
Deterministic Reactive Programming for
Cyber-physical Systems

Dissertation
zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt an der
Technischen Universität Dresden,

Fakultät Informatik,

eingereicht von

Christian Menard

Gutachter:

Prof. Jeronimo Castrillon
Technische Universität Dresden

Prof. Stephen Edwards
Columbia University

Tag der Verteidigung:
25.04.2024

Deterministic Reactive Programming for
Cyber-physical Systems

Christian Menard

January 5, 2024

Colophon
This document was typeset with the help of KOMA-Script and LATEX using the kaobook class. The document was
processed by LuaTEX, and the bibliography was processed by BibLATEX and Biber. The open-source Libertinus
family of fonts is used for all text.

Copyright
©2024, Christian Menard

This work is licensed under a Creative Commons “Attribution 4.0 International”
license.

https://sourceforge.net/projects/koma-script/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/
https://www.luatex.org/
https://ctan.org/pkg/biblatex
https://ctan.org/pkg/biber
https://github.com/alerque/libertinus
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

To my grandfather,
who always encouraged my curiosity.

Abstract

Today, cyber-physical systems (CPSs) are ubiquitous. Whether it is robotics, “Let’s think the unthinkable, let’s do the un-
doable. Let us prepare to grapple with the
ineffable itself, and see if we may not eff it
after all.”

— Douglas Adams

electric vehicles, the smart home, autonomous driving, or smart prosthetics,
CPSs shape our day-to-day lives. Yet, designing and programming CPSs be-
comes evermore challenging as the overall complexity of systems increases.
CPSs need to interface (potentially distributed) computation with concurrent
processes in the physical world while fulfilling strict safety requirements.
Modern and popular frameworks for designing CPS applications, such as
ROS and AUTOSAR, address the complexity challenges by emphasizing
scalability and reactivity. This, however, comes at the cost of compromising
determinism and the time predictability of applications, which ultimately
compromises safety. This thesis argues that this compromise is not a ne-
cessity and demonstrates that scalability can be achieved while ensuring a
predictable execution.

At the core of this thesis is the novel reactor model of computation (MoC) that
promises to provide timed semantics, reactivity, scalability, and determinism.
A comprehensive study of related models indicates that there is indeed no
other MoC that provides similar properties. The main contribution of this
thesis is the introduction of a complete set of tools that make the reactor
model accessible for CPS design and a demonstration of their ability to
facilitate the development of scalable deterministic software.

After introducing the reactor model, we discuss its key principles and utility
through an adaptation of reactors in the Discrete Events for AUTOSAR
(DEAR) framework. This framework integrates reactors with a popular run-
time for adaptive automotive applications developed by AUTOSAR. An
existing AUTOSAR demonstrator application serves as a case study that
exposes the problem of nondeterminism in modern CPS frameworks. We
show that the reactor model and its implementation in the DEAR framework
are applicable for achieving determinism in industrial use cases.

Building on the reactor model, we introduce the polyglot coordination lan-
guage Lingua Franca (LF), which enables the definition of reactor programs
independent of a concrete target programming language. Based on the DEAR
framework, we develop a full-fledged C++ reactor runtime and a code gen-
eration backend for LF. Various use cases studied throughout the thesis
illustrate the general applicability of reactors and LF to CPS design, and a
comprehensive performance evaluation using an optimized version of the
C++ reactor runtime demonstrates the scalability of LF programs. We also
discuss some limitations of the current scheduling mechanisms and show
how they can be overcome by partitioning programs.

Finally, we consider design space exploration (DSE) techniques to further
improve the scalability of LF programs and manage hardware complexity by
automating the process of allocating hardware resources to specific compo-
nents in the program. This thesis contributes the Mocasin framework, which
resembles a modular platform for prototyping and researching DSE flows.
While a concrete integration with LF remains for future work, Mocasin
provides a foundation for exploring DSE in Lingua Franca.

Acknowledgements

First and foremost, I owe my gratitude to my advisor, Jeronimo Castrillon. “We need to understand that if we all work
on inclusion together, it’s going to be faster,
broader, better, and more thorough than any-
thing we can do on our own.”

— Ellen Pao

Shortly after he became a professor at TU Dresden and finally filled the
vacant Chair of Compiler Construction with life again, he took me on as
a student to work on my diploma thesis. From these first days on, he has
given me complete freedom and trust while pushing me to set and pursue
higher goals. Over the years, this environment has transformed me into an
independent, confident researcher who is ready to tackle new challenges on
the path ahead. I would not be writing this thesis if not for him.

I also owe my gratitude to Andrés Goens in a similar capacity. He was my
advisor while I was working on my diploma thesis and has continued to be
both a mentor and friend since then. It was Andrés who brought the reactor
model to my attention and introduced me to Marten Lohstroh and Edward
A. Lee. Likely unbeknownst to the both of us, this planted the seed for a
fruitful collaboration and for the core contributions of this thesis.

I also would like to thank all my current and former coworkers at the Chair
for Compiler Construction. This includes Justus Adam, Hasna Bouraoui,
Alexander Brauckmann, Sebastian Ertel, Andrés Goens, Fazal Hameed, Ger-
ald Hempel, Hamid Farzaneh, Clément Fournier, Karl Friebel, Sven Karol, Asif
Khan, Robert Khasanov, Nesrine Khouzami, Steffen Köhler, Galina Kozyreva,
João Paulo Cardoso de Lima, Norman Rink, Julian Robledo, Lars Schütze, and
Felix Suchert. Each and every one of you has made the office a lively and
diverse space that I will miss dearly. A special thanks goes to Conny Okuma
who tirelessly supports the team and always keeps on top of all our small
and big requests.

I am also grateful to all the students that I had the pleasure to work with.This
includes Maiko Brants, Hugo Forrat, Clément Fournier, Johannes Hayeß,
Hannes Klein, Anton Landgraf, Lucian McIntyre, Marcus Rossel, Robert
Scheffel, Christoph Schröter, Franziska Schwenke, Tassilo Tanneberger, and
Felix Teweleitt. Not only did you help me realize small and big side projects,
but you have also been a constant source of inspiration. I have learned
a lot from guiding you, and it has been a pleasure to see you grow and
develop. I am glad to see that many of you became successful engineers and
researchers; some of you even became coworkers. Finally, I would like to
thank specially Clément Fournier, Marcus Rossel, and Tassilo Tanneberger
for their exceptional contributions. Keep up the brilliant work!

The last years of my PhD have been strongly influenced by the Lingua
Franca community. In particular, the collaboration with Marten Lohstroh
and EdwardA. Lee at UCBerkeley had a strong impact, both on this thesis and
on me personally. It is not an overstatement to say that this collaboration has
been life-changing. I am truly grateful for meeting both of you and for being
able to continue working with you beyond my PhD. You have welcomed me
warmly, openly shared your ideas, invited me to contribute my own ideas,
and treated me as an equal right from the beginning, despite my greenness. I
appreciate your trust in me, and I am very much looking forward to finding
out what else we will achieve together.

I would also like to thank everyone else in the Lingua Franca community
for their contributions to the project, for their eager spirits and ideas, for
the many fruitful discussions we had, and for the friendly and inspirational
environment that they create. In particular, I would like to mention Soroush
Bateni, Sören Domrös, Peter Donovan, Reinhard von Hanxleden, Hokeun

Kim Shaokai Lin, and Alexander-Schulz Rosengarten, but there are many
more who have impacted me and this thesis in one way or another. I appre-
ciate all of you.

I also want to thank all of my other coauthors that I have not mentioned
personally so far. There are too many to list them all. However, I would like
to specially mention Matthias Jung, who openly shared his earlier work with
me when we realized that we were working towards the same goal from
two different directions, and who suggested work on a joint paper. Also, I
want to specially thank Jason-Lowe Power for all of his efforts in the gem5
project and for inviting me to contribute to the new gem5 paper.

The work conducted in this thesis would not have been possible without
funding. In particular, this thesis was supported by the center for advancing
electronics Dresden (cfaed), by the German Research Foundation (DFG), and
the German Federal Ministry of Education and Research (BF). I would like
to specially thank the Software Campus for accepting my application, for
supporting me with outstanding workshops, and for providing me with
funding for my own projects.

Source: xkcd, licensed under CC BY-NC 2.5

I would also like to use this opportunity to express my appreciation and
gratitude to the entire open-source community. Contributions to open-source
projects ensure that our digital infrastructure keeps running and are a key
enabler for the research conducted in this thesis, but more importantly, for
all the brilliant research conducted across all disciplines of science. Whether
you have a prominent name like Linus Torvalds or you are the random
person in Nebraska maintaining an unknown project, thank you! I hope you
accept the research artifacts that I created while working on this thesis as
my humble contribution to the overall effort.

Further, I would like to thank all the people who dedicate their lives to music.
While I never understood how to play an instrument myself, music plays
an important role in my life. Listening to great music and visiting concerts
presents an opportunity for breaking out of the day-to-day work and is a
source of energy and inspiration for me. I would like to specially thank the
creator of the “5 Hours of Relaxing Psychedelic Space Rock” playlists and
all the amazing musicians whose music is featured in them. Besides maté, it
was these playlists that kept me going while writing this thesis.

Finally, but most importantly, I want to thank my friends and family. Many
of my friends have accompanied and supported me for more than a decade
(some even for two). Your friendship is invaluable to me. I thank you for
giving me a family right when I needed one, for accepting me for who I
was, and for helping me become who I am today. I have learned a lot from
you, and I appreciate all the time that we spend together. I am also grateful
for my brother, whom I am delighted to have in my life. Above all, I thank
my partner, Nicole. Thank you for believing in me, for supporting me, for
challenging me to grow, for giving me the freedom to pursue my goals, and
for reminding me of all the other beautiful aspects of life. Lastly, I am grateful
for Nicole’s family, who has openly and warmly welcomed and supported
me as one of their own.

https://xkcd.com/2347
https://creativecommons.org/licenses/by-nc/2.5/

Publications

Several ideas, figures and arguments that are presented in this thesis have “Science knows no country, because knowl-
edge belongs to humanity, and is the torch
which illuminates the world. Science is the
highest personification of the nation because
that nation will remain the first which car-
ries the furthest the works of thought and
intelligence.”

— Louis Pasteur

been published in prior work. The following lists all the publications that I
have co-authored and that are cited in this thesis in reverse chronological
order:

▶ Marten Lohstroh, Soroush Bateni, ChristianMenard, Alexander Schulz-
Rosengarten, Jeronimo Castrillon, and Edward A. Lee (2023). Deter-
ministic Coordination Across Multiple Timelines. In: ACM Transactions
on Embedded Computing Systems. issn: 1539-9087

▶ Edward A. Lee, Ravi Akella, Soroush Bateni, Shaokai Lin, Marten
Lohstroh, and Christian Menard (2023). Consistency Vs. Availability in
Distributed Cyber-Physical Systems. In: ACM Transactions on Embedded
Computing Systems 22.5s. issn: 1539-9087

▶ Soroush Bateni, Marten Lohstroh, Hou Seng Wong, Hokeun Kim,
Shaokai Lin, Christian Menard, and Edward A. Lee (Sept. 2023). Risk
and Mitigation of Nondeterminism in Distributed Cyber-Physical Sys-
tems. In: 21st ACM-IEEE International Symposium on Formal Methods
and Models for System Design (MEMOCODE), pp. 1–11

▶ Christian Menard, Marten Lohstroh, Soroush Bateni, Matthew Chor-
lian, Arthur Deng, Peter Donovan, Clément Fournier, Shaokai Lin,
Felix Suchert, Tassilo Tanneberger, Hokeun Kim, Jeronimo Castrillon,
and Edward A. Lee (2023).High-Performance Deterministic Concurrency
Using Lingua Franca. In: ACM Transactions on Architecture and Code
Optimization. Just Accepted. issn: 1544-3566

▶ JeronimoCastrillon, Karol Desnos, Andrés Goens, andChristianMenard
(Jan. 2023). Dataflow Models of Computation for Programming Hetero-
geneous Multicores. In: Handbook of Computer Architecture. Ed. by
Anupam Chattopadhyay et al. Singapore: Springer Nature Singapore.
isbn: 978-981-15-6401-7

▶ Edward A. Lee, Soroush Bateni, Shaokai Lin, Marten Lohstroh, and
Christian Menard (2023). Trading Off Consistency and Availability in
Tiered Heterogeneous Distributed Systems. In: Intelligent Computing 2

▶ Reinhard von Hanxleden, Edward A. Lee, Hauke Fuhrmann, Alexan-
der Schulz-Rosengarten, Sören Domrös, Marten Lohstroh, Soroush
Bateni, and Christian Menard (2022). Pragmatics Twelve Years Later: A
Report on Lingua Franca. In: Leveraging Applications of Formal Meth-
ods, Verification and Validation. Software Engineering. Springer Nature
Switzerland, pp. 60–89

▶ Robert Khasanov, Julian Robledo, Christian Menard, Andrés Goens,
and Jeronimo Castrillon (Sept. 2021). Domain-Specific Hybrid Mapping
for Energy-Efficient Baseband Processing in Wireless Networks. In: ACM
Transactions on Embedded Computing Systems (TECS). Special issue of
the International Conference on Compilers, Architecture, and Synthesis
of Embedded Systems (CASES) 20.5s. issn: 1539-9087

▶ Marten Lohstroh, Christian Menard, Soroush Bateni, and Edward
A. Lee (2021). Toward a Lingua Franca for Deterministic Concurrent
Systems. In: ACM Transactions on Embedded Computing Systems 20.4,
pp. 1–27

▶ Christian Menard, Andrés Goens, Gerald Hempel, Robert Khasanov,
Julian Robledo, Felix Teweleitt, and Jeronimo Castrillon (Jan. 2021).
Mocasin—Rapid Prototyping of Rapid Prototyping Tools: A Framework for
Exploring New Approaches in Mapping Software to Heterogeneous Multi-
cores. In: Proceedings of the 2021 Drone Systems Engineering and Rapid

http://dx.doi.org/10.1145/3615357
http://dx.doi.org/10.1145/3615357
http://dx.doi.org/10.1145/3609119
http://dx.doi.org/10.1145/3609119
http://dx.doi.org/10.1145/3610579.3613219
http://dx.doi.org/10.1145/3610579.3613219
http://dx.doi.org/10.1145/3610579.3613219
http://dx.doi.org/10.1145/3617687
http://dx.doi.org/10.1145/3617687
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
http://dx.doi.org/10.34133/icomputing.0013
http://dx.doi.org/10.34133/icomputing.0013
http://dx.doi.org/10.1007/978-3-031-19756-7_5
http://dx.doi.org/10.1007/978-3-031-19756-7_5
http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.1145/3448128
http://dx.doi.org/10.1145/3448128
http://dx.doi.org/10.1145/3444950.3447285
http://dx.doi.org/10.1145/3444950.3447285
http://dx.doi.org/10.1145/3444950.3447285

Simulation and Performance Evaluation: Methods and Tools, co-located
with 16th International Conference on High-Performance and Embedded
Architectures and Compilers (HiPEAC). DroneSE and RAPIDO ’21. Bu-
dapest, Hungary: Association for Computing Machinery, pp. 66–73.
isbn: 9781450389525

▶ Edward A. Lee, Soroush Bateni, Shaokai Lin, Marten Lohstroh, and
Christian Menard (2021). Quantifying and Generalizing the CAP Theo-
rem

▶ Robert Wittig, Andrés Goens, Christian Menard, Emil Matus, Gerhard
P. Fettweis, and Jeronimo Castrillon (Oct. 2020). Modem Design in the
Era of 5G and Beyond:The Need for a Formal Approach. In: Proceedings of
the 27th International Conference on Telecommunications (ICT). Virtual.
Bali, Indonesia, pp. 1–5

▶ Marten Lohstroh, Christian Menard, Alexander Schulz-Rosengarten,
Matthew Weber, Jeronimo Castrillon, and Edward A. Lee (Sept. 2020).
A Language for Deterministic Coordination Across Multiple Timelines.
In: 2020 Forum for Specification and Design Languages (FDL). Kiel,
Germany, pp. 1–8

▶ Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad
Alian, Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils As-
mussen, Brad Beckmann, Srikant Bharadwaj, Gabe Black, Gedare
Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho, Jeronimo Castril-
lon, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst, Wendy
Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-Farahani,
Pouya Fotouhi, RyanGambord, Jayneel Gandhi, Dibakar Gope,Thomas
Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swap-
nil Haria, Austin Harris, Timothy Hayes, Adrian Herrera, Matthew
Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeya-
paul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza
Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli,
Christian Menard, Andrea Mondelli, Miquel Moreto, Tiago Mück,
Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena
E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec
Roelke, Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shin-
garov,MatthewD. Sinclair, Tuan Ta, RahulThakur, GiacomoTravaglini,
Michael Upton, Nilay Vaish, Ilias Vougioukas, William Wang, Zhen-
grong Wang, Norbert Wehn, Christian Weis, David A. Wood, Hongil
Yoon, and Éder F. Zulian (July 2020). The Gem5 Simulator: Version 20.0+.
In: arXiv preprint arXiv:2007.03152

▶ Christian Menard, Andrés Goens, Marten Lohstroh, and Jeronimo Cas-
trillon (Mar. 2020). Achieving Determinism in Adaptive AUTOSAR. In:
Proceedings of the 2020 Design, Automation and Test in Europe Con-
ference (DATE). DATE ’20. Grenoble, France: IEEE, pp. 822–827. isbn:
978-3-9819263-4-7

▶ Andrés Goens, Christian Menard, and Jeronimo Castrillon (Sept. 2018).
On the Representation of Mappings to Multicores. In: Proceedings of the
IEEE 12th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC-18). Vietnam National University, Hanoi,
Vietnam, pp. 184–191. isbn: 978-1-5386-6689-0

▶ Jeronimo Castrillon, Matthias Lieber, Sascha Klüppelholz, Marcus Völp,
Nils Asmussen, Uwe Assmann, Franz Baader, Christel Baier, Gerhard
Fettweis, Jochen Fröhlich, Andrés Goens, Sebastian Haas, Dirk Habich,
Hermann Härtig, Mattis Hasler, Immo Huismann, Tomas Karnagel,
Sven Karol, Akash Kumar, Wolfgang Lehner, Linda Leuschner, Siqi
Ling, Steffen Märcker, Christian Menard, Johannes Mey, Wolfgang
Nagel, Benedikt Nöthen, Rafael Peñaloza, Michael Raitza, Jörg Stiller,
Annett Ungethüm, Axel Voigt, and Sascha Wunderlich (July 2018). A

http://dx.doi.org/10.48550/ARXIV.2109.07771
http://dx.doi.org/10.48550/ARXIV.2109.07771
http://dx.doi.org/10.1109/ICT49546.2020.9239539
http://dx.doi.org/10.1109/ICT49546.2020.9239539
http://dx.doi.org/10.1109/FDL50818.2020.9232939
http://dx.doi.org/10.48550/arXiv.2007.03152
http://dx.doi.org/10.23919/DATE48585.2020.9116430
http://dx.doi.org/10.1109/MCSoC2018.2018.00039
http://dx.doi.org/10.1109/TMSCS.2017.2771750
http://dx.doi.org/10.1109/TMSCS.2017.2771750
http://dx.doi.org/10.1109/TMSCS.2017.2771750

Hardware/software Stack for Heterogeneous Systems. In: IEEE Transac-
tions on Multi-Scale Computing Systems 4.3, pp. 243–259. issn: 2332-
7766

▶ Christian Menard, Matthias Jung, Jeronimo Castrillon, and Norbert
Wehn (July 2017). System Simulation with gem5 and SystemC: The Key-
stone for Full Interoperability . In: Proceedings of the IEEE International
Conference on Embedded Computer Systems Architectures Modeling
and Simulation (SAMOS). IEEE. Pythagorion, Greece, pp. 62–69. isbn:
978-1-5386-3437-0

▶ Christian Menard, Andrés Goens, and Jeronimo Castrillon (Nov. 2016).
High-Level NoC Model for MPSoC Compilers. In: Proceedings of the
IEEE Nordic Circuits and Systems Conference (NORCAS’16). NORCAS.
Copenhagen, Denmark

The following publications are co-authored by me but not cited in this
thesis:

▶ Andrés Goens, Christian Menard, and Jeronimo Castrillon (July 2019).
On Compact Mappings for Multicore Systems. In: Proceedings of the IEEE
International Conference on Embedded Computer Systems Architectures
Modeling and Simulation (SAMOS). Ed. by D. Pnevmatikatos, M. Pelcat,
and M. Jung. Vol. 11733. IEEE. Pythagorion, Greece: Springer, Cham,
pp. 325–335. isbn: 978-3-030-27561-7

▶ Fazal Hameed, Christian Menard, and Jeronimo Castrillon (Oct. 2017).
Efficient STT-RAMLast-Level-CacheArchitecture to replace DRAMCache.
In: Proceedings of the International Symposium on Memory Systems
(MemSys’17). MEMSYS ’17. Alexandria, Virginia: ACM, pp. 141–151.
isbn: 978-1-4503-5335-9

http://dx.doi.org/10.1109/TMSCS.2017.2771750
http://dx.doi.org/10.1109/TMSCS.2017.2771750
http://dx.doi.org/10.1109/TMSCS.2017.2771750
http://dx.doi.org/10.1109/TMSCS.2017.2771750
http://dx.doi.org/10.1109/SAMOS.2017.8344612
http://dx.doi.org/10.1109/SAMOS.2017.8344612
http://dx.doi.org/10.1109/NORCHIP.2016.7792876
http://dx.doi.org/10.1007/978-3-030-27562-4_23
http://dx.doi.org/10.1145/3132402.3132414

Contents

Abstract vii

Acknowledgements viii

Publications x

Contents xiii

1 Introduction 1
1.1 Models of Computation . 2
1.2 Challenges and Requirements for CPS Design 3

1.2.1 Concurrency . 3
1.2.2 Safety, Reliability, Testability and Determinism . . 3
1.2.3 Reactivity and Adaptivity 4
1.2.4 Scalability . 5
1.2.5 Time . 6

1.3 This Thesis . 6
1.3.1 Outline . 7
1.3.2 Contributions . 8
1.3.3 A Note on Originality 8

2 Models of Computation for Cyber-physical Systems 10
2.1 Threads . 10
2.2 Task Models . 11

2.2.1 Periodic and Sporadic Real-time Task Models . . . 11
2.2.2 Graph-based Task Models 12
2.2.3 Parallel Task Models 12
2.2.4 Limitations . 13

2.3 The Actor Model . 14
2.3.1 Actor Languages and Frameworks 15
2.3.2 Limitations . 15
2.3.3 Related Models and Paradigms 18

2.4 Dataflow and Process Networks 19
2.4.1 Kahn Process Networks 19
2.4.2 Dataflow . 20
2.4.3 Implementations 22
2.4.4 Limitations . 22

2.5 Models of Time . 24
2.5.1 Physical Time . 25
2.5.2 Logical Time . 25
2.5.3 Representations of Time 26

2.6 Discrete Events . 27
2.6.1 Discrete Event Simulation 28
2.6.2 Limitations . 29

2.7 Synchronous Languages . 29
2.7.1 Languages and Tools 30
2.7.2 Limitations . 31
2.7.3 The Sparse Synchronous Model 32

2.8 Logical Execution Time . 32
2.9 CPS Frameworks and Standards 34

2.9.1 AUTOSAR . 34
2.9.2 ROS . 37

2.10 Discussion and Conclusion 38
2.10.1 Discussion . 38
2.10.2 Conclusion . 40

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 41
3.1 The Reactor Model . 41

3.1.1 Reactor Elements 41
3.1.2 Logical and Physical Time 42
3.1.3 Concurrency and Parallelism 43
3.1.4 Execution . 44

3.2 Example Reactor Programs 48
3.2.1 Bank Account . 48
3.2.2 Brake Assistant . 49

3.3 Integrating Reactors with Adaptive AUTOSAR 50
3.3.1 Transactors . 50
3.3.2 Distributed Execution 52
3.3.3 Implementation . 53

3.4 Case Study: The Adaptive Platform Demonstrator 54
3.4.1 Nondeterministic Emergency Brake Assistant . . . 55
3.4.2 Deterministic Emergency Brake Assistant using Re-

actors . 56
3.5 Conclusion . 58

4 Deterministic Coordination with Lingua Franca 59
4.1 Polyglot Coordination . 60
4.2 Syntax . 61
4.3 Code Examples . 64

4.3.1 Simple Bank Account Example 64
4.3.2 Bank Account Examples with Proxy Reactors . . . 66

4.4 Coordinating Logical and Physical Time 68
4.4.1 Timing Diagrams 68
4.4.2 Physical Time Barrier and Fast Execution 68
4.4.3 Lag and Deadlines 69
4.4.4 Logical Actions . 71
4.4.5 After Delays . 73
4.4.6 Physical Actions 74
4.4.7 Physical Connections 76
4.4.8 Reflex Game . 78

4.5 Federated Execution: Coordination Across Multiple Timelines 80
4.5.1 Aircraft Door Example 80
4.5.2 Centralized Coordination 81
4.5.3 Decentralized Coordination 82
4.5.4 Trading off Consistency and Availability 84

4.6 The Lingua Franca Toolchain 85
4.6.1 Compilation . 85
4.6.2 Code Generators and Runtime Implementations . . 86
4.6.3 Diagram Synthesis 87
4.6.4 IDE support . 88
4.6.5 Command Line Tools 88

4.7 C++ Runtime and Code Generator 88
4.7.1 C++ Runtime . 89
4.7.2 Ownership Types 91
4.7.3 Code Generator . 91

4.8 Conclusion . 92

5 Efficient Deterministic Concurrency 94
5.1 Scalable Connection Patterns in LF 94

5.1.1 Banks and Multiports 95

5.1.2 Connection Patterns 96
5.2 Optimized Reactor Scheduler 99

5.2.1 Sorting the APG 99
5.2.2 Coordinating Worker Threads 100
5.2.3 Lock-free Data Structures and Algorithms 101
5.2.4 Sparse Multiports 102

5.3 Performance Evaluation . 103
5.3.1 Methodology . 103
5.3.2 Benchmark Implementation in LF 105
5.3.3 Results and Discussion 108

5.4 Conclusion . 111

6 Partitioning Lingua Franca Programs 112
6.1 Problem Analysis . 112

6.1.1 Pipeline Parallelism 112
6.1.2 Variability in Parallel Reactions 113
6.1.3 Car Brake Example 115

6.2 Partitioning with Enclaves 116
6.3 Coordinating Enclaves . 117

6.3.1 Generalizing Logical Time Synchronization 117
6.3.2 Generalizing Program Inputs 118
6.3.3 Coordination . 120

6.4 Examples . 123
6.4.1 Pipeline Parallelism 123
6.4.2 Variability in Parallel Reactions 124
6.4.3 Car Brake Example 124

6.5 Enclave Patterns . 125
6.5.1 Hewitt actors . 125
6.5.2 LET Tasks in LF . 126
6.5.3 Input Reactors . 127

6.6 Limitations . 128
6.6.1 Cycles . 128
6.6.2 Cycles without Delays 132
6.6.3 Manual Partitioning 133

6.7 Conclusion . 133

7 Design Space Exploration with Mocasin 135
7.1 Design Space Exploration 136
7.2 Mocasin . 137

7.2.1 Overview . 138
7.2.2 Data Structures . 138
7.2.3 Platform Designer 142
7.2.4 Simulator . 143
7.2.5 Representations . 144
7.2.6 Mappers . 145
7.2.7 Configuration . 145

7.3 Case Study: Simulating a Hybrid Mapping Strategy for an
LTE Base Station . 146
7.3.1 Application Model 146
7.3.2 Toolflow . 147
7.3.3 Evaluating Mapping Strategies 149

7.4 Integrating Mocasin with Lingua Franca 150
7.4.1 Static Subsets . 150
7.4.2 Replaying Traces for equivalent KPNs 150
7.4.3 Implementing the Reactor MoC in Mocasin 151
7.4.4 Automatic Partitioning 151

7.5 Conclusion . 152

8 Related Work 153
8.1 Models of Computation . 153
8.2 Languages and Frameworks 153
8.3 Scalable Connection Patterns and Performance Optimization 155
8.4 Design Space Exploration 156

9 Conclusions 157
9.1 Summary . 157
9.2 Future Work . 158

9.2.1 Coordination of Enclaves and Federates 158
9.2.2 Design Space Exploration in LF 158
9.2.3 Mutations . 159
9.2.4 Hardware Synthesis 159
9.2.5 Integrating LF with Existing CPS Frameworks . . . 160
9.2.6 Reactor Libraries and Higher-level Reactors 160

List of Figures 161

List of Tables 164

List of Listings 165

Acronyms 167

Symbols 168

Index 169

Bibliography 171

Introduction 1
1.1 Models of Computation 2

1.2 Challenges and Requirements for
CPS Design 3

1.3 This Thesis 6

Today, cyber-physical systems (CPSs) are ubiquitous. Whether it is robotics,
electric vehicles, the smart home, autonomous driving, or smart prosthetics,
CPSs shape our day-to-day lives. Also, several major technology trends
have CPS at their core. CPS is nothing less than the enabler of the Fourth
Industrial Revolution.1

1: Jazdi 2014, Cyber Physical Systems in the
Context of Industry 4.0; Pivoto et al. 2021,
Cyber-Physical Systems Architectures for In-
dustrial Internet of Things Applications in
Industry 4.0: a Literature Review .

In the energy sector, CPSs are essential to support the
ongoing decarbonization, as it requires transforming the current centralized
power grids, with only a view of major power plants, into a decentralized
network. The envisioned smart grid is a CPS that intelligently and reliably
coordinates power consumption and production across all stakeholders.2

2: Yu and Xue 2016, Smart Grids: a Cyber-
Physical Systems Perspective; Mazumder
et al. 2021, A Review of Current Research
Trends in Power-Electronic Innovations in
Cyber-Physical Systems.

Finally, visions like the smart city rely on CPS technology and have the
potential to substantially change our societies.3

3: Cassandras 2016, Smart Cities as Cyber-
Physical Social Systems; Trencher 2019, To-
wards the Smart City 2.0: Empirical Evi-
dence of Using Smartness As a Tool for Tack-
ling Social Challenges; Puliafito et al. 2021,
Smart Cities of the Future as Cyber Physical
Systems: Challenges and Enabling Technolo-
gies.

There are many definitions for CPSs. CPSs are unique in that they combine
computation, the cyber, with the ability to sense and influence the envi-
ronment, the physical. E. A. Lee and Seshia provide a simple and intuitive
definition:

The term cyber-physical system (CPS) … refer[s] to the integra-
tion of computation with physical processes. In CPS, embedded
computers and networks monitor and control the physical pro-
cesses, usually with feedback loops where physical processes
affect computations and vice versa.4 4: E. A. Lee and Seshia 2016, Introduction

to Embedded Systems: A Cyber-Physical Sys-
tems Approach.We will adopt this rather traditional view of CPS in this thesis. In some do-

mains, for instance, in Industry 4.0, the term cyber-physical system often also
implies a networked system where multiple robots or entire manufacturing
lines are interconnected.

Precisely due to the combination of the cyber and the physical, the design
of CPSs remains challenging. E. A. Lee and Seshia note:

As an intellectual challenge, CPS is about the intersection, not
the union, of the physical and the cyber. It is not sufficient to sep-
arately understand the physical components and the computa-
tional components.Wemust instead understand their interaction.4

This is in contradiction to many of the abstractions that are commonly used
in computer science. In fact, entire domains in computer science rely on the
fact that we can abstract away the physical nature of computation. Rarely, a
computer scientist is concerned with the physical reality of electrons moving
through silicon when writing software. With virtualization, cloud computing,
and serverless computing,5 we also do not need to be concerned with where 5: Kounev et al. 2023, Serverless Comput-

ing: What It Is, and What It Is Not?the computation is performed physically.

In CPS, however, where and when we compute something matters. Designing
CPSs requires interfacing computation with the physical world, and thus we
need to expose properties of the physical world to the computation.Therefore,
there is a need to rethink the fundamental abstractions of computer science to
account for the requirements of CPSs. Most importantly, useful abstractions
for computation in CPS should include a notion of the passage of time.6 6: E. A. Lee 2009, Computing Needs Time.

This thesis investigates the novel reactor model,7 7: Lohstroh, Romeo, et al. 2019, Reactors:
A Deterministic Model for Composable Re-
active Systems; Lohstroh 2020, Reactors: A
Deterministic Model of Concurrent Compu-
tation for Reactive Systems.

which promises to bridge the
gap between the cyber and the physical. This includes a full implementation
of the reactor model, novel tooling that facilitates the creation of scalable
and efficient programs, and an evaluation thereof.

http://dx.doi.org/10.1109/AQTR.2014.6857843
http://dx.doi.org/10.1109/AQTR.2014.6857843
http://dx.doi.org/10.1016/j.jmsy.2020.11.017
http://dx.doi.org/10.1016/j.jmsy.2020.11.017
http://dx.doi.org/10.1016/j.jmsy.2020.11.017
http://dx.doi.org/10.1109/JPROC.2015.2503119
http://dx.doi.org/10.1109/JPROC.2015.2503119
http://dx.doi.org/10.1109/JESTPE.2021.3051876
http://dx.doi.org/10.1109/JESTPE.2021.3051876
http://dx.doi.org/10.1109/JESTPE.2021.3051876
http://dx.doi.org/10.1016/J.ENG.2016.02.012
http://dx.doi.org/10.1016/J.ENG.2016.02.012
http://dx.doi.org/10.1016/j.techfore.2018.07.033
http://dx.doi.org/10.1016/j.techfore.2018.07.033
http://dx.doi.org/10.1016/j.techfore.2018.07.033
http://dx.doi.org/10.1016/j.techfore.2018.07.033
http://dx.doi.org/10.3390/s21103349
http://dx.doi.org/10.3390/s21103349
http://dx.doi.org/10.3390/s21103349
http://books.google.com/books?vid=ISBN0262533812
http://books.google.com/books?vid=ISBN0262533812
http://books.google.com/books?vid=ISBN0262533812
http://dx.doi.org/10.1145/3587249
http://dx.doi.org/10.1145/3587249
http://dx.doi.org/10.1145/1506409.1506426
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083

1 Introduction 2

1.1 Models of Computation

“All models are wrong, but some are useful” is a famous aphorism that is at-
tributed to George Box.8 Amodel is a mathematical abstraction that captures 8: Box 1979, Robustness in the Strategy of

Scientific Model Building.the predictable characteristics of a system. Box’s aphorism acknowledges
that no model is perfect, as they are generally too simple to capture the
complexity of reality. Yet, some models are useful, as they predict some
aspects of the physical world with remarkable accuracy. Models provide a
tool that facilitates focusing on specific problems by reducing the scope to
a limited set of rules instead of considering reality in its full complexity. A
useful model allows us to focus on the right set of rules that are required for
accurately predicting properties that are relevant for a particular problem.

Edward A. Lee observes that to assess the usefulness of a model, we need
to distinguish between scientific models and engineering models.9 While a 9: E. A. Lee 2018, Plato and the Nerd—The

Creative Partnership of Humans and Tech-
nology .

scientific model is useful when it can accurately emulate a physical system,
an engineering model is useful when we can build physical systems that
emulate the model. In the CPS context, a scientific model could be, for
instance, a simulation of a moving robot. An engineering model, however,
provides a set of rules that allows engineers to develop an application that
controls the movement of the robot without a full understanding of how
this movement is realized physically.

Architecture

Applications

MoC

Figure 1.1: The hourglass model.

This view of engineering models translates seamlessly into the hourglass
model in platform-based design.10 In the hourglass model, a system is com-

10: Sangiovanni-Vincentelli 2002,Defining
Platform-Based Design; Beck 2019, On the
Hourglass Model.

posed of multiple layers. The centerpiece is a model that consists of a limited
set of assumptions and rules. Building on top of this model, engineers can
develop support layers and a rich variety of applications. On the lower layers,
engineers can independently develop a physical realization of the model
that is faithful to its assumptions and rules. Thus, the model facilitates a
separation of concerns. The engineers developing the architecture do not
need to know the specifics of the applications that might be built on top of
the stack, and the application engineers do not need to be concerned with
the specifics of the architecture layer. Alberto Sangiovanni-Vincentelli has
coined this “freedom from choice,” as application developers do not need to
worry about the details of a physical realization.11 11: E. A. Lee 2019, Freedom From Choice

and the Power of Models: In Honor of Alberto
Sangiovanni-Vincentelli.In computer science, a model of computation (MoC) describes some prop-

erties of a computation, like how, when, where, or what we compute. The
first MoCs are attributed to Alan Turing, who introduced his concept of a
“computing machine,”12,13 Alonzo Church, who proposed the 𝜆-calculus,14 12: Commonly called the Turing machine.

13: Turing 1937, On Computable Num-
bers, With an Application To the Entschei-
dungsproblem.

14: Church 1936, An Unsolvable Problem of
Elementary Number Theory.

and Stephen Kleene, who introduced the concept of recursive functions.15

15: Kleene 1936, General Recursive Func-
tions of Natural Numbers.

These first MoCs belong to the category of scientific models. They helped
find answers to the question “What is computable?”, but they are not very
helpful when engineering systems.

MoCs that fall into the category of engineering models, however, restrict
computation to a limited but useful set of rules.16 In the hourglass model,

16: The computer science community also
uses the term computing paradigm, which
is synonymous.

they provide an interface between the upper application layers and the
lower architecture layers that facilitate the computation. The rules of the
MoC control how an application is executed and also provide a framework
for reasoning about some properties of the application. In CPS design, we
can leverage well-chosen MoCs to bridge the gap between the cyber and
the physical. However, before we can consider MoCs that are useful in this
context, we need a better understanding of the requirements and fundamental
design challenges in CPS design.

http://dx.doi.org/10.1016/B978-0-12-438150-6.50018-2
http://dx.doi.org/10.1016/B978-0-12-438150-6.50018-2
https://mitpress.mit.edu/9780262536424/plato-and-the-nerd/
https://mitpress.mit.edu/9780262536424/plato-and-the-nerd/
https://mitpress.mit.edu/9780262536424/plato-and-the-nerd/
https://www.researchgate.net/publication/2472631_Platform-based_Design
https://www.researchgate.net/publication/2472631_Platform-based_Design
http://dx.doi.org/10.1145/3274770
http://dx.doi.org/10.1145/3274770
http://dx.doi.org/10.1145/3299902.3320432
http://dx.doi.org/10.1145/3299902.3320432
http://dx.doi.org/10.1145/3299902.3320432
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.2307/2268571
http://dx.doi.org/10.2307/2268571
http://dx.doi.org/10.1007/BF01565439
http://dx.doi.org/10.1007/BF01565439

1 Introduction 3

1.2 Challenges and Requirements for CPS
Design

Interfacing the cyber with the physical brings unique challenges for CPS
design. These challenges have been discussed thoroughly in the literature.17 17: Stankovic et al. 2005,Opportunities and

Obligations for Physical Computing Sys-
tems; Henzinger and Sifakis 2006, The Em-
bedded Systems Design Challenge; E. A. Lee
2008, Cyber Physical Systems: Design Chal-
lenges; Kopetz 2011, Real-Time Systems: De-
sign Principles for Distributed Embedded
Applications; Derler, E. A. Lee, and San-
giovanni Vincentelli 2012, Modeling Cyber-
Physical Systems; Seshia et al. 2017, De-
sign Automation of Cyber-Physical Systems:
Challenges, Advances, and Opportunities;
Marwedel 2021, Embedded System Design:
Embedded Systems Foundations of Cyber-
Physical Systems, and the Internet of Things.

This section provides an overview of the main challenges that are relevant
in the context of this thesis.

1.2.1 Concurrency

CPSs are inherently concurrent. Processes performing computation overlap
in time with physical processes in the environment. Thus, a MoC for CPS
design requires at least a mechanism for concurrent composition of the
computation with physical processes.18 However, concurrency is useful

18: E. A. Lee 2008, Cyber Physical Systems:
Design Challenges.

beyond modeling interactions with the physical world. Most often, CPS
applications are naturally structured concurrently. Commonly, there are
multiple computation processes that are concerned with different aspects of
the system and that may execute, to some extent, independently.

Also, CPSs are becoming increasingly distributed. In a distributed system,
computation is not performed on a single computer, but multiple compu-
tations execute concurrently on a set of networked computers, which co-
ordinate the execution by exchanging network messages. A modern car,
for instance, has between 30 and 150 electronic control units (ECUs). In a
recent report, Volvo disclosed that their cars have more than 120 ECUs that
are connected via more than 7,000 signals.19 A useful MoC in this context 19: Antinyan 2020, Revealing the Complex-

ity of Automotive Software.should allow for expressing concurrent computation across a multitude
of networked nodes, but it should also allow for structuring the program
vertically and horizontally in a plausible way and to isolate independent
components, allowing programmers and engineers to focus on subsets of
the program that are only relevant in a specific context.

1.2.2 Safety, Reliability, Testability and Determinism

Since CPSs directly interface with the physical environment, the actions they
take may have an immediate impact on the environment. Depending on the
physical capabilities of the system, this impact may include injuries affecting
the health of humans and animals or damage to property and environmental
structures. A safe system does not expose its surroundings to the risk of
harm. A major factor in assessing the overall safety of a system is functional
safety, which requires that the system operates correctly in response to its
inputs and reacts predictably in the event of failure.

While a safe system is free of accidents, a reliable system accomplishes
the specified tasks and is free of failures.20 A CPS may fail not only due 20: Mulazzani 1985, Reliability Versus

Safety.to a physical component breaking but also due to problematic behavior in
the software. Both achieving functional safety and high reliability require
thorough testing of the involved software components. This is asserting
that, given a certain set of inputs, the entire system or a specific component
responds within the bounds of the specification.

Determinism is a desirable property for designing CPS, in particular, when
assessing safety and reliability properties. Determinism, however, is a subtle
concept.21 According to E. A. Lee, “determinism is a property of models, not
of physical systems.” This property is defined as follows:

http://dx.doi.org/10.1109/MC.2005.386
http://dx.doi.org/10.1109/MC.2005.386
http://dx.doi.org/10.1109/MC.2005.386
http://dx.doi.org/10.1007/11813040
http://dx.doi.org/10.1007/11813040
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1109/JPROC.2011.2160929
http://dx.doi.org/10.1109/JPROC.2011.2160929
http://dx.doi.org/10.1109/TCAD.2016.2633961
http://dx.doi.org/10.1109/TCAD.2016.2633961
http://dx.doi.org/10.1109/TCAD.2016.2633961
http://dx.doi.org/10.1007/978-3-030-60910-8
http://dx.doi.org/10.1007/978-3-030-60910-8
http://dx.doi.org/10.1007/978-3-030-60910-8
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1145/3368089.3417038
http://dx.doi.org/10.1145/3368089.3417038
http://dx.doi.org/10.1016/S1474-6670(17)60097-1
http://dx.doi.org/10.1016/S1474-6670(17)60097-1

1 Introduction 4

A model is deterministic if given all the inputs that are provided
to the model, the model defines exactly one possible behavior.21 21: E. A. Lee 2021, Determinism.

In order to assess whether a given model is deterministic or not, we also
need to define input and behavior. For the scope of this thesis, we will define
inputs as timestamped messages that may originate from user interactions,
from a sensor that perceives the environment or from other systems sending
messages over a network. We define behavior as the observable sequence of
actions performed by a component in response to its input.

This thesis argues that the safety and reliability requirements of modern
complex CPSs can only be achieved if we, at least partially, rely on determin-
istic models. Since deterministic models define a unique behavior for any set
of inputs, this behavior is repeatable and testable. If the component under
test behaves deterministically, we can be assured that the tested behavior is
identical to the behavior of the component in deployment when posed with
the same inputs. Since a deterministic model uniquely defines the correct
behavior, we can also detect deviations from this correct behavior and treat
them as faults. Commonly, such a fault implies that an assumption made by
the physical realization of the behavior was violated.

When using nondeterministic models, however, the number of possible
behaviors may grow exponentially as we add components and increase the
system complexity. Typically, it is infeasible to reason about all possible
behaviors and assess their correctness. However, nondeterministic models
are useful in certain cases. For instance, modeling physical processes often
requires nondeterministic models. Moreover, for some problems, there is no
single correct behavior and a range of behaviors would be acceptable. In such
cases, enforcing determinism by reducing the set of acceptable behaviors to a
single correct behavior might come at a high cost (e.g., increased latency).

In this thesis, we require that a useful model for CPS design be deterministic.
This ensures repeatability of behavior and improves testability, which in turn
improves safety and reliability. For some problems, however, it might be
useful if the model also allows for deliberately expressing nondeterministic
behavior where it is required and understood to do no harm.

1.2.3 Reactivity and Adaptivity

All CPSs are reactive systems. Waxman et al. define reactive systems as
follows:

A reactive system is one that is in continual interaction with its
environment and executes at a pace determined by that envi-
ronment.22 22: Waxman et al. 1996, High-Level System

Modeling.
The reactivity results from the interaction of computation with the physi-
cal environment. Since many potential events in the environment are not
foreseeable, the computation needs to react to external events when they
occur.

Reactivity imposes some challenges for modeling the software of CPSs. In
particular, a useful MoCmust allow the system to react to spontaneous events
in the environment. In this thesis, we call a model reactive if it includes the
notion of sporadic inputs and allows specifying reactions to those inputs.

In addition to reactivity, CPSs are also often required to be adaptive. The
physical environment is dynamic, and conditions change constantly. A CPS
must continuously adapt to these changing conditions. There is a wide range

http://dx.doi.org/10.1145/3453652
http://books.google.com/books?vid=ISBN9780792396604
http://books.google.com/books?vid=ISBN9780792396604

1 Introduction 5

of possibilities for modeling adaptive behavior. If we can enumerate all possi-
ble conditions of the environment that are relevant to a given problem, then
we can identify the state in which the environment is in and use conditionals
in the program logic. Alternatively, if the underlying MoC supports it, we
could dynamically adapt the structure of the program by activating or deac-
tivating certain software components when certain conditions hold. Finally,
we could use machine learning and other adaptive strategies to cope with a
possibly infinite set of environmental conditions that the system could be
faced with. Adaptivity blurs the boundary between design time and runtime.
While adaptivity can be added on the application layer, ideally a MoC also
supports dynamic adaptation so that the program structure itself can adapt
to changing requirements.

1.2.4 Scalability

The complexity of modern CPSs is increasing rapidly.There are many sources
of complexity. Software complexity, for instance, can be measured in lines
of code (LOC). Volvo reported that their cars in the year 2020 are estimated
to have about 100 million LOC, which is enough to fill a small library.23 This 23: Antinyan 2020, Revealing the Complex-

ity of Automotive Software.number is expected to grow by an order of magnitude every 10 years.

Architectural complexity is also increasing rapidly. This is not just driven by
an increasing number of hardware components but also by an increasing
heterogeneity. Motivated by the end of Moore’s law,24 hardware designers 24: Moore 1965, Cramming More Compo-

nents Onto Integrated Circuits; Sutter 2005,
The Free Lunch Is Over: a Fundamental Turn
Toward Concurrency in Software.

meet the ever-increasing demands for computational power by specializing
and optimizing hardware for specific uses. This trend, however, hinders
software productivity as programming heterogeneous hardware requires an
increasing amount of specialized code.25 25: Castrillon and Leupers 2014, Program-

ming Heterogeneous MPSoCs: Tool Flows to
Close the Software Productivity Gap.Ideally, a well-chosen MoC supports the software designer in managing this

complexity. Applications should be able to scale efficiently from a small to a
large code base and from a simple to a large distributed architecture. MoCs
help in managing the architectural complexity as they provide an abstraction
over the concrete physical architecture (cf. Figure 1.1). In addition, for many
MoCs we can construct tools that automatically synthesize an optimized
realization on a given target architecture.26 26: Castrillon and Leupers 2014, Program-

ming Heterogeneous MPSoCs: Tool Flows to
Close the Software Productivity Gap; Cas-
trillon, Desnos, et al. 2023,DataflowModels
of Computation for Programming Heteroge-
neous Multicores.

In order to support programmers in managing software complexity, useful
MoCs also need to provide mechanisms for structuring programs into com-
ponents or segments. A major factor in scalability is composability. Ideally, a
large application can be constructed from smaller components, which in turn
might be constructed from even smaller components. Only if composition is
well-defined and preserves the properties of subcomponents can we reuse
components and scale up complexity without introducing new problems.

In order for a MoC to be scalable, we also need to be able to derive efficient
physical realizations, even if the applications are large. Thus, in terms of
scalability, we cannot solely consider the rules imposed by the MoC.We have
to also consider whether the rules of the MoC can be implemented efficiently
on computers and analyze the performance of these implementations to
evaluate scalability.

Scalability has many facets. In this thesis, the term scalability summarizes
severalcharacteristics including composability, the ability to efficiently utilize
parallel resources, the ability to efficiently utilize distributed resources, as
well as the ability to partially automate deployment to various hardware
architectures in to manage hardware complexity.

http://dx.doi.org/10.1145/3368089.3417038
http://dx.doi.org/10.1145/3368089.3417038
https://www.computerhistory.org/collections/catalog/102770822
https://www.computerhistory.org/collections/catalog/102770822
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2

1 Introduction 6

1.2.5 Time

CPSs are hybrid systems. They connect discrete dynamics in the cyber with
continuous dynamics in the physical. From a mathematical perspective,
interfacing discrete and continuous models is challenging. Even when taking
a less formal approach, interfacing software with the physical world requires
that some properties of the environment be exposed at the software level.

One particular important property of the environment is time, which is
commonly neglected by computing abstractions. While the real-time systems
community places a strong emphasis on time, the solutions that we know
from that domain do not easily scale up to the computational requirements
of modern CPS applications. On the other hand, modern, scalable approaches
to computation, as known, for instance, in cloud applications and high-
performance computing (HPC), fully abstract over the physical aspects of
computation. Time is treated merely as an optimization criterion and not as
a property of the program itself.

A useful MoC for CPS design should provide a semantic notion of time
that exposes to the program when external events were observed by the
system and gives control over when a certain action should be performed. A
well-defined notion of time can have the additional benefit of providing a
mechanism for coordinating computation in distributed systems.27 27: Y. Zhao, J. Liu, and E. A. Lee 2007, A

Programming Model for Time-Synchronized
Distributed Real-Time Systems; Corbett et
al. 2013, Spanner: Google’s Globally Dis-
tributed Database.1.3 This Thesis

This thesis argues that, although there is extensive research on CPS design,
none of the existing and popular MoCs sufficiently address all the challenges
and requirements that were discussed above. Henzinger and Sifakis observe
that there is a semantic gap between models and tools used for safety-critical
systems and those taking a best-effort approach.

The two approaches—critical and best-effort engineering—are
largely disjoint. This is reflected by the separation between
“hard” and “soft” real time. They correspond to different research
communities and different practices. Hard approaches rely on
static (design-time) analysis; soft approaches, on dynamic (run-
time) adaptation. Consequently, they adopt different models of
computation and use different execution platforms, middleware,
and networks.28 28: Henzinger and Sifakis 2006, The Em-

bedded Systems Design Challenge.
Henzinger and Sifakis predicted that this gap would widen, which indeed
appears to be the case.

Consider Figure 1.2, which provides an overview of the properties of existing
concurrent MoCs.29 Each MoC is positioned on four axes that denote if the 29: This form of visualizing a property

space was suggested to me by Lars Schütze,
who created a similar diagram for his the-
sis.

MoC is timed, deterministic, scalable, or reactive. On each axis, there is a
“yes” and a “no” bin. The diagram is inspired by Karnaugh maps and Veitch
charts, which are used for visualizing and minimizing boolean functions.30 30: Veitch 1952, A Chart Method for Simpli-

fying Truth Functions; Karnaugh 1953, The
Map Method for Synthesis of Combinational
Logic Circuits.

The background color of each square denotes how many properties are in the
“yes” bin for this particular field. The darker the color, the more properties
are fulfilled by the MoC. The listed MoCs are discussed in depth in Chapter 2,
and the position of each MoC is explained in Section 2.10.

The property space shown in Figure 1.2 clearly illustrates the semantic gap
between existing MoCs. There is no model that is deterministic, reactive,
scalable, and timed. Therefore, CPS designers need to make compromises
and select a model that only fulfills the properties that are most relevant to
the specific use case. Many of the modern CPS use cases require reactivity

http://dx.doi.org/10.1109/RTAS.2007.5
http://dx.doi.org/10.1109/RTAS.2007.5
http://dx.doi.org/10.1109/RTAS.2007.5
http://dx.doi.org/10.1145/2491245
http://dx.doi.org/10.1145/2491245
http://dx.doi.org/10.1007/11813040
http://dx.doi.org/10.1007/11813040
http://dx.doi.org/10.1145/609784.609801
http://dx.doi.org/10.1145/609784.609801
http://dx.doi.org/10.1109/TCE.1953.6371932
http://dx.doi.org/10.1109/TCE.1953.6371932
http://dx.doi.org/10.1109/TCE.1953.6371932

1 Introduction 7

yes

yes

no

no no

deterministic

sc
al

ab
le

re
ac

ti
ve

no

no

ye
s

ye
s

timed
no

LET

?

SDF,
 KPN,

task graphs

synchronous
reactive,
sparse

synchronous

threads

actors,
DDF,
SoA,

pub/sub

periodic
tasks

discrete
events,

sporadic
tasks

Figure 1.2: Overview of MoCs for cyber-
physical systems.

and scalability. However, currently, this can only be achieved by giving up
determinism and time predictability.

This thesis aims to close the semantic gap. It establishes a MoC that is
deterministic, reactive, scalable, and timed. The foundation for this thesis is
the reactor model, a novel MoC proposed by Lohstroh, Romeo, et al.31 The 31: Lohstroh, Romeo, et al. 2019, Reactors:

A Deterministic Model for Composable Re-
active Systems; Lohstroh 2020, Reactors: A
Deterministic Model of Concurrent Compu-
tation for Reactive Systems.

reactor MoC combines aspects of established models into a new paradigm. As
is illustrated in this thesis, the reactor model indeed fills the gap identified in
Figure 1.2. The core contribution of this thesis is the design, implementation,
and evaluation of a technology stack that facilitates the development of
efficient and scalable reactor programs and is applicable to a wide range of
problems.

1.3.1 Outline

Following the introduction, Chapter 2 surveys a wide range of existing MoCs
that are actively used for CPS design, both in academia and industry. This
background chapter introduces each MoC in detail and discusses advantages
as well as problems and limitations. This discussion also includes an intro-
duction to two popular CPS frameworks: ROS and AUTOSAR. The chapter
is concluded by an in-depth discussion of Figure 1.2, which also provides the
motivation for the remainder of the thesis.

Chapter 3 introduces the novel reactor model as proposed by Lohstroh,
Romeo, et al. This introduction is followed by a discussion of one of the first
implementations of the reactor model. In addition, Section 3.3 introduces the
DEAR framework, which integrates the reactor model with the automotive
standard AUTOSAR. The chapter is concluded by a case study that illustrates
how the reactor model as implemented in the Discrete Events for AUTOSAR
(DEAR) framework can eliminate nondeterministic behavior in AUTOSAR.
This also presents the first demonstration of distributed execution based on
the reactor model.

Building on the initial implementation of the reactor model, Chapter 4 intro-
duces the polyglot coordination language Lingua Franca (LF). Lingua Franca
implements the reactor model and provides programmers with a language

http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083

1 Introduction 8

for expressing reactor programs. It allows for incorporating logic in a target
programming language, and the LF compiler automatically transforms LF
constructs into the target language. Chapter 4 introduces the syntax of LF,
provides various code examples, discusses the execution behavior of LF
programs, and illustrates how the execution of LF can be coordinated in
distributed systems.

Chapter 5 focuses on the scalability of reactor programs in LF. First, the
chapter discusses some limitations of the syntax and the implementation
introduced in earlier chapters.Then, it demonstrate how these limitations can
be overcome. The main part of Chapter 5 presents a thorough performance
evaluation, which compares the performance of LF programs to popular
actor frameworks.

Following this evaluation, Chapter 6 discusses some additional limitations
of the currently used execution strategy. It presents a potential solution that
is called scheduling enclaves and allows for partitioning LF programs.

Chapter 7 focuses on design space exploration (DSE), a technique that is
commonly used to explore large design spaces and which is commonly
applied to optimize program execution on heterogeneous hardware. The
chapter introduces a novel DSE framework called Mocasin and discusses
potential strategies for optimizing and partitioning LF programs.

Finally, Chapter 8 summarizes related work, and Chapter 9 concludes this
thesis. This also includes a discussion of potential future work.

1.3.2 Contributions

Concretely, this thesis makes the following main contributions:

▶ A detailed survey of existing MoCs that are applied for CPS design
(Chapter 2).

▶ A full implementation of reactors in C++ that includes an efficient
runtime (Chapter 3).

▶ An integration of reactors with the automotive standard AUTOSAR
and a case study that illustrates the applicability of the reactor model
to distributed industrial use cases (Chapter 3).

▶ The design and implementation of Lingua Franca (LF), a polyglot coor-
dination language that builds on top of the reactor model (Chapter 4).32 32: Lingua Franca is a highly collabora-

tive project with many contributors. Thus,
the contribution is shared between several
authors. This thesis introduces both the
shared core concepts of LF and the addi-
tional contributions of the author.

▶ A language extension that allows expressing large-scale reactor pro-
grams, optimizations of the C++ reactor runtime that allow for efficient
parallel execution, and an extensive performance evaluation (Chap-
ter 5).

▶ A novel technique called enclaves for partitioning LF programs that
addresses some limitation of the current reactor implementations
(Chapter 6).

▶ A flexible DSE tool and research framework for mapping dataflow
applications to heterogeneous many-cores that can, in principle, also
be leveraged for analyzing and mapping LF programs (Chapter 7).

1.3.3 A Note on Originality

Most of the contributions presented in this thesis result from collaborative
work. I believe that truly remarkable research results can only be achieved
through collaboration and exchange of ideas among diverse groups of people.
This, however, also means that results and ideas often cannot be traced back
to an individual author.

1 Introduction 9

The main focus of this thesis lies in contributions that result from my own
work. A complete discussion of my work, however, is not possible without
presenting the ideas of others and the results of joint work. I took care
to indicate when an idea is not my own or when the presented material
appeared previously in joint publications. If in doubt, any idea or result
presented in this thesis that appeared in prior publications is also due to my
coauthors.

Models of Computation for
Cyber-physical Systems 2

2.1 Threads 10

2.2 Task Models 11

2.3 The Actor Model 14

2.4 Dataflow and Process Networks 19

2.5 Models of Time 24

2.6 Discrete Events 27

2.7 Synchronous Languages 29

2.8 Logical Execution Time 32

2.9 CPS Frameworks and Standards 34

2.10 Discussion and Conclusion . . 38

This chapter surveys existing models of concurrent computation. These are
MoCs that explicitly introduce the notion of concurrency and are not limited
to strictly sequential execution. This survey focuses in particular on models
that are applied in the context of CPS design. Eachmodel is discussed in terms
of its potential for addressing the challenges identified in Section 1.2. The
discussion also includes programming languages, concepts, and frameworks
that are not described by formal modals. Section 2.10 concludes the chapter
by summarizing the findings and motivating the need for a new MoC for
CPS design.

2.1 Threads

Threads are likely the most common abstraction used to model concurrent
programs. A thread refers to the execution of a single, sequential program.
As shown in Figure 2.1, multiple such threads of computation form a process
and operate concurrently while sharing access to the same memory. This
allows one thread to read variables written by another threadwithin the same
process. Commonly, a process starts with one initial thread of computation,
which may fork into additional threads. Once a thread has completed its
computation, it can be joined by the thread that created it.

join

fork

process

ti
m
e

Figure 2.1: A process consisting of multi-
ple threads.

Threads are a useful model as they closely capture how processors execute
sequential computation and how they may interrupt one thread of com-
putation and continue with another concurrent thread, or how multiple
concurrent threads may be executed in parallel on multiprocessors.

While threads are useful for describing how concurrent computation can
be performed on potentially parallel processors, they only provide limited
control over when and where the computation is performed or how multiple
threads interact. This gives rise to the problem of data races. Threads operate
on shared memory, but they are treated like individual sequential programs,
and by default, there is no orchestration between threads and no predefined
order of memory accesses. Depending on when one thread writes a variable,
another thread reading this variable might observe different values. For
this reason, multithreaded programs are inherently nondeterministic. It is
considered the job of the programmer to prune this nondeterminism.1 1: E. A. Lee 2006, The Problem With

Threads.
Races for data and other shared resources can be avoided by using various
synchronization methods such as mutual-exclusion locks, semaphores or
monitors.2 However, as Edward A. Lee argues, programs that use such tech- 2: Dinning 1989, A Survey of Synchroniza-

tion Methods for Parallel Computers.niques are rarely understandable.1 Moreover, such synchronization methods
create yet another problem: the risk of introducing deadlocks. Threads dead-
lock if each thread holds a resource that another thread needs to progress in
its computation. For reasonably sized multithreaded programs, it becomes
impossible to decide whether they are free of concurrency bugs.1 Even
rigorous testing does not allow one to conclude that a program is free of
concurrency bugs, as the faulty behavior might be unlikely to occur and
might not surface in a test execution. So-called Heisenbugs are particularly
challenging to analyze, debug and reproduce.3

3: Musuvathi et al. 2008, Finding and Repro-
ducing Heisenbugs in Concurrent Programs.

http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/2.30733
http://dx.doi.org/10.1109/2.30733
http://dx.doi.org/10.5555/1855741.1855760
http://dx.doi.org/10.5555/1855741.1855760

2 Models of Computation for Cyber-physical Systems 11

Research has made significant advances in automatically detecting and even
fixing concurrency bugs in multithreaded programs.4 There are also verifi- 4: Hong and M. Kim 2015, A Survey of

Race Bug Detection Techniques for Multi-
threaded Programmes; Murillo et al. 2014,
Automatic Detection of Concurrency Bugs
through Event Ordering Constraints; Z. Liu
et al. 2021, Automatically Detecting and Fix-
ing Concurrency Bugs in Go Software Sys-
tems.

cation techniques based on Concurrent Separation Logic that may reason
about the correctness of multithreaded programs.5 Moreover, there is a fam-

5: Brookes and O’Hearn 2016, Concurrent
Separation Logic.

ily of techniques called deterministic multi-threading (DTM) that promise
a deterministic execution of multithreaded programs even in the presence
of concurrency bugs. DTM libraries such as DThreads6 or Consequence7

6: T. Liu, Curtsinger, and Berger 2011,
Dthreads: Efficient Deterministic Multi-
threading.

7: Merrifield, Devietti, and Eriksson 2015,
High-Performance Determinism with Total
Store Order Consistency.

automatically enforce a total order for concurrent store operations. This
typically comes at the cost of a significant performance hit, as the technique
reduces the exploitable parallelism and introduces additional synchronization
points. However, Recent work has made considerable progress in avoiding
the bottlenecks of conventional DTM techniques.8

8: Merrifield, Roghanchi, et al. 2019, Lazy
Determinism for Faster Deterministic Multi-
threading.

Even given the advances in detecting concurrency bugs or ensuring de-
terministic multithreaded execution, the model of threads remains mostly
useful for modeling how a concurrent program executes at a low level of
abstraction. Threads do not provide a convenient and portable way to reason
about when and where concurrent parts of a program are executed or how
they interact. This, however, is paramount for cyber-physical systems.

2.2 Task Models

The concept of tasks is closely related to threads, and the two terms are
sometimes used interchangeably. Here, we use thread to denote the execution
of a sequential program and task to denote a unit of work. Concretely, we
use the definition given by Thoman et al.:9 9: Thoman et al. 2018, A Taxonomy of Task-

Based Parallel Programming Technologies
for High-Performance Computing.A task is a sequence of instructions within a program that can

be processed concurrently with other tasks in the same pro-
gram. The interleaved execution of tasks may be constrained by
control- and data-flow dependencies.

This general definition indicates that tasks denote units of computation that
can be composed to form a program. Depending on the precise task model,
additional constraints may be defined that control when tasks execute. The
task model is widely adopted in various domains, ranging from embedded
systems with hard real-time requirements to massively parallel HPC work-
loads. A scheduler manages the program’s execution and decides when and
where a task instance is executed. In the following, we will briefly survey a
selection of task models and their constraints.10

10: This overview draws inspiration from
Sha, Abdelzaher, et al. 2004, Real Time
Scheduling Theory: a Historical Perspective;
Thoman et al. 2018, A Taxonomy of Task-
Based Parallel Programming Technologies
for High-Performance Computing; Tang,
Guan, and Yi 2020, Real-Time Task Models.

2.2.1 Periodic and Sporadic Real-time Task Models
t/ms0 10 20 30

(a) periodic task

t/ms0 10 20 30

(b) sporadic task

Figure 2.2: A periodic and a sporadic task.
A solid arrow represents the release time,
and a dashed arrow represents the deadline
of a job.

Task models have a long tradition in embedded and real-time systems. The
most basic model is the periodic real-time task model that was initially
proposed by C. L. Liu and Layland.11

11: C. L. Liu and Layland 1973, Schedul-
ing Algorithms for Multiprogramming in a
Hard-Real-Time Environment .

In this model, a program is a set of
periodic tasks, where each individual task is characterized by a period and
its worst-case execution time (WCET). Each task is executed repeatedly in
an infinite sequence, and such an execution of a task is commonly called
a job. In the periodic task model, the initial task is released at an arbitrary
initial time, and subsequent tasks are released at fixed intervals, as indicated
by the period in relation to the previous job’s release time. Each job must
be completed before the release of the next, and therefore, the period also
defines the relative deadline for each job. The absolute deadline is given by
the release time of the next job.

http://dx.doi.org/10.1002/stvr.1564
http://dx.doi.org/10.1002/stvr.1564
http://dx.doi.org/10.1002/stvr.1564
http://dx.doi.org/10.7873/DATE.2014.295
http://dx.doi.org/10.7873/DATE.2014.295
http://dx.doi.org/10.1145/3445814.3446756
http://dx.doi.org/10.1145/3445814.3446756
http://dx.doi.org/10.1145/3445814.3446756
http://dx.doi.org/10.1145/2984450.2984457
http://dx.doi.org/10.1145/2984450.2984457
http://dx.doi.org/10.1145/2043556.2043587
http://dx.doi.org/10.1145/2043556.2043587
http://dx.doi.org/10.1145/2741948.2741960
http://dx.doi.org/10.1145/2741948.2741960
http://dx.doi.org/10.1145/3297858.3304047
http://dx.doi.org/10.1145/3297858.3304047
http://dx.doi.org/10.1145/3297858.3304047
http://dx.doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.1023/B:TIME.0000045315.61234.1e
http://dx.doi.org/10.1023/B:TIME.0000045315.61234.1e
http://dx.doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.1007/978-981-4585-87-3_29-1
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/321738.321743

2 Models of Computation for Cyber-physical Systems 12

While the periodic taskmodel allows for a trivial feasibility analysis and static
derivation of schedules, it is also inflexible as it assumes fixed periods and
deadlines. The sporadic task model is a generalization of the periodic model
that provides more flexibility in the way release patterns and deadlines can
be characterized.12 A sporadic task is characterized by three parameters: the 12: S. K. Baruah, Mok, and Rosier 1990, Pre-

emptively Scheduling Hard-real-time Spo-
radic Tasks on one Processor ; Sprunt, Sha,
and Lehoczky 1989, Aperiodic Task Schedul-
ing for Hard-Real-Time Systems.

minimum period, the WCET, and the relative deadline.13 In contrast to the

13: Mok 1983, Fundamental Design Prob-
lems of Distributed Systems for the Hard-
real-time Environment .

periodic task model, the period is given as a lower bound that characterizes
the minimum interval between two job releases of the same task.The relative
deadline is given as an additional parameter and is fully independent of the
job’s period. Figure 2.2 compares possible schedules for the execution of a
periodic and a sporadic task.

The literature describes various extensions to the periodic and sporadic task
models. This includes jitter, which models that jobs are not released precisely
and that the actual release time may vary,14 as well as bursts, which model 14: Audsley et al. 1993, Applying New

Scheduling Theory To Static Priority Pre-
Emptive Scheduling.

that a series of jobs may arrive at an interval less than the period due to
jitter.15 Other task models use a stochastic approach to model varying arrival

15: Tindell, Burns, and A. J. Wellings 1994,
An Extendible Approach for Analyzing Fixed
Priority Hard Real-Time Tasks.

rates.16 In the offset-based task model, each task consists of several subtasks

16: Atlas and Bestavros 1998, Statistical
Rate Monotonic Scheduling.

that are characterized by an offset.17 Each subtask is released with the given

17: Palencia and Gonzalez Harbour 1998,
Schedulability Analysis for Tasks with Static
and Dynamic Offsets.

offset relative to the release time of the outer task.

2.2.2 Graph-based Task Models

The periodic and sporadic task models and their various extensions are rather
inflexible in modeling varying workloads. The execution time of a task might
depend on the state of the system or on the input data itself. A common
example of a data-dependent task is MPEG decoding.18 MPEG distinguishes 18: Mok and Chen 1997, A Multiframe

Model for Real-Time Tasks.various frame types, some of which are more complex to decode than others.
In the periodic task model, the WCET always needs to account for the worst
case, which leads to a pessimistic schedulability analysis.

t/ms20 300 10

5 10

87

(3, 5) (3, 5)

(5, 7)

(5, 7)
task1

task2

task3

task4

Figure 2.3: A multiframe task and a corre-
sponding release pattern.

Graph-based task models solve this problem by allowing different jobs of
the same task to have different periods and relative deadlines. A graph
structure models which job of a task has which parameters. For instance,
the generalized multiframe model characterizes a task as a cyclic graph.19

19: S. K. Baruah, Chen, et al. 1999, Gener-
alized Multiframe Tasks.

Each node represents a job configuration and is annotated with the WCET
and the relative deadline of the job. The edges in the graph are annotated
with the period (or inter-release time). The execution first releases an initial
job and then cycles through the graph, changing the configuration for each
subsequent job. Figure 2.3 shows an examplemultiframe task.Themultiframe
model has been extended to also support arbitrary non-cyclic graphs.20 If a

20: Tchidjo Moyo et al. 2010, On Schedu-
lability Analysis of Non-cyclic Generalized
Multiframe Tasks.

node has multiple outgoing edges, then any of the outgoing edges can be
chosen when releasing the next job.

There is also a family of branching task models that have less focus on data
dependence and focus more on control flow patterns, where branches may
influence workload release patterns.21 In the most general form, the possible 21: S. K. Baruah 1998, Feasibility Analysis

of Recurring Branching Tasks; Anand et al.
2008, Compositional Feasibility Analysis of
Conditional Real-Time Task Models; S. K.
Baruah 2010,The Non-cyclic Recurring Real-
Time Task Model.

release patterns of a task are described as an arbitrary directed graph22 or as

22: Stigge et al. 2011, The Digraph Real-
Time Task Model.

a task automaton.23 Graph-based task models allow an application to adapt

23: Fersman, Pettersson, and Yi 2002,
Timed Automata with Asynchronous Pro-
cesses: Schedulability and Decidability .

to its input or to the system’s state. However, this adaptivity is limited to
statically known configurations and transitions.

2.2.3 Parallel Task Models

In order to utilize parallel hardware, there are also a range of task models
that allow for expressing parallelism within a task. In the gang task model,
for instance, each task may consist of multiple parallel threads that execute

http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1007/BF02341920
http://dx.doi.org/10.1007/BF02341920
http://hdl.handle.net/1721.1/15670
http://hdl.handle.net/1721.1/15670
http://hdl.handle.net/1721.1/15670
http://dx.doi.org/10.1049/sej.1993.0034
http://dx.doi.org/10.1049/sej.1993.0034
http://dx.doi.org/10.1049/sej.1993.0034
http://dx.doi.org/10.1007/BF01088593
http://dx.doi.org/10.1007/BF01088593
http://dx.doi.org/10.1109/REAL.1998.739737
http://dx.doi.org/10.1109/REAL.1998.739737
http://dx.doi.org/10.1109/REAL.1998.739728
http://dx.doi.org/10.1109/REAL.1998.739728
http://dx.doi.org/10.1109/32.637146
http://dx.doi.org/10.1109/32.637146
http://dx.doi.org/10.1023/A:1008030427220
http://dx.doi.org/10.1023/A:1008030427220
http://dx.doi.org/10.1109/ECRTS.2010.24
http://dx.doi.org/10.1109/ECRTS.2010.24
http://dx.doi.org/10.1109/ECRTS.2010.24
http://dx.doi.org/10.1109/EMWRTS.1998.685078
http://dx.doi.org/10.1109/EMWRTS.1998.685078
http://dx.doi.org/10.1109/ISORC.2008.47
http://dx.doi.org/10.1109/ISORC.2008.47
http://dx.doi.org/10.1109/RTSS.2010.19
http://dx.doi.org/10.1109/RTSS.2010.19
http://dx.doi.org/10.1109/RTAS.2011.15
http://dx.doi.org/10.1109/RTAS.2011.15
http://books.google.com/books?vid=ISBN978-3-540-46002-2
http://books.google.com/books?vid=ISBN978-3-540-46002-2

2 Models of Computation for Cyber-physical Systems 13

simultaneously.24 The fork/join task model characterizes a task as a sequence 24: Feitelson and Rudolph 1992, Gang
Scheduling Performance Benefits for Fine-
Grain Synchronization; Dong and C. Liu
2017, Analysis Techniques for Supporting
Hard Real-Time Sporadic Gang Task Sys-
tems.

of segments, where odd segments execute sequentially and even segments
execute in parallel using multiple threads.25 The parallel synchronous task

25: Lakshmanan, Kato, and Rajkumar
2010, Scheduling Parallel Real-Time Tasks
on Multi-core Processors.

model generalizes this pattern and allows for an arbitrary number of threads
in each segment.26 An example parallel synchronous task is shown in Fig-

26: Saifullah et al. 2011, Multi-core Real-
Time Scheduling for Generalized Parallel
Task Models.

ure 2.4. Such patterns are typical for tasks generated from parallel for loops,
as used in languages like OpenMP27 and Cilk Plus.28 This model was further

27: Ayguade et al. 2009, The Design of
OpenMP Tasks.

28: Robison 2013, Composable Parallel Pat-
terns With Intel Cilk Plus.

generalized into the directed acyclic graph (DAG) task model, where a DAG
describes the precedence relations of threads within a task.29

29: S. Baruah et al. 2012, A Generalized
Parallel Task Model for Recurrent Real-time
Processes; Saifullah et al. 2011, Multi-core
Real-Time Scheduling for Generalized Paral-
lel Task Models.

Figure 2.4: A parallel synchronous task.

2.2.4 Limitations

The main motivation for developing various real-time task models is to
reason about what is computable within a given time. Concretely, real-time
system researchers and their modeling efforts are driven by the question: Is
there a feasible schedule for a given set of tasks? A feasible schedule denotes
a schedule that allocates tasks to a set of processors such that all deadlines
are met. Research in the field of real-time scheduling has a long history and
has not only produced a wide range of models but also various scheduling
algorithms.30

30: Sha, Abdelzaher, et al. 2004, Real Time
Scheduling Theory: a Historical Perspective.

While periodic, sporadic, and related task models are useful for schedule
feasibility analysis, they are less useful as a programming abstraction that
helps humans and compilers reason about the interaction of concurrent
tasks. The discussed task models fall short on capturing data dependencies
between tasks and do not provide mechanisms for coordinating access to
shared resources. Similar to threads, the programmer of a task needs to
ensure that reads and writes of data, as well as other accesses to shared
resources, are protected by synchronization primitives like locks. This is
problematic not only because synchronization is difficult to get right, but
also because it introduces the problem of priority inversion.31 In a system 31: Sha, Rajkumar, and Lehoczky 1990, Pri-

ority Inheritance Protocols: an Approach To
Real-Time Synchronization.

with limited shared resources, a low-priority job that holds a resource might
block a higher-priority job that acquires the same resource.

Since common real-time task models do not capture data dependencies
between tasks, the program’s behavior may depend on the concrete schedule.
If the release time or execution time of tasks varies, this may influence the
result of the computation. Consider the example given in Figure 2.5. There
are three periodic tasks: A, B, and C. The deadline of each task is equal to its
period. The execution time varies between jobs,32

32: The execution time could vary because
the amount of computation performed by
the task is data-dependent or because of
timing variations in the underlying hard-
ware, e.g., due to caches.

and also the time at which
Task B is scheduled for execution varies. Each of the tasks reads its input
at the beginning of its execution and writes the results at the end. This is
denoted by the black lines at the beginning and end of a job in Figure 2.5.

t/msTask C
0 10 20 30 40 50 60 70 80 90 100 110 120

Task B

Task A

Figure 2.5: An example schedule for 3 tasks that illustrates the influence of jitter in execution and release times on the data dependencies
between tasks. This figure is loosely based on Figure 3 in Gemlau et al. 2021, System-Level Logical Execution Time: Augmenting the Logical
Execution Time Paradigm for Distributed Real-Time Automotive Software.

Task B reads the output of Task A, and Task C reads the output of Task B.
The concrete data path, however, varies between hyperperiods.33 Which job 33: Intervalls of 40ms in this example.

reads the output of which job is not determined by the program but solely by
the concrete schedule and the interleaving of tasks. Thus, basic task models

http://dx.doi.org/10.1016/0743-7315(92)90014-E
http://dx.doi.org/10.1016/0743-7315(92)90014-E
http://dx.doi.org/10.1016/0743-7315(92)90014-E
http://dx.doi.org/10.1109/RTSS.2017.00019
http://dx.doi.org/10.1109/RTSS.2017.00019
http://dx.doi.org/10.1109/RTSS.2017.00019
http://dx.doi.org/10.1109/RTSS.2010.42
http://dx.doi.org/10.1109/RTSS.2010.42
http://dx.doi.org/10.1109/RTSS.2011.27
http://dx.doi.org/10.1109/RTSS.2011.27
http://dx.doi.org/10.1109/RTSS.2011.27
http://dx.doi.org/10.1109/TPDS.2008.105
http://dx.doi.org/10.1109/TPDS.2008.105
http://dx.doi.org/10.1109/MCSE.2013.21
http://dx.doi.org/10.1109/MCSE.2013.21
http://dx.doi.org/10.1109/RTSS.2012.59
http://dx.doi.org/10.1109/RTSS.2012.59
http://dx.doi.org/10.1109/RTSS.2012.59
http://dx.doi.org/10.1109/RTSS.2011.27
http://dx.doi.org/10.1109/RTSS.2011.27
http://dx.doi.org/10.1109/RTSS.2011.27
http://dx.doi.org/10.1023/B:TIME.0000045315.61234.1e
http://dx.doi.org/10.1023/B:TIME.0000045315.61234.1e
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1145/3381847

2 Models of Computation for Cyber-physical Systems 14

expose the same nondeterminism that is inherent to threads. Therefore, they
have limited usability for modeling and reasoning about complex systems
without additional constraints.

In order to capture the data dependencies between tasks, they can also be
arranged in a DAG. Task graphs are particularly popular in HPC applica-
tions.34 However, task graphs typically do not have any real-time constraints. 34: Kwok and Ahmad 1999, Static Schedul-

ing Algorithms for Allocating Directed Task
Graphs To Multiprocessors; Thoman et al.
2018, A Taxonomy of Task-Based Paral-
lel Programming Technologies for High-
Performance Computing.

Scheduling algorithms in HPC are primarily concerned with maximizing
throughput and minimizing makespan, but they do not provide control over
when or where a task gets executed. Therefore, task graphs are not particu-
larly useful for CPS design. Moreover, the DAG structure does not permit
any feedback loops, which are a fundamental requirement for many control
applications.

2.3 The Actor Model

The Hewitt actor model is a model of concurrent computation that was
originally proposed by Carl Hewitt35 and later refined by Gul Agha.36 In this 35: Hewitt, Bishop, and Steiger 1973, A

Universal Modular ACTOR Formalism for
Artificial Intelligence; Hewitt 1977, View-
ing Control Structures as Patterns of Passing
Messages.

36: Agha et al. 1997,A Foundation for Actor
Computation.

model, actors are the universal building blocks for concurrent computation.
Each actor has private state, a mailbox for receiving messages, and a behavior.
The behavior is invoked in response to a message received in an actor’s
mailbox. An actor’s behavior may:

▶ perform computation,
▶ modify the local actor state,
▶ send new messages,
▶ create new actors,
▶ or adapt the behavior that is invoked for the next message.

In contrast to threads and most task models, the actor model introduces a
notion of local, encapsulated state that is similar to the private state of objects
in object-oriented programming.37 Moreover, the behaviors of each actor are 37: Stroustrup 1988, What Is Object-

Oriented Programming?mutually exclusive. Thus, only one behavior has access to the actor’s state at
a time. The encapsulation of state in combination with the mutual exclusion
of behaviors effectively prevents low-level data races that may occur when
using threads or tasks.

Unlike threads and tasks, actors are reactive. While threads are continuously
executing and tasks are executed according to a (more or less) fixed schedule,
the behaviors of actors are triggered by the messages that they receive.
Actors react to the actual workload, and the behaviors are processed as
needed. There is no additional knowledge needed to execute a behavior.
Since the behaviors of different actors are fully independent, they can be
executed in parallel. And since the there is no shared memory in the actor
model, actors can also be easily distributed in a networked system.

The actor model allows programmers to express concurrent computation
in seemingly simple terms while avoiding the most common pitfalls of
threads and tasks. In addition, the actor model promises to allow efficient
implementations of actor programs that can exploit parallel hardware and
transparently scale to distributed systems. Due to these characteristics, the
actor model has become widely accepted and deployed in academia, as well
as in production.

http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.5555/1624775.1624804
http://dx.doi.org/10.5555/1624775.1624804
http://dx.doi.org/10.5555/1624775.1624804
http://dx.doi.org/10.1016/0004-3702(77)90033-9
http://dx.doi.org/10.1016/0004-3702(77)90033-9
http://dx.doi.org/10.1016/0004-3702(77)90033-9
http://dx.doi.org/10.1017/S095679689700261X
http://dx.doi.org/10.1017/S095679689700261X
http://dx.doi.org/10.1109/52.2020
http://dx.doi.org/10.1109/52.2020

2 Models of Computation for Cyber-physical Systems 15

2.3.1 Actor Languages and Frameworks

There is a wide range of programming languages and frameworks imple-
menting the actor model (or variants thereof). Early implementations include
Act,38 Cantor,39 and Rosette.40 Erlang is one of the first commercially success- 38: Lieberman 1987, Concurrent Object-

Oriented Programming in Act 1.

39: Athas and Boden 1988, Cantor: an Ac-
tor Programming System for Scientific Com-
puting.

40: Tomlinson et al. 1988, Rosette: an
Object-Oriented Concurrent Systems Archi-
tecture.

ful actor-based languages and has been widely used for telecommunication
applications in the 90s.41 More modern adaptations of the actor model in-

41: Virding et al. 1996, Concurrent Pro-
gramming in Erlang (2nd Ed.) Armstrong
2007, A History of Erlang.

clude the languages Elixir,42 P,43 and Pony44 as well as the actor frameworks

42: D. Thomas 2018, Programming Elixir
1.6: Functional|> Concurrent|> Pragmatic|>
Fun.
43: Desai et al. 2013, P: Safe Asynchronous
Event-Driven Programming.

44: Clebsch et al. 2017, Orca: GC and Type
System Co-Design for Actor Languages.

Actix,45 Akka,46 C++ Actor Framework (CAF),47 and Ray.48 Akka and Ray

45: The Actix Team 2023, Actix: Actor
Framework for Rust .

46: Roestenburg, Williams, and Bakker
2016, Akka in Action.
47: Charousset, Hiesgen, and T. C. Schmidt
2016, Revisiting Actor Programming in C++.

48: Moritz et al. 2018, Ray: A Distributed
Framework for Emerging AI Applications.

in particular are very successful and widely used in industry.

Actor frameworks like Akka, CAF and Ray make the actor model available in
mainstream programming languages like Java, C++ and Python. While this
makes it easier for users to adopt the actor model, it also bears the risk that
users mix concurrency models or violate actor semantics.49 In particular, the

49: Tasharofi, Dinges, and Johnson 2013,
Why Do Scala Developers Mix the Actor
Model with other Concurrency Models?

aforementioned languages cannot prevent access to shared memory. The
Actix actor framework leverages the strong type system of Rust to have more
fine-grained control over state access. Pony is a dedicated actor language
and leverages a strong type system that builds on similar ideas as Rust’s type
system, to prevent shared state between actors. Some actor languages, like
Rebeca, also integrate formal verification methods to ensure the correctness
of actor programs.50

50: Sirjani, Movaghar, et al. 2004,Modeling
and Verification of Reactive Systems Using
Rebeca; Sirjani and Jaghoori 2011, Ten Years
of Analyzing Actors: Rebeca Experience.

