runtime system,
tooling and multi-vendor compatibility. These specifications are already in practice
in multiple domains from embedded to HPC. The Bifrost microarchitecture imple-
mented in the Mali-G71 GPU from ARM [260] and the recent Exynos 8895 MPSoC
from Samsung [265, 271] are examples of embedded platforms compliant with the
HSA 1.1 hardware specification.

The heterogeneous era also brought new programming paradigms, mainly fol-
lowing a host-centric model in which host cores offload workloads described as com-
putational kernels to accelerators [78]. About a decade ago in 2007, the first ver-
sion of the parallel programming paradigm called Compute Unified Device Archi-
tecture (CUDA) was released by NVIDIA [214]. The main goal of this paradigm is
to allow the use of NVIDIA GPUs for general purpose computing. CUDA provides
an Application Programming Interface (API) that allows to write both the code in the
host side, as well as the kernel code for the GPU side. Besides the API, CUDA is
also accompanied by a wide ecosystem of tools and specialized libraries for multiple
domains [213]. Another programming paradigm for heterogeneous systems called
Open Compute Language (OpenCL) was released for the first time in 2009 [276]. Sim-
ilar to CUDA, OpenCL provides an API to program both the host side code and the
kernel code. However, in contrast to CUDA, OpenCL is an open industry standard
supported on a variety of platforms from different vendors. In addition, OpenCL sup-
ports devices beyond GPUs (e.g., DSPs, FPGAs and other accelerators). Both CUDA
and OpenCL are classified as low-level paradigms, which imply a significant program-
ming effort. Therefore, high-level paradigms based on compiler directives emerged as
an alternative to program heterogeneous systems with less effort. In 2011, the first
specification of Open Accelerators (OpenACC) was released [225]. OpenACC is a
open industry standard managed by a consortium composed of industry and aca-
demic members. It aims to be a performance portable model to program accelerators
based on compiler directives, which allow to offload both data and computations to
accelerators. In 2013, OpenMP also entered the heterogeneous era with the introduc-
tion of the accelerator model as part of the OpenMP 4.0 specification [226]. Similarly to
OpenACC, the accelerator model allows to offload data and computation by means
of compiler directives. It is worth mentioning that in the academia, data-flow Models
of Computation (MoCs) gained acceptance, since they are suitable to describe embed-
ded streaming programs on heterogeneous systems [52, 116]. These MoCs describe
programs as a network of autonomous processes that exchange data through FIFO
channels. Prominent examples of these MoCs are Kahn Process Network (KPN) [99]
and Synchronous Data Flow (SDF) [168].

6 Chapter 1. Introduction

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
2
4
6
8

10
12
14
16
18
20
22
24
26
28

N
um

be
r

of
C

or
es

OMAP/Keystone/TDAx Families
Exynos Family
Tegra Family

Snapdragon Family

(a) Multi-Core Trend

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

1

2

3

4

5

N
um

be
r

of
C

or
e

Ty
pe

s

OMAP/Keystone/TDAx Families
Exynos Family
Tegra Family

Snapdragon Family

(b) Heterogeneous Trend

Figure 1.4: Trends in Commercial MPSoC Families (Data from: [51, 52, 283, 285, 288,
312, 313, 314, 315])

To exemplify the impact of the multi-core and heterogeneous eras in the embed-
ded domain, the evolution in terms of the number and diversity of programmable
cores in various commercial2 MPSoC families is presented in Figure 1.4. The first
trend is composed of three MPSoC families of Texas Instruments (TI): Open Multime-
dia Applications Platform (OMAP), Keystone [283] and TDAx [288]. These families
are presented here as a single trend line, since together they represent the overall evo-
lution of the MPSoC strategy of TI. The trend begins in 2007 with the OMAP family,
starting with the dual-core OMAP1 platform, as shown in Figure 1.4a. The main fo-
cus of the OMAP family was smartphones and tablets. However, in 2012 TI decided
to leave the mobile market [45]; thus, bringing this family to an end. In 2011, be-
fore announcing this market shift, TI already made an important step by introducing
the Keystone family to target new markets [283]. In its first generation, this family
provided homogeneous platforms with up to 8 C66x DSPs [289]. Then, in its second
generation, the Keystone family introduced heterogeneous platforms with up to 12
cores: 4 ARM Cortex-A15 cores and 8 C66x DSP cores [285]. Another major step by TI
was the introduction of the TDAx family in 2015 to target Advanced Driver-Assistance
Systems (ADAS). The most relevant aspect of this family is its heterogeneity, as Fig-
ures 1.4b and 1.5 show. This platform has up to 14 cores of 5 different types: 2 ARM
Cortex-A15 cores, 4 ARM Cortex-M4 cores, 2 C66x DSP cores, a dual-core SGX544
GPU and 4 Embedded Vision Engine (EVE) cores [287].

2 Company, product and brand names used in this thesis may be trademarks or registered trademarks of their respective owners

1.1. The Challenge: Entering a Heterogeneous Parallel Universe 7

High-Speed Interconnect

ARM
Cortex-A15

Memory
Subsystem

Peripherals
&

Connectivity

Display
Subsystem

System
Management

L1-I L1-D

ARM
Cortex-A15

L1-I L1-D

ARM
Cortex-A15

x2

L1-I L1-D

ARM
Cortex-M4

L1-I L1-D

ARM
Cortex-M4

L1-I L1-D

ARM
Cortex-M4

L1-I L1-D

ARM
Cortex-M4

x4

DSP
C66X

+

<

-

*

DSP
C66X

+

<

-

*

x2

GPU
SGX544
GPU

SGX544

x2

Vision
Acceleration

EVE

Vision
Acceleration

EVE

Vision
Acceleration

EVE

Vision
Acceleration

EVE

x4

Figure 1.5: TDA2SX: A Highly Heterogeneous MPSoC [287]

Another prominent family of MPSoCs is Snapdragon from Qualcomm [248]. The
core count trend of this family has grown since 2007 from 1 core in the Snapdragon
S1 platform to 13 cores in Snapdragon 845 platform in 2018 [313], as Figure 1.4a
shows. In terms of heterogeneity, this family reached 5 different core types in a single
MPSoC with the Snapdragron 845 [247]. This MPSoC has 4+4 Kryo cores (custom
Cortex-A75 and Cortex-A55), 1 Adreno 630 GPU, a Hexagon 685 DSP with 4 cores
and 1 Secure Processing Unit (SPU). The Exynos family from Samsung is another
example of widely used MPSoCs in the mobile market [312]. The core count trend
of this family presents the most dramatic growth, starting in 2010 with 3 cores in the
Exynos 3 platforms to 28 cores in the Exynos 9 platforms in 2017 [312], as Figure 1.4a
shows. The Exynos 9 MPSoC combines 4 M1 “Mongoose” cores, 4 ARM Cortex-A53
and a Mali-G71 MP20 GPU with 20 cores. Finally, the last family considered here is
Tegra from NVIDIA, which targets a variety of domains including mobile, gaming
and automotive [222]. Recently, this family has gained a strong relevance due to its
use in the deep learning domain [215]. The core count trend of the Tegra platforms
goes from 1 core in the Tegra APX 2500 platform in 2008 to 16 cores in the Xavier
platform announced in 2017 [217], as Figure 1.4a shows. The latest available platform
of this family is the Tegra X2, which combines 2 Denver2 cores, 4 ARM Cortex-A57
and a Pascal GPU with 8 Streaming Multiprocessors (SMs). The Drive PX 2 platform
for autonomous cars is an example of a system that incorporates 2 Tegra X2 MPSoCs
together with 2 discrete Pascal GPUs [216]. The previous trends strongly suggest
that embedded devices will keep evolving towards highly parallel and heterogeneous
systems, not only due to the increasing number and diversity of cores within a single
MPSoC, but also due to the use of multiple MPSoCs within a single system.

1.1.2 Current Programming Practice: Legacy Sequential Code

Parallel programming has shown to be a challenging task, as for humans it is more
natural to think sequentially. Moreover, many generations of developers have been
trained to design and program sequentially. However, still nowadays there is an open
debate about how and when universities should teach to think parallel [117, 146, 191,
200, 205]. As previously discussed, multiple paradigms have been developed to ad-
dress the issue of parallel programming in the multi-core and heterogeneous eras.

8 Chapter 1. Introduction

Despite these efforts for providing a convenient programming paradigm, developers
still have the cumbersome task of writing efficient and correct parallel code. This task
is even more challenging considering that the current practice for software develop-
ment relies on program transformation of existing legacy code instead of designing
everything from scratch [144]. It has been estimated that the amount of legacy code in
new developments exceeds the new code by a factor of 100 to 1 or even 1000 to 1 [90].
Moreover, developers are not going to adopt completely new parallel languages to
reimplement the huge amount of existing sequential code [117]. Instead, developers
have to incrementally optimize this legacy code (mostly written in C/C++ in the em-
bedded domain [47]) for an efficient execution on modern heterogeneous multi-core
systems [197]. This is an extremely error-prone and time-consuming task in which
developers have to perform multiple manual steps:

• Getting Familiar with the Legacy Source Code: The first step is to understand the
sequential code to be optimized. This task is especially challenging when the code
was written by someone else, which is typically the case. Therefore, developers
have to follow multiple strategies to tackle unknown legacy code [209].

• Identifying Computationally Intensive Code Regions: To achieve a profitable opti-
mization of the legacy code, developers have to focus on optimizing computation-
ally intensive sections of the programs. This can be achieved by using profiling and
performance estimation tools available for the platform of interest [51, 52].

• Understanding Data Dependencies: Developers have to identify and understand
data dependencies in the sequential code to preserve the functional correctness
of the program when parallelism is extracted [199, 319]. This is one of the most
challenging steps for developers, especially in “spaghetti code” [307]. In addition,
other parallelization inhibitors should be identified, including functions with side
effects or unstructured code (e.g., goto, continue and break statements) [16].

• Identifying Parallelization Opportunities: This is a key step in which developers
have to identify and select the most profitable parallelization opportunities within
computationally intensive code sections. The most prominent parallel patterns in-
clude Data Level Parallelism (DLP), Pipeline Level Parallelism (PLP), Task Level
Parallelism (TLP) and Recursive Level Parallelism (RLP) [10, 7, 51, 52, 70, 158].

• Identifying Software Distribution Opportunities: For heterogeneous multi-core
systems, developers have to identify code regions that are good candidates to be
offloaded to accelerators (e.g., GPUs or DSPs). For this purpose, developers have to
make sure that: (i) a code region exhibits a significantly higher performance when
is executed on a given accelerator than on the host cores, and (ii) the offloading
overhead does not outweight the benefit of offloading a code region.

• Writing the Parallel Code: The final step is to realize the identified software paral-
lelization and distribution opportunities by means of parallel paradigms available
on the target platform. Here developers have to perform various degrees of code
transformations and refactorizations according to the parallel paradigm. This task
by itself has proved to be extremely challenging [104, 149, 211, 279].

1.2. The Solution: Tools for Software Parallelization and Distribution 9

1.2 The Solution: Tools for Software Parallelization and
Distribution

The most prominent solution to help developers in the process of evolving legacy se-
quential code into the parallel space is the development of frameworks for automated
software parallelization and distribution [73, 78, 117, 131, 199, 261]. Previous research
efforts have left valuable observations and techniques from which it is possible to
derive the following set of requirements that an effective tool flow in the embedded
domain should meet:

• Coding Style and User Constraints: Multiple existing parallelization frameworks
impose restrictions to the type of code that they can handle [31, 161]. However, the
tools should be able to handle a wide variety of source code without imposing im-
portant restrictions that can limit the applicability of these frameworks. Moreover,
tools should focus on relevant programming languages according to the domain
of interest (e.g., C and C++ in the embedded domain [47]). In addition, develop-
ers should be allowed to have some degree of control to guide the analyses being
performed by the tools (e.g., by means of user constraints to configure the analysis).

• Platform Model: To achieve the best results in the embedded domain, it is impor-
tant that the tools are aware of the characteristics of the underlying platforms. For
example, in terms of the number and types of cores, communication costs and task
creation overhead [10, 51, 52, 70, 141]. This issue has motivated the emergence of in-
dustry standards, such as the Software-Hardware Interface for Multi-many-core (SHIM)
specification [204]. SHIM is a standard from the Multicore Association (MCA) for ab-
stracting hardware properties that are key to enable multi-core tools.

• Profile-Driven Analysis: Traditionally, state-of-the-art parallelizing compilers re-
lied only on static analysis. However, it has been observed that this approach of-
ten failed to extract parallelism in languages like C/C++, as they allow the use of
pointers, dynamic memory allocation and indirect function calls [294]. To overcome
these issues, multiple authors agreed that dynamic analysis can be used as either an
alternative or a complement to static analysis [148, 162, 294].

• Profitability Analysis: A key aspect for a profitable parallelization is performance
information for two main reasons: (i) it allows to identify computationally inten-
sive code sections, and (ii) it allows to perform a cost-benefit analysis to evaluate
the potential of a given optimization opportunity. Multiple existing tools [120, 294]
make use of static information for hotspot identification and cost-benefit analysis.
However, this approach might result in missing profitable optimization opportu-
nities or even in a slow down [296]. For this reason, more accurate performance
estimation techniques at various program granularities are necessary.

• Forms of Parallelism: Early works focused on extraction of DLP from loops in
which each iteration is independent from the others [155]. While DLP is abundant
in scientific applications, studies like [139, 153] show that in the embedded domain
additional forms of parallelism should be explored (e.g., TLP, PLP or RLP).

10 Chapter 1. Introduction

User
Constraints

C/C++

Sequential
Program

XML

Platform
Model

Instrumentation
& Profiling

BIN

01100

Dynamic
Information

(Trace)

Static
Information
(Bytecode)

LLVM
entry:
 %t=add
 %s=sub

XML

</>

Compilation
(Clang)

Program
Model

Performance
Information

XMLMulti-Grained
Performance
Estimation

XML

Polyhedral

XML

DCG
Dynamic

Call Graph
Generation

Polyhedral
Model

Analysis

Dependence
Flow Graph
Generation

XML

DFG

XML

</>

Program Model
+

Parallelization
Annotations

C/C++
#omp_for

C/C++
_kernel

CU
k<<>>()

CPN

OpenMP

OpenCL

CUDA

CPN

Hints

TXT

Parallel Code
Generation

TXT
Source Level

Hints
Generation

XML

</>

Program Model
+

Parallelization
& Distribution

Annotations

Software
Parallelization

Algorithms

Software
Distribution
Algorithms

Program Model
Generation &

Analysis

Hybrid Analysis1 Program Model Generation2 Code
Generation

4
Software

Parallelization
& Distribution

3

Figure 1.6: Tool Flow Overview

• Heterogeneity: The current practice in terms of software distribution in hetero-
geneous systems is based on a host-centric model, where host cores (e.g., CPUs)
offload code sections and data to specialized cores (e.g., GPUs or DSPs). Therefore,
together with the extraction of multiple forms of parallelism, tools should be able
to automatically identify the best core types to offload computationally intensive
code sections, which typically exhibit abundant DLP [189, 233].

• Source Level Hints: High-level information should be presented to the develop-
ers in the form of intuitive source level hints [51, 52, 135, 141]. This information
allows developers to get a general understanding about the characteristics of the
applications and to assess its optimization potential.

• Parallel Programming Paradigms: The usefulness of software tools highly depends
on the platforms to which they can be applied. Therefore, tools should be able to
realize software optimization opportunities on multiple relevant parallel program-
ming paradigms. In the embedded domain, industry paradigms such as OpenMP,
OpenCL and CUDA have gained strong acceptance and currently are being sup-
ported in a wide variety of platforms [160, 277, 286, 300].

1.3 Overview of the Proposed Tool Flow

By taking the requirements described in the previous section into account, in this the-
sis a tool flow for software parallelization and distribution for heterogeneous multi-
core embedded systems is proposed, as shown in Figure 1.6. This tool flow was
developed in the context of the framework called MPSoC Application Programming
Studio (MAPS) [51, 52, 53, 54, 269] of the RWTH Aachen University. Section 2.1.2.5
describes how this thesis contributes to the existing facilities of the MAPS frame-
work. The proposed tool flow takes as inputs a sequential C/C++ program, a model
of the target platform and constraints provided by developers. The tool flow itself
is composed of four phases as explained in the following. During the first phase a

1.4. Contributions 11

hybrid program analysis (1 in Figure 1.6) takes place, which collects static and dy-
namic information. While the static analysis gathers compile time information, such
as the complete control flow, variable declarations and memory accesses; the dynamic
analysis gathers runtime information such as a list of executed functions, basic block
execution count and memory accesses involving pointers or dynamically allocated
memory. The dynamic information is obtained by instrumenting the program and
executing it to generate a trace file. A Program Model (PM) is generated during the
following phase (2 in Figure 1.6). This model describes the input program in terms
of performance information, a graph that expresses the calling relationships among
functions in a given profiling run, and an Intermediate Representation (IR) that de-
scribes control and data dependencies among code statements, as well as the hierarchy
of code regions. Afterwards, the PM is analyzed in first place by heuristics that per-
form the software parallelization in which multiple forms of parallelism are extracted,
followed by heuristics that perform the software distribution in which code regions
are selected for accelerator offloading (3 in Figure 1.6). The results of this phase are
stored in the PM in the form of annotations, which are later used during the code
generation phase. Finally, during the last phase (4 in Figure 1.6) information in the
form of source level hints is presented to developers to give a general understand-
ing of the characteristics of the program and its optimization potential. In addition,
during this phase is where the parallel code in multiple paradigms is generated (i.e.,
OpenMP, OpenCL and CUDA and CPN [269]). The details of the proposed tool flow
shown in Figure 1.6 and its evaluation are presented in the following chapters.

1.4 Contributions

Having introduced the tool flow in the previous section, it is now possible to precisely
describe the contributions of this thesis. These contributions can be found in multiple
phases of the proposed tool flow, from the PM and its analysis, to the realization of
the identified optimization opportunities. The major contributions are outlined in the
following:

• Program Model (Chapter 3): In thesis, it is proposed a unified representation of
the program [5, 6, 10], which includes all the information required for an effec-
tive software parallelization and software distribution for heterogeneous multi-core
embedded systems. Furthermore, this thesis contributes with techniques to model
and analyze challenging language constructs (e.g, while loops [9]), which are not
typically supported by existing tools, thus missing important optimization oppor-
tunities.

• Multi-Grained Performance Estimation (Chapter 3): The selection of code granu-
larity is a major issue in frameworks for software parallelization and distribution,
as it has a direct impact on the form and degree of parallelism that can be exploited.
Typical granularities include: statement, basic block, loops, function and arbitrary
code blocks. Therefore, software parallelization and distribution frameworks re-

12 Chapter 1. Introduction

quire performance information at these granularities. This thesis contributes with a
flexible approach to provide performance information at multiple granularities [8].

• Software Parallelization Heuristics (Chapter 4): In this thesis, heuristics are pro-
posed to extract four different high level forms of parallelism from legacy sequen-
tial programs, namely, TLP, DLP, PLP and RLP [5, 6, 7, 10].

• Software Distribution Heuristics (Chapter 5): Together with the heuristics for ex-
traction of parallelism, this thesis also contributes with heuristics for automated
accelerator offloading of computationally intensive code regions in heterogeneous
systems [11, 14].

• Parallel Code Generation (Chapter 6): This thesis contributes with code generation
techniques, which allow to realize software parallelization and distribution oppor-
tunities using state-of-the-art parallel programming paradigms [5, 7, 10, 14]. This
enables the applicability of the proposed tool flow to a wide variety of relevant
commercial heterogeneous embedded multi-core platforms.

• Optimization of Parallel Code (Chapter 6): Although the main focus of this work is
to optimize sequential applications, this thesis also contributes with techniques to
further optimize existing parallel code, in particular, code annotated with OpenMP
compiler directives [13]. This input OpenMP code to be further optimized can be
either generated by the proposed tool flow, or manually parallelized code.

• Applicability to Commercial Platforms (Chapter 7): The applicability of the pro-
posed technologies is evaluated on relevant commercial embedded platforms, such
as Android devices [5, 10] and multi-core DSP platforms [9, 12, 14].

1.5 Synopsis and Outline

This chapter started by describing the dramatic shift in the paradigm of processor
design from the single-core era to the multi-core and heterogeneous eras. To exem-
plify this in the context of embedded systems, the evolution of multiple commercial
families of MPSoCs was presented. The current practice and challenges of parallel
programming were also discussed in detail, as well as the need for software paral-
lelization and distribution tools. Finally, a brief overview of the proposed tool flow
was given together with a description of the key contributions of this thesis.

The remainder of this thesis is organized as follows. A review on the previous
research work relevant to this thesis is presented in Chapter 2. Chapter 3 discusses
the details of the Program Model. The proposed software parallelization techniques
are presented in Chapter 4, while the software distribution techniques are presented
in Chapter 5. The details of the code generation phase are discussed in Chapter 6. The
experimental evaluation is detailed in Chapter 7. Finally, the summary, conclusions
and the outlook of this thesis are presented in Chapter 8.

Chapter 2

Related Work

Techniques for automated software optimization for multi-core systems are not new.
Early works on parallelization focused solely on loop parallelism (also known as
DOALL) [155], where each iteration in a loop is independent from the others. Classical
examples of this are the Stanford University Intermediate Format (SUIF) [318] and Po-
laris [33, 34] frameworks, which have been often referred as first generation tools [261].
This chapter aims at presenting the features and limitations of existing academic and
commercial frameworks for software parallelization and distribution, which are the
most relevant to this thesis. The presentation of the frameworks is organized in mul-
tiple categories. Some frameworks might simultaneously fall into multiple categories.
Therefore, they are either discussed in their most relevant category, or their discussion
is divided across multiple categories.