2.3.2 Limitations

This subsection uses examples and arguments previously published inMenard,
Lohstroh, et al. 2023, High-Performance Deterministic Concurrency Using Lin-
gua Franca.

The actormodel is widely accepted and deployed in production for its promise
to allow programmers to easily express concurrency, provide high execution
performance, and scale well to large datasets and complex applications while
preventing low-level data races. However, actors still expose nondeterminism
in the form of high-level data races,51 a problem that becomes considerably

51: Torres Lopez et al. 2018, Programming
with Actors: State-of-the-Art and Research
Perspectives.

more challenging to manage as the complexity of a program grows.

Bank Account Example

Consider the simple example in Figure 2.6a. The Accountactor manages
the balance of a bank account that two users interact with. User Asends
a deposit message, increasing the account’s balance, and User Bsends a
withdrawal message, decreasing the account’s balance. If we assume that
the balance is initialized to 0 and the account only grants a withdrawal if the
resulting balance is not negative, then there are two possible behaviors. If A’s
message is processed first, then the withdrawal is granted to B. If B’s message
is processed first, then the withdrawal is denied. The actor model assigns
no meaning to the ordering of messages. Therefore, there is no well-defined
correct behavior for this example.

The reader may object that for an application like that of Figure 2.6a, the
order of transactions is intrinsically nondeterministic, and any additional
nondeterminism introduced by the software framework is inconsequential.
However, if we focus on testability, we see that even identical inputs can yield
different results, making testing more difficult. If we focus on consistency,
the problem that different observers of the same events may see different
behaviors becomes problematic. In databases, it is common to assign time
stamps to external inputs and then treat those timestamps as a semantic

http://dx.doi.org/10.5555/50107.50108
http://dx.doi.org/10.5555/50107.50108
http://dx.doi.org/10.1145/67387.67402
http://dx.doi.org/10.1145/67387.67402
http://dx.doi.org/10.1145/67387.67402
http://dx.doi.org/10.1145/67387.67410
http://dx.doi.org/10.1145/67387.67410
http://dx.doi.org/10.1145/67387.67410
http://books.google.com/books?vid=ISBN013508301X
http://books.google.com/books?vid=ISBN013508301X
http://dx.doi.org/10.1145/1238844.1238850
https://pragprog.com/titles/elixir16/programming-elixir-1-6/
https://pragprog.com/titles/elixir16/programming-elixir-1-6/
https://pragprog.com/titles/elixir16/programming-elixir-1-6/
http://dx.doi.org/10.1145/2491956.2462184
http://dx.doi.org/10.1145/2491956.2462184
http://dx.doi.org/10.1145/3133896
http://dx.doi.org/10.1145/3133896
https://github.com/actix/actix
https://github.com/actix/actix
http://books.google.com/books?vid=ISBN978-1617291012
http://dx.doi.org/10.1016/j.cl.2016.01.002
http://books.google.com/books?vid=ISBN9781931971478
http://books.google.com/books?vid=ISBN9781931971478
http://dx.doi.org/10.1007/978-3-642-39038-8_13
http://dx.doi.org/10.1007/978-3-642-39038-8_13
http://dx.doi.org/10.5555/2370686.2370691
http://dx.doi.org/10.5555/2370686.2370691
http://dx.doi.org/10.5555/2370686.2370691
http://dx.doi.org/10.1007/978-3-642-24933-4_3
http://dx.doi.org/10.1007/978-3-642-24933-4_3
http://dx.doi.org/10.1145/3617687
http://dx.doi.org/10.1145/3617687
http://dx.doi.org/10.1007/978-3-030-00302-9_6
http://dx.doi.org/10.1007/978-3-030-00302-9_6
http://dx.doi.org/10.1007/978-3-030-00302-9_6

2 Models of Computation for Cyber-physical Systems 16

User A

User B

Account

Deposit

Withdrawal

(a) Deposit and Withdrawal sent
by different users.

User Account

Deposit

Withdrawal

(b) Deposit and Withdrawal sent
by same user.

User

Proxy

Account

Deposit

Withdrawal Withdrawal

(c) Withdrawal sent via a proxy.

Figure 2.6: Example actor programs that may expose nondeterministic behavior.

property of the inputs and define the behavior of the database relative to those
time stamps. This perspective is in line with our definition of determinism
in Section 1.2.2. If we define inputs in Figure 2.6a to be time-stamped user
queries and behavior to be the sequence of actions taken by the Account,
then it is reasonable to demand determinism.

Consider Figure 2.6b, which has only one user. Even if this one user first
sends a deposit and then a withdrawal message, the actor model does not
guarantee that the receiving actor sees and processes the incoming messages
in this order. While some actor frameworks, e.g., Akka and Erlang, guarantee
in-order message delivery, others, e.g., AmbientTalk,52 expressly do not. Yet, 52: Van Cutsem et al. 2014, AmbientTalk:

Programming Responsive Mobile Peer-To-
Peer Applications With Actors.

even if the framework guarantees point-to-point in-order message delivery,
this property is not transitive. If we add a proxy, as shown in Figure 2.6c,
then we cannot make any assumptions about the order in which Account
receives messages. This example further illustrates that composing actors
can have unexpected side effects.

Aircraft Door Example

The consequences of nondeterministic behavior can be fatal for CPSs. Con-
sider, for example, an aircraft door. Passenger aircraft are equipped with
emergency escape slides that automatically deploy when the correspond-
ing door of the aircraft is opened. The deployment mechanism needs to be
explicitly disarmed in order to safely open the doors in a regular parking
position with a passenger ramp.

Cockpit

Sensor

Door

open

disarm

disarm

Figure 2.7: An actor implementation of
the aircraft door example.

Let us assume that the door is controlled by an embedded control component
that resides inside the door and communicates with other components via
a network. The door controller receives two signals that can be sent from
the cockpit: disarmfor disarming the emergency escape slides and open for
opening the door. We further assume that the disarmsignal is intercepted by
another sensor component that performs a safety check. Only if a passenger
ramp is indeed placed in front of the door will the sensor pass the disarm
signal on to the door. Figure 2.7 shows a possible actor realization of this
example. This program exposes the same nondeterministic behavior as the
program in Figure 2.6c. Consequently, we cannot make any assumptions
about the order in which the messages arrive at the door. If we model the
application using actors without introducing additional protocols or coordi-
nation mechanisms, then it would be up to chance whether the emergency
slides deploy in the parking position.

http://dx.doi.org/10.1016/j.cl.2014.05.002
http://dx.doi.org/10.1016/j.cl.2014.05.002
http://dx.doi.org/10.1016/j.cl.2014.05.002

2 Models of Computation for Cyber-physical Systems 17

Discussion

Implementing solutions to practical concurrency problems with actors can
be challenging. Even seemingly simple concurrency problems like the ones
discussed above require high programming discipline, and solutions are
typically difficult to maintain and tend to lack modularity. In addition, the
inherent nondeterminism of actor frameworks makes it challenging to verify
such solutions. Erroneous behavior might only occur in a fraction of execu-
tions, and thus integration tests cannot reliably detect such Heisenbugs.53 53: Musuvathi et al. 2008, Finding and Re-

producing Heisenbugs in Concurrent Pro-
grams.In a recent study, Bagherzadeh et al. analyzed bugs in Akka programs that

were discussed on StackOverflow or GitHub and determined that 14.6% of
the bugs were caused by races. This makes high-level races the second most
common cause of bugs in Akka programs, after errors in the program logic.54 54: Bagherzadeh et al. 2020, Actor Con-

currency Bugs: a Comprehensive Study on
Symptoms, Root Causes, Api Usages, and
Differences.

In a similar study of 12 actor-based production systems, Hedden and X. Zhao
determined that 3.2% of the reported bugs were caused by bad message
ordering, 4.8% were caused by incorrect coordination mechanisms, 4.8%
were caused by erroneous coordination at shutdown, and 2.4% of bugs were
caused by erroneous coordination at startup.55 Note that these numbers only 55: Hedden and X. Zhao 2018, A Compre-

hensive Study on Bugs in Actor Systems.cover known bugs in their studied projects, and, as noted by the authors,
the majority of the reported message ordering bugs belonged to the Gatling
project because it already incorporated a debugging tool called Bita56 that is 56: Tasharofi, Pradel, et al. 2013, Bita:

Coverage-guided, Automatic Testing of Ac-
tor Programs.

designed to detect such bugs. It is reasonable to suspect that there are more
undetected bugs in projects that do not use specialized debugging tools.

The actor community has addressed the inherent nondeterminism of ac-
tors and the resulting bugs by introducing better tools for analyzing and
debugging actor programs. This includes TransPDOR,57 Bita,56 Actoverse,58 57: Tasharofi, Karmani, et al. 2012, TransD-

POR: A Novel Dynamic Partial-Order Reduc-
tion Technique for Testing Actor Programs.

58: Shibanai and Watanabe 2017, Acto-
verse: A Reversible Debugger for Actors.

iDeA,59 CauDEr,60 and Multiverse debugging.61 The Voyager tool shown in

59: Mathur, Ozkan, and Majumdar 2018,
IDeA: An Immersive Debugger for Actors.

60: Lanese et al. 2018, CauDEr: A Causal-
Consistent Reversible Debugger for Erlang.

61: Torres Lopez et al. 2019, Multiverse
Debugging: Non-Deterministic Debugging
for Non-Deterministic Programs (Brave New
Idea Paper).

Figure 2.8, which is part of the Multiverse debugging approach, can visualize
the multitude of possible actor program behaviors. Users can interactively
expand the graph and execute various queries.

Figure 2.8: The Voyager tool for debug-
ging the multitude of possible behaviors of
actor programs. This image is reproduced
from Torres Lopez et al. 2019, Multiverse
Debugging: Non-Deterministic Debugging
for Non-Deterministic Programs (Brave New
Idea Paper) licensed under CC-BY 3.0.

While the tools mentioned above are valuable solutions, this thesis argues
that a concurrent programmingmodel should not rely on the users to analyze
programs and prune unintended nondeterminism, in particular in the context
of CPSs, where the consequences of nondeterministic behavior could be
fatal. A safe concurrent programming model should provide deterministic
semantics by default and allow the programmer to introduce nondeterminism
only where it is desired and understood to do no harm. In such cases, the
aforementioned tools for analyzing nondeterministic behavior can still be
utilized to analyze and debug the implementation.

http://dx.doi.org/10.5555/1855741.1855760
http://dx.doi.org/10.5555/1855741.1855760
http://dx.doi.org/10.5555/1855741.1855760
http://dx.doi.org/10.1145/3428282
http://dx.doi.org/10.1145/3428282
http://dx.doi.org/10.1145/3428282
http://dx.doi.org/10.1145/3428282
http://dx.doi.org/10.1145/3225058.3225139
http://dx.doi.org/10.1145/3225058.3225139
http://dx.doi.org/10.1109/ASE.2013.6693072
http://dx.doi.org/10.1109/ASE.2013.6693072
http://dx.doi.org/10.1109/ASE.2013.6693072
http://dx.doi.org/10.1007/978-3-642-30793-5_14
http://dx.doi.org/10.1007/978-3-642-30793-5_14
http://dx.doi.org/10.1007/978-3-642-30793-5_14
http://dx.doi.org/10.1145/3141834.3141840
http://dx.doi.org/10.1145/3141834.3141840
http://dx.doi.org/10.1145/3239332.3242762
http://dx.doi.org/10.1007/978-3-319-90686-7_16
http://dx.doi.org/10.1007/978-3-319-90686-7_16
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://creativecommons.org/licenses/by/3.0/

2 Models of Computation for Cyber-physical Systems 18

2.3.3 Related Models and Paradigms

There are a multitude of related models, paradigms, languages, and frame-
works that build on similar ideas as the Hewitt actor model. The service-
oriented architecture (SoA) paradigm, for instance, views a system as a
composition of multiple services, where each service has a well-defined
interface and exchanges messages with other services or users using these
service interfaces.62 The services in an SoA are typically monolithic appli- 62: Perrey and Lycett 2003, Service-

oriented Architecture; Papazoglou and
Heuvel 2007, Service Oriented Architectures:
Approaches, Technologies and Research
Issues; K. B. Laskey and K. Laskey 2009,
Service Oriented Architecture.

cations. The microservice paradigm breaks those applications down into
smaller units, such that each microservice has only a single responsibility.63

63: Thönes 2015, Microservices; Dragoni
et al. 2017, Microservices: Yesterday, Today,
and Tomorrow .

Microservices can be easily understood and independently deployed, scaled,
and tested. However, microservices only become useful once they are com-
posed into services and applications, which may easily comprise hundreds
of microservices. While each microservice can be easily understood indi-
vidually, the interaction of hundreds of microservices can be immensely
complex and due to the problems discussed above, this interaction is difficult
to understand, test, and debug.

Communication between multiple services is often implemented via remote
procedure calls (RPCs).64 The client code calls a seemingly conventional 64: Nelson 1981, Remote Procedure Call;

Birrell and Nelson 1984, Implementing Re-
mote Procedure Calls.

function, but instead of returning a result immediately, the function relays
the arguments to a service and waits for a response, which is then returned.
To decouple the execution of client and server, commonly, the RPC does
not block until the server responds but instead returns a future immediately.
A future is a placeholder for the promise that a result will be delivered
eventually.65 The client code calls a get procedure on the future to read 65: Baker and Hewitt 1977, The Incremen-

tal Garbage Collection of Processes.the result only when it is needed. If the result is not delivered yet, the get
procedure blocks until the corresponding response is received. This process
can be seen as a simple request-response protocol on top of actors.

While hiding the precise mechanics of asynchronous communication may
look like a solution for simplifying the interaction of distributed components,
programs that use RPCs are still subject to the same concurrency bugs as
found in actors. If a certain order of requests or responses is required, this can
only be achieved by carefully considering when to call a remote procedure
and when to retrieve the result from a future.This semi-transparent approach
might give a wrong sense of safety, as is also argued by Tanenbaum and
Renesse.66 66: Tanenbaum and Renesse 1988, A

Critique of the Remote Procedure Call
Paradigm.Publish/subscribe is another paradigm that is closely related to actors. The

paradigm adds a communication layer that decouples sender and receiver.
Instead of sending messages directly to the mailbox of an actor, a publisher
sends a message to a topic, which is a named communication channel. Other
components may subscribe to the topic in order to receive messages that
are published on it.67 Popular implementations of publish/subscribe include 67: Eugster et al. 2003, The Many Faces of

Publish/subscribe.the Message Queuing Telemetry Transport (MQTT)68 and Data Distribution
68: OASIS 2019, MQTT Version 5.0.Service (DDS)69 standards.
69: OMG 2015, Data Distribution Service.

There are many more concepts that utilize asynchronous message passing
and are closely related to Hewitt actors. There are too many to list and
cite them all. However, without additional safeguards, they all share the
problems of Hewitt actors and expose nondeterminism, which can be subtle
if the paradigm tries to hide the fact that asynchronous communication is
involved, like it is the case with RPCs.

http://dx.doi.org/10.1109/SAINTW.2003.1210138
http://dx.doi.org/10.1109/SAINTW.2003.1210138
http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1002/wics.8
http://dx.doi.org/10.1109/MS.2015.11
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
https://cs.nyu.edu/~apanda/classes/fa22/papers/nelson81remote.pdf
http://dx.doi.org/10.1145/2080.357392
http://dx.doi.org/10.1145/2080.357392
http://dx.doi.org/10.1145/872734.806932
http://dx.doi.org/10.1145/872734.806932
https://www.cs.vu.nl/~ast/Publications/Papers/euteco-1988.pdf
https://www.cs.vu.nl/~ast/Publications/Papers/euteco-1988.pdf
https://www.cs.vu.nl/~ast/Publications/Papers/euteco-1988.pdf
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.omg.org/spec/DDS/1.4/PDF

2 Models of Computation for Cyber-physical Systems 19

2.4 Dataflow and Process Networks

The previous section introduced the actor model as defined by Hewitt. How-
ever, for the remainder of this thesis, we will use a broader definition of
actors given by Lohstroh and E. A. Lee:

Actors are concurrent objects that communicate by sending each
other messages.70 70: Lohstroh and E. A. Lee 2019a, Deter-

ministic Actors.
In the Hewitt actor model, actors use mailboxes and exchange messages
asynchronously. As discussed in the previous section, the asynchronous
message-passing paradigm makes Hewitt actors inherently nondeterminis-
tic. However, there is a wide range of deterministic concurrent MoCs that
fall under the broader definition of actors given above. In this section, we
discuss two families of actor-based MoCs that are called process networks
and dataflow. Figure 2.9 shows the relationships between the various models
that are discussed in the following.

Hewitt
Actors

HDF

CSDF

SADF

DPN

KPN

SDF

D
D
F

Figure 2.9: Venn diagram highlighting the
relationships between various actor-based
MoCs. This Venn diagram is based on the
one given in Goens 2021, Improving Model-
Based Software Synthesis: A Focus on Math-
ematical Structures, p. 104.

2.4.1 Kahn Process Networks

One of the first concurrent MoCs was described by Gilles Kahn and is now
known as Kahn process networks (KPNs).71 Based on Scott’s formalism for 71: Kahn 1974, The Semantics of a Simple

Language for Parallel Programming.modeling sequential computations as continuous functions, Kahn created a
denotational semantics describing how multiple sequential computations
could occur in parallel.72 In this model, the continuous functions operate 72: E. A. Lee and Matsikoudis 2009, The

Semantics of Dataflow With Firing.on infinite data streams, allowing for data exchange between the functions.
KPNs can also be thought of as a set of Turing machines that are connected
by infinite one-way tapes.73 73: Parks 1995, Bounded Scheduling of Pro-

cess Networks.
KPNs are commonly described as directed graphs, such as the one given in
Figure 2.10. Each node in the graph represents a process (or actor). Processes
execute sequentially and independently of each other. Each process has local
state and there is no shared memory. In order to exchange data with other
processes, each process may read from or write to a set of predefined data
streams called channels. In Figure 2.10, the channels are indicated by the
directed edges.

Kahn and MacQueen give an implementation of the KPN model that uses
blocking read operations. Since this blocking semantics is not a requirement
of Kahn’s original model, the Kahn-MacQueen implementation is more
restrictive.74

74: Khasanov, Goens, and Castrillon 2018,
Implicit Data-Parallelism in Kahn Process
Networks: Bridging the MacQueen Gap.However, the Kahn-MacQueen model is the most common

http://dx.doi.org/10.1109/FDL.2019.8876922
http://dx.doi.org/10.1109/FDL.2019.8876922
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
http://www1.cs.columbia.edu/~sedwards/papers/kahn1974semantics.pdf
http://www1.cs.columbia.edu/~sedwards/papers/kahn1974semantics.pdf
http://dx.doi.org/10.1017/CBO9780511770524.005
http://dx.doi.org/10.1017/CBO9780511770524.005
https://ptolemy.berkeley.edu/papers/95/parksThesis/
https://ptolemy.berkeley.edu/papers/95/parksThesis/
http://dx.doi.org/10.1145/3183767.3183790
http://dx.doi.org/10.1145/3183767.3183790

2 Models of Computation for Cyber-physical Systems 20

Source

Left FFT

Right FFT

Left Filter

Right Filter

Left IFFT

Right IFFT

Sink

Figure 2.10: A KPN application imple-
menting an audio filter with two channels.

implementation of KPN, and often the blocking reads are implied when the
term KPN is used. For the remainder of this thesis, we will use KPN to refer
to the Kahn-MacQueen implementation.

As KPN processes can be represented as Turing machines, termination is not
decidable. Due to the blocking read operations, KPN processes may deadlock.
If, for instance, a process reads from a channel that no other process can
write to, then the process deadlocks. For general KPN programs, deadlock
freedom is not decidable.73

While the Kahn-MacQueen model only requires blocking reads and assumes
unbounded buffers, real implementations need to handle bounded memory.
Therefore, KPN channels are commonly implemented as bounded first-in,
first-out (FIFO) buffers with blocking writes. Consequently, bounding a chan-
nel introduces the risk of additional deadlocks. Finding suitable buffer bounds
for general KPNs that do not introduce deadlocks is an undecidable problem.
However, Parks describes a runtime algorithm that detects deadlocks during
execution and resizes buffers where needed.73 This mechanism is commonly
used in KPN implementations and can be further optimized.75 75: Geilen and Basten 2003, Requirements

on the Execution of Kahn Process Networks.

Example Application

The example KPN application in Figure 2.10 implements an audio filter. The
source process reads a stereo audio stream with two channels from a file
or from an I/O device. It splits the incoming audio data into two channels
and forwards chunks of data to the two fast Fourier transformation (FFT)
processes. The data chunks are commonly called tokens. Tokens are atomic
units of data that can be transferred on a channel. Typically, tokens are typed
and have a fixed size.

The FFT processes convert the audio stream into the frequency domain. Next,
the filter processes apply a filter operation (e.g., a low-pass filter removing
low frequencies). The inverse FFT processes convert the signal back to the
time domain. Finally, the sink process collects the results, combines the two
channels, and writes them to disk.

while true do
▷ Read from the input channel. ◁
data ←readToken(in)
▷ Apply the filter to the data. ◁
filteredData ←filter(data)
▷ Write result to the output channel. ◁
writeToken(out, filteredData)

Listing 2.1: Pseudocode of a KPN process
implementing the filter from Figure 2.10.

Listing 2.1 gives a pseudocode implementation of the filter KPN process from
Figure 2.10. The process operates in an infinite loop. It simply reads a token
from the input channel, applies the filter function, and then writes the result
to the output channel. The procedures readToken and writeToken need
to be provided by a supporting library that implements the KPN channels.
The FFT and inverse FFT processes can be implemented similarly.

2.4.2 Dataflow

In the same year in which Kahn published his denotational semantics of
process networks, Jack Dennis published a paper that approaches concurrent
computation differently. He describes an operational semantics of dataflow
that is based on the concept of atomic firings.76 Similar to KPN, dataflow 76: Dennis 1974, First Version of a Data

Flow Procedure Language; Dennis 1986,
Data Flow Computation.

programs are defined as directed graphs where the notes are actors and
the edges denote communication channels. However, in Dennis’ concept of

http://dx.doi.org/10.1007/3-540-36575-3_22
http://dx.doi.org/10.1007/3-540-36575-3_22
http://dx.doi.org/10.1007/3-540-06859-7_145
http://dx.doi.org/10.1007/3-540-06859-7_145
http://dx.doi.org/10.1007/978-3-642-82921-5_8

2 Models of Computation for Cyber-physical Systems 21

dataflow, the actors are not defined as continues processes. Instead, each
actor is defined by a set of firing rules and functions that are applied if a rule
matches.

Dennis Dataflow

In the generalized formalism given by E. A. Lee and Matsikoudis, ⊥ denotes
an absent token, and ∗ denotes an arbitrary token on a channel.77 Firing 77: E. A. Lee and Matsikoudis 2009, The

Semantics of Dataflow With Firing.rules are given as tuples, with an entry for each input channel of an actor.
The filter process in Figure 2.10 only has a single input and thus would be
defined as a dataflow actor using the firing rule (∗). When this firing rule is
satisfied, i.e., there is at least one token in the input channel, then the actor
fires. It consumes the input token, executes the filter function, and produces
a new token on the output channel.

The sink process in Figure 2.10 has two inputs and can be defined as a
dataflow actor in multiple ways. Using the firing rule (∗, ∗), the sink actor
would fire when a token is present on both inputs. Alternatively, we can
use two rules (∗, ⊥) and (⊥, ∗). In this case, the actor fires when there is at
least one token on one of the input channels. Both rules can be satisfied
simultaneously if there is at least one token available in both input channels.
However, there is no defined order between simultaneous firings. Hence,
this notion of dataflow is nondeterministic. This dynamic variant of dataflow
is commonly called Dennis dataflow or dynamic dataflow (DDF).

E. A. Lee and Parks show that an additional condition is sufficient to make
the model deterministic. Moreover, they show that this deterministic variant
of DDF can be embedded into a KPN model.78 Therefore, it is commonly 78: E. A. Lee and Parks 1995, Dataflow Pro-

cess Networks.referred to as a dataflow process network (DPN).

In the Venn diagram (Figure 2.9), DPN is denoted as the intersection of KPN
and DDF. While E. A. Lee and Parks have proven that DPN is included in
KPN, we do not know if all KPN models can be expressed in DPN.79 79: Goens 2021, Improving Model-Based

Software Synthesis: A Focus on Mathemati-
cal Structures.

Synchronous Dataflow

A more restrictive form of dataflow called synchronous dataflow (SDF) was
introduced by E. A. Lee and Messerschmitt.80 While this dataflow variant is 80: E. A. Lee and Messerschmitt 1987, Syn-

chronous Data Flow .less expressive than KPN and DDF, it is statically analyzable. Both a schedule
and channel bounds can be derived statically.81 Similar to DDF, SDF actors 81: Parks 1995, Bounded Scheduling of Pro-

cess Networks.are defined in terms of firing rules. However, the SDF firing rules precisely
define input and output rates, which specify how many tokens the actor
consumes or produces on each channel per firing.

Source

Left FFT

Right FFT

Left Filter

Right Filter

Left IFFT

Right IFFT

Sink

1
1

1 1

1 1

1 1

1 1

1 1

1
1

1
1

Figure 2.11: An SDF application imple-
menting an audio filter with two channels.

The KPN example in Figure 2.10 can also be expressed as an SDF application.
Figure 2.11 shows the audio filter example implemented as an SDF graph
with all rates set to 1. This particular variant of SDF is called homogeneous
SDF (HSDF).

For some applications, the fixed rates in SDF are too restrictive. They do
not allow for any adaptation of the communication patterns at runtime.
Many more variants of SDF have been proposed to overcome its limitations.

http://dx.doi.org/10.1017/CBO9780511770524.005
http://dx.doi.org/10.1017/CBO9780511770524.005
http://dx.doi.org/10.1109/5.381846
http://dx.doi.org/10.1109/5.381846
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/PROC.1987.13876
https://ptolemy.berkeley.edu/papers/95/parksThesis/
https://ptolemy.berkeley.edu/papers/95/parksThesis/

2 Models of Computation for Cyber-physical Systems 22

Particularly noteworthy are cyclo-static dataflow (CSDF) and scenario-aware
dataflow (SADF). In CSDF, each actor defines a repeating pattern (cycle) of
firing rates.82 SADF is even more general and allows to dynamically disable 82: Bilsen et al. 1996, Cyclo-Static

Dataflow .or enable certain paths in the dataflow graph.83 Both models preserve the
83: Theelen et al. 2006, A Scenario-aware
Data Flow Model for Combined Long-run
Average and Worst-case Performance Anal-
ysis.

static analyzability of SDF.

2.4.3 Implementations

KPN, SDF and related models have been implemented in a wide range of
programming languages and frameworks. PREESM, for instance, is a frame-
work for modeling parameterized and interfaced SDF (𝜋SDF) applications.84 84: Pelcat et al. 2014, PREESM: A Dataflow-

based Rapid Prototyping Framework for Sim-
plifying Multicore DSP Programming.

𝜋SDF is an SDF variant that allows dynamic reconfiguration of the firing
rates of each actor.85

85: Desnos et al. 2013, PiMM: Parameter-
ized and Interfaced Dataflow Meta-Model
for MPSoCs Runtime Reconfiguration.

C for process networks (CPN) is a domain-specific language (DSL) based
on C macros that allow to annotate C functions as KPN processes and
to instantiate and connect such processes.86 It also provides specialized 86: Sheng et al. 2014, A Compiler Infras-

tructure for Embedded Heterogeneous MP-
SoCs; Castrillon and Leupers 2014, Pro-
gramming Heterogeneous MPSoCs: Tool
Flows to Close the Software Productivity
Gap.

directives for declaring SDF actors.

The Ptolemy II framework is a modeling platform that supports a broad
selection of MoCs including KPN, SDF and Hewitt actors.87 Ptolemy II also

87: Eker, Janneck, et al. 2003, Tam-
ing Heterogeneity—the Ptolemy Approach;
Ptolemaeus 2014, System Design, Modeling,
and Simulation using Ptolemy II .

allows mixing different MoCs through hierarchical abstractions. The CAL
actor language (CAL) is a dedicated dataflow language that was developed
as part of the Ptolemy II project.88

88: Eker and Janneck 2003, CAL Language
Report: Specification of the CAL Actor Lan-
guage.

Many more so-called stream processing languages that build on the funda-
mental ideas of dataflow and process networks have been proposed in the
literature and are actively used in production.89 Examples include StreamIt

89: Stephens 1997, A Survey of Stream Pro-
cessing; Hirzel, Baudart, et al. 2018, Stream
Processing Languages in the Big Data Era.

for efficient parallel data processing;90 OpenStream, which extends OpenMP

90: Thies, Karczmarek, and Amarasinghe
2002, StreamIt: A Language for Streaming
Applications.

with dataflow semantics;91 and the SPL language for big data processing

91: Pop and Cohen 2013, OpenStream: Ex-
pressiveness and Data-Flow Compilation of
Openmp Streaming Programs.

that is part of IBM’s Streams product.92

92: Hirzel, Andrade, et al. 2009, SPL Stream
Processing Language Specification; Hirzel,
S. Schneider, and Gedik 2017, SPL: an Ex-
tensible Language for Distributed Stream
Processing.

Process networks and dataflow provide a powerful abstraction as they fully
decouple computation and communication. Compared to Hewitt actors, how-
ever, they are more restricted, which makes them both more predictable and
analyzable. Yet, they are expressive enough to capture many problems, in
particular streaming applications. There is a wide range of toolflows that
specialize in KPN or SDF models and their variants and that use DSE tech-
niques to automatically derive efficient and highly parallel implementations
on heterogeneous many-cores or in distributed systems.93 There are also ded-

93: Castrillon, Desnos, et al. 2023,
Dataflow Models of Computation for
Programming Heterogeneous Multicores.

icated programming languages designed such that a dataflow graph can be
abstracted from an imperative program.94 Chapter 7 discusses such toolflows

94: Ertel 2019, Towards Implicit Parallel
Programming for Systems; Suchert et al.
2023, ConDRust: Scalable Deterministic Con-
currency from Verifiable Rust Programs.

in more depth and introduces the Mocasin toolflow, which is a contribution
of this thesis.

2.4.4 Limitations

The deterministic semantics of KPN and SDF, as well as the clear interfaces
and separation of concerns, address several of the CPS design challenges
discussed in Section 1.2. Process networks and dataflow models meet the
requirements of stream processing applications as they are needed, for in-
stance, in computer vision pipelines (e.g., in autonomous cars) or for audio
processing. Due to their ability to exploit data-level and pipeline parallelism,
dataflow models are known to perform well in such scenarios. However,
regarding CPS design, there are two major limitations. First, the models
do not include a notion of time, and second, KPN and SDF have limited
expressiveness with respect to reactive behavior.

http://dx.doi.org/10.1109/78.485935
http://dx.doi.org/10.1109/78.485935
http://dx.doi.org/10.1109/MEMCOD.2006.1695924
http://dx.doi.org/10.1109/MEMCOD.2006.1695924
http://dx.doi.org/10.1109/MEMCOD.2006.1695924
http://dx.doi.org/10.1109/MEMCOD.2006.1695924
http://dx.doi.org/10.1109/EDERC.2014.6924354
http://dx.doi.org/10.1109/EDERC.2014.6924354
http://dx.doi.org/10.1109/EDERC.2014.6924354
http://dx.doi.org/10.1109/SAMOS.2013.6621104
http://dx.doi.org/10.1109/SAMOS.2013.6621104
http://dx.doi.org/10.1109/SAMOS.2013.6621104
http://dx.doi.org/10.1016/j.parco.2013.11.007
http://dx.doi.org/10.1016/j.parco.2013.11.007
http://dx.doi.org/10.1016/j.parco.2013.11.007
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1109/JPROC.2002.805829
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems
https://ptolemy.berkeley.edu/papers/03/Cal/
https://ptolemy.berkeley.edu/papers/03/Cal/
https://ptolemy.berkeley.edu/papers/03/Cal/
http://dx.doi.org/10.1007/s002360050095
http://dx.doi.org/10.1007/s002360050095
http://dx.doi.org/10.1145/3299887.3299892
http://dx.doi.org/10.1145/3299887.3299892
http://dx.doi.org/10.1007/3-540-45937-5_14
http://dx.doi.org/10.1007/3-540-45937-5_14
http://dx.doi.org/10.1145/2400682.2400712
http://dx.doi.org/10.1145/2400682.2400712
http://dx.doi.org/10.1145/2400682.2400712
http://hirzels.com/martin/papers/tr09-rc24897-spl.pdf
http://hirzels.com/martin/papers/tr09-rc24897-spl.pdf
http://dx.doi.org/10.1145/3039207
http://dx.doi.org/10.1145/3039207
http://dx.doi.org/10.1145/3039207
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
https://cfaed.tu-dresden.de/publications?pubId=2560
https://cfaed.tu-dresden.de/publications?pubId=2560
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.33
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.33

2 Models of Computation for Cyber-physical Systems 23

CV Pedal

Camera

Brake

(a) Hewitt actors

CV Pedal

Camera

Brake

1

1

1

1

1

1
1

1

(b) SDF

CV Pedal

Camera

Brake

Control

(c) KPN

Figure 2.12: Implementations of a simple emergency brake assistant using different actor-based MoCs.

Consider the application in Figure 2.12a, which denotes a simplified emer-
gency brake assistant (EBA) application as it could be found in a car. This
example uses Hewitt actors. There is a camera actor that sends video frames
captured by a camera mounted in front of the car. The camera produces
a new frame every 20ms. The frames are processed by a computer vision
actor (CDV), which detects obstacles on the vehicles path and estimates
their distance. If there is the potential for a collision, the computer vision
component sends a message to the brake actor, which actuates the brake.
There is also a brake pedal actor, which sends a message to the brake when
the driver presses the brake pedal down.

There are several challenges to realizing this application in SDF. For instance,
the camera actor is supposed to send a frame every 20ms, but there is no
mechanism to express timed behavior in SDF. Thus, the behavior of the
camera actor needs to explicitly implement a waiting mechanism.

In the above description, the computer vision actor only sends a message to
the brake if the brake needs to be applied. This, however, is not possible in
SDF due to the fixed rates. Thus, the computer vision actor needs to send a
token to the brake for every camera frame. Based on the value, the brake
actor decides whether to apply the brake or not. This introduces a significant
overhead as additional (null) messages have to be sent, and the brake actor
fires most often without doing anything.

Incorporating the brake pedal is even morechallenging.Thechannel from the
brake pedal to the brake actor implies that for every token received from the
computer vision actor, the brake also needs to receive a token from the brake
pedal in order to fire. Thus, the brake pedal actor would need to sample the
brake pedal sensor every 20ms and implement a similar waiting mechanism
as the camera. Alternatively, we can insert a back edge that allows the brake
to poll the brake pedal for every camera frame. This solution is shown in
Figure 2.12b. The black dot on the back edge denotes an initial token (also
called a delay). Without this initial token, the application would immediately
deadlock.

while true do
if readToken(cv) = true then

applyBrake()
if readToken(pedal) = true then

applyBrake()

Listing 2.2: Pseudocode of a naive KPN
process implementing the brake actor.

In the SDF solution in Figure 2.12b, the polling of the pedal is synchronous
to the camera frames and therefore limited to a sampling interval of 20ms.
This is a fundamental limitation of SDF. In CSDF, we could decrease the
sampling interval by adjusting the brake’s firing rates to only consume a
token from the computer vision actor every 𝑛 firings.

In KPN, we are not limited to fixed firing rates. However, we need to carefully
coordinate reading from the channels to avoid deadlocks. A naive KPN
implementation of the brake actor is given in Listing 2.2. It reads a token
from the computer vision process, applies the brake if needed, then reads
from the brake pedal and applies the brake if needed. This implementation

2 Models of Computation for Cyber-physical Systems 24

implicitly assumes that the brake receives a token from the pedal for every
token it receives from the computer vision process. If the brake pedal only
sends a message when the brake pedal is pressed, then the brake process in
this naive implementation would block until the brake pedal is pressed. Any
subsequent tokens that are sent by the computer vision process would be
ignored until the brake pedal is pressed.

while true do
𝑏 ← false
𝑐 ← readToken(control)
if 𝑐 = 1 then

𝑏 ← readToken(cv)
else if 𝑐 = 2 then

𝑏 ← readToken(pedal)
else if 𝑐 = 3 then

𝑏 ← readToken(pedal) ∨
readToken(cv)

if 𝑏 = true then
applyBrake()

Listing 2.3: Pseudocode of a KPN process
that implements the brake actor and re-
ceives instructions from a control actor.

To avoid potential deadlocks, we need to coordinate the writing to and
reading from channels. We can do this implicitly by writing and reading
tokens at certain rates, like in SDF or CSDF, or we can do this explicitly by
adding a coordinating process. In the solution given in Figure 2.12c, there is
an additional control process. It sends tokens to the camera for every frame
it should produce, and it sends tokens to the brake pedal to poll its current
status. Via an additional channel to the brake, the control process informs
the brake at which channel it can next expect a token. Listing 2.3 shows
a pseudocode implementation of the brake process. It receives an integer
variable from the control process and uses this value to decide from which
channels it reads. This solution is more flexible than a CSDF implementation,
as it allows in principle to adjust the sampling rates dynamically. However,
we are still limited to polling sensors and introduce an overhead for sending
unnecessary messages.

Both in SDF and KPN, it is not possible to react to spontaneous events. If we
are willing to sacrifice determinism, then we can implement the example in
DDF and simply specify two firing rules for the brake pedal. One reacting to
a token from computer vision, and one reacting to a token from the brake
pedal. This behavior is commonly called a nondeterministic merge. In this
particular example, this solution would be preferable, as we do not require
strong consistency and the brake should be applied as quickly as possible.

In summary, KPN and SDF are too restrictive to efficiently express reactive
behavior. Moreover, it is not possible to break out of the deterministic se-
mantics in cases where this might be desired. However, as earlier sections
argued, nondeterministic models do not provide a suitable alternative for
CPS design. Many applications, like the aircraft door example described in
Section 2.3.2, require consistency and benefit from the improved testability
and reliability of deterministic solutions. Ideally, a MoC for CPS design is
reactive and deterministic, but also includes mechanisms for deliberately
introducing nondeterminism when this is required for realizing applications
like the EBA discussed in this section.

2.5 Models of Time

The MoCs discussed in the previous sections have ignored one crucial aspect
of any physical process: time. In CPSs, time plays an essential role for two
reasons. First, the cyber part, i.e., the computation, is realized by physical
processes in a computer that take time. Second, the computation needs to
interact with the physical part, i.e., other physical processes in the environ-
ment, and for this interaction to be meaningful, the computation needs a
notion of time.95 95: E. A. Lee 2009, Computing Needs Time.

Time is a subtle concept. Before we discuss in the subsequent sections MoCs
that include a notion of time in one form or another, we first introduce in
this section various models of time.

http://dx.doi.org/10.1145/1506409.1506426

2 Models of Computation for Cyber-physical Systems 25

2.5.1 Physical Time

Our intuitive understanding of time commonly assumes a Newtonian model.
In Newtonian mechanics, time is assumed to be continuous and absolute.
The current time is a global state that is instantly shared by all observers.
This model of time has proven useful for understanding the dynamics of
local and relatively slow-moving systems. However, since Einstein’s theories
of special and general relativity, we know that Newton’s model is imprecise
for analyzing the dynamics of fast objects and large distances.

Following the argument given by Lohstroh, E. A. Lee, Edwards, et al., New-
tonian time is not a useful model for modern CPSs:96 96: Lohstroh, E. A. Lee, Edwards, et al.

2023, Logical Time for Reactive Software.
Today’s electronic systemsmay span the globe, operate with sub-
nanosecond timing, and consist of discrete, discontinuous state
transitions. These systems are not Newtonian because the order
in which physically separated events occur is neither practically
knowable nor theoretically well-defined.97 Distributed systems 97: Bojowald 2017, Now: the Physics of

Time; Rovelli 2018, The Order of Time.have no well-defined “current state.”

In this thesis, we adopt the notion of imperfect readings of physical time given
by Lohstroh, E. A. Lee, Edwards, et al., which assumes that “physical time at
a single point in space behaves like a smoothly advancing real number.”96

Let 𝕋 denote the totally ordered set of all possible time values that any
clock within the system may return. A clock reading the current instance of
physical time 𝜏 ∈ ℝ returns an imperfect reading 𝑇 ∈ 𝕋, where neither 𝜏 nor
the precise mapping of 𝜏 to 𝑇 is knowable. Clocks are not consistent, and
different clocks may return different values in 𝕋.

2.5.2 Logical Time

Under the laws of relativity, the order of any two events occurring in separate
locations may depend on the frame of reference, in which case there is no
knowable true order. However, for many applications, e.g., the banking
example in Figure 2.6, the correct behavior depends on an unambiguous
ordering of events. We can impose such an order by assigning timestamps
to events. Lohstroh, E. A. Lee, Edwards, et al. state:96

𝑝1 𝑝2 𝑝3
𝑒1,1 1

𝑒1,2 2

𝑒2,1 2

𝑒3,1 1

𝑒3,2 2

𝑒2,2 3

𝑒2,3 4

𝑒1,3 5

𝑒3,3 3

𝑒3,4 4

Figure 2.13: Events in three distributed
processes annotated with Lamport times-
tamps.

If two separated components assign to their respective events
two timestamps 𝑡1 and 𝑡2 drawn from a totally ordered set 𝕋, we
can have a clear, unambiguous semantic model of the progres-
sion of the system based on the order of these timestamps. This
is not a scientific model because we do not demand the ordering
of timestamps necessarily match any physical truth, but it is an
engineering model that we can implement faithfully.

The notion of timestamps for ordering events logically in a distributed sys-
tem was first introduced by Leslie Lamport.98 His notion of timestamps is

98: Lamport 1978, Time, Clocks, and the
Ordering of Events in a Distributed System.

commonly referred to as Lamport timestamps. These timestamps are not at
all related to a wall clock’s reading of physical time and are represented by
natural numbers (𝕋 = ℕ).

Figure 2.13 shows how Lamport timestamps are assigned to distributed
processes that send each other messages. 𝑒𝑖,𝑗 denotes the 𝑗th event of process
𝑝𝑖. Each process keeps a local clock that assigns a timestamp 𝑡 𝑖,𝑗 to the event
𝑒𝑖,𝑗 such that 𝑡 𝑖,𝑗 is greater than the timestamp of all events causing 𝑒𝑖,𝑗 . The
transient binary relation → denotes a causal dependency between events.
𝑒𝑖,𝑗 → 𝑒𝑘,𝑙 if 𝑒𝑖,𝑗 precedes 𝑒𝑘,𝑙 in the same process (𝑖 = 𝑘 and 𝑗 < 𝑙), or if 𝑒𝑖,𝑗

http://dx.doi.org/10.1145/3576914.3587494
http://dx.doi.org/10.1063/PT.3.3466
http://dx.doi.org/10.1063/PT.3.3466
http://books.google.com/books?vid=ISBN978-0241292525
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/359545.359563

2 Models of Computation for Cyber-physical Systems 26

sends a message that is received by 𝑒𝑘,𝑗 . The clock is consistent if it fulfills
the following property:

𝑒𝑖,𝑗 → 𝑒𝑘,𝑙 ⟹ 𝑡 𝑖,𝑗 < 𝑡𝑘,𝑙

The < relation over timestamps establishes a partial order and is referred to
as the happens before relation. We can also define a total order by introducing
a tie-breaker for events that have the same timestamp (e.g., 𝑒1,2 and 𝑒2,2 in
Figure 2.13). For instance, a tie-breaker could give events in processes with
a lower process identifier precedence over events in processes with a higher
process identifier.

The Lamport timestamps do not fulfill the strong consistency property:99 99: Raynal and Singhal 1996, Logical Time:
Capturing Causality in Distributed Systems.

𝑒𝑖,𝑗 → 𝑒𝑘,𝑙 ⟺ 𝑡 𝑖,𝑗 < 𝑡𝑘,𝑙

For instance, 𝑒1,2 in Figure 2.13 has a greater timestamp than 𝑒3,1, but clearly
the events are independent, and 𝑒3,1 does not cause 𝑒1,2. Vector timestamps
have been proposed as a solution.100 For 𝑛 processes, the set of timestamps 100: Fidge 1988, Timestamps in Message-

Passing Systems That Preserve the Partial
Ordering; Friedmann 1988, Virtual Time
and Global States of Distributed Systems;
Schmuck 1988, The Use of Efficient Broad-
cast Protocols in Asynchronous Distributed
Systems.

becomes 𝕋 = ℕ𝑛. Figure 2.14 shows the same processes and events as in
Figure 2.13, but with annotated vector timestamps. Using this representation,
we can clearly identify if two events are causally related.

𝑝1 𝑝2 𝑝3
𝑒1,1 (

1
0
0
)

𝑒1,2 (
2
0
0
)

𝑒2,1 (
1
1
0
)

𝑒3,1 (
0
0
1
)

𝑒3,2 (
0
0
2
)

𝑒2,2 (
1
2
2
)

𝑒2,3 (
1
3
2
)

𝑒1,3 (
3
3
2
)

𝑒3,3 (
0
0
3
)

𝑒3,4 (
0
0
4
)

Figure 2.14: Events in three distributed
processes annotated with vector times-
tamps.

Timestamps provide us with a tool for representing the causal relation-
ship of events and creating a partial or total orders of events. However, the
timestamps themselves do not provide a semantic notion of how concurrent
processes should coordinate their execution. For this, we can build additional
coordination protocols that leverage the timestamp mechanism. Lamport
provided an example of such a protocol in his original paper.98 In the follow-
ing sections, we will discuss MoCs that leverage a similar notion of logical
time to coordinate concurrent processes without relying on programmers to
manually write such protocols.

To define logical time, we adopt the notation of Lohstroh, E. A. Lee, Edwards,
et al. and introduce another abstraction.101 Let 𝔾 denote the totally ordered

101: Lohstroh, E. A. Lee, Edwards, et al.
2023, Logical Time for Reactive Software.

set of all tags. A tag 𝑔 ∈ 𝔾 denotes a logical time. If two events have the
same tag 𝑔, then they are logically simultaneous. We further require a mono-
tonically increasing function 𝒯 ∶ 𝔾 → 𝕋 that maps each tag 𝑔 ∈ 𝔾 to a
timestamp 𝑡 ∈ 𝕋. In the case of Lamport and vector timestamps, we simply
have 𝔾 = 𝕋 = ℕ𝑛 (with 𝑛 = 1 in the case of Lamport timestamps), and 𝒯 is
the identity function.

2.5.3 Representations of Time

There are many possible choices for 𝕋 and 𝔾. This subsection discusses a
selection of common choices.

For CPSs, it is reasonable to require that timestamps relate to the passage of
time as perceived by physical observers. Assuming that physical time is a
real number, a reasonable representation for timestamps could be 𝕋 = ℝ, or
practically, the set of floating-point numbers in a particular representation.
However, floating-point arithmetic is subtle, and comparing two floating-
point numbers does not always yield the expected result.102

102: Dawson, Bruce 2012a, Comparing
Floating Point Numbers, 2012 Edition.Therefore, it is

typically better to represent time as an integer number.103 103: Dawson, Bruce 2012b, Don’t Store
That in a Float ; Broman et al. 2015, Require-
ments for Hybrid Cosimulation Standards.A common integer representation of time is Unix time, which represents time

as the number of seconds (the Unix epoch) since 00:00:00 UTC on Thursday,
1 January 1970.104

104: IEEE Computer Society andTheOpen
Group 2018, IEEE Standard for Software-
Hardware Interface for Multi-Many-Core.

Other integer representations can be chosen to increase
precision. For instance, the highest precision time representation of the

http://dx.doi.org/10.1109/2.485846
http://dx.doi.org/10.1109/2.485846
https://docs.google.com/document/d/1YfJsAHsY2Wl6IEx47DlRnCnYzayBQacsJ2oa818u4e8/edit?hl=en_US&pli=1
https://docs.google.com/document/d/1YfJsAHsY2Wl6IEx47DlRnCnYzayBQacsJ2oa818u4e8/edit?hl=en_US&pli=1
https://docs.google.com/document/d/1YfJsAHsY2Wl6IEx47DlRnCnYzayBQacsJ2oa818u4e8/edit?hl=en_US&pli=1
https://nylas.github.io/paper-reading-group/papers/Virtual_Time.pdf
https://nylas.github.io/paper-reading-group/papers/Virtual_Time.pdf
https://hdl.handle.net/1813/6768
https://hdl.handle.net/1813/6768
https://hdl.handle.net/1813/6768
http://dx.doi.org/10.1145/3576914.3587494
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/13/dont-store-that-in-a-float/
https://randomascii.wordpress.com/2012/02/13/dont-store-that-in-a-float/
http://dx.doi.org/10.1145/2728606.2728629
http://dx.doi.org/10.1145/2728606.2728629
http://dx.doi.org/10.1109/IEEESTD.2018.8277153
http://dx.doi.org/10.1109/IEEESTD.2018.8277153

2 Models of Computation for Cyber-physical Systems 27

chrono C++ library is the Unix epoch in nanoseconds represented by a 64-bit
integer.105 105: cppreference.com 2023a, Date and

Time Utilities.
Some applications require a more fine-grained mechanism to establish an
order between events that have the same timestamp and would otherwise
appear logically simultaneous. This is similar to the tie-breaker used for
establishing a total order of Lamport timestamps. For this, we can leverage
the additional abstraction provided by tags and introduce another dimension
to logical time, creating a superdense time.106 Superdense time uses 𝔾 = 106: Maler, Manna, and Pnueli 1992, From

Timed to Hybrid Systems.𝕋 × ℕ, and each tag 𝑔 is a tuple 𝑔 = (𝑡, 𝑚) consisting of a timestamp 𝑡 and a
superdense time index 𝑚 that is commonly referred to as the microstep of a
tag. The function 𝒯 (𝑔) = 𝑡 maps each tag to its timestamp. The total order
relation of superdense tags is defined as follows:

(𝑡1, 𝑚1) < (𝑡2, 𝑚2) ⟺ 𝑡1 < 𝑡2 ∨ 𝑡1 = 𝑡2 ∧ 𝑚1 < 𝑚2

Superdense time allows us to logically order events that are causally related
without requiring that their timestamps in 𝕋 increase. This is particularly
useful in discrete event simulation,107 whichwe discuss in the next section. 107: K. H. Kim et al. 1997, Ordering of Si-

multaneous Events in Distributed DEVS Sim-
ulation; Rönngren and Liljenstam 1999, On
Event Ordering in Parallel Discrete Event
Simulation.2.6 Discrete Events

Vin

C

Vout

VDD

Figure 2.15: A CMOS inverter with a ca-
pacity connected to its output.

The timed behavior of many physical processes can be modeled using ordi-
nary differential equations and continuous functions. Consider, for example,
the CMOS inverter with a capacitive load given in Figure 2.15. This system
can be modeled using differential equations, and given the input signal, we
can determine a continuous function that models the output signal. For
instance, when we send a rectangular pulse to the input, as given in the
top-left plot in Figure 2.16, then the output voltage is expected to follow the
continuous function given in the plot below.

Circuit engineers commonly use simulation tools to design circuits and
analyze a circuit’s behavior before manufacturing it. Computers, however,
cannot easily handle differential equations and continuous functions directly.
Therefore, circuit simulators commonly approximate the solution and use a
discrete time axis with a fixed time increment. In such simulators, a solver
iteratively predicts the system’s state for the next time step based on the
current state. The top-right plot in Figure 2.16 shows an approximation for a
fixed time step of 5 ns.

0

5

0 25 50 75 100 125
Time (ns)

V i
n (

V)

Input Signal

0

5

0 25 50 75 100 125
Time (ns)

V o
ut

 (V
)

Approximation Using Fixed Steps

0

5

0 25 50 75 100 125
Time (ns)

V o
ut

 (V
)

Output Signal

0

5

0 25 50 75 100 125
Time (ns)

V o
ut

 (V
)

Approximation Using Discrete Events

Figure 2.16: An input signal and different
models of the output signal of a CMOS
inverter.

https://en.cppreference.com/mwiki/index.php?title=cpp/chrono&oldid=154297
https://en.cppreference.com/mwiki/index.php?title=cpp/chrono&oldid=154297
http://dx.doi.org/10.1007/BFb0032003
http://dx.doi.org/10.1007/BFb0032003
http://dx.doi.org/10.1016/S0928-4869(96)00009-2
http://dx.doi.org/10.1016/S0928-4869(96)00009-2
http://dx.doi.org/10.1016/S0928-4869(96)00009-2
http://books.google.com/books?vid=ISBN0769501559
http://books.google.com/books?vid=ISBN0769501559
http://books.google.com/books?vid=ISBN0769501559

2 Models of Computation for Cyber-physical Systems 28

Such a simulation is typically computationally intensive, especially if the
time increments are small for better accuracy and the time span of interest
is relatively long. At each time step, the entire set of equations needs to be
reevaluated. This is particularly costly if the system state does not change
noticeably. Some simulators alleviate this problem by using adaptive time
steps, such that updates are computed more frequently if the simulated
signal changes quickly. However, we can reduce the computational load of
the simulation considerably if we are only interested in certain event.

For analyzing digital circuits, it is not commonly required to simulate the
output voltage continuously. To understand digital logic, we only need to
consider if the voltage level is low or high—0 or 1. Thus, we can model the
system’s behavior as a series of discrete events, where an event denotes a
change in a signal from low to high or high to low. For example, we can
model the input signal as two events 𝑒𝑖,𝑙 and 𝑒𝑖,ℎ with tags 𝑔 𝑖,𝑙 = 25 ns and
𝑔 𝑖,ℎ = 75 ns.

Assuming that we know the switching delay imposed by the inverter, a
simulator can schedule new events to model the future changes to the output
signal in response to the input events. In this example, the delay is approx-
imately 14 ns for switching from low to high and 10 ns for switching from
high to low, and thus the simulator would schedule the output events 𝑒𝑜,ℎ and
𝑒𝑜,𝑙 with tags 𝑔𝑜,𝑙 = 39 ns and 𝑔𝑜,ℎ = 85 ns. The outcome of this “simulation”
is shown in the bottom right plot in Figure 2.16.

2.6.1 Discrete Event Simulation

In discrete event simulation (DES),108 typically a simulation kernel manages 108: Fishman 2011, Discrete-event Simula-
tion: Modeling, Programming, and Analysis.the progress of the simulation. It keeps track of the event queue, which holds

all unprocessed events, provides an application programming interface (API)
for scheduling new events, and iterates over the events in the event queue
one by one in order of their associated tags. In general-purpose simulation
frameworks such as SystemC109 or SimPy110, the users can freely define 109: Panda 2001, SystemC: AModeling Plat-

form Supporting Multiple Design Abstrac-
tions; Black et al. 2009, SystemC: From the
Ground Up, Second Edition.

110: Matloff 2008, Introduction To Discrete-
Event Simulation and the Simpy Language;
Team SimPy 2023, SimPy: Discrete Event
Simulation for Python.

the relevant events and also provide event handlers that are invoked by
the kernel when a corresponding event is processed. In simulators that are
more specialized for a certain use case, this can be partially automated. For
instance, it is possible to automatically derive a DES model from a hardware
model written in a hardware description language (HDL) such as Verilog,111

111: D. E. Thomas and Moorby 2008, The
Verilog Hardware Description Language.

VHDL,112 or Chisel.113

112: Pedroni 2004, Circuit Design with
VHDL.
113: Bachrach et al. 2012, Chisel: Construct-
ing Hardware in a Scala Embedded Lan-
guage.

The discrete events model is quite universal. It can be applied to model
a wide range of systems in different domains, and it can be scaled to an
arbitrary level of abstraction by redefining the events of interest. In the
inverter example, we considered events at the level of the inputs and outputs
of individual gates. However, if only the functional behavior of the hardware
is of interest and not its timing characteristics, it can be simulated at the
register transfer level (RTL). At the RTL level, all events are aligned with
the ticks of a set of clocks. Abstracting even further, the interaction between
multiple hardware components can be represented as messages instead of
individual 1-bit signals. This enables the cycle-accurate simulation of entire
processors and multiprocessor systems on a chip (MPSoCs), for instance in
SystemC TLM114

114: Maillet-Contoz and Ghenassia 2005,
Transaction Level Modeling.

or gem5.115

115: Binkert et al. 2011, The gem5 Simu-
lator ; Lowe-Power et al. 2020, The Gem5
Simulator: Version 20.0+.

In fact, DES is also universal in the sense that
different modeling frameworks can be combined.116

116: Menard, Jung, et al. 2017, System Sim-
ulation with gem5 and SystemC: The Key-
stone for Full Interoperability; Blochwitz et
al. 2011, The Functional Mockup Interface
for Tool independent Exchange of Simulation
Models.

http://dx.doi.org/10.1007/978-1-4757-3552-9
http://dx.doi.org/10.1007/978-1-4757-3552-9
http://dx.doi.org/10.1145/500001.500018
http://dx.doi.org/10.1145/500001.500018
http://dx.doi.org/10.1145/500001.500018
http://dx.doi.org/10.1007/978-0-387-69958-5
http://dx.doi.org/10.1007/978-0-387-69958-5
https://heather.cs.ucdavis.edu/matloff/public_html/156/PLN/DESimIntro.pdf
https://heather.cs.ucdavis.edu/matloff/public_html/156/PLN/DESimIntro.pdf
https://simpy.readthedocs.io/en/latest/
https://simpy.readthedocs.io/en/latest/
http://dx.doi.org/10.1007/978-0-387-85344-4
http://dx.doi.org/10.1007/978-0-387-85344-4
https://mitpress.mit.edu/9780262042642/circuit-design-with-vhdl/
https://mitpress.mit.edu/9780262042642/circuit-design-with-vhdl/
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1007/0-387-26233-4_2
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.48550/arXiv.2007.03152
http://dx.doi.org/10.48550/arXiv.2007.03152
http://dx.doi.org/10.1109/SAMOS.2017.8344612
http://dx.doi.org/10.1109/SAMOS.2017.8344612
http://dx.doi.org/10.1109/SAMOS.2017.8344612
https://elib.dlr.de/74668/
https://elib.dlr.de/74668/
https://elib.dlr.de/74668/

2 Models of Computation for Cyber-physical Systems 29

2.6.2 Limitations

The concept of discrete events is also particularly useful for modeling cyber-
physical systems. Since events are tagged, the discrete event model provides
a timed semantics, but this notion of time is typically purely logical. Discrete
events are most commonly used in simulation, where the tags correspond to
estimated times in the prediction model and not to physical readings of time
in the real world. The general model is less practical for reasoning about
the execution of software in a real system. Also, additional constraints are
required for ensuring the deterministic execution of discrete event models.
Popular implementations of discrete events like SystemC actually do not
guarantee a deterministic execution.117 However, as we will discuss in the 117: Schumacher et al. 2010, ParSC: Syn-

chronous Parallel Systemc Simulation on
Multi-Core Host Architectures.

remainder of this thesis, it is possible to use more constrained discrete event
models to deterministically coordinate software execution in real systems
and to establish a connection between the logical tags of events and physical
readings of time.

Leveraging discrete events for coordinating the execution of software is also
challenging regarding scalability. Since the model assumes a single global
event queue and events need to be processed in tag order, it is difficult to
leverage parallel hardware and to deal with distributed memories. There
exists a wide range of solutions for parallelizing popular discrete event
simulation frameworks like SystemC and gem5,118 but using them remains 118: Schumacher et al. 2010, ParSC: Syn-

chronous Parallel Systemc Simulation on
Multi-Core Host Architectures; Chung, J.-K.
Kim, and Ryu 2014, SimParallel: A High Per-
formance Parallel SystemC Simulator Using
Hierarchical Multi-threading; T. Schmidt,
G. Liu, and Dömer 2017, Exploiting Thread
and Data Level Parallelism for Ultimate
Parallel SystemC Simulation; Zurstraßen
et al. 2023, par-gem5: Parallelizing gem5’s
Atomic Mode.

challenging as they often require manual partitioning and expose users to
the pitfalls of threads.

There are also manifold solutions for executing simulations jointly in a
distributed system.119 However, those typically introduce a time quota, which

119: Huang et al. 2008, Scalably Distributed
SystemC Simulation for Embedded Applica-
tions; Cox 2005, RITSim: Distributed Sys-
temC Simulation; Alian, D. Kim, and N. S.
Kim 2016, pd-Gem5: Simulation Infrastruc-
ture for Parallel/distributed Computer Sys-
tems; Alian, Darbaz, et al. 2017, dist-gem5:
Distributed simulation of computer clusters.

gives a time window in which events are allowed to be executed out of order.
This introduces a certain amount of inaccuracy but increases performance
as the individual nodes can operate more independently within a certain
bound. Such a solution, however, is not suitable for controlling safety-critical
systems. More conservative approaches use rollback mechanisms to recover
from scenarios where an event was handled too early. But rollbacks are only
possible in a simulated environment, not when interacting with the real
physical world.

2.7 Synchronous Languages

The family of synchronous programming languages builds on the synchronous
reactive MoC,120 which can be seen as a specialized version of the more 120: Halbwachs 1993, Synchronous Pro-

gramming of Reactive Systems.general discrete event MoC.121 The semantics of synchronous languages are
121: E. A. Lee and Zheng 2007, Leveraging
Synchronous Language Principles for Hetero-
geneous Modeling and Design of Embedded
Systems.

defined based on the synchronous hypothesis, which makes the assumption
that “reactive systems produce their outputs synchronously with their inputs,
their reaction taking no observable time.”122 Thus, the synchronous reactive

122: Benveniste and Gérard Berry 1991,
The Synchronous Approach To Reactive and
Real-Time Systems.

paradigm imposes an idealized view on the real physical behavior of a system.
This idealized view enables easy composition of systems without affecting
their observable behavior.

It is considered the compiler’s task to deliver an implementation that is
faithful to the assumptions made in the synchronous reactive MoC. This idea
is rooted in the design process commonly used for digital circuits. Here, the
designer is concerned with electrical signals that are exchanged between
registers and logical gates to implement a certain function.When considering
the functional behavior of the circuit, all logical gates can be considered as
producing their outputs synchronously to their inputs, and all events are
defined based on the ticks (e.g., rising edge) of a global clock. Only once the

http://dx.doi.org/10.1145/1878961.1879005
http://dx.doi.org/10.1145/1878961.1879005
http://dx.doi.org/10.1145/1878961.1879005
http://dx.doi.org/10.1145/1878961.1879005
http://dx.doi.org/10.1145/1878961.1879005
http://dx.doi.org/10.1145/1878961.1879005
http://dx.doi.org/10.1109/ISCAS.2014.6865424
http://dx.doi.org/10.1109/ISCAS.2014.6865424
http://dx.doi.org/10.1109/ISCAS.2014.6865424
http://dx.doi.org/10.1145/3061639.3062243
http://dx.doi.org/10.1145/3061639.3062243
http://dx.doi.org/10.1145/3061639.3062243
http://dx.doi.org/10.23919/DATE56975.2023.10137178
http://dx.doi.org/10.23919/DATE56975.2023.10137178
http://dx.doi.org/10.1109/SIES.2008.4577715
http://dx.doi.org/10.1109/SIES.2008.4577715
http://dx.doi.org/10.1109/SIES.2008.4577715
https://scholarworks.rit.edu/theses/5504/
https://scholarworks.rit.edu/theses/5504/
http://dx.doi.org/10.1109/LCA.2015.2438295
http://dx.doi.org/10.1109/LCA.2015.2438295
http://dx.doi.org/10.1109/LCA.2015.2438295
http://dx.doi.org/10.1109/ISPASS.2017.7975287
http://dx.doi.org/10.1109/ISPASS.2017.7975287
http://www-verimag.imag.fr/~halbwach/newbook.pdf
http://www-verimag.imag.fr/~halbwach/newbook.pdf
http://dx.doi.org/10.1145/1289927.1289949
http://dx.doi.org/10.1145/1289927.1289949
http://dx.doi.org/10.1145/1289927.1289949
http://dx.doi.org/10.1145/1289927.1289949
http://dx.doi.org/10.1109/5.97297
http://dx.doi.org/10.1109/5.97297

2 Models of Computation for Cyber-physical Systems 30

circuit is realized in hardware, we have to ensure that all signals traverse
the gates in time before the next tick of the clock.

In the synchronous reactive paradigm, all events are defined with respect to
a global clock. This clock is purely logical, and its ticks denote a sequence of
instants of computation (𝔾 = ℕ).123 Since the system is defined as a series of 123: Lohstroh, E. A. Lee, Edwards, et al.

2023, Logical Time for Reactive Software.events and synchronous reactions to those events, the synchronous reactive
MoC is closely related to discrete event models.121 However, in contrast
to most discrete event systems, which typically require that new events
be scheduled with a non-zero delay to ensure causality, the synchronous
hypothesis requires that inputs and outputs are synchronous.

Following a denotational semantics approach, synchronous reactive systems
are defined as compositions of their components, where at each tick, each
component can bemodeled as a function that maps the component’s inputs to
its outputs.124 Note that this functionmaychange between ticks.Thus, at each 124: Gérard Berry 2000, The Foundations

of Esterel; Edwards and E. A. Lee 2003, The
Semantics and Execution of a Synchronous
Block-Diagram Language.

tick, the system is defined as a set of equations. Consequently, computation
of the system’s outputs requires solving the set of equations. In the presence
of direct feedback, a unique least fixed point solution needs to be found. We
call a synchronous program well-formed, if such a solution can be found in
bounded time.125 125: E. A. Lee and Seshia 2016, Introduc-

tion to Embedded Systems: A Cyber-Physical
Systems Approach.

2.7.1 Languages and Tools

The most prominent examples of synchronous languages include Esterel,126 126: Boussinot and Simone 1991, The Es-
terel Language; Gérard Berry 2000, The
Foundations of Esterel.

Signal127 and Lustre.128 They all build on the synchronous hypothesis, but

127: Le Guernic et al. 1991, Programming
Real-Time Applications With Signal.

128: Halbwachs et al. 1991, The Syn-
chronous Data Flow Programming Lan-
guage Lustre.

their approaches are quite different.129 While Lustre is a declarative language

129: Benveniste, Caspi, et al. 2003,The Syn-
chronous Languages 12 Years Later .

and primarily describes data flow, Esterel is an imperative language and
primarily describes control flow. Lustre is sample driven, which means that
it reads inputs and computes updates for each tick of the clock. Esterel,
however, is event driven, which means that it computes updates for each
input event. While Esterel embraces zero-delay feedback loops and has
fixed-point semantics, Lustre requires that programs be acyclic, and any
feedback imposes a delay. Signal combines aspects of both approaches. It
has declarative sample-driven statements as well as imperative event-driven
statements. Signal is designed for specifying open systems as compositions
of individual programs, where each program is driven by its own clock. As
such, Signal is a multiclock language. There is also a multiclock extension for
Esterel.130 Also Lustre allows defining multiple clocks, but only at fractions 130: Gérard Berry and Sentovich 2001,

Multiclock Esterel.of the main clock.

Listing 2.4: A Lustre program implementig a stopwatch and a table that represents an execution sequence.

1 node stopwatch
2 (tick: bool; reset, start_stop: bool)
3 returns
4 (time: int; running: bool);
5 let
6 time = 0 -> if reset then 0
7 else if running and tick then pre(time)+1
8 else pre(time);
9 running = false -> if start_stop then not pre(running)

10 else pre(running);
11 tel

Instant 0 1 2 3 4 5 6 7

tick t t t t t t t t
start_stop f f t f f f t f
reset f f f f f t f f

time 0 0 1 2 3 0 1 1
running f f t t t t f f

pre(time) ? 0 0 1 2 3 0 1
pre(running) ? f f t t t t f

Listing 2.4 shows an example program in Lustre that implements a simple
stopwatch.The program has three inputs tick, start_stop, and reset. And
it produces the outputs timeand running. The table on the right represents
one possible execution sequence for this program. The execution proceeds
in a sequence of logical time instants. At each instant, the program computes
its outputs and state based on its inputs and the previous state. The pre

http://dx.doi.org/10.1145/3576914.3587494
http://dx.doi.org/10.7551/mitpress/5641.003.0021
http://dx.doi.org/10.7551/mitpress/5641.003.0021
http://dx.doi.org/10.1016/S0167-6423(02)00096-5
http://dx.doi.org/10.1016/S0167-6423(02)00096-5
http://dx.doi.org/10.1016/S0167-6423(02)00096-5
http://books.google.com/books?vid=ISBN0262533812
http://books.google.com/books?vid=ISBN0262533812
http://books.google.com/books?vid=ISBN0262533812
http://dx.doi.org/10.1109/5.97299
http://dx.doi.org/10.1109/5.97299
http://dx.doi.org/10.7551/mitpress/5641.003.0021
http://dx.doi.org/10.7551/mitpress/5641.003.0021
http://dx.doi.org/10.1109/5.97301
http://dx.doi.org/10.1109/5.97301
http://dx.doi.org/10.1109/5.97300
http://dx.doi.org/10.1109/5.97300
http://dx.doi.org/10.1109/5.97300
http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1007/3-540-44798-9_10

2 Models of Computation for Cyber-physical Systems 31

operator, which is used in the example, implements a delay and denotes the
value at the previous instant.

The strength of the synchronous reactive paradigm lies in its rigorous math-
ematical foundation. It allows for a correct-by-construction approach, where
the program is a specification of the intended behavior and components
can be composed arbitrarily without changing this behavior. Moreover, the
safety properties of programs can be formally verified.131 131: Jagadeesan, Puchol, and Von

Olnhausen 1995, Safety Property Verifica-
tion of Esterel Programs and Applications to
Telecommunications Software; Bouali 1998,
Xeve, an Esterel Verification Environment ;
Hagen and Tinelli 2008, Scaling Up the
Formal Verification of Lustre Programs with
SMT-Based Techniques.

These characteristics make synchronous languages particularly attractive for
the development of safety-critical systems. Already in the 1980s, Lustre was
applied in the development of the Airbus A320, which is the first commercial
fly-by-wire aircraft, and in the development of the N4 series of nuclear power
plants.129 This has led to the development of the SCADE language and tool
suite.132 SCADE is a commercial product that is now developed by Ansys, 132: Abdulla et al. 2006, Designing Safe, Re-

liable Systems Using Scade; Gérard Berry
2007, SCADE: Synchronous Design and Val-
idation of Embedded Control Software; Co-
laço, Pagano, and Pouzet 2017, SCADE 6: A
formal language for embedded critical soft-
ware development (invited paper).

Inc.133 and has been used in numerous commercial applications, including

133: Ansys, Inc. 2023, Ansys SCADE Suite:
Model-Based Development Environment for
Critical Embedded Software.

French nuclear power plants, the Airbus A340-600, and the Hong Kong
subway.129 Also, Esterel was applied in large-scale industry applications in
avionics134 and digital signal processor (DSP) design.135

134: Gérard Berry, Bouali, et al. 2000, Es-
terel: a Formal Method Applied To Avionic
Software Development .

135: Arditi et al. 1999, Using Esterel and
Formal Methods to Increase the Confidence
in the Functional Validation of a Commer-
cial DSP .

2.7.2 Limitations

While synchronous languages have been used in various safety-critical com-
mercial applications, there are several challenges to applying the approach
to a broader range of systems on a larger scale. One such challenge is that
Esterel, SCADE, or similar languages are perceived as rather obscure and re-
strictive by programmers that are used to the sequential code of mainstream
programming languages. Moreover, safely integrating large legacy code-
bases with a synchronous language imposes significant challenges. There are,
however, some efforts to make the synchronous semantics more accessible to
programmers.The synchronous constructive (SC) MoC, for instance, replaces
signals with variables and allows for more programming patterns known
from sequential programming while preserving the synchronous seman-
tics.136 This approach is also implemented in the visual language SCCha- 136: Hanxleden, Mendler, et al. 2014, Se-

quentially Constructive Concurrency-A Con-
servative Extension of the Synchronous
Model of Computation.

rts.137 More recently, HipHop.js integrated Esterel-like language constructs

137: Hanxleden, Duderstadt, et al. 2014,
SCCharts: Sequentially Constructive Stat-
echarts for Safety-Critical Applications:
HW/SW-Synthesis for a Conservative Exten-
sion of Synchronous Statecharts.

with JavaScript.138

138: Gérard Berry and Serrano 2020,
HipHop.js: (A)Synchronous Reactive Web
Programming.

Compiling synchronous programs, so that they can efficiently exploit parallel
hardware is another challenge. While synchronous programs are inherently
concurrent, the resulting parallelism is rather fine-grained. Mapping such
fine-grained structures to parallel computation in multiple threads is chal-
lenging, as the effort required for synchronizing the threads easily outweighs
the benefits gained from parallel execution. Therefore, synchronous lan-
guages are typically compiled into single-threaded sequential programs. To
efficiently parallelize the execution, the program needs to be partitioned
by the compiler139 or via language-level constructs like futures.140 Alterna- 139: Yuan, Yoong, and Roop 2011, Compil-

ing Esterel for Multi-core Execution.

140: Cohen, Gérard, and Pouzet 2012, Pro-
gramming Parallelism with Futures in Lus-
tre.

tively, specialized hardware can be used to minimize the synchronization
overhead.141

141: Li 2007, The Kiel Esterel Processor: A
Multi-threaded Reactive Processor ; Li and
Hanxleden 2012, Multithreaded Reactive
Programming—The Kiel Esterel Processor .

Moreover, despite the use of logical clocks, synchronous languages do not
provide a clear mechanism for handling physical time. In the synchronous
reactive paradigm, the progress of physical time is seen as an input to the
system. The ticks of a physical clock (e.g., every second) are input events
that the system may react to. In the example in Listing 2.4, the stopwatch
counts ticks, not physical time. The environment is responsible for providing
the ticks of a physical clock at sensible intervals and for choosing how other
input events relate to this clock. If outputs should be created with a certain
physical delay, this needs to be implemented manually by counting the ticks

http://dx.doi.org/10.1007/3-540-60045-0_45
http://dx.doi.org/10.1007/3-540-60045-0_45
http://dx.doi.org/10.1007/3-540-60045-0_45
http://dx.doi.org/10.1007/BFb0028770
http://dx.doi.org/10.1109/FMCAD.2008.ECP.19
http://dx.doi.org/10.1109/FMCAD.2008.ECP.19
http://dx.doi.org/10.1109/FMCAD.2008.ECP.19
http://dx.doi.org/10.1007/11925040_8
http://dx.doi.org/10.1007/11925040_8
http://dx.doi.org/10.1007/978-1-4020-6254-4_2
http://dx.doi.org/10.1007/978-1-4020-6254-4_2
http://dx.doi.org/10.1109/TASE.2017.8285623
http://dx.doi.org/10.1109/TASE.2017.8285623
http://dx.doi.org/10.1109/TASE.2017.8285623
https://www.ansys.com/de-de/products/embedded-software/ansys-scade-suite
https://www.ansys.com/de-de/products/embedded-software/ansys-scade-suite
https://www.ansys.com/de-de/products/embedded-software/ansys-scade-suite
http://dx.doi.org/10.1016/S0167-6423(99)00015-5
http://dx.doi.org/10.1016/S0167-6423(99)00015-5
http://dx.doi.org/10.1016/S0167-6423(99)00015-5
https://citeseerx.ist.psu.edu/doc_view/pid/992cd105eaeea5f770659616bb17667dfda0b17d
https://citeseerx.ist.psu.edu/doc_view/pid/992cd105eaeea5f770659616bb17667dfda0b17d
https://citeseerx.ist.psu.edu/doc_view/pid/992cd105eaeea5f770659616bb17667dfda0b17d
https://citeseerx.ist.psu.edu/doc_view/pid/992cd105eaeea5f770659616bb17667dfda0b17d
http://dx.doi.org/10.1145/2627350
http://dx.doi.org/10.1145/2627350
http://dx.doi.org/10.1145/2627350
http://dx.doi.org/10.1145/2627350
http://dx.doi.org/10.1145/2594291.2594310
http://dx.doi.org/10.1145/2594291.2594310
http://dx.doi.org/10.1145/2594291.2594310
http://dx.doi.org/10.1145/2594291.2594310
http://dx.doi.org/10.1145/3385412.3385984
http://dx.doi.org/10.1145/3385412.3385984
http://dx.doi.org/10.1109/DSD.2011.97
http://dx.doi.org/10.1109/DSD.2011.97
http://dx.doi.org/10.1145/2380356.2380394
http://dx.doi.org/10.1145/2380356.2380394
http://dx.doi.org/10.1145/2380356.2380394
https://d-nb.info/1002624398/34
https://d-nb.info/1002624398/34
http://dx.doi.org/10.1109/TC.2010.246
http://dx.doi.org/10.1109/TC.2010.246

2 Models of Computation for Cyber-physical Systems 32

of the input clock. This requires that the frequency of the input clock be
known in advance by the program.

Finally, the synchronous hypothesis only holds as long as the system can
keep up with processing the events. This means that the physical time
required for computing the response to events may not exceed the interval
between subsequent input events. Typically, synchronous languages do not
provide mechanisms for detecting or handling such a situation as part of the
program.

2.7.3 The Sparse Synchronous Model

The sparse synchronous model (SSM) proposed by Hui and Edwards inte-
grates more tightly with a physical notion of time and also acknowledges that
computation may take a significant amount of time.142 While also following 142: Hui and Edwards 2022, The Sparse

Synchronous Model on Real Hardware.a strictly synchronous semantics, reactions in SSM, may create concurrent
tasks that commit their results at a later time instant.143 The model is sparse 143: This idea is closely related to the con-

cept of asynchronous function calls and
futures in Lustre (see 140).

in the sense that the underlying clock is fine-grained for high timing preci-
sion, but reactions are not processed at every tick of the clock. Computation
only occurs in response to input events and when concurrent tasks commit
their results. The frequency of the underlying clock is not known by the
user, and in contrast to traditional synchronous languages, a change in clock
frequency does not change the program’s behavior.

The initial implementation of SSM is C-based but there is also a Lua im-
plementation144 and a programming language called Scoria.145 While the 144: Hui and Edwards 2023, Towards

Sparse Synchronous Programming in Lua.

145: Krook et al. 2022,Creating a Language
for Writing Real-Time Applications for the
Internet of Things.

SSM is very promising for the development of cyber-physical systems, it
currently only provides a rather low-level abstraction and is aimed at deeply
embedded devices. Also, the approach cannot yet be extended to coordinate
the execution of programs in a distributed system.

2.8 Logical Execution Time

While the synchronous reactive MoC assumes that inputs and outputs are
synchronous, the logical execution time (LET) paradigm takes the opposite
approach. The LET model acknowledges that computation takes time and
provides a simple mechanism for linking the logical progression of the
program to the physical time of the environment.146 146: Kirsch and Sokolova 2012, The Logical

Execution Time Paradigm.
The LET model is motivated by the inherent nondeterminism in classic real-
time task models (cf. Section 2.2.4). Consider again the example given in
Figure 2.5 and reproduced in Figure 2.17a. Depending on when jobs start
their computation and for how long they compute, the concrete data paths
may change. Kirsch and Sokolova call this approach bounded execution time
(BET), as the classic real-time model provides an upper bound for when jobs
write their outputs but does not define the ordering precisely.

In the LET model, however, the time at which jobs write the results is defined
precisely on a logical timeline. The set of tags is equal to the set of possible
readings of physical time 𝔾 = 𝕋. Each task has an associated LET, which
we denote with 𝐿 and which is equal to the task’s relative deadline. A job
that is released at physical time 𝑇 reads its inputs at tag 𝑔 = 𝑇 . The job
must complete its computation at physical time 𝑇 + 𝐿, but may finish earlier.
However, even when finishing earlier, the job does not write the results
immediately. Instead, the results are written at tag 𝑔 + 𝐿, precisely at the
deadline of the job. Both reading inputs and writing outputs are logically
instantaneous.

http://dx.doi.org/10.1145/3572920
http://dx.doi.org/10.1145/3572920
http://dx.doi.org/10.1145/3576914.3587502
http://dx.doi.org/10.1145/3576914.3587502
http://dx.doi.org/10.1109/MEMOCODE57689.2022.9954383
http://dx.doi.org/10.1109/MEMOCODE57689.2022.9954383
http://dx.doi.org/10.1109/MEMOCODE57689.2022.9954383
http://dx.doi.org/10.1007/978-3-642-24349-3_5
http://dx.doi.org/10.1007/978-3-642-24349-3_5

2 Models of Computation for Cyber-physical Systems 33

t/msTask C
0 10 20 30 40 50 60 70 80 90 100 110 120

Task B

Task A

(a) bounded execution time

t/msTask C
0 10 20 30 40 50 60 70 80 90 100 110 120

Task B

Task A

(b) logical execution time

Figure 2.17: An example schedule for three tasks and their read-write-dependencies using a classic real-time model (bounded execution
time) and the logical execution time model. This figure is loosely based on Figure 3 in Gemlau et al. 2021, System-Level Logical Execution Time:
Augmenting the Logical Execution Time Paradigm for Distributed Real-Time Automotive Software.

Physical time and logical time are tightly coupled in the LET paradigm. The
logical timeline is used to define the ordering of reads and writes between
jobs, but logical and physical time are assumed to progress in lockstep. For
this reason, the LET of a task may not be less than its WCET.

The principles of LET are adopted in various languages, like Giotto147 and 147: Henzinger, Horowitz, and Kirsch 2003,
Giotto: A Time-Triggered Language for Em-
bedded Programming.

the Time Definition Language (TDL).148 Also the time-triggered architecture

148: Pree and Templ 2008, Modeling with
the Timing Definition Language (TDL).

(TTA) uses a similar time model.149 On multi-core processors, LET enables

149: Kopetz and Bauer 2003, The Time-
Triggered Architecture.

deterministic lock-free communication, which makes it attractive for model-
ing parallel embedded software.150 Most importantly, LET was adopted in

150: Hennig et al. 2016, Towards Paralleliz-
ing Legacy Embedded Control Software Us-
ing the LET Programming Paradigm; Biondi
et al. 2017, Logical Execution Time Imple-
mentation and Memory Optimization Issues
in AUTOSAR Applications for Multicores.

the Classic Platform of the automotive standard AUTOSAR,151 which the

151: Ernst, Ahrendts, and Gemlau 2018,
System Level LET: Mastering Cause-Effect
Chains in Distributed Systems; AUTOSAR
2022j, Specification of Timing Extensions.

next section will discuss in more detail.

The principles of LET can also be applied to modeling the interaction of tasks
running on different processors that communicate over a bus or network. In
system-level LET, the communication between processors is also modeled as
tasks with an associated LET.The LET of communication tasks is determined
by the worst-case network latency and the maximum synchronization error
of the physical clocks of each node.This allows us to apply the same principles
as for modeling tasks on a single processor to the system level.152

152: Ernst, Ahrendts, and Gemlau 2018,
System Level LET: Mastering Cause-Effect
Chains in Distributed Systems; Gemlau et
al. 2021, System-Level Logical Execution
Time: Augmenting the Logical Execution
Time Paradigm for Distributed Real-Time
Automotive Software; Köhler et al. 2023, Ro-
bust Cause-Effect Chains With Bounded Ex-
ecution Time and System-Level Logical Exe-
cution Time.

LET enables deterministic concurrency for embedded real-time systems.
It can be conveniently applied to any program that can be modeled with
periodic tasks, like control software. However, LET is quite restrictive and
has limited expressiveness, which hinders its application to a wider range of
applications that require reactions to sporadic events. Like the synchronous
reactive paradigm, which assumes that zero time passes between reading
inputs and writing outputs, LET also defines a fixed value of logical time
that passes when a task executes. However, as we will explore in this thesis,
a more general approach allows the programmer to freely set the logic delay
imposed by computation instead of requiring a fixed value. This exposes an
interesting trade-off.