This chapter is structured as follows. Section 2.1 discusses multiple parallelization
frameworks driven by profiling information and by the extraction of parallel patterns.
Then, the frameworks with support for heterogeneous systems are presented in Sec-
tion 2.2. Finally, Section 2.3 closes this chapter with a summary of the presented
frameworks, which shows in perspective the proposed tool flow in this thesis.

2.1 Software Parallelization

This section presents the most relevant parallelization frameworks to this thesis. First,
profile-driven frameworks are discussed, followed by pattern-driven techniques. The
coarse-grained parallel patterns considered in this section are DLP, PLP, TLP and
RLP.

2.1.1 Profile-Driven Parallelization

The use of dynamic information for software parallelization has been identified as an
effective way to overcome the traditional limitations of static techniques when it comes
to analyze pointers, dynamic allocated memory, function pointers among others [239].
This information is typically gathered at runtime by means of program instrumenta-
tion and profiling [86]. The use of dynamic information has been proposed either as
a replacement or a complement to static information to enable a hybrid analysis [259].
This section reviews multiple frameworks whose main contribution lies on profiling
techniques for software parallelization. It is worth mentioning that these profile-
driven frameworks typically focus only on parallelism discovery, without providing
facilities for automated parallel code generation.

13

14 Chapter 2. Related Work

One of the earliest profile-driven frameworks for software parallelization is Em-
bla [89, 187], which was developed at the Swedish Institute of Computer Science. Em-
bla is a simple tool that records and reports to developers relevant dynamic data de-
pendencies among statements (e.g., Read-After-Write (RAW), Write-After-Write (WAR)
and Write-After-Write (WAW)). For this purpose, it uses Valgrind [208] as the Dy-
namic Binary Instrumentation (DBI) tool. However, this framework fully relies on the
developers to manually identify and correctly implement the most promising paral-
lelization opportunities. Alchemist [323] is a framework developed at Purdue Uni-
versity for dependence distance profiling in C and C++ programs also based on Val-
grind [208]. This framework works at various language construct granularities (e.g.,
loops or functions). The primary focus of Alchemist is to provide high-level recom-
mendations about dependencies among the language constructs that might prevent
parallelization (i.e., RAW, WAW and WAR). To distinguish among the different in-
stances of a given construct, this framework builds an execution index tree by using
a post-dominator analysis [155]. However, this framework does not provide facilities
for code generation, which implies still a significant effort for developers.

Prospector [162, 163] is another profile-driven framework for extraction of DLP
from the Georgia Institute of Technology. This framework is implemented on top of
the Pin tool [186] for DBI. It is based on a profiling technique developed by the same
research group that developed a framework called SD3 [164]. The most interesting
aspect of SD3 is that its main focus is to reduce both the runtime and memory over-
head of the profiling process. On the one hand, to optimize the runtime overhead this
framework parallelizes the profiling process itself. On the other hand, to reduce the
memory overhead SD3 takes advantage of stride patterns to compress the memory
access information; then, it derives the dependency information from the compressed
format itself. However, similar to Alchemist, Prospector only provides high-level par-
allelization hints without any code generation support. The Parwiz [157] framework.
jointly developed at INRIA and the Université de Strasbourg, uses DBI built on top
of Pin for identifying DLP. This framework aims at different use cases, including
identification of parallel loops and transformation of loop nests to enable vectoriza-
tion. Parwiz achieves this by building an execution tree that contains multiple types
of nodes to enable the dependence analysis. The ACCESS nodes are key, as they
represent individual memory accesses from which data dependencies are derived.
Although Parwiz is able to distinguish dependencies that can be handled with pri-
vatization, it is not able to detect reduction operations. Finally, Parwiz incorporates
static analysis to reduce the profiling overhead. An important concern of tools based
on DBI, such as Embla, Alchemist, Prospector and Parwiz, is the degree of accuracy
at which they can provide high-level readable information to developers [140].

Profiling technologies from the single-core era have also inspired frameworks for
software parallelization. Kremlin [96] is one example inspired by gprof [118], which
was developed at the University of California, San Diego. This framework aims at
helping developers for both parallelism discovery and planning (i.e., implementa-
tion). The key contribution of this framework is the introduction of a Hierarchical
Critical Path Analysis (HCPA), as an extension to the traditional Critial Path Analy-

2.1. Software Parallelization 15

sis (CPA) [154]. The goal of the HCPA is to model dependencies across nested regions
in a program (e.g., nested loops) to enable the extraction of DLP. Along with the
HCPA, this framework introduces a metric to quantify the parallelization potential of
a given region called self-parallelism, which is inspired by the self-time metric used in
traditional profilers such as gprof. In addition, Kremlin includes facilities for paral-
lelism planning, which provide suggestions on how to parallelize the programs with
OpenMP. However, developers still have the challenging task to manually refactor and
implement the parallelism. Kismet [141] is a tool built on top of Kremlin that aims
at providing speedup estimates for the parallelization opportunities identified in se-
quential programs. This framework has two major components: (i) a self-parallelism
profiler, which extends the one introduced in Kremlin and (ii) a speedup predictor,
which is the main contribution of Kismet. To estimate the parallel speedup, the tool
makes use of platform-independent parallelization information provided by the self-
parallelism profiler and platform specific details, such as number of available cores
and parallelization overhead. The authors of Kismet made clear that this tool does
not provide suggestions on how to refactor the program for parallelization. Then,
this task is left to developers, which is an error-prone and time-consuming process,
as discussed in Chapter 1.

Profile-driven tools have also emerged in the industry. Threading Advisor is a tool
for thread design and prototyping included in the Intel Advisor Tool Suite [135]. This
tool is structured as workflows in which developers have to follow multiple steps.
The Threading Advisor workflow starts with the survey step, where it profiles the
input program to identify hotspots. Then, with this information developers are re-
quired to add annotations in code sections that they consider good candidates for
parallelization. This implies that the actual extraction of parallelism is performed
manually by developers. Afterwards, it follows the suitability step, where using the
annotations the tool is able to estimate the scalability of the parallelization opportu-
nities by using different number of threads. Finally, Threading Advisor performs a
dependence analysis to identify potential data races and deadlocks. The main draw-
back of this tool is that it requires significant manual intervention by the developers,
as it neither automatically identifies parallel patterns nor provides code generation
facilities. Prism [75] is an example of a commercial tool based on DBI, which was
developed by Critical Blue. Prism profiles the application to obtain data dependency
and performance characterizations. Using this information, it is possible to detect
hotspots, identify data dependencies and study the parallelization scalability based
on a what-if analysis. However, Prism requires that developers manually suggest the
potential parallelism. Additionally, this tool provides other facilities beyond multicore
optimization, including binary translation, cache optimization and software security.
Similar to this thesis, Prism has been applied to Android, but only for cache optimiza-
tion [74]. Intel Thread Advisor and Prism are similar tools in terms of their workflow
and the analyses provided. However, they heavily rely on insights provided by de-
velopers due to the interactive approach of this tools, i.e., they do not automatically
extract parallel patterns from the sequential code, nor generate the parallel code.

16 Chapter 2. Related Work

2.1.2 Pattern-Driven Parallelization

The use of design patterns is a widely accepted practice for software development
in which recurring problems in a given context are solved by reusing well-known
solutions [95]. This approach has been also applied to parallel programming. The
taxonomy known as Our Pattern Language (OPL) organizes parallel patterns in mul-
tiple abstraction layers [195]. In particular, the parallel algorithm strategy patterns layer
is relevant for software parallelization, since it defines multiple patterns that can be
extracted from sequential programs. The most prominent patterns considered in this
thesis are Data Level Parallelism (DLP), Pipeline Level Parallelism (PLP), Task Level
Parallelism (TLP) and Recursive Level Parallelism (RLP). Extraction of patterns has
been identified as an effective strategy for software parallelization since early works,
such as the framework called Parallelize Automatically by Pattern Matching (PARA-
MAT) [156]. This section reviews frameworks relevant for this thesis whose main
contribution lies on the automatic identification of parallel patterns from sequential
code. Firstly, frameworks that focus on one specific pattern are presented, followed
by frameworks that provide support for multiple patterns.

2.1.2.1 Data Level Parallelism (DLP)

DLP is one of the most scalable parallel patterns [196], which is typically found in
scientific and multimedia applications. It is defined as a pattern where a data set is
split into smaller blocks to which the same computation is simultaneously applied
by multiple parallel tasks. DLP is one of the most studied patterns in the domain of
software parallelization tools. This thesis also proposes an approach for extraction of
DLP, which is described in Section 4.2. In the following, the most relevant frameworks
for the extraction of DLP are discussed.

Cetus [77], developed at Purdue University, is a source-to-source compiler infras-
tructure written in Java with support for building automatic parallelization tools. This
framework provides three fundamental fully static analyses for loop parallelization
(i.e., extraction of DLP), namely variable privatization, reduction variable recognition
and induction variable substitution. In addition to the parallelization support, Cetus
includes other general compiler facilities, including array section and points-to anal-
yses. Moreover, Cetus provides code generation facilities, which annotate the outer-
most parallel loops with OpenMP pragmas. A similar source-to-source parallelizing
compiler is autoPar [179], which is built on top of the ROSE compiler infrastruc-
ture [250], developed at the Lawrence Livermore National Laboratory. This is a fully
static framework that focus on array-based loops. autoPar first normalizes and iden-
tifies candidate loops for parallelization. Then, for each candidate it performs the fol-
lowing steps: liveness and dependence analyses, classification of loop variables (i.e.,
auto-scoping), elimination of dependencies associated with the auto-scoped variables,
and finally insertion of OpenMP pragmas. In addition, autoPar provides supports to
parallelize loops in C++ using the Standard Template Library (STL) [72]. However,
autoPar do not perform any cost-benefit analysis to reason about the benefit of par-
allelizing a given loop. Overall the main concern about Cetus and autoPar is that

2.1. Software Parallelization 17

they rely on fully static analysis, which presents important limitations for software
parallelization, as it was discussed in Section 2.1.1. Instead, Tournavitis et al. [296]
presented a profile-driven holistic approach for extraction of DLP, which was devel-
oped at the University of Edinburgh. This approach makes use of static and dynamic
analyses to identify control and data dependencies, which are implemented on top
of the Compiler System (CoSy) framework [22]. Then, profitable parallel loops are
identified using machine learning, based on both static and dynamic program fea-
tures (e.g., instruction count and memory accesses). Finally, the selected loops are
annotated with OpenMP pragmas, including the scheduling policy. However, the ap-
proach used to select the OpenMP scheduling policy does not take load balancing
into account. This thesis addresses the selection of the OpenMP scheduling policy to
achieve a proper load balancing, as it is discussed in Section 6.3.3.

A popular static approach for extraction of DLP is the use of the polyhedral model
(also known as polytope model) [172]. This model is a mathematical framework for
transformation, parallelization and data locality optimization of loop nests. The ap-
plicability of the polyhedral model is limited to a subset of statically predictable loop
nests known as Static Control Parts (SCoP) (also called Static Affine Nest Loop Pro-
grams (SANLP)). A SCoP consists of a set of statements enclosed in loops in which
data dependencies have to be statically computable, and where loops bounds, array
accesses and expressions in conditions must be affine expressions of the enclosing
loops. These restrictions significantly limit the applicability of the polyhedral model.
Nevertheless, multiple frameworks rely on this model and there are works that have
proposed approaches to relax its restrictions to some extent [31]. PLUTO [38, 39] is
a source-to-source parallelizing compiler, jointly developed by Ohio and Louisiana
State Universities, which is based on the polyhedral model. The main focus of this
tool is the parallelization and locality optimization of affine nested loops. The analysis
in PLUTO is enabled by polyhedral libraries, such as Integer Set Library (ISL) [304]
and PolyLib [316]. OpenMP code generation facilities are also provided in PLUTO.

Par4All [237] is a source-to-source compiler based on the polyhedral model jointly
developed by SILKAN, MINES ParisTech and Institut TÉLÉCOM/TÉLÉCOM Bretag-
ne/HPCAS. Par4All is built on top of the Parallelization Infrastructure for Parallel
Systems (PIPS). Initially, this framework supported OpenMP code generation, and
later it was extended to CUDA and OpenCL to address the heterogeneous era. How-
ever, the development of this framework is not active anymore. Polly [120, 293] is
a recent framework for IR-level polyhedral optimizations jointly developed by IN-
RIA and University of Passau. This framework eventually became part of the Low
Level Virtual Machine (LLVM) compiler infrastructure and it is currently supported
by an active community of developers. Polly was inspired by a former polyhedral
framework called GRAPHITE [242], which was integrated in GNU Compiler Collec-
tion (GCC), being one of the earliest efforts to incorporate polyhedral analyses and
transformations into production compilers. Polly provides facilities for loop optimiza-
tion by means of coarse-grained and fined-grained parallelization (i.e., vectorization),
and for data locality optimizations by means of loop transformations. In addition,
support for GPGPU was recently incorporated [61]. It is worth mentioning that the

18 Chapter 2. Related Work

community behind Polly has made important efforts to relax the traditional limita-
tions of the polyhedral model (e.g., supporting reduction operations [79]); thus, im-
proving the applicability of this framework. Polly is a complementary framework to
the work done in this thesis. Therefore, its static analysis facilities have been inte-
grated in the proposed tool flow, as discussed in Section 4.2.2.1.

The polyhedral model has also been used to derive parallel data-flow MoCs from
SANLP in C streaming applications [292]. PNgen [306] is a tool for this purpose,
which is part of the Daedalus design flow developed at Leiden University [274].
This tool transforms SANLPs into the Polyhedral Process Network (PPN) MoC [305],
which is a network of processes that exchange data tokens through First-In First-
Out (FIFO) channels. The PPN MoC is a special case of KPN that is statically ana-
lyzable and allows to perform algebraic transformations according to the polyhedral
model. The resultant PPN is described in the Extensible Markup Language (XML)
format, which is further processed by the rest of the Daedalus design flow.

While loops have been also identified as a challenge for software parallelization,
since the iteration space is unknown at compile time. Early works on while loop par-
allelization focused on generalizing the polyhedral model to support loop nests that
contain this type of loops. Lengauer et al. [171] proposed at the University of Passau
a conservative extension to the polyhedral model in which the execution space and
the termination condition are precisely scanned at runtime. Rauchwerger et al. [253]
at the University of Illinois at Urbana-Chapaign proposed a speculative technique tar-
geting loops containing linked lists. The main drawback of the previous approaches
is their runtime overhead, which limits the effectiveness of these techniques. Paral-
lelization of while loops is also considered in this thesis, as discussed in Chapter 3.

In the commercial domain it is also possible to find tools that aim at helping de-
velopers to identify DLP exploitation opportunities. Parallware [19] is a tool based
on LLVM to assist in parallelization of scientific applications developed by Appen-
tra. The technology behind this tool was originally developed at the University of A
Coruña [20]. The parallelization approach of this framework is based on a hierarchical
classification in which first the code is split into small kernels, and then the data de-
pendencies among kernels are analyzed to identify parallelism. Parallware leverages
multiple classical static compiler analyses, including array analysis, variable scoping
and interprocedural analysis. This tool parallelizes loops either with OpenMP or
OpenACC. The main drawback of Parallware is that it requires manual code refac-
toring to make it manageable by this tool, e.g., by removing global variables, structs
and enums [188]. Compaan Hotspot Parallelizer [62] is another commercial tool de-
veloped by Compaan Design, which is a spin-off of Leiden University. This tool
is built on top of the CoSy compiler framework [22, 198, 202]. Compaan derives a
KPN specification from SANLPs in C programs using the polyhedral model. Then,
the KPN specification is mapped on platforms with GPPs and FPGAs using POSIX
Threads (Pthreads) and the VHSIC Hardware Description Language (VHDL), respec-
tively. However, Compaan does not use performance information to evaluate the
potential of the parallelization opportunities. It is worth mentioning that the original
academic version of the tool takes MATLAB programs as an input [161, 275].

2.1. Software Parallelization 19

2.1.2.2 Pipeline Level Parallelism (PLP)

In PLP a given computation within a loop body is broken into a sequence of pro-
cesses (i.e., pipeline stages), which follow a producer-consumer relationship. This is a rel-
evant pattern in embedded systems, since many applications in this domain present
a streaming-based structure [291]. In these applications, there are serially dependent
tasks, such as audio and video encoding and decoding. An interesting characteris-
tic of PLP is that it can be applied to loops with loop-carried dependencies, which
prevent the exploitation of DLP. Therefore, PLP complements DLP for loop paral-
lelization. This thesis also addresses the extraction of PLP in Section 4.3. This section
provides an overview of existing approaches for extraction of PLP.

One of the earliest efforts to exploit PLP in loops is an approach called Decoupled
Software Pipelining (DSWP), which was introduced by Rangan et al. [252] at Prince-
ton University. DSWP specifically targets the optimization of Recursive Data Struc-
tures (RDS), such as linked lists, trees and graphs. It works by dividing RDS loops
into threads for the traversal code (critical path) and for the actual computation (off-
critical path). Then, these threads execute in parallel in a pipelined fashion. Ottoni et
al. [232] proposed an approach to automatically extract DSWP. This approach is based
on a clustering algorithm that tries to find Strongly Connected Components (SCCs)
in a Program Dependence Graph (PDG) [91], which represents the program at the
low-level instruction granularity. The proposed heuristic tries to balance the pipeline
stages by estimating the cycles of each SCC. The approach is implemented on top
of the back-end of the Illinois Microarchitecture Project using Algorithms and Com-
piler Technology (IMPACT) framework [24]. Vachharajani et al. [298] proposed an
extension to DSWP to support Thread Level Speculation (TLS). The idea of this ap-
proach is to improve load balancing by speculating over infrequent dependencies to
avoid restricting instructions to one single thread. Raman et al. [251] further extended
DSWP by introducing a technique called Parallel Stage Decoupled Software Pipelin-
ing (PS-DSWP). The goal of this technique is to improve the scalability of DSWP by
replicating pipeline stages with no loop-carried dependencies to exploit DLP. The
previous DSWP approaches are integrated in a compiler framework called VELOC-
ITY [43]. In addition, further improvements and frameworks based on DSWP have
been proposed [130, 175, 181]. In contrast to VELOCITY, the approach presented in
this thesis for extraction of PLP is not limited to RDS.

Parallelization approaches that require significant involvement by developers have
been also proposed for PLP extraction. Thies et al. [291] presented an approach to ex-
tract PLP based on a semi-automatic profiling technique. In this approach, developers
have to manually group and annotate statements in pipeline stages (similar to Intel
Threading Advisor [135] discussed in Section 2.1.1). Then, using dynamic analysis, it
is possible to build a stream graph, which is presented to developers to understand
the performance of the current pipeline configuration. If this configuration is not sat-
isfactory, developers have to iteratively refine the boundaries of the pipeline stages.
A similar annotation-based approach called Paralax [299], which was developed at
Queen’s University of Belfast and Ghent University. The idea behind Paralax is that

20 Chapter 2. Related Work

developers can help compilers to close semantic gaps by providing annotations with
information that can not be inferred statically, such as function properties, memory
access and liveness information of variables and data structures. Using these annota-
tions Paralax first performs a dependency analysis and then extracts pipeline config-
urations from only outermost loops using a DSWP algorithm. The resulting pipeline
configurations are implemented using Pthreads. However, the main disadvantage of
the previous two approaches is that the extraction of PLP is not automated. Tournavi-
tis [295] proposed a semi-automatic profile-driven approach for PLP identification at
the University of Edinburgh. This approach performs a hierarchical extraction of PLP
that allows to identify pipeline configurations that span multiple levels in a loop nest.
Additionally, pipeline stages without inner loop-carried dependencies are replicated
in a similar fashion to PS-DSWP [251]. This hierarchical pipeline extraction technique
operates on the PDG [91], and it is implemented on top of the CoSy framework [22].
The code generation takes place directly in the IR of CoSy and the execution is enabled
by a dedicated runtime system.

Geuns et al. [98] proposed a method for parallelizing while loops jointly devel-
oped by Eindhoven University of Technology, NXP Semiconductors and University
of Twente. This approach consists in creating one task for each function within the
loop body. The communication among tasks is performed through circular buffers
with overlapping windows. Besides being restricted to while loops with function
calls, one important limitation of this approach is that programs have to be written
in the Single Assigment (SA) form [17]. This implies an additional effort for devel-
opers, as they have to manually perform data dependency analysis first and then
source code transformations to the SA form. Cordes [66] proposed a method at TU
Dortmund for PLP extraction in embedded systems based on Integer Linear Program-
ming (ILP). The ILP formulation extracts pipeline configurations from the PDG [91],
which is augmented with performance information used to control the granularity
of the stages. This approach is implemented on top of the MACC framework [245]
and it uses MPSoC Parallelization Assist (MPA) [28] as the code generator, which also
provides a dedicated runtime system to create tasks and synchronization primitives.
Cordes later proposed a multi-objective PLP extraction method based on Genetic Al-
gorithms (GAs) [63]. The idea of this approach is to optimize sequential applications
not only for execution time but also for energy or communication overhead. Unfor-
tunately, these techniques proposed by Cordes were not evaluated on realistic com-
mercial embedded platforms using state-of-the-art parallel programming paradigms.
Furthermore, the main drawback of these approaches is their long analysis times,
which might limit the applicability of these techniques in large production programs.
Unlike these ILP and GA based approaches, in this thesis it was opted for effective
faster heuristics. Moreover, the proposed tool flow was evaluated on commercial em-
bedded platforms, e.g., Android devices.