In addition, tasks are a rather low-level abstraction and are not convenient
for modeling and understanding large systems. Typically, modeling large
systems requires some form of component-based design, where components
encapsulate state and functionality and can be composed vertically and
horizontally, as it is possible in actors and related models. However, there
is no hierarchy in task-based models. Also, dependencies between tasks
are only described implicitly by the release time and deadlines of jobs and

http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1109/JPROC.2002.805825
http://dx.doi.org/10.1109/JPROC.2002.805825
http://books.google.com/books?vid=ISBN978-3-540-70930-5
http://books.google.com/books?vid=ISBN978-3-540-70930-5
http://dx.doi.org/10.1109/JPROC.2002.805821
http://dx.doi.org/10.1109/JPROC.2002.805821
http://2016.rtas.org/wp-content/uploads/2016/04/RTAS-WiP-paper-1.pdf
http://2016.rtas.org/wp-content/uploads/2016/04/RTAS-WiP-paper-1.pdf
http://2016.rtas.org/wp-content/uploads/2016/04/RTAS-WiP-paper-1.pdf
http://retis.sssup.it/~marco/papers/2017/watersch.pdf
http://retis.sssup.it/~marco/papers/2017/watersch.pdf
http://retis.sssup.it/~marco/papers/2017/watersch.pdf
http://dx.doi.org/10.1109/IECON.2018.8591550
http://dx.doi.org/10.1109/IECON.2018.8591550
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_TPS_TimingExtensions.pdf
http://dx.doi.org/10.1109/IECON.2018.8591550
http://dx.doi.org/10.1109/IECON.2018.8591550
http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1145/3573388
http://dx.doi.org/10.1145/3573388
http://dx.doi.org/10.1145/3573388
http://dx.doi.org/10.1145/3573388

2 Models of Computation for Cyber-physical Systems 34

by the values they read and write, but there is no semantic notion of data
dependencies in the model.

2.9 CPS Frameworks and Standards

While the previous sections introduced a range of MoCs, this section investi-
gates practical approaches that are used in industry for CPS design. Several
industry standards and software frameworks have evolved to facilitate the
joint development of CPSs. Typically, such frameworks provide a unified
abstraction layer on top of the underlying hardware and the operating sys-
tem (OS). And they also provide a unified communication mechanism that
allows multiple components to interact and exchange data. In principle, this
foundation enables the composition out of complex CPSs out of smaller
components that are developed independently and are potentially provided
by different vendors.

Ideally, the basis for such a framework should be a well-chosen MoC that
addresses the challenges discussed in Section 1.2. However, as we will see in
this section, this is not commonly the case. Without such a solid foundation,
however, a framework does not provide application designers with the
appropriate tools for actually managing the fundamental challenges in CPS
design.

This section discusses two popular CPS frameworks in more detail: the AU-
Tomotive Open System ARchitecture (AUTOSAR) and the Robot Operating
System (ROS). Parts of the introduction to AUTOSAR were published before
in Menard, Goens, Lohstroh, et al. 2020, Achieving Determinism in Adaptive
AUTOSAR.

2.9.1 AUTOSAR

AUTOSAR is a global development partnership of automotive companies
and other interested parties.153 The automotive industry also faces the chal- 153: AUTOSAR 2023, AUTomotiv Open

System ARchitecture.lenges discussed in Section 1.2. In particular, stringent safety and real-time
requirements, but also a dramatic increase in the complexity and computa-
tional demands of automotive software. AUTOSAR aims to address these
challenges by standardizing the design process, the runtime environment,
and the common software framework.

The partnership maintains two standards called Classic Platform (CP) 154 154: AUTOSAR 2022d, Methodology for
Classic Platform.and Adaptive Platform (AP) 155 that serve different goals and requirements,
155: AUTOSAR 2022c, Methodology for
Adaptive Platform.

as well as the Foundation that is shared between the two platforms. The
Classic Platform is widely established in industry and mostly intended for
hard real-time applications with low computational complexity deployed
on ECUs with single-core or simple multicore processors. The CP standard
facilitates a task-based programming model and also includes support for
the LET paradigm.156 156: AUTOSAR 2022j, Specification of Tim-

ing Extensions.
The Adaptive Platform was introduced more recently to handle applica-
tions with high computational demands, facilitate an ongoing interaction
with a changing environment, and allow systems to adapt to such changes.
AUTOSAR AP is a service-oriented architecture that is based on a POSIX-
compliant operating system. The software stack includes a middleware that
handles communication between services as well as the Runtime Environ-
ment for Adaptive Applications (ARA), which provides common APIs and
services.157

157: AUTOSAR 2022a, Explanation of
Adaptive Platform Design.While the standard does not specify the precise middleware and

http://dx.doi.org/10.23919/DATE48585.2020.9116430
http://dx.doi.org/10.23919/DATE48585.2020.9116430
https://autosar.org/
https://autosar.org/
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_TR_Methodology.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_TR_Methodology.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_TR_AdaptiveMethodology.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_TR_AdaptiveMethodology.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_PlatformDesign.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_PlatformDesign.pdf

2 Models of Computation for Cyber-physical Systems 35

also supports third-party solutions, AUTOSAR suggests using the Scalable
Service-Oriented Middleware over IP (SOME/IP) protocol.158 158: AUTOSAR 2022e, SOME/IP Protocol

Specification; AUTOSAR 2022f, SOME/IP
Service Discovery Protocol Specification.The remainder of this section introduces and discusses the Adaptive Platform

in more detail.

Service Interfaces

AP applications consist of one or multiple software components (SWCs) that
communicate via services that they may provide or request. We call an SWC
that provides a service a server, and an SWC that requests a service a client.
Client and server roles may be fulfilled by the same SWC. SWCs provide
or request services as needed; the binding between clients and servers is
determined at runtime by the middleware through service discovery.159 The 159: AUTOSAR 2022g, Specification of

Communication Management .dynamic binding of services is the core mechanism for providing adaptivity
in AP.

The service interfaces are fully specified at design time and are composed
of methods, events, and fields. While events are one-way messages that
the server initiates and the client handles, methods are two-way messages
that the client initiates and the server responds to. Fields are state variables
exposed by the server. Each field may provide a get method, a set method
and an event that indicates state changes.

interface AccumulateService
method init(x: i32)
method add(x: i32)
method get(): i32
event valueChanged: i32

Listing 2.5: An example interface for an
accumulator service.

Listing 2.5 shows the pseudocode definition of an example interface for an
accumulator service. The interface provides a method for initializing the
service with an initial integer value, a method for adding an integer value,
and a method for getting the current accumulated value.The interface further
defines an event that the service notifies whenever its internal accumulated
value changes.

Service Communication

Client SWC Server SWC

Client
Logic

Service
Proxy SOME/IP Service

Skeleton
Server
Logic

method

event

method

event

Figure 2.18: Communication mechanism
in AUTOSAR AP. Client and server use
auto-generated proxies and skeletons to
communicate with their peers.

SWCs abstract over the precise middleware by using proxies and skeletons
that are generated from a service description.160 Figure 2.18 illustrates the 160: AUTOSAR 2022b, Explanation of

ara::com API .overall communication mechanisms in AUTOSAR AP. A skeleton is an
abstract interface that a server needs to implement in order to provide
a service. A proxy is an object that a client receives when requesting a
service.

Client and server communicate via the proxy and skeleton objects. For
instance, the client can invoke a method on the proxy object, which auto-
matically sends a message via the middleware to the server. It also returns a
future as a placeholder for the server’s response. The server translates the
incoming message back into a method call on the skeleton interface. The
implementation for this method, which is provided by the server, is expected
to return a future. As soon as the server fulfills the corresponding promise,
the skeleton sends a message back to the client.

Applications in AUTOSAR AP commonly consist of multiple SWCs. Each
individual SWC can be considered a full program as it is mapped to a process
on the target platform during deployment. While the service-oriented com-
munication model of AUTOSAR AP specifies how SWCs interact, it does not

https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_ARAComAPI.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_ARAComAPI.pdf

2 Models of Computation for Cyber-physical Systems 36

specify how SWCs should be implemented. The standard, however, suggests
a thread-based coding style.

1 int main() {
2 AccumulateServiceProxy s{};
3 s.init(1);
4 s.add(2);
5 auto result = s.get();
6 std::cout << result.get();
7 return 0;
8 }

Listing 2.6: A client program using the
accumulate service to add 1 and 2.

AP SWCs are implemented in C++. Listing 2.6 provides a simplified example
implementation for a client that interacts with the accumulator service
defined in Listing 2.5. The client instantiates a proxy object on line 2 to
interact with the accumulator service. The construction of the proxy blocks
until a connection with a server providing the service is established by the
middleware. The server needs to be implemented and started separately.
Next, the client initializes the accumulate service with 1, adds 2, obtains the
result and, finally, prints the result.

Nondeterminism

The SoA paradigm utilized by AUTOSAR AP is similar to the Hewitt actor
model in that it describes a system as a set of components that exchange
messages. SoA specializes Hewitt actors by providing a notion of interfaces
and defining the precise types of expected messages that components may
send or receive when interacting with a service. The execution strategy,
however, is similar to the Hewitt actor model. Consequently, SoAs and
specifically AUTOSAR AP inherit the nondeterminism of Hewitt actors. In
addition, the use of RPCs for implementing service method calls masks the
interaction with concurrent components.

Consider again the client code in Listing 2.6. At first glance, with C++ being
a procedural language, the code suggests that the program prints a value of 3.
However, potentially unbeknownst to the programmer who wrote the client
program, the proxy object implements the methods initand add as non-
blocking RPCs. And while we can assume that the server implementation
enforces mutual exclusion between the execution of method invocations to
avoid data races on its internal state, by default, the runtime environment
maps each invocation to a different thread,161 meaning the order in which the 161: AUTOSAR 2022h, Specification of Ex-

ecution Management .calls are handled is determined purely by the thread scheduler. Consequently,
no order is enforced by the server on the handling of calls to init, add, and
get, which leads to nondeterministic results.

0.0

0.1

0.2

0.3

0.4

0 1 2 3

Printed Value

Pr
ob

ab
ili
ty

Figure 2.19: Distribution of possible re-
sults for the client program in Listing 2.6.

Depending on the precise interleaving of method calls, we may observe one
out of four possible results. By running the program repeatedly and recording
the printed result, we can plot the distribution of possible results, as shown in
Figure 2.19. This assumes that the internal value of the accumulation service
is initialized to 0 by default. Clearly, such a program is not very useful.

1 int main() {
2 AccumulateServiceProxy s{};
3 s.init(1).get();
4 s.add(2).get();
5 auto result = s.get();
6 std::cout << result.get();
7 return 0;
8 }

Listing 2.7: Corrected client program us-
ing blocking calls to wait on the returned
future objects.

Of course, the client could serialize each method call by waiting for the
future returned by the server to resolve before invoking the next method
call. Listing 2.7 shows an updated version of the client program that invokes
get()on the returned future to actually retrieve the returned value. In the
case of initand add, no value is returned, but get()blocks nonetheless
until the server finishes processing the method. In addition, the server could
instruct the runtime to use a single thread rather than multiple for execution.
However, multi-threading may be necessary to meet performance require-
ments, yet it is often far from obvious how this may lead to nondeterminism
in realistic AUTOSAR applications, which are, of course, incomparably more
complex than this simple example.

As this thesis argues, the software designer should not be responsible for en-
gineering solutions to concurrency problems to achieve determinism. Rather,
the underlying model should allow for the exploitation of concurrency
in ways that preserve determinism, making it easy to write deterministic
programs and requiring explicit directions from the programmer to forgo

https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_ExecutionManagement.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_ExecutionManagement.pdf

2 Models of Computation for Cyber-physical Systems 37

determinism. In AUTOSAR AP, however, the gained adaptivity and flexibility
compared to CP come at the cost of inherent nondeterminism; despite the
goal of supporting safety-critical and possibly autonomous applications.

We can identify three distinct sources of nondeterminism in AUTOSAR
AP:

1. The suggested programming model for the implementation of individ-
ual SWCs is based on threads. As Section 2.1 discusses, threads make
it notoriously difficult to engineer deterministic concurrent software.
AUTOSAR AP provides coding guidelines to avoid the problems with
threads, but nondeterminism is still likely to creep in, especially when
code evolves over time.162 162: Gu et al. 2015, What Change History

Tells Us about Thread Synchronization.2. The order in which SWCs process incoming messages is undefined.
If two clients call the same method, the server may process them in
either order. This is analogous to the problems with nondeterminism
in the actor MoC (cf. Section 2.3.2).

3. Point-to-point in-order message delivery could be achieved by the
middleware and underlying TCP/IP network stack, but this is not a
formal requirement in AUTOSAR AP.

One provision for deterministic execution that AUTOSAR AP introduces is
the so-called “deterministic client”, which provides a task-based program-
ming model for the implementation of SWCs.163 However, its scope is limited 163: AUTOSAR 2022h, Specification of Ex-

ecution Management .to individual SWCs and does not consider communication between SWCs.
Therefore, this solution only addresses the first source of nondeterminism.
Applications that consist of multiple communicating deterministic clients
can still exhibit nondeterminism via the second and third source of nonde-
terminism.

More recently, Bellassai et al. explored how the LET paradigm could be
applied to AUTOSAR AP.164 While this should alleviate the problems with 164: Bellassai et al. 2023, Supporting Logi-

cal Execution Time in Multi-Core Posix Sys-
tems.

nondeterminism in AUTOSAR AP, this approach inherits the limitations of
LET discussed in Section 2.8.

2.9.2 ROS

Robot Operating System (ROS) is an open-source framework that facilitates
the development of robotic applications.165 It is similar to AUTOSAR AP in 165: Quigley et al. 2009, ROS: an Open-

source Robot Operating System; Koubaa
2016, Robot Operating System (ROS)—The
Complete Reference (Volume 1).

its scope and overall approach. ROS applications are divided into components
called nodes. ROS provides a hardware abstraction layer and libraries that
bundle common functionality. This allows ROS nodes to execute on a wide
range of hardware platforms. Despite its name, ROS is not an operating
system and assumes to run on top of a Unix-like OS, possibly with real-time
capabilities.

Similar to AUTOSAR AP, ROS relies on a middleware to orchestrate the
communication between nodes. While the initial version of ROS provided
a custom middleware, ROS 2 instead builds on the DDS standard.166 DDS 166: Macenski et al. 2022, Robot Operat-

ing System 2: Design, Architecture, and Uses
in the Wild ; OMG 2015, Data Distribution
Service.

implements a publish/subscribe protocol. Consequently, ROS nodes commu-
nicate via topics that they may publish or subscribe to.

Also similar to AUTOSAR AP, ROS inherits the problems of its underlying
models. Concurrency within a node is expressed using plain threads or tasks,
and the interaction of multiple nodes via publish/subscribe is nondetermin-
istic (cf. Sections 2.3.2 and 2.3.3). In a reasonably complex system, this can
easily lead to situations where components are in an inconsistent state,167

167: Bateni, Lohstroh, et al. 2023, Risk
and Mitigation of Nondeterminism in Dis-
tributed Cyber-Physical Systems.

http://dx.doi.org/10.1145/2786805.2786815
http://dx.doi.org/10.1145/2786805.2786815
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_ExecutionManagement.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_ExecutionManagement.pdf
http://dx.doi.org/10.1016/j.sysarc.2023.102987
http://dx.doi.org/10.1016/j.sysarc.2023.102987
http://dx.doi.org/10.1016/j.sysarc.2023.102987
http://robotics.stanford.edu/~ang/papers/icraoss09-ROS.pdf
http://robotics.stanford.edu/~ang/papers/icraoss09-ROS.pdf
http://dx.doi.org/10.1007/978-3-319-26054-9
http://dx.doi.org/10.1007/978-3-319-26054-9
http://dx.doi.org/10.1126/scirobotics.abm6074
http://dx.doi.org/10.1126/scirobotics.abm6074
http://dx.doi.org/10.1126/scirobotics.abm6074
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF
http://dx.doi.org/10.1145/3610579.3613219
http://dx.doi.org/10.1145/3610579.3613219
http://dx.doi.org/10.1145/3610579.3613219

2 Models of Computation for Cyber-physical Systems 38

which could have fatal consequences. While the ROS framework and mid-
dleware provide a lot of flexibility, the application designers are responsible
for building reliable distributed software without the appropriate tools.

2.10 Discussion and Conclusion

This chapter surveyed a wide range of MoCs, all of which are actively being
used for CPS design, both in research and industry. However, the discussion
of problems and limitations also showed that all existing models have their
pitfalls. Commonly, a MoC is well-suited only for a particular use case,
e.g., for safety-critical systems with limited complexity or for large-scale
distributed systems with only light safety requirements.

Reconsider the challenges discussed in Section 1.2. We inferred that the ideal
MoC for CPS design should be concurrent, deterministic, reactive, scalable,
and timed. All the MoCs discussed in this chapter allow for expressing
concurrent computation. Figure 2.20 summarizes the findings of this chapter
by characterizing each of the surveyed MoCs regarding the remaining four
desired properties.

yes

yes

no

no no

deterministic

sc
al

ab
le

re
ac

ti
ve

no

no

ye
s

ye
s

timed

no

LET

?

SDF,
 KPN,

task graphs

synchronous
reactive,
sparse

synchronous

threads

actors,
DDF,
SoA,

pub/sub

periodic
tasks

discrete
events,

sporadic
tasks

Figure 2.20:Overview of MoCs and frame-
works for cyber-physical systems. (Re-
peated from Figure 1.2)

2.10.1 Discussion

Obviously, threads are a particularly bad choice. They are not deterministic,
do not offer a notion of time, cannot easily be scaled to distributed systems,
and by themselves do not offer support for reactive behavior. Yet, modern
CPS frameworks like ROS and AUTOSAR AP assume a thread-based pro-
gramming model for implementing nodes and SWCs. While we can make
an effort to “fix” threads, e.g., by appealing to the programmer’s discipline
and by providing libraries that add a notion of time or support for reactive
programming patterns, a MoC that does not need to be fixed would serve as
a much more solid foundation for CPS design.

Hewitt actors alleviate the pitfalls of threads regarding low-level data races,
and the message passing paradigm allows for scaling transparently from

2 Models of Computation for Cyber-physical Systems 39

local execution with a few parallel cores up to massively parallel distributed
systems. Hewitt actors are reactive in nature and have been proven effective
in practice for modeling large-scale concurrent software. However, they have
not been designed for CPS use cases. Hewitt actors neither provide a notion
of time nor can they guarantee determinism. The same applies to related
models like SoA, publish/subscribe, and DDF.

SDF, KPN, and task graphs are closely related to Hewitt actors but use
more restrictive rules on how actors communicate and execute behavior.
These restrictions allow for guaranteeing a deterministic execution, but
come at the expense of reactivity. Such models are particularly useful for
developing streaming applications, e.g., the processing of video frames, but
are not generally applicable to CPS design due to their lack of reactivity.
Also, dataflow models do not expose a notion of time.

In the category of timed models, various forms of real-time task models
are the most prominent representatives. Real-time task models have a long
history in safety-critical and time-sensitive applications. However, tasks
are closely related to threads, and two tasks that share access to a com-
mon resource are subject to low-level data races. Hence, the task model is
nondeterministic. Periodic task models commonly use a static schedule, but
sporadic task models are more reactive in nature. There are various variants
that allow for expressing adaptivity or parallelism within tasks. However,
the model cannot easily scale to distributed execution.

LET provides a deterministic variant of the general task model. LET tasks
orchestrate reads and writes on a logical timeline. This makes the execution
deterministic, as the data paths solely depend on this logical ordering. Al-
though it has been demonstrated that the model can be applied to distributed
execution, Figure 2.20 characterizes LET as non-scalable. This is because
the task model does not provide a convenient abstraction for composing
large-scale systems. There is no notion of components or hierarchy that sup-
ports organizing an application. Also, the LET model is commonly limited
to periodic tasks, which makes it non-reactive.

Finally, the synchronous reactive model also has a strong notion of logical
time at its core. It assumes that computation is logically instantaneous and
is both deterministic and reactive. However, the paradigm cannot easily be
applied to general-purpose languages. Typically, behavior is defined on a
fine-grained level, which hinders scalability. Most compilers for synchronous
languages generate sequential programs, and exploiting parallel hardware or
even enabling distributed execution is challenging. The sparse synchronous
model integrates a physical notion of time and allows for expressing compu-
tation that is not logically instantaneous. In principle, this could allow for a
more scalable approach, but this hasn’t been demonstrated yet.

The background color of each cell in Figure 2.20 indicates how many of the
properties concurrent, deterministic, reactive, scalable, and timed are fulfilled
in this position. It is evident that the dark gray box is empty, and no model
provides all the desired properties. Moreover, most of the neighboring cells,
which fulfill three out of four properties, are empty. Only the synchronous
reactive and sparse synchronous models come close to providing the ideal
model for CPS design, but they are challenging to scale up and do not provide
much flexibility.

The overview of concurrent MoCs given in this chapter is far from com-
plete. The literature on concurrent MoCs is rich and describes more models
than can possibly be described in a single chapter. Therefore, this chapter
primarily focuses on models that are commonly used for expressing con-
current executable programs, in particular in the domain of CPS design.

2 Models of Computation for Cyber-physical Systems 40

There are also a range of popular but more abstract models that are often
used for reasoning about certain aspects of concurrent computation but less
commonly for describing actual executable behavior. This includes State-
charts,168 Petri nets,169 and various process calculi like the 𝜋-calculus170 and 168: Harel 1987, Statecharts: a Visual For-

malism for Complex Systems.

169: Petri 1962, Kommunikation mit Auto-
maten; Peterson 1977, Petri Nets.

170: Milner 1999, Communicating and Mo-
bile Systems: The Pi Calculus.

communicating sequential processes.171

171: Brookes, Hoare, and Roscoe 1984, A
Theory of Communicating Sequential Pro-
cesses; Hoare 1985, Communicating Sequen-
tial Processes.

2.10.2 Conclusion

The discussion in this chapter and the summary in Figure 2.20 highlight a
semantic gap. Since there is no model that combines all properties, applica-
tion designers need to carefully choose a MoC based on the requirements
of a specific use case. If the application needs to be reactive and scaled to
a relatively large system, then currently the only suitable option are the
Hewitt actor model and similar models. This is why AUTOSAR AP and ROS
adopt the SoA and publish/subscribe paradigms. However, this comes at the
cost of introducing nondeterminism and, hence, compromising predictability,
testability, and ultimately safety.

This thesis argues that the gap can be bridged by utilizing a novel MoC that
combines aspects of various MoCs discussed in this chapter. The next chapter
introduces such a new MoC.

http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
http://dx.doi.org/10.1145/356698.356702
http://books.google.com/books?vid=ISBN9780521658690
http://books.google.com/books?vid=ISBN9780521658690
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1145/828.833
http://books.google.com/books?vid=ISBN978-0131532892
http://books.google.com/books?vid=ISBN978-0131532892

Reactors: Deterministic Actors
in Adaptive AUTOSAR 3

3.1 The Reactor Model 41

3.2 Example Reactor Programs . . . 48

3.3 Integrating Reactors with
Adaptive AUTOSAR 50

3.4 Case Study: The Adaptive
Platform Demonstrator 54

3.5 Conclusion 58

The reactor model is a novel MoC proposed by Lohstroh, Romeo, et al.1

1: Lohstroh, Romeo, et al. 2019, Reactors:
A Deterministic Model for Composable Re-
active Systems; Lohstroh 2020, Reactors: A
Deterministic Model of Concurrent Compu-
tation for Reactive Systems.

It
combines various aspects of other MoCs to fill the gap identified in Sec-
tions 1.3 and 2.10. Intuitively, we can describe reactors as deterministic
actors with a discrete event execution semantics and explicitly declared
ports and connections.2

2: Lohstroh, Schoeberl, et al. 2019, Ac-
tors Revisited for Time-Critical Systems;
Lohstroh and E. A. Lee 2019a, Determin-
istic Actors.

A logical timeline is used to order events and ensure
a deterministic execution.

The reactor model is reactive, ensures deterministic execution, has a well-
defined notion of time, and can be scaled to a high number of parallel threads
or executed on distributed systems.Thischapter introduces the reactor model
in detail (Section 3.1) and gives several examples to provide an intuitive
understanding of how reactor programs execute (Section 3.2). Chapter 4
provides more insight on the timed semantics of reactors, and Chapter 5
focuses on scalability.

This chapter further introduces a full implementation of the reactor model in
C++ and presents the DEAR framework, which integrates the reactor model
with AUTOSAR AP (Section 3.3). Based on this integration, Section 3.4
analyzes an industrial use case implemented in AUTOSAR AP, illustrates
how the application exposes nondeterminism, and shows how a reactor
implantation can be realized to achieve a deterministic implementation.

3.1 The Reactor Model

This section provides an informal introduction to the reactor model and
discusses examples based on a visual syntax.3 Chapter 4 further introduces a 3: Hanxleden, E. A. Lee, et al. 2022, Prag-

matics Twelve Years Later: A Report on Lin-
gua Franca.

textual syntax for reactor programs. For a formal introduction of the reactor
model, the interested reader may refer to Lohstroh, Romeo, et al.4 Rossel

4: Lohstroh, Romeo, et al. 2019, Reactors:
A Deterministic Model for Composable Re-
active Systems; Lohstroh 2020, Reactors: A
Deterministic Model of Concurrent Compu-
tation for Reactive Systems.

et al. also provide a formalization of the core reactor semantics in Lean and
a proof of determinism.5

5: Rossel et al. 2023, Provable Determinism
for Software in Cyber-Physical Systems.

The reactormodel builds on the principles of somewell-established paradigms
(cf. Chapter 2). In particular, it combines the notion of concurrency and
reactive execution semantics of Hewitt actors with explicitly declared con-
nections, similar to the ones found in dataflow models, a clear notion of
simultaneity, as it is found in synchronous languages, and a logical notion of
time, similar to those found in discrete event modeling. Time is a first-order
citizen in the reactor model. This includes a well-defined notion of logical
and physical time as well as relations between the two.

Some examples, figures, and arguments presented in this section were pub-
lished before inMenard, Lohstroh, et al. 2023,High-Performance Deterministic
Concurrency Using Lingua Franca.

3.1.1 Reactor Elements

Similar to actors in the actor model, a reactor is the universal building block in
the reactor model. Each reactor is defined by the composition of its contained
elements. Figure 3.1 gives a legend of the visual representation for reactor
elements that we use throughout the thesis, and an example reactor is shown
in Figure 3.2. The following lists and discusses all reactor elements:

http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.1145/3316781.3323469
http://dx.doi.org/10.1145/3316781.3323469
http://dx.doi.org/10.1109/FDL.2019.8876922
http://dx.doi.org/10.1109/FDL.2019.8876922
http://dx.doi.org/10.1007/978-3-031-19756-7_5
http://dx.doi.org/10.1007/978-3-031-19756-7_5
http://dx.doi.org/10.1007/978-3-031-19756-7_5
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083
https://cfaed.tu-dresden.de/publications?pubId=3668
https://cfaed.tu-dresden.de/publications?pubId=3668
http://dx.doi.org/10.1145/3617687
http://dx.doi.org/10.1145/3617687

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 42

▶ Reactors may contain other reactors.
▶ Reactions implement the behavior of a reactor. They are executable

building blocks that are comparable to functions in general-purpose
programming languages. However, unlike functions, reactions cannot
be called directly. Instead, they are triggered by certain events and,
thus, react to these events.

Reaction

Mutation

Timer

Reactor

Port

Connection

(Anti-)Dependency

Shutdown Trigger

Startup Trigger

Logical ActionL

Physical ActionP

State Variable

Figure 3.1: Visual representation of reac-
tor components.

▶ State variables allow a reactor to encapsulate state (similar to Hewitt
actors or classes in object-oriented languages). Reactions have full
read and write access to all state variables in their reactor.

▶ Timers are triggers that produce events at fixed, periodic intervals.
▶ Logical actions are triggers that can be scheduled by reactions to create

new future events.
▶ Physical actions are similar to logical actions, but they may be used

to schedule events asynchronously from a context outside the reactor
program.This is a keymechanism for handling nondeterministic inputs
to the program.

▶ Startup and shutdown triggers are special event sources. Startup pro-
duces an event when the program starts, and shutdown produces an
event right before the program terminates.

▶ Ports are a reactor’s interface to the surrounding context. A reactor
may send events to other reactors by setting its output ports, and it
may receive events from other reactors via its input ports.

▶ Connections connect one upstream port to one or multiple downstream
ports within the scope of the reactor containing the connection.

▶ Dependencies and antidependencies declare the triggers, sources and
potential effect of reactions. Triggers are all event sources (i.e., ports,
timers, and actions) that trigger the execution of the reaction. Sources
are additional ports and actions that a reaction may read from when
executing, but that do not trigger the reaction. Both sources and trig-
gers are dependencies of the reaction. The set of antidependencies
includes all ports and actions that a reaction may have an effect on
(i.e., by setting a port or scheduling an action).

▶ Mutations are similar to reactions, but they are allowed to modify the
containing reactor and its elements. While mutations are part of the
reactor model, at the moment of this writing, there is no complete
implementation of mutations.

A

B

1

2

C

12 L

D

1

2

P

1

2

3 L

Figure 3.2: An example reactor.

3.1.2 Logical and Physical Time

While, in principle, other choices are possible, we will assume that reactors
use a super-dense time and define the set of tags as 𝔾 = ℕ2. The set of times-
tamps is the set of natural numbers representing the number of nanoseconds
since the Unix epoch 𝕋 = ℕ.

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 43

All events have an associated tag 𝑔 ∈ 𝔾 that is used to order events on
a logical timeline. Events with identical tags are logically simultaneous.
Similar to synchronous and functional-reactive languages, all computation is
logically instantaneous, i.e., no logical time passes while a reaction executes.
Thus, all events that a reaction produces on its output ports have the same
tag as the events that triggered the reaction. Relaying events via connections
is also logically instantaneous.

The initial tag 𝑔0 is determined when the program starts. It is set to 𝑔0 =
(𝑇0, 0), where 𝑇0 ∈ 𝕋 is the current reading of physical time when the
program starts. All startup triggers produce one event with the tag 𝑔0.

Timers are defined by a period 𝑝 ∈ ℕ and an offset 𝑜 ∈ ℕ. They automatically
produce a series of events with tags 𝑔 𝑡 ,𝑛 = (𝒯 (𝑔0)+ 𝑜 +𝑝 ⋅ 𝑛, 0) ∀𝑛 ∈ ℕ. If the
interval is zero, then only one event at tag 𝑔 𝑡 = (𝒯 (𝑔0) + 𝑜, 0) is produced.

Actions provide a mechanism for reactions to schedule new events with a tag
strictly greater than the tag at which the reaction is triggered. Logical actions
schedule events with a delay 𝑑 ∈ ℕ relative to the current tag 𝑔 = (𝑡, 𝑚). The
tag of the new event is defined by the tag delay function 𝒟 ∶ 𝔾 × ℕ → 𝔾
that is given by

𝒟(𝑡, 𝑚, 𝑑) = {
(𝑡, 𝑚 + 1) for 𝑑 = 0
(𝑡 + 𝑑, 0) for 𝑑 > 0 .

Since a delay of 0 increments the microstep of the tag, it is commonly referred
to as a microstep delay.

Physical actions schedule events with a delay 𝑑 ∈ ℕ relative to the current
reading of physical time 𝑇 ∈ 𝕋. The tag of the resulting event is defined by
the function 𝒫 ∶ 𝕋 × ℕ → 𝔾 that is given by:

𝒫 (𝑇 , 𝑑) = {
(𝑇 , 0) for 𝑑 = 0
𝒟(𝑇 , 0, 𝑑) for 𝑑 > 0 .

Since the assignment of tags to events created via physical actions, does
not depend on the current state of the reactor program, i.e., the current tag,
they can be scheduled asynchronously from contexts outside of the reactor
program, like an interrupt handler or an external thread. The assignment
of tags via physical actions is nondeterministic, but once tags are assigned,
events are processed in tag order.

Section 4.4 discusses logical and physical time and the relations between the
two timelines in more detail.

3.1.3 Concurrency and Parallelism

The use of statically declared ports, connections, and reaction dependen-
cies distinguishes reactors from more dynamic models like actors or other
asynchronous message-passing frameworks where communication is purely
based on addresses. The fixed topology of reactors provides two key advan-
tages. First, it achieves a separation of concerns between the functionality of
components and their composition. Second, it makes explicit at the interface
level what dependencies exist between components. As a consequence, a
dependency graph can be derived for any composition of reactors.

Reactions denote concurrent computations.The dependency graph organizes
reactions into a partial order that captures all scheduling constraints that
must be observed to ensure that the execution of concurrent reactions yields

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 44

deterministic results. Because this graph is valid irrespective of the contents
of the code that executes when reactions are triggered, reactions can be
treated as black boxes.

The dependency graph is an acyclic precedence graph (APG). It defines
precisely in what order logically simultaneous reactions need to be executed.
That is, if any two reactions are enabled at a particular tag and there exists a
path in the APG from one to the other, then they must execute in the order
given by the path. If no such path exists, then the reactions are independent
and may be executed in parallel without introducing data races or deadlocks.
This gives a precise definition of when reactions may be executed in parallel
without breaking determinism.

A1

C1 C2

A2

B2

A3

B1

D1 D2

Figure 3.3: Dependency graph of the ex-
ample reactor in Figure 3.2.

Figure 3.3 shows the dependency graph for the example reactor given in
Figure 3.2. The solid arrows represent dependencies that arise because one
reaction (possibly) sends data to the other via ports and connections. The
dashed arrows represent dependencies that arise because the two reactions
belong to the same reactor. Analogous to the behaviors of actors, reactions
in the same reactor are mutually exclusive. Each reaction has an associated
priority that is indicated by the numbers in the reaction labels in Figure 3.2.
The priorities define a total order for the execution of reactions within one
reactor.

The dependency graph in Figure 3.3 indicates that reactions 1, 2 and 3 of
reactor A (labeled “A1”, “A2”, and “A3”) need to be executed in sequence
because they are contained in the same reactor. The graph also shows that
reaction 2 of reactor D needs to be executed after reaction 2 of reactor B
due to a data dependency. However, the graph also denotes which reactions
are independent and may be executed in parallel. For instance, reaction 1
of reactor D and reaction 1 of reactor C are independent, and reaction 3 of
reactor A is independent of all reactions in C.

Note that actions do not imply a dependency and are thus not represented
in the APG. This is because scheduling an action creates a future event with
a tag strictly greater than the current tag. This logical delay captures the
causal relation between the reaction that schedules an event and the reaction
that is triggered by the event. The dependency graph, however, only defines
the causal relation of logically simultaneous reactions (i.e., within the same
tag). For this reason, the dependency graph needs to be acyclic, as otherwise
there would be no well-defined causality. Any dependency cycles in reactor
programs can be resolved by introducing a logical action, and thus a logical
delay, to break one of the dependencies and moving part of the computation
to a later tag.

3.1.4 Execution

The execution of reactor programs is governed by a runtime. Most impor-
tantly, the runtime includes a scheduler that keeps track of all scheduled
future events, controls the advancement of logical time, and invokes any
triggered reactions in the order specified by the dependency graph while
also exploiting parallelism where possible. Lohstroh, Romeo, et al. sketched
a scheduling algorithm for reactor programs,6 which was later refined.7 This 6: Lohstroh, Romeo, et al. 2019, Reactors:

A Deterministic Model for Composable Re-
active Systems, pp. 72, 75.

7: Lohstroh 2020, Reactors: A Deterministic
Model of Concurrent Computation for Reac-
tive Systems, pp. 33–35, 45–49.

section presents a variation of this basic algorithm that is adapted to the no-
tation used in this thesis and simplified in some aspects. Section 5.2 discusses
an optimized version of this algorithm.

Figure 3.4 gives a high-level overview of the principle scheduling mechanism.
The runtime keeps track of the current logical time andmanages three queues:
the event queue, which stores all future events; the reaction queue, which

http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 45

stores reactions that are triggered at the current tag; and the ready queue,
which holds all reactions that are ready for execution. Reactions within the
ready queue are picked up for execution by a pool of parallel worker threads.
The runtime provides two procedures, set and schedule, that an executing
reaction may use to trigger additional reactions by setting a port or to create
future events by scheduling an action.

Startup
Events

Event Queue 𝑄𝐸

Reaction Queue 𝑄𝑅

Ready Queue ℛ

Worker
Threads

set()

schedule()

Figure 3.4: Overview of the general
scheduling mechanism for reactors.

Listing 3.1 shows the pseudocode implementation of set. The procedure
uses a second procedure called recursiveSet to recursively walk along the
outgoing connections. For each port that is visited, the procedure writes
the value to the port and collects the set of all reactions that have declared
this port a trigger. Finally, set inserts the combined set of all triggered
reactions into the reaction queue. A global mutex is used to protect against
data races in the queue. Since setting ports and relaying messages is logically
instantaneous, the reactions are triggered immediately, and the event queue
is left unchanged.

1: procedure set(port, value)
2: ▷ Recursively set all ports and obtain the set of all triggered reactions. ◁
3: 𝑅 ← recursiveSet(port, value)
4: lock(mutex) ▷ Lock mutex to avoid data races.
5: 𝑄𝑅 ← 𝑄𝑅 ∪ 𝑅 ▷ Insert triggered reactions into the reaction queue.
6: unlock(mutex)
7:

8: procedure recursiveSet(port, value)
9: writeValue(port, value) ▷ Write the actual value to the port.

10: ▷ Obtain all reactions that the port triggers. ◁
11: 𝑅 ← getTriggeredReactions(port)
12: ▷ Recursively walk the connections and call recursiveSet on all

downstream ports. ◁
13: for all 𝑝 ∈ getConnectedDownstreamPorts(port) do
14: 𝑅 ← 𝑅 ∪ recursiveSet(𝑝)
15: return 𝑅

Listing 3.1: Pseudocode implementation
of the set procedure that may be used by
reactions to set the value of an output port
and trigger downstream reactions.

The schedule procedure shown in Listing 3.2 allows reactions to schedule
future events via actions. The procedure first locks the global mutex to
prevent concurrent accesses to the data structures and then determines the
tag at which the new event is created, as discussed in Section 3.1.2. Finally,
the new event is created and inserted into the event queue. If the event queue
already contains an event at the given tag for the given action, then the old
event is replaced by the new one.8 8: An implementation of the reactormodel

might choose other conflict resolution
strategies, such as deferring the new event
to a later tag. However, we will assume
that events are overwritten in this thesis.

The main task of the scheduler is to control the advancement of logical time
and to decide when to execute triggered reactions. The next procedure
shown in Listing 3.3 implements the core of the scheduler’s functionality.
It advances logical time to the tag of the earliest events in the event queue
and then processes all reactions triggered by those events as well as all
subsequent reactions that may be triggered via ports.

The next procedure first locks the global mutex to protect against concurrent
accesses to the event queue. While no reaction is executing at this point,

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 46

a concurrent process could still try to schedule a physical action. After
obtaining the mutex, the procedure peeks into the event queue to determine
the next tag 𝑔next. The scheduler will only proceed with executing this event
if 𝑇 ≥ 𝒯 (𝑔next). This is if the current reading of physical time is greater than
or equal to the timestamp of the next tag. Otherwise, the scheduler will wait
until physical time has advanced far enough or the event queue is modified
by scheduling a physical action from an external context.

We refer to this waiting mechanism as a physical time barrier. It effectively
assigns a physical meaning to logical tags, and it allows for the precise
scheduling of events with respect to the physical timeline, which is important
if reactions have side effects or control actuators that are interacting with
the physical world.

On line 12, the current tag is advanced to the next tag, and then the procedure
begins with processing the events at the current tag. First, she scheduler
clears all values on ports and actions that might have been set during the
previous iteration and initializes the reaction queue as well as the set of
executing reactions. Then the scheduler extracts all events at the current tag
from the event queue (lines 15 and 16) and finally releases the mutex.

Before starting the execution of reactions, the procedure iterates over all
events in lines 18 to 22 to initialize the value of all actions that trigger at
the current tag and to insert all reactions that are triggered directly by these
events into the reaction queue. The execution of reactions starts once the
procedure enters the while loop in between lines 24 and 47.

Within the loop, the procedure first cleans up the set of executing reactions
and removes any reactions that are done (lines 25 to 28). In the first iteration
of the while loop, there are no execution reactions yet, and hence nothing is
cleaned up. If there are worker threads available, the scheduler then deter-
mines the set of all ready reactions (the ready queue in Figure 3.4). That is
the set of all reactions for which all dependencies are met as indicated by the
APG. If there are ready reactions, then one is selected and sent to a worker
thread for execution (lines 34 to 37).

If there are no ready reactions, then all reactions that are in the reaction
queue have unmet dependencies. Therefore, the scheduler waits until one of
the worker threads completes executing a reaction (line 40) before trying
again. Also, if there are no threads available for executing a reaction, the
scheduler waits until one becomes idle (line 43). Finally, the scheduler also
needs to wait for worker threads to finish if there are no more reactions in
the reaction queue and there are still executing reactions (line 47).

1: procedure schedule(action, value, delay)
2: lock(mutex)
3: ▷ Determine the tag of the new event. ◁
4: if isPhysical(action) then
5: 𝑇 ← getPhysicalTime()
6: 𝑔𝑒 ← (T, 0)
7: else
8: 𝑔𝑒 ← 𝒟(𝑔, delay) ▷ Calculate tag relative to the current tag 𝑔.
9: ▷ Create a new event for the action with the given value and tag. ◁

10: 𝑒 ← createEvent(action, value, 𝑔𝑒)
11: ▷ If there is already an event scheduled at tat 𝑔, then remove it from

the queue. ◁
12: 𝑄𝐸 ← 𝑄𝐸 ∖ {𝑒′ ∈ 𝑄𝐸 ∣ action = getAction(𝑒′) ∧ 𝑔𝑒 = getTag(𝑒′)}
13: 𝑄𝐸 ← 𝑄𝐸 ∪ {𝑒} ▷ Enqueue the new event.
14: unlock(mutex)

Listing 3.2: Pseudocode implementation
of the schedule procedure that may be
used by reactions to schedule future events
on an action.

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 47

1: procedure next()
2: lock(mutex)
3: while true do ▷ Synchronize with physical time.
4: 𝑇 ← getPhysicalTime()
5: 𝑔next ← getTag(peek(𝑄𝐸))
6: if 𝑇 ≥ 𝒯(𝑔next) then
7: break
8: else
9: unlock(mutex)

10: waitUntilTimeOrEventQueueChange(𝒯(𝑔))
11: lock(mutex)
12: 𝑔 ← 𝑔next ▷ Advance logical time.
13: clearAll() ▷ Clear all ports and actions.
14: 𝑄𝑅, 𝐸 ← ∅, ∅ ▷ Initialize 𝑄𝑅 and the set of executing reactions 𝐸.
15: ℰ ← {𝑒 ∈ 𝑄𝐸 ∣ getTag(𝑒) = 𝑔} ▷ Extract all events at the current tag.
16: 𝑄𝐸 ← 𝑄𝐸 ∖ ℰ
17: unlock(mutex)
18: for all 𝑒 ∈ ℰ do
19: ▷ Set the value of the action triggered by the event 𝑒. ◁
20: writeValue(getAction(e), getValue(e))
21: ▷ Add all triggered reactions to the reaction queue. ◁
22: 𝑄𝑅 ← 𝑄𝑅 ∪ getTriggeredReactions(getAction(𝑒))
23: ▷ Execute all reactions triggered at the current tag. ◁
24: while 𝑄𝑅 ∪ 𝐸 ≠ ∅ do
25: ▷ Remove all done reactions from 𝐸. ◁
26: for all 𝑟 ∈ 𝐸 do
27: if isDone(𝑟) then
28: 𝐸 ← 𝐸 ∖ {𝑟}
29: if 𝑄𝑅 ≠ ∅ then
30: if threadIsAvailable() then
31: ▷ Obtain the set of all reactions that are ready for exe-

cution. That is, they are in 𝑄𝑅 and they do not have a
dependency on any other reaction in 𝑄𝑅 or any reaction
in 𝐸 that is currently executing. ◁

32: ℛ ← getReadyReactions(𝑄𝑅, 𝐸)
33: ifℛ ≠ ∅ then
34: ▷ Select one reaction and execute it in one of the avail-

able worker threads. ◁
35: 𝑟 ← select(𝑅)
36: 𝐸 ← 𝐸 ∪ {𝑟}; 𝑄𝑅 ← 𝑄𝑅 ∖ {𝑛}
37: executeInThread(𝑟)
38: else
39: ▷ All reactions in 𝑄𝑅 depend on at least one executing

reaction. We wait until a thread finishes executing
a reaction before we try again. ◁

40: waitUntilThreadBecomesIdle()
41: else
42: ▷ There is no worker thread available and we wait until

one becomes available. ◁
43: waitUntilThreadBecomesIdle()
44: else
45: if 𝐸 ≠ ∅ then
46: ▷ There are no more reactions to execute, but we have to

wait until all executing reactions finish their execution
and both 𝑄𝑅 and 𝐸 are empty. ◁

47: waitUntilThreadBecomesIdle()

Listing 3.3: The main scheduling proce-
dure that advances logical time to the next
tag, and then processes all events and trig-
gered reactions at this tag.

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 48

Since the reactor model has a discrete event semantics, this scheduling
algorithm is closely related to the main event loop used in discrete event
simulators like gem5 and SystemC. However, in contrast to most discrete
event simulators, the reactor model provides detailed information about
dependencies. Leveraging this information, it becomes possible to exploit
parallelism without sacrificing determinism or accuracy.

3.2 Example Reactor Programs

To provide a better understanding of how reactor programs operate and
how the reactor model helps to solve the problems of other related models
discussed in Chapter 2, this section discusses selected example programs.

3.2.1 Bank Account

Consider again the bank account examples in Figure 2.6 on Page 16 that
illustrate the problem of nondeterminism in actor programs. Using reactors,
we can implement these examples deterministically.

UserA

(1 sec)

Send Deposit

UserB

(2 sec)

Send Withdrawal

Account
ballance

1

2

Figure 3.5: Reactor implementation of the
account deposit and withdrawal actor pro-
gram Figure 2.6a introduced in Section 2.3.

Figure 3.5 shows a reactor implementation of the deposit/withdrawal ac-
tor example in Figure 2.6a. The program consists of three reactors: UserA,
UserB, and Account. Both users have an output port that is connected to
the respective input port at Account, allowing the users to send requests
to the account. Both users have a reaction that is triggered by a timer. The
timer of UserAis configured to produce an event with a tag 1 s after program
startup; the timer of UserBis configured to trigger an event 2 s after program
startup. The corresponding reactions simply send a deposit or withdrawal
request by setting the user’s output port. The yellow boxes in Figure 3.5
are an annotation to indicate the reaction behavior, and they do not have a
semantic meaning.

The Accountreactor defines two reactions, one for each of its inputs. Both
reactions will simply try to apply the requested change to the balance, which
is stored in a state variable. We will assume that the balance is initialized
to zero and that UserAsends a deposit message of 20 credits while UserB
sends a withdrawal message of 10 credits.

When executed, the program will wait for 1 s before triggering the timer of
UserAand invoking its reaction. The event produced by this reaction will
trigger reaction 1 in Account, which is invoked immediately after the first
reaction completes. 2 s after program startup, UserBreacts and subsequently
triggers reaction 2 of Account. In this example, the deposit event (+20) occurs
earlier than the withdrawal event (−10), and hence the reactor execution
semantics ensures that the account processes the deposit event before the
withdrawal event, meaning the balance will not become negative.

Since reactions and communication via ports are logically instantaneous, we
can also introduce a proxy reactor, as shown in Figure 3.6a, without changing
the order inwhich events are processed. Evenwhenwe reconfigure the timers
to trigger logically simultaneously, meaning that both reactions in Account
are triggered at the same tag, the resulting program will be deterministic as
the APG ensures that reactions are executed in a well-defined order.

To deliberately change the order in which events occur, a delay can be
introduced using a logical action, as shown in Figure 3.6b. Upon receiving
an input, reaction 2 of ProxyDelayis triggered, which schedules the logical
action with a delay. This creates a new event that, when processed, triggers

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 49

UserA

(1 sec)

Send Deposit

UserB

(2 sec)

Send Withdrawal

Proxy
Account

ballance

1

2

(a) Adding a proxy reactor.

UserA

(1 sec)

Send Deposit

UserB

(2 sec)

Send Withdrawal

ProxyDelay

12 L

Account
ballance

1

2

(b) Adding a proxy introducing a logical delay.

Figure 3.6: Variants of the deposit and withdrawal example in Figure 3.5 that use an additional proxy reactor.

reaction 1 of the ProxyDelayreactor, which retrieves the original value from
the action and forwards it to the output port. If we assume that a delay of 1 s
is used for scheduling the logical action, then the deposit message from UserA
will only arrive at Account3 s after startup. Hence, the deposit message will
be processed after the withdrawal message from UserB, causing B’s request
to be denied.

In the examples discussed above, we have hard-coded the order in which
the users send requests by using timers and, thus, assigned fixed tags to
the request events. While using a predefined order is useful for testing and
demonstration, reactor programs that are deployed in practice need to be
able to handle sporadic asynchronous inputs. Concretely, in the account
example, we need to handle asynchronous events that are created when
physical users initiate withdrawal or deposit requests.

UserA
Send Deposit

P

UserB
Send Withdrawal

P

Account

1

2

Figure 3.7: Variant of the program in Fig-
ure 3.5 that uses physical actions to model
user inputs.

We can use physical actions as shown in Figure 3.7 to model asynchronous
inputs. Since physical actions assign tags based on the current reading of
physical time, the order between events scheduled by physical actions is
nondeterministic in the sense that it is not defined by the program. However,
once those tags are assigned, for example, to deposit or withdrawal requests
by a user, the processing of the events is deterministic and occurs in tag order.
Hence, the tags assigned to externally initiated events are considered as part
of the input, and given this input, the program remains deterministic. This
approach draws a clear perimeter around the deterministic and therefore
testable program logic while allowing it to interact with sporadic external
inputs.

3.2.2 Brake Assistant

The previous example showed how reactors enable the deterministic exe-
cution of concurrent programs. While the reactor paradigm imposes some
restrictions compared to more general MoCs like Hewitt actors, it is more
general than the other deterministic models that Chapter 2 discusses. Con-
sider again the brake assistant example that is shown in Figure 2.12 on
Page 23 and discussed in Section 2.4.4. Compared to deterministic dataflow
and process networkMoCs, expressing timed and reactive behavior is natural
using reactors.

Figure 3.8 shows a reactor implementation of the brake assistant example.
Camerasimply uses a timer to trigger events every 20ms and send frames to
the ComputerVisionreactor in reaction to these events. If ComputerVision
detects an obstacle, it sends a message to the Brakereactor. Unlike in SDF,
it is not obligatory for a reaction to send a message on each of its outputs.

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 50

Camera

(0, 20 msec)

ComputerVision

BrakePedal

P

Brake

1

2

Figure 3.8: Reactor implementation of a
simplified brake assistant as discussed in
Section 2.4.4.

The reaction may or may not set any declared output ports. Downstream
reactions will only be triggered if the port is actually set.

The brake pedal is modeled using a physical action that is scheduled when
the driver hits the pedal. The reaction in BrakePedalsimply sets the output
port when the physical action triggers. Brake implements two reactions,
one for each input port, but both actuate the physical brake as soon as they
are executed.

In contrast to more restrictive deterministic models, the reactor model al-
lows for easily expressing both regular behavior in fixed intervals (i.e., the
processing of camera frames) and reactions to sporadic inputs (i.e., the brake
pedal). However, there are some subtleties that need to be considered when
reasoning about the execution of this program, which we will discuss in
Chapter 6.

3.3 Integrating Reactors with Adaptive
AUTOSAR

In order to demonstrate the usefulness of the reactor model for industrial
CPS use-cases, this section introduces a first C++ implementation of the
reactormodel called DEAR.9 TheDEAR framework implements a C++ reactor 9: Menard 2023, DEAR: Discrete Events for

Adaptive AUTOSAR.runtime and provides integrations for AUTOSAR AP. The framework is
designed to achieve deterministic execution of distributed programs in AP.
This section introduces the DEAR framework in more detail.

The DEAR framework consists of a C++ implementation of the reactor model,
as well as libraries for translating between reactor communication and the
service interfaces of AP. The framework provides type-safe mechanisms for
the definition of reactors with ports, actions and reactions. This also includes
mechanisms for composing reactors to form deterministic programs, as
well as a simple implementation of the scheduling algorithm discussed in
Section 3.1.4.10 10: The initial implementation of the reac-

tor model in the DEAR framework was sig-
nificantly extended and optimized later. It
became a standalone library called reactor-
cpp, which is discussed in more depth in
Sections 4.7.1 and 5.2.

The reactor implementation establishes a foundation for the design and exe-
cution of individual deterministic SWCs. However, in order to build useful
programs, we also need to establish a mechanism for deterministic commu-
nication between SWCs and for coordinating execution. The discussion in
the remainder of this section focuses on this coordination aspect.

This section presents material that was previously published in Menard,
Goens, Lohstroh, et al. 2020, Achieving Determinism in Adaptive AUTOSAR.

3.3.1 Transactors

Service interfaces are the main abstraction used for communication in AU-
TOSAR AP.11

11: AUTOSAR 2022g, Specification of Com-
munication Management .

Recall Figure 2.18 on Page 35, which visualizes the communica-
tion mechanism. Server and Client communicate through service skeletons

https://github.com/tud-ccc/dear
https://github.com/tud-ccc/dear
http://dx.doi.org/10.23919/DATE48585.2020.9116430
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_CommunicationManagement.pdf

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 51

and proxies that are code-generated. The actual communication is imple-
mented transparently on top of a middleware like SOME/IP.

To enable composition of deterministic applications from deterministic SWCs,
we need a mechanism for transporting tagged messages. This is challenging
since the standard for AUTOSAR AP explicitly specifies the interface that
SWCs use for communication.12 Exposing reactor ports directly to the in- 12: AUTOSAR 2022b, Explanation of

ara::com API .terface of SWCs would break compatibility with the standard. We can work
around this by introducing transactors that translate between the service-
oriented interfaces of SWCs and the event-based input and output ports of
reactors.

ClientEventTransactor

1

received event

2

forward event

L P
event

ServerEventTransactor

send event

event

ServerMethodTransactor

1

send response

response

2

receive request

3

forward request

P L
request

ClientMethodTransactor

1

send request

request

2

receive response

3

forward response

L P
response

SOME/IP Message

Figure 3.9: The transactors implemented in the DEAR framework provide a reactor interface for interacting with the events and methods of
AUTOSAR services.

The DEAR framework provides four distinct transactors that are shown in
Figure 3.9. Each transactor is implemented as a reactor and enables other
reactors that interact with the transactor via ports and connections to send
or receive messages through regular AUTOSAR service interfaces.

The client method transactor allows clients to interact with a given service
method. It holds a reference to a service proxy object. When receiving a
message on the request port, the proxy method transactor forwards this
message via SOME/IP to the service by calling the corresponding method on
the proxy object. When the service returns the response, an internal callback
schedules the physical action. The reaction that is triggered by the physical
action determines the correct tag at which the response should be inserted
into the local event queue. It then schedules the logical action precisely at
this tag. Finally, the reaction triggered by the logical action forwards the
response to the response port. From there on, other reactors that implement
the client logic can handle the response.

Similarly, the server method transactor allows servers to interact with a given
service method. It holds a reference to an implementation of the service
skeleton. When a client invokes a method, the server receives a request
via SOME/IP, which is handled by a callback in the skeleton. Analogous
to responses in the proxy method transactor, this callback schedules the
physical action. Then the request is scheduled at the correct tag and finally
forwarded via the request port to a reactor implementing the server logic.
When the external reactor returns the response on the response port, the
triggered reaction forwards the response to the client via SOME/IP using
the skeleton object.

A similar pair of transactors exists for service events.13
13: This refers to the concept of events in
AUTOSAR service interfaces, which is not
to be confused with events in reactors or
discrete events in general.

Events are a one-
way communication mechanism. They allow a server to send data to clients.

https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_ARAComAPI.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_ARAComAPI.pdf

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 52

The transactor implementation for events is equivalent to the handling of
responses in the method transactors.

Since service fields in AP are composed of a get-method, a set-method and an
event, interaction with fields requires the use of one event and two method
transactors. Given a service interface, the transactors required for interacting
via this particular interface can be automatically generated. This establishes
a well-defined reactor interface for any given service interface.

3.3.2 Distributed Execution

Since SWCs in AUTOSAR AP are implemented as separate processes that
might run on distributed computers connected over a network, a mechanism
for coordinating the distributed execution of multiple reactor programs
is required. For this, we can leverage the safe-to-process analysis known
from Programming Temporally Integrated Distributed Embedded Systems
(PTIDES)14 or Google Spanner.15 14: Y. Zhao, J. Liu, and E. A. Lee 2007, A

Programming Model for Time-Synchronized
Distributed Real-Time Systems; Derler,
Feng, et al. 2008, PTIDES: A Programming
Model for Distributed Real-Time Embedded
Systems.

15: Corbett et al. 2013, Spanner: Google’s
Globally Distributed Database.

The PTIDES approach makes three key assumptions. First, it assumes that
we know the WCET 𝑤 for each unit of computation. In the case of the
reactor model, these are the reaction bodies. Second, PTIDES assumes that
distributed components have synchronized physical clocks with a bounded
clock synchronization error 𝑐, which is the case in AP.16 Finally, it assumes

16: AUTOSAR 2022i, Specification of Time
Synchronization.

that network communication has a bounded latency 𝑙.

Based on these assumptions, we can infer that if a reaction sends a message
at tag 𝑔 = (𝑡, 𝑚), then this message will arrive at the receiver no later than
the physical time point 𝑇 = 𝑡 + 𝑤 + 𝑙 + 𝑐 according to the receiver’s physical
clock. After the time point 𝑇 , no message with a timestamp greater than 𝑡 can
arrive at the receiver if the assumptions are correct. Consequently, a message
that arrives later than at 𝑡 + 𝑤 + 𝑙 + 𝑐 indicates a violation of the assumptions.
Such a violation, however, can be easily detected at runtime and handled by
the application in compliance with its safety requirements.

To preserve determinism and the reactor semantics, the runtime needs to
make sure that all events are processed in tag order. Before processing an
event with tag 𝑔, the runtime needs to determine that no unprocessed event
with a tag less than 𝑔 exists or can still arrive. In local execution, this is trivial
as there is only a single event queue to be checked. However, in distributed
execution there are multiple event queues, and a node has no direct access
to the queues in other nodes. Therefore, we need to carefully consider when
it is safe to process an event. Based on PTIDES, we can infer that at physical
time 𝑇 = 𝑡 + 𝑤 + 𝑙 + 𝑐 no event with a timestamp less than 𝑡 can arrive. Thus,
at physical time 𝑡 + 𝑤 + 𝑙 + 𝑐 it is safe to process any events with a tag up to
𝑔 = (𝑡, 𝑚).

The methodology of PTIDES also considers logical delays and the precise
dependencies between individual components. Using PTIDES, we can cal-
culate precise safe-to-process offsets for any point in the system. However,
the DEAR framework only considers a special case of PTIDES. If we require
that sending a message over the network also imposes a logical delay 𝑑 of
precisely 𝑑 = 𝑤 + 𝑙 + 𝑐, then any event with tag 𝑔 = (𝑡, 0) becomes safe
to process at physical time 𝑇 ≥ 𝑡 − 𝑑 + 𝑤 + 𝑙 + 𝑐 = 𝑡 . Therefore, with this
additional constraint, it becomes sufficient to rely on the fact that the reactor
runtime will not process events before the current physical time exceeds the
timestamp of the event.

Figure 3.10 visualizes both the logical and physical delays imposed by sending
a message over the network in DEAR. In this special case of PTIDES, the

http://dx.doi.org/10.1109/RTAS.2007.5
http://dx.doi.org/10.1109/RTAS.2007.5
http://dx.doi.org/10.1109/RTAS.2007.5
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-72.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-72.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-72.html
http://dx.doi.org/10.1145/2491245
http://dx.doi.org/10.1145/2491245
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_TimeSynchronization.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_TimeSynchronization.pdf

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 53

safe-to-process offset is always zero, and the logical delay accounts for the
worst-case physical delay between sender and receiver. This approach is
equivalent to the one taken by system-level LET.17 However, as Section 4.5 17: Ernst, Ahrendts, and Gemlau 2018,

System Level LET: Mastering Cause-Effect
Chains in Distributed Systems; Gemlau et
al. 2021, System-Level Logical Execution
Time: Augmenting the Logical Execution
Time Paradigm for Distributed Real-Time
Automotive Software.

discusses, there are more general approaches to coordinating distributed
reactor execution.

sender logical time

receiver logical time

physical time

sender reaction
invoked

𝑡
𝑤 𝑙 𝑐

message received
at receiver

𝑡 + 𝑤 + 𝑙 + 𝑐

Figure 3.10:The logical and physical delay
imposed by sending a message over the
network in DEAR.

3.3.3 Implementation

Implementing reactor communication on top of AUTOSAR AP requires
a mechanism for exchanging tagged messages between SWCs. However,
implementing such a mechanism is challenging as AP does not provide any
support for associating metadata like tags with service method invocations
or event notifications. This, however, is required for the transmission of
tagged messages between SWCs.

DEAR includes a minor modification of the library that binds to the SOME/IP
middleware. This modification introduces a bypass that can be used option-
ally to append tags to outgoing messages and to retrieve tags from incoming
messages if available. This modification is not in violation of the standard. It
can be seen as the introduction of a new third-party middleware that extends
over SOME/IP by allowing the transmission of tagged messages. While the
transactors use the regular AUTOSAR AP service proxies and skeletons,
for each event notification or method call, they store the corresponding tag
such that it can be picked up by the modified SOME/IP middleware before
transmitting the payload over the network.

Client SWC Server SWC

(6)

(17)

(6)

(17)

Client Method
Transactor

Client Event
Transactor

Client
Reactor

(1)

(22) Service
Proxy

(3)

(20) SOME/IP
Binding

(4)

(19)

Timestamp
Bypass

(2)

(21)

(5)

(18)

Server Method
Transactor

Server Event
Transactor

Server
Reactor

(11)

(12)Service
Skeleton

(9)

(14)SOME/IP
Binding

(8)

(15)

Timestamp
Bypass (13)

(10)

(16)

(7)

Et
he

rn
et

Figure 3.11: Integration of reactors in AUTOSAR AP using the DEAR framework. Special reactors (transactors) translate between the reactor
implementation of the SWC logic and the service interface that the SWC exposes to its environment.

The entire process of transmitting tagged messages between SWCs in DEAR
is illustrated in Figure 3.11. The sequence starts with a client that invokes a
service method call on a remote service. In the reactor implementation, this
corresponds to producing an event with tag 𝑔𝐶 = (𝑡𝐶 , 0) on the output port
connected to the request input port of the client method transactor (1).18 The 18: For the sake of simplicity we will as-

sume that all tags have a microstep of zero.
In principle, also non-zero microsteps can
be handled by this mechanism.

client method transactor has a configurable delay 𝑑𝐶 = 𝑤𝐶 that compensates
for the WCET of the sending reaction. A reaction of the transactor handles
the request by sending the timestamp 𝑡𝐶+𝑑𝐶 to the timestamp bypass (2) and
invoking the actual method call on the service proxy object (3). Thereby, it
forwards the data associated with the incoming event as method arguments.
The service proxy calls the SOME/IP binding (4) to prepare a network mes-
sage. The modified binding retrieves 𝑡𝐶 + 𝑑𝐶 from the timestamp bypass (5)

http://dx.doi.org/10.1109/IECON.2018.8591550
http://dx.doi.org/10.1109/IECON.2018.8591550
http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1145/3381847

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 54

and attaches it to the SOME/IP message, which it then sends over the network
to the server (6).

Upon receiving the networkmessage on the server side, themodified SOME/IP
binding retrieves 𝑡𝐶+𝑑𝐶 from the message and sends it to the local timestamp
bypass (7) before invoking the corresponding method call on the service
skeleton (8). This invokes a callback of the server method transactor (9),
which schedules a physical action to notify the reactor runtime of the ex-
ternal event (cf. Figure 3.9). The reaction triggered by this physical action
retrieves 𝑡𝐶 + 𝑑𝐶 from the timestamp bypass (10) and schedules the logical
action with tag (𝑡𝐶 + 𝑑𝐶 + 𝑙 + 𝑐, 0), accounting for the worst-case network
latency 𝑙 as well as the maximum clock skew 𝑐 between platforms. The reac-
tion to this action produces an event on the output port that forwards the
method arguments to the reactor that implements the server logic (11). The
server logic then reacts to this event.

The server eventually sends a response by producing an event with the tag
𝑔𝑆 = (𝑡𝑆 , 0)with 𝑡𝑆 ≥ 𝑡𝐶 +𝑑𝐶 +𝑙 +𝑐 on the output port connected to the input
port of the service method transactor (12). The transactor has a configurable
delay 𝑑𝑆 that compensates for the server’s WCET 𝑤𝑆 . The reaction in the
transactor that processes the response sends the timestamp 𝑡𝑆 + 𝑑𝑆 to the
timestamp bypass (13) and returns the data associated with the event to the
service skeleton (14). The service skeleton calls the SOME/IP binding (15) to
create a response message. The binding retrieves 𝑡𝑆 + 𝑑𝑆 from the timestamp
bypass (16) and attaches it to the outgoing message, which it then sends over
the network to the client (17).

The client SOME/IP binding retrieves 𝑡𝑆+𝑑𝑆 from the message and sends it to
the timestamp bypass (18) while forwarding the return value to the service
proxy (19). This invokes a callback in the client method transactor (20), which
schedules the internal physical action. The reaction triggered by this physical
action retrieves 𝑡𝑆 + 𝑑𝑆 from the timestamp bypass (21) and schedules the
logical action with tag (𝑡𝑆 + 𝑑𝑆 + 𝑙 + 𝑐, 0) to account again for transmission
latency and clock synchronization error. Finally, the reaction to this action
produces an event on the output port of the transactor (22).

While the DEAR framework enables transparent, deterministic composition
of reactor-based SWCs, it also supports composing reactor-based SWCs
with regular service implementations that do not communicate via tagged
messages. The default behavior of the DEAR transactors is to fail when
receiving messages without an associated timestamp, but they can also be
configured to tag received messages with the physical time at which they
were received.This approach treats the arrival of untaggedmessages the same
way reactors deal with the arrival of sporadic sensor readings.This essentially
provides backward compatibility with existing service implementations and
adds the ability to gradually introduce reactor-based SWCs into an existing
code base.

3.4 Case Study: The Adaptive Platform
Demonstrator

Building on the DEAR framework, this section analyzes a concrete automo-
tive application and demonstrates how reactors can be utilized to achieve
determinism in AUTOSARAP.The results presented in this section were pub-
lished before in Menard, Goens, Lohstroh, et al. 2020, Achieving Determinism
in Adaptive AUTOSAR.

http://dx.doi.org/10.23919/DATE48585.2020.9116430
http://dx.doi.org/10.23919/DATE48585.2020.9116430

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 55

3.4.1 Nondeterministic Emergency Brake Assistant

Platform 1 Platform 2

Video
Provider

Video
Adapter

Pre-
processing

Computer
Vision

EBA

frame frame frame

lane

vehicles brake

Figure 3.12: The emergency brake assis-
tant (EBA) application implemented in the
Adaptive Platform Demonstrator (APD).

AUTOSAR provides the Adaptive Platform Demonstrator (APD), which
is an example implementation of the specification for AUTOSAR AP. It
provides a set of demonstrator applications, where the most realistic and
advanced application is the emergency brake assistant (EBA) shown in
Figure 3.12. Unlike what may be expected of a safety-critical application,
the brake assistant exhibits nondeterminism that could potentially have
fatal consequences. While this demonstrator application is not designed for
deployment in the real world, it illuminates the presence of uncontrollable
and safety-undermining nondeterminism in AP.

The brake assistant consists of a pipeline of five SWCs, distributed across
two platforms. Video Provider captures video frames and sends one approxi-
mately every 50ms (via a proprietary protocol) to Video Adapter, which is
running on the second platform. The communication along the remainder of
the component chain occurs through AP service interfaces via the SOME/IP
middleware. Event notifications are used to transfer data from one SWC to
the next, and the corresponding event handler stores the data in a one-slot
input buffer.

Each SWC configures a periodic callback so that the OS triggers the SWC logic
every 50ms. At each invocation, each component reads the current data item
from its input buffer, performs some computation, and then communicates
the result via an event.

For each frame that Preprocessing receives from Video Adapter, it computes a
bounding box demarcating the current travel lane. Computer Vision receives
from Preprocessing both the lane information as well as the original frame
and uses them to detect vehicles in the lane and estimate their distance. It
forwards the list of detected vehicles to the EBA component, which in turn
decides whether an emergency brake maneuver is required.

The logic of each component processes the last data written to its one-slot
input buffer. If there is no data, the SWCs silently stop computation and wait
for the next periodic trigger to occur. This introduces nondeterminism as
data could get overwritten before it is read by a downstream component,
causing entire frames to be dropped. Moreover, since the Computer Vision
component reads not one but two inputs, this can lead to misalignment be-
tween the video frames and the lane information. We instrumented the brake
assistant code to detect and report frame loss and misalignment. Execution
on an evaluation platform, consisting of two MinnowBoard Turbot19 boards 19: MinnowBoard.org Foundation 2023,

MinnowBoard Turbot Dual Ethernet Fam-
ily Technical Specs.

connected via an Ethernet switch, confirmed that the described errors indeed
occur in a real-world setting. The boards are equipped with an Intel Atom
E3845 Quad-Core processor and are officially supported by the APD.

A series of experiments was conducted to analyze the prevalence of the
described errors. Each instance of the experiment executes the brake assis-
tant and processes a total of 100,000 frames while counting dropped input
values and misalignment between different inputs of the same component.
Figure 3.13 plots the obtained results for a total of 20 experiment instances.
Each bar in the figure shows the error prevalence for one instance of the
experiment. The results are ordered by error rate for better visibility. This
order does not correspond to the order in which results were obtained.

https://www.minnowboard.org/minnowboard-turbot-dual-e/technical-specs/
https://www.minnowboard.org/minnowboard-turbot-dual-e/technical-specs/

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 56

0

5

10

15

20

0 5 10 15 20
Prevalence (%)

Ex
pe

rim
en

t i
ns

ta
nc

e
(s

or
te

d)

Error Type
Dropped frames (Preprocessing)

Dropped frames (Computer Vision)

Input mismatches (Computer Vision)

Dropped vehicles (EBA)

Figure 3.13: Prevalence of errors for 20 ex-
ecutions of the emergency brake assistant.

The error rate varies significantly between experiments. In the best case, the
observed error rate is 0.018 % and in the worst case, the error rate is 22.25 %.
The average error rate across all 20 experiments is 5.60 %.

Not only the overall error rate varies, but also the composition error types.
In most experiments, frame dropping at Computer Vision is dominant, but
for some experiments, dropped vehicles at EBA or dropped frames at Prepro-
cessing dominate. This underlines the difficulty of assessing the performance
and correctness of the brake assistant. The error rate is strongly influenced
by the offset between the individual periodic callbacks of the SWCs, which
depends on when the SWCs are started and is difficult to control.

In conclusion, the emergency brake assistant as implemented in the APD
exposes errors due to nondeterminism that could potentially have fatal
consequences. While a certain error rate might be acceptable for some
applications, the presented experiments also highlight that the error rate
itself is nondeterministic and influenced by parameters that are not part of
the actual application design.

3.4.2 Deterministic Emergency Brake Assistant using
Reactors

DEAR allows us to easily transform the brake assistant application into a
deterministic reactor implementation. Since the original implementation
separates computational logic from the communication mechanism, trans-
formation requires only a few code changes. We encapsulate the logic of
each SWC in a reactor that has one reaction to process incoming events.
This reaction calls the original logic to process the data associated with the
incoming event and produces an output event. The overall application is
shown in Figure 3.14.

In order to support the transmission of tagged messages between SWCs,
each reactor binds to the service interfaces of the SWC using the DEAR
transactors. As described in Sections 3.3.2 and 3.3.3, a carefully chosen logical
delay applied by the sending transactor ensures that messages are not sent at
a physical time equal to or less than the message’s timestamp. The receiving
transactor further accounts for the physical delay of message transmission
and ensures that incoming messages are only processed when it is safe to
do so.

Since ComputerVisionhas two inputs, the reaction that calls the computer
vision logic expects to receive two logically simultaneous messages. If only
one input is present, this is considered an error. VideoAdapterhas no well-
defined input. It sporadically receives frames over the network sent by the
camera. As the timing of the camera in this demonstrator application cannot

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 57

VideoAdapter

VALogic

P
frame

VAServerTransactor
frame

Preprocessing

VAClientTransactor
frame

PPLogic
vaFrame pFrame

lane PPServerTransactor
frame
lane

ComputerVision

PPClientTransactor
frame
lane

CVLogic
frame

lane

vehicles
CVSkeletonTransactor

vehicles

SOME/IP Message

EBA

CVClientTransactor
vehicles

EBALogic
vehicles brake

EBAServerTransactor
brake

Figure 3.14: Deterministic implementation of the EBA application in the APD using reactors and the transactors provided by the DEAR
framework.

be controlled, we implement VideoAdapteras a sensor that inserts frames
into the reactor network with a tag equal to the physical time of message
reception. Once the incoming frame is tagged, subsequent reactions are
carried out in a deterministic order.

To achieve correct execution, it is important to carefully consider the physical
delays imposed by the computations of each SWC and by the transport of
messages between SWCs. Only if the delays associated with each SWC
account for its WCET and if the specified maximum communication latency
and the synchronization error are accurate, deterministic execution can be
guaranteed. We use the values given in Table 3.1 for the deterministic EBA
implementation. Since, in this application, all SWCs are deployed on the
same platform, there is no clock synchronization error to account for. Note
that these numbers are estimated upper bounds. More precise values can be
obtained from WCET analysis.20 20: Wilhelm et al. 2008, The Worst-Case

Execution-Time Problem-Overview of Meth-
ods and Survey of Tools; Abella et al. 2015,
WCET Analysis Methods: Pitfalls and Chal-
lenges on their Trustworthiness.

With this implementation, we achieve correct and deterministic execution on
the MinnowBoard platform. Moreover, the timed semantics of reactors facil-
itates reasoning about the worst-case end-to-end latency between receiving
a frame and producing an output brake signal.

http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1109/SIES.2015.7185039
http://dx.doi.org/10.1109/SIES.2015.7185039

3 Reactors: Deterministic Actors in Adaptive AUTOSAR 58

name symbol value

Video Adapter WCET 𝑑VA 5ms
Preprocessing WCET 𝑑P 25ms
Computer Vision WCET 𝑑CV 25ms
EBA WCET 𝑑EBA 5ms
communication latency 𝑙 5ms
clock synchronization error 𝑐 0ms

Table 3.1:Delays used in the deterministic
EBA implementation.

0

25

50

75

100

5 6 7 8 9 10 11 12 13 14 15
dCV (ms)

Er
ro

r r
at

e
(%

)

Figure 3.15: The trade-off between 𝑑CV
and the resulting error rate.

These benefits come at the cost of an extra physical time delay, as each
SWC has to account for worst-case computation and communication delays.
This, however, is not a necessity. For certain applications, it is acceptable to
deliberately introduce the possibility of sporadic errors by using delays lower
than the actualWCET. Independent of how computation and communication
delays are chosen, the reactor semantics guarantees determinism as long as
the assumptions hold and translates any violation of one of the assumptions
directly into observable errors.

In contrast to the original brake assistant implementation, which has nonde-
terministic error rates, the trade-off between end-to-end latency and error
rate becomes apparent in the reactor implementation. Figure 3.15 shows
results from an exemplary measurement on the ComputerVisioncompo-
nent. The plot shows the correlation between the delay 𝑑CV chosen for
ComputerVisionand the resulting error rate. This suggests, for example,
that if the application can tolerate an error rate of about 2 %, then we could
choose a much smaller delay of about 𝑑CV = 12ms. This trade-off between
availability (or latency) and consistency (or error rate), is qualified in the
CAL theorem (cf. Section 4.5.4).21 21: E. A. Lee, Bateni, et al. 2023, Trading

Off Consistency and Availability in Tiered
Heterogeneous Distributed Systems; E. A.
Lee, Akella, et al. 2023, Consistency Vs.
Availability in Distributed Cyber-Physical
Systems.

3.5 Conclusion

This chapter introduced the reactor MoC, which combines principles known
from other models like discrete events, actors, and synchronous languages
to achieve deterministic concurrency. The chapter further demonstrated the
usefulness of the reactor model for the development of CPS applications.
Concretely, we introduced a C++ implementation of the reactor model as well
as the DEAR framework, which facilitates the development of distributed
deterministic applications on top of AUTOSAR AP. Based on the Adaptive
Platform Demonstrator, we have shown that AP applications are inherently
susceptible to nondeterminism and illustrated how the same application
can be realized deterministically with reactors while maintaining standard
compatibility.

The results presented in this chapter were published in Menard, Goens,
Lohstroh, et al. 2020, Achieving Determinism in Adaptive AUTOSAR. Next
to a C-based implementation for embedded devices,22 the presented C++ 22: Lohstroh and E. A. Lee 2019b, Work-in-

Progress: Real-Time Reactors in C .runtime is one of the first published implementations of the reactor model.
The case study based on the APD is the first published demonstration of the
applicability of the reactor model to industrial use cases.

http://dx.doi.org/10.34133/icomputing.0013
http://dx.doi.org/10.34133/icomputing.0013
http://dx.doi.org/10.34133/icomputing.0013
http://dx.doi.org/10.1145/3609119
http://dx.doi.org/10.1145/3609119
http://dx.doi.org/10.1145/3609119
http://dx.doi.org/10.23919/DATE48585.2020.9116430
http://dx.doi.org/10.1109/RTSS46320.2019.00067
http://dx.doi.org/10.1109/RTSS46320.2019.00067

Deterministic Coordination with
Lingua Franca 4

4.1 Polyglot Coordination 60

4.2 Syntax 61

4.3 Code Examples 64

4.4 Coordinating Logical and
Physical Time 68

4.5 Federated Execution: Coordina-
tion Across Multiple Timelines 80

4.6 The Lingua Franca Toolchain . . 85

4.7 C++ Runtime and Code Genera-
tor 88

4.8 Conclusion 92

The previous chapter introduced the DEAR framework, which comprises
a C++ implementation of the reactor model. While this implementation
facilitates the definition and execution of reactor programs, applications
using DEAR are written in plain C++. However, C++ is an expressive general-
purpose language, and programmers may easily introduce constructs that
conflict with reactor semantics. Thus, to build correct programs, program-
mers need to be aware of the reactor semantics and disciplined to avoid
accidental violations. Such violations could be (unprotected) interactions
with concurrent threads, accessing global shared state, directly accessing
the state of other reactors, or accessing ports and actions that have not been
declared as a dependency of a reaction.

If programmers do not fully understand the semantics of the underlying
MoC, they are tempted to take shortcuts and break out of the model to
achieve certain goals, which can undermine the benefits of using the model.
This was shown, for instance, in a comprehensive study of programs using
Scala actors.1 1: Tasharofi, Dinges, and Johnson 2013,

Why Do Scala Developers Mix the Actor
Model with other Concurrency Models?Relying on programmers’ discipline is a common practice in the industry.

The automotive industry, for instance, has introduced standardized guide-
lines for C and C++ programming to improve the reliability of automotive
software.2 However, a better approach is to utilize languages that provide 2: AUTOSAR 2019, Guidelines for the Use

of the C++14 Language in Critical and
Safety-related Systems; The MISRA Consor-
tium et al. 2023, MISRA C:2023: Guidelines
for the Use of the C Language in Critical
Systems.

stricter guarantees and where certain properties can be statically checked by
the compiler. Rust, for instance, eliminates the memory safety issues that are
ubiquitous in C/C++ by utilizing ownership types3 to allow the compiler to

3: Boyapati, R. Lee, and Rinard 2002, Own-
ership Types for Safe Programming: Prevent-
ing Data Races and Deadlocks.

reason about a program’s memory accesses and to guarantee correctness.4

4: Klabnik and Nichols 2022, The Rust Pro-
gramming Language.

For this reason, Rust is becoming increasingly popular in the fields of em-
bedded systems, operating systems, and safety-critical systems, which have
been mostly dominated by C/C++ in the past.

In order to provide a language that allows the specification of deterministic
concurrent software, we created the coordination language Lingua Franca
(LF). Lingua Franca builds on the principles of the reactor model and im-
plements a correct-by-construction approach. The LF compiler ensures the
correctness of given programs and, to the extent possible, that there are no
accidental or deliberate violations of the reactor semantics. Thus, LF can
provide better guarantees on the correctness of a program than a plain C++
implementation using the DEAR framework or a similar implementation of
reactors. In addition, more convenience features and utilities can be provided
on the level of a domain-specific language.

Figure 4.1: The Lingua Franca logo.

This chapter introduces Lingua Franca and gives a broad overview of the
language, the tooling, and the research conducted. Lingua Franca is a largely
collaborative effort with many contributors. Most ideas and concepts can-
not be attributed to a single person. The author of this thesis contributed
the C++ target to Lingua Franca and made significant contributions to the
development of Lingua Franca as a whole. Therefore, this chapter aims to
give a complete overview of Lingua Franca with a focus on the specifics of
the C++ target.

Multiple publications exist that discuss various aspects of the Lingua Franca
language. Some of the examples and discussions presented in this chapter
were previously published. This includes:

http://dx.doi.org/10.1007/978-3-642-39038-8_13
http://dx.doi.org/10.1007/978-3-642-39038-8_13
https://www.autosar.org/fileadmin/standards/R20-11/AP/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/standards/R20-11/AP/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/standards/R20-11/AP/AUTOSAR_RS_CPP14Guidelines.pdf
https://misra.org.uk/product/misra-c2023-hardcopy/
https://misra.org.uk/product/misra-c2023-hardcopy/
https://misra.org.uk/product/misra-c2023-hardcopy/
http://dx.doi.org/10.1145/583854.582440
http://dx.doi.org/10.1145/583854.582440
http://dx.doi.org/10.1145/583854.582440
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

4 Deterministic Coordination with Lingua Franca 60

▶ Lohstroh, Menard, Schulz-Rosengarten, et al. 2020, A Language for
Deterministic Coordination Across Multiple Timelines

▶ Lohstroh, Menard, Bateni, et al. 2021, Toward a Lingua Franca for
Deterministic Concurrent Systems

▶ Menard, Lohstroh, et al. 2023, High-Performance Deterministic Concur-
rency Using Lingua Franca

▶ Lohstroh, Bateni, et al. 2023, Deterministic Coordination Across Multiple
Timelines.

4.1 Polyglot Coordination

Lingua Franca is a polyglot coordination language that is not intended to
be a general-purpose programming language. Therefore, the syntax of LF
focuses on describing the structure of reactor programs and does not provide
mechanisms for describing the business logic of reactors. Implementation of
the logic is delegated to one of the available target languages. At the moment
of this writing, LF supports C, C++, Rust, Python and TypeScript as target
languages. Each LF program specifies its target language at the beginning
and embeds target code blocks that implement the business logic. Consider,
for instance, Listing 4.1, which shows a “Hello, World!” program in Lingua
Franca for all the available target languages.

Listing 4.1: “Hello, World!” programs written in LF using all the target languages that are currently supported.

1 target C
2 main reactor{
3 reaction(startup) {=
4 printf("Hello, World!\n");
5 =}
6 }

1 target Python
2 main reactor{
3 reaction(startup) {=
4 print("Hello, World!")
5 =}
6 }

1 target Cpp
2 main reactor{
3 reaction(startup) {=
4 std::cout <<"Hello, World!\n";
5 =}
6 }

1 target TypeScript
2 main reactor{
3 reaction(startup) {=
4 console.log("Hello, World!")
5 =}
6 }

1 target Rust
2 main reactor{
3 reaction(startup) {=
4 println!("Hello, World!");
5 =}
6 }

HelloWorld

LF Code

LF Compiler

Target Toolchain

Target Code Target Runtime

Executable

Figure 4.2: The LF compilation flow.

This approach is different from many related languages. In the synchronous
programming languages, for instance, the entire business logic needs to be
implemented using the synchronous-reactive paradigm. LF, instead, clearly
separates the coordination of concurrent components from their business
logic. By incorporating target code blocks, LF can easily integrate with
existing third-party libraries and legacy code bases.

The target code blocks are treated as black boxes. This approach is enabled
by the clearly defined interfaces of reactions in the reactor model. Reactions
need to declare their dependencies and anti-dependencies, and we can or-
ganize all reactions in an APG that captures all scheduling constraints (cf.
Section 3.1.3). This graph is valid regardless of the concrete code that gets
executed when triggering a reaction.

Lingua Franca programs are not directly compiled into executable code.
Instead, the LF compiler generates code in the target language. A target
toolchain is responsible for compiling the executable and linking it with
a reactor runtime that coordinates the execution of the LF program. This
process is depicted in Figure 4.2. This two-step approach allows for a sepa-
rating concerns. The LF compiler is responsible for checking the correctness
of the program regarding the semantics of the reactor model and for gener-
ating target code that correctly implements the reactor program. The target

http://dx.doi.org/10.1109/FDL50818.2020.9232939
http://dx.doi.org/10.1109/FDL50818.2020.9232939
http://dx.doi.org/10.1145/3448128
http://dx.doi.org/10.1145/3448128
http://dx.doi.org/10.1145/3617687
http://dx.doi.org/10.1145/3617687
http://dx.doi.org/10.1145/3615357
http://dx.doi.org/10.1145/3615357

4 Deterministic Coordination with Lingua Franca 61

toolchain, however, is responsible for type-checking and validating target
code blocks.

4.2 Syntax

The syntax of Lingua Franca is closely based on the reactor model. Each of the
reactor elements is represented as a keyword or operator in LF. However, LF
also provides various extensions over the reactor model, which can be seen
as “syntactic sugar.” Listing 4.2 lists the core syntax rules of Lingua Franca
using the ANTLR 4 format.5 In the following, we discuss these syntax rules 5: Parr 2013, The Definitive ANTLR 4 Ref-

erence.in more detail to provide an overview of the Lingua Franca coordination
language. The underlying concepts and code examples are discussed in the
subsequent sections.

Each Lingua Franca program consists of a target declaration, an optional list
of imports, an optional set of preambles, and at least one reactor declaration
(line 3). The target declaration starts with the targetkeyword and specifies
the target language of the program (line 5). Optionally, the target declaration
may specify additional target properties. Such properties can influence the
behavior of the program or its compilation.

Following the target declaration, the program may specify one or multiple
imports using the importand fromkeywords. Each import statement speci-
fies one or multiple reactors to import, as well as the path to an LF file to
import from (line 8).

The program may provide one or more preambles in the file-global scope
(line 10). Preambles allow the programmer to specify additional imports of
third-party libraries in the target language, or to define global variables and
functions. Preambles are declared using the preamblekeyword and a target
language code block. In LF, such target code blocks are enclosed in {= and =}
(line 50). Depending on the target language, the preamble may be additionally
qualified using the privateor publickeywords. This is relevant for target
languages like C++, where declarations are placed publicly in a header file
and definitions are provided in an additional source file.

The main section of each LF program consists of at least one reactor declara-
tion (lines 12–15). Reactors are declared using the reactorkeyword. Each
reactor may declare a set of type parameters and parameters. A reactor con-
tains any number of reactor-level preambles, state variables, methods, ports,
timers, actions, reactor instantiations, connections, and reactions. Reactor-
level preambles are similar to the file-level preambles, but their scope is
limited to the contents of the reactor.

Reactors may be qualified using the mainor federatedkeywords. The main
reactor represents the top-level reactor of an LF program. The federated
keyword also marks the top-level reactor, but in contrast to main, federated
implies that the program is compiled into multiple binaries that may be
executed in a distributed system. The LF compiler generates one executable
for each reactor instantiated within the federated reactor. The name of a
reactor qualified as mainor federatedmay be omitted. If it is given, it is
required to be equal to the file name of the LF program.

Parameters and state variables are defined by their name, an optional type,
and an optional initializer expression (lines 20 and 21). State variables are
declared using the statekeyword. Parameters do not require a dedicated
keyword and are declared syntactically as arguments to the reactor. Parame-
ters are an extension that LF provides over the basic reactor model. They can

https://pragprog.com/titles/tpantlr2/the-definitive-antlr-4-reference/
https://pragprog.com/titles/tpantlr2/the-definitive-antlr-4-reference/

4 Deterministic Coordination with Lingua Franca 62

Listing 4.2: The core grammar of Lingua Franca given in ANTLR 4 format.

1 grammar LinguaFranca;
2

3 program: target lf_import* preamble* reactor+ EOF;
4

5 target: 'target'ID ('{' property* '}')?;
6 property:key=ID ':' value=(literal | time);
7

8 lf_import:'import'reactors+=ID (',' reactors+=ID)* 'from' uri=STRING;
9

10 preamble: (qualifier=('private'| 'public'))? 'preamble'code;
11

12 reactor:
13 ('main' | 'federated')? 'reactor'(name=ID)? type_parameters? parameters?
14 '{' (preamble | state | method | port | timer | action | instantiation| connection| reaction)* '}'
15 ;
16

17 type_parameters:'<' ID (',' ID)*'>'
18 parameters: '(' parameter(',' parameter')')*
19

20 parameter: name=ID (':' type)? '=' (init=expression)?;
21 state: 'state' name=ID (':' type)? '=' (init=expression)?;
22

23 method: 'const'? 'method'name=ID '(' (method_argument(',' method_argument)*)? ')' (':' return=type)? code;
24 method_argument:name=ID (':' type)?;
25

26 port: ('input' | 'output') name=ID (':' type)?;
27 timer: 'timer' name=ID ('(' offset=expression(',' period=expression)? ')')?;
28 action: ('logical'| 'physical') 'action'name=ID (':' type);
29

30 instantiation:name=ID '=' 'new' reactorClass=ID '(' (assignment(',' assignment)*)? ')';
31 assignment:parameter_name=ID '=' expression;
32

33 connection:reference('->' | '~>') reference('after' delay=expression)?;
34 reference:variable=ID | container=ID '.' variable=ID;
35

36 reaction:
37 'reaction'name=ID? ('(' (triggers+=trigger_reference(',' triggers+=trigger_reference)*)? ')')
38 (sources+=reference(',' sources+=reference)*)? ('->' effects+=reference(',' effects+=reference)*)?
39 code deadline?
40 ;
41

42 trigger_reference:'startup'| 'shutdown'| reference;
43

44 deadline:'deadline''(' delay=expression')' code;
45

46 type: 'time' | ID | code;
47

48 expression:code | literal | parameter_ref| time;
49

50 code: '{=' .*? '=}';
51 literal: BOOLEAN | INT | NEGINT | FLOAT | STRING;
52 parameter_ref:ID;
53 time: value=INT unit=ID?;
54

55 WHITESPACE : [\t\r\n]+ ->skip;
56 INT: ('0'..'9')+;
57 NEGINT: '-'('0'..'9')+;
58 BOOLEAN: 'true'|'True'|'false'|'False';
59 ID: '^'?('a'..'z'|'A'..'Z'|'_')('a'..'z'|'A'..'Z'|'_'|'0'..'9')*;
60 STRING:
61 '"' ('\\'('b'|'t'|'n'|'f'|'r'|'u'|'"'|'\''|'\\') | ~('\\'|'"'))* '"' |
62 '\'' ('\\'('b'|'t'|'n'|'f'|'r'|'u'|'"'|'\''|'\\') | ~('\\'|'\''))* '\'';
63 FLOAT: (INT | NEGINT)? '.' INT (('e' | 'E') ('+' | '-')? INT)?;
64 ANY_OTHER: .;

4 Deterministic Coordination with Lingua Franca 63

be seen as constant state variables that are initialized once when a reactor is
instantiated.

When targeting strongly typed languages, the LF compiler enforces that a
type is provided. A type in LF is either given using a simple identifier, using
target code, or using the built-in type time (line 46). timedenotes a time
span and is the only type that is directly interpreted and checked by the LF
compiler.

In addition to regular parameters, a reactor may also declare type parameters
enclosed in < and > (line 17). Type parameters allow the definition of generic
reactors that are similar to generic classes in C++ or Java. A concrete type
needs to be specified when instantiating a generic reactor.

Expressions in LF are either given as target code blocks, literal values, ref-
erences to parameters, or time values (line 48). Literals are Boolean values,
signed and unsigned integers, floating-point numbers, and strings (line 51).
This rule covers most literals found in LF’s target languages. LF provides
more syntax rules that match additional literals and common expressions
found in various target languages, e.g., list expressions in Python, but such
rules are omitted here for brevity. Any expression that does not match the LF
syntax rules can simply be given as a target code expression enclosed in {=
and =}. Expressions may also refer to a reactor parameter or denote a time
value. A time value in LF is a pair of an integer literal and a unit (line 53). If
the value is zero, then the unit may optionally be omitted. All time values
are of type time.

Methods are another extension of LF over the basic reactor model. Similar
to private methods in object-oriented programming (OOP), methods in LF
can access the local reactor state and provide a mechanism for reusing
functionality within the reactor scope. Methods may be called from reaction
bodies or from other methods. The methoddeclaration specifies an identifier,
an optional return type, and a set of typed and named arguments (lines 23
and 24). The method body is given as a target code block. The additional
constqualifier can be used to mark the method as read-only6 for target 6: Here, read-only means that the method

can read state variables but not write them.languages that support this functionality.

Ports, timers, and actions can be declared natively in LF. Ports are declared
using the inputor outputkeywords followed by an identifier and an op-
tional type annotation (line 26). In strongly typed languages, the type is
required.

Timers are declared using the timerkeyword and an identifier (line 27).
Timers are optionally configured with an offset and a period. The offset spec-
ifies the logical delay until the timer’s first triggering after program startup,
and the period specifies the logical delay between subsequent triggerings.
If the period is omitted or set to zero, then the timer triggers only once.
If the offset is omitted or set to zero, then the first triggering is logically
simultaneous with the startup event.

Actions are declared using the actionkeyword, an identifier, an optional
type, and either the logicalor the physicalqualifier (line 28). Some targets
in LF support additional configurations for actions. For instance, it is possible
to specify a minimum delay or an inter-arrival time. However, the syntax
rules for such configurations are omitted in this exposition for brevity.

Reactors are instantiated using the assignment operator = and the newkey-
word (line 30). Each instantiation needs to specify an instance name and refer
to a concrete reactor declaration to instantiate. If the reactor that gets instan-
tiated has parameters, then the instantiation may specify one or multiple
parameter assignments (line 31).

4 Deterministic Coordination with Lingua Franca 64

Connections are created using the -> or ~> operators (line 33). Each connec-
tion specifies a reference to a port on the left-hand side and on the right-hand
side of the operator. The port reference either refers to a port of the local
reactor or to a nested port within a reactor instance using a dot separator
(line 34). While the -> operator creates a regular connection such that input
and output are logically simultaneous (as defined in the reactor model), the
~> operator creates a physical connection. A physical connection reassigns
the timestamp based on the current reading of physical time when receiving
a message.7 In addition, the afterkeyword may be used to specify a logical 7: This makes physical connections analo-

gous to physical actions.delay that the connection imposes. After delays and physical connections
are explained in more detail in Sections 4.4.5 and 4.4.7.

Finally, reactions are declared using the reactionkeyword (lines 36–40).
Reactions may optionally be named. Since reactions are triggered by events
and executed by the runtime, they may not be called directly. The reaction
name is a purely cosmetic annotation. Each reaction specifies a set of triggers,
sources and effects. Triggers can be any input port, timer or action within
the scope of the reactor, output ports of contained reactors, or the keywords
startupand shutdown, which represent the startup and shutdown triggers
of the reactor model. Sources are ports or actions that the reaction may read
from, but that do not trigger the execution of the reaction. Effects are any
output ports or actions within the scope of the reactor or the input ports of
contained reactors. A reaction may write to its effect, i.e., it may set any ports
or schedule any actions that are declared to be an effect of the reaction.

The reaction body is given as a target code block.The deadlinekeywordmay
optionally be used to annotate the reaction with a deadline. This specifies
an upper bound in physical time fo when the reaction executes relative to
its tag. If the deadline is violated, a deadline handler is executed instead
of the reaction body. This handler is also given as a target code block. See
Section 4.4.3 for more details on deadlines in LF.

4.3 Code Examples

While the previous section introduced the syntax rules of LF, any discus-
sion of programming languages requires code examples to better illustrate
the fundamental concepts. This section reconsiders the bank account ex-
ample programs that were introduced in Section 3.2 and discusses their
implementation in LF code.

4.3.1 Simple Bank Account Example

Consider the program given in Listing 4.3. It provides an LF implementation
of the reactor example initially given in Figure 3.5 on Page 48. The program
defines three reactors: User, Account, and the main reactor that assembles
the program.

User is defined on lines 3–10. It is parameterized by an offsetof type time
and a valueof type float. It consists of a timer t that triggers once at
offsetand an output port requestof type float. The reaction defined on
line 7 is triggered by the timer t and may have an effect on the request
output port. The reaction body is given in C++ code; it simply sends a request
with a value as given by the valueparameter. Thus, any instance of the User
reactor sends a single request for the given valueat the specified logical
offset.

4 Deterministic Coordination with Lingua Franca 65

Listing 4.3: Lingua Franca implementation of the account example given in Figure 3.5.

1 target Cpp
2

3 reactor User(offset:time = 0, value:float = 0.0) {
4 timer t(offset)
5 output request: float
6

7 reaction(t) -> request {=
8 request.set(value);
9 =}

10 }
11

12 reactor Account {
13 state balance: float = 0.0
14 input request_a: float
15 input request_b: float
16

17 reaction(request_a) {=
18 apply(*request_a.get());
19 =}
20

21 reaction(request_b) {=
22 apply(*request_b.get());
23 =}
24

25 method apply(value: float) {=
26 std::cout <<"Request of" << value <<" was ";
27 if (balance + value >= 0) {
28 balance += value;
29 std::cout <<"accepted\n";
30 } else {
31 std::cout <<"denied\n";

32 }
33 =}
34 }
35

36 main reactor(
37 offset_a:time = 1s,
38 offset_b:time = 2s
39) {
40 account = new Account()
41 user_a = new User(offset=offset_a, value=20)
42 user_b = new User(offset=offset_b, value=-10)
43

44 user_a.request -> account.request_a
45 user_b.request -> account.request_b
46 }

SimpleAccount

account : Account
balance:float=0.0

1

2

request_a

request_b

user_a : User

(1 sec)

request

user_b : User

(2 sec)

request

Accountis defined on lines 12–34. It contains a state variable called balance
of type floatthat is initialized with zero.This variable represents the current
balance of the account. Accountfurther contains two input ports of type
floatcalled request_aand request_b. These ports allow the account to re-
ceive requests from two separate users. The two reactions defined on lines 17
and 21 react to incoming requests. Both reactions obtain the requested value
and then call the applymethod, which implements the business logic of the
account.8 In the C++ target, values are obtained by calling get()on a port 8: Here, we use two distinct ports and re-

actions to keep the discussion simple. Such
an approach, however, is not very practi-
cal as we cannot easily change the number
of users and the reactions duplicate logic.
Section 5.1 introduces a syntax extension
that allows for a more flexible and compact
definition of Account.

reference, which returns a smart pointer9 to the current value of the port. To

9: Edelson 1992, Smart Pointers: They’re
Smart, But They’re Not Pointers; Dmitrović
2023, Smart Pointers.

obtain the actual value, this pointer is dereferenced using the * operator (cf.
Section 4.7.1). The applymethod simply tests if the request can be applied
without getting a negative balance. If it can be applied, it updates the balance
and prints “accepted”. Otherwise, it prints “denied”.

The main reactor assembles the program. It creates a single instance of
Account(line 40) and two instances of User (lines 41, 42), and connects
the outputs of the user instances to the inputs of the account instance
(lines 44, 45) using the connection operator ->. user_ais parameterized
with an offset of 1 s and a value of 20 and user_bis parameterized with an
offset of 2 s and a value of -10.

When executed, the program prints the following output:

1 Request of 20.0 was accepted
2 Request of -10.0 was accepted

1 s after startup, user_asends a deposit request with a value of 20, which
the account accepts. 2 s after startup, user_bsends a withdrawal request
with a value of -10, which the account also accepts.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d78dd0f23e9c75b4841111b1978c2997d9965c18
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d78dd0f23e9c75b4841111b1978c2997d9965c18
http://dx.doi.org/10.1007/978-1-4842-9274-7_35

4 Deterministic Coordination with Lingua Franca 66

In the C++ target, main reactor parameters are automatically synthesized
into command-line arguments that allow overwriting the parameter values
at startup. Using the parameters offset_aand offset_b, we can change
the order in which the users send the deposit and withdrawal requests. For
instance, running the command

1 ./bin/SimpleAccount --offset_a 2s --offset_b 1s

reverses the order of the two user requests. The program prints:

1 Request of -10.0 was denied
2 Request of 20.0 was accepted

We can also use the same offset for both users. For instance, running the
command

1 ./bin/SimpleAccount --offset_a 0 --offset_b 0

prints:

1 Request of 20.0 was accepted
2 Request of -10.0 was accepted

In this case, the two requests are logically simultaneous. However, the order
in which the two requests are processed is uniquely defined by the APG.
Since the reaction to request_ais defined before the reaction to request_b,
the reaction to request_atakes precedence over the reaction to request_b.
Hence, the deposit request is processed before the withdrawal request, even
if both are logically simultaneous.

Listing 4.4: Lingua Franca implementation of the account example with a proxy reactor given in Figure 3.6a.

1 target Cpp
2

3 import Account, Userfrom "SimpleAccount.lf"
4

5 reactor Proxy {
6 input in: float
7 output out: float
8

9 reaction(in) -> out {=
10 out.set(*in.get() - 5);
11 =}
12 }
13

14 main reactor{
15 account = new Account()
16 user_a = new User(offset=1s, value=20)
17 user_b = new User(offset=2s, value=-10)
18 proxy = new Proxy()
19

20 user_a.request -> proxy.in
21 proxy.out -> account.request_a
22 user_b.request -> account.request_b
23 }

AccountProxy

account : Account
balance:float=0.0

1

2

user_a : User

(1 sec)

user_b : User

(2 sec)

proxy : Proxy

4.3.2 Bank Account Examples with Proxy Reactors

As discussed in Section 3.2, inserting a simple proxy reactor does not change
the order of events. The code given in Listing 4.4 reproduces the reactor
program given in Figure 3.6a on Page 49. It introduces a proxy reactor
between user_aand account. While the proxy reactor may modify the
request (in this case, it subtracts 5 from the request value before forwarding
the request), it does not influence the logical ordering of events. Input and
output of the proxy reactor are logically simultaneous. When executed, the
program produces the following output:

4 Deterministic Coordination with Lingua Franca 67

1 Request of 15 was accepted
2 Request of -10 was accepted

As also discussed in Section 3.2, we can deliberately introduce a logical
delay using a logical action. The code given in Listing 4.5 reproduces the
reactor program given in Figure 3.6b. The program defines a reactor called
ProxyDelaythat has a parameter delayof type timeand a type parameter
T. ProxyDelaycontains an input port, an output port, and a logical action,
all of which are of type T. This pattern makes the reactor generic and allows
for the forwarding of arbitrary message types.

Listing 4.5: Lingua Franca implementation of the account example with a proxy reactor imposing a delay as given in Figure 3.6b.

1 target Cpp
2

3 import Account, Userfrom "SimpleAccount.lf"
4

5 reactor ProxyDelay<T>(delay:time = 0) {
6 input in: T
7 output out: T
8 logical actiona: T
9

10 reaction(a) -> out {=
11 out.set(std::move(a.get()));
12 =}
13

14 reaction(in) -> a {=
15 a.schedule(std::move(in.get()), delay);
16 =}
17 }
18

19 main reactor(delay: time=2s) {
20 account = new Account()
21 user_a = new User(offset=1s, value=20)
22 user_b = new User(offset=2s, value=-10)
23 proxy = new ProxyDelay<float>(delay=delay)
24

25 user_a.request -> proxy.in
26 proxy.out -> account.request_a
27 user_b.request -> account.request_b
28 }

AccountProxyDelay

account : Account
balance:float=0.0

1

2

user_a : User

(1 sec)

user_b : User

(2 sec)

proxy : ProxyDelay

12 L

The reaction on line 10 reacts to the logical action and simply forwards the
value stored on the action to the output port. The C++ code in the reaction
body uses std::moveto enforce move semantics and avoid copying the
underlying smart pointers. The reaction on line 14 reacts to the input port
and schedules the logical action using the specified delay. Thus, any message
received on the input port will result in a later message on the output port,
such that the logical delay between input and output is precisely delay.

Line 23 instantiates the ProxyDelayreactor using a default delay of 2 s and
the type float. Therefore, the program delays any requests sent by user_a
by 2 s. Consequently, the program denies the withdrawal request by user_b
and produces the following output:

1 Request of -10 was denied
2 Request of 20 was accepted

We can change the program’s behavior by modifying the delayparameter.
Running ./bin/AccountProxyDelay --delay 500mswill instead print:

1 Request of 20 was accepted
2 Request of -10 was accepted

4 Deterministic Coordination with Lingua Franca 68

4.4 Coordinating Logical and Physical Time

All the examples discussed in the previous subsection are deterministic.
All events are ordered logically regardless of the physical time required
for executing reactions. While all events are timed, the physical timing for
handling events is approximate. This section discusses how LF programs
relate the logical timeline of events with the physical wall clock time.

4.4.1 Timing Diagrams

To illustrate the execution of LF programs and the relations between logical
and physical time, we use timing diagrams like the one shown in Figure 4.3.10 10: This form of representing the execu-

tion of LF programs is inspired by a similar
visualization proposed by Erling Jellum.

The x-axis of a timing diagram denotes physical time, and the y-axis denotes
logical time. For simplicity, we will assume that each program starts at
physical time 𝑇0 = 0 with tag 𝑔0 = (0, 0).

(0, 0)

(2ms, 0)

0 2ms
physical time

lo
gi

ca
l t

im
e

Figure 4.3: Timing diagram illustrating a
possible execution of the “Hello, World!”
LF program given in Listing 4.1.

A vertical gray line indicates the presence of an event at the corresponding
tag, and a vertical bar indicates the execution of a reaction. The position
of the bar illustrates when the reaction starts executing (in physical time),
and the length of the bar illustrates the time required for processing the
reaction.

The diagonal black line denotes the function 𝒢 ∶ 𝕋 → 𝔾 with 𝒢(𝑡) = (𝑡, 0).
As discussed in Section 3.1.4, the runtime scheduler only processes an event
with tag 𝑔, once the current reading of physical time 𝑇 is greater than the
timestamp of 𝑔 (𝑇 > 𝒯 (𝑔)). Or, in other words, if the tag𝒢(𝑇) corresponding
to the current reading of physical time is greater than the tag 𝑔 (𝒢(𝑇) > 𝑔).
Therefore, all bars indicating the execution of a reaction need to start on the
right side of the diagonal line. The crossing of a vertical line that represents
an event with the black diagonal line marks the earliest physical time at
which the event may be processed.

Consider again the “Hello, World!” programs given in Listing 4.1. This pro-
gram has a single event (startup) and executes a single reaction. Figure 4.3
illustrates one possible execution trace for this program. The gray horizontal
line denotes the startup event, and the gray bar corresponds to the execution
of the reaction. The gap between the bar and the diagonal line represents
the scheduling delay. This is the time it takes to wake up the scheduler, mark
the reaction for, execution, and start processing the reaction. Depending on
the concrete hardware and OS, this gap might be narrower or wider, and it
might be more or less affected by jitter.

4.4.2 Physical Time Barrier and Fast Execution

The timing diagram can be read like a Gantt chart. The program proceeds
to the right in physical time as observed by the local physical clock. For
each physical time instance, the diagram shows which reactions execute.
However, the timing diagram also shows the progression of logical time
on the vertical axis. When the reactor runtime decides to process the next
event, the execution jumps up to the next tag. Thereby, the black diagonal
line denotes the physical time barrier implemented by the runtime, which
prevents logical time from progressing faster than physical time.

Consider the program given in Listing 4.6. The program consists of two reac-
tors. The Counterreactor keeps a state variable count, which it increments
at every tick of the timer t, i.e., every 5ms. It also sends the current value
of countvia its output port. This value is received by the Printerreactor,

4 Deterministic Coordination with Lingua Franca 69

Listing 4.6: A Lingua Franca program that increments a counter every 5ms and prints the current value.

1 target Cpp
2

3 reactor Counter {
4 state count: int = 0
5 timer t(0, 5 ms)
6 output out: int
7

8 reaction(t) -> out {=
9 out.set(count++);

10 =}
11 }
12

13

14

15 reactor Printer {
16 input in: int
17

18 reaction(in) {=
19 std::cout <<"Received:"
20 << *in.get() <<'\n';
21 =}
22 }
23

24 main reactor{
25 c = new Counter()
26 p = new Printer()
27 c.out -> p.in
28 }

Timer

c : Counter
count:int=0

(0, 5 msec)

p : Printer

which simply prints the value. When executed, the program produces the
following output:

1 Received: 0
2 Received: 1
3 Received: 2
4 Received: 3
5 Received: 4
6 ...

A new line appears roughly every 5ms of wall clock time.

Figure 4.4a shows a timing diagram that visualizes one possible execution
trace of this program for the first 5 events. With each event produced by
the timer, the execution progresses to the right and to the top within the
diagram. It progresses to the right as physical time advances and progresses
to the top as the scheduler advances logical time to the next tag. This diagram
illustrates how the physical time barrier governs program execution. After
executing both reactions, the scheduler waits until physical time catches up
with logical time before processing the next event.

In LF, the physical time barrier may optionally be switched off.This is referred
to as the fast mode. The fast mode can be activated by setting the target
property fast: truein the LF program. In the C++ target, the fast mode can
also be activated at runtime using the --fastcommand line argument.

Figure 4.4b shows the execution of the program from Listing 4.6 in fast mode.
The advancement of logical time is not governed by the physical time barrier.
Instead, the scheduler processes the next event as soon as all reactions at the
current tag are completed.

4.4.3 Lag and Deadlines

While the physical time barrier presents a lower bound for when a reaction
to an event at a given tag is executed, there is no upper bound. Lingua
Franca implements a best-effort approach that aims at executing reactions
at a physical time that is close to the timestamp of their tag, but it does not
guarantee that the delay between timestamp and execution is bounded.

If logical time advances slower than physical time, we say that it lags behind
physical time. Lag may occur, for instance, when reactions take longer to
execute than indicated by the logical delay between events. Figure 4.4c
shows the timing diagram for an alternative execution trace of the program
in Listing 4.6. Compared to the timing diagram in Figure 4.4a, the reactions
require more time to execute. There is an increasing lag since the reaction
execution time is larger than the logical delay of 5ms between events.

4 Deterministic Coordination with Lingua Franca 70

(0, 0)

(5ms, 0)

(10ms, 0)

(15ms, 0)

(20ms, 0)

0 5ms 10ms 15ms 20ms 25ms 30ms
physical time

lo
gi

ca
l t

im
e

Reactions: Count
reaction

Print
reaction

(a) Normal execution (with physical time barrier).

(0, 0)

(5ms, 0)

(10ms, 0)

(15ms, 0)

(20ms, 0)

0 5ms 10ms 15ms 20ms 25ms 30ms
physical time

lo
gi

ca
l t

im
e

Reactions: Count
reaction

Print
reaction

(b) Fast execution (without physical time barrier).

(0, 0)

(5ms, 0)

(10ms, 0)

(15ms, 0)

(20ms, 0)

0 5ms 10ms 15ms 20ms 25ms 30ms
physical time

lo
gi

ca
l t

im
e

Reactions: Count
reaction

Print
reaction

(c) An execution that lags behind logical time.

(0, 0)

(5ms, 0)

(10ms, 0)

(15ms, 0)

(20ms, 0)

0 5ms 10ms 15ms 20ms 25ms 30ms
physical time

lo
gi

ca
l t

im
e

Reactions: Count
reaction

Print
reaction

Print deadline
handler

(d) A lagging execution with an annotated deadline.

Figure 4.4: Timing diagrams visualizing possible execution traces for the program given in Listing 4.6.

While LF does not guarantee the absence of lag, it does provide a mech-
anism for detecting lag. Reactions may optionally be annotated with a
deadline and a deadline handler. Consider the modified implementation
of the Printerreactor given in Listing 4.7. It uses the deadlinekeyword
to annotate a deadline of 5ms. If the deadline is violated, the deadline han-
dler will be executed instead. In this example, the handler simply prints
"Deadline violated!".

A deadline in LF does not impose an upper bound on when a reaction finishes
its computation, but instead imposes an upper bound on when a reaction
starts its computation. At the current tag 𝑔, a deadline 𝐷 is considered
violated if the corresponding reaction starts executing at a physical time 𝑇
with 𝑇 > 𝒯 (𝑔) + 𝐷. If the deadline is violated, then the deadline handler is
executed instead of the reaction body. This mechanism makes lag detectable
and also handleable by the business logic. A deadline violation is simply
treated as a fault that can be handled as indicated by the user.

Figure 4.4d shows the timing diagram for the modified program with an
annotated deadline. The diagonal red line represents the deadline. More
precisely, it displays the function𝔇𝐷 ∶ 𝕋 → 𝔾 defined by𝔇𝐷(𝑇) = (𝑇−𝐷, 0),
which maps a given reading of physical time 𝑇 to the latest tag 𝑔 = 𝔇𝐷(𝑇),
that can be executed at this time without violating the deadline condition
𝑇 ≤ 𝒯 (𝑔) + 𝐷.

4 Deterministic Coordination with Lingua Franca 71

1 reactor Printer {
2 input in: int
3

4 reaction(in) {=
5 std::cout <<"Received:"
6 << *in.get() <<'\n';
7 =} deadline(5 ms) {=
8 std::cout <<"Deadline"
9 << "violated!\n";

10 =}
11 }

Timer

c : Counter
count:int=0

(0, 5 msec)

p : Printer

5 msec

Listing 4.7: Modified Printer reactor
with an annotated deadline and a deadline
handler.

In Figure 4.4d, there is an increasing lag, similar to the diagram in Figure 4.4c.
For the first 3 iterations, the reaction of Printeris executed within the
deadline. However, stating from the 4th iteration, the deadline is violated, and
the deadline handler is executed instead of the reaction body. The program
prints:

1 Received: 0
2 Received: 1
3 Received: 2
4 Deadline violated!
5 Deadline violated!
6 ...

4.4.4 Logical Actions

While ports provide a mechanism for triggering simultaneous events at
the current tag in connected reactors, actions provide a mechanism for
scheduling events at a later tag, but only within the scope of one reactor. As
discussed in Section 3.1.2, logical actions are scheduled with a tag relative
to the current tag. In LF, reactions may declare logical actions as effects,
and the reaction body may schedule the declared actions using an optional
delay. Logical actions can be used to implement logical delays, as was already
shown in Listing 4.5. If the delay is omitted or set to zero, then the new event
is scheduled at the next microstep.

Logical actions may also be scheduled repeatedly. Consider Listing 4.8, which
implements a simple clock. The Clockreactor defines an output port tick
and a logical action a. The reaction on line 7 is triggered by the startup
event, or a, and may have an effect on the action a and the output port tick.
The reaction body schedules the next triggering of a with a delay equal to
the given period, and it sets the output port tickat the current tag. This
pattern effectively implements a timer with zero offset. Hence, timers in LF
can be considered syntactic sugar.

Listing 4.8: A simple clock implemented in LF that sends a tick signal at regular intervals.

1 target Cpp
2

3 reactor Clock(period: time = 0) {
4 output tick: void
5 logical actiona
6

7 reaction(startup, a) -> a, tick {=
8 a.schedule(period);
9 tick.set();

10 =}
11 }
12

13 reactor Printer {
14 input tick: void

15 reaction(tick) {=
16 std::cout <<"Tick at "
17 << get_elapsed_logical_time()
18 << '\n';
19 =}
20 }
21

22 main reactor(
23 period: time = 100 ms
24) {
25 c = new Clock(period=period)
26 p = new Printer()
27 c.tick -> p.tick
28 }

SimpleClock

c : Clock

L

p : Printer

4 Deterministic Coordination with Lingua Franca 72

(0, 0)

(100ms, 0)

(200ms, 0)

(300ms, 0)

(400ms, 0)

0
10

0m
s

20
0m

s
30

0m
s

40
0m

s

physical time

lo
gi

ca
l t

im
e

Clock
reaction

Print
reaction

Figure 4.5: Timing diagram for the simple
clock program in Listing 4.8.

When executed, the program prints:

1 Tick at 0 nsecs
2 Tick at 100000000 nsecs
3 Tick at 200000000 nsecs
4 Tick at 300000000 nsecs
5 Tick at 400000000 nsecs
6 ...

Figure 4.5 shows the corresponding timing diagram, which is similar to the
diagram in Figure 4.4a.

Timers are more convenient to use than logical actions, when reactions
should be triggered at regular intervals. However, logical actions provide
more flexibility, as the target code in the reaction body can freely choose if
it schedules the action and which delay to use. We can use this, for instance,
to implement a clock with a changing period.

Consider, for example, the program in Listing 4.9 that implements a slowing
clock. The Clockreactor in this example implements a variable delay using
the state variable defined on line 23. Similar to the simple clock example, the
body of the reaction declared on line 25 schedules the action a. However,
it uses a variable delay, which is incremented by step for each reaction
invocation.

Listing 4.9: A slowing clock implemented in LF that sends a tick signal at increasing intervals.

1 target Cpp
2

3 import Printer from "SimpleClock.lf"
4

5 main reactor(
6 step: time = 100 ms,
7 initial_delay:time = 100 ms
8) {
9 c = new Clock(

10 step=step,
11 initial_delay=initial_delay)
12 p = new Printer()
13 c.tick -> p.tick
14 }
15

16 reactor Clock(
17 step: time = 0,
18 initial_delay:time = 0
19) {
20 output tick: void
21 logical actiona
22

23 state delay: time = initial_delay
24

25 reaction(startup, a) -> a, tick {=
26 a.schedule(delay);
27 tick.set();
28 delay += step;
29 =}
30 }

SlowingClock

c : Clock
delay:time=initial_delay

L

p : Printer

(0, 0)

(200ms, 0)

(400ms, 0)

(600ms, 0)

(800ms, 0)

(1000ms, 0)

0 200ms 400ms 600ms 800ms 1000ms
physical time

lo
gi

ca
l t

im
e

Clock
reaction

Print
reaction

Figure 4.6: Timing diagram for the slow-
ing clock program in Listing 4.9.

4 Deterministic Coordination with Lingua Franca 73

When executed, the program prints:

1 Tick at 0 nsecs
2 Tick at 100000000 nsecs
3 Tick at 300000000 nsecs
4 Tick at 600000000 nsecs
5 Tick at 1000000000 nsecs
6 ...

Figure 4.6 shows the corresponding timing diagram. The interval between
events is increasing with each invocation of the clock reaction.

4.4.5 After Delays

In the reactor model, relaying messages via connections is logically instan-
taneous. However, the LF syntax optionally allows for the specification of a
logical delay on a connection using the afterkeyword. This is an extension
of the underlying reactor model. Consider, for example, the program in
Listing 4.10. It replicates the example in Listing 4.8 but connects the Clock
and Printreactors using an after delay of 30ms.

Listing 4.10: Example LF program illustrating the use of after delays.

1 target Cpp
2

3 import Clock, Printerfrom "SimpleClock.lf"
4

5 main reactor{
6 c = new Clock(period = 100ms)
7 p = new Printer()
8 c.tick -> p.tickafter 30 ms
9 }

After

c : Clock

L

p : Printer

30 ms

When executed, the program prints:

1 Tick at 30000000 nsecs
2 Tick at 130000000 nsecs
3 Tick at 230000000 nsecs
4 Tick at 330000000 nsecs
5 Tick at 430000000 nsecs
6 ...

The corresponding timing diagram is given in Figure 4.7. When the clock
reaction sets the output port, it schedules a new event with an offset of 30ms.
This new event triggers the print reaction.

(0, 0)

(100ms, 0)

(200ms, 0)

(300ms, 0)

(400ms, 0)

0 100ms 200ms 300ms 400ms
physical time

lo
gi

ca
l t

im
e

Clock
reaction

Print
reaction

Figure 4.7: Timing diagram for the after
delay example in Listing 4.10.

4 Deterministic Coordination with Lingua Franca 74

1 target Cpp
2

3 import Clock from "SimpleClock.lf"
4 import Printer from "SimpleClock.lf"
5

6 reactor Delay(delay: time = 0) {
7 input in: void
8 output out: void
9 logical actiona: void

10

11 reaction(a) -> out {=
12 out.set();
13 =}

14

15 reaction(in) -> a {=
16 a.schedule(delay);
17 =}
18 }
19

20 main reactor{
21 c = new Clock(period = 100ms)
22 d = new Delay(delay = 30ms)
23 p = new Printer()
24 c.tick -> d.in
25 d.out -> p.tick
26 }

AfterDesugared

c : Clock

L

d : Delay

12 L

p : Printer

Listing 4.11: Example LF program that is
semantically equivalent to the after delay
example in Listing 4.10 but uses an explicit
delay reactor.

After delays are semantically equivalent to using a delay reactor like the one
used in Listing 4.5. Listing 4.11 shows a modified version of the after delay
example in Listing 4.10. This program uses a delay reactor with a logical
action instead of the after delay syntax that LF provides. Since after delays
can be implemented using plain reactor mechanisms, the after delays in LF
can be considered syntactic sugar. In fact, the LF compiler implements a
transformation that replaces after delays with a synthesized delay reactor.
This is used for targets that do not provide native support for after delays in
their runtime.

4.4.6 Physical Actions

Unlike logical actions, which are scheduled relative to the current tag, physi-
cal actions are scheduled relative to the current reading of physical time (cf.
Section 3.1.2). This makes physical actions particularly useful for scheduling
events in an external context outside the scope of the LF program. This could
be external concurrent processes or interrupts that are triggered by some
external event.

Physical actions provide a means for asynchronous processes to safely insert
an event into the event queue; the scheduling of a physical action can be

Listing 4.12: Example LF program illustrating the use of physical actions.

1 target Cpp
2

3 main reactor{
4 timer t(0, 100 ms)
5 physical actionp: void
6

7 state thread: std::thread
8

9 reactioninit(startup) -> p {=
10 // Start an asynchronous thread
11 // that waits for roughly 250 ms
12 // and then schedules the
13 // physical action.
14 thread = std::thread([&] () {
15 std::this_thread::sleep_for(250ms);
16 p.schedule();
17 });

18 =}
19

20 reaction tick(t) {=
21 std::cout
22 << "React to timer tick at"
23 << get_elapsed_logical_time()
24 << '\n';
25 =}
26

27 reaction external(p) {=
28 std::cout
29 << "React to external event at"
30 << get_elapsed_logical_time()
31 << '\n';
32 =}
33 }

PhysicalAction
thread:std::thread

(0, 100 msec)

init

tick

externalP

4 Deterministic Coordination with Lingua Franca 75

seen as providing an input to the system. The tag assigned to the event is
nondeterministic in the sense that it is not defined by the program. There-
fore, the tag is considered to be part of the input. Once the tag is assigned,
however, the scheduled event is inserted into the event queue and processed
deterministically and strictly in tag order.

Listing 4.12 provides an example program that illustrates the use of physical
actions in LF. The main reactor contains a timer t and the physical action p,
as well as the state variable thread, which holds a thread object.The program
spawns this thread at startup in the init reaction on line 14. The thread
models an asynchronous external process that may schedule the physical
action. Concretely, the thread waits for roughly 250ms and then schedules
the physical action once before it terminates.

The main reactor further defines the reaction tick, which is triggered by
the timer t, and the reaction external, which is triggered by the externally
scheduled physical action p. Both reactions print their trigger and the current
logical time. When executing the program, it prints something similar to the
following:

1 React to timer tick at 0 nsecs
2 React to timer tick at 100000000 nsecs
3 React to timer tick at 200000000 nsecs
4 React to external event at 250556992 nsecs
5 React to timer tick at 300000000 nsecs
6 React to timer tick at 400000000 nsecs
7 ...

The precise tag assigned to the external event may vary between execu-
tions.

The corresponding timing diagram is shown in Figure 4.8. In the diagram, we
assume that scheduleis called at physical time 255ms. This physical time
is marked by the vertical dashed brown line. The newly scheduled event is
inserted at tag (255ms 0), and this event is handled promptly by triggering
and executing the externalreaction.

(0, 0)

(100ms, 0)

(200ms, 0)

(300ms, 0)

(400ms, 0)

0 100ms 200ms 300ms 400ms
physical time

lo
gi

ca
l t

im
e

init tick external

Figure 4.8: Timing diagram for the physi-
cal action example in Listing 4.12.

We can use a pattern similar to Listing 4.12 to model external asynchronous
input. Consider again the bank account example shown in Listing 4.3 and
discussed in Section 4.3.1. In this example, the order in which the users send
requests is hard-coded using timers, and thus the requests have predeter-
mined fixed tags. While using a predefined order is useful for testing and
demonstration, reactor programs that are deployed in practice need to be
able to handle sporadic asynchronous inputs to be useful. Physical actions
provide the means to achieve this.

4 Deterministic Coordination with Lingua Franca 76

Listing 4.13: A variant of the bank account example in Listing 4.3 using physical actions to model the user input.

1 target Cpp
2

3 import Account from "SimpleAccount.lf"
4

5 reactor PhysicalUser{
6 output request: float
7 physical actiona: float
8

9 reaction(a) -> request {=
10 request.set(std::move(a.get()));
11 =}
12 }
13

14 main reactor{
15 account = new Account()
16 a = new PhysicalUser()
17 b = new PhysicalUser()
18

19 user_a.request -> account.request_a
20 user_b.request -> account.request_b
21 }

AccountPhysicalUser

account : Account
balance:float=0.0

1

2

user_a : PhysicalUser

P

user_b : PhysicalUser

P

Listing 4.13 shows amodified version of the simple account example that uses
physical actions to model sporadic user input. Note that the scheduling of the
physical actions is not part of the program and needs to be done externally.
The Accountreactor remains unchanged. Consequently, it implements the
same testable behavior as in the earlier examples. Concretely, if user_a
sends a deposit message at tag 𝑔𝑎 and user_bsends a withdrawal message at
tag 𝑔𝑏 with 𝑔𝑏 > 𝑔𝑎, then the semantics of LF guarantees that the response of
the account is identical to the response in a test case that uses the same tag
ordering (i.e., the behavior is identical to the program in Listing 4.3). Physical
actions draw a clear perimeter around the deterministic and therefore testable
program logic while allowing it to interact with sporadic external inputs.

4.4.7 Physical Connections

The LF syntax also provides a mechanism for inserting physical connections.
A physical connection can be created using the ~> operator instead of the
regular -> connection operator. Similar to connections with after delays,
physical connections can be replaced with a reactor that internally uses a
physical action to delay the message. Consider the example program in List-
ing 4.14, which uses a physical connection to connect the Clockand Print
reactors. It is semantically equivalent to the program given in Listing 4.15.

Listing 4.14: Example LF program illustrating the use of physical connections.

1 target Cpp
2

3 import Clock, Printerfrom "SimpleClock.lf"
4

5 main reactor{
6 c = new Clock(period = 100ms)
7 p = new Printer()
8 c.tick ~> p.tick
9 }

PhysicalConnection

c : Clock

L

p : Printer

4 Deterministic Coordination with Lingua Franca 77

1 target Cpp
2

3 import Clock from "SimpleClock.lf"
4 import Printer from "SimpleClock.lf"
5

6 reactor PhysicalConnection{
7 input in: void
8 output out: void
9 physical actiona: void

10

11 reaction(a) -> out {=
12 out.set();
13 =}

14

15 reaction(in) -> a {=
16 a.schedule();
17 =}
18 }
19

20 main reactor{
21 c = new Clock(period = 100ms)
22 d = new PhysicalConnection()
23 p = new Printer()
24 c.tick -> d.in
25 d.out -> p.tick
26 }

PhysicalConnectionDesugared

c : Clock

L

d : PhysicalConnection

12 P

p : Printer

Listing 4.15: Example LF program that
is semantically equivalent to the physical
connection example in Listing 4.14, but
that uses an explicit physical delay reactor.

When executed, the program prints something similar to the following:

1 Tick at 389958 nsecs
2 Tick at 100079622 nsecs
3 Tick at 200086711 nsecs
4 Tick at 300080375 nsecs
5 ...

The precise times printed may vary between executions.

In this example, the physical action is not scheduled from an external concur-
rent process but from inside the LF program. This is useful for deliberately
introducing actor-like nondeterminism into a program when this is desired.
By using a physical connection, the programmer explicitly states that the
receiver should ignore the logical ordering of messages relative to other
events in the system and instead process messages in the order of arrival.

Using both physical actions and physical connections, we can replicate the
semantics of actor programs in LF. Consider the modified bank account
example in Listing 4.16 that uses physical connections to connect the users
with the account. In this example, the deposit and withdrawal messages are
tagged and processed nondeterministically in the order in which they arrive
at the account. This behavior is similar to the nondeterministic behavior of
the actor implementation shown in Figure 2.6a on Page 16.

Listing 4.16: A nondeterministic implementation of the bank account example in Listing 4.3 using physical actions to model the user input
and physical connections to relay the user messages.

1 target Cpp
2

3 import Account from "SimpleAccount.lf"
4 import PhysicalUserfrom "AccountPhysicalUser.lf"
5

6 main reactor{
7 account = new Account()
8 user_a = new PhysicalUser()
9 user_b = new PhysicalUser()

10

11 user_a.request ~> account.request_a
12 user_b.request ~> account.request_b
13 }

AccountPhysicalConnection

account : Account
balance:float=0.0

1

2

user_a : PhysicalUser

P

user_b : PhysicalUser

P

4 Deterministic Coordination with Lingua Franca 78

4.4.8 Reflex Game

The example program in Listing 4.17 illustrates how both logical and physical
actions can be used to implement an interactive application in LF. The
program implements the Reflex Game, which is inspired by a similar Esterel
example program.11 This simple game measures the player’s reaction time. 11: Géard Berry and Gonthier 1992, The

ESTEREL Synchronous Programming Lan-
guage: Design, Semantics, Implementation.

The game prints a prompt at a random time and the player needs to react by
pressing the enter or return key. The game measures the time that elapsed
between the prompt and the player’s reaction. If the player presses enter
before the prompt appears, the game considers this cheating and quits.

ReflexGame

RandomDelay

12 L
min delay: 2 sec

in out

KeyboardInput

1 2

3

P
enter

quit

GameLogic

1

2

3

4

5
prompt

enter

quit

request_prompt

Figure 4.9: Diagram showing the Reflex Game defined in Listing 4.17.

Figure 4.9 shows the reactor diagram for the Reflex Game. The program
consists of three reactors: KeyboardInput, RandomDelay, and GameLogic.
The KeyboardInputreactor interacts with the keyboard and informs the
game logic when a key was pressed. Similar to the example in Listing 4.12, it
spawns an additional thread that executes asynchronously and uses a physi-
cal action to notify the KeyboardInputreactor when a key is pressed. The
getchar()function, which is used to read from the keyboard, blocks until a
key is pressed. Calling this function directly from a reaction could block the
entire program. Therefore, the additional thread is needed to enable blocking
calls while ensuring that the reactor program can progress independently.

The RandomDelayreactor is similar to the delay reactor in Listing 4.11; it
forwards the input signal to the output with a logical delay. However, the
delay is not fixed but determined by a random number generator. For each
message received on the input port, the reaction triggered by this message
determines a random delay between 2 s and 8 s and schedules its internal
logical action accordingly.

Finally, the GameLogicreactor implements the core logic of the game. It
prints usage instructions on startup and then requests a prompt by sending
a message to RandomDelay. Once the message arrives back at the GameLogic
reactor, it displays the prompt and waits for the player’s reaction, which
is indicated by a message from KeyboardInputon the enter port. The
game calculates and prints the reaction time and then requests another
prompt. If the player presses enter too early or quits the game, the program
terminates.

This example illustrates the principle usage of LF for implementing an applica-
tion that requires reacting to external input, implementing some predictable
behavior, and performing actions at certain points in time. Admittedly, using
an additional thread for interacting with the keyboard is inconvenient, as
it requires breaking out of the reactor model. Chapter 6 discusses a better
solution that allows some reactions to perform long-running computations
or call blocking functions while the rest of the program can progress inde-
pendently.

http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1016/0167-6423(92)90005-V

4 Deterministic Coordination with Lingua Franca 79

Listing 4.17: Reflex Game implemented in LF.

1 target Cpp
2

3 reactor RandomDelay{
4 public preamble{=
5 #include <random>
6 =}
7

8 input in: void
9 output out: void

10 // logical action with a minimum delay of 2s
11 logical actiondelay(2s): void
12 // a random number generator seeded with the
13 // current physiceal time
14 state rand: std::mt19937({=
15 get_physical_time().time_since_epoch().count()
16 =})
17 // a uniform random distribution with a range
18 // from 0 to 6,000 milliseconds
19 state dist: std::uniform_int_distribution<int>(
20 0, 6000
21)
22

23 reaction(delay) -> out {= out.set(); =}
24

25 reaction(in) -> delay {=
26 delay.schedule(dist(rand) * 1ms);
27 =}
28 }
29

30 reactor KeyboardInput{
31 state thread: std::thread
32 state terminate: std::atomic<bool> = false
33 physical actionkeyboard_input: char
34

35 output enter: void
36 output quit: void
37

38 reaction(startup) -> keyboard_input {=
39 // start an external thread that listens for
40 // keyboard input.
41 thread = std::thread([&] () {
42 while(!terminate.load()) {
43 int c = getchar();
44 keyboard_input.schedule(c);
45 }
46 });
47 =}
48

49 reaction(keyboard_input) -> enter, quit {=
50 char key = *keyboard_input.get();
51 if(key == '\n') {
52 enter.set();
53 } else if (key == EOF) {
54 quit.set();
55 }
56 =}
57

58 reaction(shutdown) {=
59 terminate.store(true);
60 thread.join();
61 =}
62 }
63

64 reactor GameLogic{
65 private preamble{=
66 using namespacestd::chrono;
67 =}
68

69 output request_prompt: void

70 input prompt: void
71 input enter: void
72 input quit: void
73

74 state prompt_time: {= reactor::TimePoint =} =
75 {= reactor::TimePoint::min() =}
76 state total_time: time(0)
77 state count: unsigned= 0
78

79 reaction(startup) -> request_prompt {=
80 std::cout
81 << "**********************************\n"
82 << "Hit Return or Enter when prompted.\n"
83 << "Type Control-D (EOF) to quit.\n\n";
84

85 request_prompt.set();// request the first prompt
86 =}
87

88 reaction(prompt) {=
89 prompt_time = get_physical_time();
90 std::cout <<"\nHit Return or Enter!\n";
91 =}
92

93 reaction(enter) -> request_prompt {=
94 // If the prompt_time is min(), then the user
95 // is hitting return before being prompted.
96 if (prompt_time == reactor::TimePoint::min()) {
97 std::cout <<"YOU CHEATED!\n";
98 environment()->sync_shutdown();
99 } else {

100 reactor::TimePoint logical = get_logical_time();
101 auto elapsed = (logical - prompt_time);
102 auto time_in_ms =
103 duration_cast<milliseconds>(elapsed);
104 std::cout <<"Response time in milliseconds:"
105 << time_in_ms <<'\n';
106 count++;
107 total_time += time_in_ms;
108 // Reset the prompt_time to indicate that there
109 // is currently no prompt shown.
110 prompt_time = reactor::TimePoint::min();
111 // Request another prompt.
112 request_prompt.set();
113 }
114 =}
115

116 reaction(quit) {= environment()->sync_shutdown(); =}
117

118 reaction(shutdown) {=
119 if (count > 0) {
120 auto avg = total_time / count;
121 std::cout <<"\n**** Average response time:"
122 << duration_cast<milliseconds>(avg) <<'\n';
123 } else {
124 std::cout <<"\n**** No attempts.\n";
125 }
126 =}
127 }
128

129 main reactor{
130 delay = new RandomDelay()
131 keyboard= new KeyboardInput()
132 logic = new GameLogic()
133

134 logic.request_prompt -> delay.in
135 delay.out -> logic.prompt
136 keyboard.enter -> logic.enter
137 keyboard.quit -> logic.quit
138 }

4 Deterministic Coordination with Lingua Franca 80

4.5 Federated Execution: Coordination Across
Multiple Timelines

Lingua Franca also supports the generation of programs that may be executed
in a distributed system. Any LF program can be converted into a distributed
(or federated) program by exchanging the mainmodifier of the top-level
reactor for the federatedmodifier.12 If the federatedmodifier is used, 12: Currently, federated programs are only

fully supported by the C and Python tar-
gets.

then each reactor instance created within the federated reactor constitutes a
federate. Each federate is compiled as an individual reactor program with its
own executable. We refer to the complete program, consisting of all federates,
as a federation.

The support for federated execution of LF programs is not a primary contribu-
tion of this thesis. The key authors of the methodology and implementation
for federated execution are Edward A. Lee, Marten Lohstroh and Soroush
Bateni. This chapter includes a discussion of federated execution to provide
a complete overview of Lingua Franca.

4.5.1 Aircraft Door Example

Cockpit

Sensor

Door

open

disarm

disarm

Figure 4.10: An actor implementation of
the aircraft door example. (Repeated from
Figure 2.7)

To illustrate the programming and execution of federated LF programs, we
consider again the example of an aircraft door first discussed in Section 2.3.2.
This example considers an aircraft equipped with emergency slides. To safely
open the passenger door in the parking position, the pilots in the cockpit
first need to disarm the slide and then open the door. The example assumes
that the disarm message from the cockpit is routed through an additional
sensor component that performs safety checks. Figure 4.10 shows again the
Hewitt actor implementation of this example.

As Section 2.3.2 discusses, we cannot make any assumptions about the order
in which the door actor processes the incoming messages. Since the disarm
message is relayed via the sensor actor, there is no guarantee that the open
and disarmmessages arrive at Door in the order in which they were sent.
Figure 4.11 shows a possible message exchange between the actors. Although
Cockpitsends first the disarmmessage and then the openmessage, open
arrives before disarmat Door, and Doorwill perform the corresponding
actions in this order. Thus, the Hewitt actor implementation does not provide
a safe solution to the problem.13

13: We use Hewitt actors here as a place-
holder that represents a whole family of
possible solutions that also includes ser-
vices and publish/subscribe, which build
on similar principles as actors

Cockpit physical time

Door physical time

Sensor physical time
disarm

open

disarm Figure 4.11: Different actors may observe
events in a different order.

There are various ways in which the actor program can be improved. For
instance, Cockpitcould send another message directly to Doorthat indicates
that a disarm message was sent to Sensorand that Door needs to wait
for a message from Sensorbefore opening the door. Alternatively, Sensor
could send a message back to Cockpit, and Cockpit would then send the
disarmmessage directly to the Door. However, any of the possible solutions
adds more complexity, and reasoning about the correctness of the problem
becomes harder to reason about when there are more actors involved.

The semantics of Lingua Franca instead guarantees that Door processes
the incoming messages in the logical order in which they were sent. The
federated flavor of LF extends this guarantee to a distributed context and

4 Deterministic Coordination with Lingua Franca 81

automatically provides an implementation that remains faithful to the pro-
gram specification. This relieves the application designer from developing
complex protocols and reasoning about the possible interleaving of mes-
sages. Figure 4.12 shows the diagram of an LF realization of the aircraft door
example.

AircraftDoor

Cockpit

send_disarm

send_open

P

P

Sensor

check

Door

disarm

open Figure 4.12: Federated LF implementation
of the aircraft door example.

In federated execution, each federate keeps track of its own logical timeline.
Each federate is responsible for processing its local events and deciding when
to advance to the next tag. To do this deterministically, however, we need to
annotate messages sent over network connections with their tag, and we
need a coordination scheme that allows each federate to decide when it is
safe to advance to the next tag. A federate may only advance its logical time
when it knows that no other federate can send a message with an earlier
tag. To achieve this, Lingua Franca currently implements two coordination
strategies: centralized coordination and decentralized coordination, which we
discuss in the following.

4.5.2 Centralized Coordination

In the centralized coordination scheme, all federates communicate with a
central coordinator, which is called the run-time infrastructure (RTI). This
approach is closely related to the High Level Architecture (HLA) standard,
which also uses similar terminology.14

14: Dahmann, Fujimoto, and Weatherly
1997, The Department of Defense High Level
Architecture; Kuhl, Weatherly, and Dah-
mann 1999, Creating Computer Simulation
Systems: An Introduction to the High Level
Architecture.

Figure 4.13 visualizes the overall
architecture.

c : Cockpit s : Sensor

RTI

d : Door

data
control

Figure 4.13: The centralized coordination
scheme for federated execution of LF pro-
grams.

In centralized coordination, the federates do not communicate directly with
each other. All tagged messages on connections between federates are routed
via the central RTI. In addition to the data messages, the federates exchange
control messages with the RTI. Each federate is responsible for informing the
RTI about the next tag at which it may send a message to another federate.
The RTI, in turn, is responsible for coordinating the advancement of the
logical time of the federates. It sends grants which inform a federate that it
may safely advance execution until a certain tag.

While this approach guarantees the correct federated execution of LF pro-
grams, it comes with several disadvantages. Since all messages are routed
via the RTI, the RTI becomes both a single point of failure and a potential
performance bottleneck. Also, the centralized coordination scheme requires
frequently sending null messages if a federate contains a physical action
that can trigger an outgoing network message. In the presence of physical
actions, we cannot infer the earliest next tag at which the federate may
produce an event. Therefore, it needs to inform the RTI about the presence
or absence of events at regular intervals.

http://dx.doi.org/10.1145/268437.268465
http://dx.doi.org/10.1145/268437.268465
http://books.google.com/books?vid=ISBN0130225118
http://books.google.com/books?vid=ISBN0130225118
http://books.google.com/books?vid=ISBN0130225118

4 Deterministic Coordination with Lingua Franca 82

disarm button
pressed
open button
pressed

disarm received
at Sensor
open received
at Door

disarm received
at Door send_disarm

send_open

check

open

disarm

td, 0

to, 0

Td To Td wC,d Td wC,d wC,o

Cockpit physical time

lo
gi

ca
l t

im
e

Cockpit

td, 0

Td Td wC,d  l  c
Td  c Td wC,d wS,c  l  c

Sensor physical time

lo
gi

ca
l t

im
e

Sensor

td, 0

to, 0

Td Td  c Td wC,d wC,o  l  c
To To  c Td wC,d wS,c  2l  c

Door physical time

lo
gi

ca
l t

im
e

Door

Figure 4.14: Timing diagrams for the aircraft door example that illustrate the decentralized coordination scheme for federated execution of LF
programs.

4.5.3 Decentralized Coordination

In the decentralized coordination scheme, the federates communicate directly
with each other. To decidewhen it is safe to advance logical time, the federates
utilize the safe-to-process analysis known from PTIDES.15 This is the same 15: Y. Zhao, J. Liu, and E. A. Lee 2007, A

Programming Model for Time-Synchronized
Distributed Real-Time Systems; Derler,
Feng, et al. 2008, PTIDES: A Programming
Model for Distributed Real-Time Embedded
Systems.

technique as the one used by DEAR for coordinating reactors on top of
AUTOSAR AP (cf. Section 3.3.2).

By making assumptions about the maximum clock synchronization error
𝑐, the network latency 𝑙 and the WCET 𝑤 of all downstream reactions that
may send a network message, each federate can compute a safe-to-process
offset 𝑠, which allows the federate to infer when it is safe to advance to the
next tag.

Consider the timing diagrams in Figure 4.14. They show a fictive execution
trace for the aircraft door example. In this trace, the pilot presses the disarm
button at the physical time 𝑇 𝑑 , and shortly after they press the open button
at 𝑇 𝑜 . Consequently, the two events scheduled via the physical actions in the
Cockpitreactor get assigned tag (𝑡𝑑 , 0) with 𝑡𝑑 = 𝑇 𝑑 for the disarmevent
and tag (𝑡𝑜 , 0) with 𝑡𝑜 = 𝑇 𝑜 for the openevent.

To keep the example and the discussion simple, we assume that the worst-
case delays and the clock synchronization error have identical values. Specif-
ically, 𝑤𝐶,𝑑 denotes the WCET of the send_disarmreaction of Cockpit, 𝑤𝐶,𝑜
denotes the WCET of the send_openreaction of Cockpit, 𝑤𝑆,𝑐 denotes the
WCET of the checkreaction of Sensor, and we assume:

𝑤𝐶,𝑑 = 𝑤𝐶,𝑜 = 𝑤𝑆,𝑐 = 𝑙 = 𝑐 .

http://dx.doi.org/10.1109/RTAS.2007.5
http://dx.doi.org/10.1109/RTAS.2007.5
http://dx.doi.org/10.1109/RTAS.2007.5
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-72.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-72.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-72.html

4 Deterministic Coordination with Lingua Franca 83

The runtime scheduler executes the send_disarmreaction of Cockpitimme-
diately after the corresponding event is scheduled. In the shown execution
trace, the processing of the reaction completes exactly at 𝑇 𝑑 + 𝑤𝐶,𝑑 and
Cockpitsends the disarm network message to Sensor precisely at this in-
stant. Cockpit’s scheduler then advances the current tag to (𝑡𝑜 , 0) and starts
processing the openevent by executing the send_openreaction. Since there
is an overlap with the execution of send_disarm, the send_openreaction is
executed with a slight lag. It completes its computation at 𝑇 𝑑 + 𝑤𝐶,𝑑 + 𝑤𝐶,𝑜
and sends the opennetwork message to Doorprecisely at this instant.

From Cockpit’s point of view, the disarmmessage arrives at Sensorat
𝑇 𝑑 + 𝑤𝐶,𝑑 + 𝑙. However, the local physical clock of Sensorhas a skew of 𝑐
relative to the Cockpit’s clock. Therefore, the x-axis of the Sensorplot in
Figure 4.14 is offset by 𝑐 to the left. Therefore, Sensorreceives the disarm
message at 𝑇 𝑑 + 𝑤𝐶,𝑑 + 𝑙 + 𝑐 according to its local clock. According to our
assumptions, this point in time also marks the latest point at which Sensor
may receive a message from Cockpitwith the tag (𝑡𝑑 , 0). Consequently,
Sensorhas the safe-to-process offset 𝑠𝑆 = 𝑤𝐶,𝑑 + 𝑙 + 𝑐. In the diagram,
this safe-to-process offset is indicated by the orange line. Due to this offset,
Sensormay only process events with a timestamp 𝑡 with 𝑡 ≥ 𝑇 − 𝑠𝑆 , where
𝑇 is the current reading of physical time.

Sensorforwards the disarmmessage to Doorprecisely at 𝑇 𝑑 +𝑤𝐶,𝑑 +𝑤𝑆,𝑐 +
𝑙 + 𝑐 and Doorreceives the message at 𝑇 𝑑 + 𝑤𝐶,𝑑 + 𝑤𝑆,𝑐 + 2𝑙 + 𝑐 according
to its local clock. Note that the maximum clock synchronization error 𝑐
indicates the maximum clock skew between all federates. Thus, we only have
to account for it once, even if there are multiple network hops along the
chain of events.

The openmessage from Cockpit, however, arrives at 𝑇 𝑑 +𝑤𝐶,𝑑 +𝑤𝐶,𝑜 + 𝑙 + 𝑐
according to the local clock of Door. This is before the disarmmessage
from Sensorarrives. Consequently, the local scheduler needs to wait before
processing the openmessage, until it can be sure that there is no pending
disarmmessage with an earlier tag. The maximum delay for the arrival of
the disarmmessage relayed via Sensoris 𝑤𝐶,𝑑 +𝑤𝑆,𝑐 +2𝑙 + 𝑐. The maximum
delay for arrival of the openmessage is 𝑤𝐶,𝑑 + 𝑤𝐶,𝑜 + 𝑙 + 𝑐. Note that we
need to account for the WCET of both the send_disarmand the send_open
reactions, as in the worst-case scenario both the openand the disarmevents
are logically simultaneous, and both reactions execute in sequence. The safe-
to-process offset 𝑠𝐷 that Doorneeds to account for is given as the maximum
of both delays:

𝑠𝐷 = max {𝑤𝐶,𝑑 + 𝑤𝑆,𝑐 + 2𝑙 + 𝑐, 𝑤𝐶,𝑑 + 𝑤𝐶,𝑜 + 𝑙 + 𝑐} .

For the values chosen in this example, the worst-case delay of the disarm
message is larger, and hence we have 𝑠𝐷 = 𝑤𝐶,𝑑 + 𝑤𝑆,𝑐 + 2𝑙 + 𝑐. This safe-
to-process offset is also indicated by the orange line in the bottom plot in
Figure 4.14.

The safe-to-process offset provides an additional barrier, which tells each
federate precisely how long it should wait until it can be sure that is has seen
all earlier messages. If a message with an earlier tag arrives although the
federate has waited until the safe-to-process barrier, then this indicates that
one or multiple of the assumptions have been violated. This can be handled
as a runtime fault by the program logic.

The decentralized coordination eliminates the bottleneck and single point of
failure that the RTI presents in centralized coordination. However, it requires
WCET analysis and known bounds on latency and clock synchronization
errors. By using time-predictable hardware and a real-time OS, the bounds

4 Deterministic Coordination with Lingua Franca 84

on execution time can be tightened. Additionally, techniques like Time-
Sensitive Networking (TSN) can be used to tighten the bounds on network
latency,16 and Precision Time Protocol (PTP) can be used to minimize the 16: Finn 2018, Introduction To Time-

Sensitive Networking; Austad andMathisen
2023, Bounding the End-to-End Execution
Time in Distributed Real-Time Systems: Ar-
guing the Case for Deterministic Networks
in Lingua Franca.

clock synchronization error.17

17: IEEE 2019, IEEE Standard for a Preci-
sion Clock Synchronization Protocol for Net-
worked Measurement and Control Systems.

td, 0

Td Td wC,d

Cockpit physical time

lo
gi

ca
l t

im
e Cockpit

td, 0

td  d, 0

Td Td  c Td wC,d  l  c
Sensor physical time

lo
gi

ca
l t

im
e

Sensor

send_disarm

check

disarm button
pressed
disarm received
at Sensor

Figure 4.15: Decentralized coordination
with a logical delay 𝑑 = 𝑤𝐶,𝑑 + 𝑙 + 𝑐 on the
connection between Cockpit and Sensor.

It is also possible to add an after delay 𝑑 on a connection between federates.
This logical delay can be subtracted from the safe-to-process offset. For
instance, the safe-to-process offset for Sensorbecomes 𝑠𝑆 = 𝑤𝐶,𝑑 + 𝑙 + 𝑐 −
𝑑 , for any non-zero delay. In the special case of choosing 𝑑 = 𝑤𝐶,𝑑 + 𝑙 +
𝑐 the safe-to process offset becomes zero. This special case is illustrated
in the timing diagram in Figure 4.15. It is equivalent to the distributed
coordination for DEAR discussed in 3.3.2 and to (system-level) LET. However,
the decentralized coordination as implemented in LF is more general, as it
can handle the full spectrum between no logical delay as in the synchronous-
reactive paradigm and a logical delay that accounts for the worst-case end-
to-end latency as in LET.18 18: E. A. Lee and Lohstroh 2022, General-

izing Logical Execution Time.

4.5.4 Trading off Consistency and Availability

Eric Brewer formulated the well-known CAP theorem, which highlights the
fundamental limitations of distributed systems.

The CAP theorem states that any networked shared-data system
can have at most two of three desirable properties:

▶ consistency (C) equivalent to having a single up-to-date
copy of the data;

▶ high availability (A) of that data (for updates); and
▶ tolerance to network partitions (P).19 19: Brewer 2012, CAP Twelve Years Later:

How the “Rules” Have Changed .
This asserts that when a system becomes partitioned due to increasing net-
work delays, then either availability or consistency need to be sacrificed.

In Lingua Franca, the centralized coordination favors consistency over avail-
ability. The RTI grants a tag advancement only once all earlier messages have
arrived at the federate. In case of network failure, the federate might wait

http://dx.doi.org/10.1109/MCOMSTD.2018.1700076
http://dx.doi.org/10.1109/MCOMSTD.2018.1700076
http://dx.doi.org/10.1145/3576914.3587499
http://dx.doi.org/10.1145/3576914.3587499
http://dx.doi.org/10.1145/3576914.3587499
http://dx.doi.org/10.1145/3576914.3587499
https://standards.ieee.org/ieee/1588/6825/
https://standards.ieee.org/ieee/1588/6825/
https://standards.ieee.org/ieee/1588/6825/
http://dx.doi.org/10.1007/978-3-031-22337-2_8
http://dx.doi.org/10.1007/978-3-031-22337-2_8
http://dx.doi.org/10.1109/MC.2012.37
http://dx.doi.org/10.1109/MC.2012.37

4 Deterministic Coordination with Lingua Franca 85

indefinitely. The decentralized coordination, however, favors availability
over consistency. When network latencies increase beyond the assumed
worst-case latency 𝑙, the federates locally decide to advance their current
tag, although there might be earlier messages that have not arrived yet. If a
message with an earlier tag arrives late, this can be detected and handled by
user code similarly to deadline violations.

Brewer also suggests that availability and consistency are not fully exclusive
in the case of a partitioned system. There is a trade-off between achieving
high availability and achieving consistency that Edward A. Lee quantified in
the CAL theorem.20 This trade-off is exposed by Lingua Franca as users may 20: E. A. Lee, Bateni, et al. 2021, Quanti-

fying and Generalizing the CAP Theorem;
E. A. Lee, Bateni, et al. 2023, Trading Off
Consistency and Availability in Tiered Het-
erogeneous Distributed Systems; E. A. Lee,
Akella, et al. 2023, Consistency Vs. Availabil-
ity in Distributed Cyber-Physical Systems.

freely choose the logical delay imposed on a connection.

In the CAL theorem, consistency is defined in terms of logical delay. Consider,
for instance, a sensor reactor that frequently sends data to a control reactor.
If there is no delay on the connection, then the sensor and the controller
reaction are executed logically simultaneously and both agree on the current
sensor value. If, however, there is a logical delay between the two reactors,
then the sensor could already have sent an updated value when the controller
reads the first value. Thus, they have an inconsistent view of the system’s
state.

The CAL theorem further defines availability in terms of deadlines in LF.
In this definition, availability is an upper bound on the lag between the
physical timeline of execution and the logical timeline as given by the tags.
Thus, we can specify an upper bound on availability using deadlines, and
we can use logical delays to deliberately trade consistency for availability.
This is highlighted in Figure 4.15, where an after delay 𝑑 is used to increase
availability by reducing the safe-to-process offset to zero and thus eliminating
potential waiting time. However, this also decreases consistency as Sensor’s
view of the system state corresponds to a logical tag that is in the past.

4.6 The Lingua Franca Toolchain

A Lingua Franca program is a mixture of LF code and target code. To make
programming in such a hybrid setting a fluent experience, adequate tooling is
key. LF comes with a set of standalone command-line tools, as well as support
for different integrated development environments (IDEs). Currently, there
is an Eclipse-based IDE named Epoch and a Visual Studio Code extension.
All LF tools and IDEs share a common code base and provide a similar set
of features. Most notable is the use of interactive diagrams to facilitate the
development of LF programs. Figure 4.16 provides an overview of the Lingua
Franca toolchain.

4.6.1 Compilation

The backbone of the LF compiler is the Xtext framework, which applies a
model-based approach to creating domain-specific languages.21 Based on a 21: Eysholdt and Behrens 2010, Xtext: Im-

plement Your Language Faster than the
Quick and Dirty Way.

grammar definition, Xtext automatically generates the basic compiler infras-
tructure as well as an Eclipse plugin and a language server implementing the
Language Server Protocol (LSP).22 22: Bünder 2019,Decoupling Language and

Editor - The Impact of the Language Server
Protocol on Textual Domain-Specific Lan-
guages.

The Xtext-based workflow can be broken
down into lexical analysis, parsing, validation, and code generation, where
lexical analysis and parsing are completely handled by Xtext. Xtext auto-
matically generates a metamodel based on the Eclipse Modeling Framework
(EMF)23 and provides an abstract syntax tree (AST) in the form of a concrete 23: Steinberg et al. 2008, EMF: Eclipse Mod-

eling Framework.model for each successfully parsed program.

http://dx.doi.org/10.48550/ARXIV.2109.07771
http://dx.doi.org/10.48550/ARXIV.2109.07771
http://dx.doi.org/10.34133/icomputing.0013
http://dx.doi.org/10.34133/icomputing.0013
http://dx.doi.org/10.34133/icomputing.0013
http://dx.doi.org/10.1145/3609119
http://dx.doi.org/10.1145/3609119
http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.5220/0007556301290140
http://dx.doi.org/10.5220/0007556301290140
http://dx.doi.org/10.5220/0007556301290140
http://dx.doi.org/10.5220/0007556301290140
http://books.google.com/books?vid=ISBN978-0321331885
http://books.google.com/books?vid=ISBN978-0321331885

4 Deterministic Coordination with Lingua Franca 86

Diagram
 Syntesis

Target
Compiler

Code
GeneratorValidator

lfc

l�

lfd

Formatted
LF Code

Formatted
LF Code

Target
 Code

LF Compiler Infrastructure

Serializer

!

Warnings &
Errors

Executable

Target
Runtime

Diagrams

Language
and

Diagram
Server

LSP

VS Code
Extension

Epoch IDE

Figure 4.16: The Lingua Franca toolchain.

Once the model representing the program is created, the LF validator per-
forms various semantic checks. This includes simple assertions such as the
existence of at most one main (or federated) reactor, whether types declara-
tions are present (in case the target language is statically typed), or whether
certain language features are actually supported by the specified target. The
validator also performs structural analysis on the composition of reactors
to ensure that there are no semantic problems like cyclic instantiations or
causality loops (i.e., closed loops of dependent reactions without any delays).
The target code blocks in LF programs are treated as a black boxes, and
error-checking on them is deferred to the target toolchain.

After validation, a code generator maps the EMF model to constructs in the
selected target language. The generated code is then compiled using the
target language’s toolchain (unless the target is an interpreted language).
Since the LF compiler does notcheck the embedded target code blocks, it relies
on the target compiler to report any issues within those blocks. Similarly,
any type-checking, e.g., on the ports of a connection, is deferred to the target
compiles. If compilation fails, then the error messages are collected and
mapped back to the appropriate locations in the original LF code. Similar
to the errors reported during the validation phase, error messages obtained
from the target compiler are presented to the user either in the command
line output or through the IDE user interface.

4.6.2 Code Generators and Runtime Implementations

Lingua Franca is designed to intermix with arbitrary target languages. This
polyglot nature of LF enables an interesting symbiosis between the reactor-
based coordination model and the unique capabilities provided by the tar-
get language. A wide range of supported targets not only accommodates
programmers who are used to certain programming styles but also brings
features from the target languages to LF, enabling the application of LF to
more domains.

As of this writing, LF supports C, C++, Rust, Python, and TypeScript as target
languages. Each target consists of a code-generation backend specifically
designed for the target language, as well as a runtime environment that
supports the execution of LF programs. While the code generators are part

4 Deterministic Coordination with Lingua Franca 87

of the main compiler infrastructure,24 the target runtimes are developed 24: Lohstroh, E. A. Lee, Bateni, et al. 2023,
Lingua Franca.separately and independently (to a varying degree).25
25: Bateni, E. A. Lee, et al. 2023, reactor-
c; Menard and Tanneberger 2023, reactor-
cpp; Fournier and Hayeß 2023, reactor-rs;
Lohstroh, H. Kim, et al. 2023, reactor-ts.

There are multiple trade-offs involved in the design of an LF backend. Each
of the existing runtime implementations provides unique properties due
to the language features and the precise design decisions. For instance,
the C runtime is particularly well-suited for bare-metal execution; the C++
target uses high-level language features and is designed to efficiently exploit
parallelism by mapping triggered reactions to a pool of worker threads;
and the TypeScript target is designed to integrate with the event loop of
Node.js.26 26: Tilkov and Vinoski 2010, Node.js: Us-

ing Javascript To Build High-Performance
Network Programs.Depending on the available language features, each target provides unique

challenges and opportunities for code generation. For instance, C and Python
do not provide a strong type system or other language features that allow
for preventing accidental violations of reactor semantics in reaction code.
For instance, reaction bodies are not allowed to access state outside their
reactor, but there is no reliable way to prevent access to shared state in C or
Python.

In the C++ and Typescript targets, reactors are mapped to classes, and the
code generators can use various language features to properly encapsulate
state, control what is accessible from a reaction body, and enforce the im-
mutability of shared data. For these targets, our measures are sufficient for
detecting most accidental violations of reactor semantics at compile time or
at runtime. The Rust target can give even stronger guarantees. The strong
type system and the guaranteed memory safety of Rust effectively prevent
concurrent access to mutable shared state.27 Given the strong type system 27: Fournier 2021, A Rust Backend for Lin-

gua Franca.of Rust, a verified runtime is also within reach.28
28: Denis, Jourdan, and Marché 2022,
Creusot: A Foundry for the Deductive Verifi-
cation of Rust Programs; Hayeß 2023, Veri-
fying the Rust Runtime of Lingua Franca.4.6.3 Diagram Synthesis

TheLF toolchain places a strong emphasis on pragmatics to enhancemodeling
productivity. A key enabler of pragmatics is the ability to automatically
synthesize graphical views from a textual model that represents the “ground
truth.”29 The LF toolchain uses transient views30 and automatic layout31 29: Fuhrmann and Hanxleden 2010, Tam-

ing Graphical Modeling; Hanxleden, E. A.
Lee, et al. 2022, Pragmatics Twelve Years
Later: A Report on Lingua Franca.

30: C. Schneider, Spönemann, and Hanxle-
den 2013, Just Model! – Putting Automatic
Synthesis of Node-Link-Diagrams into Prac-
tice.
31: Schulze, Spönemann, and Hanxleden
2014, Drawing Layered Graphs With Port
Constraints.

provided by the KIELER Lightweight Diagrams framework32 to automatically

32: The KIELER Project 2023a, KIELER
Lightweight Diagrams.

synthesize diagrams from LF code. In fact, all the diagrams showing reactor
programs in this thesis were automatically synthesized from LF code.

The diagrams are created on the fly while the programmer writes code in the
IDE. This graphical representation allows for a more intuitive understanding
of the topology of connected reactors, particularly when the topology is
complex and there are multiple levels of nested instances. Programmers
can use the diagram view to focus on different aspects of LF programs by
interacting with the diagram and configuring its level of detail. In the default
configuration, the LF diagrams aim at providing an abstracted view of the
program, and hence details such as the actual code of a reaction are hidden.

In the diagram view of the IDE, reactor instances can be interactively ex-
panded or collapsed to reveal or hide their nested content. This allows the
programmer to drill from an abstract overview of the top-level topology of
the system down into the dependency relations of individual reactions in
reactor instantiations. The diagrams also provide a mechanism for navigat-
ing the LF code. When clicking on elements like ports or reactions in the
diagram, the text editor jumps to the corresponding position in the LF code.
The diagram synthesis also provides valuable support for debugging certain
issues in LF programs, in particular causality loops. If a dependency cycle is
detected in the LF program, then the involved dependencies are highlighted

https://github.com/lf-lang/lingua-franca
https://github.com/lf-lang/reactor-c
https://github.com/lf-lang/reactor-c
https://github.com/lf-lang/reactor-cpp
https://github.com/lf-lang/reactor-cpp
https://github.com/lf-lang/reactor-ts
https://github.com/lf-lang/reactor-ts
http://dx.doi.org/10.1109/MIC.2010.145
http://dx.doi.org/10.1109/MIC.2010.145
http://dx.doi.org/10.1109/MIC.2010.145
https://cfaed.tu-dresden.de/publications?pubId=3373
https://cfaed.tu-dresden.de/publications?pubId=3373
http://dx.doi.org/10.1007/978-3-031-17244-1_6
http://dx.doi.org/10.1007/978-3-031-17244-1_6
https://cfaed.tu-dresden.de/publications?pubId=3535
https://cfaed.tu-dresden.de/publications?pubId=3535
http://dx.doi.org/10.1007/978-3-642-16145-2_14
http://dx.doi.org/10.1007/978-3-642-16145-2_14
http://dx.doi.org/10.1007/978-3-031-19756-7_5
http://dx.doi.org/10.1007/978-3-031-19756-7_5
http://dx.doi.org/10.1109/VLHCC.2013.6645246
http://dx.doi.org/10.1109/VLHCC.2013.6645246
http://dx.doi.org/10.1109/VLHCC.2013.6645246
http://dx.doi.org/10.1016/j.jvlc.2013.11.005
http://dx.doi.org/10.1016/j.jvlc.2013.11.005
https://github.com/kieler/KLighD
https://github.com/kieler/KLighD

4 Deterministic Coordination with Lingua Franca 88

in the diagram, and the interface provides additional filtering options to
solely focus on the elements in a cycle.

4.6.4 IDE support

Currently, the LF ecosystem supports two IDEs. The first IDE is an Eclipse-
based IDE called Epoch.33 It heavily relies on Xtext’s capability for auto- 33: Lohstroh, Schulz-Rosengarten, et al.

2023, Epoch IDE for Lingua Franca.matically generating Eclipse plugins. Epoch is a standalone application that
includes the complete LF compiler. It provides all the basic functionality one
would expect from an IDE: code highlighting and completion, compilation,
error feedback, and code navigation. Epoch also seamlessly integrates the
diagram synthesis.

Xtext also abstracts its implementation from Eclipse through the Language
Server Protocol (LSP), which facilitates integrations into various popular
IDEs.34 TheLF toolchain extends the LSP protocol with support for interactive 34: Bünder 2019,Decoupling Language and

Editor - The Impact of the Language Server
Protocol on Textual Domain-Specific Lan-
guages.

diagrams to match the seamless integration of code navigation and diagram
exploration offered by Epoch. We hence refer to this implementation as a
Language and Diagram Server (LDS).

The second major IDE supported by LF is Visual Studio Code. LF support
can be added to Code by downloading the Lingua Franca extension from
the marketplace.35 The extension bundles the LF language and diagram 35: Donovan and Lohstroh 2023, Lingua

Franca extension for Visual Studio Code.server and the complete LF toolchain. The extension supports the common
editing features. However, it additionally facilitates the polyglot nature of
LF by embedding partial support for various target languages in the editor.
Although the LF compiler does not parse target code, the language server
supplements feedback from the LF compiler with code analyses from target
language compilers. Since the KIELER framework also provides a Visual
Studio Code extension,36 the LF extension integrates full support for LF’s 36: The KIELER Project 2023b, KLighD for

the Web.diagram generation features.

4.6.5 Command Line Tools

The LF ecosystem also provides a set of command line tools, that allow for
interacting with the toolchain without the need for an IDE with a graphical
user interface. Currently, there are three tools available: lfc, lfd, and lfd.
lfcprovides a command line interface for the LF compiler. It compiles all
LF programs provided as command line arguments and reports the progress
as well as any errors or warnings in the command line output. lff is the
Lingua Franca formatter. It automatically converts given LF programs to a
standardized format. Finally, lfd can be used to generate diagrams on the
command line.

4.7 C++ Runtime and Code Generator

This section presents the C++ runtime and the code generator in more detail.
The C++ runtime is designed to exploit parallel resources efficiently and
assumes that it is running on top of an OS. The C runtime, by contrast, is
optimized for keeping a low footprint in terms of code and memory size and
can be compiled for deeply embedded devices. While the C runtime also
provides multithreaded execution, it has not been fully optimized for this use
case. Moreover, the C runtime requires that the complete program structure
be known statically. Any reconfiguration of an LF program using the C target
also requires recompilation. The C++ target, in contrast, is designed to allow

https://github.com/lf-lang/epoch
http://dx.doi.org/10.5220/0007556301290140
http://dx.doi.org/10.5220/0007556301290140
http://dx.doi.org/10.5220/0007556301290140
http://dx.doi.org/10.5220/0007556301290140
https://github.com/lf-lang/vscode-lingua-franca
https://github.com/lf-lang/vscode-lingua-franca
https://github.com/kieler/klighd-vscode
https://github.com/kieler/klighd-vscode

4 Deterministic Coordination with Lingua Franca 89

for more flexibility, so that parameter values can be changed at program
invocation even when this changes the program structure (cf. Section 5.1).

4.7.1 C++ Runtime

The C++ runtime reactor-cpp is designed as a standalone library.37 It can be 37: Menard and Tanneberger 2023, reactor-
cpp.used fully independently of Lingua Franca for describing reactor programs

in C++. This has two advantages. First, it allows other tools and frameworks
to build on top of the reactor library without the need to use Lingua Franca.
Second, it creates a clear interface between the LF code generator and the
concrete runtime implementation.

The C++ runtime defines several classes that represent the elements of a
reactor. The Unified Modeling Language (UML) diagram in Figure 4.17 gives
an overview of the core classes provided by the runtime. ReactorElementis
the universal base class from which each of the elements of a reactor derives.
Most importantly, this base class assigns a name to each element and also
gives each element a pointer to its containing reactor. In addition, it defines
the virtual methods startup() and shutdown(). These methods are invoked
by the runtime before the execution starts and before the execution termi-
nates, respectively. They can be overridden by child classes that implement
specific reactor elements, e.g., to perform the scheduling of initial events at
startup or to schedule the shutdown trigger at termination.