2.1. Software Parallelization 21

2.1.2.3 Task Level Parallelism (TLP)

In contrast to loop parallelism, TLP is a more irregular pattern in which multiple
tasks perform different computations on the same or on different data sets. Typically,
these tasks are composed by basic blocks, language constructs (i.e., independent if
blocks or loops executed in parallel) or function calls. Therefore, the extraction of
TLP deals with multiple granularities. This pattern is also considered in this thesis, as
Section 4.4 describes. The rest of this section discusses the most relevant approaches
to this thesis for extraction of TLP.

Cordes et at. [68] proposed an automatic TLP extraction approach for embed-
ded systems that is based on ILP. In this approach, an augmented version of the
Hierarchical Tasks Graph (HTG) [100] is used as the IR, which allows to model the
communication between the multiple levels of hierarchy by adding extra nodes for
this purpose. This extension to the HTG makes this IR more suitable for hierarchi-
cal parallelization techniques. The ILP technique proposed by Cordes operates on
the augmented HTG to control the granularity of the generated tasks. However, one
disadvantage of the HTG is that it can not model unstructured code (i.e., it contains
break, return or goto statements). This thesis also takes advantage of the program
hierarchy using another IR called Dependence Flow Graph (DFG) [145, 241], which is
also able to model unstructured code, as discussed in Section 3.4. Cordes et at. [67]
later proposed a multi-objective TLP extraction approach based on GA. However, the
main concern of ILP and GA based approaches is their long analysis times, as dis-
cussed in the previous section.

The extraction of TLP has been also studied in the automotive domain. Kehr
et al. [151, 152, 236] proposed approaches for extraction of TLP at multiple granu-
larities in legacy automotive software described in Automotive Open System Archi-
tecture (AUTOSAR) [25]. This work was jointly developed by DENSO Automotive,
Barcelona Supercomputing Center and Ilmenau University of Technology. AUTOSAR
is a standard for the software architecture of automotive applications. In this stan-
dard, applications are described as a set of elementary code sections called runnables
and a set of tasks, which in turn are clusters of runnables. In [236], the authors first
proposed a framework called RunPar to explore the parallelization at runnable level.
RunPar allows to map runnables within a single task to multi-core Electronic Control
Units (ECUs). RunPar relies on a static timing analysis tool called Open Toolbox for
Adaptive Worst-Case Execution Time Analysis (OTAWA) [29]. This tool provides the
Worst-Case Execution Time (WCET) estimates required to make the mapping deci-
sions. Later, the authors explored the parallelization of AUTOSAR applications at
the task level [152]. This was achieved by introducing a new concept called Timed
Implicit Communication (TIC), which allows to decouple the task communication be-
tween producers and consumers. Subsequently, Kehr et al. [151] proposed a new
concept called SuperTask with the aim of maximizing the amount of runnable level
parallelism in AUTOSAR applications. Compared the previous approaches, the tech-
niques proposed in this thesis aim at a general applicability without being restricted
to one particular application domain.

22 Chapter 2. Related Work

2.1.2.4 Recursive Level Parallelism (RLP)

Divide-and-Conquer (DaC) algorithms are an important class of design paradigms,
with a high degree of parallelization potential used to solve a vast set of problems
in multiple application domains [195, 272]. These algorithms are typically imple-
mented in programs with multiple recursion in which functions contain two or more
self-invocations. This implementation strategy allows to recursively break problems
into smaller coordinated sub-problems that are easier to solve. Provided that these
sub-problems are independent, it is possible to exploit a scalable form of nested par-
allelism called RLP. Therefore, multiple research efforts have been directed towards
exploiting parallelism from this class of programs in terms of language support, run-
time systems and compilers. Recent examples of research works for language support
and runtime systems are C++11 templates for DaC algorithms [76] and runtime tech-
niques to control the task granularity [92], respectively. This thesis concerns compiler
technologies for automated extraction of RLP, as discussed in Section 4.5. The rest of
this section reviews relevant frameworks to extract RLP from sequential code.

Multiple research efforts have addressed the parallelization of recursive programs.
The compiler proposed by Rugina et al. [257] is an early work on the parallelization
of DaC algorithms developed at Massachusetts Institute of Technology (MIT). This
approach exploits the fact that DaC algorithms can be decomposed in sub-problems
that access disjoint array regions. This framework relies on multiple analyses from
the SUIF compiler infrastructure [318] to statically reason about the mutual indepen-
dence of recursive call-sites. Finally, this framework generates parallel code using
the Cilk programming paradigm [35], which was originally developed at MIT and
later acquired by Intel [137]. Gupta et al. [121] proposed an automatic paralleliza-
tion approach of recursive procedures developed by IBM and Mobious Management
Systems. In this approach, compile time analysis is complemented by a runtime sys-
tem to perform a speculative parallelization to address spurious data dependencies.
The approach is build on top of the Toronto Portable Optimizer (TPO) [166]. How-
ever, the authors do not discuss the overhead introduced by the runtime speculation
that could limit the effectiveness of the approach. AutopaR [147] is another source-
to-source framework for RLP extraction developed at Bilkent University. This tool
performs static analysis on GCC and its main goal is to parallelize recursive calls in
C code with OpenMP pragmas using parallel sections. However, the authors do not
clarify how the mutual independence of the recursive call site is verified. Further-
more, AutopaR does not address the selection of a proper task granularity, which is
fundamental to achieve a profitable RLP extraction [2, 92].

Interactive frameworks that require important user intervention for parallelizing
DaC programs have been also proposed. The source-to-source compiler called Recur-
sive Programs Automatically Parallelized (REAPAR) [244] is one example, which was
developed by abaXX Technology and GINIT. In this framework the independence of
the recursive call-sites is assumed and not verified, leaving this challenging responsi-
bility to developers. REAPAR performs a profiling run of the input program to collect
information that allows to select a proper parallelization strategy. Then, a code gen-

2.1. Software Parallelization 23

erator based on a Perl script that uses pattern matching to add the threading code.
Unfortunately, besides the lack of dependency analysis, REAPAR imposes multiple
restrictions to the input source code that it can handle, which further limits its appli-
cability. In addition, the robustness of the Perl-based code generator is not clear, in
contrast to a typical compiler frontend. Huckleberry [60] is a framework for parallel
code generation from recursive programs targeting distributed memory multi-core
systems, which was developed at Columbia University. The input programs accepted
by this framework must be written using an API called partition, which implies an
important manual effort when existing recursive code has to be ported to this API.
Then, Huckleberry takes the input specification together with a model of the platform
to generate the parallel code using the Cell Software Development Kit (SDK) to target
the QS20 Cell Blade platform [207]. Similarly, Ariadne [193] is a framework in which
the developer has to insert directives to tell the compiler where and how to paral-
lelize recursive programs. This framework was jointly developed by the University
of Ioannina and ETH Zurich. Ariadne produces parallel code in Pthreads, OpenMP,
Cilk or in a model called Self-adaptive Virtual Processor (SVP) [143]. Compared to
the previous works, the approach proposed in this thesis for RLP extraction, automat-
ically verifies mutual independence of recursive call-sites and performs a profitability
analysis to select a proper parallelization strategy to achieve a good load balancing
and a low task management overhead.

2.1.2.5 Multiple Patterns

In general, DLP has been one of the most studied patterns in the domain of frame-
works for software parallelization. However, as discussed in the previous sections,
other prominent parallel patterns can be extracted from sequential code to maximize
its optimization opportunities for multi-core systems. Therefore, this section reviews
parallelization approaches that consider more than one parallel pattern.

One example of these frameworks is the MPSoC Application Programming Stu-
dio (MAPS) [4, 51, 52, 53, 269], developed at the RWTH Aachen University. This is the
most relevant work to this thesis, as the tool flow proposed in this thesis originates
from the MAPS project. This framework was introduced by Ceng et at. [53, 54] based
on a clustering algorithm to extract TLP from sequential code called Constrained Ag-
glomerative Hierarchical Clustering (CACH). The granularity at which the CACH
algorithm extracts tasks is called Coupled Block (CB), which is a schedulable and
tightly coupled code section. This algorithm operates on an IR called Weighted State-
ment Control Data Flow Graphs (WSCDFG), which is built using static and dynamic
analysis. The WSCDFG also includes performance information annotations. Unfor-
tunately, the performance estimation technique used in this framework is based on a
very simple and inaccurate approach that relies on cost tables provided by a platform
model. In addition, parallel code generation has to be manually performed by de-
velopers. Later, Castrillon [51, 52] proposed extensions to MAPS that lead to evolve
this framework into two main tool flows: a sequential flow for parallelism extraction
and a parallel flow for mapping KPN applications. The sequential flow is the one rel-

24 Chapter 2. Related Work

evant to this thesis. This tool flow is an extension to the initial parallelization tool
flow proposed in [53] in which pattern-driven parallelization heuristics were incorpo-
rated to extract TLP, DLP and PLP. Also, a limited experimental code generator was
added just for verification purposes to emit a combination of Pthread and Message
Passing Interface (MPI) code, together with hints to help in the manual migration of
the input C program into a CPN parallel specification [269]. However, the proposed
pattern-driven heuristics present important limitations that impact their effectiveness.
The DLP is not able to identify private variables and reduction patterns present in
many loops, which results in missing many profitable optimization opportunities. In
addition, the arrays are seen by the DLP heuristic as monolithic objects for which it is
not possible to analyze their iteration space in detail. Therefore, it is only possible to
apply this heuristic to trivial loops. Regarding the PLP heuristic, this technique is not
able to exploit multi-level pipelines, nor stage replication. Finally, the TLP heuristic
is based on a simple As Soon As Possible (ASAP) scheduling, which only operates
on the first level of the functions (i.e., it is not able to extract TLP in nested code
regions). Furthermore, the sequential flow of MAPS is not able to decide which core
type is more suitable for a given code region (i.e., is not able to optimize code for
heterogeneous platforms). Finally, this framework was only evaluated with synthetic
benchmarks and platforms. Compared to the sequential flow of MAPS, in this thesis
more effective heuristics are proposed; new patterns are targeted; an accurate multi-
grained performance estimation approach is proposed; heterogeneous platforms are
supported by means of heuristics for automatic accelerator offloading; and automatic
code generation facilities are provided for multiple programming paradigms that al-
low to apply the proposed tool flow to a wide range of commercial embedded devices.

Edler Von Koch [84] proposed an approach for the detection of algorithmic skele-
tons in sequential code developed at the University of Edinburgh. Algorithmic skele-
tons [59] are concrete implementations for a given domain, language, model or plat-
form that enable the realization of high-level parallel patterns (e.g., DLP and TLP) [103,
262]. The approach is based on the commutativity analysis of code regions to detect
algorithmic skeletons. The key idea behind this approach is to reorder code regions
(e.g., function calls, loops, among others) and verify if the output of the program is
still correct. If this is case, the regions are commutative, and therefore concurrent.
However, the commutativity property does not guarantee parallelism and it can not
be applied to extract PLP. The skeleton detection is based on two phases: (i) the
skeleton candidates are statically detected and (ii) the commutativity of the regions is
evaluated at runtime. The proposed approach only produces a report of the detected
commutative regions. It is left to developers or subsequent tools to make conclusions
about the actual parallelism opportunities and to generate the parallel code. Besides
the previous limitations, the authors acknowledge that dynamic community testing of
code regions is to some extend a brute-force approach, which implies various issues.
One fundamental issue is the risk of combinatorial explosion due to the potentially
large number of possible code permutations. In addition, compared to this approach,
in this thesis the focus is on detecting high level parallel patterns rather than on spe-
cific pattern implementations.

2.1. Software Parallelization 25

Sambamba [278] is a framework for on-line adaptive parallelization developed
at Saarland University. This framework is divided into two components: a compile
time part that finds the best parallelization candidate for each function in a program
using PDG [91] as the IR and ILP as the analysis approach; and a runtime part that
continuously collects dynamic information, such as the load of the system and the
utilization of the task queues, to adaptively decide which version of each function
to execute (i.e., sequential or parallel). The parallel version is speculatively executed.
Sambamba accepts C and C++ programs, implicitly exploits DLP and TLP and is
implemented on top of LLVM. Just-In-Time (JIT) is used to compile and attach the
selected version to a running program. Sambamba presents various limitations: it is
based on a flow-insensitive analysis that results in inaccuracies when verifying the
independence of memory accesses; the dependence analysis used in this framework
can not handle properly regular data structures (e.g., arrays) and recursive functions.

DiscoPop [176, 177] is a parallelization framework for homogeneous platforms
jointly developed by the German Research School for Simulation Sciences, RWTH
Aachen University and TU Darmstadt. This framework is divided into three phases.
In the first phase, information about control and data flow of the program is ex-
tracted using static and dynamic analyses. Then, during the second phase parallelism
is extracted using the concept of Computational Units (CUs) as the minimum gran-
ularity for building tasks, which is a similar concept to CBs introduced in the MAPS
framework [53] previously discussed. A CU is a set of instructions that follow a read-
compute-write pattern. DiscoPop builds a CU graph using the concept of CUs and
the information about data dependencies among them. Based on the CU graph, this
framework applies techniques (e.g., SCCs) to extract multiple forms of parallelism.
Finally, DiscoPop generates a report in which the parallelization opportunities are
ranked using instruction coverage (a simplistic performance model), local speedup,
and CU imbalance as metrics. However, it is the responsibility of the developers to
interpret the report and implement the parallel code. Compared to DiscoPop, the
tool flow proposed in this thesis evaluates the parallelization opportunities not only
locally but also globally on the scale of the whole program. In addition, the approach
proposed in thesis supports heterogeneous platforms and provides facilities for auto-
matic code generation.

One example of a commercial tool supporting multiple patterns is Pareon [301]
from Vector Fabrics. This tool follows an interactive approach similar to the Threading
Advisor from Intel. Pareon is based on a three-step process: (i) insight, (ii) investigate
and (iii) implement. In the insight step information about performance, dependencies
and memory accesses in C/C++ programs is presented to the developers. Then, the
parallelization opportunities following multiple patterns and its performance impact
are interactively identified by the developers. Finally, during the implementation step,
Pareon provides recipes to help the developers in the process of manually parallelizing
the programs. Pareon is complemented with a C-based library called vfTasks [302],
which allows to implement parallel tasks. Unfortunately, Pareon is not commercially
available anymore [87].

26 Chapter 2. Related Work

2.2 Software Distribution

The need for specialization in the embedded domain motivated the introduction of
heterogeneous platforms in which computationally intensive workloads can be more
efficiently processed by dedicated cores. However, heterogeneity further increases the
programming complexity of embedded systems. While software parallelization in the
multi-core era is still an open research issue as previously discussed in this chapter, in
the heterogeneous era new frameworks and techniques for software distribution are
required to address the introduced challenges. In the embedded domain, one form of
software distribution is the mapping and scheduling of parallel dataflow MoCs, which
has been an active research area for many years. In dataflow MoCs, programs are
described as a network of processes that communicate through FIFO channels. Two
prominent examples of these MoCs are KPN [99] and SDF [168]. There is a multitude
of frameworks for mapping and scheduling of dataflow MoCs [27, 48, 50, 51, 52, 101,
238, 240, 290]. However, these frameworks assume that the input program is already
parallelized in one of these dataflow MoCs. Techniques for mapping and scheduling
of dataflow MoCs are out of the scope of this thesis. Instead, the focus of the proposed
tool flow here is to provide general techniques for software distribution starting from
sequential programs, which is a less studied area. The approach proposed in this
thesis for software distribution is presented in Chapter 5. The rest of this section
describes relevant approaches for software distribution.

Cordes [70] proposed parallelization approaches to exploit PLP and TLP on hete-
rogeneous MPSoCs, which were developed at TU Dortmund. This author proposed
two different approaches for extraction of PLP for heterogeneous systems [64, 65].
One is a single-objective approach based on ILP in which the program is modeled
using the PDG IR [91]. The other one is a multi-objective approach based on GAs in
which the program is also described using the PDG IR. Similarly, Cordes [69] pro-
posed a single-objective and a multi-objective approach for exploitation of TLP on
heterogeneous platforms based on ILP and GAs, respectively. As previously dis-
cussed, the major concern of this approach is their long execution time, which limits
their applicability. Moreover, their evaluation was performed on a synthetic platform,
which is based on processors of the same ISA but running at different frequencies.

Multiple speculative approaches have been also proposed to exploit DLP on GPUs.
Paragon [264] is a framework to run possibly data parallel loops in sequential pro-
grams on GPUs, jointly developed by the University of Michigan and Microsoft Re-
search. This framework is divided into one offline static compilation phase and one
runtime kernel management phase. During the offline phase possible data-parallel
loops are identified and CUDA code is generated for them. Then, during the run-
time phase the candidate loops are speculatively executed on a GPU using a kernel
management unit. If a data dependency violation is detected at runtime, then the exe-
cution of the loop is transferred to the Central Processing Unit (CPU). Similarly, Wang
et al. [310] proposed a tool flow for speculative loop execution on GPUs, which was
developed by the Lancaster University and University of Edinburgh. This tool flow is
divided into a compile time phase and a runtime phase. At compile time potentially

2.2. Software Distribution 27

parallel loops are detected using static and offline profiling dependence analyses. For
the detected candidates OpenCL code is generated. Then, at runtime, data depen-
dencies are checked to detect violations. A competitive scheduling scheme is used to
recover from dependence violations in which a sequential version of the program is
simultaneously executed on a single CPU. If a violation is detected, the speculative
version on the GPU is aborted and the final result is taken from the sequential version
running on the CPU. However, the previous speculative frameworks present various
limitations. During the detection of loop candidates these frameworks do not per-
form a cost-benefit analysis to guarantee a profitable execution on GPUs. Moreover,
the offloading overhead is not considered to select candidate loops. The authors in
[310] confirm this argument, since they report slowdowns using the previous frame-
works. In addition, another disadvantage of speculation based approaches is their
associated runtime overhead. Wang et al. [310] report a speculation overhead from
15% to 60%, with an average of 28% across the benchmarks considered. Compared to
the previous frameworks, the software distribution techniques proposed in this the-
sis perform cost-benefit analyses to ensure a profitable execution on heterogeneous
systems. Furthermore, these techniques perform off-line analysis, and thus avoiding
expensive runtime overheads.

Optimally Scheduled Advanced Multiprocessor (OSCAR) [125, 150] is a paral-
lelizing compiler for low power multi-core systems developed at Waseda University,
which has been deployed in the industry [231]. The key idea behind OSCAR is to
decompose a program into coarse grained code regions called macro-tasks (e.g., basic
blocks, loops or functions) from which a graph is built, which is later analyzed in or-
der to discover DLP or TLP. For the identified parallelization opportunities, OSCAR
generates an intermediate parallel code in the so-called OSCAR API, which is in turn
translated into runtime library calls (e.g., Pthreads) or into OpenMP directives. In
addition, this compiler also takes advantage of the idle times to reduce power using
techniques, such as clock gating and Dynamic Voltage and Frequency Scaling (DVFS).
OSCAR was initially developed for homogeneous SMPs [150] and then it was exten-
ded to target heterogeneous systems [125]. However, OSCAR presents two important
limitations in terms of productivity: (i) the input code must be manually re-written
in Parallelizable C [192], which is a set of coding rules to make the code friendly to the
compiler and (ii) for heterogeneous platforms developers have to manually insert hint
directives to instruct the compiler to which accelerator a given code region should be
offloaded. In contrast to OSCAR, the tool flow proposed in this thesis does not require
any type of code refactoring of the input program and for heterogeneous platforms is
able to automatically select a proper accelerator for a given code region.

It is worth mentioning that multiple frameworks have been proposed to migrate
parallel code written for homogeneous systems (e.g. OpenMP) into heterogeneous
systems. OpenMP extended for CUDA (OpenMPC) [170] is a framework to translate
OpenMP into CUDA. The main goal of this framework is to provide a programming
interface that abstracts the complexity of CUDA using high-level OpenMP compiler
directives. For this purpose, OpenMPC proposes additional directives and environ-
ment variables to extend OpenMP for CUDA-specific optimizations. Similarly, Wang

28 Chapter 2. Related Work

et al. [309] proposed a framework to translate existing OpenMP into OpenCL to target
GPU based platforms. This approach makes use of machine learning to select loops
that are good candidates for GPU offloading and loops that should stay parallelized
with OpenMP on the host multi-cores. Unlike these approaches where developers
need to identify software parallelization and distribution opportunities, the tool flow
proposed in this thesis performs these optimizations without user assistance.

2.3 Synopsis

This chapter presented a review of related work in the area of automatic software
parallelization and distribution. A summary of frameworks and approaches that take
as input sequential programs is presented in Table 2.1, which considers multiple as-
pects and features to compare them. The first aspect is whether the tool is academic
or commercial. As previously discussed, some of the frameworks considered in this
chapter started as academic projects and then eventually evolved into commercial
products. The domain to which the frameworks are targeting is also presented. The
column basis refers to the framework upon which each approach is built. Typically,
the basis is a well-established compiler framework (e.g., LLVM) or a profiler (e.g.,
Valgrind). The column platform model indicates whether or not frameworks use a
model of the target platform to tailor the optimizations. The column program analysis
refers to the approach used to extract information about programs, which could be
static, dynamic or hybrid. The table also presents whether or not frameworks use
performance information to perform a cost-benefit analysis of the identified optimiza-
tion opportunities to assess its potential. The column main approach describes the key
method used to discover parallel patterns and to distribute code regions on hetero-
geneous platforms. In addition, the table presents which frameworks have support
for heterogeneous platforms. Finally, the last column enumerates the programming
paradigms for which frameworks are able to generate parallel code either automat-
ically or semi-automatically by means of high-level hints for developers. However,
some frameworks do not provide code generation facilities, then they are marked
with none in this column. Based on the discussion presented in this chapter and the
summary presented in Table 2.1 it is possible to draw multiple conclusions regarding
existing work on software parallelization and distribution of legacy sequential code
for heterogeneous multi-core systems:

• The majority of the frameworks target the HPC domain and thus do not consider
particular characteristics of embedded devices. Moreover, only few frameworks
make use of a platform model to tailor the software parallelization and distribu-
tion optimizations to a particular target system.