A Reactoris a special ReactorElementthat may contain arbitrary other
components. It overrides the startup() and shutdown() methods such
that it calls the methods recursively on all contained elements. In addition,
the Reactorclass defines the abstract method assemble(), which provides
the main mechanism for constructing reactor programs. The Reactorclass
serves as a template for the implementation of concrete reactors that derive
from the Reactorbase class, add arbitrary reactor elements, and provide an
implementation of the assemble()method.

The concrete implementation of assemble()is expected to register all el-
ements contained by the reactor, establish any connections between ports
within the reactor’s scope, and declare the triggers, sources, and effects of
contained reactions. The runtime invokes assemble()recursively in the
initialization phase before the execution of the actual reactor program starts.
The scheduler leverages the information gathered from the assemble()
methods to construct the APG and assign a level to each reaction. Since the
APG is constructed at runtime based on the concrete instantiated program
structure, no compile-time knowledge of the entire program structure is
required.

Other classes that implement ReactorElementare Reaction, BaseAction,
and BasePort. Each Reactionhas a level, a body, and optionally a deadline
and a deadline handler. BaseActionand BasePortare abstract classes that
represent ports and actions. They provide an abstraction over concrete ac-
tions and ports that are typed. BasePortprovides a bind_tomethod that
can be used to create a new connection. It also defines the abstract method
cleanup(), which is overridden by Port. This method is used for resetting
the port’s present flag as well as its value before the scheduler advances to
the next tag.

In the terminology of this runtime implementation, any reactor element
that may produce new events is considered an action. Consequently, Timer,
ShutdownTrigger, and StartupTriggeralso implement BaseAction. How-
ever, only the classes LogicalActionand PhysicalActionactually expose
the schedulemethod to the user. The BaseActionclass defines the methods

https://github.com/lf-lang/reactor-cpp
https://github.com/lf-lang/reactor-cpp

4 Deterministic Coordination with Lingua Franca 90

ReactorElement

std::string name_
std::string fqn_
Reactor* container_

std::string name()
std::string fqn()
Reactor* container()
void startup()
void shutdown()

BaseAction

bool present_

bool is_present()
void setup()
void cleanup()

Action
Type

ImmutableValuePtr<Type> value_ptr_
std::map<Tag, ImmutableValuePtr<T>> events_

void setup()
void cleanup()
ImmutableValuePtr<Type> get()

LogicalAction
Type

void schedule(ImmutableValuePtr<Type> value, Duration delay)

PhysicalAction
Type

void schedule(ImmutableValuePtr<Type> value, Duration delay)

Timer

Duration o� set
Duration period_

void startup()
void cleanup()

ShutdownTrigger

void shutdown()

BasePort

bool present_

void cleanup()
void bind_to(BasePort* port)

Port
Type

void cleanup()
ImmutableValuePtr<Type> get()
void set(ImmutableValuePtr<Type> value)
bool is_present()
void bind_to(Port<Type>* port)

Reaction

Duration deadline_
unsigned level_
std::function<void(void)> body_
std::function<void(void)> deadline_handler_

declare_trigger(BaseAction* action)
declare_trigger(BasePort* port)
declare_source(BaseAction* action)
declare_source(BasePort* port)
declare_trigger(BaseAction* action)
declare_trigger(BasePort* port)

Reactor

assemble()
void startup()
void shutdown()

StartupTrigger

1

1

*

*

1

*

1

*

1

*

1

*

1

*

*

*

Figure 4.17: UML diagram showing the core classes of the C++ reactor runtime.

4 Deterministic Coordination with Lingua Franca 91

setup()and cleanup(), which can be overridden by concrete implementa-
tions. setup()is called by the scheduler right after it advances logical time
to the next tag. This may be used to initialize the action with its value if
it carries an event at the tag. Similarly, cleanup()is called by the sched-
uler after all reactions at the current tag have completed their execution. It
is commonly used to clear the present flag and reset the current value of
the action if applicable. In addition, Timeruses the cleanup()method to
schedule its next triggering.

The UML diagram does not show the classes Environmentand Scheduler.
While the latter provides the scheduler implementation, the former serves
as the main entry point for reactor programs. The environment keeps refer-
ences to the top-level reactors and also stores the APG as well as all other
information that is required for managing reactor programs.

4.7.2 Ownership Types

The C++ runtime provides two class templates called ImmutableValuePtr
and MutableValuePtrthat implement smart pointers.38 They are used for 38: Edelson 1992, Smart Pointers: They’re

Smart, But They’re Not Pointers; Dmitrović
2023, Smart Pointers.

modeling ownership and access restrictions of values stored in ports and
actions.

ImmutableValuePtris a wrapper around an std::shared_ptr.39 Similarly 39: cppreference.com 2023b, std::shared_-
ptr .to std::shared_ptrit allows for shared access to an object, and multiple

references may exist. However, ImmutableValuePtronly provides const
access to the underlying object and hence enforces immutability. This is
important for avoiding unexpected data races when multiple reactors receive
the same value. All values returned when calling get()on a port or action
are wrapped in an ImmutableValuePtr.

MutableValuePtris a wrapper around an std::unique_ptr.40 It ensures 40: cppreference.com 2023c, std::unique_-
ptr .that there is only a single reference to the object, but the owner of the

object may mutate it. This is convenient for creating new values and modi-
fying them, before they are sent to the next reactor via a port. When pass-
ing a MutableValuePtrto the schedulemethod of an action or the set
method of a port, the MutableValuePtrneeds to be moved, which implic-
itly creates a new ImmutableValuePtrand invalidates the old reference.
If a reaction needs to modify the data that it receives, it can also create
a MutableValuePtrfrom an ImmutableValuePtr. This, however, requires
copying the underlying data in case there is more than one reference.

4.7.3 Code Generator

The LF code generator for the C++ target effectively serializes an LF program.
Each construct in the LF language is converted to its equivalent concept in
the runtime implementation. In particular, the code generator produces a C++
header and implementation file for each reactor definition. It defines a class
that inherits from Reactorand represents the concrete reactor as defined
in LF code. The precise contents of the assemblemethod are automatically
synthesized based on the reactor definition. In particular, this includes the
creation of connections and the declaration of reaction dependencies.

In addition to the code for each reactor, the code generator synthesizes a
main function as the main entry point of the program. The main function is
responsible for parsing all command-line arguments. For instance, properties
like the fast flag, the number of worker threads, or a timeout may be specified
as command-line arguments. In addition, the C++ the code generator injects

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d78dd0f23e9c75b4841111b1978c2997d9965c18
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d78dd0f23e9c75b4841111b1978c2997d9965c18
http://dx.doi.org/10.1007/978-1-4842-9274-7_35
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr

4 Deterministic Coordination with Lingua Franca 92

code for parsing command-line arguments that represent the parameters
of the main reactor. After parsing the command-line arguments, the main
function creates a new reactor environment and instantiates the main reactor.
Finally, it assembles the program and initiates the execution. Listing 4.18
shows a simplified main function that could be generated for a fictive Hello
World program.

1 #include "reactor-cpp/reactor-cpp.hh"
2

3 // Include the HelloWorld reactor.
4 #include "HelloWorld/HelloWorld.hh"
5

6 int main(int argc, char **argv) {
7 bool fast{false};
8 reactor::Duration timeout = reactor::Duration::max();
9 unsignedworkers = std::thread::hardware_concurrency();

10

11 /* Parse command line arguments ... */
12

13 // Create a new environment.
14 reactor::Environment e{workers, fast, timeout};
15

16 // Instantiate the main reactor.
17 auto main = std ::make_unique<HelloWorld> (
18 "HelloWorld", &e, /* parameters */);
19

20 // Assemble the reactor program.
21 e.assemble();
22

23 // Start execution.
24 auto thread= e.startup();
25

26 // Wait until the execution completes.
27 thread.join();
28

29 return 0;
30 }

Listing 4.18: A simplified main function,
as it could be generated for an LF “Hello,
World!” program.

4.8 Conclusion

This chapter gave a broad introduction to Lingua Franca, a polyglot language
that enables deterministic coordination across multiple timelines. The syntax
and semantics of LF closely resemble the reactor model. In contrast to a
native implementation in the target language, e.g., using the DEAR frame-
work directly in C++, LF makes the definition of reactor programs more
accessible. The LF compiler can also statically check various properties of re-
actor programs and implement stricter scoping rules that prevent accidental
violations of the reactor semantics. In addition, LF enables a separation of
concerns, where the structure and coordination of components are modeled
in LF and the business logic is implemented in the target language.

The discussions in this chapter include several code examples that illustrate
how LF can be used to solve various problems. In particular, the presented
discussions focus on LF’s ability to coordinate the execution of programs
deterministically. LF considers both a logical and a physical timeline, and
also coordinates federated programs across multiple timelines. In contrast
to many existing languages and frameworks, LF provides deterministic
semantics by default but also allows for the introduction of nondeterminism,
similar to the Hewitt actor model, where needed.

Thischapter illustrated the reactivity, timed semantics and determinism of LF.
These properties, combined with the comprehensive tooling that is available,

4 Deterministic Coordination with Lingua Franca 93

make Lingua Franca particularly suitable for designing CPS programs. The
following chapters consider the scalability of LF programs in more detail.

Efficient Deterministic
Concurrency 5

5.1 Scalable Connection Patterns in
LF 94

5.2 Optimized Reactor Scheduler . 99

5.3 Performance Evaluation 103

5.4 Conclusion 111

The actor model is widely accepted for programming large concurrent appli-
cations, and implementations such as the C++ Actor Framework (CAF)1

1: Charousset, Hiesgen, and T. C. Schmidt
2016, Revisiting Actor Programming in C++.

and
Akka2

2: Roestenburg, Williams, and Bakker
2016, Akka in Action.

are known to be fast and efficient at utilizing a larger number of par-
allel cores. Compared to actors, Lingua Franca imposes various restrictions
that amount to a MoC in which fewer behaviors are allowed. This chapter
demonstrates that the deterministic ordering of events do not necessarily
introduce overhead or higher execution times. In fact, LF is considerably
faster than Akka or CAF for many benchmarks.

The core of this chapter is an extensive performance evaluation based on
the Savina3 3: Imam and Sarkar 2014, Savina – An Ac-

tor Benchmark Suite: Enabling Empirical
Evaluation of Actor Libraries.

actor benchmark suite. For this evaluation, we ported most of
the Savina benchmarks to LF. Many of the Savina benchmarks are signifi-
cantly larger than any of the example programs discussed in earlier chapters.
To provide mechanisms for expressing such programs conveniently in LF,
Section 5.1 introduces a syntax extension for LF that allows expressing
scalable connection patterns. Section 5.2 provides insights on various op-
timizations that were implemented in the C++ reactor runtime to avoid
unnecessary bottlenecks and achieve a performance that is comparable to
and even exceeds that of actor frameworks. Finally, Section 5.3 presents
and discusses measurement results that were conducted using the Savina
benchmark suite.

The language extension, optimizations, and results presented in this chapter
were published before in Menard, Lohstroh, et al. 2023, High-Performance
Deterministic Concurrency Using Lingua Franca.

5.1 Scalable Connection Patterns in LF

The syntax of Lingua Franca, as introduced in Section 4.2, requires that
all reactor instances, ports and connections are listed individually. This
may become tedious for larger programs. Consider again, for example, the
account program in Listing 4.3 on Page 65. The Accountreactor defines two
individual input ports, one for each user, and the main reactor instantiates
and connects the Userreactors individually.

To scale the account example to four users, we would need to add two addi-
tional input ports to the Accountreactor and two additional instantiations
and connections to the main reactor. This explicit listing of all ports, con-
nections and instances is not only cumbersome for the programmer; it also
means that the LF code needs to be adjusted and recompiled whenever the
problem size changes.

To address this problem, this section introduces a syntax extension for
creating multiple ports or reactor instances at once. Further, this section
introduces an overloading of LF’s connection operator to create multiple
connections at once. This mechanism allows realizing various complex con-
nection patterns in a single line of code and in a parameterizable way, such
that LF programs can transparently scale to a given problem size without
recompilation. This is a key enabler for implementing the programs of the
Savina benchmark suite, which we use in Section 5.3 to evaluate LF’s perfor-
mance.

http://dx.doi.org/10.1016/j.cl.2016.01.002
http://books.google.com/books?vid=ISBN978-1617291012
http://dx.doi.org/10.1145/2687357.2687368
http://dx.doi.org/10.1145/2687357.2687368
http://dx.doi.org/10.1145/2687357.2687368
http://dx.doi.org/10.1145/3617687
http://dx.doi.org/10.1145/3617687

5 Efficient Deterministic Concurrency 95

5.1.1 Banks and Multiports

Concretely, the extended syntax adds an optional width specification in
brackets to the input, output, and the newkeyword. If a width is specified,
this syntax creates an array of ports or an array of reactor instances. We call
such an array of ports amultiport and an array of reactor instances a bank. We
further extend the connection operator, such that multiple ports may be listed
on either side of the operator in a comma-separated list. Finally, the syntax
extension introduces the broadcast modifier (...)+and the interleaved
modifier, which provide more control over how the listed ports are connected.
Listing 5.1 summarizes the modified syntax rules.

1 width: '[' expression']';
2

3 port: ('input' | 'output') width? name=ID (':' type)?;
4

5 instantiation:
6 name=ID '=' 'new' width? reactorClass=ID
7 '(' (assignment(',' assignment)*)? ')';
8

9 connection:
10 (port_references| '(' port_references')+')
11 ('->' | '~>')
12 port_references('after' delay=expression)?;
13

14 port_references:port_reference(',' port_reference)*;
15 port_reference:reference| 'interleaved('reference')';

Listing 5.1: An extension to the Lingua
Franca syntax given in Listing 4.2, provid-
ing support for banks and multiports.

Using this syntax, we can derive a scalable implementation of the simple
account example in Listing 4.3. The code and diagram of the modified version
are shown in Listing 5.2. Instead of defining individual inputs, the Account
reactor defines a multiport input called requeston line 5. The width of this
multiport is given by the num_usersparameter.

The reaction on line 7 triggers if any of the individual ports in the multiport
carry an event. If multiple ports carry an event at the same tag, then the
reaction is only triggered and executed once at this tag. Since we cannot
know in advance which ports actually carry an event at a particular tag, the
reaction body iterates over all ports, checks if a value is present, and then
calls the applymethod for each present request. This small modification
allows the Accountreactor to interact with an arbitrary number of users
and truly separates the business logic as implemented in the reaction from
how Accountis used in the system.

Instead of creating individual users, the main reactor instantiates a bank
of User reactors on line 38. The main reactor also defines the parameter
num_users, which it passes to the account instance and uses to specify the
width of the user bank. On line 27, the User reactor defines a parameter
called bank_index. When a reactor is instantiated in a bank and defines a
bank_indexparameter, then the runtime automatically assigns the index
of each instance within the bank to the parameter. This allows for the state
or the behavior of a reactor to depend on its position within a bank. In this
example, each user sends a request at startup with a value that is calculated
using the bank_indexparameter.

The connection operator on line 40 connects the request outputs of all the
users to the multiport input of the account. Thereby, it connects the output
of the 𝑛th user to the 𝑛th port in the input multiport of the account. This
pattern implements many-to-one communication.

If the number of ports on the left-hand side and the right-hand side of the
connection operator do not match, then some ports remain unconnected.

5 Efficient Deterministic Concurrency 96

Listing 5.2: A scalable implementation of the simple account example given in Listing 4.3 using banks and multiports.

1 target Cpp
2

3 reactor Account(num_users:size_t = 4) {
4 state balance: float = 0.0
5 input[num_users] request:float
6

7 reaction(request) {=
8 for (size_t i{0}; i < num_users; i++) {
9 if (request[i].is_present()) {

10 apply(i, *request[i].get());
11 }
12 }
13 =}
14

15 method apply(user_id:size_t, value: float) {=
16 std::cout <<"Request for" << value
17 << " from user " << user_id <<" was ";
18 if (balance + value >= 0) {
19 balance += value;
20 std::cout <<"accepted.\n";
21 } else {
22 std::cout <<"denied.\n";
23 }
24 =}
25 }

26 reactor User(offset:time = 0,
27 bank_index:size_t = 4) {
28 timer t(offset)
29 output request: float
30

31 reaction(t) -> request {=
32 request.set(15.0 - bank_index * 10.0);
33 =}
34 }
35

36 main reactor(num_users:size_t=4) {
37 account = new Account(num_users=num_users)
38 users = new[num_users] User()
39

40 users.request -> account.request
41 }

MultiportAccount

Account
balance:float=0.0

request

User

4

request

Let 𝑛 and 𝑚 denote the number of ports on the left and right, respectively.
Only the first min(𝑛, 𝑚) ports are connected on either side. If a port remains
unconnected, a warning is issued.4 4: If the widths are known statically, the

LF validator issues a warning at compile-
time. Otherwise, the runtime issues a warn-
ing during the initialization phase.

When executing the example program in Listing 5.2, it prints:

1 Request for 15 from user 0 was accepted.
2 Request for 5 from user 1 was accepted.
3 Request for -5 from user 2 was accepted.
4 Request for -15 from user 3 was accepted.

Note that the number of users can be adjusted arbitrarily. Since num_usersis
a parameter to the main reactor, the LF code generator will also add it to the
program’s command line arguments, which allows overwriting the default
parameter without recompilation. When running, for example, the command
./bin/MultiportAccount --num_users 6, the program prints:

1 Request for 15 from user 0 was accepted.
2 Request for 5 from user 1 was accepted.
3 Request for -5 from user 2 was accepted.
4 Request for -15 from user 3 was accepted.
5 Request for -25 from user 4 was denied.
6 Request for -35 from user 5 was denied.

5.1.2 Connection Patterns

The syntax extension for supporting banks and multiports in LF programs is
relatively simple. Yet, it is powerful enough to cover many communication
patterns. The following discusses a selection of common patterns that can be
conveniently expressed in LF.; The presented patterns are extensively used
in the Savina benchmark implementations.

Note that the following example programs do not include reactions or other
implementation details and solely focus on the connection patterns. The
LF diagram synthesis does not show individual reactor or port instances.
Therefore, the below diagrams were manually “desugared” to visualize the
underlying patterns.

5 Efficient Deterministic Concurrency 97

Fork-Join

Listing 5.3 gives an example program implementing a fork-join pattern,
which combines one-to-many and many-to-one communication. The pro-
gram defines a Source, a Worker, and a Sink reactor. Sourcedefines a
multiport output of width n, and Sinkdefines a multiport input of width n.
Worker, however, only defines a single input and output port. The Worker
reactor is instantiated in a bank of width n by the main reactor. The two
connection statements in the main reactor each establish n connections, one
for each pair of multiport and bank instances. The desugared diagram on the
right visualizes the individual connections and instances.

Listing 5.3: A fork-join pattern using one-to-many and many-to-one connections in LF.

1 target Cpp
2 reactor Source(n: size_t = 3) {
3 output[n] out: int
4 }
5 reactor Worker {
6 input in: int
7 output out: int
8 }
9 reactor Sink(n: size_t = 3) {

10 input[n] in: int

11 }
12 main reactor(n: size_t = 3) {
13 src = new Source(n=n)
14 dst = new Sink(n=n)
15 wrk = new[n] Worker()
16

17 src.out -> wrk.in
18 wrk.out -> dst.in
19 }

dstsrc

wrk[2]

wrk[1]

wrk[0]

out[1]

out[3]

out[0] in[0]

in[1]

in[2]

in out

in out

in out

ForkJoin

In this example, the source reactor has to produce three separate values
and send them to the workers individually. The broadcast modifier (...)+
can be used instead to broadcast a single value to all workers. The program
in Listing 5.4 configures the source reactor to use only a single output by
setting n=1. By using the broadcast modifier on line 11, we can replicate
src.outand connect it to the inputs of all workers.

1 target Cpp
2

3 import Source, Sink, Worker
4 from "ForkJoin.lf"
5

6 main reactor(n: size_t = 3) {
7 src = new Source(n=1)
8 dst = new Sink(n=n)
9 wrk = new[n] Worker()

10

11 (src.out)+ -> wrk.in
12 wrk.out -> dst.in
13 }

wrk[2]

wrk[1]

wrk[0]

dstsrc
out

ForkJoinBroadcast

in[0]

in[1]

in[2]

in out

in out

in out

Listing 5.4: A fork-join pattern using a
broadcast connection in LF.

In either variant, any reactions contained in one of the workers may execute
in parallel to the reactions of all other workers.

Cascade Composition

Using banks and multiports, we can also conveniently compose cascades of
reactors. This is illustrated by the program in Listing 5.5. The connection
operator sequences all ports listed on the left- and right-hand sides and
connects the 𝑛th port on the left-hand side to the 𝑛th port on the right-hand
side. By offsetting the left-hand side of the connection statement in line 10
with a single source port and appending the sink port to the right-hand side,
we can effectively arrange the connections to form the cascade shown in the
diagram on the right.

5 Efficient Deterministic Concurrency 98

Listing 5.5: A cascade pattern using a bank in LF.

1 target Cpp
2

3 import Source, Sink, Workerfrom "ForkJoin.lf"
4

5 main reactor(n: size_t = 2) {
6 src = new Source(n=1)
7 dst = new Sink(n=1)
8 wrk = new[n] Worker()
9

10 src.out, wrk.out -> wrk.in, dst.in
11 }

Cascade

wrk[1]
in out

wrk[0]
in out

dst
in

src
out

Fully Connected

The connection operator also connects multiports within banks. In this case,
the operator will implicitly unfold all port instances on both sides of the
connection to form a flat list of ports. The unfolding happens such that we
first list all ports of the first bank instance, then all ports of the second
instance, and so on. In principle, we can use this to connect all reactor
instances within a bank to all other instances to create a fully connected
graph.

The program in Listing 5.6 attempts to create such a pattern. However, the
connection operator on line 10 uses the same unfolding strategy on either side
of the connection. When we consider the diagram, it becomes obvious that
the resulting pattern is not very useful. Each reactor instance is connected
to itself.

Listing 5.6: An attempt at many-to-many communication in LF.

1 target Cpp
2

3 reactor Node(n: size_t = 3) {
4 input[n] in: int
5 output[n] out: int
6 }
7

8 main reactor(n: size_t = 3) {
9 node = new[n] Node()

10 node.out -> node.in
11 }

node[2]

in[2]

in[1]

in[0] out[0]

out[1]

out[2]

node[1]

in[2]

in[1]

in[0] out[0]

out[1]

out[2]

node[0]

in[2]

in[1]

in[0] out[0]

out[1]

out[2]

FullyConnectedInterleaved

Using the interleavedmodifier on either side of the connection, we can
modify the unfolding strategy. The interleaved strategy first lists all first port
instances within all bank instances, then the second port instances within
all bank instances, and so on. By applying interleavedto the ports on the
right side of the connection operator, the program in Listing 5.7 creates the
desired fully connected pattern. This allows each node to send and receive
messages to and from all other nodes. Thereby, the 𝑛th output or input port
corresponds to the 𝑛th instance of the node.

Listing 5.7: Many-to-many communication in LF using the interleavedmodifier.

1 target Cpp
2

3 import Node from "FullyConnected.lf"
4

5 main reactor(n: size_t = 3) {
6 node = new[n] Node()
7 node.out -> interleaved(node.in)
8 }

node[2]

in[2]

in[1]

in[0] out[0]

out[1]

out[2] node[1]

in[2]

in[1]

in[0] out[0]

out[1]

out[2]

node[0]

in[2]

in[1]

in[0] out[0]

out[1]

out[2]

FullyConnected

5 Efficient Deterministic Concurrency 99

5.2 Optimized Reactor Scheduler

Section 3.1.4 discusses the principle strategy for executing reactor programs
and provides a pseudo code implementation of the main scheduling pro-
cedure in Listing 3.3. While we can use this as a blueprint for an actual
scheduler implementation, the resulting scheduler will likely be inefficient.
This section discusses various optimizations that were implemented in the
C++ reactor runtime in order to exploit parallelism more efficiently and
avoid performance bottlenecks.

5.2.1 Sorting the APG

As discussed in Section 3.1.3, we can generate an APG for each reactor
program to capture the dependency constraints between reactions. Figure 5.1,
for instance, shows the dependency graph for the account example program
with a proxy delay in Listing 4.5. The scheduler can use this graph to identify
which reactions may execute in parallel and when to wait for previous
reactions to complete. The algorithm in Listing 3.3 assumes the existence
of a procedure called getReadyReactions that filters the set of triggered
reactions and returns a set of ready reactions. Implementing this procedure
efficiently, however, is challenging.

In order to identify if a reaction is ready for execution, we need to traverse
the graph and check if all dependent reactions are either not triggered or
have completed executing. This operation can be costly if the APG is large,
especially since the scheduler needs to perform it repeatedly for each reac-
tion. The C++ runtime, instead, implements a conservative approach. In the
initialization phase, the APG is sorted by level (also called top level).5 The 5: Kwok and Ahmad 1999, Static Schedul-

ing Algorithms for Allocating Directed Task
Graphs To Multiprocessors.

level of a reaction is the length of the longest path to the reaction from any
root of the graph. The graph in Figure 5.1 is sorted by level.

proxy
1

proxy
2

user_a

user_b

account
1

account
2

level 1 level 2 level 3

Figure 5.1: The APG for the account ex-
ample program with a proxy delay in List-
ing 4.5.

Using the assigned levels, we know that any two reactions with the same
level may be executed in parallel. However, if reactions have different levels,
then we must assume that there is a dependency from the reaction with
the higher level to the reaction with the lower level. Therefore, the strategy
is conservative. The level assignment allows deciding quickly if two reac-
tions may execute in parallel, but it may miss opportunities for exploiting
parallelism. For instance, the second reaction of account in principle could
execute in parallel to the second proxy reaction, but when only considering
the level, we must assume that there is a dependency.

Using the level mechanism, implementing the getReadyReactions pro-
cedure becomes trivial. Listing 5.8 shows one possible implementation. It
assumes a global variable that stores the current level. Furthermore, it as-
sumes that getReadyReactions is only called once all reactions from the
previous level have finished executing. If the reaction queue 𝑄𝑅 is imple-
mented as a map of levels to a list of reactions, then filtering for all reactions
with a specific level becomes trivial and very efficient.6

6: We can also use an array where the in-
dex represents the level.

http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1145/344588.344618

5 Efficient Deterministic Concurrency 100

1: procedure getReadyReactions(𝑄𝑅)
2: ℛ ← ∅
3: while level < maxLevel ∧ ℛ = ∅ do
4: for all 𝑟 ∈ 𝑄𝑅 do
5: if getLevel(𝑟) = level then
6: ℛ ← ℛ ∪ 𝑟
7: level ← level + 1
8: return ℛ

Listing 5.8: Level-based implementation
of the getReadyReactions procedure.

The level-based scheduling approach was described before by Lohstroh7 7: Lohstroh 2020, Reactors: A Deterministic
Model of Concurrent Computation for Reac-
tive Systems.

and is used in all the runtime implementations that are available for Lin-
gua Franca. While the strategy is conservative, it is sufficient to exploit
parallelism in most cases, as the evaluation in the next section shows.

5.2.2 Coordinating Worker Threads

Figure 3.4 and the discussion in Section 3.1.4 conceptually distinguish the
scheduler and the worker threads. In an actual implementation, however,
using a central scheduler and separate worker threads introduces several
synchronization points. The scheduler needs to send work to the workers,
and the workers need to notify the scheduler when they are finished. Instead,
in our implementation, a thread that runs out of work tries to become the
scheduler and moves ready reactions to the ready queue or advances logical
time to the next tag if all reactions have been processed. Only one worker
thread can become the scheduler, and all other workers that run out of work
will go to sleep until they are woken up again by the scheduler.

1: procedure work()
2: if workerID = 0 then
3: ▷ The worker with ID 0 performs the initial scheduling. ◁
4: runScheduler()
5: while True do
6: ▷ Retrieve a reaction from the ready queue. This may block until

a reaction becomes available. ◁
7: 𝑟 ← readyQueuePop()
8: execute(𝑟) ▷ Execute the reaction.
9: ▷ Decrement the atomic counter 𝑛𝑅, which represents the number

of remaining ready reactions to be processed. ◁
10: if atomicDecrement(𝑛𝑅) = 1 then
11: ▷ If the atomic decrement returns a previous value of 1, then

it processed the last ready reaction. ◁
12: runScheduler() ▷ Schedule the next round of reactions.

Listing 5.9: Main work function executed
by each worker.

Listing 5.9 shows the work procedure, which is the main function that each
worker thread executes.8 Determined by the thread ID, one worker calls the 8: The shown procedure is simplified and

does not include details like termination.runScheduler procedure to perform the initial scheduling (line 4). Each
worker enters an infinite while loop. In this loop, the worker thread first
attempts to retrieve a reaction from the ready queue (line 7). This operation
may block if there are no more reactions in the queue. Thus, the worker
thread will wait until it can retrieve a ready reaction from the queue. Once
the worker thread has retrieved a ready reaction, it executes the reaction.

When the reaction execution completes, the worker thread decrements the
atomic variable 𝑛𝑅, which denotes the number of ready reactions that have
not yet finished executing (line 7). The atomicDecrement procedure returns
the previous value of the variable (before decrementing). Thus, if the atomic

http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083

5 Efficient Deterministic Concurrency 101

decrement returns 1, we know that the current worker thread just completed
executing the last ready reaction. It then calls runScheduler to schedule
the next round of reactions. Since this point can only be reached by one
worker thread and the other worker threads can only continue execution
once we fill the ready queue, we have achieved mutual exclusion, and there
is no need for using locks.

5.2.3 Lock-free Data Structures and Algorithms

The reaction and event queues and other data structures that are required for
bookkeeping (e.g., a list of all set ports) are shared across worker threads. To
avoid data races, access to these data structures needs to be guarded. However,
using mutexes and locks for synchronization proved to be inefficient due
to high contention on the shared resources, especially when many parallel
reactions set ports or schedule actions. Instead, the C++ scheduler utilizes
lock-free data structures and algorithms where possible. One example of
this was already given by the work procedure Listing 5.9, which uses a
non-blocking atomic decrement operation to determine when to schedule
and to guarantee mutual exclusion between the scheduling thread and the
other worker threads.

The ready queue is implemented as a fixed-size array paired with an atomic
counter 𝑛ℛ that denotes the number of ready reactions. Since we know
precisely how many reactions can run at most in parallel, i.e., the maximum
number of reactions in the APG that have the same level, we can fix the
size of the queue. Listing 5.10 gives a pseudocode implementation of the
readyQueuePop that returns a single reaction from the queue. The proce-
dure first atomically decrements the queue size counter 𝑛ℛ . If the old size
𝑛 (from before the decrement operation) is positive, then there are remain-
ing elements in the queue and we can return the 𝑛 − 1th element (line 8).
Otherwise, the procedure enters the while loop, where it tries to acquire the
counting semaphore 𝑠. Once the worker thread has acquired the semaphore,
it tries again to decrement the queue size.

1: procedure readyQueuePop()
2: ▷ Atomically decrement the queue size. 𝑛 denotes the size before the

decrement operation. ◁
3: 𝑛 ← atomicDecrement(𝑛ℛ)
4: while 𝑛 ≤ 0 do
5: aquireSemaphore(𝑠)
6: 𝑛 ← atomicDecrement(𝑛ℛ)
7: ▷ Return the 𝑛 − 1th element in the queue. ◁
8: return ℛ[𝑛 − 1]

Listing 5.10: Implementation of the
readyQueuePop procedure.

The purpose of the semaphore is twofold. First, it provides a simple mech-
anism for blocking and unblocking a worker thread. Second, the counting
semaphore allows for precise control of the total number of worker threads
that may execute at a given point. When filling the queue, we can wake up
precisely as many worker threads as there are reactions to be processed in
parallel. This allows for precise control of the parallelism and avoids wak-
ing up threads unnecessarily if there is not a sufficient number of parallel
reactions to utilize all worker threads.

Listing 5.11 gives an implementation of the readyQueueFill procedure,
which is the counterpart to the readyQueuePop procedure. It is used by the
scheduler to move the list of ready reactions at the next level obtained via
GetReadyReactions to the ready queue ℛ.

5 Efficient Deterministic Concurrency 102

1: procedure readyQueueFill(𝑅)
2: ℛ ← 𝑅 ▷ Overwrite the queue with the new ready reactions.
3: ▷ Atomically store the new queue size and retrieve the old value. ◁
4: 𝑛 ← atomicExchange(𝑛ℛ , |𝑅|)
5: ▷ Update the number of waiting worker threads. ◁
6: waitingWorkers← waitingWorkers+ |𝑛|
7: runningWorkers← numWorkers− waitingWorkers
8: ▷ Determine how many workers to wake up. ◁
9: wakeUp← min(waitingWorkers, |𝑅| − runningWorkers)

10: if wakeUp> 0 then
11: releaseSemaphore(𝑠, wakeUp)

Listing 5.11: Implementation of the
readyQueueFill procedure.

The procedure first updates the ready queue. It then uses an atomic exchange
operation to assign the new size of the reaction queue to 𝑛ℛ and simultane-
ously retrieve its old size and store it in the variable 𝑛. Note that the value
of 𝑛 could be negative. If more workers attempt to pop a reaction from the
queue than there are elements in the queue, then the atomic decrement op-
erations in readyQueuePop result in a negative value. |𝑛| denotes precisely
the number of workers that attempted to pop a reaction from the queue but
had to wait instead.

The scheduler holds a variable waitingWorkersand uses it to keep track of
the number of workers that are currently in a waiting state (i.e., that are
blocking on the semaphore or about to call the acquire procedure on the
semaphore). Line 6 increments the number of waiting workers by |𝑛|. Based
on this, we can also calculate the number of workers that are still running.
These are worker threads that executed past line 10 in Listing 5.9, but that
did not yet attempt to retrieve the next reaction. Finally, line 9 calculates
how many worker threads should be woken up. At most, this should be the
number of waiting threads. Also, we should not wake up more workers than
there are reactions to execute. The number of additional workers needed
to execute all reactions in parallel is |𝑅| − runningWorkers. Therefore, the
procedure takes the minimum of both and then releases the semaphore,
incrementing its counter by this value.

There are many occasions where the C++ runtime utilizes lock-free data
structures and algorithms to orchestrate access to shared resources. However,
there are too many to explain them all in detail. The presented procedures
are therefor exemplary for a range of implemented optimizations.

5.2.4 Sparse Multiports

Often, reactions that are triggered by a multiport input need to identify
which ports actually have a present value. This is typically done by iterating
over all ports, as shown in the example in Listing 5.2. Let 𝑛 denote the width
of the multiport and 𝑝 the number of present ports. If the multiport width is
large and communication is sparse (𝑝 ≪ 𝑛), then iterating over all ports and
checking for presence individually is inefficient (𝒪(𝑛)).

The optimized C++ runtime provides additional methods on multiports
that return only the present ports. Internally, the runtime uses a lock-free
buffer for each multiport to keep track of the ports that are actually set at
a given tag. The method present_indices_unsortedreturns this buffer
as an unsorted list of all the present indices. When using this method, it-
erating over all present ports in the reaction body has complexity 𝒪(𝑝).
However, the port indices returned by this method may have an arbitrary
order if the ports are set by concurrent reactions. If a fixed order is required,

5 Efficient Deterministic Concurrency 103

present_indices_sortedcan be used to obtain a sorted list of indices. The
sorting has complexity 𝒪(𝑝 ⋅ log(𝑝)).

5.3 Performance Evaluation

Using the runtime optimizations as well as the bank and multiport syn-
tax extension discussed in the previous section, this section evaluates the
performance of LF programs in the C++ target. This is done by porting
a range of actor benchmarks to LF and comparing their performance to
implementations using Akka and CAF.

5.3.1 Methodology

The evaluation is based on the Savina benchmark suite for actor languages
and frameworks.9 While this suite has several issues, as Blessing et al. discuss 9: Imam and Sarkar 2014, Savina – An Ac-

tor Benchmark Suite: Enabling Empirical
Evaluation of Actor Libraries.

in more detail,10 Savina covers a wide range of patterns and, to the best of our

10: Blessing et al. 2019, Run, Actor, Run:
Towards Cross-Actor Language Benchmark-
ing.

knowledge, is themost comprehensive benchmark suite for actor frameworks
that has been published. The Savina suite includes Akka implementations
and CAF implementations of most benchmarks are also available.

22 out of the 30 Savina benchmarks were ported to the C++ target of LF.
Due to the fundamental differences between the actor and reactor mod-
els, the process of porting benchmarks is not always straightforward. The
porting process aimed at closely resembling the original workloads and con-
sidered the intention behind the individual benchmarks. The next subsection
discusses the implementation of selected benchmarks in more detail.

The benchmarks Fork Join (actor creation), Fibonacci, Quicksort, Bitonic
Sort, Sieve of Eratosthenes, Unbalanced Cobwebbed Tree, Online Facility
Location, and Successive Over-Relaxation were not implemented in LF as
they require the capability to dynamically create actors. In the reactor model,
this can be achieved with mutations that may modify the reactor topology.11 11: Lohstroh, Romeo, et al. 2019, Reactors:

A Deterministic Model for Composable Re-
active Systems; Lohstroh 2020, Reactors: A
Deterministic Model of Concurrent Compu-
tation for Reactive Systems.

However, mutations are not yet fully implemented in LF, and a discussion of
language-level constructs for supporting mutations is beyond the scope of
this thesis. Although the precise cost of performing mutations is currently
unknown, this cost will mostly depend on how efficiently the APG can be
modified. Since the APG remains static in between mutations, we expect
no difference in performance for the execution of reactions, and hence the
results discussed here yield measurements that will be useful even when
mutations are eventually supported.

The presented evaluation also excludes the A*-Search and Logistic Map Series
benchmarks. The A*-Search implementation in the original Savina suite
suffers from a severe race condition that results in wildly varying execution
times.10 Logistic Map Series is omitted, as the Akka implementation violates
actor semantics and requires explicit synchronization.10 For this reason, the
CAF implementation needs to use a blocking call, which makes it slower
than the other implementations by at least two orders of magnitude. Since
this is not a problem of CAF but rather a problem in the benchmark design,
we omit Logistic Map Series to avoid skewing the analysis.

All measurements were performed on a workstation with an Intel Core
i9-10900K processor (10 cores, 20 hardware threads) and 32 GiB DDR4-
2933 RAM running Ubuntu 22.04 and using CAF version 17.6 and Akka
version 2.6.17. Following the methodology of Savina, measurements exclude
initialization and cleanup. Each measurement comprises 32 iterations. The
first two iterations are excluded from the analysis and used for warm up.

http://dx.doi.org/10.1145/2687357.2687368
http://dx.doi.org/10.1145/2687357.2687368
http://dx.doi.org/10.1145/2687357.2687368
http://dx.doi.org/10.1145/3358499.3361224
http://dx.doi.org/10.1145/3358499.3361224
http://dx.doi.org/10.1145/3358499.3361224
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083

5
Effi

cientD
eterm

inistic
C
oncurrency

104

Table 5.1: Characteristics of the Savina benchmarks implemented in LF. The middle part denotes static information about the size of the program, and the right part denotes runtime information about the execution
of the program.

ID cat. benchmark reactors reactions actions ports connections processed processed set ports scheduled time per
tags reactions actions reaction [ns]

1

m
icro

Ping Pong 4 8 3 8 4 1,000,004 3,000,005 2,000,002 1,000,010 74
2 Thread Ring 103 109 3 406 203 1,004 101,008 100,004 1,208 71
3 Counting Actor 4 11 3 12 6 1,000,005 2,000,010 1,000,005 1,000,011 77
4 Fork Join (throughput) 63 67 3 65 62 10,004 610,006 10,002 10,128 26
7 Chameneos 103 208 3 20,404 10,202 4,005 408,209 800,402 4,209 169
8 Big 123 487 122 57,964 29,042 20,004 6,472,034 4,800,122 2,400,248 221

9

concurrency

Concurrent Dictionary 24 30 3 146 83 10,004 220,028 400,023 10,050 217
10 Concurrent Sorted Linked List 24 31 4 145 83 8,005 176,029 320,022 8,051 43,323
12 Dining Philosophers 23 71 3 224 122 20,004 460,019 1,000,002 20,048 123
13 Sleeping Barber 2,005 8,017 5 24,014 12,008 4,004 18,008 14,002 8,012 1,265
14 Cigarette Smokers 203 208 4 404 202 1,005 2,007 1,002 1,409 2,692
16 Bank Transaction 1,003 3,007 3 2,004,004 1,002,002 79 78,905 101,002 2,083 464

11 Producer Consumer (bounded) 83 209 42 484 282 1,005 122,128 160,082 40,208 12,325
17

parallelism

All-Pairs Shortest Path 45 115 38 873 798 304 21,643 10,839 10,892 45,270
19 N Queens First K Solutions 23 30 4 124 62 256 5,472 9,130 300 46,150
20 Recursive Matrix Multiplication 23 50 4 105 62 37 651 661 81 1,268,569
22 Radix Sort 64 248 63 186 123 899,962 7,000,100 6,100,002 900,104 86
23 Filter Bank 54 141 3 254 150 34,821 1,073,278 809,063 34,927 2,075
28 Trapezoidal Approximation 103 108 3 404 202 5 108 202 209 6,050,557
29 Precise Pi Computation 23 30 4 84 42 213 4,584 8,322 257 22,172

5 Efficient Deterministic Concurrency 105

5.3.2 Benchmark Implementation in LF

Table 5.1 provides an overview of all the Savina benchmarks that were ported
to LF and that are included in our discussion. The table also lists various
key characteristics of the LF implementations. The middle section displays
characteristics about the size of each program, such as the total number
of reactors, reactions, actions, ports, and connections. The right section
shows details about the benchmark execution, such as the number of tags
(or events) that were processed, the number of executed reactions, and how
often ports were set and actions scheduled. Finally, the average time per
executed reaction gives an estimate of the size of the workload implemented
in each reaction.

As indicated in Table 5.1, the Savina benchmarks are divided into three cate-
gories: micro, concurrency and parallelism.12 The microbenchmarks focus on 12: The original Savina suite lists Pro-

ducer Consumer as a concurrency bench-
mark, but the author finds that it fits better
into the group of parallelism benchmarks.

stressing various mechanisms in the runtime scheduler to expose overheads
in the runtime. The concurrency benchmarks have a similar goal, but they
put more focus on the concurrent operation of (re)actors and also require
synchronization mechanisms to solve the particular problem. Since the mi-
cro and concurrency benchmarks are designed to stress the runtime and
scheduler, the workload implemented in each (re)actor is relatively small (ex-
cept for Concurrent Sorted Linked List). The benchmarks in the parallelism
category are designed to test the capability to exploit parallel hardware
efficiently and hence the workload implemented by each (re)actor is more
significant (except for Radix Sort).

The interested reader may find the full LF implementation of all implemented
benchmarks on GitHub.13 The remainder of this section discusses implemen- 13: Menard, Soroush, et al. 2023, Lingua

Franca Benchmarks.tation details for selected, representative benchmarks.

The execution of all benchmarks in the original Savina suite is governed by
an actor called BenchmarkRunner. It is responsible for initiating a benchmark
run andmeasuring the time until each benchmark run completes.This enables
performing measurements in repeated iterations while keeping caches (and
the JVM in case of Akka) warm. The LF benchmarks adapt this mechanism
and use the BenchmarkRunnerreactor shown in Figure 5.2. The runner has
two ports: startand finished. While startis used to initiate a benchmark
run, finishedis used to receive feedback from the actual benchmark when
it completes its execution.

BenchmarkRunner

1

init

2

startIteration

3

completeIteration

4

printResults

L

L

finished

start

Figure 5.2: The benchmark runner imple-
mented in LF.

The LF implementation for each of the benchmarks defines a reactor for
each actor in the original Savina implementation and a connection for each
message that can be sent between actors. For instance, Figure 5.3 shows the
LF implementation of the Ping Pong benchmark. The benchmark consists
of two (re)actors, Pingand Pong, that send each other messages back and
forth. When Ping receives a message on the inStartport, it schedules a
new event using its internal action. The reaction triggered by this action
then sends the first ping message. Pongreacts to this message by sending a
pong message back to Ping, which in turn reacts by scheduling a new event
on the internal action to repeat the process. Once all 1,000,000 ping and pong

https://github.com/lf-lang/benchmarks-lingua-franca
https://github.com/lf-lang/benchmarks-lingua-franca

5 Efficient Deterministic Concurrency 106

messages have been sent, the Pingreactor does not schedule a new event
but instead notifies the benchmark runner to indicate that the benchmark
execution is complete.

PingPong

Ping

1
2

3
L

inStart

inPong outFinished

outPing

BenchmarkRunner
finished start

Pong
inPing outPong

Figure 5.3: LF implementation of the Ping
Pong benchmark.

Note the use of the logical action to break the dependency cycle between
Ping and Pong. If we merged reactions 2 and 3 of Ping to send another ping
message right after receiving a pong message, there would be a causality
loop. The loop is broken up by scheduling a new event and sending the ping
message at the next tag. All the Savina benchmarks have a direct feedback
loop, and thus, where needed, logical actions were carefully inserted to break
dependency cycles.

The concurrency benchmarks are particularly interesting as we can utilize
LF’s semantics to implement them efficiently. The Concurrent Dictionary
benchmark, for instance, consists of a Dictionary (re)actor that receives read
or write requests from 20 Worker (re)actors. The dictionary processes each
request and sends a reply back to the workers. Figure 5.4 shows our LF
implementation. It instantiates a bank of worker reactors that communicate
with the dictionary via multiports. The workers operate concurrently, and
each invocation of the worker reaction is logically simultaneous with the
other workers. In consequence, the dictionary will receive multiple logically
simultaneous requests from the workers. This notion of logical simultaneity
allows the dictionary reactor to effectively batch-process all the requests
received at a single tag in a single reaction. The dictionary reaction iterates
over all present messages on the requestport and processes the requests
sequentially.

ConcurrentDictionary

Manager

1

2

start

workerFinished finished

doWork

BenchmarkRunner
finished start

DictionaryImpl

1

23 L
request

reset_state

response
Worker

20

doWork

dictResponse finished

dictRequest

Figure 5.4: LF implementation of the Concurrent Dictionary benchmark.

In the actor implementations of the Concurrent Dictionary benchmark, how-
ever, the dictionary can only process individual requests as there is no notion
of simultaneity. Thus, the runtime needs to invoke the actor behavior re-
peatedly, which adds additional overhead. Moreover, the particular order
in which the dictionary actor processes requests s nondeterministic. Since
the workers send interleaving read and write requests, they may observe
different responses depending on the order in which dictionary processes
the requests. LF’s notion of logical time establishes a deterministic ordering

5 Efficient Deterministic Concurrency 107

between messages and allows observing all the present inputs at a given tag
at once.

We can make a similar observation for the Dining Philosophers benchmark.
The LF implementation in Figure 5.5 uses an arbitrator reactor and a bank
of 20 philosopher reactors. The philosophers think and eat concurrently. In
order to start eating, philosophers send a hungrymessage to the arbitra-
tor, which replies with eator denied. When a philosopher finishes eating,
they indicate this with a donemessage. If the request to eat in denied, the
philosopher sends a new hungrymessage.

DiningPhilosophers

Arbitrator

1

2

3

4

5

L

start

hungry

done

finished allFinished

eat

denied

Philosopher

1

2

3
20

start

eat

denied

hungry

done

finished

BenchmarkRunner
finished start

Figure 5.5: LF implementation of the Dining Philosophers benchmark.

While the philosophers operate concurrently, the arbitrator can process all
logical simultaneous hungryrequests in one batch. In this concrete bench-
mark, this has the additional advantage that the arbitrator always knows
which philosophers are hungry at a particular tag and can therefore find a
fair strategy to grant the resources to the philosophers. In an actor implemen-
tation, the arbitrator can only make decisions for individual messages, which
makes it much harder to find a fair solution. The original Savina implemen-
tation “solves” this simply by having each philosopher send another hungry
message immediately after receiving a deniedmessage. This increases the
chance for each philosopher to eat eventually, but it also adds a significant
amount of unnecessary messages.

In our measurements, the Akka implementation of the philosopher bench-
mark used about 10 million hungrymessages, whereas the LF implementa-
tion used about 200,000 hungrymessages. Of course, it would be possible to
implement other, more elaborate, arbitration strategies with actors, but com-
pared to the Lingua Franca solution, this would always come with additional
cost in terms of code size and also overhead for additional messages.

The LF implementation of Dining Philosophers could even be further sim-
plified. Since there is no delay between sending an eatmessage in reaction
2 of the arbitrator, eating in reaction 2 of the philosopher, and processing
the donemessage in reaction 3 of the arbitrator, all three steps are logically
simultaneous. Since the runtime scheduler first completes processing all
reactions at the current tag before moving to the next tag (cf. Section 3.1.4),
the donemessage is redundant. When the arbitrator reaction is invoked to
decide which philosopher may eat, it knows that all philosophers from the
previous round must have completed eating at the previous tag. However,
we decided to keep the donemessage to avoid deviating too much from the
original benchmark implementation. This also allows for alternative imple-
mentations of the philosopher reactor, which might use a delay internally
and send donemessages at a later tag.

The advantage of LF’s synchronous semantics also becomes evident in the
Filter Bank benchmark shown in Figure 5.6. It applies a cascade of filters

5 Efficient Deterministic Concurrency 108

CombineIntegrator

Delay SampleFirFilter Delay FirFilter

...

Delay SampleFirFilter Delay FirFilter

Tagger

...

Tagger

Source

(a) Actor implementation

FilterBank

Source

L

Bank

Delay FirFilter Sample Delay FirFilter

8

Combine

(b) Reactor implementation in LF

Figure 5.6: Comparison between the reactor and the actor implementation of the Filter Bank benchmark.

to eight parallel channels in a data stream. The output of each filter bank
is then combined into a single stream. The combine operation is applied
to the 𝑛th output message of each bank. This is trivial in LF, as the output
messages are logically synchronous. The actor implementation, however,
requires an additional protocol to explicitly synchronize the outputs of the
asynchronously operating banks.The original Savina implementation utilizes
an additional Taggeractor that annotates the output messages of each bank
with a tag indicating the ID of the bank. A so-called Integratoractor
buffers the tagged messages from all banks. Once it receives a complete
set of messages from all banks, it forwards them as one message to the
Combine actor. As this synchronization mechanism is fully redundant in LF,
it is omitted from the LF implementation of the benchmark.

5.3.3 Results and Discussion

Figure 5.7 reports measured results for all supported benchmarks obtained
with Akka, CAF, and the C++ target of LF.The plots show themean execution
times (including 99% confidence intervals) for a varying number of worker
threads for each of the benchmarks. Not all benchmarks are implemented in
CAF, and hence CAF is missing in some plots.

The first six plots in Figure 5.7 belong to the group of microbenchmarks
in the Savina suite. Overall, the optimized C++ runtime shows comparable
performance to Akka and CAF. In Ping Pong and Thread Ring, the LF imple-
mentation is considerably faster than Akka but is still outperformed by CAF.
For Counting Actor and Big, Akka performs better, and the LF performance
is slightly behind CAF. In Fork Join and Chameneos, the LF implementation
outperforms both Akka and CAF, especially when using a larger number of
worker threads.

The next six plots (Concurrent Dictionary to Bank Transaction) belong to
the group of concurrency benchmarks. LF significantly outperforms CAF
and Akka in all the concurrency benchmarks (especially for a high number
of worker threads). This highlights how concurrent behavior is expressed
naturally in LF and can be executed efficiently. As discussed in the previous
subsection, we can exploit the well-defined notion of logical simultaneity in
LF to execute independent reactions in parallel and batch-process simulta-
neous messages from multiple reactors in a single reaction. Moreover, no

5 Efficient Deterministic Concurrency 109

Radix Sort #22 Filter Bank #23 Trapezoidal Approximation #28 Precise Pi Computation #29

Producer Consumer (bounded) #11 All−Pairs Shortest Path #17 N Queens First K Solutions #19 Recursive Matrix Multiplication #20

Dining Philosophers #12 Sleeping Barber #13 Cigarette Smokers #14 Bank Transaction #16

Chameneos #7 Big #8 Concurrent Dictionary #9 Concurrent Sorted Linked−List #10

Ping Pong #1 Thread Ring #2 Counting Actor #3 Fork Join (throughput) #4

1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20

1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20

1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20

1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20

1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20

0

50

100

150

200

0

5000

10000

15000

0

20

40

60

80

0

250

500

750

1000

0

100

200

300

0

50

100

150

200

0

50

100

150

200

0

30

60

90

120

0

100

200

300

400

500

0

200

400

600

800

0

200

400

600

0

500

1000

1500

0

50

100

0

300

600

900

0

500

1000

1500

2000

0

500

1000

1500

0

100

200

300

0

100

200

300

400

500

0

500

1000

1500

2000

0

200

400

600

800

Number of Threads

M
ea

n
Ex

ec
ut

io
n

Ti
m

e
in

 m
s

Akka CAF LF C++ Target

Figure 5.7: Mean execution times and 99% confidence intervals for various Savina benchmarks implemented in LF, CAF, and Akka, measured
for a varying number of worker threads. The numbers prefixed with # are benchmark IDs as listed in Imam and Sarkar 2014, Savina – An Actor
Benchmark Suite: Enabling Empirical Evaluation of Actor Libraries.

http://dx.doi.org/10.1145/2687357.2687368
http://dx.doi.org/10.1145/2687357.2687368

5 Efficient Deterministic Concurrency 110

explicit synchronization is needed. In the actor benchmarks, explicit syn-
chronization, e.g., by sending acknowledge messages or using blocking calls,
adds additional overhead.

The remaining plots belong to the group of parallelism benchmarks in the
Savina suite. Radix Sort and Filter Bank are affected by an inefficiency in
the reactor scheduler. As discussed in Section 5.2.1, the scheduler sorts the
APG by level and executes reactions in the next level only after all reactions
in the previous level have been completed. In these particular benchmarks,
this simple strategy leads to a non-optimal execution, as some reactions are
executed later than they could. A revision of the scheduling algorithm to
improve the performance in these benchmarks remains for future work. The
remaining parallelism benchmarks, however, highlight that LF can efficiently
implement parallel algorithms. The LF implementations are on par with
Akka and CAF and scale well with an increasing number of threads.

On average, LF outperforms both Akka and CAF. For 20 threads, the C++
runtime achieves a speedup of 1.85𝑥 over Akka and a 1.42𝑥 speedup over CAF.
These speedups were calculated using the geometric mean over the speedups
of individual benchmarks. Based on the presented results, we can conclude
that LF can compete with and even outperformmodern and highly optimized
actor frameworks such as Akka and CAF. Particularly for workloads that
require synchronization, LF significantly outperforms actor implementations.
LF is as efficient as the actor frameworks in exploiting parallelism and scales
well to a larger thread count. In summary, the deterministic concurrency
provided by LF does not hinder performance but, instead, enables more
efficient implementations. This is possible in part because the scheduler
has insights into the program structure and explicit synchronization can be
avoided in LF, as opposed to many of the original Savina actor benchmarks.

The performance comparison between C++ and Scala (Akka) needs to be
takenwith care, as other factors such as different library implementations and
the behavior of the Java Virtual Machine (JVM) may influence performance.
For instance, the large discrepancy between Akka and our implementation
in the Pi Precision benchmark is explained by a less efficient representation
of large numbers in Scala/Java. However, the other benchmarks of the Sav-
ina suite do not depend on external libraries and are designed to be more
portable between languages. Also note that over all benchmarks, CAF only
achieves an average speedup of 1.09𝑥 over Akka for 20 threads and is out-
performed in 9 out of 16 benchmarks. For single-threaded execution, Akka
outperforms CAF in 10 benchmarks and achieves an average speedup of
1.33x. This indicates that the implemented Scala workloads are comparable
to the C++ implementations. Even considering a potential skew due to the
JVM, our results clearly show that LF can compete with state-of-the-art actor
frameworks.

To better understand the impact of the optimizations discussed in Section 5.2,
Figure 5.8 also shows the speedup of our optimized runtime for 20 worker
threads compared to a less optimized version.This baseline is an older version
of the C++ runtime that is optimized in the sense that obvious bottlenecks
were eliminated using common profiling and code optimization techniques,
but that does not include the optimizations discussed in Sections 5.2.2 to 5.2.4.
The average overall speedup (geometric mean) achieved by the optimizations
is 2.18𝑥 . In particular, Big and Bank Transaction significantly benefit from
the optimization for sparse communication patterns. The concurrency bench-
marks (e.g., Concurrent Dictionary and Dining Philosophers), are mostly
improved by reducing the contention on shared resources using lock-free
algorithms. However, not all benchmarks benefit from the optimizations.
The reduced performance in Ping Pong and Counting Actor shows that

5 Efficient Deterministic Concurrency 111

1.0

0

5

10

15

20

Ping
 Pon

g

Thre
ad

 Ring

Cou
nti

ng
 A

cto
r

Fork
 Jo

in
(th

rou
gh

pu
t)

Cha
men

eo
s

Big

Con
cu

rre
nt

Dict
ion

ary

Con
cu

rre
nt

Sort
ed

 Link
ed

−List

Dini
ng

 Phil
oso

ph
ers

Slee
pin

g B
arb

er

Ciga
ret

te
Smok

ers

Ban
k T

ran
sac

tio
n

Prod
uc

er
Con

sum
er

(bo
un

de
d)

All−
Pair

s S
ho

rte
st P

ath

N Q
ue

en
s F

irs
t K

 Solu
tio

ns

Recu
rsi

ve
 M

atr
ix

Mult
ipl

ica
tio

n

Rad
ix

Sort

Filte
r B

an
k

Trap
ezo

ida
l A

pp
rox

im
ati

on

Prec
ise

 Pi C
om

pu
tat

ion

Benchmark

Sp
ee

du
p

Figure 5.8: Speedup achieved by our opti-
mized C++ runtime for 20 worker threads
compared to an unoptimized version.

optimizing for efficient parallel execution also comes at a cost for simple
sequential programs.

5.4 Conclusion

Unlike actors and related models for asynchronous concurrency, the reactor
model enforces determinism by default, and features asynchronous behavior
only when introduced deliberately. The presented evaluation based on Lin-
gua Franca’s C++ target, shows that the restrictions of the reactor model do
not impede performance. On the contrary, LF achieves an average speedup
of 1.85𝑥 over Akka and 1.42𝑥 over CAF. The LF C++ target combines re-
producible (and testable) behavior with good performance. Moreover, the
implementation of a wide range of benchmarks out of the Savina benchmark
suite demonstrates that LF is indeed suitable for solving practical problems.
The presented results underline the general applicability and the scalability
of LF.

Partitioning Lingua Franca
Programs 6

6.1 Problem Analysis 112

6.2 Partitioning with Enclaves . . 116

6.3 Coordinating Enclaves 117

6.4 Examples 123

6.5 Enclave Patterns 125

6.6 Limitations 128

6.7 Conclusion 133

The previous chapter considered the scalability of LF and demonstrated
that LF programs can achieve a high performance and even exceed the
performance of actor frameworks for various problems. However, most of
the Savina benchmarks used in this evaluation expose a regular structure
that matches well with the simple level-based scheduling algorithm that
Section 5.2.1 introduced. There is also a range of patterns for which our
scheduling algorithm cannot fully exploit parallelism.

This chapter focuses on the known limitations of the scheduling mechanism
introduced in Section 5.2. We discuss known patterns for which the scheduler
cannot fully exploit parallelism or where the execution of some reactions
is delayed longer than necessary. This chapter also proposes a solution
which that on partitioning reactor programs into multiple segments that use
independent schedulers but that need to use coordination strategies similar
to federated execution (cf. Section 4.5).

6.1 Problem Analysis

This section discusses various examples that illustrate how the current
scheduling algorithm may negatively impact performance and timeliness of
execution.

6.1.1 Pipeline Parallelism

Consider the cascade of reactors shown in Figure 6.1. It consists of a source
and a sink reactor, as well as three stages that perform some computation.
Ideally, we would be able to exploit pipeline parallelism when executing
this program. While each data item produced by the source is processed in
sequential order by the stages, in principle, different stages could process
different data items in parallel.

When using the scheduling algorithm discussed in Sections 3.1.4 and 5.2,
however, the program is executed strictly sequentially. Figure 6.3 shows the
corresponding timing diagram. This is because the reaction in each stage of
the cascade depends on the reaction in the previous stage (cf. Figure 6.2).
Furthermore, the scheduler only advances to the next tag once all reactions at
the current tag have been executed. In other words, the scheduler imposes a
global tag barrier, and different reactors may not operate at different tags.

In order to convert the cascade into a pipeline, such that the stages may
execute in parallel, we can insert logical delays between the stages, as shown

Cascade

source : Source

(0, 10 msec)

stage1 : Stage stage2 : Stage stage3 : Stage sink : Sink

Figure 6.1: A simple cascade of reactors.

6 Partitioning Lingua Franca Programs 113

source stage1 stage2 stage3 sink Figure 6.2: APG of the cascade program
in Figure 6.1.

(0, 0)

(10ms, 0)

(20ms, 0)

(30ms, 0)

0 20 40 60 80 100 120 140
physical time (ms)

lo
gi

ca
l t

im
e

source stage1 stage2 stage3 sink

Figure 6.3: Timing diagram for the cas-
cade program in Figure 6.1.

in Figure 6.4. Inserting logical delays breaks the dependencies between the
pipeline stages (cf. Figure 6.5). By choosing a delay equal to the interval of
the timer that triggers the production of new data items in the source reactor,
we ensure that the events between stages are logically simultaneous.

Pipeline

source : Source

(0, 10 msec)

stage1 : Stage stage2 : Stage stage3 : Stage sink : Sink

10 ms 10 ms 10 ms 10 ms

Figure 6.4: A simple reactor pipeline with delays in between stages.

source

stage1

stage2

stage3

sink

Figure 6.5: APG of the pipeline program
in Figure 6.4.

Figure 6.6 shows the timing diagram for this pipeline application. At the
initial tag 𝑔0 = (0, 0) only the source reactor is triggered by the timer. In the
next tag (10ms, 0), the source produces a new data item, and the first stage
processes the previous data item in parallel. Starting from tag (40ms, 0), all
stages may execute in parallel, given that there is a sufficient amount of
worker threads available.

While we can use logical delays to parallelize the execution of the program
shown in Figure 6.1, inserting delays is not always desirable as it decreases
consistency (cf. Section 4.5.4). Moreover, the described approach only works
if the delays between pipeline stages are chosen carefully to always match
the production rate, which is not always possible.

6.1.2 Variability in Parallel Reactions

Most of the benchmarks considered in Section 5.3 use a regular program
structure such that the workload is distributed evenly between parallel
reactions. The workload performed by each reaction is quite uniform, and
the variability in reaction execution time is negligible. However, when we
increase the jitter in reaction execution time, e.g., because the complexity of
the computation is data-dependent, then another problem arises.

Consider the program in Figure 6.7, which combines pipeline parallelism
with data-level parallelism. In principle, stage1and stage3can execute
in parallel to stage2and stage4. However, due to the level sorting, the
scheduler will only process stage1 in parallel to stage2and stage3 in
parallel to stage4. This is fine as long as the execution time between stages
is evenly distributed and does not vary considerably.

Figure 6.8 shows a possible timing diagram for the example in Figure 6.7. For
the first tag, all stage reactions take exactly 10ms to execute. The reactions

6 Partitioning Lingua Franca Programs 114

(0, 0)

(10ms, 0)

(20ms, 0)

(30ms, 0)

(40ms, 0)

(50ms, 0)

(60ms, 0)

0 10 20 30 40 50 60 70
physical time (ms)

lo
gi

ca
l t

im
e

source stage1 stage2 stage3 sink

Figure 6.6: Timing diagram for the
pipeline program in Figure 6.4.

in the upper part of the reactor diagram execute in parallel to the reactions in
the lower part. However, for the tags (30ms, 0) and (60ms, 0), the execution
time varies between stages. While one of the parallel stages takes 5ms to
complete execution, the other stage takes 15ms. Due to the level-based
execution strategy, the scheduler always waits until all reactions at the
current level have completed executing before releasing the next batch of
reactions for execution. This creates gaps in the schedule, which could in
principle be avoided by executing reactions in subsequent stages earlier.

Parallel

source : Source

(0, 10 msec)

out
stage1 : Stage

in out

stage2 : Stage
in out

stage3 : Stage
in out

stage4 : Stage
in out

sink : Sink
in

Figure 6.7: A program with two parallel sections.

(0, 0)

(30ms, 0)

(60ms, 0)

0 10 20 30 40 50 60 70 80 90 100 110
physical time (ms)

lo
gi

ca
l t

im
e

source

stage1

stage2

stage3

stage4

sink

Figure 6.8: Timing diagram for the pro-
gram in Figure 6.7.

6 Partitioning Lingua Franca Programs 115

6.1.3 Car Brake Example

Level-based scheduling and the global tag barrier not only limit the perfor-
mance of some applications by missing opportunities for exploiting paral-
lelism, but may also negatively impact the timing characteristics of safety-
critical applications. Reconsider the simple car brake example shown in
Figure 3.8 and discussed in Section 3.2.2 on Page 49. Figure 6.9 shows a
slightly modified version.

CarBrake

camera : Camera

(0, 20 msec)

cv : ComputerVision

pedal : BrakePedal

P

brake : Brake
1

5 msec

2
15 msec

Figure 6.9: A simplified brake assistant
with deadlines.

The program consists of a brake actuator that receives signals from a physical
brake pedal as well as from a computer vision component. The computer
vision component receives frames from a camera at an interval of 20ms.
It analyzes the frames and tries to identify objects in the vehicle’s path.
If such an object comes too close, ComputerVisionsends a signal to the
brake actuator to apply the brakes. The Brakereactions are annotated with
deadlines.Themaximum lag for applying the brakes after the pedal is pressed
should be 5ms. The brake reaction that reacts to messages coming from
ComputerVisionhas a larger deadline of 15ms. This is to account for the
execution time of the computer vision algorithm, which we assume to be
about 10ms.

(0, 0)

(15ms, 0)
(20ms, 0)

(40ms, 0)

(50ms, 0)

(60ms, 0)

0 20 40 60 80
physical time (ms)

lo
gi

ca
l t

im
e

camera cv pedal brake 1

Figure 6.10: A timing diagram showing
one potential execution of the simplified
brake assistant application in Figure 6.9.

The timing diagram in Figure 6.10 visualizes one potential execution trace of
the brake assistant program. The diagonal red line denotes the deadline of
the first brake reaction (i.e., the reaction handling messages from the pedal).
The vertical dashed lines denote the reading of physical time at the moment
when the brake pedal is pressed. Pressing the brake pedal injects new events
into the event queue by scheduling the physical action.

Due to the timer, the camera creates new events at intervals of 20ms. At each

6 Partitioning Lingua Franca Programs 116

triggering of the timer, the camera reaction executes and sends the frame
to ComputerVisionwhere it is processed by the reaction. In this example,
the computer vision algorithm does not detect any dangerous obstacles and
hence does not send any signals to the brake. However, at 15ms after startup,
the brake pedal is pressed, which creates the event at tag 15ms, 0. This event
is handled immediately by the scheduler, and both the pedal and the brake
reaction execute within the deadline.

50ms after startup, the brake pedal is pressed again for the second time.
In this case, the newly created event with tag (50ms) cannot be processed
immediately, as the runtime is currently still executing the computer vision
reaction at tag (40ms). Only once this reaction is processed completely,
the scheduler advances to the next tag and handles the brake pedal event.
However, this is too late, considering the deadline.

A long-running reaction in one part of the programmight block advancement
in seemingly unconnected parts of the program. When assigning deadlines
to the brake reactions, we need to account for potential interference between
the computer vision and the brake pedal reactions. This implies, however,
that we potentially need to choose large deadlines, which might be infeasible
for achieving certain safety requirements.

6.2 Partitioning with Enclaves

The previous section illustrated different problems that arise from the fact
that the level-based scheduler executes some reactions later than it could.
This may lead to interference between reactions that do not depend on each
other. There are two options for addressing this problem.

First, we can improve the scheduling algorithm and replace the level-based
scheduling and the global tag barrier with more elaborate algorithms that
can handle different reactors executing at different tags and are capable of
identifying reactions that are ready for execution without relying on levels.
However, deriving better scheduling algorithms so that they can also be
implemented efficiently has proven challenging.

Alternatively, we can try to isolate independent reactions and partition
programs so that we can use multiple schedulers. Federates provide one
mechanism for partitioning LF programs. Each federate has its own scheduler
and operates independently, while also coordinating with the RTI or other
federates. However, federates also imply execution in separated address
spaces. Federated execution is a viable solution for partitioning distributed
applications, but it incurs significant overhead if distributed execution is not
required.

Portioning LF programs, however, does not require distributed execution and
can also be done within the same address space. We call such a local partition
scheduling enclave. In LF, an enclave is a reactor that executes separately
from the rest of the system. Each enclave has its own scheduler and pool of
worker threads. To preserve determinismwhen programs are partitioned into
multiple enclaves, we need to utilize coordination strategies similar to those
used for federated execution (cf. Section 4.5). In Lingua Franca, an enclave
can be created by annotating an arbitrary reactor instantiation with the
@enclaveattribute.1 This slightly changes the output of the code generator. 1: LF includes an attribute syntax. Each

attribute is prefixed by the @ symbol and
may be followed by a list of argument as-
signments enclosed in parentheses. The at-
tribute syntax was omitted from the LF
syntax definition in Listing 4.2.

Instead of generating a contained reactor instance, the code generator creates
a new environment (cf. Section 4.7.1) and assigns the enclave reactor instance
as a top-level reactor. The code generator further adjusts the incoming and
outgoing connections of the reactor instance so that they correctly implement

6 Partitioning Lingua Franca Programs 117

cross-enclave communication. The following section discusses how such
connections can be implemented.

6.3 Coordinating Enclaves

In principle, we can use the two strategies currently available for coordi-
nating federates (cf. Section 4.5.4) to coordinate the execution of multiple
enclaves. However, both strategies have significant limitations. The decen-
tralized coordination strategy requires WCET estimates, which are typically
available for hard real-time applications but not for general-purpose appli-
cations. The centralized coordination strategy does not require additional
information but instead uses a central coordinator, which also imposes a
considerable bottleneck.2 2: Compared to federated execution, the

overhead induced by the RTI for enclaves
would be reduced, as all communication
happens within the same address space,
but still, the central coordination limits
scalability.

Since both coordination strategies are not ideal, the current C++ implemen-
tation for enclaves described in this chapter attempts to find a middle ground
between them. In contrast to federated execution, coordinating enclaves
removes the complexity of networked communication. Therefore, the imple-
mentation of coordination strategies for enclaves presents a fertile ground
for exploring new approaches. New strategies can be prototyped without
implementing a complete network stack, and debugging and analyzing the
execution is significantly easier than debugging distributed applications. The
following presents initial work in implementing enclaves in the C++ runtime
and deriving a new coordination scheme.

6.3.1 Generalizing Logical Time Synchronization

First, we introduce the concept of time barriers in the C++ runtime. As
discussed in Sections 3.1.4 and 4.4.2, the runtime implements a physical time
barrier that ensures that logical time does not progress faster than physical
time. In the scheduling algorithm shown in Listing 3.3, synchronization
with physical time is an integral part of the algorithm. However, we can
also implement such synchronization mechanisms as separate, generalized
components.

The C++ runtime provides two classes called PhysicalTimeBarrierand
LogicalTimeBarrierthat may be used to control how far a program may
advance in logical time. The simplified interface of both classes is shown in
Listing 6.1. These barriers are designed in analogy to counting semaphores.
Semaphores are typically used to coordinate access to a shared resource
between multiple threads. A thread may acquire the semaphore to obtain
access to a resource and release the semaphore once it is done. If the resource
is not available, the acquire operation typically blocks until another thread
releases the semaphore.

The time barriers are used similarly to semaphores. However, they do not
manage access to a countable resource, but instead control the advancement
of logical time.Thus, in a sense, the time barriers manage the resource logical
time. A scheduler that intends to advance logical time to the next tag first
acquires the tag on the barrier. This blocks until a concurrent process releases
the tag. Note that the acquire_tagmethods shown in Listing 6.1 accept a
function that may abort the waiting when it returns true. This mechanism
is required for reacting to external modifications to the event queue. For
instance, a physical action could be scheduled at an earlier tag while the
scheduler tries to acquire a later tag.

6 Partitioning Lingua Franca Programs 118

1 class PhysicalTimeBarrier{
2 public:
3 static autotry_acquire_tag(const Tag& tag) ->bool;
4 static autoacquire_tag(
5 const Tag& tag,
6 const std::function<bool(void)>& abort_waiting) ->bool;
7 };
8

9 class LogicalTimeBarrier{
10 Tag released_tag;
11 public:
12 void release_tag(const Tag& tag);
13 auto try_acquire_tag(const Tag& tag) ->bool;
14 auto acquire_tag(
15 const Tag& tag,
16 const std::function<bool(void)>& abort_waiting) ->bool;
17 };

Listing 6.1: Time barrier classes as pro-
vided by the C++ runtime.

The PhysicalTimeBarriersynchronizes with physical time. It releases auto-
matically as the local physical clock advances.Therefore, it does not expose an
explicit release operation. The LogicalTimeBarrier, however, is intended
for coordinating the progress of logical time between two enclaves. While
a downstream enclave acquires the barrier before starting to process a tag,
an upstream enclave releases the barrier to indicate that it will not produce
new events with a tag lower or equal to the released tag.

6.3.2 Generalizing Program Inputs

To effectively utilize the concept of generalized time barriers in the C++
runtime, we also need to generalize the concept of external inputs that origi-
nate from concurrent processes. Such external inputs may include physical
actions as well as incoming connections that originate from other enclaves
or federates. To decide whether it is safe to process a given tag, the scheduler
needs to consider each of the external inputs and infer whether they could
still produce events with a lower or equal tag. To generalize this, the C++
runtime introduces the concept of input actions.

Consider the UML diagram in Figure 6.11. It visualizes the inheritance re-
lation for all classes that inherit from the Actionclass. Compared to the
diagram shown in Figure 4.17, the BaseActionclass is extended by another
method called acquire_tag, which must be implemented by every child
class. Before processing a tag, the scheduler calls acquire_tagon all input
actions. In Figure 6.11 all action classes that are considered input actions are
highlighted in dark gray. They automatically register themselves in the local
environment on instantiation.

PhysicalAction, for instance, is an input action, and its implementation of
acquire_taginternally uses a PhysicalTimeBarrier. Thus, any program
that has a physical action may not advance logical time faster than physical
time progresses. This has the additional benefit that programs with physical
connections always behave correctly, even if fast mode is enabled.

To model connections between enclaves, we also introduce an abstract
Connectionclass that extends Action. Enclave connections are similar to ac-
tions in that they may schedule new events, are typed, and may carry a value.
The Connectionclass implements some common functionality, e.g., binding
to ports, and also defines pure virtual methods that need to be implemented
by the concrete connection classes to provide the correct functionality.3 3: These methods and other details are

omitted from the overview in Figure 6.11.
Since we introduce an abstraction for connections, we can also use this for
implementing physical connections and after delays natively in the C++

6 Partitioning Lingua Franca Programs 119

BaseAction

setup()
cleanup()
acquire_tag()

Action
T

LogicalAction
T

PhysicalAction
T

Connection
T

DelayedConnection
T

PhysicalConnection
T

EnclaveConnection
T

DelayedEnclaveConnection
T

PhysicalEnclaveConnection
T

Figure 6.11: UML diagram showing the inheritance relation between actions and various connection classes in the C++ runtime.

runtime instead of a transformation in the LF compiler (cf. Section 4.4.5).
The class DelayedConnectionimplements after delays. It can be considered
a logical action that can be scheduled from another reactor by setting a
port. Similarly, PhysicalConnectionimplements physical connections and
can be considered a physical action that can be scheduled from another
reactor via a port. All physical connections are also input actions, as they
behave similarly to physical actions. Essentially, physical connections relay
asynchronous (i.e., untagged) messages that the program sends to itself. Note
that there is no representation for regular connections (i.e., connections
between two ports within the same environment), as those do not create
new events at later tags and are not analogous to actions.

The class EnclaveConnectionimplements connections between two en-
claves. When the upstream enclave sets the connected port, then the con-
nection schedules a new event at the connected downstream enclave. The
newly created event has the same tag as the current tag of the upstream
enclave when setting the port. In addition, the connection contains a logical
time barrier, which is used to coordinate the execution between enclaves.
DelayedEnclaveConnectionand PhysicalEnclaveConnectionare addi-
tional specializations that implement after delays and physical connections
between enclaves. All enclave connection classes are input actions, as they
allow scheduling events from other concurrently executing enclaves.

The newly introduced abstractions unify the mechanism used for scheduling
new events and provide a common interface for managing the inputs of each
enclave.

6 Partitioning Lingua Franca Programs 120

6.3.3 Coordination

The C++ runtime implements a point-to-point coordination scheme for en-
claves. Instead of consulting a central coordinator, each enclave consults its di-
rect neighbors using the connection classes and time barriers discussed above.
Whenever an enclave completes processing a tag, it notifies all outgoing
connections. Before processing a new tag, each enclave calls acquire_tag
on all of its input actions, which includes all enclave connections.

Enclaves

Upstream

(0, 200 msec)

Downstream

(0, 100 msec)

1 2
Figure 6.12: An example program with
two enclaves.

Consider the example program shown in Figure 6.12. It consists of two
reactors called Upstreamand Downstream. Both reactors are enclaves, which
is indicated by the castle symbol.4 The connection is implemented using the 4: The castle symbol is licensed under

CC BY-SA 4.0 Deed and attributed to
Wikipedia user Douglal.

EnclaveConnectionclass, which internally uses a logical time barrier.

The upstream enclave has a timer that triggers at intervals of 200ms. When
the upstream enclave finishes processing a tag, it notifies the outgoing con-
nection. This releases the tag on the logical time barrier that the connection
keeps internally. For each tag that the downstream enclave processes, it calls
acquire_tagon the connection object, which in turn calls acquire_tag
on the internal logical time barrier. Thus, Downstreamalways waits until
Upstreamreleases a tag before processing it. This effectively ensures that a
downstream enclave only processes events once it is certain that no upstream
enclave will send any messages with an earlier tag.

Figure 6.13 shows the timing diagram for the example in Figure 6.12 using the
protocol described above. In addition to the scheduled events and executed
reactions, the diagram also shows when Downstreamacquires a tag and
when Upstreamreleases a tag. While the protocol described above enforces
a deterministic execution, it does not ensure a timely execution. At tags
(100ms, 0) and (300ms, 0), the reaction triggered by Downstream’s timer is
executed with a significant lag. This is because the upstream enclave only
releases a tag after it has completed processing it. Thus, the downstream
enclave does not receive any notifications for tags for which there is no event
scheduled in the upstream enclave. As Upstreamhas no event scheduled at
(100ms, 0), Downstreamhas to wait until it receives the release for the tag
(200ms, 0) before it can process the tag (100ms, 0).

In the extreme case, the upstream enclave could have an empty event queue,
and downstream enclaves would wait indefinitely for a release. To ensure
that a downstream enclave may progress even if an upstream enclave has
no events or only sparse events, we deploy a simple mechanism. When a
downstream enclave tries to acquire a tag that has not been released yet and
the upstream has no event scheduled at this tag, we insert an empty event at
this tag in the event queue of the upstream enclave. An empty event denotes
an entry in the event queue at a specific tag without any associated actions
or other triggers that are present at this tag.

By inserting an empty event, we ensure that the upstream enclave processes
the requested tag. It will acquire the tag from all its input actions and, since
the event is empty and no reactions are triggered, immediately release the tag.
Figure 6.14 shows the timing diagram for this extended coordination protocol.
This protocol ensures both determinism and timeliness of execution.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://commons.wikimedia.org/wiki/User:Douglal

6 Partitioning Lingua Franca Programs 121

acquire release Upstream Downstream 1 Downstream 2

(0, 0)

(100ms, 0)

(200ms, 0)

(300ms, 0)

(400ms, 0)

0 100 200 300 400
physical time (ms)

lo
gi

ca
l t

im
e

Upstream

(0, 0)

(100ms, 0)

(200ms, 0)

(300ms, 0)

(400ms, 0)

0 100 200 300 400
physical time (ms)

lo
gi

ca
l t

im
e

Downstream

Figure 6.13: Timing diagram for the ex-
ample in Figure 6.12 using a naive coordi-
nation scheme.

acquire release Upstream Downstream 1 Downstream 2

(0, 0)

(100ms, 0)

(200ms, 0)

(300ms, 0)

(400ms, 0)

0 100 200 300 400
physical time (ms)

lo
gi

ca
l t

im
e

Upstream

(0, 0)

(100ms, 0)

(200ms, 0)

(300ms, 0)

(400ms, 0)

0 100 200 300 400
physical time (ms)

lo
gi

ca
l t

im
e

Downstream

Figure 6.14: Timing diagram for the ex-
ample in Figure 6.12 using the complete
coordination scheme that inserts empty up-
stream events.

6 Partitioning Lingua Franca Programs 122

We can further optimize the protocol by allowing enclaves to peek ahead
in their event queues. An enclave that has no input actions can release the
largest possible tag 𝑔𝑟 ∈ 𝔾 that is strictly less than the tag of the next event
in the event queue (𝑔𝑟 < 𝑔next). If the enclave has input actions, we can also
do this transitively and release the minimum of 𝑔𝑟 and all the tags released
by the input actions.

The protocol described above is implemented by the EnclaveConnection
class. If there is an after delay annotated on a connection between en-
claves, then the code generator inserts a DelayedEnclaveConnectionin-
stead. The behavior of DelayedEnclaveConnectionwith a delay 𝑑 is similar
to EnclaveConnection, but it differs in two key aspects. First, when the
upstream enclave sends a message at tag 𝑔, the message is inserted in the
downstream enclave’s event queue at𝒟(𝑔, 𝑑). Second, when the downstream
enclave acquires a tag 𝑔𝑎, then we first subtract the delay 𝑑 before acquiring
the tag from the internal logical time barrier.

Subtracting a delay from a tag is subtle as the delay function 𝒟 is not
injective. For instance:

𝒟(10ms, 0, 5ms) = 𝒟(10ms, 1, 5ms) = (15ms, 0) .

Therefore, the function 𝒮 that is used for subtracting a delay 𝑑 from a tag 𝑔
determines the largest possible tag that, when delayed by 𝑑 , results in 𝑔. Let
𝑀 denote the largest possible microstep value. 𝒮 is defined as follows:

𝒮(𝑡, 𝑚, 𝑑) = {
(𝑡, 𝑚 − 1) for 𝑑 = 0 ∧ 𝑚 > 0
(𝑡 − 𝑑,𝑀) for 𝑑 > 0 .

When the downstream enclave acquires the tag 𝑔 on a connection with
delay 𝑑 , then the connection internally acquires the tag 𝒮(𝑔, 𝑑) from its
barrier. Note that 𝒮 is not defined for 𝑑 = 0 and 𝑚 = 0. A connection
that imposes a microstep delay may never produce an event with the tag
(𝑡, 0) ∀𝑡 ∈ 𝕋.

The class PhysicalEnclaveConnectionis inserted when a connection be-
tween enclaves is physical. Internally, it uses a PhysicalTimeBarrierin-
stead of a logical barrier. Also it uses a physical action to assign a new
tag when a message is received. This fully decouples the execution of the
downstream enclave from the upstream enclave. The barrier is automatically
released as physical time advances and the execution of the downstream
enclave is only constrained by the advancement of physical time.

The protocol introduced in this section is not limited to coordinating enclaves
and can also be applied for coordinating federates. The Connectionclass
introduced in Section 6.3.2 abstracts over the implementation details of the
underlying communication mechanism. We can provide different implemen-
tations that assume a shared address space, as is the case for enclaves, or that
use a networked communication layer to bridge across address spaces.

6 Partitioning Lingua Franca Programs 123

6.4 Examples

This section reconsiders the motivational examples introduced in Section 6.1
and highlights how we can use enclaves to solve the identified problems.

6.4.1 Pipeline Parallelism

In the pipeline example (cf. Figure 6.1), we can simply mark each pipeline
stage as an enclave. This decouples the execution between the stages, and
each stage may execute its internal reaction as soon as the predecessor re-
leases the corresponding tag. The timing diagram for the version of the
pipeline example using enclaves is shown in Figure 6.15 with a separate dia-
gram for each of the enclaves. To better visualize the pipeline parallelism that
the enclave version exploits, Figure 6.16 also shows a combined diagram.

(0, 0)
(10ms, 0)
(20ms, 0)
(30ms, 0)

0 10 20 30 40 50 60
physical time (ms)

lo
gi

ca
l t

im
e

source

(0, 0)
(10ms, 0)
(20ms, 0)
(30ms, 0)

0 10 20 30 40 50 60
physical time (ms)

lo
gi

ca
l t

im
e

stage1

(0, 0)
(10ms, 0)
(20ms, 0)
(30ms, 0)

0 10 20 30 40 50 60
physical time (ms)

lo
gi

ca
l t

im
e

stage2

(0, 0)
(10ms, 0)
(20ms, 0)
(30ms, 0)

0 10 20 30 40 50 60
physical time (ms)

lo
gi

ca
l t

im
e

stage3

(0, 0)
(10ms, 0)
(20ms, 0)
(30ms, 0)

0 10 20 30 40 50 60
physical time (ms)

lo
gi

ca
l t

im
e

sink

Figure 6.15: Timing diagram for the
pipeline example in Figure 6.1 using en-
claves for each of the stages.

(0, 0)
(10ms, 0)
(20ms, 0)
(30ms, 0)

0 10 20 30 40 50 60
physical time (ms)

lo
gi

ca
l t

im
e

source stage1 stage2 stage3 sink

Figure 6.16: Timing diagram that com-
bines the diagrams for the individual en-
claves in Figure 6.15.

6 Partitioning Lingua Franca Programs 124

6.4.2 Variability in Parallel Reactions

In the example shown in Figure 6.7, we can also simply mark all reactors as
enclaves to circumvent the barriers imposed by the level mechanism. Fig-
ure 6.17 shows the combined timing diagram for the version using enclaves.
In this version, the two branches may operate independently. stage3only
needs to wait for the release message from stage1and stage4only needs to
wait for the release message from stage2. If exploiting pipeline parallelism
between subsequent stages is not required, they could also be combined into
a single enclave. This can be done by introducing two wrapper reactors that
are marked as enclaves, one of which containing stage1and stage3and
the other containing stage2and stage4.

(0, 0)

(30ms, 0)

(60ms, 0)

0 10 20 30 40 50 60 70 80
physical time (ms)

lo
gi

ca
l t

im
e

source

stage1

stage2

stage3

stage4

sink

Figure 6.17: Timing diagram for the ex-
ample in Figure 6.7 using enclaves for each
of the reactors.

6.4.3 Car Brake Example

Using enclaves for fixing the car brake example in Figure 6.9 so that we can
avoid deadline violations is more subtle. If we simply mark all reactors as
enclaves, we are still at risk of missing deadlines.This is because Brakeneeds
to wait for a tag release both from BrakePedaland ComputerVision. In the
worst case, ComputerVisionjust started executing an earlier tag, and thus
Brakemight need to wait 10ms until it receives a release. We can resolve
this by introducing a logical delay between ComputerVisionand Brake.

Figure 6.18 shows a version of the brake example that uses enclaves. This
implementation introduces a new enclave reactor called BrakeAssistant
that contains both Cameraand ComputerVision. Thus, both reactors are
contained within the same scheduling enclave. The logical delay of 12ms
accounts for theWCET of the computer vision algorithm as well as additional
overhead for capturing the camera frame and scheduling reactions. This
version of the car brake example specifies that the Brake’s view of the
system state be consistent with the view of Cameraand ComputerVision
from 12ms ago. This approach is similar to LET and can be explained with

CarBrakeEnclave

assistant : BrakeAssistant

camera : Camera

(20 msec, 20 msec)

cv : ComputerVision

pedal : BrakePedal

P

brake : Brake
1

5 msec

2
5 msec

12 ms

Figure 6.18: A modification of the car brake example in Figure 6.9 that uses enclaves and a logical delay between the assistant and the brake.

6 Partitioning Lingua Franca Programs 125

the CAL theorem. To improve the availability of the brake and meet the
deadlines, we need to accept a certain amount of inconsistency.

One can argue, however, that the version in Figure 6.18 does not fully solve
the problem. It enforces a deterministic ordering between the brake signal
coming from BrakePedaland the one coming from BrakeAssistant. Al-
though we were able to reduce the time Brakemight have to wait, it still
requires a release message from BrakeAssistant. If the execution of the
computer vision algorithm takes longer than expected, this also affects the
brake’s ability to react within bounded a time to a signal from the pedal.

In fact, determinism and consistency are neither required nor desired in this
example. To fulfill safety requirements, the Brakereactor should actuate
the brakes as soon as it receives a message that indicates it should do so.
In this scenario, it is not necessary for the brake to have a consistent view
of the system’s state. When the brake pedal is pressed, it is irrelevant that
ComputerVisionmight produce a message with an earlier tag.

We can use physical connections, as shown in Figure 6.19, to fully decouple
Brakefrom the rest of the system. The physical connections assign new tags
in the order of message reception. Thus, the Brakereactor will immediately
process incoming messages in their order of arrival. The behavior of the
Brakereactor in this example is equivalent to a Hewitt actor.

The car break example illustrates how LF programmers can control the sys-
tem’s behavior. Logical delays enable a trade-off between availability and
consistency. In cases where availability is favored over consistency, program-
mers can introduce physical connections to fully decouple the execution of
reactors similar to the Hewitt actor model.

CarBrakeEnclavePhysical

assistant : BrakeAssistant

camera : Camera

(20 msec, 20 msec)

cv : ComputerVision

pedal : BrakePedal

P

brake : Brake
1

5 msec

2
5 msec

Figure 6.19: A modified version of the car
brake example in Figure 6.9 that uses en-
claves and physical connections.

6.5 Enclave Patterns

The car brake example discussed in the previous section illustrates that we
can use enclaves to model the semantics of other MoCs like LET or Hewitt
actors in LF. This section further develops this idea and presents design
patterns that leverage the capability of enclaves to execute independently of
the rest of the system.

6.5.1 Hewitt actors

Thesemantics of Hewitt actors can be reproduced in LF by creating an enclave
where all inputs are connected via physical connections. We have used this
pattern previously to decouple the brake in Figure 6.19 from the rest of the
system. Figure 6.20 generalizes this pattern. The inner reactor Behavior

6 Partitioning Lingua Franca Programs 126

models the behavior of the Hewitt actor. It may contain arbitrary state
variables and reactions. The outer reactor, called HewittActor, instantiates
the behavior reactor and marks it as an enclave. It further forwards all the
outputs of Behaviorto its own outputs and connects all inputs via physical
connections.

HewittActor

Behavior
1

2

Figure 6.20: A Hewitt actor implemented
with enclaves in LF.

Using this pattern, we can put an arbitrary reactor in place of Behavior. This
pattern effectively converts the inner reactor into a Hewitt actor. In order
to fully match the semantics of Hewitt actors, the inner reactor should not
contain any timers or logical actions. However, it may use physical actions
to send untagged messages to itself.

6.5.2 LET Tasks in LF

As discussed previously, using a logical delay in Figure 6.18 makes this
solution of the car brake example similar to LET. We can generalize this
approach and define a pattern for implementing LET tasks in LF. In fact, we
can define a generic library reactor that provides LET semantics.

Listing 6.2: A generic LET task implemented with enclaves in LF.

1 target Cpp
2

3 reactor LETTask<T, U>(
4 task: {= std::function<U(T)> =} = {=nullptr =},
5 let: time = 0
6) {
7 input in: T
8 output out: U
9

10 @enclave
11 t = new Task<T, U>(task=task)
12

13 in -> t.in
14 t.out -> outafter let
15 }
16

17

18 reactor Task<T, U>(
19 task: {= std::function<U(T)> =} = {=nullptr =}
20) {
21 input in: T
22 output out: U
23

24 reaction(in) -> out {=
25 out.set(task(*in.get()));
26 =}
27 }

LETTask

Task

let

Consider the code and diagram in Listing 6.2. This defines a library reactor
called LETTaskthat has one input and one output port. The reactor is generic
and defines two type parameters, T and U. T denotes the type of the input port,
and U denotes the type of the output port.The reactor is further parameterized
by a function that is expected to implement the task’s functionality and map
T to U. The second parameter denotes the task’s LET.

The actual task is implemented in an inner reactor called Task. Task is
defined similarly to LETTask. However, it defines a reaction that applies the
task function to the received input and writes the result to the output.

LETTaskinstantiates Taskas an enclave and forwards both the type param-
eters and the task function. In addition, LETTaskdirectly forwards the input
port to Task. The output produced by Task is forwarded to the outer output,
but with a logical delay of precisely let.

This library reactor can be used to model arbitrary LET applications in LF.
Thus, LET is a subset of reactors and Lingua Franca. The reactor model,
however, is strictly more general as it exposes the full trade-off between
fully synchronous and LET semantics.5

5: E. A. Lee and Lohstroh 2022, Generaliz-
ing Logical Execution Time.

http://dx.doi.org/10.1007/978-3-031-22337-2_8
http://dx.doi.org/10.1007/978-3-031-22337-2_8

6 Partitioning Lingua Franca Programs 127

6.5.3 Input Reactors

Modeling system input is another problem that can be conveniently solved
with enclaves. The reactor model defines physical actions for modeling
system input, but does not specify precisely how physical actions can be
scheduled in an external context. Consider, for instance, a reactor program
that reads keyboard inputs and reacts to them.

In C/C++, we can use the function getchar()to read one character from
the keyboard input stream, like it is done in the Reflex Game example (cf.
Listing 4.17). However, this is a blocking operation. It waits until a key is
actually pressed. Calling a blocking function from a reaction would mean
that the entire program execution might hold until the reaction completes.
This is not acceptable for interactive applications that constantly update the
system state and output independent of when user input arrives. We can
solve this by spawning a thread at startup that repeatedly calls getchar()in
a loop and schedules a physical action when getchar()returns a value. This
solution, however, is inelegant due to the pitfalls associated with threads.

A more elegant solution uses enclaves. Consider the pattern for modeling
keyboard inputs in Listing 6.3. The Keyboardreactor defines an output port
and a physical action called next. This reactor is instantiated as an enclave
within the KeyboardInputreactor, and its output is forwarded via a physical
connection. This fully decouples the execution of the Keyboardreactor from
the rest of the system.

1 target Cpp
2

3 reactor Keyboard{
4 output key: int
5 physical actionnext
6

7 reaction(startup, next)
8 -> next, key
9 {=

10 int c = getchar();
11 key.set(c);
12 if (c != EOF) {
13 next.schedule();
14 }
15 =}
16 }
17

18 reactor KeyboardInput{
19 output key: int
20

21 @enclave
22 k = new Keyboard()
23

24 k.key ~> key
25 }

KeyboardInput

Keyboard

P

Listing 6.3: A keyboard input reactor im-
plemented with enclaves in LF.

The reaction defined by Keyboardis triggered by startupor next, and it
may schedule nextand set the output port. The reaction body directly calls
getchar(). Since Keyboardexecutes completely independently of the rest
of the system, it can use a blocking call. This only stalls the execution of
the Keyboardenclave until a key is pressed. Once getchar()returns, the
pressed key is forwarded to the output port. Since KeyboardInputforwards
the key press using a physical action, a new event with a tag based on the
current reading of physical time will be inserted in the receiving reactors.

To trigger reading the next key, the reaction body also schedules the physical
action next. This creates a new event with a tag based on the current reading
of time, which will be handled immediately. In principle, we could also use a
logical action for next. However, it would be difficult to specify a meaningful
logical delay. Using a physical action has the benefit that the logical delay
between reaction executions is automatically aligned to the physical time
that passed while the reaction was blocked.

6 Partitioning Lingua Franca Programs 128

6.6 Limitations

While the current implementation shows promising results, there are also
several limitations that need to be addressed. This section discusses the most
important limitations and sketches how they could be resolved in future
work.

6.6.1 Cycles

The examples presented in Section 6.4 illustrate the effectiveness of enclaves
and the underlying coordination scheme for solving real-world problems.
However, all the previously discussed examples are acyclic. While the coor-
dination scheme in principle also works for programs with cyclic structures,
it can become inefficient.

Cycle

A

(0, 30 ms)

1

260 ms

B

Figure 6.21: An example program with a
cycle between two enclaves.

Consider the example program in Figure 6.21. It consists of two enclaves,
A and B, where A sends a message to B in intervals of 30ms and B sends a
message back to Awith a logical delay of 60ms. Figure 6.22 shows a sequence
diagram that illustrates the messages exchanged between the two enclaves
and the connection objects.

Right after the enclaves start execution, only A has an event scheduled at
the startup tag 𝑔0 = (0, 0). A tries to acquire this tag from the incoming
connection [1]. This succeeds immediately [2], as the connection is delayed
and each connection automatically releases the largest possible tag that is
strictly less than 𝑔0 when constructed. A processes its first reaction, which
sets its outgoing port [3] and thereby schedules a new event in B at tag (0, 0).
B tries to acquire this tag [5], which succeeds as soon as A releases the tag [6,
7]. B’s reaction also sets its outgoing port [8], which schedules a new event
in A [9]. Since the connection from B to A is delayed by 60ms, this new event
is scheduled at tag (60ms, 0). Finally B releases the tag 0, 0 [10].

The steps from [11] to [20] and also from [21] to [30] repeat this sequence.
In steps [11] and [12], the acquire operation succeeds immediately because
(30ms, 0) minus a delay of 60ms is still before the startup tag 𝑔0. In steps
[21] and [22], the acquire operation succeeds because B has already released
the tag (30ms, 0). When A processes tag (30ms, 0), it executes both reactions
because the timer and the input from B are present.

The sequence diagram shows that programs with cycles between enclaves
can, in principle, be executed using the presented coordination scheme.
However, this only works efficiently as long as the sum of delays on the
connections along the loop is equal to or larger than the interval in which
events are processed.

Consider the sequence diagram in Figure 6.23, which shows the execution of
the same example program, but with a 10ms delay instead of the 60ms in
the original version. Messages [1] to [7] are identical to the first messages in
Figure 6.22 and are therefore omitted from the figure. Messages [8] to [10]

6 Partitioning Lingua Franca Programs 129

A

Connection B->A

60ms delay

Connection A->B

no delay B

A Connection B->A

60ms delay

Connection A->B

no delay

B

[1] acquire_tag (0ms, 0)

[2]

Start processing tag (0ms, 0)

[3] set_port (0ms, 0) [4] schedule_event (0ms, 0)

[5] acquire_tag (0ms, 0)
Done processing tag (0ms, 0)

[6] release_tag (0ms, 0) [7]

Start processing tag (0ms, 0)

[8] set_port (0ms, 0)[9] schedule_event (60ms, 0)

Done processing tag (0ms, 0)

[10] release_tag (0ms, 0)

[11] acquire_tag (30ms, 0)

[12]

Start processing tag (30ms, 0)

[13] set_port (30ms, 0) [14] schedule_event (30ms, 0)

[15] acquire_tag (30ms, 0)
Done processing tag (30ms, 0)

[16] release_tag (30ms, 0) [17]

Start processing tag (30ms, 0)

[18] set_port (30ms, 0)[19] schedule_event (90ms, 0)

Done processing tag (30ms, 0)

[20] release_tag (30ms, 0)

[21] acquire_tag (60ms, 0)

[22]

Start processing tag (60ms, 0)

[23] set_port (60ms, 0) [24] schedule_event (60ms, 0)

[25] acquire_tag (60ms, 0)
Done processing tag (60ms, 0)

[26] release_tag (60ms, 0) [27]

Start processing tag (60ms, 0)

[28] set_port (60ms, 0)[29] schedule_event (120ms, 0)

Done processing tag (60ms, 0)

[30] release_tag (60ms, 0)

Figure 6.22: A sequence diagram that shows the communication between A and B for the program in Figure 6.21.

6 Partitioning Lingua Franca Programs 130

are also similar, but the new event in A is scheduled at tag (10ms, 0) [9] due
to the lower delay on the connection.

A acquires the tag (10ms, 0) from the incoming connection. Since the con-
nection is delayed by 10ms, the connection tries to acquire the tag

𝒮(10ms, 0, 10ms) = (0,𝑀)

from its internal barrier. As B has not released this tag yet, the connection
schedules an empty event in B at this tag [12]. This ensures that B processes
the tag and releases it once it can guarantee that it will not receive any earlier
events. B, in turn, tries to process the newly scheduled event and also acquires
the tag (0,𝑀) from its incoming connection [13]. Since A has not released
the tag (0,𝑀) yet, this schedules an empty event in A [14]. Acquiring this
tag succeeds immediately [15, 16], as 𝒮(0,𝑀, 10ms) < 𝑔0. A processes the
empty event and immediately releases the tag (0,𝑀) [17, 18]. Consequently,
B can now also process the empty event and release the tag [20]. This, in
turn, allows A to acquire the tag (10ms, 0) [19, 21].

A processes the message received from B and releases the tag [22]. It then
tries to acquire the tag (30ms, 0) from the incoming connection [23] to
process the next triggering of its timer. As B has not released the tag yet,
this schedules an empty event at (20ms, 𝑀) in B. B tries to acquire the newly
created tag [25], and since A has not released it yet, this schedules a new
empty event in A [26]. A, in turn, immediately acquires the tag of the newly
created event [27], which schedules another empty event with tag (10ms, 𝑀)
in B [28] and leads to a new empty event in A [29, 30]. Steps [27] to [30] are
a repetition of steps [23] to [25]. Essentially, the acquire operation walks
back both in time and on the path of the loop, subtracting 10ms on each
iteration.

A’s acquire operation for tag (10ms, 𝑀) succeeds immediately [31, 32], as B
already released the tag 𝒮(10ms, 𝑀, 10ms) = (0,𝑀). A processes the empty
event, releases the tag (10ms, 𝑀) [33, 34], and tries to acquire the next tag
at (20ms, 𝑀) [35]. B can now also process the empty event at tag (10ms, 𝑀)
and release the tag [36], which in turn allows A to acquire the tag (20ms, 𝑀).
This process (steps [33] to [37]) repeats until A acquires the tag (30ms, 0)
[43]. Essentially, the release messages circle back on the path taken by the
acquire message.

Both acquire and release messages may circle in a loop for several iterations
if the sum of delays on the connections within the loop is less than the
interval in which new events are produced. The smaller the delay, the more
iterations are required. While the proposed coordination mechanism still
ensures correct execution, it can become inefficient if delays are not chosen
carefully.

While it seems obvious from the sequence diagram that repeated iterations of
messages are not necessary, deriving a coordination mechanism that works
efficiently for cycles is challenging. This is because the enclaves are not
aware that they are in a loop. In addition, the acquire operation only asks for
permission to execute a certain tag, but it gives no guarantee that the sender
will not send messages at an earlier tag. If A, for instance, has a physical
action or receives messages from another enclave, then A needs to acquire
tags from all its inputs. Thus, when A acquires the tag 𝑔 from B, this does not
imply that it has acquired 𝑔 from all of its inputs. In fact, A may still receive
earlier events from its other inputs.

One possible solution would be to make the enclaves that are in a cycle
aware of the cycle. This could be done statically as part of the compilation or

6 Partitioning Lingua Franca Programs 131

A

Connection B->A

10ms delay

Connection A->B

no delay B

A Connection B->A

10ms delay

Connection A->B

no delay

B

Start processing tag (0ms, 0)

[8] set_port (0ms, 0)[9] schedule_event (10ms, 0)

Done processing tag (0ms, 0)

[10] release_tag (0ms, 0)

[11] acquire_tag (10ms, 0) [12] schedule_empty (0, M)

[13] acquire_tag (0, M)[14] schedule_empty (0, M)

[15] acquire_tag (0ms, M)

[16]

Process tag (0ms, M)

[17] release_tag (0ms, M) [18]

[19] acquire_tag (10ms, 0)
Process tag (0ms, M)

[20] release_tag (0ms, M)[21]

Process tag (10ms, 0)

[22] release_tag (10ms, 0)

[23] acquire_tag (30ms, 0) [24] schedule_empty (20ms, M)

[25] acquire_tag (20ms, M)[26] schedule_empty (20ms, M)

[27] acquire_tag (20ms, 0) [28] schedule_empty (10ms, M)

[29] acquire_tag (10ms, M)[30] schedule_empty (10ms, M)

[31] acquire_tag (10ms, M)

[32]

Process tag (10ms, M)

[33] release_tag (10ms, M) [34]

[35] acquire_tag (20ms, 0)
Process tag (10ms, M)

[36] release_tag (10ms, M)[37]

Process tag (20ms, M)
[38] acquire_tag (20ms, M)

[39] release_tag (20ms, M) [40]

[41] acquire_tag (30ms, 0)
Process tag (20ms, M)

[42] release_tag (20ms, M)[43]

Start processing tag (30ms, 0)

Figure 6.23: A sequence diagram that shows the communication between A and B for the program in Figure 6.21 with a 10ms delay. Messages
[1] to [7] are omitted because they are identical to the first messages in Figure 6.22.

6 Partitioning Lingua Franca Programs 132

dynamically using a discovery protocol. We could require that any enclave
within the cycle that intends to process tag 𝑔 first acquires 𝑔 from all its
other inputs that are not part of a cycle. Then the enclave could release
all tags before 𝑔 on its outgoing connection within the cycle and thereby
guarantee that it would not produce any events before 𝑔. Finally, it would
acquire 𝑔 which succeeds as long as there is at least a microstep delay along
the cycle. This approach, however, only works if each enclave is at most part
of one cycle.

Another solution is presented by the centralized coordination used for feder-
ated execution in LF. This relies on the central RTI to decide when it is safe
to process a certain tag. This also works reliably for federates with cyclic
connections. However, this chapter has argued that a single centralized co-
ordinator introduces a significant bottleneck and a single point of failure.
The coordination mechanism discussed in this chapter highlights that similar
results can be achieved with a peer-to-peer coordination mechanism. How-
ever, the RTI solution is more efficient in the presence of cycles. Therefore,
a possible solution could combine both approaches. While acyclic subsets
of an application may use peer-to-peer coordination, local RTIs could be
introduced to coordinate within each cycle. In fact, one of the enclaves within
the cycle could be elected to become the coordinator of this cycle.

6.6.2 Cycles without Delays

While cycles with delays are in principle supported by the discussed enclave
coordination mechanism, although the protocol may be inefficient, cycles
without any delay are currently not supported. Consider the example pro-
gram in Figure 6.24. This program is a legal reactor program, as the APG
that denotes the dependencies between reactions is acyclic. The topology
graph, however, exposes a cycle between enclaves that is not broken up by
any delays.

CycleWithoutDelay

(0, 30 msec)

1

2

B

A

Figure 6.24: An example program with
cyclic connections without delays between
enclaves.

When this example program is executed using a single scheduler (without
enclaves), the scheduler relies on the levels assigned to reactions based on
the APG. For every triggering of the timer, it would first execute reaction 1
of A, then B’s reaction, and finally reaction 2 of A. However, if we consider A
and B as individual programs, then it is not obvious for the scheduler of A
that it should first execute reaction 1, then wait for a message from B, and
finally execute reaction 2.

Based on the coordination mechanism introduced in this chapter, A would
try to acquire the startup tag from B, which in turn would acquire the same
tag from A. The execution immediately deadlocks, as none of the enclaves
can release the tag requested by the other. To resolve this, we would need
a mechanism for representing levels between enclaves. One possible way
would be to introduce another dimension to the tags to also account for levels.
Then all connections would introduce at least a level delay. This additional
dimension would only be used to order events within a tag. A reactor would

6 Partitioning Lingua Franca Programs 133

still consider two events with the same base tag but different levels to be
logically simultaneous.

Another possibility for supporting loops without delays could be a more
fine-grained coordination scheme. Instead of acquiring tags before starting
to process an event and releasing tags only after all reactions at this tag
have completed executing, we could acquire the inputs required at each level.
And once all reactions that may write to an output are completed, we could
release the current tag on this output. For such a scheme to work, the level
assignment algorithm would also need to consider dependencies outside an
enclave. Thus, either static assignment of levels at compile time or a dynamic
discovery algorithm would be required.

6.6.3 Manual Partitioning

While this chapter illustrates how enclaves can be used to partition programs
to improve parallelism or ensure that certain timing requirements are met,
this approach fully relies on manual annotations. However, it is typically not
obvious to the programmer that a program requires partitioning. For instance,
in the car brake example, only experimentation and tests reveal that there
may be deadline misses, but this is not apparent from the LF code or from
the generated diagram. Currently, the LF tooling does not provide sufficient
feedback or guidance to support programmers in deciding if programs need
to be partitioned and which reactors should become enclaves.

One possible solution would be to make every reactor an enclave. In this case,
each reactor would have its own scheduler and could operate autonomously,
only coordinating with its direct dependencies. This would maximize the
decoupling between components. In this case, reactors would only need to
wait on their direct dependencies, and we could maximize the exploitable
parallelism. However, this comes at the cost of significant overhead for
coordinating the individual reactors. This overhead can be acceptable if reac-
tions are computationally heavy and the gains in parallelism outweigh the
overhead. Moreover, if certain properties of the application (e.g., deadlines)
require decoupling, some additional overhead is often acceptable. However,
this is not the case for all applications, and there is a trade-off between
the benefits gained from decoupling components and the overhead this de-
coupling introduces. Using no enclaves or making all reactors enclaves are
too extremes on a spectrum, and most often the optimal solution will lie in
between.

In principle, the LF compiler could also be extended to automate partitioning.
It could utilize heuristics and DSE techniques to identify solutions that
are near optimal regarding certain constraints. Such a compiler extension
could not only decide how to partition a program, but also reason about
the resources assigned to each enclave. Since every enclave has its own
scheduler and pool of worker threads, we also need to decide how many
threads to assign to each enclave. If the target architecture is heterogeneous,
this may also include mapping threads to particular processing resources.
Chapter 7 introduces a DSE framework that could be utilized for exploring
such a solution.

6.7 Conclusion

This chapter introduced the concept of enclaves and discussed how enclaves
are implemented in the C++ target of Lingua Franca. Based on selected

6 Partitioning Lingua Franca Programs 134

examples, the discussion showed that enclaves can effectively decouple
reactors within a program to better exploit parallelism or ensure that certain
deadlines are met. In addition, enclaves allow for implementing various
patterns in LF that mimic the semantics of other MoCs like Hewitt actors
and the LET paradigm.

While enclaves are conceptually closely related to federates, the current
C++ implementation explores a coordination mechanism that significantly
differs from the centralized and decentralized coordination schemes that are
currently available for federated execution. The newly developed coordina-
tion mechanism highlight that reactors can be coordinated deterministically
without relying on a central coordinator (RTI) or requiring detailed WCET
estimations. However, this approach currently has severe limitations, in
particular in conjunction with cycles in the reactor topology.

Likely, future work will aim to combine the different coordination mech-
anisms into a more unified approach. The abstractions introduced in this
chapter provide reactors with the means to communicate through an arbi-
trary medium using arbitrary protocols. Thus, the coordination mechanism
introduced in this chapter could be combined with the centralized and de-
centralized mechanisms used for federations. In such an approach, we could
select the best protocol for each individual connection. While sequential
reactors could use the mechanism proposed in this chapter, reactors in a cycle
could consult a (local) RTI. And if a connection should favor availability over
consistency, then this could be indicated by a user annotation, and we could
use the decentralized coordination scheme based on PTIDES.

Future work will also need to consider better mechanisms for analyzing LF
programs and prompting users with useful feedback that allows them to
make educated decisions on how to partition the program. Additionally, we
could develop tools that automatically explore the design space of possible
solutions and utilize heuristics to identify solutions that are near optimal
regarding certain constraints. The next chapter introduces a DSE framework
that has been used successfully for optimizing dataflow applications and
that is flexible enough to also allow reasoning about reactor programs. This
framework could become the foundation for integrating DSE techniques
into the LF toolflow and researching strategies for partitioning LF programs
automatically.

Design Space Exploration with
Mocasin 7

7.1 Design Space Exploration . . . 136

7.2 Mocasin 137

7.3 Case Study: Simulating a
Hybrid Mapping Strategy for an
LTE Base Station 146

7.4 Integrating Mocasin with
Lingua Franca 150

7.5 Conclusion 152

Scalability, as discussed in Section 1.2.4, not only refers to the ability to
manage software complexity and generate efficient realizations but also
requires managing hardware complexity, which is increasing rapidly. With
the rise of the multicore era, MPSoCs have become ubiquitous, even in the
embedded domain. Due to the end of Moore’s law,1

1: Moore 1965, Cramming More Compo-
nents Onto Integrated Circuits; Sutter 2005,
The Free Lunch Is Over: a Fundamental Turn
Toward Concurrency in Software.

hardware designers meet
the ever-increasing demands for computational power by specializing and
optimizing hardware for specific uses. Heterogeneous MPSoCs integrate
a multitude of different processing elements and accelerators, as well as
different memory architectures.

Early examples of heterogeneous architectures include the Odroid-XU4
shown in Figure 7.1, which is based on a Samsung Exynos 5422 MPSoC
that uses ARM’s big.LITTLE architecture.2 It has two types of cores: the little 2: Roy and Bommakanti 2017, Odroid-XU4

User Manual.cores (Cortex A7) are more energy efficient, and the big cores (Cortex A15)
are more performant. Other examples include the Tomahawk architecture,3 3: Haas et al. 2017, A Heterogeneous SDR

MPSoC in 28 Nm CMOS for Low-Latency
Wireless Applications; Castrillon, Lieber, et
al. 2018, A Hardware/software Stack for Het-
erogeneous Systems.

Kalray’s MPPA Coolidge with 80 processing elements,4 the SpiNNaker 25

4: Kalray Inc 2023, MPPA DPU Architec-
ture.
5: Mayr, Hoeppner, and Furber 2019, SpiN-
Naker 2: A 10 Million Core Processor System
for Brain Simulation and Machine Learning.

for neuromorphic computing, or the Xilinx Zynq UltraScale+ architecture,6

6: Advanced Micro Devices, Inc. 2023,
Zynq UltraScale+ MPSoC .

which integrates a field-programmable gate array (FPGA) with a heteroge-
neous MPSoC.

L2

DRAM

PE0

L1

PE2

L1

PE1

L1

PE3

L1

L2

PE6

L1

PE7

L1

PE4

L1

PE5

L1

Figure 7.1: Architecture of the Odroid-
XU4 with four little cores (Cortex A7) and
four big cores (Cortex A15).

Programming such MPSoCs becomes increasingly challenging. Not only do
we need to manage the challenges of concurrency to exploit parallelism, but
we also need to carefully allocate chunks of computation to the different com-
putation resources. The heterogeneous nature of modern MPSoCs opens up
a huge design space. Moreover, different computing resources, such as con-
ventional processors, accelerators, DSPs, graphics processing units (GPUs),
and FPGAs, need to be programmed differently. Due to the complexity of
the underlying hardware, programmers spend a significant amount of time
managing the complexity and less time implementing algorithms. Jeronimo
Castrillon has identified this problem as the software productivity gap.7

7: Castrillon, Sheng, and Leupers 2011,
Trends in Embedded Software Synthesis;
Castrillon and Leupers 2014, Programming
Heterogeneous MPSoCs: Tool Flows to Close
the Software Productivity Gap.

There are a range of design space exploration (DSE) tools that aim to close
this gap.8 These tools, at their core, utilize the hourglass model (cf. Section 1.1

8: Castrillon, Desnos, et al. 2023, Dataflow
Models of Computation for Programming
Heterogeneous Multicores.

and Figure 7.2). Programmers design applications on top of a MoC and DSE
tools and compilers are responsible for synthesizing concrete realizations
on a specific target architecture. This process assigns concrete computation
and communication resources in hardware to the software elements of the
application. We refer to this process as mapping.

While existing DSE tools are typically based on dataflow or process network
MoCs, a similar approach can be taken for compiling Lingua Franca programs
on heterogeneous architectures. In the context of LF, we can also add another
dimension to the DSE problem. The exploration can also aim to identify the
best partitioning of a given LF program and then assign hardware resources
to the partitions.

This chapter provides a general introduction to existing DSE toolflows and
introduces the Mocasin framework, which is a core contribution of this thesis.
In contrast to existing DSE toolflows, which are primarily designed to support
application designers, Mocasin is designed as an open research framework
for exploring and developing new approaches to DSE itself. This chapter
demonstrates Mocasin’s ability to model and analyze new DSE strategies in
a case study, that uses Mocasin to prototype and evaluate a hybrid mapping
strategy for an LTE base station.

https://www.computerhistory.org/collections/catalog/102770822
https://www.computerhistory.org/collections/catalog/102770822
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
http://dx.doi.org/10.1145/3061639.3062188
http://dx.doi.org/10.1145/3061639.3062188
http://dx.doi.org/10.1145/3061639.3062188
http://dx.doi.org/10.1109/TMSCS.2017.2771750
http://dx.doi.org/10.1109/TMSCS.2017.2771750
https://www.kalrayinc.com/products/mppa-technology/
https://www.kalrayinc.com/products/mppa-technology/
http://dx.doi.org/10.48550/arXiv.1911.02385
http://dx.doi.org/10.48550/arXiv.1911.02385
http://dx.doi.org/10.48550/arXiv.1911.02385
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
http://dx.doi.org/10.1109/SAMOS.2011.6045483
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2

7 Design Space Exploration with Mocasin 136

Architecture

Applications

MoC

Figure 7.2: The hourglass model. (Re-
peated from Figure 1.1)

Mocasin focuses primarily on dataflow and process network MoCs. However,
in principle, the flexible and modular architecture of Mocasin also allows for
integrating the reactor model. While such an integration remains for future
work, this chapter lays the foundation for DSE in Lingua Franca and sketches
possible approaches for integrating with Mocasin.

Many of the figures, results, and discussions presented in this chapter have
been published before in Menard, Goens, Hempel, et al. 2021, Mocasin—
Rapid Prototyping of Rapid Prototyping Tools: A Framework for Exploring New
Approaches in Mapping Software to Heterogeneous Multi-cores and Castril-
lon, Desnos, et al. 2023, Dataflow Models of Computation for Programming
Heterogeneous Multicores. Similar to Lingua Franca, Mocasin is a highly
collaborative effort with several contributors. While the core ideas behind
Mocasin and the main architecture are contributions of this thesis, many of
the algorithms and mapping strategies implemented in Mocasin are either
based on prior work or were contributed by coauthors.

7.1 Design Space Exploration

Most existing DSE tools specialize in dataflow or process networks, in partic-
ular, SDF and KPN. Mapping an SDF or KPN application requires assigning
actors to particular processing resources in the target architecture and chan-
nels to the available communication resources. Since the KPN and SDF
models do not assume shared memory, we can freely choose the type of
processing resource and also distribute actors across a network of com-
puters. Since the models are deterministic, we further know that, when
implemented correctly, the concrete mapping will not influence the behavior
of the application.

Even for seemingly small applications and target architectures, the space of
possible mappings can be vast. Commonly, the mapping space is also shaped
irregularly with many local minima and maxima.9 DSE tools automate the 9: Goens 2021, Improving Model-Based

Software Synthesis: A Focus on Mathemati-
cal Structures.

process of navigating this mapping space and utilize heuristics to determine
near-optimal mappings while respecting a given set of optimization criteria
and constraints. This section gives a brief introduction to DSE and provides
an overview of existing tools. The interested reader may find a more in-depth
discussion in Castrillon, Desnos, et al. 2023, Dataflow Models of Computation
for Programming Heterogeneous Multicores.

Figure 7.3 shows the typical flow of DSE tools. Starting from a description of
the application and the target platform, DSE tools apply a mapping algorithm
to identify good mappings. While we can statically analyze the behavior
of SDF applications, the toolflow requires additional information about the
execution of KPN. This is typically given in the form of traces that are
recorded on the host machine and that represent one possible execution of
the application. Common mapping algorithms are meta-heuristics that walk
the design space. To guide this search, a simulator or performance predictor
estimates the quality of a mapping regarding the optimization criteria (e.g.,
makespan or energy consumption). Once a mapping is selected, the tool can
synthesize software or hardware to implement the actors and the channels
of the input program on the selected hardware components.

The literature describes a wide range of DSE tools. The PREESM framework,
for example, is a specialized toolflow for 𝜋SDF applications.10 It is not limited 10: Pelcat et al. 2014, PREESM: A Dataflow-

based Rapid Prototyping Framework for Sim-
plifying Multicore DSP Programming.

to automatically deriving mappings and schedules for given applications on
a given platform; it can also be used for hardware/software co-design, where

http://dx.doi.org/10.1145/3444950.3447285
http://dx.doi.org/10.1145/3444950.3447285
http://dx.doi.org/10.1145/3444950.3447285
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
http://dx.doi.org/10.1109/EDERC.2014.6924354
http://dx.doi.org/10.1109/EDERC.2014.6924354
http://dx.doi.org/10.1109/EDERC.2014.6924354

7 Design Space Exploration with Mocasin 137

application
description

platform
description

metadata
(e.g. traces)

mapping
algorithms

performance
estimation

(simulation)

code
generation

hardware
synthesis

target
source code

hardware
(HDL)

performance
metrics

Figure 7.3: Generalized DSE toolflow for
mapping applications to heterogeneous
multi-core architectures.

the performance predictions made by the DSE tool guide the development
of the hardware platform to meet the requirements of a specific application.
There are also hybrid DSE flows that narrow the design space statically but
only select concrete mappings during execution of the application. PREESM
can be used with the SPIDER runtime to support dynamic reconfiguration
of 𝜋SDF applications.11 11: Heulot, Pelcat, et al. 2014, SPIDER: A

Synchronous Parameterized and Interfaced
Dataflow-based RTOS for Multicore DSPs.There are also several DSE frameworks based on the KPN MoC. Sesame,

for instance, is a framework with a strong focus on DSE and simulation at
multiple levels of abstraction.12 Sesame is part of the Daedalus tool13 and 12: Pimentel, Cagkan. Erbas, and Polstra

2006, A Systematic Approach To Exploring
Embedded System Architectures At Multiple
Abstraction Levels.
13: Nikolov, Thompson, et al. 2008,
Daedalus: Toward Composable Multimedia
MP-SoC Design.

can be used in combination with ESPAM14 to directly synthesize optimized

14: Nikolov, Stefanov, andDeprettere 2008,
Systematic and Automated Multiprocessor
System Design, Programming, and Imple-
mentation.

hardware from dataflow applications. A similar approach is also taken by
SystemCODesigner.15

15: Keinert et al. 2009, Systemcodesigner—
An Automatic ESL Synthesis Approach by
Design Space Exploration and Behavioral
Synthesis for Streaming Applications.

MPSoC Application Programming Studio (MAPS) is another KPN-based
framework. It provides a C extension (called CPN) for describing applications
and comes with a rich set of mapping algorithms and analysis tools, including
a high-level trace-based simulator.16 A similar simulator is also used in

16: Leupers and Castrillon 2010, MPSoC
Programming Using the MAPS Compiler ;
Castrillon and Leupers 2014, Programming
Heterogeneous MPSoCs: Tool Flows to Close
the Software Productivity Gap.

the Turnus DSE framework,17 which simulates traces of dynamic dataflow

17: Casale-Brunet et al. 2013, Turnus: A
unified dataflow design space exploration
framework for heterogeneous parallel sys-
tems.

applications written in the CAL actor language (CAL).18

18: Eker and Janneck 2003, CAL Language
Report: Specification of the CAL Actor Lan-
guage.

The DOL and DAL frameworks for KPN applications include analytical
performance estimation alongside a system-level SystemC simulator for
more general platforms.19 DAL supports an extended KPN model, includ-

19: Thiele et al. 2007,Mapping Applications
to Tiled Multiprocessor Embedded Systems;
Schor et al. 2012, Scenario-Based Design
Flow for Mapping Streaming Applications
onto on-Chip Many-Core Systems.

ing scenario state machines and additional control channels. The analytical
model uses real-time calculus and is restricted in the types of resources and
schedulers it can handle.

All the discussed DSE flows are specializations of the generalized flow in
Figure 7.3. They focus only on a particular MoC, a particular application
domain, or a particular type of target hardware. Such specialization can
simplify the overall architecture and help narrow the exploration by only
focusing on a particular domain, which improves the overall user experience.
However, while specialization allows for focusing on specific problems, it also
limits the possibilities for innovation. In research, we need to prototype and
analyze new approaches, which is often not possible within the constraints
of existing tools. Moreover, comparing different approaches implemented in
different tools with different constraints is challenging.20

20: Goens, Khasanov, Castrillon, et al.
2016, Why Comparing System-Level MP-
SoCMapping Approaches is Difficult: A Case
Study.7.2 Mocasin

This section introduces Mocasin, an open-source rapid prototyping frame-
work for exploring new DSE approaches for mapping software to hetero-
geneous multi-cores.21 In contrast to existing tools, Mocasin is specifically 21: Menard, Goens, Teweleitt, et al. 2023,

Mocasin.designed to support researchers and developers working on DSE flows. It
is not intended as a workflow for end-users. Mocasin is a complementary
research tool that allows for exploring potential improvements to existing
workflows and prototyping customized workflows for new use cases.

http://dx.doi.org/10.1109/EDERC.2014.6924381
http://dx.doi.org/10.1109/EDERC.2014.6924381
http://dx.doi.org/10.1109/EDERC.2014.6924381
http://dx.doi.org/10.1109/TC.2006.16
http://dx.doi.org/10.1109/TC.2006.16
http://dx.doi.org/10.1109/TC.2006.16
http://dx.doi.org/10.1145/1391469.1391615
http://dx.doi.org/10.1145/1391469.1391615
http://dx.doi.org/10.1109/TCAD.2007.911337
http://dx.doi.org/10.1109/TCAD.2007.911337
http://dx.doi.org/10.1109/TCAD.2007.911337
http://dx.doi.org/10.1145/1455229.1455230
http://dx.doi.org/10.1145/1455229.1455230
http://dx.doi.org/10.1145/1455229.1455230
http://dx.doi.org/10.1145/1455229.1455230
http://dx.doi.org/10.1109/ASPDAC.2010.5419677
http://dx.doi.org/10.1109/ASPDAC.2010.5419677
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
https://ieeexplore.ieee.org/document/6661517
https://ieeexplore.ieee.org/document/6661517
https://ieeexplore.ieee.org/document/6661517
https://ieeexplore.ieee.org/document/6661517
https://ptolemy.berkeley.edu/papers/03/Cal/
https://ptolemy.berkeley.edu/papers/03/Cal/
https://ptolemy.berkeley.edu/papers/03/Cal/
http://dx.doi.org/10.1109/ACSD.2007.53
http://dx.doi.org/10.1109/ACSD.2007.53
http://dx.doi.org/10.1145/2380403.2380422
http://dx.doi.org/10.1145/2380403.2380422
http://dx.doi.org/10.1145/2380403.2380422
http://dx.doi.org/10.1109/MCSoC.2016.48
http://dx.doi.org/10.1109/MCSoC.2016.48
http://dx.doi.org/10.1109/MCSoC.2016.48
https://github.com/tud-ccc/mocasin

7 Design Space Exploration with Mocasin 138

7.2.1 Overview

Mocasin is designed from the ground up for increased flexibility and inter-
operability. Instead of specializing the flow in Figure 7.3 for a specific use
case, Mocasin provides modular and general implementations of individual
components. This includes data structures for various MoCs, abstractions
for hardware platforms, several predefined mapping algorithms, a high-level
simulator for performance estimation and evaluation of mapping quality, as
well as several convenience tools (e.g., for visualization). All of Mocasin’s
components are configurable and exchangeable. This modular approach
makes Mocasin an ideal toolbox for building customized flows, prototyping
new mapping strategies and data structures, and evaluating the effects of
such new approaches.

Mocasin combines the various approaches found across existing DSE tools
to create a generic and flexible toolbox independent of specific use cases.
However, Mocasin is not a replacement for these tools. It is a complementary
framework that is designed from the ground up for interoperability.Themain
design goal is to facilitate the research of new approaches, the prototyping
of improvements for existing tools, and the comparison of approaches across
tools.

The complete architecture of Mocasin is shown in Figure 7.4. In essence,
Mocasin is a toolbox that provides several modules, where each module
focuses on a specific problem and may interact with other modules. Mocasin
provides various tasks, each of which offers a unique functionality. Tasks can
be considered a concrete instance of a tool flow that is composed of selected
Mocasin components. The visualizetask, for instance, opens a graphical
user interface (GUI) that visualizes a platform as well as a spatial mapping of
a given application on this platform. More elaborate tasks include simulate
and generate_mapping, which respectively execute a high-level simula-
tion to estimate the performance of a given mapping or use a configurable
mapping algorithm to find mappings.

7.2.2 Data Structures

Mocasin provides internal data structures for representing applications,
platforms, mappings, and additional information about the runtime behavior,
such as pre-recorded traces. To account for interoperability with other tools,
these data structures are designed to be abstract and generic without making
too many assumptions about a precise use case.

Each data structure is defined with a common base class that needs to be
implemented by any object representing an application, platform, mapping,
or trace. Thus, Mocasin does not impose restrictions on how such objects
are created. While Mocasin provides a few standard methods, including file
readers for various formats, a platform designer, and mapping generators,
arbitrary new methods can be added via plugins.

Application

Applications are modeled as directed graphs, where nodes denote computa-
tion and edges represent data dependencies. Depending on the particular
MoC, nodes or edges may be annotated with additional information, e.g.,
fixed token sizes for data channels or firing rates of nodes. This simple graph
description matches the abstractions used in common dataflow MoCs includ-
ing task graphs, SDF, KPN, Hewitt actors, and also reactors. Note that this

7 Design Space Exploration with Mocasin 139

symmetries

Static MapperRepresentations Runtime Mapper

toDot

...

O
u

tp
u

t

P
ro

c
e
s
s
in

g

In
te

rn
a
l

M
o
d

u
le

s

D
a
ta

S
tr

u
c
tu

re
s

Visualizer

Mocasin Toolbox

Mocasin Usecase

platform

mapping

Hydra
configuration

<name>

<name>

use

consume
 {trace,

 application,

 platform}

produce
{mapping}

module

applicationplatform
model

traces

platform
designer

platform
description

In
p

u
t

P
ro

c
e
s
s
in

g

Input Data

Third Party Formats

MAPS

MAPSTGFF SDF3

...

TGFF SDF3

...

...

Input
Readers ...

simulate

...

Output Data

module
parameters

Logging

toJSON

Custom Outputs

mapper
statistics

TGFF
readers

toMAPS

Adapters

sim. history

...

Third Party Formats

plaintext/
log files

graphs/
visualizations

toJSON
sim. history

simulation
history

platform
designer

TGFF
readersTGFF

tabu
search

...

MMKP-

simulaterandom

TGFF
readers

MDF

Figure 7.4: The Mocasin architecture. This figure was designed by Gerald Hempel.

application model only describes the topology of the application and does
not provide information on its behavior.

Trace

A trace in Mocasin is a data structure that is complementary to an applica-
tion. It describes one possible behavior of the application and represents a
sample execution. Traces are the foundation for running simulations and for
obtaining additional information as required for some mapping strategies.
MoCs with strict firing rules like SDF and task graphs provide sufficient
information to precisely specify the application’s execution patterns. For
these MoCs, traces can be automatically generated and simply encode the

7 Design Space Exploration with Mocasin 140

firing rules. For more permissive MoC like KPN or Hewitt actors, however,
the behavior is not defined statically. Thus, traces need to be recorded while
executing a real implementation of the application. KPN-based frameworks
like MAPS, Turnus or DOL/DAL can be used to instrument applications and
obtain execution traces. But also general-purpose tracing frameworks can
also be used to manually instrument an application to record relevant events
and obtain traces.

An application trace in Mocasin is a sequence of segments, where each
segment represents an action that a node in the application graph performs.
A segment can denote a consume operation that reads some tokens from an
incoming datachannel, a produce operation on an outgoing datachannel, or a
computation lasting for a number amount of processor clock cycles. A special
termination segment marks the end of the trace. To model computation on
various platforms and types of processing elements, the trace can define
different computation costs for different types of processing elements.

Platform

Mocasin models platforms as a set of processing elements and communication
primitives. A processing element can represent any component capable of
performing computation, like general-purpose processors, DSPs, or acceler-
ators. Processing elements are characterized by a frequency and, if this is
applicable, by an estimated cost in clock cycles required for a context switch
on this processing element. Each processing element is also associated with a
scheduler, whichmanages the workload executing on one or more processing
elements according to a selected policy. Processing elements can also be
annotated with a simple power model that describes the static and dynamic
power consumption and that can be used for estimating costs in terms of
energy consumption.

Communication primitives abstractly describe a mechanism for communi-
cating data between processing elements. They are based on the primitives
described by Castrillon and Leupers22 but were extended for improved flexi- 22: Castrillon and Leupers 2014, Program-

ming Heterogeneous MPSoCs: Tool Flows to
Close the Software Productivity Gap.

bility and accuracy.23 Each communication primitive defines a set of source

23: Menard, Goens, and Castrillon 2016,
High-Level NoC Model for MPSoC Compil-
ers.

and sink processing elements that can use this primitive. For any pair of
sink and source processing elements, multiple communication primitives
may be defined if multiple mechanisms for exchanging data between these
processing elements exist on the real platform. Each communication primi-
tive defines two lists of communication phases—one for the producing side
and one for the consuming side.24 Each phase represents one step in the 24: Odendahl et al. 2013, Split-cost commu-

nication model for improved MPSoC appli-
cation mapping.

communication processes and defines a list of communication resources that
it requires. Resources represent the actual hardware used to move data along
a certain path in the platform (e.g., buses, links, caches, scratchpad memories,
DRAMs or DMAs. Each resource is defined by its read and write latency and
total throughput.

In summary, each communication primitive provides step-by-step instruc-
tions on how a pair of processing elements can exchange data and how the
precise communication costs for each step can be calculated. This mecha-
nism provides a lot of flexibility and can be used to model a wide range of
architectures, including bus-based, clustered, and network-on-chip (NoC)
based architectures,23 as well as distributed systems.

Figure 7.5 shows an example platform model that represents the Odroid-
XU4. Square nodes represent the processing elements, and oval nodes denote
communication primitives. An edge from a processing element to a com-
munication primitive indicates that the processing element can write a data

http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1109/NORCHIP.2016.7792876
http://dx.doi.org/10.1109/NORCHIP.2016.7792876
http://dx.doi.org/10.1109/ISSoC.2013.6675280
http://dx.doi.org/10.1109/ISSoC.2013.6675280
http://dx.doi.org/10.1109/ISSoC.2013.6675280

7 Design Space Exploration with Mocasin 141

PE0 PE1

prim_DRAM

prim_L2_A7

prim_L1_PE0

PE2

prim_L1_PE1

PE3

prim_L1_PE2 prim_L1_PE3

PE4 PE5

prim_L2_A15

prim_L1_PE4

PE6

prim_L1_PE5

PE7

prim_L1_PE6 prim_L1_PE7

Figure 7.5: A visualization of the platform
graph used by Mocasin internally to repre-
sent the Odroid-XU4 architecture.

token using this communication primitive. An edge from a communication
primitive to a processing element indicates that the processing element can
read a data token using this communication primitive.

The Odroid platform has two clusters of processing elements: one consist-
ing of four ARM Cortex-A7 cores (little) and one consisting of four ARM
Cortex-A15 cores (big). Each core has its own L1 cache, and each cluster
shares an L2 cache. Both clusters have access to the DRAM via a shared
bus. There is a communication primitive for each memory in the system.
For instance, all processing elements can communicate with each other by
writing to the DRAM and reading from it. Within each cluster of little and
big processing elements, the L2 caches can be used. And for communication
between different processes on the same core, the L1 caches can be used.

Mocasin’s platform model effectively abstracts from the precise platform
topology. It focuses on modeling computation costs and data communication
mechanisms.This abstract view is compatible withmany platform description
formats as they are found in related tools as well as in industry standards
like IEEE 2804-2019 (SHIM)25 and AUTOSAR. 25: IEEE Computer Society 2019, IEEE

Standard for Software-Hardware Interface
for Multi-Many-Core.

Mapping

A mapping assigns the nodes and edges of a given application graph to
processing elements and communication primitives on a target platform.
This is implemented as a simple dictionary. Each of the assignments may be
annotated with additional information, like a process priority or a maximum
channel capacity. Mappings can also be provided as a sequence over time to
implement a fixed schedule, as is commonly done for SDF applications. In
addition to this simple dictionary view of a mapping, the representations
implemented in Mocasin (cf. Section 7.2.5) provide more sophisticated views
that can be utilized by various algorithms.

Readers

To obtain the data structures described above, Mocasin provides modular
readers that create the internal data structures by reading from input files.
The abstract models used by Mocasin enable conversion from a wide range
of existing formats and tools. To illustrate this flexibility, Mocasin currently
provides readers for SDF applications in the SDF for Free (SDF3) format,26

26: Stuijk, Geilen, and Basten 2006, SDF3:
SDF For Free.

task graphs in the Task Graphs for Free (TGFF) format,27
27: Dick, Rhodes, and Wolf 1998, TGFF:
Task Graphs for Free.and KPNs in the

https://standards.ieee.org/ieee/2804/7477/
https://standards.ieee.org/ieee/2804/7477/
https://standards.ieee.org/ieee/2804/7477/
http://dx.doi.org/10.1109/ACSD.2006.23
http://dx.doi.org/10.1109/ACSD.2006.23
http://dx.doi.org/10.1109/HSC.1998.666245
http://dx.doi.org/10.1109/HSC.1998.666245

7 Design Space Exploration with Mocasin 142

1 # Select processors from library
2 little_processor = Processor("PE", type_="ARM_CORTEX_A7")
3 big_processor = Processor("PE", type_="ARM_CORTEX_A15")
4 # Add two cluster of processors
5 designer.addPeClusterForProcessor("cluster_a7", little_processor, 4)
6 designer.addPeClusterForProcessor("cluster_a15", big_processor, 4)
7 # Add L1 caches to each processor
8 designer.addCacheForPEs("cluster_a7", name='L1', <params>)
9 designer.addCacheForPEs("cluster_a15", name='L1', <params>)

10 # Add L2 caches to each cluster
11 designer.addCommunicationResource("L2_A7", ["cluster_a7"])
12 designer.addCommunicationResource("L2_A15", ["cluster_a15"])
13 # Add a RAM accessible by all PEs
14 designer.addCommunicationResource("DRAM", ["cluster_a7", "cluster_a15"])

Listing 7.1: Description of the Odroid-
XU4 board in Python using Mocasin’s plat-
form designer API.

MAPS format. More readers for other tools and formats can be easily added
by extending Mocasin directly or by providing a plugin implementing the
reader.

Supported MAPS formats comprise a description format for KPN-based
applications, a platform description format that is close to the SHIM standard,
an internal execution trace exchange format, and a mapping exchange format.
The Mocasin readers automatically convert all four MAPS file formats to the
internal data structures.

The SDF3 and TGFF formats describe applications based on the SDF and task
graph MoCs, respectively. Since the semantics of these MoCs define strict
firing rules, SDF3 and TGFF files provide sufficient information for generating
both Mocasin’s application and trace data structures. Additionally, SDF3

provides platform descriptions and mapping formats. However, importing
these descriptions is not yet supported.

7.2.3 Platform Designer

A central enabler in researching compilation methods for complex architec-
tures is system modeling. Depending on the level of abstraction and fidelity
required, this can be an extremely complex endeavor or a fairly simple matter.
During our work on and with Mocasin we experienced the implementation
of new platforms as an elaborate and time-consuming task.

The communication primitive abstraction of Mocasin’s platform model is
useful for estimating communication delays, but it is not a straightforward
method for describing the topology of such architectures. Therefore, Mocasin
provides an API called platform designer that allows for describing the
topology graph. Based on this topology description, the platform designer
automatically creates a platform model and generates all communication
primitives.

The code excerpt in Listing 7.1 illustrates how the platform designer API can
be used to describe the Odroid-XU4 platform. The code excerpt describes
precisely the topology. It defines the two clusters of little and big cores
and adds caches as well as the DRAM as communication resources. Note
that the example omits the precise parameters of hardware components
like frequency, throughput, and latency for brevity. From this description,
the platform designer automatically generates the platform model using
communication primitives, as shown in Figure 7.5.

The platform designer is also capable of describing NoC-based architec-
tures. Elements can simply be connected by providing parameters describing
the NoC characteristics and an adjacency matrix. Mocasin also provides

7 Design Space Exploration with Mocasin 143

a set of predefined platforms utilizing the platform designer to model the
Odroid-XU4 as described above, as well as configurable platform models that
represent common patterns such as mesh-based NoC topologies or bus-based
hierarchical architectures.

7.2.4 Simulator

The simulation module is a key component of Mocasin. It implements a
high-level simulator capable of estimating the performance of given applica-
tions (consisting of an application graph, mappings, and traces) running on
a given platform. This not only enables rapid performance estimation, but it
is also the key enabler for evaluating the characteristics of various MoCs,
mapping algorithms, and representations within Mocasin. While the simula-
tor aims to provide accurate results, it neither models the hardware nor the
software running on top precisely. Instead, it uses abstractions that capture
the essence of the hardware characteristics and the application behavior.
Related tools implement similar high-level simulators for performance esti-
mation. However, Mocasin’s simulator is designed for increased flexibility,
supporting various dataflow MoCs and also allowing other components to
interact with the simulation, as the case study in Section 7.3 illustrates.

Mocasin’s simulator is based on the SimPy discrete-event simulation frame-
work.28 The basic simulator structure is designed to be independent of the 28: SimPy 2023, SimPy: Discret Event Sim-

ulation for Python.concrete MoC semantics, application behavior, and hardware characteristics.
Essentially, an application is modeled as a set of concurrent processes in-
teracting with each other. The precise semantics of this interaction can be
adjusted to implement concrete MoCs.

created ready finished

running blocked

start kill

kill

block

activate
deactivate finishkill

unblock

Figure 7.6: The basic process model simu-
lated in Mocasin.

The execution of a process in the simulator is modeled abstractly as the
well-known finite state machine shown in Figure 7.6, which is based on
the classical model for POSIX threads. The execution of all processes in
the system is controlled by a set of schedulers, each of which controls of
one or more processing elements. Currently, Mocasin implements the FIFO
and round-robin scheduling algorithms. Other algorithms can be added via
plugins.

The process model shown in Figure 7.6 is an abstraction that separates the
basic processing mechanisms and scheduling algorithms implemented in
the simulator from the concrete MoC semantics and application behavior.
The precise semantics are implemented on top of this abstraction. This is
analogous to a real-world runtime that implements MoC semantics through
an abstraction layer on top of a thread model. In Mocasin, concrete MoC
semantics can be implemented by specializing the process class provided by
Mocasin overriding its workloadmethod.

For instance, Mocasin implements the KPN MoC. The workloadfunction of
a KPN process implements the behavior of one node in the KPN application
graph by replaying the trace provided for this node. The trace provides step-
by-step instructions as to what the process needs to do. For instance, the
trace could start with a consume segment reading a certain number of data
tokens from a channel, followed by a computation segment, and finally a
produce segment writing a certain number of tokens to a channel.

https://simpy.readthedocs.io/en/latest/
https://simpy.readthedocs.io/en/latest/

7 Design Space Exploration with Mocasin 144

The KPN implementation models the state of each FIFOchannel that connects
KPN nodes. Note that this state only entails the number of data tokens that
are stored in the buffer and does not describe concrete data. For each read
operation, KPN processes check the state of the corresponding input channel.
If a sufficient number of tokens are available, the process retrieves the tokens
from the channel. The delay imposed by the consume operation is calculated
based on the concrete communication primitive selected by the mapping
and specified by the platform model. If not enough tokens are available, the
process blocks and thus waits until a sufficient number of tokens become
available.

A compute segment simply delays the execution by a certain time. The
precise time is calculated based on the cycle count provided in the trace for
the given processing element that the process is mapped to. Writing tokens
is implemented analogously to reading. If there is not enough free space
in the modeled FIFO buffer, the process blocks. Otherwise, it continues and
accounts for any communication delays. If another process is waiting to
read tokens from this channel, it will be automatically unblocked.

While the above description focuses on the KPNMoC, the generic simulation
infrastructure can be utilized to model arbitrary MoCs and runtime strate-
gies. This includes the modeling of dynamic workloads, such as a runtime
scheduler that assigns incoming tasks to a number of worker threads (cf.
Section 7.3).

The simulator can also produce a history in JSON format, which provides
detailed information about the simulated execution and is a good basis for
further analysis. The JSON history can be visualized with the Catapult Trace
Viewer29 as shown in the example in Figure 7.7. 29: Google 2023, Catapult .

audio_filter.filter_r

audio_filter.filter_l

audio_filter.fft_l

audio_filter.sink audio_filter.ifft_laudio_filter.ifft_l

audio_filter.ifft_r audio_filter.ifft_r

audio_filter.fft_r

11,000 μs 11,500 μsodroid

PE0

PE2

PE4

PE5

PE6

PE7

Figure 7.7: Visualization of the simulated
execution of an audio filter application on
the Odroid-XU4.

7.2.5 Representations

Representations are a unique idea behind the modular design in Mocasin and
are concerned with mathematical encodings of a mapping.30 The most com- 30: Goens, Menard, and Castrillon 2018,

On the Representation of Mappings to Multi-
cores; Goens 2021, Improving Model-Based
Software Synthesis: A Focus on Mathemati-
cal Structures.

mon way to represent this in algorithms is what we call the SimpleVector
representation. A mapping 𝑚 is specified as a vector:

𝑚 = (𝑝1, … , 𝑝𝑘 , 𝑐1, … , 𝑐𝑙)

where the 𝑝𝑖 are processing elements for each of the 𝑖 = 1, … , 𝑘 computational
tasks (or actors or processes) and the 𝑐𝑗 are communication primitives for the
data. Many algorithms consider communication implicitly or just ignore it,
removing the 𝑐𝑗 from the representation. However, other representations are
possible, like an embedding to real vectors that captures a distance metric
between processors31

31: Thompson and Pimentel 2013, Exploit-
ing Domain Knowledge in System-Level
Mpsoc Design Space Exploration; Goens,
Menard, and Castrillon 2018, On the Repre-
sentation of Mappings to Multicores.

or the symmetries of the architecture.32 32: Goens, Siccha, and Castrillon 2017,
Symmetry in Software Synthesis; Schwarzer
et al. 2018, Symmetry-Eliminating Design
Space Exploration for Hybrid Application
Mapping on Many-Core Architectures.

The choice of representation directly influences how the mapping space is
shaped. Ideally, a good representation creates a mapping space that is shaped
so that the global optimum can be found (more) easily.

https://chromium.googlesource.com/catapult
http://dx.doi.org/10.1109/MCSoC2018.2018.00039
http://dx.doi.org/10.1109/MCSoC2018.2018.00039
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
http://dx.doi.org/10.1016/j.sysarc.2013.05.023
http://dx.doi.org/10.1016/j.sysarc.2013.05.023
http://dx.doi.org/10.1016/j.sysarc.2013.05.023
http://dx.doi.org/10.1109/MCSoC2018.2018.00039
http://dx.doi.org/10.1109/MCSoC2018.2018.00039
http://dx.doi.org/10.1145/3095747
http://dx.doi.org/10.1109/TCAD.2017.2695894
http://dx.doi.org/10.1109/TCAD.2017.2695894
http://dx.doi.org/10.1109/TCAD.2017.2695894

7 Design Space Exploration with Mocasin 145

7.2.6 Mappers

Mappers in Mocasin are responsible for generating mappings for a given
application (or multiple applications) on a given target platform. Mocasin
defines a common mapper interface. This allows for integrating and testing
newmapping algorithms simply by providing another implementation of the
interface. The mappers can automatically leverage the various abstractions
provided by Mocasin and utilize different representations. A simulation
manager abstracts the process of evaluating a series of mappings to obtain
performance estimations. This enables leveraging the structure of mappings
when searching the design space, e.g., by getting a symmetry-aware cache33 33: Goens, Siccha, and Castrillon 2017,

Symmetry in Software Synthesis.for free.

In general, a wide range of different algorithms can be used for generating
mappings.34 Mocasin implements several heuristics and meta-heuristics. 34: Singh et al. 2013, Mapping on

Multi/Many-Core Systems: Survey of
Current and Emerging Trends.

Heuristics utilize domain knowledge and the information provided by Mo-
casin’s internal data structures to derive a mapping. For instance, Mocasin
provides a simplistic default mapper that maps everything to the first avail-
able processing element and communication primitive. There is also a ran-
dom mapper, which assigns all processing elements and communication
primitives randomly. Finally, the static fair mapper follows the basic de-
sign principle of the Linux Completely Fair Scheduler (CFS) scheduler35 and 35: Molnar 2023, Design of the CFS sched-

uler .implements a load balancing heuristic.

Meta-heuristics explore the design space of mappings by evaluating mul-
tiple candidates and refining them through the search. The implemented
meta-heuristics range from a simple random walk to more sophisticated
genetic algorithms. The genetic algorithms are implemented with the DEAP
framework36 and follow the general approach used in Sesame.37 Mocasin 36: Fortin et al. 2012, DEAP: Evolutionary

Algorithms Made Easy.

37: Cagkan Erbas, Cerav-Erbas, and Pi-
mentel 2006, Multiobjective Optimization
and Evolutionary Algorithms for the Ap-
plication Mapping Problem in Multipro-
cessor System-On-Chip Design; Quan and
Pimentel 2014, Towards Exploring Vast
MPSoC Mapping Design Spaces Using a
Bias-Elitist Evolutionary Approach; Goens,
Khasanov, Castrillon, et al. 2016,Why Com-
paring System-Level MPSoC Mapping Ap-
proaches is Difficult: A Case Study .

also implements a tabu search mapping algorithm and a simulated annealing
mapper based on prior work.38

38: Manolache, Eles, and Peng 2008, Task
Mapping and Priority Assignment for Soft
Real-Time Applications Under DeadlineMiss
Ratio Constraints; Orsila et al. 2007, Auto-
mated Memory-Aware Application Distribu-
tion for Multi-Processor System-On-Chips.

Mocasin also supports scheduling, where the resources are reassigned at
certain intervals during the execution. There are, for instance, a knapsack-
based algorithm,39 and one based on a Lagrangian relaxation method.40

39: Khasanov and Castrillon 2020, Energy-
efficient Runtime Resource Management for
Adaptable Multi-application Mapping.

40: Wildermann, Weichslgartner, and Te-
ich 2015,DesignMethodology and Run-Time
Management for Predictable Many-Core Sys-
tems.

When comparing runtime scheduling with static mapping strategies (e.g.,
genetic algorithms), we can implement hybrid approaches and generate
spatio-temporal mappings, like in TETRiS.41

41: Goens, Khasanov, Hähnel, et al. 2017,
TETRiS: a Multi-Application Run-Time Sys-
tem for Predictable Execution of Static Map-
pings.

Mappers with objectives apart from makespan or energy consumption are
also supported by Mocasin. For instance, there is a bio-inspired design
centering algorithm that searches for robust mappings.42

42: Hempel et al. 2017, Robust Mapping
of Process Networks to Many-Core Systems
Using Bio-Inspired Design Centering.

7.2.7 Configuration

All tasks provided byMocasin can be configured via yaml files and command-
line parameters. Mocasin uses Hydra for managing those configurations,
which is a key enabler for its flexibility.43 Hydra supports the dynamic

43: Yadan 2019, Hydra—A Framework for
Elegantly Configuring Complex Applica-
tions.

composition of configurations from various sources, which allows users to
combine external and internal modules to form flows tailored for specific
use cases.

The use case depicted in Figure 7.4, for instance, reads the application graph
and traces from a TGFF file, creates a platform model of the Odroid XU4
leveraging the platform designer, generates a randommapping, and simulates
the application executing accordingly on the platform. This flow is executed
by the following command:

1 mocasin simulate graph=tgff_reader trace=tgff_reader \
2 platform=designer_odroid mapper=random

http://dx.doi.org/10.1145/3095747
http://dx.doi.org/10.1145/2463209.2488734
http://dx.doi.org/10.1145/2463209.2488734
http://dx.doi.org/10.1145/2463209.2488734
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
http://books.google.com/books?vid=ISSN1532-4435
http://books.google.com/books?vid=ISSN1532-4435
http://dx.doi.org/10.1109/TEVC.2005.860766
http://dx.doi.org/10.1109/TEVC.2005.860766
http://dx.doi.org/10.1109/TEVC.2005.860766
http://dx.doi.org/10.1109/TEVC.2005.860766
http://dx.doi.org/10.1109/DSD.2014.46
http://dx.doi.org/10.1109/DSD.2014.46
http://dx.doi.org/10.1109/DSD.2014.46
http://dx.doi.org/10.1109/MCSoC.2016.48
http://dx.doi.org/10.1109/MCSoC.2016.48
http://dx.doi.org/10.1109/MCSoC.2016.48
http://dx.doi.org/10.1145/1331331.1331343
http://dx.doi.org/10.1145/1331331.1331343
http://dx.doi.org/10.1145/1331331.1331343
http://dx.doi.org/10.1145/1331331.1331343
http://dx.doi.org/10.1016/j.sysarc.2007.01.013
http://dx.doi.org/10.1016/j.sysarc.2007.01.013
http://dx.doi.org/10.1016/j.sysarc.2007.01.013
http://dx.doi.org/10.23919/DATE48585.2020.9116381
http://dx.doi.org/10.23919/DATE48585.2020.9116381
http://dx.doi.org/10.23919/DATE48585.2020.9116381
http://dx.doi.org/10.1109/ISORCW.2015.48
http://dx.doi.org/10.1109/ISORCW.2015.48
http://dx.doi.org/10.1109/ISORCW.2015.48
http://dx.doi.org/10.1145/3078659.3078663
http://dx.doi.org/10.1145/3078659.3078663
http://dx.doi.org/10.1145/3078659.3078663
http://dx.doi.org/10.1145/3078659.3078667
http://dx.doi.org/10.1145/3078659.3078667
http://dx.doi.org/10.1145/3078659.3078667
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra

7 Design Space Exploration with Mocasin 146

Each of the configuration keys can be adjusted as needed. For instance,
the flow could also run the static CFS mapping heuristic by specifying
mapper=static_cfsor read the application from an SDF3 file by specifying
graph=sdf3_reader. Note that the selectable options are not limited to
the modules provided by Mocasin. Leveraging hydra’s plugin mechanism,
external modules can be easily defined and included in the configuration.
Also note that users can create customized configurations for their use case
to avoid specifying all parameters as command-line arguments.

7.3 Case Study: Simulating a Hybrid Mapping
Strategy for an LTE Base Station

This section presents a case study that illustrates how Mocasin and the tools
that it provides can be leveraged to quickly prototype DSE flows for new
use cases. Concretely, this section investigates an long-term evolution (LTE)
telecommunications application. We create a toolflow for generating and
evaluating hybrid mapping strategies in this domain.

One of the main challenges in current and upcoming telecommunications
standards (5G and beyond) is the increased dynamicity of the workloads.
When designing base stations, we need to consider that the computational
load and constraints, like deadlines, may vary considerably depending on
the number and types of data packets received. The hardware allocated to a
base station is often overprovisioned to account for the worst-case scenario.
However, this makes it typically challenging to also be energy efficient when
there is less load. Therefore, we need adaptive solutions that can react to
the current demands and adjust the configuration such that the workload
can be handled within the expected bounds while optimizing for energy
efficiency. It can be argued that implementing adaptive behavior for base
stations requires a formal approach based on a MoC.44 44: Wittig et al. 2020, Modem Design in the

Era of 5G and Beyond:The Need for a Formal
Approach.In this section, we leverage Mocasin to prototype a tool flow for mapping

an LTE baseband processing application using SDF. This prototype presents
the foundation for the investigation and evaluation of novel hybrid mapping
strategies specifically for the telecommunications domain, as published in
Khasanov, Robledo, et al. 2021, Domain-Specific Hybrid Mapping for Energy-
Efficient Baseband Processing in Wireless Networks.

7.3.1 Application Model

Physical layer baseband processing in an LTE base station is a computa-
tionally demanding task. Especially in the context of Cloud Radio Access
Networks (RANs), parallelization of processes and good mapping strategies
are central to an efficient execution that meets the real-time deadlines of the
protocol.45

45: Budhdev, Chan, and Mitra 2020a, Iso-
ran: Isolation and Scaling for 5g Ranvia User-
Level Data Plane Virtualization; Budhdev,
Chan, and Mitra 2020b, Poster: IsoRAN: Iso-
lation and Scaling for 5G RAN via User-
Level Data Plane Virtualization; Heulot,
Boutellier, et al. 2013, Applying the Adap-
tive Hybrid Flow-Shop Scheduling Method
to Schedule a 3GPP LTE Physical Layer Al-
gorithm onto Many-core Digital Signal Bro-
cessors; Venkataramani et al. 2020, Time-
Predictable Software-Defined Architecture
with SDF-based Compiler Flow for 5G Base-
band Processing.

This subsection describes the SDF model that we use to represent
this workload.

The LTE model considered in this section is based on the open-source PHY
benchmark,46 which provides an implementation of an LTE physical layer 46: Själander et al. 2012, An LTE Uplink Re-

ceiver PHY Benchmark and Subframe-based
Power Management .

uplink receiver. From this benchmark, we can extract an SDFmodel. A central
aspect of this model is that the specific size and topology of the SDF graphs
depend on the workload they are processing.

LTE transmissions are divided into subframes of 1ms length. In each sub-
frame, the base station may receive data packets from up to 10 devices, which
are called user equipment. Each instance of the SDF model processes the

http://dx.doi.org/10.1109/ICT49546.2020.9239539
http://dx.doi.org/10.1109/ICT49546.2020.9239539
http://dx.doi.org/10.1109/ICT49546.2020.9239539
http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.1145/3476991
https://arxiv.org/abs/2003.01841
https://arxiv.org/abs/2003.01841
https://arxiv.org/abs/2003.01841
https://ieeexplore.ieee.org/document/9142715
https://ieeexplore.ieee.org/document/9142715
https://ieeexplore.ieee.org/document/9142715
http://dx.doi.org/10.1109/AHS.2013.6604235
http://dx.doi.org/10.1109/AHS.2013.6604235
http://dx.doi.org/10.1109/AHS.2013.6604235
http://dx.doi.org/10.1109/AHS.2013.6604235
http://dx.doi.org/10.1109/AHS.2013.6604235
http://dx.doi.org/10.1109/ICASSP40776.2020.9054285
http://dx.doi.org/10.1109/ICASSP40776.2020.9054285
http://dx.doi.org/10.1109/ICASSP40776.2020.9054285
http://dx.doi.org/10.1109/ICASSP40776.2020.9054285
http://dx.doi.org/10.1109/ISPASS.2012.6189203
http://dx.doi.org/10.1109/ISPASS.2012.6189203
http://dx.doi.org/10.1109/ISPASS.2012.6189203

7 Design Space Exploration with Mocasin 147

data received from one user equipment within one subframe. Depending on
the type and size of data packets received, the size and structure of the SDF
graph required for processing this data change. For the workloads that we
investigate in this section, the graphs have between 78 and 234 actors and
between 1096 and 3228 communication channels. In upcoming technologies,
like 5G and beyond, the variability in the workloads is expected to increase
further. The interested reader may find a more detailed description of the
workload in the literature.47 47: Khasanov, Robledo, et al. 2021,

Domain-Specific Hybrid Mapping for
Energy-Efficient Baseband Processing in
Wireless Networks; Robledo and Castrillon
2022, Parameterizable Mobile Workloads
for Adaptable Base Station Optimizations.

We use the Odroid-XU4 as an evaluation platform for this case study. By mea-
suring the execution times of individual actors in the PHY benchmark on the
Odroid-XU4, we can enrich the SDF model that we use in Mocasin with real-
istic performance characteristics. While general-purpose architectures like
the Odroid board are not ideal for baseband processing, they can be utilized
for small base stations (e.g., Femtocells).48 For the purposes of prototyping, 48: Budhdev, Chan, and Mitra 2018, PR3:

Power Efficient and Low Latency Baseband
Processing for LTE Femtocells.

this setup allows us to use realistic numbers to assess the general trends and
compare our simulated results to a real execution. Modeling a more realistic
scenario, including specialized hardware and real LTE workloads, is beyond
the scope of this case study.

7.3.2 Toolflow

Leveraging Mocasin’s configurable infrastructure, we can create a toolflow
that extrapolates from the single SDF graph to simulate the processing of a
continuous stream of incoming data. Figure 7.8 shows the overall architecture
of this toolflow. It is implemented as a Mocasin plugin and is available
separately.49 49: Menard, Robledo, and Khasanov 2023,

Fivegsim: A Simualtor for 5G Baseband Ap-
plications Based on Mocasin.The plugin provides two additional modules: the workload generator and the

LTE simulation manager. The workload generator continuously reads data
from a workload description file. It models the antenna and continuously
produces new SDF graphs and traces to handle the incoming data. In this
case study, we only consider randomized synthetic workloads, but generally,
workloads can also be recorded from traffic observed at real base stations50 50: Budhdev, Chan, and Mitra 2020a, Iso-

ran: Isolation and Scaling for 5g Ranvia User-
Level Data Plane Virtualization.

or generated from models of real workloads.51

51: Robledo and Castrillon 2022, Parame-
terizable Mobile Workloads for Adaptable
Base Station Optimizations.

The LTE simulation manager hooks into Mocasin’s simulator to resemble a
dynamic that maps new SDF applications as the workload generator creates
them. Every 1ms (in simulated time), the LTE simulation manager requests
the workload for a new subframe. The simulator passes information about
the current system state (e.g., load) to the mapper and receives mappings for
new applications arriving at the current subframe. Many of the generated

platform

Hydra
configuration

platform
designer

workload
generator

simulate

symmetries
workload

description

toJSON
sim. history

simulation
history

MMKP-

request new every 1msworkload

system state

LTE simulation

manager

Mocasin LTE Usecase

MDF

Figure 7.8: A Mocasin toolflow for mapping and simulating the workload of an LTE uplink receiver.

http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.1109/MCSoC57363.2022.00067
http://dx.doi.org/10.1109/MCSoC57363.2022.00067
http://dx.doi.org/10.1109/INFOCOM.2018.8486276
http://dx.doi.org/10.1109/INFOCOM.2018.8486276
http://dx.doi.org/10.1109/INFOCOM.2018.8486276
https://github.com/tud-ccc/mocasin-fivegsim
https://github.com/tud-ccc/mocasin-fivegsim
https://arxiv.org/abs/2003.01841
https://arxiv.org/abs/2003.01841
https://arxiv.org/abs/2003.01841
http://dx.doi.org/10.1109/MCSoC57363.2022.00067
http://dx.doi.org/10.1109/MCSoC57363.2022.00067
http://dx.doi.org/10.1109/MCSoC57363.2022.00067

7 Design Space Exploration with Mocasin 148

SDF applications will run for more than 1ms. Thus, newly created SDF
applications have to share resources with the ones still executing from
previous subframes. Consequently, a good mapping strategy should consider
the current load of the system and the mappings of applications already
running.

In Figure 7.8, the MKKP-MDP algorithm52 is used for mapping applications 52: Khasanov and Castrillon 2020, Energy-
efficient Runtime Resource Management for
Adaptable Multi-application Mapping.

to the Odroid architecture. This mapping algorithm implements a hybrid
mapping strategy that considers the current system state. It is based on
TETRiS, which leverages the symmetry representation module to reduce the
size of the mapping space.53 Since all mappers in Mocasin implement the 53: Goens, Khasanov, Hähnel, et al. 2017,

TETRiS: a Multi-Application Run-Time Sys-
tem for Predictable Execution of Static Map-
pings; Goens, Siccha, and Castrillon 2017,
Symmetry in Software Synthesis.

same interface, we can leverage any of the existing mappers to generate
mappings on the fly and prototype new strategies tailored specifically for the
LTE use case. The Fivegsim plugin elevates Mocasin’s simulator from a tool
for estimating the performance of static mappings to a tool for researching
dynamic runtime strategies for mapping an LTE workload.

To validate the system model, we compared the high-level simulation in
Mocasin with the real execution of the PHY benchmark on the Odroid-XU4
for the same workload. Figure 7.9 shows the results of this comparison. The
red line indicates ideal behavior, where the measured and simulated times
coincide, whereas the blue dotted line shows the result of a linear regression.
The diagram shows that the simulated execution time is slightly inaccurate.
The error, however, is systematic. The simulation is off by approximately a
factor of 1.4. Such a systematic error is less problematic, as the main motiva-
tion for creating the toolflow is to analyze and compare mapping/scheduling
approaches, not to simulate accurate timings. Thus, a better strategy for as-
sessing the quality of the results is to evaluate the fidelity of the simulation.
In terms of fidelity, a linear regression yields a 𝑝-value < 10−15 and the data
also features a high Spearmann’s correlation of 𝜌 = 0.978. This indicates that
we can reliably compare the effects of various mapping strategies in Mocasin,
since a lower estimated simulation time also indicates a better performance
on the real platform.

0

100

200

300

0 100 200 300

Mocasin simulated execution time (ms)

O
dr
oi
d-
X
U
4
ex
ec
ut
io
n
ti
m
e
(m

s)

Figure 7.9: Validation of the LTE simulation in Mocasin. Every point represents the simulated execution time and its corresponding measured
execution time for a random workload.

http://dx.doi.org/10.23919/DATE48585.2020.9116381
http://dx.doi.org/10.23919/DATE48585.2020.9116381
http://dx.doi.org/10.23919/DATE48585.2020.9116381
http://dx.doi.org/10.1145/3078659.3078663
http://dx.doi.org/10.1145/3078659.3078663
http://dx.doi.org/10.1145/3078659.3078663
http://dx.doi.org/10.1145/3095747

7 Design Space Exploration with Mocasin 149

7.3.3 Evaluating Mapping Strategies

Using the newly created toolflow, we can investigate how best to cope with
the dynamic workload of LTE baseband applications. For this, we perform
an experiment that compares the quality of mappings produced by different
algorithms for a range of workloads. Most of the mappers implemented in
Mocasin assume a single application with a static structure (which possibly
consists of multiple tasks, processes, or actors) and are intended to be used
once during deployment. The newly created toolflow, however, enables
using the same mapping strategies to mimic a runtime strategy that handles
multiple applications. Clearly, these algorithms are not designed to be used
at run-time. However, this method enables establishing a baseline for further
research on runtime heuristics.54 54: Khasanov, Robledo, et al. 2021,

Domain-Specific Hybrid Mapping for
Energy-Efficient Baseband Processing in
Wireless Networks.

To evaluate the existing mapping strategies, we generate random Poisson-
distributed LTE workloads and compare the performance of the benchmark
using different mapping algorithms. Baseband processing in LTE is a firm
real-time application—after the real-time deadlines have passed, the results
are useless. We model this by terminating a running application once the
deadline of 2.5ms has passed and recording the deadline miss. Figure 7.10
shows the miss rates recorded in our simulated prototype for a range of
mapping algorithms and for two scenarios with comparatively lower and
higher workloads.

0.897
0.842 0.842 0.828

0.709

0.246

0.444
0.350

0.112 0.117
0.014 0.005

Higher workload Lower workload

randomrandom walktabu searchgeneticstatic cfshybrid randomrandom walktabu searchgeneticstatic cfshybrid

0.00

0.25

0.50

0.75

1.00

de
ad

lin
e
m
is
s
ra
te

random random walk tabu search genetic static cfs hybrid

Figure 7.10: Comparison of various mapping algorithms applied to the randomized workloads of the LTE benchmark.

The plot shows that both the random and random walk strategies perform
badly. For the lower workload, the meta-heuristics genetic and tabu search
perform significantly better. However, out of the static mapping approaches,
the static CFS mapper performs best. This is because we parameterized the
meta-heuristics for quick execution, limiting the number of generations, and
because these meta-heuristics struggle generally with a large number of
actors as the mapping space grows exponentially. Since the dependencies
between nodes in the SDF graph are regularly structured and the number of
actors is relatively large, a load-balancing strategy as realized by the static
CFS mapper seems to work best.This is different from applications with more
coarse-grained actors and complex interdependencies, where meta-heuristics
significantly outperform static CFS. However, the results also suggest that
the hybrid mapping approach (concretely, the MKKP-MDP algorithm),55 55: Khasanov and Castrillon 2020, Energy-

efficient Runtime Resource Management for
Adaptable Multi-application Mapping.

which considers the current system load, produces better mappings than all
static approaches.