• Multiple approaches impose strict restrictions on the input source code to make
it easier to handle. However, this strongly limits the applicability of these ap-
proaches. Furthermore, in some cases this implies an error-prone manual refac-
toring of the sequential programs to enable them for a given framework.

2.3. Synopsis 29

• The use of dynamic information for program analysis is a widely accepted tech-
nique to replace or complement static information, which is more conservative
and presents important limitations particularly for software parallelization. Dy-
namic analysis enables more optimistic and effective parallelization approaches.

• Few frameworks use accurate performance information to enable a cost-benefit
analysis to assess the potential of the discovered optimization opportunities.

• The majority of the frameworks focus on one specific parallel pattern (e.g., DLP).
However, software parallelization frameworks should explore multiple forms of
parallelism to increase its applicability and effectiveness.

• Although we are currently in the heterogeneous era as discussed in Chapter 1,
the majority of the frameworks focus only software parallelization approaches
targeting homogeneous platforms. Moreover, the few frameworks that address
heterogeneity focus only on GPUs. However, in the embedded domain frame-
works should be able to support an increasing diversity of processing elements
beyond GPUs (e.g., DSPs).

• There is still a large number of frameworks that follow interactive and semi-
automatic approaches that leave significant productivity gaps in the process of
software parallelization and distribution, as they have to be addressed manu-
ally by developers. These gaps include manually extracting parallel patterns,
selecting regions to be offloaded to accelerators in heterogeneous platforms and
generating the parallel code.

• Some frameworks use speculation as their main method for software paralleliza-
tion and distribution. However, this approach implies a significant overhead that
outweighs the performance improvements achieved by the optimizations. This
is even more critical in the embedded domain, especially for real-time systems
that must meet strict deadlines. Therefore, runtime optimization approaches
such as speculation are not well suited for this domain.

• Most of the frameworks targeting the embedded domain are evaluated only
on synthetic platforms. However, for a solid assessment of the applicability,
frameworks should be evaluated on real commercial platforms in which the
non-idealities of parallel and heterogeneous systems come into play.

The tool flow proposed in this thesis takes into account the previous observations.
It integrates key aspects for an effective software parallelization and distribution into
a single unified framework in which (i) a platform model allows to tailor the opti-
mizations to the target system; (ii) the program analysis is based on both static and
dynamic information; (iii) performance information is used to assess the potential
of optimizations; (iv) four different parallel patterns are extracted; (v) heterogeneous
platforms are supported; and (vi) parallel code is generated in widely used program-
ming paradigms. In addition, the tool flow has been evaluated on relevant commercial
platforms. This tool flow is discussed in detail through the following chapters.

30 Chapter 2. Related Work
T

ab
le

2.1:
Sum

m
ary

of
Fram

ew
orks

for
Softw

are
Parallelization

and
D

istribution

Fram
ew

ork
Type

D
om

ain
Basis

Input
Platform

Program
Perform

ance
M

ain
Patterns

H
eterogeneity

Program
m

ing
Paradigm

s
or

A
uthor

M
odel

A
nalysis

A
nalysis

A
pproach

A
lchem

ist[323]
A

cadem
ic

H
PC

V
algrind

C
/C

++
✗

D
ynam

ic
✗

Profiling
D

LP
1/TLP

✗
N

one
A

riadne
[193]

A
cadem

ic
H

PC
-

C
✗

N
one

✗
A

nnotations
R

LP
✗

O
penM

P/Pthreads/C
ilk/SV

P
autoPar

[179]
A

cadem
ic

H
PC

R
O

SE
C

/C
++

✗
Static

✗
Pattern

D
LP

✗
O

penM
P

A
utopaR

[147]
A

cadem
ic

H
PC

G
C

C
C

✗
Static

✗
Pattern

R
LP

✗
O

penM
P

C
etus

[77]
A

cadem
ic

H
PC

C
etus

C
✗

Static
✓

Pattern
D

LP
✗

O
penM

P
C

om
paan

[62,198]
C

om
m

ercial
Em

bedded
C

oSy
C

✓
Static

✗
Polyhedral

D
LP

✓
Pthreads/V

H
D

L
C

ordes
[66,63]

A
cadem

ic
Em

bedded
M

A
C

C
C

✓
H

ybrid
✓

ILP/G
A

PLP/TLP
✓

M
PA

D
iscoPop

[177,176]
A

cadem
ic

H
PC

LLV
M

C
✗

H
ybrid

✓
Pattern

D
LP/PLP/TLP

✗
N

one
Edler

Von
K

och
[84]

A
cadem

ic
H

PC
LLV

M
C

/C
++

✗
H

ybrid
✗

C
om

m
utativity

D
LP/TLP

✗
N

one
Em

bla
[89,187]

A
cadem

ic
H

PC
V

algrind
C

✗
D

ynam
ic

✗
Profiling

D
LP

/TLP
✗

N
one

G
euns

[98]
A

cadem
ic

Em
bedded

-
C

✗
Static

✗
Pattern

PLP
✗

N
one

G
R

A
PH

ITE
[242]

A
cadem

ic
H

PC
G

C
C

C
✗

Static
✗

Polyhedral
D

LP
✗

N
one

G
upta

[121]
A

cadem
ic

H
PC

TPO
C

✗
H

ybrid
✗

Speculation
R

LP
✗

N
one

H
uckleberry

[60]
A

cadem
ic

H
PC

-
C

✓
N

one
✗

A
nnotations

R
LP

✗
C

ellSD
K

IntelA
dvisor

[135]
C

om
m

ercial
H

PC
-

C
/C

++/C
#

✗
D

ynam
ic

✓
A

nnotations
D

LP
✗

N
one

K
ehr

[151,152,236]
A

cadem
ic

A
utom

otive
O

TA
W

A
C

✓
Static

✓
Pattern

TLP
✗

N
one

K
ism

et[141]
A

cadem
ic

H
PC

LLV
M

C
✓

D
ynam

ic
✓

Profiling
D

LP
✗

N
one

K
rem

lin
[96]

A
cadem

ic
H

PC
LLV

M
C

✗
D

ynam
ic

✓
Profiling

D
LP

✗
O

penM
P

2

Lengauer
[171]

A
cadem

ic
H

PC
-

C
✗

H
ybrid

✗
Polyhedral

D
LP

✗
N

one
M

A
PS

(Seq.flow
)

[51]
A

cadem
ic

Em
bedded

LLV
M

C
✓

H
ybrid

✓
Pattern

D
LP/PLP/TLP

✗
C

PN
,M

PI
O

SC
A

R
[150,125]

C
om

m
ercial

Em
bedded

-
C

/Fortran
✗

H
ybrid

✗
Pattern

D
LP/TLP

✓
O

penM
P/Pthreads

Par4A
ll[237]

A
cadem

ic
H

PC
PIPS

C
3/Fortran

✗
Static

✗
Polyhedral

D
LP

✓
O

penM
P/C

U
D

A
/O

penC
L

Paragon
[264]

A
cadem

ic
H

PC
C

etus
C

✗
H

ybrid
✗

Speculation
D

LP
✓

C
U

D
A

Paralax
[299]

A
cadem

ic
H

PC
LLV

M
C

✗
Static

✓
A

nnotations
PLP

✗
Pthread

Parallw
are

[19]
C

om
m

ercial
H

PC
LLV

M
C

✗
Static

✗
K

ernelExtraction
D

LP
✓

O
penM

P/O
penA

C
C

Pareon
[301]

C
om

m
ercial

Em
bedded

-
C

/C
++

✗
D

ynam
ic

✓
Profiling

D
LP

/PLP
✗

vfTasks
Parw

iz
[157]

A
cadem

ic
H

PC
Pin

C
✗

H
ybrid

✗
Profiling

D
LP

✗
N

one
PLU

TO
[38,39]

A
cadem

ic
H

PC
-

C
✗

Static
✗

Polyhedral
D

LP
✗

O
penM

P
PN

gen
[306]

A
cadem

ic
Em

bedded
SU

IF
C

✗
Static

✗
Polyhedral

D
LP

✗
PPN

X
M

L
Polly

[120,293]
A

cadem
ic

H
PC

LLV
M

C
/C

++
✗

Static
✗

Polyhedral
D

LP
✓

O
penM

P/O
penC

L/C
U

D
A

Prism
[75]

C
om

m
ercial

Em
bedded

-
C

/C
++

✗
H

ybrid
✓

Profiling
D

LP
✗

N
one

Prospector
[163,164]

A
cadem

ic
H

PC
Pin

C
✗

D
ynam

ic
✗

Profiling
D

LP
✗

N
one

R
auchw

erger
[253]

A
cadem

ic
H

PC
-

Fortran
✗

H
ybrid

✓
Speculation

D
LP

✗
N

one
R

EA
PA

R
[244]

A
cadem

ic
H

PC
-

C
✗

D
ynam

ic
✓

Pattern
R

LP
✗

Threads
R

ugina
[257]

A
cadem

ic
H

PC
SU

IF
C

✗
Static

✗
Pattern

R
LP

✗
C

ilk
Sam

bam
ba

[278]
A

cadem
ic

H
PC

LLV
M

C
/C

++
✗

H
ybrid

✓
A

daptive
D

LP/TLP
✗

Binary
Thies

[291]
A

cadem
ic

H
PC

V
algrind

C
✓

D
ynam

ic
✓

A
nnotation

PLP
✗

N
one

Tournavitis
[296,295]

A
cadem

ic
H

PC
C

oSy
C

✗
H

ybrid
✓

M
achine

Learning
D

LP/PLP
✗

O
penM

P
V

ELO
C

ITY
[43]

A
cadem

ic
H

PC
IM

PA
C

T
C

✗
H

ybrid
✓

Pattern
PLP

✗
N

one
W

ang
[310]

A
cadem

ic
H

PC
LLV

M
C

✗
H

ybrid
✗

Speculation
D

LP
✓

O
penC

L

This
Thesis

A
cadem

ic
Em

bedded
LLV

M
C

/C
++

✓
H

ybrid
✓

Pattern
D

LP/PLP/TLP/R
LP

✓
O

penM
P/O

penC
L/C

U
D

A
/C

PN

1
Parallelpatterns

have
to

be
m

anually
extracted

using
the

data
dependence

provided
by

the
fram

ew
ork

2
M

anualcode
generation

assisted
by

suggestions
of

the
fram

ew
ork

3
The

fram
ew

ork
im

poses
restrictions

to
the

code
thatitcan

handle
(e.g.,itm

ustbe
in

the
form

of
SC

oPs/SA
N

LPs)

Bibliography

[1] “Standard for Information Technology–Portable Operating System Interface
(POSIX(R)) Base Specifications, Issue 7,” IEEE Std 1003.1, 2013 Edition (incor-
porates IEEE Std 1003.1-2008, and IEEE Std 1003.1-2008/Cor 1-2013), pp. 1–3906,
April 2013.

[2] U. A. Acar, A. Charguéraud, and M. Rainey, “Oracle scheduling: Controlling
granularity in implicitly parallel languages,” SIGPLAN Not., vol. 46, no. 10, pp.
499–518, Oct. 2011. [Online]. Available: http://doi.acm.org/10.1145/2076021.
2048106

[3] Agam Shah, “Nvidia powers up drones, robots with Jetson TX1 board,” [Online]
Available https://www.computerworld.com/article/3003989/robotics/nvidia-
powers-up-drones-robots-with-jetson-tx1-board.html (accessed 01/2018).

[4] M. Aguilar, R. Jimenez, R. Leupers, and G. Ascheid, “Improving performance
and productivity for software development on TI Multicore DSP platforms,” in
2014 6th European Embedded Design in Education and Research Conference (EDERC),
Sept 2014, pp. 31–35.

[5] M. A. Aguilar, J. F. Eusse, P. Ray, R. Leupers, G. Ascheid, W. Sheng, and
P. Sharma, “Parallelism extraction in embedded software for Android devices,”
in 2015 International Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS), July 2015, pp. 9–17.

[6] M. A. Aguilar and R. Leupers, “Unified identification of multiple forms of par-
allelism in embedded applications,” in 2015 International Conference on Parallel
Architecture and Compilation (PACT), Oct 2015, pp. 482–483.

[7] M. A. Aguilar, R. Leupers, G. Ascheid, and J. F. Eusse, “Extraction of recur-
sion level parallelism for embedded multicore systems,” in 2017 International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), July 2017.

[8] M. A. Aguilar, A. Aggarwal, A. Shaheen, R. Leupers, G. Ascheid, J. Castrillon,
and L. Fitzpatrick, “Multi-grained Performance Estimation for MPSoC Compil-
ers: Work-in-progress,” in Proceedings of the 2017 International Conference on Com-
pilers, Architectures and Synthesis for Embedded Systems Companion, ser. CASES ’17.
New York, NY, USA: ACM, 2017, pp. 14:1–14:2.

153

http://doi.acm.org/10.1145/2076021.2048106
http://doi.acm.org/10.1145/2076021.2048106
https://www.computerworld.com/article/3003989/robotics/nvidia-powers-up-drones-robots-with-jetson-tx1-board.html
https://www.computerworld.com/article/3003989/robotics/nvidia-powers-up-drones-robots-with-jetson-tx1-board.html

154 BIBLIOGRAPHY

[9] M. A. Aguilar, J. F. Eusse, R. Leupers, G. Ascheid, and M. Odendahl, “Extrac-
tion of Kahn Process Networks from While Loops in Embedded Software,” in
Proceedings of the 2015 IEEE 17th International Conference on High Performance Com-
puting and Communications, 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International Conf on Embedded Software
and Systems, ser. HPCC-CSS-ICESS ’15. Washington, DC, USA: IEEE Computer
Society, 2015, pp. 1078–1085.

[10] M. A. Aguilar, J. F. Eusse, P. Ray, R. Leupers, G. Ascheid, W. Sheng,
and P. Sharma, “Towards Parallelism Extraction for Heterogeneous Multicore
Android Devices,” International Journal of Parallel Programming, Dec 2016.
[Online]. Available: https://doi.org/10.1007/s10766-016-0479-5

[11] M. A. Aguilar and R. Leupers, “Towards Effective Parallelization and Acceler-
ator Offloading for Heterogeneous Multicore Embedded Systems,” in Proceed-
ings of the 2016 International Summer School on Advanced Computer Architecture and
Compilation for High-Performance and Embedded Systems (ACACES), July 2016, pp.
121–124.

[12] M. A. Aguilar, R. Leupers, G. Ascheid, and N. Kavvadias, “A Toolflow for Par-
allelization of Embedded Software in Multicore DSP Platforms,” in Proceedings
of the 18th International Workshop on Software and Compilers for Embedded Systems,
ser. SCOPES ’15. New York, NY, USA: ACM, 2015, pp. 76–79.

[13] M. A. Aguilar, R. Leupers, G. Ascheid, N. Kavvadias, and L. Fitzpatrick,
“Schedule-aware Loop Parallelization for Embedded MPSoCs by Exploiting
Parallel Slack,” in Proceedings of the Conference on Design, Automation & Test in
Europe, ser. DATE ’17. 3001 Leuven, Belgium, Belgium: European Design and
Automation Association, 2017, pp. 1237–1240.

[14] M. A. Aguilar, R. Leupers, G. Ascheid, and L. G. Murillo, “Automatic Paral-
lelization and Accelerator Offloading for Embedded Applications on Heteroge-
neous MPSoCs,” in Proceedings of the 53rd Annual Design Automation Conference,
ser. DAC ’16. New York, NY, USA: ACM, 2016, pp. 49:1–49:6.

[15] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques,
and Tools. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
2006.

[16] S. M. Alnaeli, A. Alali, and J. I. Maletic, “Empirically examining the paralleliz-
ability of open source software system,” in Proceedings of the 2012 19th Working
Conference on Reverse Engineering, ser. WCRE ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 377–386.

[17] B. Alpern, M. N. Wegman, and F. K. Zadeck, “Detecting equality of variables
in programs,” in Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on

https://doi.org/10.1007/s10766-016-0479-5

BIBLIOGRAPHY 155

Principles of Programming Languages, ser. POPL ’88. New York, NY, USA: ACM,
1988, pp. 1–11. [Online]. Available: http://doi.acm.org/10.1145/73560.73561

[18] S. Amarasinghe, M. Gordon, R. Soulé, and E. Wong, “StreamIt Bench-
marks,” [Online] Available http://groups.csail.mit.edu/cag/streamit/shtml/
benchmarks.shtml/ (accessed 02/2018).

[19] Appentra, “Parallware: Novel LLVM-Based Software Technology to Assist in
Parallelization of Scientific Codes with OpenMP and OpenACC,” [Online]
Available https://www.appentra.com/technology/ (accessed 08/2017).

[20] M. Arenaz, J. Tourino, and R. Doallo, “Compiler support for parallel code gen-
eration through kernel recognition,” in 18th International Parallel and Distributed
Processing Symposium, 2004. Proceedings., April 2004, pp. 79–.

[21] ARM, “ARM big.LITTLE,” [Online] Available https://developer.arm.com/
technologies/big-little (accessed 08/2017).

[22] Associated Computer Experts, “CoSy compiler development system,” [Online]
Available http://www.ace.nl/compiler/cosy.html (accessed 08/2017).

[23] ASUS, “Nexus 7 (2013),” [Online] Available http://www.asus.com/Tablets_
Mobile/Nexus_7_2013/ (accessed 01/2018).

[24] D. I. August, D. A. Connors, S. A. Mahlke, J. W. Sias, K. M. Crozier, B.-C.
Cheng, P. R. Eaton, Q. B. Olaniran, and W. M. W. Hwu, “Integrated predicated
and speculative execution in the impact epic architecture,” in Proceedings. 25th
Annual International Symposium on Computer Architecture (Cat. No.98CB36235),
Jun 1998, pp. 227–237.

[25] AUTOSAR Consortium, “AUTOSAR Standard,” [Online] Available https://
www.autosar.org/ (accessed 08/2017).

[26] E. Ayguadé, B. Blainey, A. Duran, J. Labarta, F. Martínez, X. Martorell, and R. Sil-
vera, “Is the schedule clause really necessary in OpenMP?” in WOMPAT’03,
Berlin, Heidelberg.

[27] I. Bacivarov, W. Haid, K. Huang, and L. Thiele, Methods and Tools for Mapping
Process Networks onto Multi-Processor Systems-On-Chip. Boston, MA: Springer
US, 2010, pp. 1007–1040. [Online]. Available: https://doi.org/10.1007/978-1-
4419-6345-1_35

[28] R. Baert, E. Brockmeyer, S. Wuytack, and T. J. Ashby, “Exploring
Parallelizations of Applications for MPSoC Platforms Using MPA,” in
Proceedings of the Conference on Design, Automation and Test in Europe, ser. DATE
’09. 3001 Leuven, Belgium, Belgium: European Design and Automation
Association, 2009, pp. 1148–1153. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1874620.1874898

http://doi.acm.org/10.1145/73560.73561
http://groups.csail.mit.edu/cag/streamit/shtml/benchmarks.shtml/
http://groups.csail.mit.edu/cag/streamit/shtml/benchmarks.shtml/
https://www.appentra.com/technology/
https://developer.arm.com/technologies/big-little
https://developer.arm.com/technologies/big-little
http://www.ace.nl/compiler/cosy.html
http://www.asus.com/Tablets_Mobile/Nexus_7_2013/
http://www.asus.com/Tablets_Mobile/Nexus_7_2013/
https://www.autosar.org/
https://www.autosar.org/
https://doi.org/10.1007/978-1-4419-6345-1_35
https://doi.org/10.1007/978-1-4419-6345-1_35
http://dl.acm.org/citation.cfm?id=1874620.1874898
http://dl.acm.org/citation.cfm?id=1874620.1874898

156 BIBLIOGRAPHY

[29] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: an open
toolbox for adaptive WCET analysis,” in Software Technologies for Embedded
and Ubiquitous Systems - 8th IFIP WG 10.2 International Workshop, SEUS 2010,
Waidhofen/Ybbs, Austria, October 13-15, 2010. Proceedings, 2010, pp. 35–46.
[Online]. Available: https://doi.org/10.1007/978-3-642-16256-5_6

[30] Barry Pangrle, “Favorite Forecast Fallacies,” [Online] Available https://
semiengineering.com/favorite-forecast-fallacies/ (accessed 08/2017).

[31] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bastoul, “The poly-
hedral model is more widely applicable than you think,” in Proceedings of the
19th Joint European Conference on Theory and Practice of Software, International
Conference on Compiler Construction, ser. CC’10/ETAPS’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 283–303.

[32] P. Blinzer, “The heterogeneous system architecture: It’s beyond the GPU,” in
2014 International Conference on Embedded Computer Systems: Architectures, Model-
ing, and Simulation (SAMOS XIV), July 2014, pp. iii–iii.

[33] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,
B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford, “Polaris: The next gen-
eration in parallelizing compilers,” in Proceedings of the Workshop on Languages
and Compilers for Parallel Computing. Springer-Verlag, Berlin/Heidelberg, 1994,
pp. 10–1.

[34] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Pe-
tersen, W. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford, “Effective auto-
matic parallelization with polaris,” International Journal of Parallel Programming,
1995.

[35] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou, “Cilk: An efficient multithreaded runtime system,” SIGPLAN Not.,
vol. 30, no. 8, pp. 207–216, Aug. 1995. [Online]. Available: http://doi.acm.org/
10.1145/209937.209958

[36] O. A. R. Board, “OpenMP,” [Online] Available http://www.openmp.org (ac-
cessed 08/2017).