Overall, this case study illustrates that new toolflows can be prototyped and
evaluated quickly inMocasin. Based on the exploration performed on the LTE
use case, we can conclude that hybrid strategies work better for the LTE use
case, even compared to the computationally costly static mapping strategies.

http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.23919/DATE48585.2020.9116381
http://dx.doi.org/10.23919/DATE48585.2020.9116381
http://dx.doi.org/10.23919/DATE48585.2020.9116381

7 Design Space Exploration with Mocasin 150

The prototype created in Mocasin provides a baseline for researching more
elaborate mapping strategies for LTE workloads.56 56: Khasanov, Robledo, et al. 2021,

Domain-Specific Hybrid Mapping for
Energy-Efficient Baseband Processing in
Wireless Networks.

7.4 Integrating Mocasin with Lingua Franca

While Mocasin was initially developed to support research in the domain of
DSE for dataflow applications, it can in principle also be used for researching
DSE for other MoCs. Most DSE tools hard-code assumptions about the MoC
and the toolflow itself. Mocasin, however, embraces a modular and flexible
architecture that allows for prototyping new tools. The previous section,
for instance, showed that we can use Mocasin to simulate hybrid mapping
strategies, although this was not part of Mocasin’s original design.

In principle, Mocasin also allows for incorporating the reactor model. Such an
integration would provide the ideal foundation for researching DSE toolflows
for reactors and Lingua Franca. In this section, we discuss how Mocasin
could be used for constructing DSE flows based on the reactor model. This
discussion, however, only includes proposals and potential solutions. While
we have performed some early experimentation, fully integrating reactors
and LF with Mocasin remains for future work.

7.4.1 Static Subsets

One option for modeling reactor programs in Mocasin is to convert them to
SDF or KPN programs. However, as Section 2.4.4 argues, dataflowmodels and
process networks are not suitable for modeling timed or reactive behavior
like it is possible with reactors. Therefore, we cannot derive equivalent SDF
or KPN models for general reactor programs. There are, however, subsets of
reactors and LF that can be represented as SDF programs.

For any program that only uses timers and ports, we know at compile
time precisely which events will be present. In fact, we can derive a static
schedule for executing such applications. This subset of reactors does not
model reactive behavior, and we can also represent the behavior in SDF.
Thus, we can trivially apply Mocasin to map such programs to heterogeneous
hardware.

However, restricting programs to using timers and ports and forbidding
the use of actions is a severe limitation. In principle, some more general
programs using actions can also be scheduled statically if we constrain the
delay imposed when scheduling the action. Shaokai Lin at UC Berkely is
currently researching the limits of static schedulability for LF programs.
However, programs using physical actions without any further constraints
on when new events may arrive or logical actions without constraining the
delays that the reaction code may choose cannot be scheduled statically and
cannot be trivially represented in SDF or KPN.

7.4.2 Replaying Traces for equivalent KPNs

While a general reactor program cannot be trivially represented as a KPN
program, we can instead only focus on one particular execution. Given
a trace that represents the execution of a reactor program, including all
the events and the reactions executed in response to these events, we can
generate a KPN graph and trace that resembles a similar behavior.

http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.1145/3476991

7 Design Space Exploration with Mocasin 151

The main challenge when implementing reactive behavior in KPN is that
the receiver of a message needs to know in advance how many tokens it
may expect on a channel. If the process reads more tokens than the sender
produces, it may block indefinitely. Thus, to avoid deadlocks, there needs to
be some knowledge about expected communication patterns.

Given a trace for the execution of a reactor program, we know precisely
the communication pattern of this single execution, and we can create a
representation for this single behavior in Mocasin’s KPN model. For this,
we create a KPN graph, where the processes denote reactions and the edges
denote dependencies between reactions. Then we can synthesize a trace for
this KPN application that replays the execution of the reactor program.

While early experimentation conducted by Anton Landgraf confirms that
this approach works in principle, the fundamentally different semantics of
reactors and KPN substantially limit the accuracy that can be achieved with
this approach.

7.4.3 Implementing the Reactor MoC in Mocasin

Most likely, the most promising approach for modeling reactor programs in
Mocasin is to extend Mocasin’s simulation module with an implementation
of the reactorMoC.This ischallenging, however. As discussed in Section 7.2.4,
Mocasin’s simulator uses a process model as an interface between the simu-
lator core and the semantics of the MoC that can be implemented on top of
it. This works well for MoCs that can be described as multiple interacting
processes, like KPN. Reactor programs, however, are implemented as single
processes that may potentially utilize multiple worker threads. To model
reactor execution accurately in Mocasin, we need to extend the simulator
and introduce concepts for simulating multi-threading within a process.

The process model currently implemented in Mocasin, however, can more
accurately represent federated programs or programs that use enclaves.
Enclaves and federates can be naturally represented as multiple interacting
processes. Assuming that we can simulate the execution of one reactor
program in a single process, we can extend this model by implementing a
coordination protocol that resembles the federated or enclave coordination
schemes. This model would be sufficient for leveraging Mocasin’s existing
mapping algorithms for allocating resources to the enclaves or federates.
Simulating the coordination protocol in Mocasin would not only be useful
for performing DSE, but it would also provide a platform for prototyping
and analyzing new coordination mechanisms.

7.4.4 Automatic Partitioning

Given that we can simulate the execution of reactor programs consisting
of multiple enclaves in Mocasin, we could also consider using Mocasin
for automatically partitioning LF programs. This, however, adds another
dimension to the mapping problem. Mocasin’s mappers are concerned with
assigning hardware resources to processes. Partitioning a program, however,
requires mapping atomic elements (i.e., reactors) of the input model to
processes. This will require a different set of mapping heuristics. Most likely,
the most effective algorithms would jointly consider both partitioning and
mapping. Addressing the problem of automatically partitioning and mapping
reactor programs is a novel problem, and solving it potentially opens entirely
new directions for research. An integration of the reactor model in Mocasin
would facilitate this research and provide a platform for experimentation.

7 Design Space Exploration with Mocasin 152

7.5 Conclusion

This chapter introduced the general concepts behind DSE and introduced the
Mocasin framework, which is a core contribution of this thesis. In contrast
to existing DSE tools, Mocasin itself is designed as an exploration platform
for research in the domain of DSE, in particular for mapping applications to
heterogeneous target architectures. The presented case study, based on an
LTE baseband application, demonstrates Mocasin’s ability to prototype new
toolflows for researching particular DSE problems. The modular architecture
of Mocasin, in principle, also allows for integrating reactors and Lingua
Franca. Such an integration would create a research platform for develop-
ing reactor-specific mapping strategies as well as heuristics for automatic
partitioning. While Section 7.4 proposed several approaches for integrat-
ing reactors with Mocasin, implementing a full integration and conducting
research on reactor-specific DSE strategies remain for future work.

Related Work 8
8.1 Models of Computation 153

8.2 Languages and Frameworks 153

8.3 Scalable Connection Patterns and
Performance Optimization 155

8.4 Design Space Exploration 156

This chapter provides a brief overview of other publications and tools that
are related to the work presented in this thesis. Most of the referenced works
are discussed in more depth in other chapters of this thesis. Therefore, this
chapter presents a summary and references to more detailed discussions in
other parts of this thesis.

8.1 Models of Computation

The reactor model, initially defined by Lohstroh, Romeo, et al., presents the
foundation for this thesis.1 The reactor model is closely related to a range 1: Lohstroh, Romeo, et al. 2019, Reactors:

A Deterministic Model for Composable Re-
active Systems; Lohstroh 2020, Reactors: A
Deterministic Model of Concurrent Compu-
tation for Reactive Systems.

of existing MoCs and borrows concepts from them. For instance, reactors
resemble Hewitt actors2 in that they encapsulate state and communicate

2: Hewitt, Bishop, and Steiger 1973, A Uni-
versal Modular ACTOR Formalism for Arti-
ficial Intelligence.

with other reactors via messages. In contrast to Hewitt actors, however,
the execution semantics of reactors is deterministic. The communication
of reactors based on ports and connections is similar to communication in
SDF3 and KPN.4 The synchronous semantics of communication in reactors,

3: E. A. Lee and Messerschmitt 1987, Syn-
chronous Data Flow .
4: Kahn 1974, The Semantics of a Simple
Language for Parallel Programming.

however, resembles the signals known from synchronous languages.5 Finally,

5: Benveniste, Caspi, et al. 2003, The Syn-
chronous Languages 12 Years Later .

the discrete event semantics at the core of the reactor model establishes a
logical timeline and enables reactive behavior.

The reactor model combines the strengths of the aforementioned models
while avoiding some of their pitfalls. Chapter 2 provides an in-depth survey
of the related MoCs as well as their limitations regarding CPS design. It
argues that none of the existing MoCs are deterministic, reactive, timed, and
scalable. This thesis demonstrates that this semantic gap can be closed by
the reactor model and supporting tools.

Section 6.5 argues that the semantics of some MoCs can be replicated using
reactors. In particular, the nondeterministic behavior of Hewitt actors can be
replicated using physical actions, and the behavior of LET6 can be replicated 6: Kirsch and Sokolova 2012, The Logical

Execution Time Paradigm.using logical delays on connections.

8.2 Languages and Frameworks

There is a wide range of programming languages and frameworks that are
related to this thesis and, in particular, to Lingua Franca. Perhaps the closest
in spirit is the Ptolomy II project.7 Ptolemy II has a strong focus on modeling 7: Ptolemaeus 2014, System Design, Model-

ing, and Simulation using Ptolemy II .CPS and significantly influenced the design and development of Lingua
Franca. Ptolemy II provides implementations for many of theMoCs discussed
in this thesis and it allows for combining different MoCs hierarchically.
However, the fundamental actor semantics that Ptolemy II assumes as a
blueprint for each of the MoCs8 does not well resemble the semantics of 8: Tripakis et al. 2012, A Modular Formal

Semantics for Ptolemy.reactors. Moreover, Ptolemy II focuses on modeling and simulating CPS,
while Lingua Franca provides a language for implementing software that
can be deployed to real systems.

Ptolomy II uses a graphical approach for composing models, similar to com-
mercial tools like LabVIEW9

9: Bitter, Mohiuddin, and Nawrocki 2017,
LabVIEW: Advanced Programming Tech-
niques.

and Simulink.10 While Lingua Franca also 10: Dabney and Harman 2004, Mastering
Simulink.provides a graphical representation of reactor programs, it follows a dif-

ferent philosophy and prioritizes a textual representation. The textual LF

http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.5555/1624775.1624804
http://dx.doi.org/10.5555/1624775.1624804
http://dx.doi.org/10.5555/1624775.1624804
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/PROC.1987.13876
http://www1.cs.columbia.edu/~sedwards/papers/kahn1974semantics.pdf
http://www1.cs.columbia.edu/~sedwards/papers/kahn1974semantics.pdf
http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1007/978-3-642-24349-3_5
http://dx.doi.org/10.1007/978-3-642-24349-3_5
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems
http://chess.eecs.berkeley.edu/pubs/877.html
http://chess.eecs.berkeley.edu/pubs/877.html
http://dx.doi.org/10.1201/9780849333255
http://dx.doi.org/10.1201/9780849333255
http://books.google.com/books?vid=ISBN978-0131424777
http://books.google.com/books?vid=ISBN978-0131424777

8 Related Work 154

program represents the ground truth. The diagrams are generated from this
textual description and provide another view that is useful for studying and
navigating a program, but cannot be used for modifying the program.

ROS11 and AUTOSAR AP12 are closely related to LF in their scope. Both aim 11: Quigley et al. 2009, ROS: an Open-
source Robot Operating System; Koubaa
2016, Robot Operating System (ROS)—The
Complete Reference (Volume 1).

12: AUTOSAR 2023, AUTomotiv Open Sys-
tem ARchitecture.

to provide a foundation for developing complex CPS applications. However,
as discussed in Section 2.9, their underlying communication paradigms,
namely publish/subscribe13 and SoA,14 are semantically equivalent to Hewitt

13: Eugster et al. 2003, The Many Faces of
Publish/subscribe.
14: Perrey and Lycett 2003, Service-
oriented Architecture; Papazoglou and
Heuvel 2007, Service Oriented Architectures:
Approaches, Technologies and Research
Issues; K. B. Laskey and K. Laskey 2009,
Service Oriented Architecture.

actors and expose the same nondeterministic behavior. NASA develops
another framework for embedded systems design called F′ (F prime)15 that is

15: Bocchino et al. 2018, F Prime: an Open-
Source Framework for Small-Scale Flight
Software Systems.

structurally similar to Lingua Franca. While F′, to some extent, can also make
guarantees about the order in which events are observed by components,
these guarantees are less strong than in Lingua Franca.

There are many languages and frameworks that implement the Hewitt actor
model and that are used for systems design (cf. Section 2.3). However, due
to the exposed nondeterminism, they are not well suited for CPS design,
where it is crucial to understand and test the precise behavior. Reactive
programming frameworks like ReactiveX16 and Raectors.IO17 are also closely

16: Meijer 2010, Reactive Extensions (Rx):
Curing Your Asynchronous Programming
Blues.
17: Prokopec 2018, Pluggable Scheduling
for the Reactor Programming Model.

related to LF, but they share the problems of Hewitt actors and require the
programmer to explicitly introduce synchronization.

In the domain of more classical real-time systems, Ada18, Real-Time Euclid19

18: Burns and Andy Wellings 2007, Con-
current and real-time programming in Ada.

19: Kligerman and Stoyenko 1986, Real-
Time Euclid: a Language for Reliable Real-
Time Systems.

and Real-time Java20 are noteworthy programming languages. However,

20: AndrewWellings 2004, Concurrent and
Real-time Programming in Java.

these languages focus on time predictability, and, as discussed in Section 2.2.4,
the underlying real-time task model is nondeterministic. Timed C21 is more

21: Natarajan and Broman 2018, Timed C:
An Extension to the C Programming Lan-
guage for Real-Time Systems.

closely related to Lingua Franca, as it also introduces a logical timeline
and enforces a deterministic execution. However, Timed C is limited to the
C programming language and provides a task-based programming model
that does not expose any hierarchical components or an explicit notion of
dependencies. Giotto is another language that supports the definition of
deterministic programs as a composition of hard real-time tasks based on
the LET paradigm.22 However, Giotto is also limited to a task model, and

22: Henzinger, Horowitz, and Kirsch 2003,
Giotto: A Time-Triggered Language for Em-
bedded Programming.

unlike LF, it does not support reactions to sporadic events.

Hardware description languages and discrete event simulation frameworks
are closely related to LF (cf. Section 2.6.1) for two main reasons. Firstly,
they commonly facilitate a notion of components that bears a resemblance
of reactors in LF, and secondly, they build on top of a discrete events se-
mantics. Particularly noteworthy is Bluespec,23 as it uses guarded atomic 23: Arvind et al. 2004, High-level Synthesis:

an Essential Ingredient for Designing Com-
plex ASICs.

actions for defining hardware, an approach very similar to the reactions of
LF. However, such languages and frameworks are designed for simulating
and synthesizing hardware, not for executing software. Furthermore, many
of the available tools expose nondeterminism, as there is no well-defined
order for simultaneous events.

The family of synchronous programming languages (cf. Section 2.7) is also
closely related to LF. In particular, SCADE24 is commercially successful and 24: Abdulla et al. 2006, Designing Safe, Re-

liable Systems Using Scade; Gérard Berry
2007, SCADE: Synchronous Design and Val-
idation of Embedded Control Software; Co-
laço, Pagano, and Pouzet 2017, SCADE 6: A
formal language for embedded critical soft-
ware development (invited paper).

has been applied to various safety-critical industrial use cases. However, the
synchronous-reactive model exposes concurrency at a fine-granular level
and is difficult to scale up to large systems. In this context, the sparse syn-
chronous model, as implemented in Scoria,25 is a promising extension of the

25: Krook et al. 2022, Creating a Language
for Writing Real-Time Applications for the
Internet of Things.

synchronous reactive paradigm. It allows for describing more coarse-grained
concurrent processes that are forked off and joined at well-defined logical
times. Such concurrent processes impose a logical delay similar to LET tasks.
Thus, Scoria, like LF, can describe both fully synchronous behavior and LET-
like processes that impose logical delays. Recently, the concept of logical
synchrony was proposed as a framework for coordinating distributed exe-
cution based on the synchronous-reactive paradigm. It introduces a similar
notion of “logical latency.”26

26: Lall et al. 2023, Logical Synchrony and
the Bittide Mechanism.

http://robotics.stanford.edu/~ang/papers/icraoss09-ROS.pdf
http://robotics.stanford.edu/~ang/papers/icraoss09-ROS.pdf
http://dx.doi.org/10.1007/978-3-319-26054-9
http://dx.doi.org/10.1007/978-3-319-26054-9
https://autosar.org/
https://autosar.org/
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1109/SAINTW.2003.1210138
http://dx.doi.org/10.1109/SAINTW.2003.1210138
http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1002/wics.8
https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/CL18-2993.pdf
https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/CL18-2993.pdf
https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/CL18-2993.pdf
http://dx.doi.org/10.1145/1900160.1900173
http://dx.doi.org/10.1145/1900160.1900173
http://dx.doi.org/10.1145/1900160.1900173
http://dx.doi.org/10.1007/978-3-030-00302-9_5
http://dx.doi.org/10.1007/978-3-030-00302-9_5
http://books.google.com/books?vid=ISBN9780521866972
http://books.google.com/books?vid=ISBN9780521866972
http://dx.doi.org/10.1109/TSE.1986.6313049
http://dx.doi.org/10.1109/TSE.1986.6313049
http://dx.doi.org/10.1109/TSE.1986.6313049
http://books.google.com/books?vid=ISBN978-0470844373
http://books.google.com/books?vid=ISBN978-0470844373
http://dx.doi.org/10.1109/RTAS.2018.00031
http://dx.doi.org/10.1109/RTAS.2018.00031
http://dx.doi.org/10.1109/RTAS.2018.00031
http://dx.doi.org/10.1109/JPROC.2002.805825
http://dx.doi.org/10.1109/JPROC.2002.805825
http://dx.doi.org/10.1109/ICCAD.2004.1382681
http://dx.doi.org/10.1109/ICCAD.2004.1382681
http://dx.doi.org/10.1109/ICCAD.2004.1382681
http://dx.doi.org/10.1007/11925040_8
http://dx.doi.org/10.1007/11925040_8
http://dx.doi.org/10.1007/978-1-4020-6254-4_2
http://dx.doi.org/10.1007/978-1-4020-6254-4_2
http://dx.doi.org/10.1109/TASE.2017.8285623
http://dx.doi.org/10.1109/TASE.2017.8285623
http://dx.doi.org/10.1109/TASE.2017.8285623
http://dx.doi.org/10.1109/MEMOCODE57689.2022.9954383
http://dx.doi.org/10.1109/MEMOCODE57689.2022.9954383
http://dx.doi.org/10.1109/MEMOCODE57689.2022.9954383
http://dx.doi.org/10.48550/ARXIV.2308.00144
http://dx.doi.org/10.48550/ARXIV.2308.00144

8 Related Work 155

Some streaming languages and frameworks build on similar ideas, and utilize
logical clocks to coordinate distributed execution deterministically. Timely
dataflow, for instance, is a framework that allows for expressing general
streaming applications in Rust. It coordinates the execution locally or on
distributed machines using vector clocks and special timestamps that encode
information about the causal relationship of events.27 The Hydroflow Rust 27: Murray et al. 2013, Naiad: A Timely

Dataflow System.framework builds on similar ideas.28 However, the notion of time in these
28: Samuel 2021, Hydroflow: A Model and
Runtime for Distributed Systems Program-
ming.

frameworks is purely logical and is not exposed to the programmers. Thus, it
cannot be used for reasoning about events on a physical timeline. Moreover,
while Hydroflow and Timely dataflow ensure determinism by preserving
causality, they cannot easily reason about the correct order of input events
when their causal relationship is defined outside the system.

Ohua29 and ConDRust30 follow a different approach and automatically derive 29: Ertel 2019, Towards Implicit Parallel
Programming for Systems.

30: Suchert et al. 2023, ConDRust: Scalable
Deterministic Concurrency from Verifiable
Rust Programs.

parallel dataflow implementations from sequential algorithms. The compiler
analyzes the data and control-flow dependencies between the statements of
the sequential program and automatically derives a graph that captures these
dependencies (similar to the APG in LF). This graph is then compiled into a
parallel dataflow application that preserves the semantics of the sequential
program. This approach, however, only provides indirect control over the
precise composition of the program and does not provide a notion of time
as part of its semantics.

8.3 Scalable Connection Patterns and
Performance Optimization

The concept of banks and multiports introduced in Section 5.1 resembles
similar concepts in the Ptolemy II project. Ptolemy II also supports multiports
and provides some higher-order components that allow for creating multiple
parallel copies of the same actor. However, Ptolemy II does not provide a
textual syntax for these concepts. More recently, CAL introduced port arrays,
which are similar to multiports in LF.31 31: Callanan and Gruian 2023, Scalable Ac-

tor Networks with CAL.
The general implementation of the C++ runtime and the optimizations dis-
cussed in Section 5.2 are unique to Lingua Franca.While conceptually related,
scheduling reactor programs is fundamentally different from scheduling He-
witt actors and related MoCs. Since Hewitt actors are nondeterministic and
the workload cannot be predicted, the runtime scheduler needs to make
ad hoc decisions to distribute the workload. The predominant solution is
work stealing,32 which is also the default scheduling mechanism of Akka 32: Blumofe and Leiserson 1999, Schedul-

ing Multithreaded Computations By Work
Stealing; Yang and He 2018, Scheduling Par-
allel Computations By Work Stealing: a Sur-
vey.

and CAF. The main advantage of work stealing is that it avoids a centralized
scheduler and minimizes the synchronization points between workers. As
long as they have sufficient work, workers can operate independently. The
work stealing approach, however, does not work well for a reactor runtime,
as deciding which reactions are ready to process requires more knowledge
about the system’s state. While the reactor MoC requires a central scheduler,
we can better leverage knowledge about the program and its dependencies
to optimize the execution.

Since the reactor model is based on discrete events, the presented schedul-
ing algorithm is closely related to the mechanisms used in discrete event
simulators (cf. Section 2.6.1). However, parallelizing the execution in such
simulators is commonly hard as the dependencies and the precise interac-
tions of components are not known in advance. The scheduler presented
in Section 5.2 instead leverages the properties of the reactor model to un-
derstand precisely which reactions can be executed in parallel to deliver an
efficient, deterministic execution.

http://dx.doi.org/10.1145/2517349.2522738
http://dx.doi.org/10.1145/2517349.2522738
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-201.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-201.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-201.html
https://cfaed.tu-dresden.de/publications?pubId=2560
https://cfaed.tu-dresden.de/publications?pubId=2560
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.33
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.33
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.33
http://dx.doi.org/10.1145/3610579.3611074
http://dx.doi.org/10.1145/3610579.3611074
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1007/s10766-016-0484-8
http://dx.doi.org/10.1007/s10766-016-0484-8
http://dx.doi.org/10.1007/s10766-016-0484-8

8 Related Work 156

8.4 Design Space Exploration

The Mocasin framework introduced in Section 7.2 is closely related to a
wide range of existing DSE frameworks described in the literature (cf. Sec-
tion 7.1). However, in contrast to the existing tools, Mocasin provides a
research platform for prototyping toolflows and experimenting with novel
DSE concepts. It is a complementary tool designed to facilitate research on
DSE tools in general. To achieve comparability with existing approaches,
Mocasin incorporates many mapping strategies known from the literature
into its toolbox.

Ptolemy II follows an idea very similar to Mocasin—to provide a rapid proto-
typing environment independent of a particular use case to facilitate research
and development. However, Ptolemy II focuses on researching and experi-
menting with actor-based MoCs and researching new MoCs. It accurately
simulates the application behavior according to the MoC semantics. While
Ptolemy II focuses on accurately capturing the semantics and functional
properties of applications, Mocasin completely abstracts over the semantics
and only considers application properties that are relevant for rapid perfor-
mance estimation. Mocasin is complementary in the sense that Ptolemy II
is a toolbox for creating accurate models of applications, and Mocasin is a
toolbox for creating DSE flows for generating efficient implementations of
given applications on a wide range of hardware architectures.

Conclusions 9
9.1 Summary 157

9.2 Future Work 158
This chapter presents a summary of the contributions made in this thesis
and discusses possible directions for future work.

9.1 Summary

This thesis introduces a complete methodology and comprehensive soft-
ware stack supporting the design and development of deterministic reactive
programs for cyber-physical systems. At the core of this methodology is
the novel reactor model. In contrast to related models, the reactor model
promises to fulfill the main objectives of this thesis as defined in Chapter 1:
timed semantics, reactivity, scalability, and determinism.

The presented stack of tools includes the DEAR framework, which constitutes
one of the first practical implementations of the reactor model and integrates
it with AUTOSAR. The conducted case study based on the AUTOSAR Adap-
tive Platform Demonstrator exposes the problem of nondeterminism in
safety-critical applications. It also highlights the general applicability of reac-
tors to industrial use cases and the ability of reactors to achieve determinism
even in distributed applications.

Building on the reactor model, this thesis contributes to the coordination
language Lingua Franca, which enables a more efficient definition of reactor
programs by providing an abstract textual syntax. This includes the develop-
ment of a full-fledged C++ reactor runtime based on the DEAR framework,
as well as a comprehensive LF code generation backend. The overall discus-
sion in Chapter 4 highlights LF’s ability to coordinate execution across a
multiplicity of timelines, and the presented code examples demonstrate how
we can utilize the timed semantics and reactivity of reactors to solve relevant
problems.

This thesis also demonstrates the scalability of LF applications in a compre-
hensive evaluation (cf. Chapter 5). The comparison with the popular actor
frameworks Akka and CAF reveals that LF can significantly outperform
state-of-the-art actor frameworks, in particular if the workloads require
some form of synchronization. However, Chapter 6 also shows that there are
some limitations to this scalability that result from the constraints currently
imposed by the reactor scheduler. This thesis proposes scheduling enclaves
as a mechanism for partitioning LF programs to better decouple different
parts of the program and enable their parallel execution.

Another aspect of scalability is the ability of a toolflow to manage hardware
complexity. Chapter 7 argues the case for leveraging DSE techniques to
automate the process of deploying an application to a concrete realization on
complex hardware. It also introduces the Mocasin tool as a research platform
in the DSE domain. While an integration of Mocasin with LF remains for
future work, the scope and modular structure of Mocasin present an ideal
foundation for experimenting with state-of-the-art DES techniques in LF.

In conclusion, this thesis introduces a reactor-based workflow that indeed
closes the semantic gap identified in Section 2.10. The coordination lan-
guage Lingua Franca makes reactor-based programming more accessible

9 Conclusions 158

and provides comprehensive tooling that supports the development of com-
plex applications. The C++ runtime provides a particularly well-performing
implementation of the reactor model that can compete with and even exceed
the performance of popular actor frameworks.

9.2 Future Work

While this thesis makes a significant contribution to the methodologies and
tooling available for CPS design, the discussion also touches on various
limitations of the proposed approach, which opens interesting opportunities
for future work.

9.2.1 Coordination of Enclaves and Federates

The mechanisms for coordinating federates and enclaves that are currently
implemented in LF all have significant limitations. The centralized coordina-
tion scheme for federated execution requires a central coordinator, which
presents a single point of failure and a performance bottleneck. Decentralized
coordination scales better but instead requires assumptions about clock syn-
chronization error, network latency, and WCET. In particular, good WCET
optimizations are challenging to obtain since the complexity of embedded
hardware increases drastically, which often decreases time predictability.
WCET estimations often need to be overly conservative, which leads to long
waiting times.

The mechanism for coordinating enclaves introduced in Section 6.3 aims to
provide an alternative coordination scheme that allows neighboring reactors
to directly coordinate between themselves without an additional coordinator.
However, while this approach works well for simple programs, this coordina-
tion scheme can become very inefficient if the reactor graph contains cycles.
Moreover, cycles between reactors without any delays are not supported at
all.

Improving the existing coordination mechanisms requires more research.
Likely, different coordination mechanisms could be combined to achieve the
best results. While acyclic structures could coordinate execution directly
without resorting to a coordinator, reactors in a cyclic structure could use
a local coordinator that governs only a subset of the overall program that
is part of the cycle. Furthermore, related work could provide inspiration
on how to improve the existing scheduling mechanisms. In particular, the
methodologies of Timely dataflow1 and bittide2 are relevant in the context 1: Murray et al. 2013, Naiad: A Timely

Dataflow System.

2: Lall et al. 2023, Logical Synchrony and
the Bittide Mechanism.

of LF. Both achieve deterministic coordination without a central coordinator,
and both use logical timestamps to reason about the order of events.

Further research on coordinating reactor programs should also extend the
benchmarks presented in this thesis to LF programs using federates or en-
claves and evaluate the performance of implemented approaches.

9.2.2 Design Space Exploration in LF

There are two major avenues of DSE in Lingua Franca. First, DSE techniques
could be utilized for mapping reactors and reactions to particular hardware
resources. And, second, DSE techniques could be utilized to automatically
partition LF programs and introduce enclaves where needed to achieve
certain requirements. This could be ensuring that parts of the application

http://dx.doi.org/10.1145/2517349.2522738
http://dx.doi.org/10.1145/2517349.2522738
http://dx.doi.org/10.48550/ARXIV.2308.00144
http://dx.doi.org/10.48550/ARXIV.2308.00144

9 Conclusions 159

can effectively utilize parallel resources to achieve a certain throughput or
that dependencies are broken up such that deadlines are met. Currently, it
is unclear if this process can be completely automated. However, even if
deriving good heuristics proves challenging, DSE techniques can provide
insights and guidance for users while developing the program.

The Mocasin DSE tool presents one of the core contributions of this thesis.
Mocasin was designed specifically to provide a modular research platform
for prototyping DSE flows. While Mocasin focuses on modeling dataflow
applications, the modular architecture, in principle, also allows for an in-
tegration of the reactor model. Section 7.4 discusses a few possible paths
for integrating LF with Mocasin. This integration, however, as well as the
development of concrete DSE flows and heuristics, remain for future work.

9.2.3 Mutations

The reactor model defines mutations, which allow a reactor to modify itself
during execution. Mutations could, for instance, instantiate new reactors
or establish new connections. They could also disconnect or deconstruct
reactors. Mutations are the reactor equivalent of the dynamic instantiation
of new actors in the Hewitt actor model. Mutations modify the structure of
the program and, consequently, also the dependencies between reactions
recorded in the APG.

At the moment of this writing, Lingua Franca does not fully support mu-
tations. For this reason, the performance evaluation in Section 5.3 omits
Savina benchmarks that require dynamic actor creation. There are multiple
challenges to implementing mutations in LF that need to be resolved in future
work. Besides providing a syntax for expressing mutations, their scope and
capabilities need to be defined precisely. Mutations can be a powerful tool
for building adaptable software, but when used excessively, they make pro-
grams difficult to understand and analyze. There is a trade-off between the
expressiveness of mutations and the overall predictability and analyzability
of programs, and an LF implementation needs to provide a well-balanced
solution.

On the side of the runtime, mutations require support for changing the APG
during execution. Currently, the reactor runtimes assume that the APG only
has to be calculated once. While, in principle, the entire APG can be recom-
puted in between two tags, this process would likely introduce significant
overhead for sufficiently large graphs.Therefore, mutations should be limited
in scope so that only subsets of the APG have to be reconsidered.

9.2.4 Hardware Synthesis

As mentioned in Section 8.2, LF bears some resemblance to HDLs. Similar to
real hardware circuits, reactions respond to incoming signals andmaychange
outgoing signals. Possibly, LF could also be applied to designing hardware.
Reactions themselves could be written in an HDL. Alternatively, high-level
synthesis3 could be leveraged to convert sequential reaction bodies into 3: McFarland, Parker, and Camposano

1990, The High-Level Synthesis of Digital
Systems; Coussy and Morawiec 2008, High-
Level Synthesis: From Algorithm to Digital
Circuit .

hardware that performs the same operation as sequential code. However,
while there are some parallels to languages used in hardware design, the
semantics of the reactor model also deviates significantly from common
hardware models. For instance, the scheduling of future events and ordering
constraints between reactions (i.e., the APG) could be difficult to realize effi-
ciently in hardware. Exploring the applicability of LF for hardware synthesis
remains for future work.

http://dx.doi.org/10.1109/5.52214
http://dx.doi.org/10.1109/5.52214
http://books.google.com/books?vid=ISBN1402085877
http://books.google.com/books?vid=ISBN1402085877
http://books.google.com/books?vid=ISBN1402085877

9 Conclusions 160

9.2.5 Integrating LF with Existing CPS Frameworks

While this thesis shows that Lingua Franca presents a promising alternative
for modeling CPS software, in particular due to the underlying deterministic
semantics of reactors, LF has to compete with a wide range of existing frame-
works. In particular, ROS and AUTOSAR AP are popular and widely adopted
in industry. The major industry players maintain large legacy code bases,
and often their business models rely on the exchangeability and compatibil-
ity promised by using a common standard. LF cannot easily replace these
existing frameworks and standards. Instead, a more promising approach
would be to integrate reactors and LF into the stack of tools that are already
deployed in industry. Future work could, for instance, consider synthesizing
AUTOSAR-compatible software components from LF programs. F′ could
also be a promising target for such an integration, as the mechanisms for
structuring programs in F′ are very similar to those in LF.

9.2.6 Reactor Libraries and Higher-level Reactors

Currently, LF developers need to construct their entire application from
scratch. Of course, they can import third-party libraries in the target lan-
guages, but there is no standard library in LF that includes commonly used
reactors. Creating such a library would enable the construction of more
complex programs from basic components.

There is also an opportunity to introduce higher-level reactors in LF. Such
reactors could use other reactors as arguments to implement certain patterns.
For instance, the LETTaskand HewittActorreactors discussed in Section 6.5
could be implemented as higher-level reactors and included in a common
library. In addition, certain connection patterns, like the ones discussed in
Section 5.1.2, could be provided as higher-level reactors.

List of Figures

1.1 The hourglass model. 2
1.2 Overview of MoCs for cyber-physical systems. 7

2.1 A process consisting of multiple threads. 10
2.2 A periodic and a sporadic task. A solid arrow represents the release time, and a dashed arrow represents

the deadline of a job. 11
2.3 A multiframe task and a corresponding release pattern. 12
2.4 A parallel synchronous task. 13
2.5 An example schedule for 3 tasks that illustrates the influence of jitter in execution and release times on

the data dependencies between tasks. This figure is loosely based on Figure 3 in Gemlau et al. 2021,
System-Level Logical Execution Time: Augmenting the Logical Execution Time Paradigm for Distributed
Real-Time Automotive Software. 13

2.6 Example actor programs that may expose nondeterministic behavior. 16
2.7 An actor implementation of the aircraft door example. 16
2.8 The Voyager tool for debugging the multitude of possible behaviors of actor programs. This image

is reproduced from Torres Lopez et al. 2019, Multiverse Debugging: Non-Deterministic Debugging for
Non-Deterministic Programs (Brave New Idea Paper) licensed under CC-BY 3.0. 17

2.9 Venn diagram highlighting the relationships between various actor-based MoCs. This Venn diagram
is based on the one given in Goens 2021, Improving Model-Based Software Synthesis: A Focus on
Mathematical Structures, p. 104. 19

2.10 A KPN application implementing an audio filter with two channels. 20
2.11 An SDF application implementing an audio filter with two channels. 21
2.12 Implementations of a simple emergency brake assistant using different actor-based MoCs. 23
2.13 Events in three distributed processes annotated with Lamport timestamps. 25
2.14 Events in three distributed processes annotated with vector timestamps. 26
2.15 A CMOS inverter with a capacity connected to its output. 27
2.16 An input signal and different models of the output signal of a CMOS inverter. 27
2.17 An example schedule for three tasks and their read-write-dependencies using a classic real-time model

(bounded execution time) and the logical execution time model. This figure is loosely based on Figure
3 in Gemlau et al. 2021, System-Level Logical Execution Time: Augmenting the Logical Execution Time
Paradigm for Distributed Real-Time Automotive Software. 33

2.18 Communication mechanism in AUTOSAR AP. Client and server use auto-generated proxies and
skeletons to communicate with their peers. 35

2.19 Distribution of possible results for the client program in Listing 2.6. 36
2.20 Overview of MoCs and frameworks for cyber-physical systems. (Repeated from Figure 1.2) 38

3.1 Visual representation of reactor components. 42
3.2 An example reactor. 42
3.3 Dependency graph of the example reactor in Figure 3.2. 44
3.4 Overview of the general scheduling mechanism for reactors. 45
3.5 Reactor implementation of the account deposit and withdrawal actor program Figure 2.6a introduced

in Section 2.3. 48
3.6 Variants of the deposit and withdrawal example in Figure 3.5 that use an additional proxy reactor. . 49
3.7 Variant of the program in Figure 3.5 that uses physical actions to model user inputs. 49
3.8 Reactor implementation of a simplified brake assistant as discussed in Section 2.4.4. 50
3.9 The transactors implemented in the DEAR framework provide a reactor interface for interacting with

the events and methods of AUTOSAR services. 51
3.10 The logical and physical delay imposed by sending a message over the network in DEAR. 53
3.11 Integration of reactors in AUTOSAR AP using the DEAR framework. Special reactors (transactors)

translate between the reactor implementation of the SWC logic and the service interface that the SWC
exposes to its environment. 53

http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://creativecommons.org/licenses/by/3.0/
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1145/3381847

3.12 The emergency brake assistant (EBA) application implemented in the Adaptive Platform Demonstrator
(APD). 55

3.13 Prevalence of errors for 20 executions of the emergency brake assistant. 56
3.14 Deterministic implementation of the EBA application in the APD using reactors and the transactors

provided by the DEAR framework. 57
3.15 The trade-off between 𝑑CV and the resulting error rate. 58

4.1 The Lingua Franca logo. 59
4.2 The LF compilation flow. 60
4.3 Timing diagram illustrating a possible execution of the “Hello, World!” LF program given in Listing 4.1. 68
4.4 Timing diagrams visualizing possible execution traces for the program given in Listing 4.6. 70
4.5 Timing diagram for the simple clock program in Listing 4.8. 72
4.6 Timing diagram for the slowing clock program in Listing 4.9. 72
4.7 Timing diagram for the after delay example in Listing 4.10. 73
4.8 Timing diagram for the physical action example in Listing 4.12. 75
4.9 Diagram showing the Reflex Game defined in Listing 4.17. 78
4.10 An actor implementation of the aircraft door example. (Repeated from Figure 2.7) 80
4.11 Different actors may observe events in a different order. 80
4.12 Federated LF implementation of the aircraft door example. 81
4.13 The centralized coordination scheme for federated execution of LF programs. 81
4.14 Timing diagrams for the aircraft door example that illustrate the decentralized coordination scheme

for federated execution of LF programs. 82
4.15 Decentralized coordination with a logical delay 𝑑 = 𝑤𝐶,𝑑 + 𝑙 + 𝑐 on the connection between Cockpit

and Sensor. 84
4.16 The Lingua Franca toolchain. 86
4.17 UML diagram showing the core classes of the C++ reactor runtime. 90

5.1 The APG for the account example program with a proxy delay in Listing 4.5. 99
5.2 The benchmark runner implemented in LF. 105
5.3 LF implementation of the Ping Pong benchmark. 106
5.4 LF implementation of the Concurrent Dictionary benchmark. 106
5.5 LF implementation of the Dining Philosophers benchmark. 107
5.6 Comparison between the reactor and the actor implementation of the Filter Bank benchmark. 108
5.7 Mean execution times and 99% confidence intervals for various Savina benchmarks implemented in

LF, CAF, and Akka, measured for a varying number of worker threads. The numbers prefixed with #
are benchmark IDs as listed in Imam and Sarkar 2014, Savina – An Actor Benchmark Suite: Enabling
Empirical Evaluation of Actor Libraries. 109

5.8 Speedup achieved by our optimized C++ runtime for 20 worker threads compared to an unoptimized
version. 111

6.1 A simple cascade of reactors. 112
6.2 APG of the cascade program in Figure 6.1. 113
6.3 Timing diagram for the cascade program in Figure 6.1. 113
6.4 A simple reactor pipeline with delays in between stages. 113
6.5 APG of the pipeline program in Figure 6.4. 113
6.6 Timing diagram for the pipeline program in Figure 6.4. 114
6.7 A program with two parallel sections. 114
6.8 Timing diagram for the program in Figure 6.7. 114
6.9 A simplified brake assistant with deadlines. 115
6.10 A timing diagram showing one potential execution of the simplified brake assistant application in

Figure 6.9. 115
6.11 UML diagram showing the inheritance relation between actions and various connection classes in the

C++ runtime. 119
6.12 An example program with two enclaves. 120
6.13 Timing diagram for the example in Figure 6.12 using a naive coordination scheme. 121
6.14 Timing diagram for the example in Figure 6.12 using the complete coordination scheme that inserts

empty upstream events. 121
6.15 Timing diagram for the pipeline example in Figure 6.1 using enclaves for each of the stages. 123

http://dx.doi.org/10.1145/2687357.2687368
http://dx.doi.org/10.1145/2687357.2687368

6.16 Timing diagram that combines the diagrams for the individual enclaves in Figure 6.15. 123
6.17 Timing diagram for the example in Figure 6.7 using enclaves for each of the reactors. 124
6.18 A modification of the car brake example in Figure 6.9 that uses enclaves and a logical delay between

the assistant and the brake. 124
6.19 A modified version of the car brake example in Figure 6.9 that uses enclaves and physical connections. 125
6.20 A Hewitt actor implemented with enclaves in LF. 126
6.21 An example program with a cycle between two enclaves. 128
6.22 A sequence diagram that shows the communication between A and B for the program in Figure 6.21. 129
6.23 A sequence diagram that shows the communication between A and B for the program in Figure 6.21

with a 10ms delay. Messages [1] to [7] are omitted because they are identical to the first messages in
Figure 6.22. 131

6.24 An example program with cyclic connections without delays between enclaves. 132

7.1 Architecture of the Odroid-XU4 with four little cores (Cortex A7) and four big cores (Cortex A15). . 135
7.2 The hourglass model. (Repeated from Figure 1.1) . 136
7.3 Generalized DSE toolflow for mapping applications to heterogeneous multi-core architectures. . . . 137
7.4 The Mocasin architecture. This figure was designed by Gerald Hempel. 139
7.5 A visualization of the platform graph used by Mocasin internally to represent the Odroid-XU4 archi-

tecture. 141
7.6 The basic process model simulated in Mocasin. 143
7.7 Visualization of the simulated execution of an audio filter application on the Odroid-XU4. 144
7.8 A Mocasin toolflow for mapping and simulating the workload of an LTE uplink receiver. 147
7.9 Validation of the LTE simulation in Mocasin. Every point represents the simulated execution time and

its corresponding measured execution time for a random workload. 148
7.10 Comparison of various mapping algorithms applied to the randomized workloads of the LTE benchmark. 149

List of Tables

3.1 Delays used in the deterministic EBA implementation. 58

5.1 Characteristics of the Savina benchmarks implemented in LF.Themiddle part denotes static information
about the size of the program, and the right part denotes runtime information about the execution of
the program. 104

List of Listings

2.1 Pseudocode of a KPN process implementing the filter from Figure 2.10. 20
2.2 Pseudocode of a naive KPN process implementing the brake actor. 23
2.3 Pseudocode of a KPN process that implements the brake actor and receives instructions from a

control actor. 24
2.4 A Lustre program implementig a stopwatch and a table that represents an execution sequence. . . 30
2.5 An example interface for an accumulator service. 35
2.6 A client program using the accumulate service to add 1 and 2. 36
2.7 Corrected client program using blocking calls to wait on the returned future objects. 36

3.1 Pseudocode implementation of the set procedure that may be used by reactions to set the value of
an output port and trigger downstream reactions. 45

3.2 Pseudocode implementation of the schedule procedure that may be used by reactions to schedule
future events on an action. 46

3.3 The main scheduling procedure that advances logical time to the next tag, and then processes all
events and triggered reactions at this tag. 47

4.1 “Hello, World!” programs written in LF using all the target languages that are currently supported. 60
4.2 The core grammar of Lingua Franca given in ANTLR 4 format. 62
4.3 Lingua Franca implementation of the account example given in Figure 3.5. 65
4.4 Lingua Franca implementation of the account example with a proxy reactor given in Figure 3.6a. . 66
4.5 Lingua Franca implementation of the account example with a proxy reactor imposing a delay as

given in Figure 3.6b. 67
4.6 A Lingua Franca program that increments a counter every 5ms and prints the current value. . . . 69
4.7 Modified Printerreactor with an annotated deadline and a deadline handler. 71
4.8 A simple clock implemented in LF that sends a tick signal at regular intervals. 71
4.9 A slowing clock implemented in LF that sends a tick signal at increasing intervals. 72
4.10 Example LF program illustrating the use of after delays. 73
4.11 Example LF program that is semantically equivalent to the after delay example in Listing 4.10 but

uses an explicit delay reactor. 74
4.12 Example LF program illustrating the use of physical actions. 74
4.13 A variant of the bank account example in Listing 4.3 using physical actions to model the user input. 76
4.14 Example LF program illustrating the use of physical connections. 76
4.15 Example LF program that is semantically equivalent to the physical connection example in List-

ing 4.14, but that uses an explicit physical delay reactor. 77
4.16 A nondeterministic implementation of the bank account example in Listing 4.3 using physical

actions to model the user input and physical connections to relay the user messages. 77
4.17 Reflex Game implemented in LF. 79
4.18 A simplified main function, as it could be generated for an LF “Hello, World!” program. 92

5.1 An extension to the Lingua Franca syntax given in Listing 4.2, providing support for banks and
multiports. 95

5.2 A scalable implementation of the simple account example given in Listing 4.3 using banks and
multiports. 96

5.3 A fork-join pattern using one-to-many and many-to-one connections in LF. 97
5.4 A fork-join pattern using a broadcast connection in LF. 97
5.5 A cascade pattern using a bank in LF. 98
5.6 An attempt at many-to-many communication in LF. 98
5.7 Many-to-many communication in LF using the interleavedmodifier. 98
5.8 Level-based implementation of the getReadyReactions procedure. 100
5.9 Main work function executed by each worker. 100
5.10 Implementation of the readyQueuePop procedure. 101
5.11 Implementation of the readyQueueFill procedure. 102

6.1 Time barrier classes as provided by the C++ runtime. 118
6.2 A generic LET task implemented with enclaves in LF. 126
6.3 A keyboard input reactor implemented with enclaves in LF. 127

7.1 Description of the Odroid-XU4 board in Python using Mocasin’s platform designer API. 142

Acronyms

AP Adaptive Platform 34
APD Adaptive Platform Demonstrator 55
APG acyclic precedence graph 44, see also dependency

graph
API application programming interface 28
ARA Runtime Environment for Adaptive Applications

34
AST abstract syntax tree 85
AUTOSAR AUTomotive Open System ARchitecture vii,

7, 8, 33, 34

BET bounded execution time 32

CAF C++ Actor Framework 15
CAL CAL actor language 22
CFS Completely Fair Scheduler 145
CMOS complementary metal-oxide-semiconductor

27
CP Classic Platform 33, 34
CPN C for process networks 22
CPS cyber-physical system vii, 1
CSDF cyclo-static dataflow 22

DAG directed acyclic graph 13
DDF Dennis dataflow or dynamic dataflow 21
DDS Data Distribution Service 18
DEAR Discrete Events for AUTOSAR vii, 7
DES discrete event simulation 28
DMA direct memory access 140
DPN dataflow process network 21
DRAM dynamic random-access memory 140–142
DSE design space exploration vii, 8
DSL domain-specific language 22
DSP digital signal processor 31
DTM deterministic multi-threading 11

EBA emergency brake assistant 23
ECU electronic control unit 3
EMF Eclipse Modeling Framework 85

FFT fast Fourier transformation 20
FIFO first-in, first-out 20
FPGA field-programmable gate array 135

GPU graphics processing unit 135
GUI graphical user interface 138

HDL hardware description language 28
HLA High Level Architecture 81
HPC high-performance computing 6
HSDF homogeneous SDF 21

IDE integrated development environment 85

JVM Java Virtual Machine 105, 110

KPN Kahn process network 19

LET logical execution time 32
LF Lingua Franca vii, viii, xiv, 7
LOC lines of code 5
LSP Language Server Protocol 85
LTE long-term evolution 135, 146

MAPS MPSoC Application Programming Studio 137
MoC model of computation vii, 2
MPSoC multiprocessor system on a chip 28
MQTT Message Queuing Telemetry Transport 18

NoC network-on-chip 140

OOP object-oriented programming 63
OS operating system 34

𝜋SDF parameterized and interfaced SDF 22
POSIX Portable Operating System Interface 34
PTIDES Programming Temporally Integrated Dis-

tributed Embedded Systems 52
PTP Precision Time Protocol 84

RAN Radio Access Network 146
ROS Robot Operating System vii, 7, 34
RPC remote procedure call 18
RTI run-time infrastructure 81
RTL register transfer level 28

SADF scenario-aware dataflow 22
SC synchronous constructive 31
SDF synchronous dataflow 21
SDF3 SDF for Free 141
SoA service-oriented architecture 18
SOME/IP Scalable Service-Oriented Middleware over

IP 35
SSM sparse synchronous model 32
SWC software component 35

TDL Time Definition Language 33
TGFF Task Graphs for Free 141
TSN Time-Sensitive Networking 84
TTA time-triggered architecture 33

UML Unified Modeling Language 89

WCET worst-case execution time 11

Symbols

Notation Description Page
List

𝑐 maximum clock synchronization error 52

𝑑 delay 43
𝐷 deadline 70
𝒟 function that maps a tag and a delay to a tag that is offset by the given delay 43
𝔇𝐷 function that maps a physical reading of time to the latest tag that may be executed

at this time without violating the deadline 𝐷.
70

𝑒 event 25

𝑔 tag 26
𝑔0 startup tag 43
𝒢 function that maps a timestamp to a tag with microstep 0 68
𝔾 set of all tags 26

𝑙 worst-case network latency 52
𝐿 logical execution time 32

𝑚 microstep of a tag 27
𝑀 The largest possible microstep 122

ℕ set of natural numbers 25

𝑜 offset of a timer 43

𝑝 period of a timer 43
𝒫 function that maps a reading of physical time and a delay to a tag 43

ℝ set of real numbers 25

𝑠 safe-to-process offset 82
𝒮 function thatmaps a tag 𝑔𝑑 and a delay 𝑑 to the largest possible tag 𝑔 with𝒟(𝑔, 𝑑) = 𝑔𝑑 122

𝑡 timestamp 25
𝑇 imperfect reading of physical time 25
𝑇0 imperfect reading of physical time at program start 43
𝜏 current instance of physical time 25
𝒯 function that maps a tag to its timestamp 26
𝕋 set of all time values 25

𝑤 worst-case execution time 52

Index

A

acquire 117
action 43, 63, 71

logical see logical action
physical see physical action

actor 19, see also Hewitt actor
adaptivity 4
after delay 64, 73
antidepenency 42
availability 85

B

bank 95
behavior 4, 14
broadcast 95, 97

C

CAL theorem 85
centralized coordination 81
channel 19
client 35
clock 25
communication phase 140
communication primitive 140
communication resource 140
complexity 5
concurrency 3, 17
connection 42, 64
consistency 85
coordination 81

centralized see centralized coordination
decentralized see decentralized coordination

cyber-physical system 1

D

data race 10, 15
high-level 15
low-level 15

dataflow 20
deadline 11, 64, 70
decentralized coordination 82
dependency 42, 44
dependency graph 43, see also APG
determinism 3, 16
discrete events 28

E

effect 42, 64
enclave 8, 116

engineering model 2
environment 91, 116
event 25, 28, 43
event queue 28, 44
expression 63

F

fast mode 69
federate 80
federated reactor 61, 80
federation 80
firing 20
future 18

H

Hewitt actor 14, 38
hourglass model 2

I

import 61
input 4, 63
interleaved 95

J

job 11

L

lag 69
Lamport timestamp 25
level 99
logical action 42, 43, 48, 71
logical execution time 32
logical time 26
logically simultaneous 26, 43

M

mailbox 14
main reactor 61
mapping 135, 141
method 63
microservice 18
microstep 27, 43
microstep delay 43
middleware 34
Mocasin 8, 137
model 2

of computation 2
multiport 95
mutation 42

N

new 63
Newtonian time 25
node 37

O

Odroid 135
output 63

P

paradigm 2
parallel task 12
parameter 61
periodic task 11, 39
physical action 42, 43, 49, 74
physical connection 64, 76
physical time 25
port 42, 63
preamble 61
process network 19
processing element 140
proxy 35
publish/subscribe 18, 37, 39

R

reaction 42, 64
reaction body 64
reaction queue 44
reactor 41, 42
reactor declaration 61
reactor instance 63
reactor model 7, 41
ready queue 45
release 117
reliability 3
remote procedure call 18
runtime 44
Rust 59

S

safe-to-process offset 52
safety 3
Savina 94
scalability 5
schedule 28, 42, 43, 45
scheduler 44
scientific model 2
server 35

service 18, 35
service-oriented architecture 18
set 45
shutdown 42, 64
skeleton 35
smart pointer 91
source 42, 64
sparse synchronous 32, 39
sporadic task 12, 39
startup 42, 43, 64
state variable 42, 61
superdense time 27
synchronous reactive 29, 39

T

tag 26, 43
target declaration 61
target language 60
target property 61
task 11, 39

parallel see parallel task
periodic see periodic task
sporadic see sporadic task

task graph 14, 39
testability 3
thread 10, 38
time 6, 24, 63

logical see logical time
Newtonian see Newtonian time
physical see physical time
superdense see superdense time

time barrier 46, 68, 117
timer 42, 43, 63
timestamp 25

Lamport see Lamport timestamp
vector see vector timestamp

timing diagram 68
token 20
topic 18
trace 139
transactor 51
trigger 42, 64
type parameter 63

V

vector timestamp 26

W

worker thread 45

Bibliography

Abdulla, Parosh Aziz, Johann Deneux, Gunnar Stålmarck, Herman Ågren, and Ove Åkerlund (2006). Designing
Safe, Reliable Systems Using Scade. In: Leveraging Applications of Formal Methods. Ed. by Tiziana Margaria and
Bernhard Steffen. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 115–129. isbn: 978-3-540-48929-0 (cited on
pages 31, 154).

Abella, Jaume, Carles Hernandez, Eduardo Quiñones, Francisco J. Cazorla, Philippa Ryan Conmy, Mikel Azkarate-
askasua, Jon Perez, Enrico Mezzetti, and Tullio Vardanega (2015). WCET Analysis Methods: Pitfalls and Challenges
on their Trustworthiness. In: 10th IEEE International Symposium on Industrial Embedded Systems (SIES) (cited on
page 57).

Advanced Micro Devices, Inc. (2023). Zynq UltraScale+ MPSoC . url: https://www.xilinx.com/products/sili
con-devices/soc/zynq-ultrascale-mpsoc.html(visited on July 13, 2023) (cited on page 135).

Agha, Gul, Ian Mason, Scott Smith, and Carolyn Talcott (1997). A Foundation for Actor Computation. In: Journal of
Functional Programming 7 (cited on page 14).

Alian, Mohammad, Umur Darbaz, Gabor Dozsa, Stephan Diestelhorst, Daehoon Kim, and Nam Sung Kim (2017).
dist-gem5: Distributed simulation of computer clusters. In: 2017 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 153–162 (cited on page 29).

Alian, Mohammad, Daehoon Kim, and Nam Sung Kim (2016). pd-Gem5: Simulation Infrastructure for Parallel/dis-
tributed Computer Systems. In: IEEE Computer Architecture Letters 15.1, pp. 41–44 (cited on page 29).

Anand, Madhukar, Arvind Easwaran, Sebastian Fischmeister, and Insup Lee (2008). Compositional Feasibility
Analysis of Conditional Real-Time Task Models. In: 2008 11th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC), pp. 391–398 (cited on page 12).

Ansys, Inc. (2023). Ansys SCADE Suite: Model-Based Development Environment for Critical Embedded Software. url:
https://www.ansys.com/de-de/products/embedded-software/ansys-scade-suite(visited on Sept. 23,
2023) (cited on page 31).

Antinyan, Vard (2020). Revealing the Complexity of Automotive Software. In: Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
ESEC/FSE 2020. Virtual Event, USA: Association for Computing Machinery, pp. 1525–1528. isbn: 9781450370431
(cited on pages 3, 5).

Arditi, Laurent, Amar Bouali, Hedi Boufaied, Gael Clave, Mourad Hadj-Chaib, Laure Leblanc, and Robert de Simone
(1999). Using Esterel and Formal Methods to Increase the Confidence in the Functional Validation of a Commercial
DSP . In: Proceedings of the ERCIM Workshop on Formal Methods for Industrial Critical Systems (FMICS). Trento,
Italy (cited on page 31).

Armstrong, Joe (2007). A History of Erlang. In: Proceedings of the Third ACM SIGPLAN Conference on History of
Programming Languages. HOPL III. San Diego, California: Association for Computing Machinery, pp. 6-1-6–26.
isbn: 9781595937667 (cited on page 15).

Arvind, Rishiyur S. Nikhil, Daniel L. Rosenband, and Nirav Dave (2004). High-level Synthesis: an Essential Ingredient
for Designing Complex ASICs. In: IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004.
Pp. 775–782 (cited on page 154).

Athas, William C. and Nanette J. Boden (1988). Cantor: an Actor Programming System for Scientific Computing. In:
SIGPLAN Not. 24.4, pp. 66–68. issn: 0362-1340 (cited on page 15).

Atlas, Alier and Azer Bestavros (1998). Statistical Rate Monotonic Scheduling. In: Proceedings 19th IEEE Real-Time
Systems Symposium, pp. 123–132 (cited on page 12).

Audsley, Neil, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings (1993). Applying New Scheduling
Theory To Static Priority Pre-Emptive Scheduling. In: Software Engineering Journal 8.5, pp. 284–292 (cited on
page 12).

Austad, Henrik and Geir Mathisen (2023). Bounding the End-to-End Execution Time in Distributed Real-Time Systems:
Arguing the Case for Deterministic Networks in Lingua Franca. In: Proceedings of Cyber-Physical Systems and
Internet of Things Week 2023. CPS-IoT Week ’23. San Antonio, TX, USA: Association for Computing Machinery,
pp. 343–348. isbn: 9798400700491 (cited on page 84).

AUTOSAR (Mar. 2019). Guidelines for the Use of the C++14 Language in Critical and Safety-related Systems.
AUTOSAR Standard for Adaptive Platform Document ID 834. Release R19-03 (cited on page 59).

– (Nov. 2022a). Explanation of Adaptive Platform Design. AUTOSAR Standard for Adaptive Platform Document ID
706. Release R22-11 (cited on page 34).

http://dx.doi.org/10.1007/11925040_8
http://dx.doi.org/10.1007/11925040_8
http://dx.doi.org/10.1109/SIES.2015.7185039
http://dx.doi.org/10.1109/SIES.2015.7185039
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
http://dx.doi.org/10.1017/S095679689700261X
http://dx.doi.org/10.1109/ISPASS.2017.7975287
http://dx.doi.org/10.1109/LCA.2015.2438295
http://dx.doi.org/10.1109/LCA.2015.2438295
http://dx.doi.org/10.1109/ISORC.2008.47
http://dx.doi.org/10.1109/ISORC.2008.47
https://www.ansys.com/de-de/products/embedded-software/ansys-scade-suite
https://www.ansys.com/de-de/products/embedded-software/ansys-scade-suite
http://dx.doi.org/10.1145/3368089.3417038
https://citeseerx.ist.psu.edu/doc_view/pid/992cd105eaeea5f770659616bb17667dfda0b17d
https://citeseerx.ist.psu.edu/doc_view/pid/992cd105eaeea5f770659616bb17667dfda0b17d
http://dx.doi.org/10.1145/1238844.1238850
http://dx.doi.org/10.1109/ICCAD.2004.1382681
http://dx.doi.org/10.1109/ICCAD.2004.1382681
http://dx.doi.org/10.1145/67387.67402
http://dx.doi.org/10.1109/REAL.1998.739737
http://dx.doi.org/10.1049/sej.1993.0034
http://dx.doi.org/10.1049/sej.1993.0034
http://dx.doi.org/10.1145/3576914.3587499
http://dx.doi.org/10.1145/3576914.3587499
https://www.autosar.org/fileadmin/standards/R20-11/AP/AUTOSAR_RS_CPP14Guidelines.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_PlatformDesign.pdf

AUTOSAR (Nov. 2022b). Explanation of ara::com API . AUTOSAR Standard for Classic Platform Document ID 846.
Release R22-11 (cited on pages 35, 51).

– (Nov. 2022c). Methodology for Adaptive Platform. AUTOSAR Standard for Adaptive Platform Document ID 709.
Release R22-11 (cited on page 34).

– (Nov. 2022d). Methodology for Classic Platform. AUTOSAR Standard for Classic Platform Document ID 68.
Release R22-11 (cited on page 34).

– (Nov. 2022e). SOME/IP Protocol Specification. AUTOSAR Standard for Foundation Document ID 696. Release
R22-11 (cited on page 35).

– (Nov. 2022f). SOME/IP Service Discovery Protocol Specification. AUTOSAR Standard for Foundation Document ID
802. Release R22-11 (cited on page 35).

– (Nov. 2022g). Specification of Communication Management . AUTOSAR Standard for Adaptive PlatformDocument
ID 717. Release R22-11 (cited on pages 35, 50).

– (Nov. 2022h). Specification of Execution Management . AUTOSAR Standard for Adaptive Platform Document ID
721. Release R22-11 (cited on pages 36, 37).

– (Nov. 2022i). Specification of Time Synchronization. AUTOSAR Standard for Classic Platform Document ID 880.
Release R22-11 (cited on page 52).

– (Nov. 2022j). Specification of Timing Extensions. AUTOSAR Standard for Classic Platform Document ID 411.
Release R22-11 (cited on pages 33, 34).

– (2023). AUTomotiv Open System ARchitecture. url: https://autosar.org/(visited on Aug. 1, 2023) (cited on
pages 34, 154).

Ayguade, Eduard, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico Massaioli, Xavier Teruel,
Priya Unnikrishnan, and Guansong Zhang (2009). The Design of OpenMP Tasks. In: IEEE Transactions on Parallel
and Distributed Systems 20.3, pp. 404–418 (cited on page 13).

Bachrach, Jonathan, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis, John Wawrzynek,
and Krste Asanović (2012). Chisel: Constructing Hardware in a Scala Embedded Language. In: Proceedings of the
49th Annual Design Automation Conference. DAC ’12. San Francisco, California: Association for Computing
Machinery, pp. 1216–1225. isbn: 9781450311991 (cited on page 28).

Bagherzadeh, Mehdi, Nicholas Fireman, Anas Shawesh, and Raffi Khatchadourian (2020). Actor Concurrency Bugs:
a Comprehensive Study on Symptoms, Root Causes, Api Usages, and Differences. In: Proceedings of the ACM on
Programming Languages 4.OOPSLA (cited on page 17).

Baker, Henry C. and Carl Hewitt (1977). The Incremental Garbage Collection of Processes. In: SIGPLAN Notices 12.8,
pp. 55–59. issn: 0362-1340 (cited on page 18).

Baruah, Sanjoy, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leen Stougie, and Andreas Wiese (2012). A
Generalized Parallel Task Model for Recurrent Real-time Processes. In: 2012 IEEE 33rd Real-Time Systems Symposium,
pp. 63–72 (cited on page 13).

Baruah, Sanjoy K. (1998). Feasibility Analysis of Recurring Branching Tasks. In: Proceeding. 10th EUROMICRO
Workshop on Real-Time Systems, pp. 138–145 (cited on page 12).

– (2010). The Non-cyclic Recurring Real-Time Task Model . In: 2010 31st IEEE Real-Time Systems Symposium, pp. 173–
182 (cited on page 12).

Baruah, Sanjoy K., Deji Chen, Sergey Gorinsky, and Aloysius Mok (July 1999). Generalized Multiframe Tasks. In:
Real-Time Systems 17.1, pp. 5–22. issn: 1573-1383 (cited on page 12).

Baruah, Sanjoy K., Aloysius K. Mok, and Louis E. Rosier (1990). Preemptively Scheduling Hard-real-time Sporadic
Tasks on one Processor . In: [1990] Proceedings 11th Real-Time Systems Symposium, pp. 182–190 (cited on page 12).

[SW] Bateni, Soroush, Edward A. Lee, Erling Jellum, Peter Donovan, Marten Lohstroh, Hou Seng Wong, Anirudh
Rengarajan, and Chadlia Jerad, reactor-c. lic: BSD-2-Clause. url: https://github.com/lf-lang/reactor-c,
(visited on Nov. 10, 2023) (cited on page 87).

Bateni, Soroush, Marten Lohstroh, Hou Seng Wong, Hokeun Kim, Shaokai Lin, Christian Menard, and Edward A.
Lee (Sept. 2023). Risk and Mitigation of Nondeterminism in Distributed Cyber-Physical Systems. In: 21st ACM-IEEE
International Symposium on Formal Methods and Models for System Design (MEMOCODE), pp. 1–11 (cited on
pages x, 37).

Beck, Micah (2019). On the Hourglass Model. In: Communications of the ACM 62.7, pp. 48–57 (cited on page 2).
Bellassai, Davide, Alessandro Biondi, Alessandro Biasci, and Bruno Morelli (2023). Supporting Logical Execution

Time in Multi-Core Posix Systems. In: Journal of Systems Architecture 144, p. 102987. issn: 1383-7621 (cited on
page 37).

Benveniste, Albert and Gérard Berry (1991). The Synchronous Approach To Reactive and Real-Time Systems. In:
Proceedings of the IEEE 79.9, pp. 1270–1282 (cited on page 29).

https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_ARAComAPI.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_TR_AdaptiveMethodology.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_TR_Methodology.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR_PRS_SOMEIPServiceDiscoveryProtocol.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_ExecutionManagement.pdf
https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_SWS_TimeSynchronization.pdf
https://www.autosar.org/fileadmin/standards/R22-11/CP/AUTOSAR_TPS_TimingExtensions.pdf
https://autosar.org/
https://autosar.org/
http://dx.doi.org/10.1109/TPDS.2008.105
http://dx.doi.org/10.1145/2228360.2228584
http://dx.doi.org/10.1145/3428282
http://dx.doi.org/10.1145/3428282
http://dx.doi.org/10.1145/872734.806932
http://dx.doi.org/10.1109/RTSS.2012.59
http://dx.doi.org/10.1109/RTSS.2012.59
http://dx.doi.org/10.1109/EMWRTS.1998.685078
http://dx.doi.org/10.1109/RTSS.2010.19
http://dx.doi.org/10.1023/A:1008030427220
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1109/REAL.1990.128746
https://github.com/lf-lang/reactor-c
https://github.com/lf-lang/reactor-c
http://dx.doi.org/10.1145/3610579.3613219
http://dx.doi.org/10.1145/3274770
http://dx.doi.org/10.1016/j.sysarc.2023.102987
http://dx.doi.org/10.1016/j.sysarc.2023.102987
http://dx.doi.org/10.1109/5.97297

Benveniste, Albert, Paul Caspi, Stephen Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert Simone (Feb.
2003). The Synchronous Languages 12 Years Later . In: Proceedings of the IEEE 91, pp. 64–83 (cited on pages 30,
153).

Berry, Géard and Georges Gonthier (1992). The ESTEREL Synchronous Programming Language: Design, Semantics,
Implementation. In: Science of Computer Programming 19.2, pp. 87–152 (cited on page 78).

Berry, Gérard (May 2000). The Foundations of Esterel . In: Proof, Language, and Interaction: Essays in Honour of Robin
Milner. The MIT Press. isbn: 9780262281676 (cited on page 30).

– (2007). SCADE: Synchronous Design and Validation of Embedded Control Software. In: Next Generation Design and
Verification Methodologies for Distributed Embedded Control Systems. Ed. by S. Ramesh and Prahladavaradan
Sampath. Dordrecht: Springer Netherlands, pp. 19–33. isbn: 978-1-4020-6254-4 (cited on pages 31, 154).

Berry, Gérard, Amar Bouali, Xavier Fornari, Emmanuel Ledinot, Eric Nassor, and Robert de Simone (2000). Esterel:
a Formal Method Applied To Avionic Software Development . In: Science of Computer Programming 36.1, pp. 5–25.
issn: 0167-6423 (cited on page 31).

Berry, Gérard and Ellen Sentovich (2001). Multiclock Esterel. In: Correct Hardware Design and Verification Methods.
Ed. by Tiziana Margaria and Tom Melham. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 110–125. isbn:
978-3-540-44798-6 (cited on page 30).

Berry, Gérard and Manuel Serrano (2020). HipHop.js: (A)Synchronous Reactive Web Programming. In: Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI 2020. London,
UK: Association for Computing Machinery, pp. 533–545. isbn: 9781450376136 (cited on page 31).

Bilsen, Greet, Marc Engels, Rudy Lauwereins, and Jean A. Peperstraete (1996). Cyclo-Static Dataflow. In: IEEE
Transactions on Signal Processing 44, pp. 397–408 (cited on page 22).

Binkert, Nathan, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,
Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay
Vaish, Mark D. Hill, and David A. Wood (2011). The gem5 Simulator . In: ACM SIGARCH Computer Architecture
News 39.2. issn: 0163-5964 (cited on page 28).

Biondi, Alessandro, Paolo Pazzaglia, Alessio Balsini, and Marco Di Natale (2017). Logical Execution Time Implemen-
tation and Memory Optimization Issues in AUTOSAR Applications for Multicores. In: International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS) (cited on page 33).

Birrell, Andrew D. and Bruce Jay Nelson (1984). Implementing Remote Procedure Calls. In: ACM Transactions on
Computer Systems 2.1, pp. 39–59. issn: 0734-2071 (cited on page 18).

Bitter, Rick, Taqi Mohiuddin, and Matt Nawrocki (2017). LabVIEW: Advanced Programming Techniques. 2nd Edition.
CRC Press, p. 520. isbn: 9781315222097 (cited on page 153).

Black, David C., Jack Donovan, Bill Bunton, and Anna Keist (2009). SystemC: From the Ground Up, Second Edition.
2nd. Springer New York. isbn: 978-0-387-69957-8 (cited on page 28).

Blessing, Sebastian, Kiko Fernandez-Reyes, Albert Mingkun Yang, Sophia Drossopoulou, and Tobias Wrigstad
(2019). Run, Actor, Run: Towards Cross-Actor Language Benchmarking. In: Proceedings of the 9th ACM SIGPLAN
International Workshop on Programming Based on Actors, Agents, and Decentralized Control. AGERE 2019. Athens,
Greece: Association for Computing Machinery, pp. 41–50. isbn: 9781450369824 (cited on page 103).

Blochwitz, Torsten, Martin Otter, Martin Arnold, Constanze Bausch, Christoph Clauß, Hilding Elmqvist, Andreas
Junghanns, Jakob Mauss, Manuel Monteiro, Thomas Neidhold, Dietmar Neumerkel, Hans Olsson, Jörg-Volker
Peetz, and Susann Wolf (2011). The Functional Mockup Interface for Tool independent Exchange of Simulation
Models. In: Proceedings of the 8th International Modelica Conference. Ed. by Christoph Clauß. Linköping Electronic
Conference Proceedings. Linköping University Press, pp. 105–114 (cited on page 28).

Blumofe, Robert D. and Charles E. Leiserson (1999). Scheduling Multithreaded Computations By Work Stealing. In:
Journal of the ACM 46.5, pp. 720–748. issn: 0004-5411 (cited on page 155).

Bocchino, Robert, Timothy Canham, Garth Watney, Leonard Reder, and Jeffrey Levison (2018). F Prime: an Open-
Source Framework for Small-Scale Flight Software Systems. In: 32nd Annual AIAA/USU Conference on Small
Satellites (cited on page 154).

Bojowald, Martin (Feb. 2017). Now: the Physics of Time. In: Physics Today 70.2, pp. 57–58. issn: 0031-9228 (cited on
page 25).

Bouali, Amar (1998). Xeve, an Esterel Verification Environment . In: Computer Aided Verification. Ed. by Alan J. Hu
and Moshe Y. Vardi. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 500–504. isbn: 978-3-540-69339-0 (cited
on page 31).

Boussinot, Frédéric and Robert de Simone (1991). The Esterel Language. In: Proceedings of the IEEE 79.9, pp. 1293–
1304 (cited on page 30).

http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.7551/mitpress/5641.003.0021
http://dx.doi.org/10.1007/978-1-4020-6254-4_2
http://dx.doi.org/10.1016/S0167-6423(99)00015-5
http://dx.doi.org/10.1016/S0167-6423(99)00015-5
http://dx.doi.org/10.1007/3-540-44798-9_10
http://dx.doi.org/10.1145/3385412.3385984
http://dx.doi.org/10.1109/78.485935
http://dx.doi.org/10.1145/2024716.2024718
http://retis.sssup.it/~marco/papers/2017/watersch.pdf
http://retis.sssup.it/~marco/papers/2017/watersch.pdf
http://dx.doi.org/10.1145/2080.357392
http://dx.doi.org/10.1201/9780849333255
http://dx.doi.org/10.1007/978-0-387-69958-5
http://dx.doi.org/10.1145/3358499.3361224
https://elib.dlr.de/74668/
https://elib.dlr.de/74668/
http://dx.doi.org/10.1145/324133.324234
https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/CL18-2993.pdf
https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/CL18-2993.pdf
http://dx.doi.org/10.1063/PT.3.3466
http://dx.doi.org/10.1007/BFb0028770
http://dx.doi.org/10.1109/5.97299

Box, George E.P. (1979). Robustness in the Strategy of Scientific Model Building. In: Robustness in Statistics. Ed. by
Robert L. Launer and Graham N. Wilkinson. Academic Press, pp. 201–236. isbn: 978-0-12-438150-6 (cited on
page 2).

Boyapati, Chandrasekhar, Robert Lee, and Martin Rinard (2002). Ownership Types for Safe Programming: Preventing
Data Races and Deadlocks. In: SIGPLAN Notices 37.11, pp. 211–230. issn: 0362-1340 (cited on page 59).

Brewer, Eric (2012). CAP Twelve Years Later: How the “Rules” Have Changed . In: Computer 45.2, pp. 23–29 (cited on
page 84).

Broman, David, Lev Greenberg, Edward A. Lee, Michael Masin, Stavros Tripakis, and Michael Wetter (2015).
Requirements for Hybrid Cosimulation Standards. In: Proceedings of the 18th International Conference on Hybrid
Systems: Computation and Control. HSCC ’15. Seattle, Washington: Association for Computing Machinery,
pp. 179–188. isbn: 9781450334334 (cited on page 26).

Brookes, Stephen, C. A. R. Hoare, and Andrew W. Roscoe (1984). A Theory of Communicating Sequential Processes.
In: Journal of the ACM 31.3, pp. 560–599. issn: 0004-5411 (cited on page 40).

Brookes, Stephen and Peter W. O’Hearn (2016). Concurrent Separation Logic. In: ACM SIGLOG News 3.3, pp. 47–65
(cited on page 11).

Budhdev, Nishant, Mun Choon Chan, and Tulika Mitra (2018). PR3: Power Efficient and Low Latency Baseband
Processing for LTE Femtocells. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, pp. 2357–
2365 (cited on page 147).

– (2020a). Isoran: Isolation and Scaling for 5g Ranvia User-Level Data Plane Virtualization. In: CoRR abs/2003.01841.
arXiv: 2003.01841(cited on pages 146, 147).

– (2020b). Poster: IsoRAN: Isolation and Scaling for 5G RAN via User-Level Data Plane Virtualization. In: 2020 IFIP
Networking Conference (Networking), pp. 634–636 (cited on page 146).

Bünder, Hendrik (2019). Decoupling Language and Editor - The Impact of the Language Server Protocol on Textual
Domain-Specific Languages. In: Proceedings of the 7th International Conference on Model-Driven Engineering and
Software Development. MODELSWARD 2019. Prague, Czech Republic: SCITEPRESS - Science and Technology
Publications, Lda, pp. 129–140. isbn: 9789897583582 (cited on pages 85, 88).

Burns, Alan and Andy Wellings (2007). Concurrent and real-time programming in Ada. Cambridge University Press.
isbn: 9780521866972 (cited on page 154).

Callanan, Gareth and Flavius Gruian (2023). Scalable Actor Networks with CAL. In: Proceedings of the 21st ACM-IEEE
International Conference on Formal Methods and Models for System Design. MEMOCODE ’23. Hamburg, Germany:
Association for Computing Machinery, pp. 169–179. isbn: 9798400703188 (cited on page 155).

Casale-Brunet, Simone, Claudio Alberti, Marco Mattavelli, and Jorn W. Janneck (2013). Turnus: A unified dataflow
design space exploration framework for heterogeneous parallel systems. In: 2013 Conference on Design and Architec-
tures for Signal and Image Processing, pp. 47–54. isbn: 979-10-92279-01-6 (cited on page 137).

Cassandras, Christos G. (2016). Smart Cities as Cyber-Physical Social Systems. In: Engineering 2.2, pp. 156–158. issn:
2095-8099 (cited on page 1).

Castrillon, Jeronimo, Karol Desnos, Andrés Goens, and Christian Menard (Jan. 2023). Dataflow Models of Com-
putation for Programming Heterogeneous Multicores. In: Handbook of Computer Architecture. Ed. by Anupam
Chattopadhyay et al. Singapore: Springer Nature Singapore. isbn: 978-981-15-6401-7 (cited on pages x, 5, 22,
135, 136).

Castrillon, Jeronimo and Rainer Leupers (2014). Programming Heterogeneous MPSoCs: Tool Flows to Close the
Software Productivity Gap. Springer. isbn: 978-3-319-00675-8 (cited on pages 5, 22, 135, 137, 140).

Castrillon, Jeronimo, Matthias Lieber, Sascha Klüppelholz, Marcus Völp, Nils Asmussen, Uwe Assmann, Franz
Baader, Christel Baier, Gerhard Fettweis, Jochen Fröhlich, Andrés Goens, Sebastian Haas, Dirk Habich, Hermann
Härtig, Mattis Hasler, Immo Huismann, Tomas Karnagel, Sven Karol, Akash Kumar, Wolfgang Lehner, Linda
Leuschner, Siqi Ling, Steffen Märcker, Christian Menard, Johannes Mey, Wolfgang Nagel, Benedikt Nöthen,
Rafael Peñaloza, Michael Raitza, Jörg Stiller, Annett Ungethüm, Axel Voigt, and Sascha Wunderlich (July 2018). A
Hardware/software Stack for Heterogeneous Systems. In: IEEE Transactions on Multi-Scale Computing Systems 4.3,
pp. 243–259. issn: 2332-7766 (cited on pages xi, 135).

Castrillon, Jeronimo, Weihua Sheng, and Rainer Leupers (2011). Trends in Embedded Software Synthesis. In: 2011
International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation, pp. 347–354
(cited on page 135).

Charousset, Dominik, Raphael Hiesgen, and Thomas C. Schmidt (2016). Revisiting Actor Programming in C++. In:
Computer Languages, Systems & Structures 45, pp. 105–131. issn: 1477-8424 (cited on pages 15, 94).

Chung, Moo-Kyoung, Jun-Kyoung Kim, and Soojung Ryu (2014). SimParallel: A High Performance Parallel SystemC
Simulator Using Hierarchical Multi-threading. In: 2014 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1472–1475 (cited on page 29).

http://dx.doi.org/10.1016/B978-0-12-438150-6.50018-2
http://dx.doi.org/10.1145/583854.582440
http://dx.doi.org/10.1145/583854.582440
http://dx.doi.org/10.1109/MC.2012.37
http://dx.doi.org/10.1145/2728606.2728629
http://dx.doi.org/10.1145/828.833
http://dx.doi.org/10.1145/2984450.2984457
http://dx.doi.org/10.1109/INFOCOM.2018.8486276
http://dx.doi.org/10.1109/INFOCOM.2018.8486276
https://arxiv.org/abs/2003.01841
https://arxiv.org/abs/2003.01841
https://ieeexplore.ieee.org/document/9142715
http://dx.doi.org/10.5220/0007556301290140
http://dx.doi.org/10.5220/0007556301290140
http://books.google.com/books?vid=ISBN9780521866972
http://dx.doi.org/10.1145/3610579.3611074
https://ieeexplore.ieee.org/document/6661517
https://ieeexplore.ieee.org/document/6661517
http://dx.doi.org/10.1016/J.ENG.2016.02.012
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
http://dx.doi.org/10.1007/978-981-15-6401-7_45-2
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1007/978-3-319-00675-8
http://dx.doi.org/10.1109/TMSCS.2017.2771750
http://dx.doi.org/10.1109/TMSCS.2017.2771750
http://dx.doi.org/10.1109/SAMOS.2011.6045483
http://dx.doi.org/10.1016/j.cl.2016.01.002
http://dx.doi.org/10.1109/ISCAS.2014.6865424
http://dx.doi.org/10.1109/ISCAS.2014.6865424

Church, Alonzo (1936). An Unsolvable Problem of Elementary Number Theory. In: Journal of Symbolic Logic 1.2,
pp. 73–74 (cited on page 2).

Clebsch, Sylvan, Juliana Franco, Sophia Drossopoulou, Albert Mingkun Yang, Tobias Wrigstad, and Jan Vitek
(2017). Orca: GC and Type System Co-Design for Actor Languages. In: Proc. ACM Program. Lang. 1.OOPSLA (cited
on page 15).

Cohen, Albert, Léonard Gérard, and Marc Pouzet (2012). Programming Parallelism with Futures in Lustre. In:
Proceedings of the Tenth ACM International Conference on Embedded Software. EMSOFT ’12. Tampere, Finland:
Association for Computing Machinery, pp. 197–206. isbn: 9781450314251 (cited on page 31).

Colaço, Jean-Louis, Bruno Pagano, and Marc Pouzet (2017). SCADE 6: A formal language for embedded critical soft-
ware development (invited paper). In: 2017 International Symposium on Theoretical Aspects of Software Engineering
(TASE) (cited on pages 31, 154).

Corbett, James C., Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat,
Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi
Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig,
Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford (2013). Spanner: Google’s
Globally Distributed Database. In: ACM Transactions on Computer Systems 31.3. issn: 0734-2071 (cited on pages 6,
52).

Coussy, Philippe and Adam Morawiec (2008). High-Level Synthesis: From Algorithm to Digital Circuit . 1st. Springer
Publishing Company, Incorporated. isbn: 1402085877 (cited on page 159).

Cox, David Richard (July 2005). RITSim: Distributed SystemC Simulation. PhD thesis (cited on page 29).
cppreference.com (2023a). Date and Time Utilities. url: https://en.cppreference.com/mwiki/index.php?tit

le=cpp/chrono&oldid=154297(visited on July 21, 2023) (cited on page 27).
– (2023b). std::shared_ptr . url: https://en.cppreference.com/w/cpp/memory/shared_ptr(visited on Dec. 5,

2023) (cited on page 91).
– (2023c). std::unique_ptr . url: https://en.cppreference.com/w/cpp/memory/unique_ptr(visited on Dec. 5,

2023) (cited on page 91).
Dabney, James B. and Thomas L. Harman (2004). Mastering Simulink. Prentice Hall. isbn: 978-0131424777 (cited on

page 153).
Dahmann, Judith S., Richard M. Fujimoto, and Richard M. Weatherly (1997). The Department of Defense High Level

Architecture. In: Proceedings of the 29th Conference on Winter Simulation. WSC ’97. Atlanta, Georgia, USA: IEEE
Computer Society, pp. 142–149. isbn: 078034278X (cited on page 81).

Dawson, Bruce (Feb. 2012a). Comparing Floating Point Numbers, 2012 Edition. url: https://randomascii.wor
dpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/(visited on July 21, 2023)
(cited on page 26).

– (Feb. 2012b). Don’t Store That in a Float . url: https://randomascii.wordpress.com/2012/02/13/dont-sto
re-that-in-a-float/(visited on July 21, 2023) (cited on page 26).

Denis, Xavier, Jacques-Henri Jourdan, and Claude Marché (2022). Creusot: A Foundry for the Deductive Verification
of Rust Programs. In: Formal Methods and Software Engineering. Ed. by Adrian Riesco and Min Zhang. Cham:
Springer International Publishing, pp. 90–105. isbn: 978-3-031-17244-1 (cited on page 87).

Dennis, Jack B. (1974). First Version of a Data Flow Procedure Language. In: Programming Symposium. Ed. by B.
Robinet. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 362–376. isbn: 978-3-540-37819-8 (cited on page 20).

– (1986). Data Flow Computation. In: Control Flow and Data Flow: Concepts of Distributed Programming. Ed. by
Manfred Broy. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 345–398. isbn: 978-3-642-82921-5 (cited on
page 20).