[37] B. Boissinot, “Towards an SSA based compiler back-end: Some interesting prop-
erties of SSA and its extensions,” Ph.D. dissertation, 2010.

[38] U. Bondhugula, “PLUTO - An automatic parallelizer and locality optimizer for
affine loop nests,” [Online] Available http://pluto-compiler.sourceforge.net/
(accessed 08/2017).

[39] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A practical
automatic polyhedral parallelizer and locality optimizer,” SIGPLAN Not.,

https://doi.org/10.1007/978-3-642-16256-5_6
https://semiengineering.com/favorite-forecast-fallacies/
https://semiengineering.com/favorite-forecast-fallacies/
http://doi.acm.org/10.1145/209937.209958
http://doi.acm.org/10.1145/209937.209958
http://www.openmp.org
http://pluto-compiler.sourceforge.net/

BIBLIOGRAPHY 157

vol. 43, no. 6, pp. 101–113, Jun. 2008. [Online]. Available: http://doi.acm.org/
10.1145/1379022.1375595

[40] M. Boyer, “CUDA Kernel Overhead,” [Online] Available https://www.
cs.virginia.edu/~mwb7w/cuda_support/kernel_overhead.html (accessed
12/2017).

[41] M. Boyer, “Memory Transfer Overhead,” [Online] Available https://www.
cs.virginia.edu/~mwb7w/cuda_support/memory_transfer_overhead.html (ac-
cessed 12/2017).

[42] R. P. Brent, “The parallel evaluation of general arithmetic expressions,” J. ACM,
vol. 21, no. 2, pp. 201–206, Apr. 1974. [Online]. Available: http://doi.acm.org/
10.1145/321812.321815

[43] M. J. Bridges, “The velocity compiler: Extracting efficient multicore execution
from legacy sequential codes,” Ph.D. dissertation, Princeton, NJ, USA, 2008,
aAI3332403.

[44] J. M. Cardoso, J. G. F. Coutinho, and P. C. Diniz, “"Targeting heterogeneous
computing platforms",” in Embedded Computing for High Performance, J. M. Car-
doso, J. G. F. Coutinho, and P. C. Diniz, Eds. Boston: Morgan Kaufmann, 2017,
pp. 227 – 254.

[45] S. Carew, “Texas Instruments eyes shift away from wireless,” [On-
line] Available https://www.reuters.com/article/texasinstruments-wireless-
idUSL1E8KP5FN20120925?irpc=932 (accessed 08/2017).

[46] S. Cass, “Multicore Processors Create Software Headaches,” [Online] Available
https://www.technologyreview.com/s/418580/multicore-processors-create-
software-headaches/ (accessed 08/2017).

[47] S. Cass, “The top programming languages 2017 (embedded),” [On-
line] Available http://spectrum.ieee.org/computing/software/the-2017-top-
programming-languages (Accessed 7/2017).

[48] J. Castrillon, R. Leupers, and G. Ascheid, “MAPS: Mapping Concurrent
Dataflow Applications to Heterogeneous MPSoCs,” IEEE Transactions on Indus-
trial Informatics, vol. 9, no. 1, pp. 527–545, Feb 2013.

[49] J. Castrillon, W. Sheng, R. Jessenberger, L. Thiele, L. Schorr, B. Juurlink,
M. Alvarez-Mesa, A. Pohl, V. Reyes, and R. Leupers, “Multi/many-core pro-
gramming: Where are we standing?” in 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2015, pp. 1708–1717.

[50] J. Castrillon, A. Tretter, R. Leupers, and G. Ascheid, “Communication-aware
mapping of KPN applications onto heterogeneous MPSoCs,” in DAC Design
Automation Conference 2012, June 2012, pp. 1262–1267.

http://doi.acm.org/10.1145/1379022.1375595
http://doi.acm.org/10.1145/1379022.1375595
https://www.cs.virginia.edu/~mwb7w/cuda_support/kernel_overhead.html
https://www.cs.virginia.edu/~mwb7w/cuda_support/kernel_overhead.html
https://www.cs.virginia.edu/~mwb7w/cuda_support/memory_transfer_overhead.html
https://www.cs.virginia.edu/~mwb7w/cuda_support/memory_transfer_overhead.html
http://doi.acm.org/10.1145/321812.321815
http://doi.acm.org/10.1145/321812.321815
https://www.reuters.com/article/texasinstruments-wireless-idUSL1E8KP5FN20120925?irpc=932
https://www.reuters.com/article/texasinstruments-wireless-idUSL1E8KP5FN20120925?irpc=932
https://www.technologyreview.com/s/418580/multicore-processors-create-software-headaches/
https://www.technologyreview.com/s/418580/multicore-processors-create-software-headaches/
http://spectrum.ieee.org/computing/software/the-2017-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2017-top-programming-languages

158 BIBLIOGRAPHY

[51] J. Castrillon, “Programming Heterogeneous MPSoCs: Tool Flows to Close
the Software Productivity Gap,” Ph.D. dissertation, RWTH Aachen Univeristy,
Chair for Software for Systems on Silicon, April 2013.

[52] J. Castrillon and R. Leupers, Programming Heterogeneous MPSoCs: Tool Flows to
Close the Software Productivity Gap. Springer, 2014.

[53] J. Ceng, J. Castrillon, W. Sheng, H. Scharwächter, R. Leupers, G. Ascheid,
H. Meyr, T. Isshiki, and H. Kunieda, “MAPS: An Integrated Framework for
MPSoC Application Parallelization,” in Proceedings of the 45th Annual Design
Automation Conference, ser. DAC ’08. New York, NY, USA: ACM, 2008, pp.
754–759. [Online]. Available: http://doi.acm.org/10.1145/1391469.1391663

[54] J. Ceng, “A Methodology for Efficient Multiprocessor System-on-Chip Software
Development,” Ph.D. dissertation, RWTH Aachen Univeristy, Chair for Soft-
ware for Systems on Silicon, April 2011.

[55] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in 2009 IEEE In-
ternational Symposium on Workload Characterization (IISWC), Oct 2009, pp. 44–54.

[56] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron, “A
characterization of the Rodinia benchmark suite with comparison to contempo-
rary CMP workloads,” in Workload Characterization (IISWC), 2010 IEEE Interna-
tional Symposium on, Dec 2010, pp. 1–11.

[57] S. J. Cho, S. H. Yun, and J. W. Jeon, “A roofline model based on working set size
for embedded systems,” IEICE Electronics Express, vol. 11, no. 15, pp. 20 140 560–
20 140 560, 2014.

[58] CNN Tech, “How android beat the iphone to world domination,” [Online]
Available http://money.cnn.com/2017/06/28/technology/business/android-
iphone-world-domination/index.html (accessed 01/2018).

[59] M. Cole, Algorithmic Skeletons: Structured Management of Parallel Computation.
Cambridge, MA, USA: MIT Press, 1991.

[60] R. L. Collins, B. Vellore, and L. P. Carloni, “Recursion-driven parallel code
generation for multi-core platforms,” in Proceedings of the Conference on Design,
Automation and Test in Europe, ser. DATE ’10. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2010, pp. 190–195. [Online].
Available: http://dl.acm.org/citation.cfm?id=1870926.1870972

[61] P. Community, “Polly - GPGPU Code Generation,” [Online] Available http://
polly.llvm.org/documentation/gpgpucodegen.html (accessed 03/2018).

[62] Compaan Design BV, “Compaan Design: C-to-Dataflow Compiler,” [Online]
Available http://www.compaandesign.com/ (accessed 08/2017).

http://doi.acm.org/10.1145/1391469.1391663
http://money.cnn.com/2017/06/28/technology/business/android-iphone-world-domination/index.html
http://money.cnn.com/2017/06/28/technology/business/android-iphone-world-domination/index.html
http://dl.acm.org/citation.cfm?id=1870926.1870972
http://polly.llvm.org/documentation/gpgpucodegen.html
http://polly.llvm.org/documentation/gpgpucodegen.html
http://www.compaandesign.com/

BIBLIOGRAPHY 159

[63] D. Cordes, M. Engel, P. Marwedel, and O. Neugebauer, “Automatic extraction
of multi-objective aware pipeline parallelism using genetic algorithms,”
in Proceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, ser. CODES+ISSS ’12. New
York, NY, USA: ACM, 2012, pp. 73–82. [Online]. Available: http://doi.acm.
org/10.1145/2380445.2380463

[64] D. Cordes, M. Engel, P. Marwedel, and O. Neugebauer, “Automatic extraction
of multi-objective aware pipeline parallelism using genetic algorithms,” in Pro-
ceedings of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Soft-
ware Codesign and System Synthesis, ser. CODES+ISSS ’12. New York, NY, USA:
ACM, 2012, pp. 73–82.

[65] D. Cordes, M. Engel, O. Neugebauer, and P. Marwedel, “Automatic extraction
of pipeline parallelism for embedded heterogeneous multi-core platforms,” in
Proceedings of the 2013 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, ser. CASES ’13. Piscataway, NJ, USA: IEEE
Press, 2013, pp. 4:1–4:10. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2555729.2555733

[66] D. Cordes, A. Heinig, P. Marwedel, and A. Mallik, “Automatic extraction of
pipeline parallelism for embedded software using linear programming,” in Pro-
ceedings of the 2011 IEEE 17th International Conference on Parallel and Distributed
Systems, ser. ICPADS ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 699–706.

[67] D. Cordes and P. Marwedel, “Multi-objective aware extraction of task-level
parallelism using genetic algorithms,” in Proceedings of the Conference on Design,
Automation and Test in Europe, ser. DATE ’12. San Jose, CA, USA: EDA
Consortium, 2012, pp. 394–399. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2492708.2492808

[68] D. Cordes, P. Marwedel, and A. Mallik, “Automatic parallelization of
embedded software using hierarchical task graphs and integer linear
programming,” in Proceedings of the Eighth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, ser. CODES/ISSS
’10. New York, NY, USA: ACM, 2010, pp. 267–276. [Online]. Available: http://
doi.acm.org/10.1145/1878961.1879009

[69] D. Cordes, O. Neugebauer, M. Engel, and P. Marwedel, “Automatic Extraction
of Task-Level Parallelism for Heterogeneous MPSoCs,” in Proceedings of the 2013
42Nd International Conference on Parallel Processing, ser. ICPP ’13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 950–959.

[70] D. A. Cordes, “Automatic parallelization for embedded multi-core systems us-
ing high-level cost models,” Ph.D. dissertation, TU Dortmund University, 2013.

http://doi.acm.org/10.1145/2380445.2380463
http://doi.acm.org/10.1145/2380445.2380463
http://dl.acm.org/citation.cfm?id=2555729.2555733
http://dl.acm.org/citation.cfm?id=2555729.2555733
http://dl.acm.org/citation.cfm?id=2492708.2492808
http://dl.acm.org/citation.cfm?id=2492708.2492808
http://doi.acm.org/10.1145/1878961.1879009
http://doi.acm.org/10.1145/1878961.1879009

160 BIBLIOGRAPHY

[71] S. P. E. Corporation, “LTE Uplink Receiver PHY Benchmark,” [Online] Available
https://www.spec.org/cpu2006/ (accessed 01/2018).

[72] cplusplus.com, “Standard Containers,” [Online] Available http://www.
cplusplus.com/reference/stl/ (accessed 08/2017).

[73] R. Cringley, “Parallel universe,” [Online] Available https://www.
technologyreview.com/s/411425/parallel-universe/ (accessed 08/2017).

[74] Critical Blue, “Embedded WebKit - Case Study,” [Online] Available https://
www.prism-services.io/pdf/webkit.pdf (accessed 08/2017).

[75] Critical Blue, “Prism,” [Online] Available https://www.prism-services.io/
index.html (accessed 08/2017).

[76] M. Danelutto, T. De Matteis, G. Mencagli, and M. Torquati, “A divide-and-
conquer parallel pattern implementation for multicores,” in Proceedings of the
3rd International Workshop on Software Engineering for Parallel Systems, ser. SEPS
2016. New York, NY, USA: ACM, 2016, pp. 10–19.

[77] C. Dave, H. Bae, S. J. Min, S. Lee, R. Eigenmann, and S. Midkiff, “Cetus:
A source-to-source compiler infrastructure for multicores,” Computer, vol. 42,
no. 12, pp. 36–42, Dec 2009.

[78] J. Diaz, C. Muñoz-Caro, and A. Niño, “A Survey of Parallel Programming Mod-
els and Tools in the Multi and Many-Core Era,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 8, pp. 1369–1386, Aug 2012.

[79] J. Doerfert, K. Streit, S. Hack, and Z. Benaissa, “Polly’s polyhedral scheduling
in the presence of reductions,” in Proc. 5rd International Workshop on Polyhedral
Compilation Techniques (IMPACT), Amsterdam, Netherlands, 2015.

[80] Doug Abbott, “Effective use of Pthreads in embedded Linux designs,” [Online]
Available http://www.embedded.com/design/programming-languages-and-
tools/4431425/Effective-use-of-Pthreads-in-embedded-Linux-designs--Part-
1---The-multitasking-paradigm (accessed 08/2017).

[81] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade, “Barcelona
OpenMP Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task
Parallelism in OpenMP,” in 2009 International Conference on Parallel Processing,
Sept 2009, pp. 124–131.

[82] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade, “Barcelona
OpenMP tasks suite: A set of benchmarks targeting the exploitation of task
parallelism in OpenMP,” in Proc. of ICPP. Washington, DC, USA: IEEE Com-
puter Society, 2009, pp. 124–131.

[83] Eclipse Foundation, “Eclipse,” [Online] Available www.eclipse.org (accessed
02/2018).

https://www.spec.org/cpu2006/
http://www.cplusplus.com/reference/stl/
http://www.cplusplus.com/reference/stl/
https://www.technologyreview.com/s/411425/parallel-universe/
https://www.technologyreview.com/s/411425/parallel-universe/
https://www.prism-services.io/pdf/webkit.pdf
https://www.prism-services.io/pdf/webkit.pdf
https://www.prism-services.io/index.html
https://www.prism-services.io/index.html
http://www.embedded.com/design/programming-languages-and-tools/4431425/Effective-use-of-Pthreads-in-embedded-Linux-designs--Part-1---The-multitasking-paradigm
http://www.embedded.com/design/programming-languages-and-tools/4431425/Effective-use-of-Pthreads-in-embedded-Linux-designs--Part-1---The-multitasking-paradigm
http://www.embedded.com/design/programming-languages-and-tools/4431425/Effective-use-of-Pthreads-in-embedded-Linux-designs--Part-1---The-multitasking-paradigm
www.eclipse.org

BIBLIOGRAPHY 161

[84] T. J. K. Edler Von Koch, “Automated detection of structured coarse-grained
parallelism in sequential legacy applications,” Ph.D. dissertation, University of
Edinburgh, November 2014.

[85] J. F. Eusse, C. Williams, L. G. Murillo, R. Leupers, and G. Ascheid, “Pre-
architectural performance estimation for asip design based on abstract proces-
sor models,” in 2014 International Conference on Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation (SAMOS XIV), July 2014, pp. 133–140.

[86] J. F. Eusse, C. Williams, and R. Leupers, “Coex: A novel profiling-based algo-
rithm/architecture co-exploration for asip design,” ACM Trans. Reconfigurable
Technol. Syst., vol. 8, no. 3, pp. 17:1–17:16, May 2015.

[87] FaillissementsDossier, “Bankruptcy terminated Vector Fabrics B.V.”
[Online]. Available: http://www.faillissementsdossier.nl/en/bankruptcy/
1198991/vector-fabrics-b-v.aspx

[88] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the Efficiency of
GPU Algorithms for Matrix-matrix Multiplication,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, ser. HWWS ’04.
New York, NY, USA: ACM, 2004, pp. 133–137. [Online]. Available: http://doi.
acm.org/10.1145/1058129.1058148

[89] K.-F. Faxén, K. Popov, S. Jansson, and L. Albertsson, “Embla - data dependence
profiling for parallel programming,” in Proceedings of the 2008 International
Conference on Complex, Intelligent and Software Intensive Systems, ser. CISIS ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 780–785. [Online].
Available: http://dx.doi.org/10.1109/CISIS.2008.52

[90] M. Feathers, Working Effectively with Legacy Code. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2004.

[91] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph
and its use in optimization,” ACM Trans. Program. Lang. Syst., vol. 9, no. 3,
pp. 319–349, Jul. 1987. [Online]. Available: http://doi.acm.org/10.1145/24039.
24041

[92] A. Fonseca and B. Cabral, Evaluation of Runtime Cut-off Approaches for Parallel
Programs. Cham: Springer International Publishing, 2017, pp. 121–134.
[Online]. Available: https://doi.org/10.1007/978-3-319-61982-8_13

[93] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1995.

[94] K. Fürlinger and M. Gerndt, “ompP: A profiling tool for OpenMP,” in
IWOMP’05/IWOMP’06, Berlin, Heidelberg, 2008.

http://www.faillissementsdossier.nl/en/bankruptcy/1198991/vector-fabrics-b-v.aspx
http://www.faillissementsdossier.nl/en/bankruptcy/1198991/vector-fabrics-b-v.aspx
http://doi.acm.org/10.1145/1058129.1058148
http://doi.acm.org/10.1145/1058129.1058148
http://dx.doi.org/10.1109/CISIS.2008.52
http://doi.acm.org/10.1145/24039.24041
http://doi.acm.org/10.1145/24039.24041
https://doi.org/10.1007/978-3-319-61982-8_13

162 BIBLIOGRAPHY

[95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

[96] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin: Rethinking and
rebooting gprof for the multicore age,” SIGPLAN Not., vol. 46, no. 6, pp.
458–469, Jun. 2011. [Online]. Available: http://doi.acm.org/10.1145/1993316.
1993553

[97] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory
of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

[98] S. Geuns, M. Bekooij, T. Bijlsma, and H. Corporaal, “Parallelization of while
loops in nested loop programs for shared-memory multiprocessor systems,” in
Design, Automation Test in Europe Conference Exhibition (DATE), March 2011.

[99] Gilles Kahn, “The Semantics of a Simple Language for Parallel Programming,”
in IFIP Congress 74, North Holland, Amsterdam, 1974, pp. 471–475.

[100] M. Girkar and C. D. Polychronopoulos, “The hierarchical task graph as
a universal intermediate representation,” International Journal of Parallel
Programming, vol. 22, no. 5, pp. 519–551, Oct 1994. [Online]. Available: https://
doi.org/10.1007/BF02577777

[101] A. Goens, R. Khasanov, J. Castrillon, M. Hähnel, T. Smejkal, and H. Härtig,
“Tetris: A multi-application run-time system for predictable execution of static
mappings,” in Proceedings of the 20th International Workshop on Software and
Compilers for Embedded Systems, ser. SCOPES ’17. New York, NY, USA: ACM,
2017, pp. 11–20. [Online]. Available: http://doi.acm.org/10.1145/3078659.
3078663

[102] T. Gonzalez, O. H. Ibarra, and S. Sahni, “Bounds for lpt schedules on uniform
processors,” SIAM, vol. 6, no. 1, pp. 155–166, 1977.

[103] H. González-Vélez and M. Leyton, “A survey of algorithmic skeleton
frameworks: High-level structured parallel programming enablers,” Softw.
Pract. Exper., vol. 40, no. 12, pp. 1135–1160, Nov. 2010. [Online]. Available:
http://dx.doi.org/10.1002/spe.v40:12

[104] R. Gonçalves, M. Amaris, T. Okada, P. Bruel, and A. Goldman, “OpenMP is Not
as Easy as It Appears,” in 2016 49th Hawaii International Conference on System
Sciences (HICSS), Jan 2016, pp. 5742–5751.

[105] Google, “Android,” [Online] Available https://www.android.com/ (accessed
01/2018).

[106] Google, “Android Build System,” [Online] Available https://developer.
android.com/studio/build/index.html (accessed 01/2018).

http://doi.acm.org/10.1145/1993316.1993553
http://doi.acm.org/10.1145/1993316.1993553
https://doi.org/10.1007/BF02577777
https://doi.org/10.1007/BF02577777
http://doi.acm.org/10.1145/3078659.3078663
http://doi.acm.org/10.1145/3078659.3078663
http://dx.doi.org/10.1002/spe.v40:12
https://www.android.com/
https://developer.android.com/studio/build/index.html
https://developer.android.com/studio/build/index.html

BIBLIOGRAPHY 163

[107] Google, “Android: Canvas and Drawables,” [Online] Available http://
developer.android.com/guide/topics/graphics/2d-graphics.html (accessed
01/2018).

[108] Google, “Android Studio and SDK Tools,” [Online] Available https://
developer.android.com/studio/index.html (accessed 01/2018).

[109] Google, “ART and Dalvik,” [Online] Available https://source.android.com/
devices/tech/dalvik/index.html (accessed 01/2017).

[110] Google, “Create WebP Images,” [Online] Available https://developer.android.
com/studio/write/convert-webp.html (accessed 01/2018).

[111] Google, “Java Native Interface,” [Online] Available http://developer.android.
com/training/articles/perf-jni.html (accessed 01/2018).

[112] Google, “KitKat 4.4,” [Online] Available https://www.android.com/versions/
kit-kat-4-4/ (accessed 01/2018).

[113] Google, “libwebp API Documentation,” [Online] Available https://developers.
google.com/speed/webp/docs/api (accessed 01/2018).

[114] Google, “Native Development Kit,” [Online] Available http://developer.
android.com/ndk/guides/concepts.html (accessed 01/2018).

[115] Google, “WebP: A new image format for the Web,” [Online] Available https://
developers.google.com/speed/webp/ (accessed 01/2018).

[116] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained task,
data, and pipeline parallelism in stream programs,” in Proceedings of the 12th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XII. New York, NY, USA: ACM, 2006, pp.
151–162. [Online]. Available: http://doi.acm.org/10.1145/1168857.1168877

[117] G. Goth, “Entering a parallel universe,” Communications of the ACM, vol. 52,
no. 9, pp. 15–17, Sep. 2009. [Online]. Available: http://doi.acm.org/10.1145/
1562164.1562171

[118] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph execution
profiler,” SIGPLAN Not., vol. 17, no. 6, pp. 120–126, Jun. 1982. [Online].
Available: http://doi.acm.org/10.1145/872726.806987

[119] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos, “Auto-
tuning a high-level language targeted to GPU codes,” in 2012 Innovative Parallel
Computing (InPar), May 2012, pp. 1–10.

[120] T. Grosser, A. Groesslinger, and C. Lenngauer, “Polly - performing polyhedral
optimizations on a low-level intermediate representation,” Parallel Processing
Letters, vol. 22, no. 04, p. 1250010, 2012.

http://developer.android.com/guide/topics/graphics/2d-graphics.html
http://developer.android.com/guide/topics/graphics/2d-graphics.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://source.android.com/devices/tech/dalvik/index.html
https://source.android.com/devices/tech/dalvik/index.html
https://developer.android.com/studio/write/convert-webp.html
https://developer.android.com/studio/write/convert-webp.html
http://developer.android.com/training/articles/perf-jni.html
http://developer.android.com/training/articles/perf-jni.html
https://www.android.com/versions/kit-kat-4-4/
https://www.android.com/versions/kit-kat-4-4/
https://developers.google.com/speed/webp/docs/api
https://developers.google.com/speed/webp/docs/api
http://developer.android.com/ndk/guides/concepts.html
http://developer.android.com/ndk/guides/concepts.html
https://developers.google.com/speed/webp/
https://developers.google.com/speed/webp/
http://doi.acm.org/10.1145/1168857.1168877
http://doi.acm.org/10.1145/1562164.1562171
http://doi.acm.org/10.1145/1562164.1562171
http://doi.acm.org/10.1145/872726.806987

164 BIBLIOGRAPHY

[121] M. Gupta, S. Mukhopadhyay, and N. Sinha, “Automatic parallelization of
recursive procedures,” Int. J. Parallel Program., vol. 28, no. 6, pp. 537–562, Dec.
2000. [Online]. Available: http://dx.doi.org/10.1023/A:1007560600904

[122] H. Halawa, H. A. Abdelhafez, A. Boktor, and M. Ripeanu, NVIDIA Jetson
Platform Characterization. Cham: Springer International Publishing, 2017, pp.
92–105. [Online]. Available: https://doi.org/10.1007/978-3-319-64203-1_7

[123] C. Hammer and G. Snelting, “Flow-sensitive, context-sensitive, and object-
sensitive information flow control based on program dependence graphs,” Int.
J. Inf. Secur., vol. 8, no. 6, pp. 399–422, Oct. 2009. [Online]. Available: http://dx.
doi.org/10.1007/s10207-009-0086-1

[124] M. Harris, “Unified Memory for CUDA Beginners,” [Online] Available https://
devblogs.nvidia.com/unified-memory-cuda-beginners/ (accessed 02/2018).

[125] A. Hayashi, Y. Wada, T. Watanabe, T. Sekiguchi, M. Mase, J. Shirako,
K. Kimura, and H. Kasahara, Parallelizing Compiler Framework and API for Power
Reduction and Software Productivity of Real-Time Heterogeneous Multicores. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 184–198. [Online]. Available:
https://doi.org/10.1007/978-3-642-19595-2_13

[126] Y. He, C. E. Leiserson, and W. M. Leiserson, “The cilkview scalability analyzer,”
in Proceedings of the Twenty-second Annual ACM Symposium on Parallelism in
Algorithms and Architectures, ser. SPAA ’10. New York, NY, USA: ACM, 2010,
pp. 145–156. [Online]. Available: http://doi.acm.org/10.1145/1810479.1810509

[127] G. Hegde, Siddhartha, N. Ramasamy, and N. Kapre, “Caffepresso: An
optimized library for deep learning on embedded accelerator-based platforms,”
in Proceedings of the International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, ser. CASES ’16. New York, NY, USA: ACM,
2016, pp. 14:1–14:10. [Online]. Available: http://doi.acm.org/10.1145/2968455.
2968511

[128] M. D. Hill and M. R. Marty, “Retrospective on Amdahl’s Law in the Multicore
Era,” Computer, vol. 50, no. 6, pp. 12–14, 2017.

[129] HSA Foundation, “Heterogeneous System Architecture (HSA),” [Online] Avail-
able http://www.hsafoundation.com/ (accessed 03/2018).

[130] J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T.-H. Hung, and D. I.
August, “Decoupled software pipelining creates parallelization opportunities,”
in Proceedings of the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, ser. CGO ’10. New York, NY, USA: ACM, 2010,
pp. 121–130. [Online]. Available: http://doi.acm.org/10.1145/1772954.1772973

http://dx.doi.org/10.1023/A:1007560600904
https://doi.org/10.1007/978-3-319-64203-1_7
http://dx.doi.org/10.1007/s10207-009-0086-1
http://dx.doi.org/10.1007/s10207-009-0086-1
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://devblogs.nvidia.com/unified-memory-cuda-beginners/
https://doi.org/10.1007/978-3-642-19595-2_13
http://doi.acm.org/10.1145/1810479.1810509
http://doi.acm.org/10.1145/2968455.2968511
http://doi.acm.org/10.1145/2968455.2968511
http://www.hsafoundation.com/
http://doi.acm.org/10.1145/1772954.1772973

BIBLIOGRAPHY 165

[131] W.-m. Hwu, K. Keutzer, and T. G. Mattson, “The concurrency challenge,” IEEE
Des. Test, vol. 25, no. 4, pp. 312–320, Jul. 2008. [Online]. Available: http://dx.
doi.org/10.1109/MDT.2008.110

[132] IDC, “Smartphone OS Market Share, 2017 Q1,” [Online] Available https://
www.idc.com/promo/smartphone-market-share/os (accessed 1/2018).

[133] A. Ilic, F. Pratas, and L. Sousa, “Beyond the roofline: Cache-aware power and
energy-efficiency modeling for multi-cores,” IEEE Transactions on Computers,
vol. 66, no. 1, pp. 52–58, Jan 2017.

[134] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware roofline model: Upgrading the
loft,” IEEE Comput. Archit. Lett., vol. 13, no. 1, pp. 21–24, Jan. 2014. [Online].
Available: http://dx.doi.org/10.1109/L-CA.2013.6

[135] Intel, “Intel Advisor,” [Online] Available https://software.intel.com/en-us/
intel-advisor-xe (accessed 08/2017).

[136] Intel, “Intel Advisor Roofline,” [Online] Available https://software.intel.com/
en-us/articles/intel-advisor-roofline (accessed 12/2017).

[137] Intel, “Intel Cilk Plus,” [Online] Available https://software.intel.com/en-us/
intel-cilk-plus-support (accessed 08/2017).

[138] International Technology Roadmap for Semiconductors (ITRS), “System inte-
gration roadmaps in itrs 2.0, 2015 edition,” [Online] Available http://www.
itrs2.net/itrs-reports.html (Accessed 7/2017).

[139] M. Islam, “On the limitations of compilers to exploit thread-level parallelism in
embedded applications,” in Computer and Information Science, 2007. ICIS 2007.
6th IEEE/ACIS International Conference on, July 2007, pp. 60–66.

[140] T. Janjusic and K. Kavi, “Hardware and application profiling tools,” in Advances
in Computers, A. Hurson, Ed. Elsevier, 2014, vol. 92, ch. 3, pp. 105–160.

[141] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor, “Kismet: Parallel speedup
estimates for serial programs,” SIGPLAN Not., vol. 46, no. 10, pp. 519–536, Oct.
2011. [Online]. Available: http://doi.acm.org/10.1145/2076021.2048108

[142] A. A. Jerraya and W. Wolf, Multiprocessor Systems-on-chips, ser. Electronics
& Electrical. Morgan Kaufmann, 2005. [Online]. Available: https://books.
google.de/books?id=7i9Z69lrYBoC

[143] C. Jesshope, M. Lankamp, and L. Zhang, “The Implementation of an
SVP Many-core Processor and the Evaluation of Its Memory Architecture,”
SIGARCH Comput. Archit. News, vol. 37, no. 2, pp. 38–45, Jul. 2009. [Online].
Available: http://doi.acm.org/10.1145/1577129.1577136

http://dx.doi.org/10.1109/MDT.2008.110
http://dx.doi.org/10.1109/MDT.2008.110
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
http://dx.doi.org/10.1109/L-CA.2013.6
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/articles/intel-advisor-roofline
https://software.intel.com/en-us/articles/intel-advisor-roofline
https://software.intel.com/en-us/intel-cilk-plus-support
https://software.intel.com/en-us/intel-cilk-plus-support
http://www.itrs2.net/itrs-reports.html
http://www.itrs2.net/itrs-reports.html
http://doi.acm.org/10.1145/2076021.2048108
https://books.google.de/books?id=7i9Z69lrYBoC
https://books.google.de/books?id=7i9Z69lrYBoC
http://doi.acm.org/10.1145/1577129.1577136

166 BIBLIOGRAPHY

[144] R. E. Johnson, “Software development is program transformation,” in Proceed-
ings of the FSE/SDP Workshop on Future of Software Engineering Research, ser.
FoSER ’10. New York, NY, USA: ACM, 2010, pp. 177–180.

[145] R. C. Johnson, “Efficient program analysis using dependence flow graphs,”
Ph.D. dissertation, Cornell University, August 1994.

[146] A. f. C. M. A. Joint Task Force on Computing Curricula and I. C. Society, Com-
puter Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Pro-
grams in Computer Science. New York, NY, USA: ACM, 2013, 999133.

[147] M. E. Kalender, C. Mergenci, and O. Ozturk, “Autopar: An automatic paral-
lelization tool for recursive calls,” in 2014 43rd International Conference on Parallel
Processing Workshops, Sept 2014, pp. 159–165.

[148] I. Karkowski and H. Corporaal, “Overcoming the limitations of the traditional
loop parallelization,” Future Gener. Comput. Syst., vol. 13, no. 4-5, pp. 407–416,
Mar. 1998.

[149] A. Karpov, “32 OpenMP traps for C++ developers,” [Online] Available https://
software.intel.com/en-us/articles/32-openmp-traps-for-c-developers (accessed
08/2017).

[150] H. Kasahara, M. Obata, and K. Ishizaka, Automatic Coarse Grain Task Parallel
Processing on SMP Using OpenMP. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 189–207. [Online]. Available: https://doi.org/10.1007/3-
540-45574-4_13

[151] S. Kehr, M. Panić, E. Quiñones, B. Böddeker, J. B. Sandoval, J. Abella, F. J.
Cazorla, and G. Schäfer, “Supertask: Maximizing runnable-level parallelism in
autosar applications,” in Proceedings of the 2016 Conference on Design, Automation
& Test in Europe, ser. DATE ’16. San Jose, CA, USA: EDA Consortium, 2016, pp.
25–30. [Online]. Available: http://dl.acm.org/citation.cfm?id=2971808.2971815

[152] S. Kehr, E. Quiñones, B. Böddeker, and G. Schäfer, “Parallel execution of autosar
legacy applications on multicore ecus with timed implicit communication,”
in Proceedings of the 52Nd Annual Design Automation Conference, ser. DAC ’15.
New York, NY, USA: ACM, 2015, pp. 42:1–42:6. [Online]. Available: http://doi.
acm.org/10.1145/2744769.2744889

[153] A. Kejariwal, A. V. Veidenbaum, A. Nicolau, M. Girkarmark, X. Tian, and
H. Saito, “Challenges in exploitation of loop parallelism in embedded appli-
cations,” in Proceedings of the 4th International Conference on Hardware/Software
Codesign and System Synthesis, ser. CODES+ISSS ’06. New York, NY, USA:
ACM, 2006, pp. 173–180.

[154] J. E. Kelley, Jr and M. R. Walker, “Critical-path planning and scheduling,” in
Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM Computer

https://software.intel.com/en-us/articles/32-openmp-traps-for-c-developers
https://software.intel.com/en-us/articles/32-openmp-traps-for-c-developers
https://doi.org/10.1007/3-540-45574-4_13
https://doi.org/10.1007/3-540-45574-4_13
http://dl.acm.org/citation.cfm?id=2971808.2971815
http://doi.acm.org/10.1145/2744769.2744889
http://doi.acm.org/10.1145/2744769.2744889

BIBLIOGRAPHY 167

Conference, ser. IRE-AIEE-ACM ’59 (Eastern). New York, NY, USA: ACM,
1959, pp. 160–173. [Online]. Available: http://doi.acm.org/10.1145/1460299.
1460318

[155] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2002.

[156] C. W. Kessler, “Pattern-driven automatic parallelization,” Sci. Program., vol. 5,
no. 3, pp. 251–274, Aug. 1996. [Online]. Available: http://dx.doi.org/10.1155/
1996/406379

[157] A. Ketterlin and P. Clauss, “Profiling data-dependence to assist parallelization:
Framework, scope, and optimization,” in Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-45.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 437–448. [Online].
Available: http://dx.doi.org/10.1109/MICRO.2012.47

[158] K. Keutzer and T. Mattson, “Our pattern language (OPL). a pattern language
for parallel programming,” [Online] Available http://parlab.eecs.berkeley.edu/
wiki/patterns/patterns (accessed 07/2017).

[159] Khronos, “The OpenCL specification. version 1.1,” [Online] Available https://
www.khronos.org/registry/cl/specs/opencl-1.1.pdf (accessed 02/2018).

[160] Khronos Group, “OpenCL embedded boards comparison 2015,”
https://www.khronos.org/news/events/opencl-embedded-boards-
comparison-2015. Visited on Mar. 2017.

[161] B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan: deriving process net-
works from Matlab for embedded signal processing architectures,” in Proceed-
ings of the Eighth International Workshop on Hardware/Software Codesign. CODES
2000 (IEEE Cat. No.00TH8518), May 2000, pp. 13–17.

[162] M. Kim, “Dynamic program analysis algorithms to assist parallelization,” Ph.D.
dissertation, Atlanta, GA, USA, 2012.

[163] M. Kim, H. Kim, and C.-K. Luk, “Prospector: Discovering parallelism via dy-
namic data-dependence profiling,” in Proceedings of the 2nd USENIX Workshop
on Hot Topics in Parallelism, HOTPAR, vol. 10, 2010, pp. 395–416.

[164] M. Kim, N. B. Lakshminarayana, H. Kim, and C.-K. Luk, “Sd3: An efficient
dynamic data-dependence profiling mechanism,” IEEE Trans. Comput., vol. 62,
no. 12, pp. 2516–2530, Dec. 2013. [Online]. Available: http://dx.doi.org/10.
1109/TC.2012.182

http://doi.acm.org/10.1145/1460299.1460318
http://doi.acm.org/10.1145/1460299.1460318
http://dx.doi.org/10.1155/1996/406379
http://dx.doi.org/10.1155/1996/406379
http://dx.doi.org/10.1109/MICRO.2012.47
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://dx.doi.org/10.1109/TC.2012.182
http://dx.doi.org/10.1109/TC.2012.182

168 BIBLIOGRAPHY

[165] E. Konstantinidis and Y. Cotronis, “A quantitative roofline model for GPU ker-
nel performance estimation using micro-benchmarks and hardware metric pro-
filing,” Journal of Parallel and Distributed Computing, vol. 107, no. Supplement C,
pp. 37 – 56, 2017.

[166] R. Koo and F. Gandolfi, “Compiler business value,” IBM, Tech. Rep.
[Online]. Available: ttps://www.ibm.com/developerworks/rational/cafe/
docBodyAttachments/2880-102-1-4641/RAW14079-USEN-00.pdf

[167] C. Lee, “UTDSP Benchmark,” [Online] Available http://www.eecg.toronto.
edu/~corinna/DSP/infrastructure/UTDSP.html (accessed 09/2017), 1998.

[168] E. Lee and D. Messerschmitt, “Static scheduling of synchronous data flow pro-
grams for digital signal processing,” Computers, IEEE Transactions on, vol. C-36,
no. 1, pp. 24–35, Jan 1987.

[169] E. A. Lee and T. M. Parks, “Readings in hardware/software co-design,”
G. De Micheli, R. Ernst, and W. Wolf, Eds. Norwell, MA, USA: Kluwer
Academic Publishers, 2002, ch. Dataflow Process Networks, pp. 59–85. [Online].
Available: http://dl.acm.org/citation.cfm?id=567003.567010

[170] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP Programming and
Tuning for GPUs,” in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis, ser. SC ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11. [Online].
Available: https://doi.org/10.1109/SC.2010.36

[171] C. Lengauer and M. Griebl, “On the parallelization of loop nests containing
while loops,” in Parallel Algorithms/Architecture Synthesis, 1995. Proceedings., First
Aizu International Symposium on, Mar 1995, pp. 10–18.

[172] C. Lengauer, “Loop parallelization in the polytope model,” in Proceedings of the
4th International Conference on Concurrency Theory, ser. CONCUR ’93. London,
UK, UK: Springer-Verlag, 1993, pp. 398–416.

[173] R. Leupers, M. A. Aguilar, J. Castrillon, and W. Sheng, “Software compila-
tion techniques for heterogeneous embedded multi-core systems,” S. S. Bhat-
tacharyya, E. F. Deprettere, R. Leupers, and J. Takala, Eds. Springer, 2018.

[174] R. Leupers, M. A. Aguilar, J. F. Eusse, J. Castrillon, and W. Sheng, MAPS: A Soft-
ware Development Environment for Embedded Multicore Applications. Dordrecht:
Springer Netherlands, sep 2017.

[175] F. Li, A. Pop, and A. Cohen, “Advances in Parallel-Stage Decoupled Software
Pipelining Leveraging Loop Distribution, Stream-Computing and the SSA
Form,” in WIR 2011: Workshop on Intermediate Representations. Chamonix,
France: Florent Bouchez and Sebastian Hack and Eelco Visser, Apr. 2011,
pp. pp.29–36, 8 pages Categories and Subject Descriptors D.3.4 [Programming

ttps://www.ibm.com/developerworks/rational/cafe/docBodyAttachments/2880-102-1-4641/RAW14079-USEN-00.pdf
ttps://www.ibm.com/developerworks/rational/cafe/docBodyAttachments/2880-102-1-4641/RAW14079-USEN-00.pdf
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UTDSP.html
http://dl.acm.org/citation.cfm?id=567003.567010
https://doi.org/10.1109/SC.2010.36

BIBLIOGRAPHY 169

Languages]: Processors-Compilers, Optimization. [Online]. Available: https://
hal-mines-paristech.archives-ouvertes.fr/hal-00744090

[176] Z. Li, “Discovery of potential parallelism in sequential programs,” Ph.D. disser-
tation, October 2016.

[177] Z. Li, R. Atre, Z. U. Huda, A. Jannesari, and F. Wolf, “Unveiling parallelization
opportunities in sequential programs,” Journal of Systems and Software, vol. 117,
p. 282–295, Jul. 2016.

[178] C. Liao et al., “Early experiences with the OpenMP accelerator model,” in
OpenMP in the Era of Low Power Devices and Accelerators. Springer, 2013, pp.
84–98. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-40698-0_7

[179] C. Liao, D. J. Quinlan, J. J. Willcock, and T. Panas, “Semantic-aware
automatic parallelization of modern applications using high-level abstractions,”
International Journal of Parallel Programming, vol. 38, no. 5, pp. 361–378, Oct
2010. [Online]. Available: https://doi.org/10.1007/s10766-010-0139-0

[180] T. Ligocki, “Empirical Roofline Tool,” [Online] Available https://bitbucket.org/
berkeleylab/cs-roofline-toolkit (accessed 12/2017).

[181] X. Liu, R. Zhao, L. Han, and P. Liu, “An Automatic Parallel-Stage Decoupled
Software Pipelining Parallelization Algorithm Based on OpenMP,” in 2013 12th
IEEE International Conference on Trust, Security and Privacy in Computing and Com-
munications, July 2013, pp. 1825–1831.

[182] LLVM Foundation, “clang: a C language family frontend for LLVM,” [Online]
Available https://clang.llvm.org/ (accessed 02/2018).

[183] LLVM Foundation, “LLVM Bitcode File Format,” [Online] Available https://
llvm.org/docs/BitCodeFormat.html (accessed 9/2017).

[184] Y. J. Lo, S. Williams, B. Van Straalen, T. J. Ligocki, M. J. Cordery, N. J. Wright,
M. W. Hall, and L. Oliker, Roofline Model Toolkit: A Practical Tool for Architectural
and Program Analysis. Cham: Springer International Publishing, 2015, pp. 129–
148.

[185] U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso, “A survey of perfor-
mance modeling and simulation techniques for accelerator-based computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 1, pp. 272–281,
Jan 2015.

[186] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools
with dynamic instrumentation,” SIGPLAN Not., vol. 40, no. 6, pp. 190–200, Jun.
2005. [Online]. Available: http://doi.acm.org/10.1145/1064978.1065034

https://hal-mines-paristech.archives-ouvertes.fr/hal-00744090
https://hal-mines-paristech.archives-ouvertes.fr/hal-00744090
http://dx.doi.org/10.1007/978-3-642-40698-0_7
https://doi.org/10.1007/s10766-010-0139-0
https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://clang.llvm.org/
https://llvm.org/docs/BitCodeFormat.html
https://llvm.org/docs/BitCodeFormat.html
http://doi.acm.org/10.1145/1064978.1065034

170 BIBLIOGRAPHY

[187] J. Mak, K.-F. Faxén, S. Janson, and A. Mycroft, “Estimating and exploiting
potential parallelism by source-level dependence profiling,” in Proceedings of
the 16th International Euro-Par Conference on Parallel Processing: Part I, ser.
EuroPar’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 26–37. [Online].
Available: http://dl.acm.org/citation.cfm?id=1887695.1887700

[188] Manuel Arenaz, “A Success Case using Parallware: The NAS Paral-
lel Benchmark EP,” [Online] Available openmpcon.org/wp-content/uploads/
openmpcon2015-manuel-arenaz-appentra.pdf (accessed 08/2017).

[189] A. Marongiu, A. Capotondi, G. Tagliavini, and L. Benini, “Simplifying many-
core-based heterogeneous soc programming with offload directives,” IEEE
Transactions on Industrial Informatics, vol. 11, no. 4, pp. 957–967, Aug 2015.

[190] A. Marongiu et al., “Simplifying many-core-based heterogeneous SoC program-
ming with offload directives,” IEEE Trans. on Ind. Informatics, vol. 11, no. 4, pp.
957–967, Aug 2015.

[191] A. Marowka, “Think parallel: Teaching parallel programming today,” IEEE Dis-
tributed Systems Online, vol. 9, no. 8, pp. 1–1, Aug 2008.

[192] M. Mase, Y. Onozaki, K. Kimura, and H. Kasahara, “Parallelizable C and its
performance on low power high performance multicore processors,” in Proc. of
15th Workshop on Compilers for Parallel Computing, vol. 2011, 2010.

[193] A. Mastoras and G. Manis, “Ariadne - directive-based parallelism extraction
from recursive functions,” J. Parallel Distrib. Comput., vol. 86, no. C, pp. 16–28,
Dec. 2015. [Online]. Available: http://dx.doi.org/10.1016/j.jpdc.2015.07.009

[194] Matthew Humphries, “Nintendo Switch Uses a Standard Tegra X1 Proces-
sor,” [Online] Available http://uk.pcmag.com/news/88426/nintendo-switch-
uses-a-standard-tegra-x1-processor (accessed 01/2018).

[195] T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel Programming,
1st ed. Addison-Wesley Professional, 2004.

[196] M. McCool, J. Reinders, and A. Robison, Structured Parallel Programming: Pat-
terns for Efficient Computation, 1st ed. San Francisco, CA, USA: Morgan Kauf-
mann, 2012.

[197] A. Meade, J. Buckley, and J. J. Collins, “Challenges of evolving sequential to
parallel code: An exploratory review,” in Proceedings of the 12th International
Workshop on Principles of Software Evolution and the 7th Annual ERCIM Workshop
on Software Evolution, ser. IWPSE-EVOL ’11. New York, NY, USA: ACM, 2011,
pp. 1–5. [Online]. Available: http://doi.acm.org/10.1145/2024445.2024447

[198] S. Meijer, S. van Haastregt, D. Nadezhkin, and B. Kienhuis, “Kahn
Process Network IR Modeling for Multicore Compilation,” Leiden Institute

http://dl.acm.org/citation.cfm?id=1887695.1887700
openmpcon.org/wp-content/uploads/openmpcon2015-manuel-arenaz-appentra.pdf
openmpcon.org/wp-content/uploads/openmpcon2015-manuel-arenaz-appentra.pdf
http://dx.doi.org/10.1016/j.jpdc.2015.07.009
http://uk.pcmag.com/news/88426/nintendo-switch-uses-a-standard-tegra-x1-processor
http://uk.pcmag.com/news/88426/nintendo-switch-uses-a-standard-tegra-x1-processor
http://doi.acm.org/10.1145/2024445.2024447

BIBLIOGRAPHY 171

of Advanced Computer Science, Niels Bohrweg 1, 2333 CA, Leiden,
Netherlands, Tech. Rep. MSU-CSE-06-2. [Online]. Available: liacs.leidenuniv.
nl/~kienhuisacj/ftp/technicalreport2.pdf

[199] S. P. Midkiff, Automatic Parallelization: An Overview of Fundamental Compiler
Techniques, ser. Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2012. [Online]. Available: https://doi.org/10.2200/
S00340ED1V01Y201201CAC019

[200] R. Miller, “Sequential programming considered harmful?” [Online] Avail-
able http://spectrum.ieee.org/at-work/education/sequential-programming-
considered-harmful (Accessed 8/2017).

[201] G. Mitra et al., “Implementation and Optimization of the OpenMP Accelerator
Model for the TI Keystone II Architecture,” in Using and Improving OpenMP for
Devices and More. Springer, 2014, pp. 202–214. [Online]. Available: http://dx.
doi.org/10.1007/978-3-319-11454-5_15

[202] K. Morris, “Compaan Design releases HotSpot Parallelizer for ISO C,”
[Online] Available https://www.eejournal.com/article/20100518-02/ (accessed
08/2017).

[203] S. S. Muchnick, Advanced Compiler Design and Implementation. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[204] Multicore Association, “Software-hardware interface for multi-many-core
(SHIM) specification,” [Online] Available http://www.multicore-association.
org (accessed 07/2017).

[205] R. Muresano, D. Rexachs, and E. Luque, “Learning parallel programming:
a challenge for university students,” Procedia Computer Science, vol. 1, no. 1,
pp. 875 – 883, 2010, iCCS 2010. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1877050910000979

[206] L. G. Murillo, S. Wawroschek, J. Castrillon, R. Leupers, and G. Ascheid, “Au-
tomatic detection of concurrency bugs through event ordering constraints,” in
Proceedings of the Conference on Design, Automation & Test in Europe, ser. DATE
’14. 3001 Leuven, Belgium, Belgium: European Design and Automation Asso-
ciation, 2014, pp. 282:1–282:6.

[207] A. K. Nanda, J. R. Moulic, R. E. Hanson, G. Goldrian, M. N. Day, B. D.
D’Arnora, and S. Kesavarapu, “Cell/b.e. blades: Building blocks for scalable,
real-time, interactive, and digital media servers,” IBM J. Res. Dev., vol. 51, no. 5,
pp. 573–582, Sep. 2007. [Online]. Available: http://dx.doi.org/10.1147/rd.515.
0573

liacs.leidenuniv.nl/~kienhuisacj/ftp/technicalreport2.pdf
liacs.leidenuniv.nl/~kienhuisacj/ftp/technicalreport2.pdf
https://doi.org/10.2200/S00340ED1V01Y201201CAC019
https://doi.org/10.2200/S00340ED1V01Y201201CAC019
http://spectrum.ieee.org/at-work/education/sequential-programming-considered-harmful
http://spectrum.ieee.org/at-work/education/sequential-programming-considered-harmful
http://dx.doi.org/10.1007/978-3-319-11454-5_15
http://dx.doi.org/10.1007/978-3-319-11454-5_15
https://www.eejournal.com/article/20100518-02/
http://www.multicore-association.org
http://www.multicore-association.org
http://www.sciencedirect.com/science/article/pii/S1877050910000979
http://www.sciencedirect.com/science/article/pii/S1877050910000979
http://dx.doi.org/10.1147/rd.515.0573
http://dx.doi.org/10.1147/rd.515.0573

172 BIBLIOGRAPHY

[208] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” SIGPLAN Not., vol. 42, no. 6, pp. 89–100,
Jun. 2007. [Online]. Available: http://doi.acm.org/10.1145/1273442.1250746

[209] A. Nicolaou, “Eight strategies for tackling legacy code you didn’t write,”
[Online] Available https://www.fastcompany.com/3029446/eight-strategies-
for-tackling-legacy-code-you-didnt-write (Accessed 7/2017).

[210] V. P. Nikolskiy, V. V. Stegailov, and V. S. Vecher, “Efficiency of the Tegra K1
and X1 systems-on-chip for classical molecular dynamics,” in 2016 International
Conference on High Performance Computing Simulation (HPCS), July 2016, pp. 682–
689.

[211] NVIDIA, “CUDA C Best Practices Guide,” [Online] Available http://docs.
nvidia.com/cuda/cuda-c-best-practices-guide/index.html#axzz4pAtErnjo (ac-
cessed 08/2017).

[212] NVIDIA, “CUDA C Programming Guide,” [Online] Available http://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html (accessed 02/2018).

[213] NVIDIA, “CUDA Ecosystem,” [Online] Available https://developer.nvidia.
com/tools-ecosystem (accessed 08/2017).

[214] NVIDIA, “CUDA Zone,” [Online] Available https://developer.nvidia.com/
cuda-zone (accessed 08/2017).

[215] NVIDIA, “Deep Learning,” [Online] Available https://www.nvidia.com/en-
us/deep-learning-ai/developer/ (accessed 08/2017).

[216] NVIDIA, “Drive PX: Scalable Supercomputer for Autonomous Driving,”
[Online] Available http://www.nvidia.com/object/drive-px.html (accessed
08/2017).

[217] NVIDIA, “Introducing Xavier, the NVIDIA AI Supercomputer for the Future
of Autonomous Transportation,” [Online] Available https://blogs.nvidia.com/
blog/2016/09/28/xavier/ (accessed 08/2017).

[218] NVIDIA, “Maxwell architecture,” [Online] Available https://developer.nvidia.
com/maxwell-compute-architecture (Accessed 12/2017).

[219] NVIDIA, “Nvidia jetson,” [Online] Available http://www.nvidia.com/object/
embedded-systems-dev-kits-modules.html (Accessed 7/2017).

[220] NVIDIA, “Profiler User’s Guide,” [Online] Available http://docs.nvidia.com/
cuda/profiler-users-guide/index.html (accessed 01/2018).

[221] NVIDIA, “Shield: The Ultimate Tablet For Gamers,” [Online] Available https://
www.nvidia.com/en-us/shield/tablet/ (accessed 01/2018).

http://doi.acm.org/10.1145/1273442.1250746
https://www.fastcompany.com/3029446/eight-strategies-for-tackling-legacy-code-you-didnt-write
https://www.fastcompany.com/3029446/eight-strategies-for-tackling-legacy-code-you-didnt-write
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#axzz4pAtErnjo
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#axzz4pAtErnjo
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/tools-ecosystem
https://developer.nvidia.com/tools-ecosystem
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://www.nvidia.com/en-us/deep-learning-ai/developer/
https://www.nvidia.com/en-us/deep-learning-ai/developer/
http://www.nvidia.com/object/drive-px.html
https://blogs.nvidia.com/blog/2016/09/28/xavier/
https://blogs.nvidia.com/blog/2016/09/28/xavier/
https://developer.nvidia.com/maxwell-compute-architecture
https://developer.nvidia.com/maxwell-compute-architecture
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://www.nvidia.com/en-us/shield/tablet/
https://www.nvidia.com/en-us/shield/tablet/

BIBLIOGRAPHY 173

[222] NVIDIA, “Tegra,” [Online] Available http://www.nvidia.com/object/tegra.
html (accessed 08/2017).

[223] Oak Ridge National Laboratory, “History of CUDA, OpenCL, and the
GPGPU,” [Online] Available https://www.olcf.ornl.gov/kb_articles/history-
of-the-gpgpu/ (accessed 08/2017).

[224] G. Ofenbeck, R. Steinmann, V. C. Cabezas, D. G. Spampinato, and M. Püschel,
“Applying the roofline model,” in IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014, pp. 76 – 85.

[225] OpenACC-Standard.org, “OpenACC,” [Online] Available https://www.
openacc.org/ (accessed 08/2017).

[226] OpenMP Architecture Review Board, “OpenMP Application Programming
Interface. Version 4.0,” [Online] Available www.openmp.org/wp-content/
uploads/OpenMP4.0.0.pdf (accessed 08/2017), July 2013.

[227] OpenMP Review Board, “OpenMP Application Program Interface. Version 3.0,”
[Online] Available http://www.openmp.org/wp-content/uploads/spec30.pdf
(accessed 2/2018).

[228] OpenMP Review Board, “OpenMP Application Program Interface. Version
3.1,” [Online] Available www.openmp.org/wp-content/uploads/OpenMP3.1.
pdf (accessed 1/2018).

[229] OpenMP Review Board, “OpenMP Application Program Interface. Version 4.5,”
[Online] Available http://www.openmp.org/wp-content/uploads/openmp-4.
5.pdf (accessed 09/2017).

[230] OpenMP Review Board, “OpenMP C and C++ Application Program Inter-
face Version 1.0,” [Online] Available http://www.openmp.org/wp-content/
uploads/cspec10.pdf (accessed 2/2018).

[231] Oscar Technology Corporation, “Oscar.” [Online]. Available: http://www.
oscartech.jp/en/

[232] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Automatic thread
extraction with decoupled software pipelining,” in Proceedings of the 38th
Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO 38.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 105–118. [Online].
Available: http://dx.doi.org/10.1109/MICRO.2005.13

[233] G. Ozen, E. Ayguadé, and J. Labarta, On the Roles of the Programmer, the Com-
piler and the Runtime System When Programming Accelerators in OpenMP. Cham:
Springer International Publishing, 2014, pp. 215–229.

http://www.nvidia.com/object/tegra.html
http://www.nvidia.com/object/tegra.html
https://www.olcf.ornl.gov/kb_articles/history-of-the-gpgpu/
https://www.olcf.ornl.gov/kb_articles/history-of-the-gpgpu/
https://www.openacc.org/
https://www.openacc.org/
www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/spec30.pdf
www.openmp.org/wp-content/uploads/OpenMP3.1.pdf
www.openmp.org/wp-content/uploads/OpenMP3.1.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/cspec10.pdf
http://www.openmp.org/wp-content/uploads/cspec10.pdf
http://www.oscartech.jp/en/
http://www.oscartech.jp/en/
http://dx.doi.org/10.1109/MICRO.2005.13

174 BIBLIOGRAPHY

[234] G. Ozen et al., “On the roles of the programmer, the compiler and the runtime
system when programming accelerators in OpenMP,” in Using and Improving
OpenMP for Devices, Tasks and More. Springer, 2014, pp. 215–229. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-11454-5_16

[235] D. Padua, Ed., Whole Program Analysis. Boston, MA: Springer US, 2011,
pp. 2159–2159. [Online]. Available: https://doi.org/10.1007/978-0-387-09766-
4_2164

[236] M. Panić, S. Kehr, E. Quiñones, B. Boddecker, J. Abella, and F. J. Cazorla,
“Runpar: An allocation algorithm for automotive applications exploiting
runnable parallelism in multicores,” in Proceedings of the 2014 International
Conference on Hardware/Software Codesign and System Synthesis, ser. CODES ’14.
New York, NY, USA: ACM, 2014, pp. 29:1–29:10. [Online]. Available: http://
doi.acm.org/10.1145/2656075.2656096

[237] Par4All Members, “Par4All,” [Online] Available http://par4all.github.io/ (ac-
cessed 08/2017).

[238] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J. F. Nezan, and S. Aridhi, “Preesm:
A dataflow-based rapid prototyping framework for simplifying multicore dsp
programming,” in 2014 6th European Embedded Design in Education and Research
Conference (EDERC), Sept 2014, pp. 36–40.

[239] P. M. Petersen, “Evaluation of programs and parallelizing compilers using dy-
namic analysis techniques,” Ph.D. dissertation, Champaign, IL, USA, 1993, uMI
Order No. GAX93-14926.

[240] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to exploring
embedded system architectures at multiple abstraction levels,” IEEE Trans.
Comput., vol. 55, no. 2, pp. 99–112, Feb. 2006. [Online]. Available: http://dx.
doi.org/10.1109/TC.2006.16

[241] K. Pingali, M. Beck, R. Johnson, M. Moudgill, and P. Stodghill, “Dependence
flow graphs: An algebraic approach to program dependencies,” in Proceedings
of the 18th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’91. New York, NY, USA: ACM, 1991, pp. 67–78.
[Online]. Available: http://doi.acm.org/10.1145/99583.99595

[242] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G.-A. Silber, and N. Vasilache, “Graphite:
Polyhedral analyses and optimizations for gcc,” in Proceedings of the 2006 GCC
Developers Summit, 2006, p. 2006.

[243] L.-N. Pouchet, “PolyBench/C: The Polyhedral Benchmark Suite,” [On-
line] Available http://web.cs.ucla.edu/~pouchet/software/polybench/ (ac-
cessed 01/2018).

http://dx.doi.org/10.1007/978-3-319-11454-5_16
https://doi.org/10.1007/978-0-387-09766-4_2164
https://doi.org/10.1007/978-0-387-09766-4_2164
http://doi.acm.org/10.1145/2656075.2656096
http://doi.acm.org/10.1145/2656075.2656096
http://par4all.github.io/
http://dx.doi.org/10.1109/TC.2006.16
http://dx.doi.org/10.1109/TC.2006.16
http://doi.acm.org/10.1145/99583.99595
http://web.cs.ucla.edu/~pouchet/software/polybench/

BIBLIOGRAPHY 175

[244] L. Prechelt and S. U. Hánssgen, “Efficient parallel execution of irregular
recursive programs,” IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 2, pp.
167–178, Feb. 2002. [Online]. Available: http://dx.doi.org/10.1109/71.983944

[245] R. Pyka, F. Klein, P. Marwedel, and S. Mamagkakis, “Versatile System-level
Memory-aware Platform Description Approach for Embedded MPSoCs,”
SIGPLAN Not., vol. 45, no. 4, pp. 9–16, Apr. 2010. [Online]. Available: http://
doi.acm.org/10.1145/1755951.1755891

[246] Qualcomm, “Qualcomm snapdragon mobile platform opencl general program-
ming and optimization,” [Online] Available https://developer.qualcomm.com/
qfile/33472/80-nb295-11_a.pdf (accessed 1/2018).

[247] Qualcomm, “Snapdragon 845 Mobile Platform,” [Online] Available https://
www.qualcomm.com/products/snapdragon-845-mobile-platform (accessed
03/2018).

[248] Qualcomm, “Snapdragon Processors,” [Online] Available https://www.
qualcomm.com/products/snapdragon (accessed 08/2017).

[249] Qualcomm, “Snapdragon S4,” [Online] Available https://www.qualcomm.
com/products/snapdragon/processors/s4-s1 (accessed 01/2018).

[250] D. Quinlan, “Rose: Compiler support for object-oriented frameworks,” Parallel
Processing Letters, vol. 10, no. 02n03, pp. 215–226, 2000.

[251] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August, “Parallel-stage
decoupled software pipelining,” in Proceedings of the 6th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, ser. CGO ’08.
New York, NY, USA: ACM, 2008, pp. 114–123. [Online]. Available: http://doi.
acm.org/10.1145/1356058.1356074

[252] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August, “Decoupled
software pipelining with the synchronization array,” in Proceedings of the 13th
International Conference on Parallel Architectures and Compilation Techniques, ser.
PACT ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 177–188.
[Online]. Available: https://doi.org/10.1109/PACT.2004.14

[253] L. Rauchwerger and D. Padua, “Parallelizing while loops for multiprocessor
systems,” in 9th International Parallel Processing Symposium, Apr 1995, pp. 347–
356.

[254] L. Rauchwerger and D. Padua, “The lrpd test: Speculative run-time
parallelization of loops with privatization and reduction parallelization,”
SIGPLAN Not., vol. 30, no. 6, pp. 218–232, Jun. 1995. [Online]. Available:
http://doi.acm.org/10.1145/223428.207148

http://dx.doi.org/10.1109/71.983944
http://doi.acm.org/10.1145/1755951.1755891
http://doi.acm.org/10.1145/1755951.1755891
https://developer.qualcomm.com/qfile/33472/80-nb295-11_a.pdf
https://developer.qualcomm.com/qfile/33472/80-nb295-11_a.pdf
https://www.qualcomm.com/products/snapdragon-845-mobile-platform
https://www.qualcomm.com/products/snapdragon-845-mobile-platform
https://www.qualcomm.com/products/snapdragon
https://www.qualcomm.com/products/snapdragon
https://www.qualcomm.com/products/snapdragon/processors/s4-s1
https://www.qualcomm.com/products/snapdragon/processors/s4-s1
http://doi.acm.org/10.1145/1356058.1356074
http://doi.acm.org/10.1145/1356058.1356074
https://doi.org/10.1109/PACT.2004.14
http://doi.acm.org/10.1145/223428.207148

176 BIBLIOGRAPHY

[255] Rik Myslewski, “The ’third era’ of app development will be fast, simple,
and compact,” [Online] Available http://www.theregister.co.uk/Print/2013/
08/25/heterogeneous_system_architecture_deep_dive/ (accessed 08/2017).

[256] G. Roelofs, “Portable Network Graphics,” [Online] Available http://www.
libpng.org/pub/png/png.html (accessed 01/2018).

[257] R. Rugina and M. Rinard, “Automatic parallelization of divide and conquer
algorithms,” SIGPLAN Not., vol. 34, no. 8, pp. 72–83, May 1999. [Online].
Available: http://doi.acm.org/10.1145/329366.301111

[258] K. Rupp, “40 years of microprocessor trend data,” [Online] Available https://
www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/ (accessed
08/2017).

[259] S. Rus, L. Rauchwerger, and J. Hoeflinger, “Hybrid analysis: Static & dynamic
memory reference analysis,” International Journal of Parallel Programming,
vol. 31, no. 4, pp. 251–283, Aug 2003. [Online]. Available: https://doi.org/10.
1023/A:1024597010150

[260] Ryan Smith, “ARM Unveils Next Generation Bifrost GPU Architecture & Mali-
G71: The New High-End Mali,” [Online] Available http://www.anandtech.
com/show/10375/arm-unveils-bifrost-and-mali-g71/4 (accessed 08/2017).

[261] S. Sah and V. G. Vaidya, “A Review of Parallelization Tools and Introduction to
Easypar,” International Journal of Computer Applications, vol. 56, no. 12, pp. 30–34,
October 2012.

[262] T. Saidani, J. Falcou, C. Tadonki, L. Lacassagne, and D. Etiemble, “Algorithmic
skeletons within an embedded domain specific language for the cell proces-
sor,” in 2009 18th International Conference on Parallel Architectures and Compilation
Techniques, Sept 2009, pp. 67–76.

[263] N. Sakharnykh, “Beyond gpu memory limits with unified memory on pascal,”
[Online] Available https://devblogs.nvidia.com/beyond-gpu-memory-limits-
unified-memory-pascal/ (accessed 02/2018).

[264] M. Samadi, A. Hormati, J. Lee, and S. Mahlke, “Paragon: Collaborative
Speculative Loop Execution on GPU and CPU,” in Proceedings of the 5th Annual
Workshop on General Purpose Processing with Graphics Processing Units, ser.
GPGPU-5. New York, NY, USA: ACM, 2012, pp. 64–73. [Online]. Available:
http://doi.acm.org/10.1145/2159430.2159438

[265] Samsung, “Mobile Processor: Exynos 9 Series (8895),” [Online] Avail-
able http://www.samsung.com/semiconductor/minisite/Exynos/Solution/
MobileProcessor/Exynos_9_Series_8895.html (accessed 08/2017).

http://www.theregister.co.uk/Print/2013/08/25/heterogeneous_system_architecture_deep_dive/
http://www.theregister.co.uk/Print/2013/08/25/heterogeneous_system_architecture_deep_dive/
http://www.libpng.org/pub/png/png.html
http://www.libpng.org/pub/png/png.html
http://doi.acm.org/10.1145/329366.301111
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://doi.org/10.1023/A:1024597010150
https://doi.org/10.1023/A:1024597010150
http://www.anandtech.com/show/10375/arm-unveils-bifrost-and-mali-g71/4
http://www.anandtech.com/show/10375/arm-unveils-bifrost-and-mali-g71/4
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
http://doi.acm.org/10.1145/2159430.2159438
http://www.samsung.com/semiconductor/minisite/Exynos/Solution/MobileProcessor/Exynos_9_Series_8895.html
http://www.samsung.com/semiconductor/minisite/Exynos/Solution/MobileProcessor/Exynos_9_Series_8895.html

BIBLIOGRAPHY 177

[266] A. Sangiovanni-Vincentelli and G. Martin, “Platform-based design and software
design methodology for embedded systems,” IEEE Design Test of Computers,
vol. 18, no. 6, pp. 23–33, Nov 2001.

[267] R. R. Schaller, “Moore’s law: Past, present, and future,” IEEE Spectr., vol. 34,
no. 6, pp. 52–59, Jun. 1997. [Online]. Available: http://dx.doi.org/10.1109/6.
591665

[268] G. E. Schalnat, A. Dilger, J. Bowler, G. Randers-Pehrson, and et al.,
“libpng,” [Online] Available http://libpng.org/pub/png/libpng.html (ac-
cessed 01/2018).

[269] W. Sheng, S. Schürmans, M. Odendahl, M. Bertsch, V. Volevach, R. Leupers, and
G. Ascheid, “A compiler infrastructure for embedded heterogeneous MPSoCs,”
Parallel Computing, vol. 40, no. 2, pp. 51 – 68, 2014, special issue on programming
models and applications for multicores and manycores. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819113001452

[270] Silexica GmbH, “SLX Tool Suite,” [Online] Available http://www.silexica.com
(accessed 4/2018).

[271] R. Smith, “Samsung Announces Exynos 8895 SoC,” [Online] Avail-
able https://www.anandtech.com/show/11149/samsung-announces-exynos-
8895-soc-10nm (accessed 03/2018).

[272] M. Sottile, T. G. Mattson, and C. E. Rasmussen, Introduction to Concurrency in
Programming Languages, 1st ed. Chapman & Hall/CRC, 2009.

[273] M. Spierings and R. van de Voort, “Embedded platform selection based on the
Roofline model,” Master’s thesis, Eindhoven University of Technology, 2011.

[274] T. Stefanov, A. Pimentel, and H. Nikolov, Daedalus: System-Level Design
Methodology for Streaming Multiprocessor Embedded Systems on Chips. Dordrecht:
Springer Netherlands, 2017, pp. 1–36. [Online]. Available: https://doi.org/10.
1007/978-94-017-7358-4_30-1

[275] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere, “System
Design Using Kahn Process Networks: The Compaan/Laura Approach,” in
Proceedings of the Conference on Design, Automation and Test in Europe - Volume
1, ser. DATE ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp.
10 340–. [Online]. Available: http://dl.acm.org/citation.cfm?id=968878.968962

[276] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming standard
for heterogeneous computing systems,” IEEE Des. Test, vol. 12, no. 3, pp. 66–73,
May 2010.

[277] E. Stotzer, “Towards using OpenMP in embedded systems,” OpenMPCon: De-
velopers Conference, September 2015.

http://dx.doi.org/10.1109/6.591665
http://dx.doi.org/10.1109/6.591665
http://libpng.org/pub/png/libpng.html
http://www.sciencedirect.com/science/article/pii/S0167819113001452
http://www.silexica.com
https://www.anandtech.com/show/11149/samsung-announces-exynos-8895-soc-10nm
https://www.anandtech.com/show/11149/samsung-announces-exynos-8895-soc-10nm
https://doi.org/10.1007/978-94-017-7358-4_30-1
https://doi.org/10.1007/978-94-017-7358-4_30-1
http://dl.acm.org/citation.cfm?id=968878.968962

178 BIBLIOGRAPHY

[278] K. Streit, J. Doerfert, C. Hammacher, A. Zeller, and S. Hack, “Generalized task
parallelism,” ACM Trans. Archit. Code Optim., vol. 12, no. 1, pp. 8:1–8:25, Apr.
2015. [Online]. Available: http://doi.acm.org/10.1145/2723164

[279] M. Süßand C. Leopold, “Common Mistakes in OpenMP and How to Avoid
Them: A Collection of Best Practices,” in Proceedings of the 2005 and
2006 International Conference on OpenMP Shared Memory Parallel Programming,
ser. IWOMP’05/IWOMP’06. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 312–323. [Online]. Available: http://dl.acm.org/citation.cfm?id=1892830.
1892863

[280] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency in
software,” Dr. Dobb’s Journal, vol. 30, no. 3, pp. 202–210, 2005.

[281] Texas Instruments, “Keystone architecture hyperlink. user’s guide,” [Online]
Available www.ti.com/lit/sprugw8 (accessed 01/2018).

[282] Texas Instruments, “Keystone architecture multicore navigator. user’s
guide,” [Online] Available www.ti.com/lit/ug/sprugr9h/sprugr9h.pdf (ac-
cessed 01/2018).

[283] Texas Instruments, “Keystone Multicore Devices,” [Online] Available http://
processors.wiki.ti.com/index.php/Multicore (accessed 08/2017).

[284] Texas Instruments, “KeyStone SOM SBC,” [Online] Available http://processors.
wiki.ti.com/index.php/KeyStone_SOM_SBC (accessed 08/2017).

[285] Texas Instruments, “Multicore DSP+ARM KeyStone II System-on-Chip (SoC),”
[Online] Available http://www.ti.com/product/66AK2H12 (accessed 08/2017).

[286] Texas Instruments, “Software development kit for multicore DSP Keystone plat-
form,” http://www.ti.com/tool/bioslinuxmcsdk. Visited on Mar. 2017.

[287] Texas Instruments, “TDA2SX,” [Online] Available http://www.ti.com/
product/tda2sx (accessed 08/2017).

[288] Texas Instruments, “TDAx ADAS SoCs,” [Online] Available https://www.
ti.com/processors/automotive-processors/tdax-adas-socs/overview.html (ac-
cessed 08/2017).

[289] Texas Instruments, “TMS320C6678: Multicore Fixed and Floating-Point
Digital Signal Processor,” [Online] Available http://www.ti.com/product/
tms320c6678 (accessed 08/2017).

[290] L. Thiele, I. Bacivarov, W. Haid, and K. Huang, “Mapping applications to tiled
multiprocessor embedded systems,” in Seventh International Conference on Appli-
cation of Concurrency to System Design (ACSD 2007), July 2007, pp. 29–40.

http://doi.acm.org/10.1145/2723164
http://dl.acm.org/citation.cfm?id=1892830.1892863
http://dl.acm.org/citation.cfm?id=1892830.1892863
www.ti.com/lit/sprugw8
www.ti.com/lit/ug/sprugr9h/sprugr9h.pdf
http://processors.wiki.ti.com/index.php/Multicore
http://processors.wiki.ti.com/index.php/Multicore
http://processors.wiki.ti.com/index.php/KeyStone_SOM_SBC
http://processors.wiki.ti.com/index.php/KeyStone_SOM_SBC
http://www.ti.com/product/66AK2H12
http://www.ti.com/product/tda2sx
http://www.ti.com/product/tda2sx
https://www.ti.com/processors/automotive-processors/tdax-adas-socs/overview.html
https://www.ti.com/processors/automotive-processors/tdax-adas-socs/overview.html
http://www.ti.com/product/tms320c6678
http://www.ti.com/product/tms320c6678

BIBLIOGRAPHY 179

[291] W. Thies, V. Chandrasekhar, and S. Amarasinghe, “A Practical Approach to
Exploiting Coarse-Grained Pipeline Parallelism in C Programs,” in Proceedings
of the 40th Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO 40. Washington, DC, USA: IEEE Computer Society, 2007, pp. 356–369.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2007.7

[292] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A language for
streaming applications,” in Proceedings of the 11th International Conference on
Compiler Construction, ser. CC ’02. London, UK, UK: Springer-Verlag, 2002, pp.
179–196. [Online]. Available: http://dl.acm.org/citation.cfm?id=647478.727935

[293] Tobias Grosser, “Polly: LLVM Framework for High-Level Loop and Data-
Locality Optimizations,” [Online] Available https://polly.llvm.org/ (accessed
08/2017).

[294] G. Tournavitis, “Profile-driven parallelization of sequential programs,” Ph.D.
dissertation, University of Edinburgh, 2011.

[295] G. Tournavitis and B. Franke, “Semi-automatic extraction and exploitation of
hierarchical pipeline parallelism using profiling information,” in Proceedings
of the 19th International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’10. New York, NY, USA: ACM, 2010, pp. 377–388.
[Online]. Available: http://doi.acm.org/10.1145/1854273.1854321

[296] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle, “Towards a
holistic approach to auto-parallelization: Integrating profile-driven parallelism
detection and machine-learning based mapping,” SIGPLAN Not., vol. 44,
no. 6, pp. 177–187, Jun. 2009. [Online]. Available: http://doi.acm.org/10.1145/
1543135.1542496

[297] P. Tröger, “The multi-core era - trends and challenges,” CoRR, vol.
abs/0810.5439, 2008.

[298] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I.
August, “Speculative decoupled software pipelining,” in Proceedings of the 16th
International Conference on Parallel Architecture and Compilation Techniques, ser.
PACT ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 49–59.
[Online]. Available: https://doi.org/10.1109/PACT.2007.66

[299] H. Vandierendonck, S. Rul, and K. D. Bosschere, “The paralax infrastructure:
Automatic parallelization with a helping hand,” in 2010 19th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT), Sept 2010, pp.
389–399.

[300] R. Vargas, E. Quinones, and A. Marongiu, “OpenMP and timing predictability:
A possible union?” in Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition, ser. DATE ’15. San Jose, CA, USA: EDA Consortium,
2015, pp. 617–620.

http://dx.doi.org/10.1109/MICRO.2007.7
http://dl.acm.org/citation.cfm?id=647478.727935
https://polly.llvm.org/
http://doi.acm.org/10.1145/1854273.1854321
http://doi.acm.org/10.1145/1543135.1542496
http://doi.acm.org/10.1145/1543135.1542496
https://doi.org/10.1109/PACT.2007.66

180 BIBLIOGRAPHY

[301] Vector Fabrics, “New Pareon tool from Vector Fabrics smooths multicore
software optimization.” [Online]. Available: http://www.eejournal.com/
industry_news/20120601-05/

[302] Vector Fabrics, “vfTasks parallelization library .” [Online]. Available: https://
sourceforge.net/projects/vftasks/

[303] V. Venkatachalam and M. Franz, “Power reduction techniques for micropro-
cessor systems,” ACM Comput. Surv., vol. 37, no. 3, pp. 195–237, Sep. 2005.
[Online]. Available: http://doi.acm.org/10.1145/1108956.1108957

[304] S. Verdoolaege, isl: An Integer Set Library for the Polyhedral Model. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 299–302. [Online]. Available:
https://doi.org/10.1007/978-3-642-15582-6_49

[305] S. Verdoolaege, Polyhedral Process Networks. Boston, MA: Springer US, 2010,
pp. 931–965. [Online]. Available: https://doi.org/10.1007/978-1-4419-6345-1_
33

[306] S. Verdoolaege, H. Nikolov, and T. Stefanov, “Pn: A tool for improved
derivation of process networks,” EURASIP J. Embedded Syst., vol. 2007, no. 1,
pp. 19–19, Jan. 2007. [Online]. Available: http://dx.doi.org/10.1155/2007/
75947

[307] N. Vlatko, “The dangers of spaghetti code,” [Online] Available https://jaxenter.
com/the-dangers-of-spaghetti-code-117807.html (accessed 08/2017).

[308] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringarpure,
“On the Limits of GPU Acceleration,” in Proceedings of the 2Nd USENIX Confer-
ence on Hot Topics in Parallelism, ser. HotPar’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 13–13.

[309] Z. Wang, D. Grewe, and M. F. P. O’boyle, “Automatic and Portable Mapping
of Data Parallel Programs to OpenCL for GPU-Based Heterogeneous Systems,”
ACM Trans. Archit. Code Optim., vol. 11, no. 4, pp. 42:1–42:26, Dec. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2677036

[310] Z. Wang, D. Powell, B. Franke, and M. O’Boyle, Exploitation of GPUs for the
Parallelisation of Probably Parallel Legacy Code. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 154–173. [Online]. Available: https://doi.org/10.
1007/978-3-642-54807-9_9

[311] Wayne Wolf, “Memory-oriented optimization techniques for dealing with per-
formance bottlenecks: Part 1,” [Online] Available https://www.embedded.
com/print/4413343 (accessed 03/2018).

[312] Wikipedia, “Exynos,” [Online] Available https://en.wikipedia.org/wiki/
Exynos (Accessed 7/2017).

http://www.eejournal.com/industry_news/20120601-05/
http://www.eejournal.com/industry_news/20120601-05/
https://sourceforge.net/projects/vftasks/
https://sourceforge.net/projects/vftasks/
http://doi.acm.org/10.1145/1108956.1108957
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-1-4419-6345-1_33
https://doi.org/10.1007/978-1-4419-6345-1_33
http://dx.doi.org/10.1155/2007/75947
http://dx.doi.org/10.1155/2007/75947
https://jaxenter.com/the-dangers-of-spaghetti-code-117807.html
https://jaxenter.com/the-dangers-of-spaghetti-code-117807.html
http://doi.acm.org/10.1145/2677036
https://doi.org/10.1007/978-3-642-54807-9_9
https://doi.org/10.1007/978-3-642-54807-9_9
https://www.embedded.com/print/4413343
https://www.embedded.com/print/4413343
https://en.wikipedia.org/wiki/Exynos
https://en.wikipedia.org/wiki/Exynos

BIBLIOGRAPHY 181

[313] Wikipedia, “List of qualcomm snapdragon systems-on-chip,” [Online] Avail-
able https://en.wikipedia.org/wiki/List_of_Qualcomm_Snapdragon_systems-
on-chip (Accessed 7/2017).

[314] Wikipedia, “Omap,” [Online] Available https://en.wikipedia.org/wiki/OMAP
(Accessed 7/2017).

[315] Wikipedia, “Tegra,” [Online] Available https://en.wikipedia.org/wiki/Tegra
(Accessed 7/2017).

[316] D. Wilde, V. Loechner, and T. Risset, “Polylib - A library of polyhedral func-
tions,” [Online] Available http://www.irisa.fr/polylib/ (accessed 08/2017).

[317] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful visual
performance model for multicore architectures,” Commun. ACM, vol. 52, no. 4,
pp. 65–76, Apr. 2009. [Online]. Available: http://doi.acm.org/10.1145/1498765.
1498785

[318] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson,
S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L.
Hennessy, “Suif: An infrastructure for research on parallelizing and optimiz-
ing compilers,” SIGPLAN Not., vol. 29, no. 12, pp. 31–37, Dec. 1994.

[319] M. Wolfe and U. Banerjee, “Data dependence and its application to parallel
processing,” International Journal of Parallel Programming, vol. 16, no. 2, pp.
137–178, Apr 1987. [Online]. Available: https://doi.org/10.1007/BF01379099

[320] M. Wrinn, “Top 10 Challenges in Parallel Computing,” [Online] Avail-
able http://www.drdobbs.com/top-10-challenges-in-parallel-computing/
212700369 (accessed 08/2017).

[321] Xilinx, “ZYNQ MPSoC Family,” [Online] Available https://www.xilinx.com/
products/silicon-devices/soc.html (accessed 08/2017).

[322] M. Zahran, “Heterogeneous computing: Here to stay. hardware and software
perspectives,” Queue, vol. 14, no. 6, pp. 40:31–40:42, Dec. 2016. [Online].
Available: http://doi.acm.org/10.1145/3028687.3038873

[323] X. Zhang, A. Navabi, and S. Jagannathan, “Alchemist: A transparent de-
pendence distance profiling infrastructure,” in Proceedings of the 7th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, ser. CGO
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 47–58.

[324] S. Zhao, Y. Bian, and S. Zhang, “A review on refactoring sequential program to
parallel code in multicore era,” in Proceedings of 2015 International Conference on
Intelligent Computing and Internet of Things, Jan 2015, pp. 151–154.

https://en.wikipedia.org/wiki/List_of_Qualcomm_Snapdragon_systems-on-chip
https://en.wikipedia.org/wiki/List_of_Qualcomm_Snapdragon_systems-on-chip
https://en.wikipedia.org/wiki/OMAP
https://en.wikipedia.org/wiki/Tegra
http://www.irisa.fr/polylib/
http://doi.acm.org/10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785
https://doi.org/10.1007/BF01379099
http://www.drdobbs.com/top-10-challenges-in-parallel-computing/212700369
http://www.drdobbs.com/top-10-challenges-in-parallel-computing/212700369
https://www.xilinx.com/products/silicon-devices/soc.html
https://www.xilinx.com/products/silicon-devices/soc.html
http://doi.acm.org/10.1145/3028687.3038873

	Title
	Acknowledgements
	Contents
	Introduction
	The Challenge: Entering a Heterogeneous Parallel Universe
	From the Single-Core to the Multi-Core & Heterogeneous Eras
	Current Programming Practice: Legacy Sequential Code

	The Solution: Tools for Software Parallelization and Distribution
	Overview of the Proposed Tool Flow
	Contributions
	Synopsis and Outline

	Related Work
	Software Parallelization
	Profile-Driven Parallelization
	Pattern-Driven Parallelization

	Software Distribution
	Synopsis

	Program Model
	Notation
	Platform Model
	Hybrid Program Analysis
	Intermediate Representation
	Preliminaries
	Augmented Dependence Flow Graph (ADFG)
	Augmented Program Structure Tree (APST)
	Loop Analysis
	ADFG and APST Construction

	Multi-Grained Performance Estimation
	The Granularity Challenge
	Performance Estimation Functions
	Performance Estimation Approach
	Evaluation

	Dynamic Call Graph (DCG)
	Program Model Definition
	Synopsis and Outlook

	Software Parallelization: Extraction of Parallel Patterns
	Preliminaries
	Partitioning
	Parallel Annotation

	Data Level Parallelism (DLP)
	DLP Pattern Overview
	DLP Extraction Approach

	Pipeline Level Parallelism (PLP)
	PLP Pattern Overview
	PLP Extraction Approach

	Task Level Parallelism (TLP)
	TLP Pattern Overview
	TLP Extraction Approach

	Recursion Level Parallelism (RLP)
	RLP Pattern Overview
	RLP Extraction Approach

	Synopsis and Outlook

	Software Distribution: Accelerator Offloading
	Preliminaries
	Accelerator Offloading
	Motivating Examples
	Offloading Annotation

	Performance Estimation Based Offloading Analysis
	SESE Region-Based Performance Comparison
	Offloading Approach

	Roofline Model Based Offloading Analysis
	Roofline Model Overview
	Offloading Approach

	Synopsis and Outlook

	Code Generation
	Implementation Strategy Patterns
	Source Level Parallelization and Offloading Hints
	OpenMP
	Paradigm Overview
	Pragma Generation
	Schedule-Aware Loop Parallelization

	OpenCL
	Paradigm Overview
	Code Generation

	CUDA
	Paradigm Overview
	Code Generation

	CPN
	Paradigm Overview
	Code Generation

	Synopsis and Outlook

	Case Studies
	Overview of the Benchmarks
	High Performance Mobile GPUs: Jetson TX1
	Platform Overview
	OpenMP Evaluation
	CUDA Evaluation

	Multi-core DSP Platforms: TI Keystone II
	Platform Overview
	OpenMP Evaluation
	CPN Evaluation

	Android Devices: Nexus 7 Tablet
	Tool Flow Adaptations for Android Devices
	Platform Overview
	OpenMP Evaluation
	OpenCL Evaluation
	CPN Evaluation

	Synopsis

	Conclusion
	Summary
	Conclusions
	Outlook

	Appendix
	Benchmarks
	Glossary
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