Derler, Patricia, Thomas Huining Feng, Edward A. Lee, Slobodan Matic, Hiren D. Patel, Yang Zhao, and Jia Zou (Mar.
2008). PTIDES: A Programming Model for Distributed Real-Time Embedded Systems. Tech. rep. UCB/EECS-2008-72.
EECS Department, University of California, Berkeley (cited on pages 52, 82).

Derler, Patricia, Edward A. Lee, and Alberto Sangiovanni Vincentelli (2012). Modeling Cyber-Physical Systems. In:
Proceedings of the IEEE 100.1, pp. 13–28 (cited on page 3).

Desai, Ankush, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and Damien Zufferey (2013). P: Safe
Asynchronous Event-Driven Programming. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’13. Seattle, Washington, USA: Association for Computing Machinery,
pp. 321–332. isbn: 9781450320146 (cited on page 15).

Desnos, Karol, Maxime Pelcat, Jean-François Nezan, Shuvra S. Bhattacharyya, and Slaheddine Aridhi (2013). PiMM:
Parameterized and Interfaced Dataflow Meta-Model for MPSoCs Runtime Reconfiguration. In: 2013 International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 41–48 (cited
on page 22).

http://dx.doi.org/10.2307/2268571
http://dx.doi.org/10.1145/3133896
http://dx.doi.org/10.1145/2380356.2380394
http://dx.doi.org/10.1109/TASE.2017.8285623
http://dx.doi.org/10.1109/TASE.2017.8285623
http://dx.doi.org/10.1145/2491245
http://dx.doi.org/10.1145/2491245
http://books.google.com/books?vid=ISBN1402085877
https://scholarworks.rit.edu/theses/5504/
https://en.cppreference.com/mwiki/index.php?title=cpp/chrono&oldid=154297
https://en.cppreference.com/mwiki/index.php?title=cpp/chrono&oldid=154297
https://en.cppreference.com/mwiki/index.php?title=cpp/chrono&oldid=154297
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
http://books.google.com/books?vid=ISBN978-0131424777
http://dx.doi.org/10.1145/268437.268465
http://dx.doi.org/10.1145/268437.268465
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/13/dont-store-that-in-a-float/
https://randomascii.wordpress.com/2012/02/13/dont-store-that-in-a-float/
https://randomascii.wordpress.com/2012/02/13/dont-store-that-in-a-float/
http://dx.doi.org/10.1007/978-3-031-17244-1_6
http://dx.doi.org/10.1007/978-3-031-17244-1_6
http://dx.doi.org/10.1007/3-540-06859-7_145
http://dx.doi.org/10.1007/978-3-642-82921-5_8
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-72.html
http://dx.doi.org/10.1109/JPROC.2011.2160929
http://dx.doi.org/10.1145/2491956.2462184
http://dx.doi.org/10.1145/2491956.2462184
http://dx.doi.org/10.1109/SAMOS.2013.6621104
http://dx.doi.org/10.1109/SAMOS.2013.6621104

Dick, Robert P., David L. Rhodes, and Wayne Wolf (1998). TGFF: Task Graphs for Free. In: Proceedings of the Sixth
International Workshop on Hardware/Software Codesign. (CODES/CASHE’98), pp. 97–101 (cited on page 141).

Dinning, Anne (1989). A Survey of Synchronization Methods for Parallel Computers. In: Computer 22.7, pp. 66–77
(cited on page 10).

Dmitrović, Slobodan (2023). Smart Pointers. In: Modern C++ for Absolute Beginners: A Friendly Introduction to
the C++ Programming Language and C++11 to C++23 Standards. Berkeley, CA: Apress, pp. 211–215. isbn:
978-1-4842-9274-7 (cited on pages 65, 91).

Dong, Zheng and Cong Liu (2017). Analysis Techniques for Supporting Hard Real-Time Sporadic Gang Task Systems.
In: 2017 IEEE Real-Time Systems Symposium (RTSS), pp. 128–138 (cited on page 13).

[SW] Donovan, Peter and Marten Lohstroh, Lingua Franca extension for Visual Studio Code. lic: BSD-2-Clause.
url: https://github.com/lf-lang/vscode-lingua-franca, (visited on Nov. 10, 2023) (cited on page 88).

Dragoni, Nicola, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara, Fabrizio Montesi, Ruslan Mustafin,
and Larisa Safina (2017). Microservices: Yesterday, Today, and Tomorrow . In: Present and Ulterior Software Engi-
neering. Ed. by Manuel Mazzara and Bertrand Meyer. Cham: Springer International Publishing, pp. 195–216.
isbn: 978-3-319-67425-4 (cited on page 18).

Edelson, Daniel R. (1992). Smart Pointers: They’re Smart, But They’re Not Pointers. In: Proceedings of the C++
Conference. Portland, OR, USA, August 1992. USENIX Association, pp. 1–20 (cited on pages 65, 91).

Edwards, Stephen A. and Edward A. Lee (2003). The Semantics and Execution of a Synchronous Block-Diagram
Language. In: Science of Computer Programming 48.1, pp. 21–42 (cited on page 30).

Eker, Johan and Jörn W. Janneck (2003). CAL Language Report: Specification of the CAL Actor Language. Tech. rep.
UC Berkeley (cited on pages 22, 137).

Eker, Johan, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozref Ludvig, Stephem Neuendorffer, Sonia
Sachs, and Yuhong Xiong (2003). Taming Heterogeneity—the Ptolemy Approach. In: Proceedings of the IEEE 91.1,
pp. 127–144 (cited on page 22).

Erbas, Cagkan, Selin Cerav-Erbas, and Andy D. Pimentel (2006). Multiobjective Optimization and Evolutionary
Algorithms for the Application Mapping Problem in Multiprocessor System-On-Chip Design. In: IEEE Transactions
on Evolutionary Computation 10.3, pp. 358–374 (cited on page 145).

Ernst, Rolf, Leonie Ahrendts, and Kai-Björn Gemlau (2018). System Level LET: Mastering Cause-Effect Chains in
Distributed Systems. In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, pp. 4084–
4089 (cited on pages 33, 53).

Ertel, Sebastian (Dec. 2019). Towards Implicit Parallel Programming for Systems. PhD thesis. Dresden, Germany: TU
Dresden (cited on pages 22, 155).

Eugster, Patrick Th., Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec (2003). The Many Faces of
Publish/subscribe. In: ACM Computing Surveys 35.2, pp. 114–131. issn: 0360-0300 (cited on pages 18, 154).

Eysholdt, Moritz and Heiko Behrens (2010). Xtext: Implement Your Language Faster than the Quick and Dirty Way . In:
Proceedings of the ACM International Conference Companion on Object Oriented Programming Systems Languages
and Applications Companion. OOPSLA ’10. Reno/Tahoe, Nevada, USA: Association for Computing Machinery,
pp. 307–309. isbn: 9781450302401 (cited on page 85).

Feitelson, Dror G. and Larry Rudolph (1992). Gang Scheduling Performance Benefits for Fine-Grain Synchronization.
In: Journal of Parallel and Distributed Computing 16.4, pp. 306–318. issn: 0743-7315 (cited on page 13).

Fersman, Elena, Paul Pettersson, and Wang Yi (2002). Timed Automata with Asynchronous Processes: Schedulability
and Decidability . In: Tools and Algorithms for the Construction and Analysis of Systems. Ed. by Joost-Pieter Katoen
and Perdita Stevens. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 67–82. isbn: 978-3-540-46002-2 (cited
on page 12).

Fidge, Colin J. (1988). Timestamps in Message-Passing Systems That Preserve the Partial Ordering. In: Australian
Computer Science Communications, pp. 56–66 (cited on page 26).

Finn, Norman (2018). Introduction To Time-Sensitive Networking. In: IEEE Communications Standards Magazine 2.2,
pp. 22–28 (cited on page 84).

Fishman, George S. (Sept. 2011). Discrete-event Simulation: Modeling, Programming, and Analysis. Springer New
York. isbn: 978-1-4419-2892-4 (cited on page 28).

Fortin, Félix-Antoine, François-Michel De Rainville, Marc-André Gardner Gardner, Marc Parizeau, and Christian
Gagné (2012). DEAP: Evolutionary Algorithms Made Easy. In: The Journal of Machine Learning Research 13.1,
pp. 2171–2175. issn: 1532-4435 (cited on page 145).

Fournier, Clément (Dec. 2021). A Rust Backend for Lingua Franca. MA thesis. TU Dresden (cited on page 87).
[SW] Fournier, Clément and Johannes Hayeß, reactor-rs. lic: MIT. url: https://github.com/lf-lang/reactor
-ts, (visited on Nov. 10, 2023) (cited on page 87).

http://dx.doi.org/10.1109/HSC.1998.666245
http://dx.doi.org/10.1109/2.30733
http://dx.doi.org/10.1007/978-1-4842-9274-7_35
http://dx.doi.org/10.1109/RTSS.2017.00019
https://github.com/lf-lang/vscode-lingua-franca
https://github.com/lf-lang/vscode-lingua-franca
http://dx.doi.org/10.1007/978-3-319-67425-4_12
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d78dd0f23e9c75b4841111b1978c2997d9965c18
http://dx.doi.org/10.1016/S0167-6423(02)00096-5
http://dx.doi.org/10.1016/S0167-6423(02)00096-5
https://ptolemy.berkeley.edu/papers/03/Cal/
http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1109/TEVC.2005.860766
http://dx.doi.org/10.1109/TEVC.2005.860766
http://dx.doi.org/10.1109/IECON.2018.8591550
http://dx.doi.org/10.1109/IECON.2018.8591550
https://cfaed.tu-dresden.de/publications?pubId=2560
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1016/0743-7315(92)90014-E
http://books.google.com/books?vid=ISBN978-3-540-46002-2
http://books.google.com/books?vid=ISBN978-3-540-46002-2
https://docs.google.com/document/d/1YfJsAHsY2Wl6IEx47DlRnCnYzayBQacsJ2oa818u4e8/edit?hl=en_US&pli=1
http://dx.doi.org/10.1109/MCOMSTD.2018.1700076
http://dx.doi.org/10.1007/978-1-4757-3552-9
http://books.google.com/books?vid=ISSN1532-4435
https://cfaed.tu-dresden.de/publications?pubId=3373
https://github.com/lf-lang/reactor-ts
https://github.com/lf-lang/reactor-ts
https://github.com/lf-lang/reactor-ts

Friedmann, Mattern (1988). Virtual Time and Global States of Distributed Systems. In: Proceedings of the 10th
International Workshop on Parallel and Distributed Algorithms, October 1988. North-Holland (cited on page 26).

Fuhrmann, Hauke and Reinhard von Hanxleden (2010). Taming Graphical Modeling. In: Model Driven Engineering
Languages and Systems. Ed. by Dorina C. Petriu, Nicolas Rouquette, and Øystein Haugen. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 196–210. isbn: 978-3-642-16145-2 (cited on page 87).

Geilen, Marc and Twan Basten (2003). Requirements on the Execution of Kahn Process Networks. In: Programming
Languages and Systems. Ed. by Pierpaolo Degano. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 319–334.
isbn: 978-3-540-36575-4 (cited on page 20).

Gemlau, Kai-Björn, Leonie Köhler, Rolf Ernst, and Sophie Quinton (2021). System-Level Logical Execution Time:
Augmenting the Logical Execution Time Paradigm for Distributed Real-Time Automotive Software. In: ACM
Transactions on Cyber-Physical Systems 5.2. issn: 2378-962X (cited on pages 13, 33, 53).

Goens, Andrés (May 2021). Improving Model-Based Software Synthesis: A Focus on Mathematical Structures. PhD
thesis. TU Dresden (cited on pages 19, 21, 136, 144).

Goens, Andrés, Robert Khasanov, Jeronimo Castrillon, Simon Polstra, and Andy Pimentel (2016). Why Comparing
System-Level MPSoC Mapping Approaches is Difficult: A Case Study . In: 2016 IEEE 10th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSOC), pp. 281–288 (cited on pages 137, 145).

Goens, Andrés, Robert Khasanov, Marcus Hähnel, Till Smejkal, Hermann Härtig, and Jeronimo Castrillon (June
2017). TETRiS: a Multi-Application Run-Time System for Predictable Execution of Static Mappings. In: Proceedings
of the 20th International Workshop on Software and Compilers for Embedded Systems (SCOPES’17). SCOPES ’17.
Sankt Goar, Germany: ACM, pp. 11–20. isbn: 978-1-4503-5039-6 (cited on pages 145, 148).

Goens, Andrés, Christian Menard, and Jeronimo Castrillon (Sept. 2018). On the Representation of Mappings to
Multicores. In: Proceedings of the IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-
on-Chip (MCSoC-18). Vietnam National University, Hanoi, Vietnam, pp. 184–191. isbn: 978-1-5386-6689-0 (cited
on pages xi, 144).

– (July 2019). On Compact Mappings for Multicore Systems. In: Proceedings of the IEEE International Conference on
Embedded Computer Systems Architectures Modeling and Simulation (SAMOS). Ed. by D. Pnevmatikatos, M. Pelcat,
and M. Jung. Vol. 11733. IEEE. Pythagorion, Greece: Springer, Cham, pp. 325–335. isbn: 978-3-030-27561-7 (cited
on page xii).

Goens, Andrés, Sergio Siccha, and Jeronimo Castrillon (July 2017). Symmetry in Software Synthesis. In: ACM
Transactions on Architecture and Code Optimization (TACO), 14.2, 20:1–20:26. issn: 1544-3566 (cited on pages 144,
145, 148).

[SW] Google, Catapult . url: https://chromium.googlesource.com/catapult, (visited on Dec. 18, 2023) (cited
on page 144).

Gu, Rui, Guoliang Jin, Linhai Song, Linjie Zhu, and Shan Lu (2015). What Change History Tells Us about Thread
Synchronization. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ESEC/FSE
2015. Bergamo, Italy: Association for Computing Machinery, pp. 426–438. isbn: 9781450336758 (cited on page 37).

Haas, Sebastian, Tobias Seifert, Benedikt Nöthen, Stefan Scholze, Sebastian Höppner, Andreas Dixius, Esther Pérez
Adeva, Thomas Augustin, Friedrich Pauls, Sadia Moriam, Mattis Hasler, Erik Fischer, Yong Chen, Emil Matúš,
Georg Ellguth, Stephan Hartmann, Stefan Schiefer, Love Cederström, Dennis Walter, Stephan Henker, Stefan
Hänzsche, Johannes Uhlig, Holger Eisenreich, Stefan Weithoffer, Norbert Wehn, René Schüffny, Christian Mayr,
and Gerhard Fettweis (2017). A Heterogeneous SDR MPSoC in 28 Nm CMOS for Low-Latency Wireless Applications.
In: Proceedings of the 54th Annual Design Automation Conference 2017. DAC ’17. Austin, TX, USA: Association
for Computing Machinery. isbn: 9781450349277 (cited on page 135).

Hagen, George and Cesare Tinelli (2008). Scaling Up the Formal Verification of Lustre Programs with SMT-Based
Techniques. In: 2008 Formal Methods in Computer-Aided Design (cited on page 31).

Halbwachs, Nicolas (1993). Synchronous Programming of Reactive Systems. USA: Kluwer Academic Publishers. isbn:
0792393112 (cited on page 29).

Halbwachs, Nicolas, Paul Caspi, Pascal Raymond, and Daniel Pilaud (1991).The Synchronous Data Flow Programming
Language Lustre. In: Proceedings of the IEEE 79.9, pp. 1305–1320 (cited on page 30).

Hameed, Fazal, Christian Menard, and Jeronimo Castrillon (Oct. 2017). Efficient STT-RAM Last-Level-Cache Archi-
tecture to replace DRAM Cache. In: Proceedings of the International Symposium on Memory Systems (MemSys’17).
MEMSYS ’17. Alexandria, Virginia: ACM, pp. 141–151. isbn: 978-1-4503-5335-9 (cited on page xii).

Hanxleden, Reinhard von, Björn Duderstadt, Christian Motika, Steven Smyth, Michael Mendler, Joaquín Aguado,
Stephen Mercer, and Owen O’Brien (2014). SCCharts: Sequentially Constructive Statecharts for Safety-Critical
Applications: HW/SW-Synthesis for a Conservative Extension of Synchronous Statecharts. In: Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI ’14. Edinburgh,
United Kingdom: Association for Computing Machinery, pp. 372–383. isbn: 9781450327848 (cited on page 31).

https://nylas.github.io/paper-reading-group/papers/Virtual_Time.pdf
http://dx.doi.org/10.1007/978-3-642-16145-2_14
http://dx.doi.org/10.1007/3-540-36575-3_22
http://dx.doi.org/10.1145/3381847
http://dx.doi.org/10.1145/3381847
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-748845
http://dx.doi.org/10.1109/MCSoC.2016.48
http://dx.doi.org/10.1109/MCSoC.2016.48
http://dx.doi.org/10.1145/3078659.3078663
http://dx.doi.org/10.1109/MCSoC2018.2018.00039
http://dx.doi.org/10.1109/MCSoC2018.2018.00039
http://dx.doi.org/10.1007/978-3-030-27562-4_23
http://dx.doi.org/10.1145/3095747
https://chromium.googlesource.com/catapult
https://chromium.googlesource.com/catapult
http://dx.doi.org/10.1145/2786805.2786815
http://dx.doi.org/10.1145/2786805.2786815
http://dx.doi.org/10.1145/3061639.3062188
http://dx.doi.org/10.1109/FMCAD.2008.ECP.19
http://dx.doi.org/10.1109/FMCAD.2008.ECP.19
http://www-verimag.imag.fr/~halbwach/newbook.pdf
http://dx.doi.org/10.1109/5.97300
http://dx.doi.org/10.1109/5.97300
http://dx.doi.org/10.1145/3132402.3132414
http://dx.doi.org/10.1145/3132402.3132414
http://dx.doi.org/10.1145/2594291.2594310
http://dx.doi.org/10.1145/2594291.2594310

Hanxleden, Reinhard von, Edward A. Lee, Hauke Fuhrmann, Alexander Schulz-Rosengarten, Sören Domrös, Marten
Lohstroh, Soroush Bateni, and Christian Menard (2022). Pragmatics Twelve Years Later: A Report on Lingua
Franca. In: Leveraging Applications of Formal Methods, Verification and Validation. Software Engineering. Springer
Nature Switzerland, pp. 60–89 (cited on pages x, 41, 87).

Hanxleden, Reinhard von, Michael Mendler, Joaquín Aguado, Björn Duderstadt, Insa Fuhrmann, Christian Motika,
Stephen Mercer, Owen O’brien, and Partha Roop (2014). Sequentially Constructive Concurrency-A Conservative
Extension of the Synchronous Model of Computation. In: ACM Transactions on Embedded Computing Systems 13.4s.
issn: 1539-9087 (cited on page 31).

Harel, David (1987). Statecharts: a Visual Formalism for Complex Systems. In: Science of Computer Programming 8.3,
pp. 231–274. issn: 0167-6423 (cited on page 40).

Hayeß, Johannes (Mar. 2023). Verifying the Rust Runtime of Lingua Franca. MA thesis. TU Dresden (cited on
page 87).

Hedden, Brandon and Xinghui Zhao (2018). A Comprehensive Study on Bugs in Actor Systems. In: Proceedings of the
47th International Conference on Parallel Processing. ICPP 2018. Eugene, OR, USA: Association for Computing
Machinery. isbn: 9781450365109 (cited on page 17).

Hempel, Gerald, Andrés Goens, Jeronimo Castrillon, Josefine Asmus, and Ivo F. Sbalzarini (2017). Robust Mapping
of Process Networks to Many-Core Systems Using Bio-Inspired Design Centering. In: Proceedings of the 20th
International Workshop on Software and Compilers for Embedded Systems. SCOPES ’17. Sankt Goar, Germany:
Association for Computing Machinery, pp. 21–30. isbn: 9781450350396 (cited on page 145).

Hennig, Julien, Hermann von Hasseln, Hassan Mohammad, Stefan Resmerita, Stefan Lukesch, and Andreas Nader-
linger (2016). Towards Parallelizing Legacy Embedded Control Software Using the LET Programming Paradigm. In:
Proceedings of the 22nd IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (cited on
page 33).

Henzinger, Thomas A., Benjamin Horowitz, and Christoph M. Kirsch (2003). Giotto: A Time-Triggered Language for
Embedded Programming. In: Proceedings of the IEEE 91.1, pp. 84–99 (cited on pages 33, 154).

Henzinger, Thomas A. and Joseph Sifakis (2006). The Embedded Systems Design Challenge. In: FM 2006: Formal Meth-
ods. Ed. by Jayadev Misra, Tobias Nipkow, and Emil Sekerinski. Berlin, Heidelberg: Springer Berlin Heidelberg.
isbn: 978-3-540-37216-5 (cited on pages 3, 6).

Heulot, Julien, Jani Boutellier, Maxime Pelcat, Jean-François Nezan, and Slaheddine Aridhi (2013). Applying the
Adaptive Hybrid Flow-Shop Scheduling Method to Schedule a 3GPP LTE Physical Layer Algorithm onto Many-core
Digital Signal Brocessors. In: 2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS-2013), pp. 123–
129 (cited on page 146).

Heulot, Julien, Maxime Pelcat, Karol Desnos, Jean-François Nezan, and Slaheddine Aridhi (2014). SPIDER: A
Synchronous Parameterized and Interfaced Dataflow-based RTOS for Multicore DSPs. In: 2014 6th European
Embedded Design in Education and Research Conference (EDERC), pp. 167–171 (cited on page 137).

Hewitt, Carl (1977). Viewing Control Structures as Patterns of Passing Messages. In: Artificial Intelligence 8.3, pp. 323–
364 (cited on page 14).

Hewitt, Carl, Peter Bishop, and Richard Steiger (1973). A Universal Modular ACTOR Formalism for Artificial
Intelligence. In: Proceedings of the 3rd International Joint Conference on Artificial Intelligence. IJCAI’73. Stanford,
USA: Morgan Kaufmann Publishers Inc., pp. 235–245 (cited on pages 14, 153).

Hirzel, Martin, Henrique Andrade, Buğra Gedik, Vibhore Kumar, Mark P. Mendell, Howard Nasgaard, Robert Soulé,
and Kun-Lung Wu (2009). SPL Stream Processing Language Specification. Tech. rep. IBM (cited on page 22).

Hirzel, Martin, Guillaume Baudart, Angela Bonifati, Emanuele Della Valle, Sherif Sakr, and Akrivi Akrivi Vlachou
(2018). Stream Processing Languages in the Big Data Era. In: SIGMOD Record 47.2, pp. 29–40. issn: 0163-5808
(cited on page 22).

Hirzel, Martin, Scott Schneider, and Buğra Gedik (2017). SPL: an Extensible Language for Distributed Stream
Processing. In: ACM Transactions on Programming Languages and Systems 39.1. issn: 0164-0925 (cited on page 22).

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice Hall. isbn: 978-0131532892 (cited on page 40).
Hong, Shin and Moonzoo Kim (2015). A Survey of Race Bug Detection Techniques for Multithreaded Programmes. In:

Software Testing, Verification and Reliability 25.3, pp. 191–217 (cited on page 11).
Huang, Kai, Iuliana Bacivarov, Fabian Hugelshofer, and Lothar Thiele (2008). Scalably Distributed SystemC Simula-

tion for Embedded Applications. In: 2008 International Symposium on Industrial Embedded Systems, pp. 271–274
(cited on page 29).

Hui, John and Stephen A. Edwards (2022). The Sparse Synchronous Model on Real Hardware. In: ACM Transactions
on Embedded Computing Systems. Just Accepted. issn: 1539-9087 (cited on page 32).

http://dx.doi.org/10.1007/978-3-031-19756-7_5
http://dx.doi.org/10.1007/978-3-031-19756-7_5
http://dx.doi.org/10.1145/2627350
http://dx.doi.org/10.1145/2627350
http://dx.doi.org/10.1016/0167-6423(87)90035-9
https://cfaed.tu-dresden.de/publications?pubId=3535
http://dx.doi.org/10.1145/3225058.3225139
http://dx.doi.org/10.1145/3078659.3078667
http://dx.doi.org/10.1145/3078659.3078667
http://2016.rtas.org/wp-content/uploads/2016/04/RTAS-WiP-paper-1.pdf
http://dx.doi.org/10.1109/JPROC.2002.805825
http://dx.doi.org/10.1109/JPROC.2002.805825
http://dx.doi.org/10.1007/11813040
http://dx.doi.org/10.1109/AHS.2013.6604235
http://dx.doi.org/10.1109/AHS.2013.6604235
http://dx.doi.org/10.1109/AHS.2013.6604235
http://dx.doi.org/10.1109/EDERC.2014.6924381
http://dx.doi.org/10.1109/EDERC.2014.6924381
http://dx.doi.org/10.1016/0004-3702(77)90033-9
http://dx.doi.org/10.5555/1624775.1624804
http://dx.doi.org/10.5555/1624775.1624804
http://hirzels.com/martin/papers/tr09-rc24897-spl.pdf
http://dx.doi.org/10.1145/3299887.3299892
http://dx.doi.org/10.1145/3039207
http://dx.doi.org/10.1145/3039207
http://books.google.com/books?vid=ISBN978-0131532892
http://dx.doi.org/10.1002/stvr.1564
http://dx.doi.org/10.1109/SIES.2008.4577715
http://dx.doi.org/10.1109/SIES.2008.4577715
http://dx.doi.org/10.1145/3572920

Hui, John and Stephen A. Edwards (2023). Towards Sparse Synchronous Programming in Lua. In: Proceedings of
Cyber-Physical Systems and Internet of Things Week 2023. CPS-IoT Week ’23. San Antonio, TX, USA: Association
for Computing Machinery, pp. 361–366. isbn: 9798400700491 (cited on page 32).

IEEE (2019). IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control
Systems. IEEE Standard 1588-2019 (cited on page 84).

IEEE Computer Society (2019). IEEE Standard for Software-Hardware Interface for Multi-Many-Core. In: IEEE
2804-2019 (cited on page 141).

IEEE Computer Society and The Open Group (2018). IEEE Standard for Software-Hardware Interface for Multi-Many-
Core. In: IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008) (cited on page 26).

Imam, Shams M. and Vivek Sarkar (2014). Savina – An Actor Benchmark Suite: Enabling Empirical Evaluation of
Actor Libraries. In: Proceedings of the 4th International Workshop on Programming Based on Actors Agents &
Decentralized Control. AGERE! ’14. Portland, Oregon, USA: Association for Computing Machinery, pp. 67–80.
isbn: 9781450321891 (cited on pages 94, 103, 109).

Jagadeesan, Lalita Jategaonkar, Carlos Puchol, and James E. Von Olnhausen (1995). Safety Property Verification
of Esterel Programs and Applications to Telecommunications Software. In: Computer Aided Verification. Ed. by
Pierre Wolper. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 127–140. isbn: 978-3-540-49413-3 (cited on
page 31).

Jazdi, Nasser (2014). Cyber Physical Systems in the Context of Industry 4.0. In: 2014 IEEE International Conference on
Automation, Quality and Testing, Robotics (cited on page 1).

Kahn, Gilles (1974). The Semantics of a Simple Language for Parallel Programming. In: Information Processing,
Proceedings of the 6th IFIP Congress 1974, Stockholm, Sweden, August 5-10, 1974. Ed. by Jack L. Rosenfeld. North-
Holland Publishing Co., pp. 471–475 (cited on pages 19, 153).

Kahn, Gilles and David B. MacQueen (1977). Coroutines and Networks of Parallel Processes. In: Information Processing.
Ed. by B. Gilchrist. North-Holland Publishing Co., pp. 993–998 (cited on page 19).

Kalray Inc (2023). MPPA DPU Architecture. url: https://www.kalrayinc.com/products/mppa-technology/
(visited on July 13, 2023) (cited on page 135).

Karnaugh, Maurice (1953). The Map Method for Synthesis of Combinational Logic Circuits. In: Transactions of the
American Institute of Electrical Engineers, Part I: Communication and Electronics 72.5, pp. 593–599 (cited on
page 6).

Keinert, Joachim, Martin Streubūhr, Thomas Schlichter, Joachim Falk, Jens Gladigau, Christian Haubelt, Jūrgen
Teich, and Michael Meredith (2009). Systemcodesigner—An Automatic ESL Synthesis Approach by Design Space
Exploration and Behavioral Synthesis for Streaming Applications. In: ACM Transactions on Design Automation of
Electronic Systems 14.1. issn: 1084-4309 (cited on page 137).

Khasanov, Robert and Jeronimo Castrillon (2020). Energy-efficient Runtime Resource Management for Adaptable
Multi-application Mapping. In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 909–
914 (cited on pages 145, 148, 149).

Khasanov, Robert, Andrés Goens, and Jeronimo Castrillon (2018). Implicit Data-Parallelism in Kahn Process Networks:
Bridging the MacQueen Gap. In: Proceedings of the 9th Workshop and 7th Workshop on Parallel Programming and
RunTime Management Techniques for Manycore Architectures and Design Tools and Architectures for Multicore
Embedded Computing Platforms. PARMA-DITAM ’18. Manchester, United Kingdom: Association for Computing
Machinery, pp. 20–25. isbn: 9781450364447 (cited on page 19).

Khasanov, Robert, Julian Robledo, Christian Menard, Andrés Goens, and Jeronimo Castrillon (Sept. 2021). Domain-
Specific Hybrid Mapping for Energy-Efficient Baseband Processing in Wireless Networks. In: ACM Transactions on
Embedded Computing Systems (TECS). Special issue of the International Conference on Compilers, Architecture,
and Synthesis of Embedded Systems (CASES) 20.5s. issn: 1539-9087 (cited on pages x, 146, 147, 149, 150).

Kim, Ki Hyung, Yeong Rak Seong, Tag Gon Kim, and Kyu Ho Park (1997). Ordering of Simultaneous Events in
Distributed DEVS Simulation. In: Simulation Practice and Theory 5.3, pp. 253–268. issn: 0928-4869 (cited on
page 27).

Kirsch, Christoph M. and Ana Sokolova (2012). The Logical Execution Time Paradigm. In: Advances in Real-Time
Systems. Ed. by Samarjit Chakraborty and Jörg Eberspächer. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 103–120. isbn: 978-3-642-24349-3 (cited on pages 32, 153).

Klabnik, Steve and Carol Nichols (2022).The Rust Programming Language. 2nd. No Starch Press. isbn: 9781718503106
(cited on page 59).

Kleene, Stephen C. (1936). General Recursive Functions of Natural Numbers. In: Mathematische Annalen 112, pp. 727–
742 (cited on page 2).

Kligerman, Eugene and Alexander D. Stoyenko (1986). Real-Time Euclid: a Language for Reliable Real-Time Systems.
In: IEEE Transactions on Software Engineering SE-12.9, pp. 941–949 (cited on page 154).

http://dx.doi.org/10.1145/3576914.3587502
https://standards.ieee.org/ieee/1588/6825/
https://standards.ieee.org/ieee/1588/6825/
https://standards.ieee.org/ieee/2804/7477/
http://dx.doi.org/10.1109/IEEESTD.2018.8277153
http://dx.doi.org/10.1109/IEEESTD.2018.8277153
http://dx.doi.org/10.1145/2687357.2687368
http://dx.doi.org/10.1145/2687357.2687368
http://dx.doi.org/10.1007/3-540-60045-0_45
http://dx.doi.org/10.1007/3-540-60045-0_45
http://dx.doi.org/10.1109/AQTR.2014.6857843
http://www1.cs.columbia.edu/~sedwards/papers/kahn1974semantics.pdf
https://pdos.csail.mit.edu/~rsc/kahn77parallel.pdf
https://www.kalrayinc.com/products/mppa-technology/
https://www.kalrayinc.com/products/mppa-technology/
http://dx.doi.org/10.1109/TCE.1953.6371932
http://dx.doi.org/10.1145/1455229.1455230
http://dx.doi.org/10.1145/1455229.1455230
http://dx.doi.org/10.23919/DATE48585.2020.9116381
http://dx.doi.org/10.23919/DATE48585.2020.9116381
http://dx.doi.org/10.1145/3183767.3183790
http://dx.doi.org/10.1145/3183767.3183790
http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.1145/3476991
http://dx.doi.org/10.1016/S0928-4869(96)00009-2
http://dx.doi.org/10.1016/S0928-4869(96)00009-2
http://dx.doi.org/10.1007/978-3-642-24349-3_5
https://doc.rust-lang.org/book/
http://dx.doi.org/10.1007/BF01565439
http://dx.doi.org/10.1109/TSE.1986.6313049

Köhler, Leonie, Phil Hertha, Matthias Beckert, Alex Bendrick, and Rolf Ernst (2023). Robust Cause-Effect Chains
With Bounded Execution Time and System-Level Logical Execution Time. In: ACM Trans. Embed. Comput. Syst.
22.3. issn: 1539-9087 (cited on page 33).

Kopetz, Hermann (Apr. 2011). Real-Time Systems: Design Principles for Distributed Embedded Applications. Springer
New York, NY. isbn: 978-1-4419-8236-0 (cited on page 3).

Kopetz, Hermann and Günther Bauer (2003). The Time-Triggered Architecture. In: Proceedings of the IEEE 91.1,
pp. 112–126 (cited on page 33).

Koubaa, Anis, ed. (Feb. 2016). Robot Operating System (ROS)—The Complete Reference (Volume 1). Springer Cham.
isbn: 978-3-319-26054-9 (cited on pages 37, 154).

Kounev, Samuel, Nikolas Herbst, Cristina L. Abad, Alexandru Iosup, Ian Foster, Prashant Shenoy, Omer Rana, and
Andrew A. Chien (2023). Serverless Computing: What It Is, and What It Is Not? In: Commun. ACM 66.9, pp. 80–92.
issn: 0001-0782 (cited on page 1).

Krook, Robert, John Hui, Bo Joel Svensson, Stephen A. Edwards, and Koen Claessen (2022). Creating a Language
for Writing Real-Time Applications for the Internet of Things. In: 2022 20th ACM-IEEE International Conference on
Formal Methods and Models for System Design (MEMOCODE) (cited on pages 32, 154).

Kuhl, Frederick, Richard M. Weatherly, and Judith S. Dahmann (1999). Creating Computer Simulation Systems: An
Introduction to the High Level Architecture. USA: Prentice Hall PTR. isbn: 0130225118 (cited on page 81).

Kwok, Yu-Kwong and Ishfaq Ahmad (1999). Static Scheduling Algorithms for Allocating Directed Task Graphs To
Multiprocessors. In: ACM Computing Surveys 31.4, pp. 406–471. issn: 0360-0300 (cited on pages 14, 99).

Lakshmanan, Karthik, Shinpei Kato, and Ragunathan Rajkumar (2010). Scheduling Parallel Real-Time Tasks on
Multi-core Processors. In: 2010 31st IEEE Real-Time Systems Symposium, pp. 259–268 (cited on page 13).

Lall, Sanjay, Calin Cascaval, Martin Izzard, and Tammo Spalink (2023). Logical Synchrony and the Bittide Mechanism.
In: CoRR abs/2308.00144. arXiv: 2308.00144(cited on pages 154, 158).

Lamport, Leslie (1978). Time, Clocks, and the Ordering of Events in a Distributed System. In: Commun. ACM 21.7,
pp. 558–565. issn: 0001-0782 (cited on page 25).

Lanese, Ivan, Naoki Nishida, Adrián Palacios, and Germán Vidal (2018). CauDEr: A Causal-Consistent Reversible
Debugger for Erlang. In: Functional and Logic Programming. Ed. by John P. Gallagher and Martin Sulzmann.
Cham: Springer International Publishing, pp. 247–263. isbn: 978-3-319-90686-7 (cited on page 17).

Laskey, Kathryn B. and Kenneth Laskey (2009). Service Oriented Architecture. In: WIREs Computational Statistics
1.1, pp. 101–105 (cited on pages 18, 154).

Le Guernic, Paul, Thierry Gautier, Michel Le Borgne, and Claude Le Maire (1991). Programming Real-Time Applica-
tions With Signal. In: Proceedings of the IEEE 79.9, pp. 1321–1336 (cited on page 30).

Lee, Edward A. (2006). The Problem With Threads. In: Computer 39.5, pp. 33–42 (cited on page 10).
– (2008). Cyber Physical Systems: Design Challenges. In: 2008 11th IEEE International Symposium on Object and

Component-Oriented Real-Time Distributed Computing (ISORC), pp. 363–369 (cited on page 3).
– (2009). Computing Needs Time. In: Communications of the ACM 52.5, pp. 70–79. issn: 0001-0782 (cited on pages 1,

24).
– (Oct. 2018). Plato and the Nerd—The Creative Partnership of Humans and Technology. The MIT Press. isbn:

9780262536424 (cited on page 2).
– (2019). Freedom From Choice and the Power of Models: In Honor of Alberto Sangiovanni-Vincentelli. In: Proceedings

of the 2019 International Symposium on Physical Design. ISPD ’19. San Francisco, CA, USA: Association for
Computing Machinery, p. 126. isbn: 9781450362535 (cited on page 2).

– (July 2021). Determinism. In: ACM Transactions on Embedded Computing Systems (TECS) 20.5, pp. 1–34 (cited on
pages 3, 4).

Lee, Edward A., Ravi Akella, Soroush Bateni, Shaokai Lin, Marten Lohstroh, and Christian Menard (2023). Con-
sistency Vs. Availability in Distributed Cyber-Physical Systems. In: ACM Transactions on Embedded Computing
Systems 22.5s. issn: 1539-9087 (cited on pages x, 58, 85).

Lee, Edward A., Soroush Bateni, Shaokai Lin, Marten Lohstroh, and Christian Menard (2021). Quantifying and
Generalizing the CAP Theorem (cited on pages xi, 85).

– (2023). Trading Off Consistency and Availability in Tiered Heterogeneous Distributed Systems. In: Intelligent
Computing 2 (cited on pages x, 58, 85).

Lee, Edward A. and Marten Lohstroh (2022). Generalizing Logical Execution Time. In: Principles of Systems Design:
Essays Dedicated to Thomas A. Henzinger on the Occasion of His 60th Birthday. Ed. by Jean-François Raskin,
Krishnendu Chatterjee, Laurent Doyen, and Rupak Majumdar. Cham: Springer Nature Switzerland, pp. 160–181.
isbn: 978-3-031-22337-2 (cited on pages 84, 126).

Lee, Edward A. and Eleftherios Matsikoudis (Sept. 2009). The Semantics of Dataflow With Firing. In: From Semantics
to Computer Science: Essays in Honour of Gilles Kahn (cited on pages 19, 21).

http://dx.doi.org/10.1145/3573388
http://dx.doi.org/10.1145/3573388
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1109/JPROC.2002.805821
http://dx.doi.org/10.1007/978-3-319-26054-9
http://dx.doi.org/10.1145/3587249
http://dx.doi.org/10.1109/MEMOCODE57689.2022.9954383
http://dx.doi.org/10.1109/MEMOCODE57689.2022.9954383
http://books.google.com/books?vid=ISBN0130225118
http://books.google.com/books?vid=ISBN0130225118
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1145/344588.344618
http://dx.doi.org/10.1109/RTSS.2010.42
http://dx.doi.org/10.1109/RTSS.2010.42
http://dx.doi.org/10.48550/ARXIV.2308.00144
https://arxiv.org/abs/2308.00144
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1007/978-3-319-90686-7_16
http://dx.doi.org/10.1007/978-3-319-90686-7_16
http://dx.doi.org/10.1002/wics.8
http://dx.doi.org/10.1109/5.97301
http://dx.doi.org/10.1109/5.97301
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1145/1506409.1506426
https://mitpress.mit.edu/9780262536424/plato-and-the-nerd/
http://dx.doi.org/10.1145/3299902.3320432
http://dx.doi.org/10.1145/3453652
http://dx.doi.org/10.1145/3609119
http://dx.doi.org/10.1145/3609119
http://dx.doi.org/10.48550/ARXIV.2109.07771
http://dx.doi.org/10.48550/ARXIV.2109.07771
http://dx.doi.org/10.34133/icomputing.0013
http://dx.doi.org/10.1007/978-3-031-22337-2_8
http://dx.doi.org/10.1017/CBO9780511770524.005

Lee, Edward A. and David G. Messerschmitt (1987). Synchronous Data Flow. In: Proceedings of the IEEE 75.9,
pp. 1235–1245 (cited on pages 21, 153).

Lee, Edward A. andThomas M. Parks (1995). Dataflow Process Networks. In: Proceedings of the IEEE 83.5, pp. 773–801
(cited on page 21).

Lee, Edward A. and Sanjit A. Seshia (2016). Introduction to Embedded Systems: A Cyber-Physical Systems Approach.
2nd. The MIT Press. isbn: 0262533812 (cited on pages 1, 30).

Lee, Edward A. and Haiyang Zheng (2007). Leveraging Synchronous Language Principles for Heterogeneous Mod-
eling and Design of Embedded Systems. In: Proceedings of the 7th ACM & IEEE International Conference on
Embedded Software. EMSOFT ’07. Salzburg, Austria: Association for Computing Machinery, pp. 114–123. isbn:
9781595938251 (cited on page 29).

Leupers, Rainer and Jeronimo Castrillon (2010). MPSoC Programming Using the MAPS Compiler . In: 2010 15th Asia
and South Pacific Design Automation Conference (ASP-DAC), pp. 897–902 (cited on page 137).

Li, Xin (2007). The Kiel Esterel Processor: A Multi-threaded Reactive Processor . PhD thesis. Christian-Albrechts
Universität Kiel (cited on page 31).

Li, Xin and Reinhard von Hanxleden (2012). Multithreaded Reactive Programming—The Kiel Esterel Processor . In:
IEEE Transactions on Computers 61.3, pp. 337–349 (cited on page 31).

Lieberman, Henry (1987). Concurrent Object-Oriented Programming in Act 1. In: Object-Oriented Concurrent Pro-
gramming. Cambridge, MA, USA: MIT Press, pp. 9–36. isbn: 0262240262 (cited on page 15).

Liu, C. L. and James W. Layland (1973). Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environ-
ment . In: Journal of the ACM 20.1, pp. 46–61. issn: 0004-5411 (cited on page 11).

Liu, Tongping, Charlie Curtsinger, and Emery D. Berger (2011). Dthreads: Efficient Deterministic Multithreading. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. SOSP ’11. Cascais, Portugal:
Association for Computing Machinery, pp. 327–336. isbn: 9781450309776 (cited on page 11).

Liu, Ziheng, Shuofei Zhu, Boqin Qin, Hao Chen, and Linhai Song (2021). Automatically Detecting and Fixing
Concurrency Bugs in Go Software Systems. In: Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages andOperating Systems. ASPLOS ’21. Virtual, USA: Association for Computing
Machinery, pp. 616–629. isbn: 9781450383172 (cited on page 11).

Lohstroh, Marten (Dec. 2020). Reactors: A Deterministic Model of Concurrent Computation for Reactive Systems.
PhD thesis (cited on pages 1, 7, 41, 44, 100, 103, 153).

Lohstroh, Marten, Soroush Bateni, Christian Menard, Alexander Schulz-Rosengarten, Jeronimo Castrillon, and
Edward A. Lee (2023). Deterministic Coordination Across Multiple Timelines. In: ACM Transactions on Embedded
Computing Systems. issn: 1539-9087 (cited on pages x, 60).

[SW] Lohstroh, Marten, Hokeun Kim, Matt Weber, and Byeong-gil Jun, reactor-ts. url: https://github.com/lf-
lang/reactor-ts, (visited on Nov. 10, 2023) (cited on page 87).

Lohstroh, Marten and Edward A. Lee (2019a). Deterministic Actors. In: 2019 Forum for Specification and Design
Languages (FDL) (cited on pages 19, 41).

– (2019b). Work-in-Progress: Real-Time Reactors in C . In: 2019 IEEE Real-Time Systems Symposium (RTSS), pp. 572–
575 (cited on page 58).

[SW] Lohstroh, Marten, Edward A. Lee, Soroush Bateni, Christian Menard, Peter Donovan, Clément Fournier, Hou
Seng Wong, Alexander Schulz-Rosengarten, Erling Rennemo Jellum, Hokeun Kim, Matt Weber, Shaokai Lin, and
Anirudh Rengarajan, Lingua Franca. lic: BSD-2-Clause. url: https://github.com/lf-lang/lingua-franca,
(visited on Nov. 10, 2023) (cited on page 87).

Lohstroh, Marten, Edward A. Lee, Stephen A. Edwards, and David Broman (2023). Logical Time for Reactive
Software. In: Proceedings of Cyber-Physical Systems and Internet of Things Week 2023. CPS-IoT Week ’23. San
Antonio, TX, USA: Association for Computing Machinery, pp. 313–318. isbn: 9798400700491 (cited on pages 25,
26, 30).

Lohstroh, Marten, Christian Menard, Soroush Bateni, and Edward A. Lee (2021). Toward a Lingua Franca for
Deterministic Concurrent Systems. In: ACM Transactions on Embedded Computing Systems 20.4, pp. 1–27 (cited
on pages x, 60).

Lohstroh, Marten, Christian Menard, Alexander Schulz-Rosengarten, Matthew Weber, Jeronimo Castrillon, and
Edward A. Lee (Sept. 2020). A Language for Deterministic Coordination Across Multiple Timelines. In: 2020 Forum
for Specification and Design Languages (FDL). Kiel, Germany, pp. 1–8 (cited on pages xi, 60).

Lohstroh, Marten, Íñigo Íncer Romeo, Andrés Goens, Patricia Derler, Jeronimo Castrillon, Edward A. Lee, and
Alberto Sangiovanni-Vincentelli (2019). Reactors: A Deterministic Model for Composable Reactive Systems. In:
Cyber Physical Systems. Model-Based Design: 9th International Workshop, CyPhy 2019, and 15th International
Workshop, WESE 2019, New York City, NY, USA, October 17-18, 2019, Revised Selected Papers. New York City, NY,
USA: Springer-Verlag, pp. 59–85. isbn: 978-3-030-41130-5 (cited on pages 1, 7, 41, 44, 103, 153).

http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/5.381846
http://books.google.com/books?vid=ISBN0262533812
http://dx.doi.org/10.1145/1289927.1289949
http://dx.doi.org/10.1145/1289927.1289949
http://dx.doi.org/10.1109/ASPDAC.2010.5419677
https://d-nb.info/1002624398/34
http://dx.doi.org/10.1109/TC.2010.246
http://dx.doi.org/10.5555/50107.50108
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/2043556.2043587
http://dx.doi.org/10.1145/3445814.3446756
http://dx.doi.org/10.1145/3445814.3446756
http://dx.doi.org/10.13140/RG.2.2.30520.78083
http://dx.doi.org/10.1145/3615357
https://github.com/lf-lang/reactor-ts
https://github.com/lf-lang/reactor-ts
https://github.com/lf-lang/reactor-ts
http://dx.doi.org/10.1109/FDL.2019.8876922
http://dx.doi.org/10.1109/RTSS46320.2019.00067
https://github.com/lf-lang/lingua-franca
https://github.com/lf-lang/lingua-franca
http://dx.doi.org/10.1145/3576914.3587494
http://dx.doi.org/10.1145/3576914.3587494
http://dx.doi.org/10.1145/3448128
http://dx.doi.org/10.1145/3448128
http://dx.doi.org/10.1109/FDL50818.2020.9232939
http://dx.doi.org/10.1007/978-3-030-41131-2_4

Lohstroh, Marten, Martin Schoeberl, Andrés Goens, Armin Wasicek, Christopher Gill, Marjan Sirjani, and Edward
A. Lee (2019). Actors Revisited for Time-Critical Systems. In: Proceedings of the 56th Annual Design Automation
Conference 2019. DAC ’19. Las Vegas, NV, USA: Association for Computing Machinery. isbn: 9781450367257
(cited on page 41).

[SW] Lohstroh, Marten, Alexander Schulz-Rosengarten, Soroush Bateni, Christian Menard, and Peter Donovan,
Epoch IDE for Lingua Franca. lic: BSD-2-Clause. url: https://github.com/lf-lang/epoch, (visited on
Nov. 10, 2023) (cited on page 88).

Lowe-Power, Jason, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Amslinger, Matteo Andreozzi,
Adrià Armejach, Nils Asmussen, Brad Beckmann, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce,
Daniel Rodrigues Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst,
Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-Farahani, Pouya Fotouhi, Ryan Gambord,
Jayneel Gandhi, Dibakar Gope,Thomas Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil
Haria, Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap,
Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza Khaleghzadeh,
Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto, Tiago
Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson, Marc Orr, Binh Pham,
Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov,
Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas,
William Wang, Zhengrong Wang, Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, and Éder F.
Zulian (July 2020). The Gem5 Simulator: Version 20.0+. In: arXiv preprint arXiv:2007.03152 (cited on pages xi, 28).

Macenski, Steven, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall (May 2022). Robot Operating
System 2: Design, Architecture, and Uses in the Wild . In: Science Robotics 7.66. issn: 2470-9476 (cited on page 37).

Maillet-Contoz, Laurent and Frank Ghenassia (2005). Transaction Level Modeling. In: Transaction Level Modeling
with SystemC: TLM Concepts and Applications for Embedded Systems. Ed. by Frank Ghenassia. Boston, MA:
Springer US, pp. 23–55. isbn: 978-0-387-26233-8 (cited on page 28).

Maler, Oded, Zohar Manna, and Amir Pnueli (1992). From Timed to Hybrid Systems. In: Real-Time: Theory in Practice.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 447–484. isbn: 978-3-540-47218-6 (cited on page 27).

Manolache, Sorin, Petru Eles, and Zebo Peng (2008). Task Mapping and Priority Assignment for Soft Real-Time
Applications Under Deadline Miss Ratio Constraints. In: ACM Transactions on Embedded Computing Systems 7.2.
issn: 1539-9087 (cited on page 145).

Marwedel, Peter (2021). Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems, and
the Internet of Things. 4th ed. Springer Cham. isbn: 978-3-030-60909-2 (cited on page 3).

Mathur, Aman Shankar, Burcu Kulahcioglu Ozkan, and Rupak Majumdar (2018). IDeA: An Immersive Debugger for
Actors. In: Proceedings of the 17th ACM SIGPLAN International Workshop on Erlang. Erlang 2018. St. Louis, MO,
USA: Association for Computing Machinery. isbn: 9781450358248 (cited on page 17).

Matloff, Norm (Feb. 2008). Introduction To Discrete-Event Simulation and the Simpy Language. In: (cited on page 28).
Mayr, Christian, Sebastian Hoeppner, and Steve Furber (2019). SpiNNaker 2: A 10 Million Core Processor System for

Brain Simulation and Machine Learning. arXiv: 1911.02385 [cs.ET](cited on page 135).
Mazumder, Sudip K., Abhijit Kulkarni, Subham Sahoo, Frede Blaabjerg, H. Alan Mantooth, Juan Carlos Balda,

Yue Zhao, Jorge A. Ramos-Ruiz, Prasad N. Enjeti, P. R. Kumar, Le Xie, Johan H. Enslin, Burak Ozpineci, Anuradha
Annaswamy, Herbert L. Ginn, Feng Qiu, Jianzhe Liu, Besma Smida, Colin Ogilvie, Juan Ospina, Charalambos
Konstantinou, Mark Stanovich, Karl Schoder, Michael Steurer, Tuyen Vu, Lina He, and Eduardo Pilo de la Fuente
(2021). A Review of Current Research Trends in Power-Electronic Innovations in Cyber-Physical Systems. In: IEEE
Journal of Emerging and Selected Topics in Power Electronics 9.5, pp. 5146–5163 (cited on page 1).

McFarland, Michael C., Alice C. Parker, and Raul Camposano (1990). The High-Level Synthesis of Digital Systems.
In: Proceedings of the IEEE 78.2, pp. 301–318 (cited on page 159).

Meijer, Erik (2010). Reactive Extensions (Rx): Curing Your Asynchronous Programming Blues. In: ACM SIGPLAN
Commercial Users of Functional Programming. CUFP ’10. Baltimore, Maryland: Association for Computing
Machinery. isbn: 9781450305167 (cited on page 154).

[SW] Menard, Christian, DEAR: Discrete Events for Adaptive AUTOSAR. lic: ISC. url: https://github.com/tud-
ccc/dear, (visited on Nov. 10, 2023) (cited on page 50).

Menard, Christian, Andrés Goens, and Jeronimo Castrillon (Nov. 2016). High-Level NoC Model for MPSoC Compilers.
In: Proceedings of the IEEE Nordic Circuits and Systems Conference (NORCAS’16). NORCAS. Copenhagen, Denmark
(cited on pages xii, 140).

Menard, Christian, Andrés Goens, Gerald Hempel, Robert Khasanov, Julian Robledo, Felix Teweleitt, and Jeronimo
Castrillon (Jan. 2021). Mocasin—Rapid Prototyping of Rapid Prototyping Tools: A Framework for Exploring New
Approaches inMapping Software to HeterogeneousMulti-cores. In: Proceedings of the 2021 Drone Systems Engineering

http://dx.doi.org/10.1145/3316781.3323469
https://github.com/lf-lang/epoch
https://github.com/lf-lang/epoch
http://dx.doi.org/10.48550/arXiv.2007.03152
http://dx.doi.org/10.1126/scirobotics.abm6074
http://dx.doi.org/10.1126/scirobotics.abm6074
http://dx.doi.org/10.1007/0-387-26233-4_2
http://dx.doi.org/10.1007/BFb0032003
http://dx.doi.org/10.1145/1331331.1331343
http://dx.doi.org/10.1145/1331331.1331343
http://dx.doi.org/10.1007/978-3-030-60910-8
http://dx.doi.org/10.1007/978-3-030-60910-8
http://dx.doi.org/10.1145/3239332.3242762
http://dx.doi.org/10.1145/3239332.3242762
https://heather.cs.ucdavis.edu/matloff/public_html/156/PLN/DESimIntro.pdf
http://dx.doi.org/10.48550/arXiv.1911.02385
http://dx.doi.org/10.48550/arXiv.1911.02385
https://arxiv.org/abs/1911.02385
http://dx.doi.org/10.1109/JESTPE.2021.3051876
http://dx.doi.org/10.1109/5.52214
http://dx.doi.org/10.1145/1900160.1900173
https://github.com/tud-ccc/dear
https://github.com/tud-ccc/dear
https://github.com/tud-ccc/dear
http://dx.doi.org/10.1109/NORCHIP.2016.7792876
http://dx.doi.org/10.1145/3444950.3447285
http://dx.doi.org/10.1145/3444950.3447285

and Rapid Simulation and Performance Evaluation: Methods and Tools, co-located with 16th International Conference
on High-Performance and Embedded Architectures and Compilers (HiPEAC). DroneSE and RAPIDO ’21. Budapest,
Hungary: Association for Computing Machinery, pp. 66–73. isbn: 9781450389525 (cited on pages x, 136).

Menard, Christian, Andrés Goens, Marten Lohstroh, and Jeronimo Castrillon (Mar. 2020). Achieving Determinism
in Adaptive AUTOSAR. In: Proceedings of the 2020 Design, Automation and Test in Europe Conference (DATE).
DATE ’20. Grenoble, France: IEEE, pp. 822–827. isbn: 978-3-9819263-4-7 (cited on pages xi, 34, 50, 54, 58).

[SW] Menard, Christian, Andrés Goens, Robert Khasanov Felix Teweleitt, Julian Robledo, and Gerald Hempel,
Mocasin. lic: ISC. url: https://github.com/tud-ccc/mocasin, (visited on Dec. 19, 2023) (cited on page 137).

Menard, Christian, Matthias Jung, Jeronimo Castrillon, and Norbert Wehn (July 2017). System Simulation with
gem5 and SystemC: The Keystone for Full Interoperability. In: Proceedings of the IEEE International Conference
on Embedded Computer Systems Architectures Modeling and Simulation (SAMOS). IEEE. Pythagorion, Greece,
pp. 62–69. isbn: 978-1-5386-3437-0 (cited on pages xii, 28).

Menard, Christian, Marten Lohstroh, Soroush Bateni, Matthew Chorlian, Arthur Deng, Peter Donovan, Clément
Fournier, Shaokai Lin, Felix Suchert, Tassilo Tanneberger, Hokeun Kim, Jeronimo Castrillon, and Edward A. Lee
(2023). High-Performance Deterministic Concurrency Using Lingua Franca. In: ACM Transactions on Architecture
and Code Optimization. Just Accepted. issn: 1544-3566 (cited on pages x, 15, 41, 60, 94).

[SW] Menard, Christian, Julian Robledo, and Robert Khasanov, Fivegsim: A Simualtor for 5G Baseband Applications
Based on Mocasin. lic: ISC. url: https://github.com/tud-ccc/mocasin-fivegsim, (visited on Dec. 19,
2023) (cited on page 147).

[SW] Menard, Christian, Bateni Soroush, Peter Donovan, Johannes Hayeß, Wonseo Choi, Marten Lohstro, and
Matt Chorlian, Lingua Franca Benchmarks. url: https://github.com/lf-lang/benchmarks-lingua-franca,
(visited on Nov. 13, 2023) (cited on page 105).

[SW] Menard, Christian and Tassilo Tanneberger, reactor-cpp. lic: ISC. url: https://github.com/lf-lang/rea
ctor-cpp, (visited on Nov. 10, 2023) (cited on pages 87, 89).

Merrifield, Timothy, Joseph Devietti, and Jakob Eriksson (2015). High-Performance Determinism with Total Store
Order Consistency . In: Proceedings of the Tenth European Conference on Computer Systems. EuroSys ’15. Bordeaux,
France: Association for Computing Machinery. isbn: 9781450332385 (cited on page 11).

Merrifield, Timothy, Sepideh Roghanchi, Joseph Devietti, and Jakob Eriksson (2019). Lazy Determinism for Faster
Deterministic Multithreading. In: Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS ’19. Providence, RI, USA: Association for
Computing Machinery, pp. 879–891. isbn: 9781450362405 (cited on page 11).

Milner, Robin (1999). Communicating and Mobile Systems: The Pi Calculus. Cambridge University Press. isbn:
9780521658690 (cited on page 40).

MinnowBoard.org Foundation (2023). MinnowBoard Turbot Dual Ethernet Family Technical Specs. url: https://ww
w.minnowboard.org/minnowboard-turbot-dual-e/technical-specs/(visited on Aug. 11, 2023) (cited on
page 55).

Mok, Aloysius K. (1983). Fundamental Design Problems of Distributed Systems for the Hard-real-time Environment .
PhD thesis. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
(cited on page 12).

Mok, Aloysius K. and Deji Chen (1997). A Multiframe Model for Real-Time Tasks. In: IEEE Transactions on Software
Engineering 23.10, pp. 635–645 (cited on page 12).

Molnar, Ingo (2023). Design of the CFS scheduler . url: http://people.redhat.com/mingo/cfs-scheduler/sch
ed-design-CFS.txt(visited on Dec. 18, 2023) (cited on page 145).

Moore, Gordon (Apr. 1965). Cramming More Components Onto Integrated Circuits. In: Electronics Magazine (cited
on pages 5, 135).

Moritz, Philipp, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol,
Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica (2018). Ray: A Distributed Framework for
Emerging AI Applications. In: Proceedings of the 13th USENIX Conference on Operating Systems Design and
Implementation. OSDI’18. Carlsbad, CA, USA: USENIX Association, pp. 561–577. isbn: 9781931971478 (cited on
page 15).

Mulazzani, Marco (1985). Reliability Versus Safety. In: IFAC Proceedings Volumes 18.12. 4th IFAC Workshop on
Safety of Computer Control Systems 1985 (SAFECOMP’85): Achieving Safe Real Time Computer Systems, Como,
Italy, 1-3 October 1985, pp. 141–146. issn: 1474-6670 (cited on page 3).

Murillo, Luis Gabriel, Simon Wawroschek, Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid (Mar. 2014).
Automatic Detection of Concurrency Bugs through Event Ordering Constraints. In: Proceedings of the Conference
on Design, Automation & Test in Europe (DATE). Dresden, Germany (cited on page 11).

http://dx.doi.org/10.23919/DATE48585.2020.9116430
http://dx.doi.org/10.23919/DATE48585.2020.9116430
https://github.com/tud-ccc/mocasin
https://github.com/tud-ccc/mocasin
http://dx.doi.org/10.1109/SAMOS.2017.8344612
http://dx.doi.org/10.1109/SAMOS.2017.8344612
http://dx.doi.org/10.1145/3617687
https://github.com/tud-ccc/mocasin-fivegsim
https://github.com/tud-ccc/mocasin-fivegsim
https://github.com/tud-ccc/mocasin-fivegsim
https://github.com/lf-lang/benchmarks-lingua-franca
https://github.com/lf-lang/benchmarks-lingua-franca
https://github.com/lf-lang/reactor-cpp
https://github.com/lf-lang/reactor-cpp
https://github.com/lf-lang/reactor-cpp
http://dx.doi.org/10.1145/2741948.2741960
http://dx.doi.org/10.1145/2741948.2741960
http://dx.doi.org/10.1145/3297858.3304047
http://dx.doi.org/10.1145/3297858.3304047
http://books.google.com/books?vid=ISBN9780521658690
https://www.minnowboard.org/minnowboard-turbot-dual-e/technical-specs/
https://www.minnowboard.org/minnowboard-turbot-dual-e/technical-specs/
https://www.minnowboard.org/minnowboard-turbot-dual-e/technical-specs/
http://hdl.handle.net/1721.1/15670
http://dx.doi.org/10.1109/32.637146
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
http://people.redhat.com/mingo/cfs-scheduler/sched-design-CFS.txt
https://www.computerhistory.org/collections/catalog/102770822
http://books.google.com/books?vid=ISBN9781931971478
http://books.google.com/books?vid=ISBN9781931971478
http://dx.doi.org/10.1016/S1474-6670(17)60097-1
http://dx.doi.org/10.7873/DATE.2014.295

Murray, Derek G., Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi (2013). Naiad: A
Timely Dataflow System. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles.
SOSP ’13. Farminton, Pennsylvania: Association for Computing Machinery, pp. 439–455. isbn: 9781450323888
(cited on pages 155, 158).

Musuvathi, Madanlal, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Arumuga Nainar, and Iulian
Neamtiu (2008). Finding and Reproducing Heisenbugs in Concurrent Programs. In: Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation. OSDI’08. SanDiego, California: USENIXAssociation,
pp. 267–280 (cited on pages 10, 17).

Natarajan, Saranya and David Broman (2018). Timed C: An Extension to the C Programming Language for Real-Time
Systems. In: 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pp. 227–239
(cited on page 154).

Nelson, Bruce Jay (1981). Remote Procedure Call. PhD thesis. Carnegie Mellon University (cited on page 18).
Nikolov, Hristo, Todor Stefanov, and Ed Deprettere (2008). Systematic and Automated Multiprocessor System Design,

Programming, and Implementation. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 27.3, pp. 542–555 (cited on page 137).

Nikolov, Hristo, Mark Thompson, Todor Stefanov, Andy Pimentel, Simom Polstra, R. Bose, Claudiu Zissulescu,
and Ed Deprettere (2008). Daedalus: Toward Composable Multimedia MP-SoC Design. In: Proceedings of the 45th
Annual Design Automation Conference. DAC ’08. Anaheim, California: Association for Computing Machinery,
pp. 574–579. isbn: 9781605581156 (cited on page 137).

OASIS (Mar. 2019). MQTT Version 5.0. OASIS Standard (cited on page 18).
Odendahl, Maximilian, Jeronimo Castrillon, Vitaliy Volevach, Rainer Leupers, and Gerd Ascheid (2013). Split-cost

communication model for improved MPSoC application mapping. In: 2013 International Symposium on System on
Chip (SoC) (cited on page 140).

OMG (Apr. 2015). Data Distribution Service. OMG Specification formal/2015-04-10. Version 1.4 (cited on pages 18,
37).

Orsila, Heikki, Tero Kangas, Erno Salminen, Timo D. Hämäläinen, and Marko Hännikäinen (2007). Automated
Memory-Aware Application Distribution for Multi-Processor System-On-Chips. In: Journal of Systems Architecture
53.11, pp. 795–815. issn: 1383-7621 (cited on page 145).

Palencia, Jose C. and M. Gonzalez Harbour (1998). Schedulability Analysis for Tasks with Static and Dynamic Offsets.
In: Proceedings 19th IEEE Real-Time Systems Symposium (Cat. No.98CB36279), pp. 26–37 (cited on page 12).

Panda, Preeti Ranjan (2001). SystemC: A Modeling Platform Supporting Multiple Design Abstractions. In: Proceedings
of the 14th International Symposium on Systems Synthesis. ISSS ’01. Montréal, P.Q., Canada: Association for
Computing Machinery, pp. 75–80. isbn: 1581134185 (cited on page 28).

Papazoglou, Mike P. and Willem-Jan van den Heuvel (2007). Service Oriented Architectures: Approaches, Technologies
and Research Issues. In: The VLDB Journal 16.3, pp. 389–415. issn: 0949-877X (cited on pages 18, 154).

Parks, Thomas M. (1995). Bounded Scheduling of Process Networks. PhD thesis. USA: University of California at
Berkeley (cited on pages 19, 21).

Parr, Terence (Jan. 2013). The Definitive ANTLR 4 Reference. Ed. by Davidson Pfalzer Susannah. The Pragmatic
Programmers. isbn: 978-1934356999 (cited on page 61).

Pedroni, Volnei A. (2004). Circuit Design with VHDL. 3. Cambridge, MA, USA: MIT Press. isbn: 9780262042642
(cited on page 28).

Pelcat, Maxime, Karol Desnos, Julien Heulot, Clément Guy, Jean-François Nezan, and Slaheddine Aridhi (2014).
PREESM: A Dataflow-based Rapid Prototyping Framework for Simplifying Multicore DSP Programming. In: 2014
6th European Embedded Design in Education and Research Conference (EDERC), pp. 36–40 (cited on pages 22, 136).

Perrey, Randall and Mark Lycett (2003). Service-oriented Architecture. In: 2003 Symposium on Applications and the
Internet Workshops, 2003. Proceedings. Pp. 116–119 (cited on pages 18, 154).

Peterson, James L. (1977). Petri Nets. In: ACM Comput. Surv. 9.3, pp. 223–252. issn: 0360-0300 (cited on page 40).
Petri, Carl Adam (1962). Kommunikation mit Automaten. PhD thesis. Rheinisch-Westfälisches Institut für instru-

mentelle Mathematik an der Universität Bonn (cited on page 40).
Pimentel, Andy D., Cagkan. Erbas, and Simon Polstra (2006). A Systematic Approach To Exploring Embedded

System Architectures At Multiple Abstraction Levels. In: IEEE Transactions on Computers 55.2, pp. 99–112 (cited
on page 137).

Pivoto, Diego G.S., Luiz F.F. de Almeida, Rodrigo da Rosa Righi, Joel J.P.C. Rodrigues, Alexandre Baratella Lugli,
and Antonio M. Alberti (2021). Cyber-Physical Systems Architectures for Industrial Internet of Things Applications
in Industry 4.0: a Literature Review . In: Journal of Manufacturing Systems 58, pp. 176–192. issn: 0278-6125 (cited
on page 1).

http://dx.doi.org/10.1145/2517349.2522738
http://dx.doi.org/10.1145/2517349.2522738
http://dx.doi.org/10.5555/1855741.1855760
http://dx.doi.org/10.1109/RTAS.2018.00031
http://dx.doi.org/10.1109/RTAS.2018.00031
https://cs.nyu.edu/~apanda/classes/fa22/papers/nelson81remote.pdf
http://dx.doi.org/10.1109/TCAD.2007.911337
http://dx.doi.org/10.1109/TCAD.2007.911337
http://dx.doi.org/10.1145/1391469.1391615
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://dx.doi.org/10.1109/ISSoC.2013.6675280
http://dx.doi.org/10.1109/ISSoC.2013.6675280
https://www.omg.org/spec/DDS/1.4/PDF
http://dx.doi.org/10.1016/j.sysarc.2007.01.013
http://dx.doi.org/10.1016/j.sysarc.2007.01.013
http://dx.doi.org/10.1109/REAL.1998.739728
http://dx.doi.org/10.1145/500001.500018
http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1007/s00778-007-0044-3
https://ptolemy.berkeley.edu/papers/95/parksThesis/
https://pragprog.com/titles/tpantlr2/the-definitive-antlr-4-reference/
https://mitpress.mit.edu/9780262042642/circuit-design-with-vhdl/
http://dx.doi.org/10.1109/EDERC.2014.6924354
http://dx.doi.org/10.1109/SAINTW.2003.1210138
http://dx.doi.org/10.1145/356698.356702
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
http://dx.doi.org/10.1109/TC.2006.16
http://dx.doi.org/10.1109/TC.2006.16
http://dx.doi.org/10.1016/j.jmsy.2020.11.017
http://dx.doi.org/10.1016/j.jmsy.2020.11.017

Pop, Antoniu and Albert Cohen (Jan. 2013). OpenStream: Expressiveness and Data-Flow Compilation of Openmp
Streaming Programs. In: ACM Transactions on Architecture and Code Optimization 9.4. issn: 1544-3566 (cited on
page 22).

Pree, Wolfgang and Josef Templ (2008). Modeling with the Timing Definition Language (TDL). In: Model-Driven
Development of Reliable Automotive Services. Ed. by Manfred Broy, Ingolf H. Krüger, and Michael Meisinger.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 133–144. isbn: 978-3-540-70930-5 (cited on page 33).

Prokopec, Aleksandar (2018). Pluggable Scheduling for the Reactor Programming Model. In: Programming with
Actors: State-of-the-Art and Research Perspectives. Ed. by Alessandro Ricci and Philipp Haller. Cham: Springer
International Publishing, pp. 125–154. isbn: 978-3-030-00302-9 (cited on page 154).

Ptolemaeus, Claudius, ed. (2014). System Design, Modeling, and Simulation using Ptolemy II . Ptolemy.org (cited on
pages 22, 153).

Puliafito, Antonio, Giuseppe Tricomi, Anastasios Zafeiropoulos, and Symeon Papavassiliou (2021). Smart Cities of
the Future as Cyber Physical Systems: Challenges and Enabling Technologies. In: Sensors 21.10. issn: 1424-8220
(cited on page 1).

Quan, Wei and Andy D. Pimentel (2014). Towards Exploring Vast MPSoC Mapping Design Spaces Using a Bias-Elitist
Evolutionary Approach. In: 2014 17th Euromicro Conference on Digital System Design, pp. 655–658 (cited on
page 145).

Quigley, Morgan, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and Andrew Ng
(Jan. 2009). ROS: an Open-source Robot Operating System. In: vol. 3 (cited on pages 37, 154).

Raynal, Michel and Mukesh Singhal (1996). Logical Time: Capturing Causality in Distributed Systems. In: Computer
29.2, pp. 49–56 (cited on page 26).

Robison, Arch D. (2013). Composable Parallel Patterns With Intel Cilk Plus. In: Computing in Science & Engineering
15.02, pp. 66–71. issn: 1558-366X (cited on page 13).

Robledo, Julian and Jeronimo Castrillon (2022). Parameterizable Mobile Workloads for Adaptable Base Station
Optimizations. In: 2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC), pp. 381–386 (cited on page 147).

Roestenburg, Raymond, Rob Williams, and Robertus Bakker (2016). Akka in Action. Simon and Schuster. isbn:
978-1617291012 (cited on pages 15, 94).

Rönngren, Robert and Michael Liljenstam (1999). On Event Ordering in Parallel Discrete Event Simulation. In:
Proceedings of the Thirteenth Workshop on Parallel and Distributed Simulation. PADS ’99. Atlanta, Georgia, USA:
IEEE Computer Society, pp. 38–45. isbn: 0769501559 (cited on page 27).

Rossel, Marcus, Shaokai Lin, Marten Lohstroh, Jeronimo Castrillon, and Andrés Goens (Oct. 2023). Provable
Determinism for Software in Cyber-Physical Systems. In: Proceedings of the 15th International Conference on
Verified Software: Theories, Tools, and Experiments (VSTTE). To appear (cited on page 41).

Rovelli, Carlo (2018). The Order of Time. Allen Lane. isbn: 978-0241292525 (cited on page 25).
Roy, Rob and Venkant Bommakanti (Mar. 2017). Odroid-XU4 User Manual . Version rev. 20170310. Hard Kernel, Ldt.

(cited on page 135).
Saifullah, Abusayeed, Kunal Agrawal, Chenyang Lu, and Christopher Gill (2011). Multi-core Real-Time Scheduling

for Generalized Parallel Task Models. In: 2011 IEEE 32nd Real-Time Systems Symposium, pp. 217–226 (cited on
page 13).

Samuel, Mingwei (2021). Hydroflow: A Model and Runtime for Distributed Systems Programming. MA thesis. EECS
Department, University of California, Berkeley (cited on page 155).

Sangiovanni-Vincentelli, Alberto (2002). Defining Platform-Based Design. In: EEDesign of EETimes 268 (cited on
page 2).

Schmidt, Tim, Guantao Liu, and Rainer Dömer (2017). Exploiting Thread and Data Level Parallelism for Ultimate
Parallel SystemC Simulation. In: Proceedings of the 54th Annual Design Automation Conference 2017. DAC ’17.
Austin, TX, USA: Association for Computing Machinery. isbn: 9781450349277 (cited on page 29).

Schmuck, Frank B. (Aug. 1988). The Use of Efficient Broadcast Protocols in Asynchronous Distributed Systems. PhD
thesis. Cornell University (cited on page 26).

Schneider, Christian, Miro Spönemann, and Reinhard von Hanxleden (2013). Just Model! – Putting Automatic
Synthesis of Node-Link-Diagrams into Practice. In: 2013 IEEE Symposium on Visual Languages and Human Centric
Computing, pp. 75–82 (cited on page 87).

Schor, Lars, Iuliana Bacivarov, Devendra Rai, Hoeseok Yang, Shin-Haeng Kang, and Lothar Thiele (2012). Scenario-
Based Design Flow for Mapping Streaming Applications onto on-Chip Many-Core Systems. In: Proceedings of
the 2012 International Conference on Compilers, Architectures and Synthesis for Embedded Systems. CASES ’12.
Tampere, Finland: Association for Computing Machinery, pp. 71–80. isbn: 9781450314244 (cited on page 137).

http://dx.doi.org/10.1145/2400682.2400712
http://dx.doi.org/10.1145/2400682.2400712
http://books.google.com/books?vid=ISBN978-3-540-70930-5
http://dx.doi.org/10.1007/978-3-030-00302-9_5
http://ptolemy.org/books/Systems
http://dx.doi.org/10.3390/s21103349
http://dx.doi.org/10.3390/s21103349
http://dx.doi.org/10.1109/DSD.2014.46
http://dx.doi.org/10.1109/DSD.2014.46
http://robotics.stanford.edu/~ang/papers/icraoss09-ROS.pdf
http://dx.doi.org/10.1109/2.485846
http://dx.doi.org/10.1109/MCSE.2013.21
http://dx.doi.org/10.1109/MCSoC57363.2022.00067
http://dx.doi.org/10.1109/MCSoC57363.2022.00067
http://books.google.com/books?vid=ISBN978-1617291012
http://books.google.com/books?vid=ISBN0769501559
https://cfaed.tu-dresden.de/publications?pubId=3668
https://cfaed.tu-dresden.de/publications?pubId=3668
http://books.google.com/books?vid=ISBN978-0241292525
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
http://dx.doi.org/10.1109/RTSS.2011.27
http://dx.doi.org/10.1109/RTSS.2011.27
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-201.html
https://www.researchgate.net/publication/2472631_Platform-based_Design
http://dx.doi.org/10.1145/3061639.3062243
http://dx.doi.org/10.1145/3061639.3062243
https://hdl.handle.net/1813/6768
http://dx.doi.org/10.1109/VLHCC.2013.6645246
http://dx.doi.org/10.1109/VLHCC.2013.6645246
http://dx.doi.org/10.1145/2380403.2380422
http://dx.doi.org/10.1145/2380403.2380422

Schulze, Christoph Daniel, Miro Spönemann, and Reinhard von Hanxleden (2014). Drawing Layered Graphs With
Port Constraints. In: Journal of Visual Languages and Computing, Special Issue on Diagram Aesthetics and Layout
25.2, pp. 89–106. issn: 1045-926X (cited on page 87).

Schumacher, Christoph, Rainer Leupers, Dietmar Petras, and Andreas Hoffmann (2010). ParSC: Synchronous Parallel
Systemc Simulation on Multi-Core Host Architectures. In: Proceedings of the Eighth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis. CODES/ISSS ’10. Scottsdale, Arizona, USA:
Association for Computing Machinery, pp. 241–246. isbn: 9781605589053 (cited on page 29).

Schwarzer, Tobias, Andreas Weichslgartner, Michael Glaß, StefanWildermann, Peter Brand, and Jürgen Teich (2018).
Symmetry-Eliminating Design Space Exploration for Hybrid Application Mapping on Many-Core Architectures.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37.2, pp. 297–310 (cited on
page 144).

Seshia, Sanjit A., Shiyan Hu, Wenchao Li, and Qi Zhu (2017). Design Automation of Cyber-Physical Systems:
Challenges, Advances, and Opportunities. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 36.9, pp. 1421–1434 (cited on page 3).

Sha, Lui, Tarek Abdelzaher, Karl-Erik Årzén, Anton Cervin, Theodore Baker, Alan Burns, Giorgio Buttazzo, Marco
Caccamo, John Lehoczky, and Aloysius K. Mok (2004). Real Time Scheduling Theory: a Historical Perspective. In:
Real-Time Systems 28.2, pp. 101–155 (cited on pages 11, 13).

Sha, Lui, Ragunathan Rajkumar, and John Lehoczky (1990). Priority Inheritance Protocols: an Approach To Real-Time
Synchronization. In: IEEE Transactions on Computers 39.9, pp. 1175–1185 (cited on page 13).

Sheng, Weihua, Stefan Schürmans, Maximilian Odendahl, Mark Bertsch, Vitaliy Volevach, Rainer Leupers, and
Gerd Ascheid (2014). A Compiler Infrastructure for Embedded Heterogeneous MPSoCs. In: Parallel Computing
40.2. Special issue on programming models and applications for multicores and manycores, pp. 51–68. issn:
0167-8191 (cited on page 22).

Shibanai, Kazuhiro and Takuo Watanabe (2017). Actoverse: A Reversible Debugger for Actors. In: Proceedings of the
7th ACM SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentralized Control.
AGERE 2017. Vancouver, BC, Canada: Association for Computing Machinery, pp. 50–57. isbn: 9781450355162
(cited on page 17).

[SW] SimPy, Team, SimPy: Discret Event Simulation for Python. url: https://simpy.readthedocs.io/en/late
st/, (visited on Dec. 18, 2023) (cited on page 143).

Singh, Amit Kumar, Muhammad Shafique, Akash Kumar, and Jörg Henkel (2013). Mapping on Multi/Many-Core
Systems: Survey of Current and Emerging Trends. In: Proceedings of the 50th Annual Design Automation Conference.
DAC ’13. Austin, Texas: Association for Computing Machinery. isbn: 9781450320719 (cited on page 145).

Sirjani, Marjan and Mohammad Mahdi Jaghoori (2011). Ten Years of Analyzing Actors: Rebeca Experience. In: Formal
Modeling: Actors, Open Systems, Biological Systems: Essays Dedicated to Carolyn Talcott on the Occasion of Her 70th
Birthday. Ed. by Gul Agha, Olivier Danvy, and José Meseguer. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 20–56. isbn: 978-3-642-24933-4 (cited on page 15).

Sirjani, Marjan, Ali Movaghar, Amin Shali, and Frank S. de Boer (2004). Modeling and Verification of Reactive
Systems Using Rebeca. In: Fundamenta Informaticae 63, pp. 385–410 (cited on page 15).

Själander, Magnus, Sally A. McKee, Peter Brauer, David Engdal, and Andràs Vajda (2012). An LTE Uplink Receiver
PHY Benchmark and Subframe-based Power Management . In: 2012 IEEE International Symposium on Performance
Analysis of Systems & Software, pp. 25–34 (cited on page 146).

Sprunt, Brinkley, Lui Sha, and John Lehoczky (June 1989). Aperiodic Task Scheduling for Hard-Real-Time Systems.
In: Real-Time Systems 1.1, pp. 27–60 (cited on page 12).

Stankovic, John A., Insup Lee, Aloysius Mok, and Ragunathan Rajkumar (2005). Opportunities and Obligations for
Physical Computing Systems. In: Computer 38.11, pp. 23–31 (cited on page 3).

Steinberg, Dave, Frank Budinsky, Ed Merks, and Marcelo Paternostro (Dec. 2008). EMF: Eclipse Modeling Framework.
Second. Addison-Wesley Professional. isbn: 978-0321331885 (cited on page 85).

Stephens, Robert (1997). A Survey of Stream Processing. In: Acta Informatica 34.7, pp. 491–541. issn: 1432-0525
(cited on page 22).

Stigge, Martin, Pontus Ekberg, Nan Guan, and Wang Yi (2011). The Digraph Real-Time Task Model. In: 2011 17th
IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 71–80 (cited on page 12).

Stroustrup, Bjarne (1988). What Is Object-Oriented Programming? In: IEEE Software 5.3, pp. 10–20 (cited on page 14).
Stuijk, Sander, Marc Geilen, and Twan Basten (2006). SDF3: SDF For Free. In: Sixth International Conference on

Application of Concurrency to System Design (ACSD’06), pp. 276–278 (cited on page 141).
Suchert, Felix, Lisza Zeidler, Jeronimo Castrillon, and Sebastian Ertel (July 2023). ConDRust: Scalable Deterministic

Concurrency from Verifiable Rust Programs. In: 37th European Conference on Object-Oriented Programming (ECOOP
2023). Ed. by Karim Ali and Guido Salvaneschi. Vol. 263. Leibniz International Proceedings in Informatics (LIPIcs).

http://dx.doi.org/10.1016/j.jvlc.2013.11.005
http://dx.doi.org/10.1016/j.jvlc.2013.11.005
http://dx.doi.org/10.1145/1878961.1879005
http://dx.doi.org/10.1145/1878961.1879005
http://dx.doi.org/10.1109/TCAD.2017.2695894
http://dx.doi.org/10.1109/TCAD.2016.2633961
http://dx.doi.org/10.1109/TCAD.2016.2633961
http://dx.doi.org/10.1023/B:TIME.0000045315.61234.1e
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1109/12.57058
http://dx.doi.org/10.1016/j.parco.2013.11.007
http://dx.doi.org/10.1145/3141834.3141840
https://simpy.readthedocs.io/en/latest/
https://simpy.readthedocs.io/en/latest/
https://simpy.readthedocs.io/en/latest/
http://dx.doi.org/10.1145/2463209.2488734
http://dx.doi.org/10.1145/2463209.2488734
http://dx.doi.org/10.1007/978-3-642-24933-4_3
http://dx.doi.org/10.5555/2370686.2370691
http://dx.doi.org/10.5555/2370686.2370691
http://dx.doi.org/10.1109/ISPASS.2012.6189203
http://dx.doi.org/10.1109/ISPASS.2012.6189203
http://dx.doi.org/10.1007/BF02341920
http://dx.doi.org/10.1109/MC.2005.386
http://dx.doi.org/10.1109/MC.2005.386
http://books.google.com/books?vid=ISBN978-0321331885
http://dx.doi.org/10.1007/s002360050095
http://dx.doi.org/10.1109/RTAS.2011.15
http://dx.doi.org/10.1109/52.2020
http://dx.doi.org/10.1109/ACSD.2006.23
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.33
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2023.33

Seattle, Washington, USA: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 33:1–33:39. isbn: 978-3-95977-
281-5 (cited on pages 22, 155).

Sutter, Herb (2005). The Free Lunch Is Over: a Fundamental Turn Toward Concurrency in Software. In: Dr. Dobb’s
journal 30.3, pp. 202–210 (cited on pages 5, 135).

Tanenbaum, Andrew S. and Robbert van Renesse (1988). A Critique of the Remote Procedure Call Paradigm. In:
Proceedings of the European Teleinformatics Conference. North-Holland, Amsterdam, pp. 775–783 (cited on
page 18).

Tang, Yue, Nan Guan, and Wang Yi (2020). Real-Time Task Models. In: Handbook of Real-Time Computing. Ed. by
Yu-Chu Tian and David Charles Levy. Singapore: Springer Singapore, pp. 1–19. isbn: 978-981-4585-87-3 (cited
on page 11).

Tasharofi, Samira, Peter Dinges, and Ralph Johnson (July 2013). Why Do Scala Developers Mix the Actor Model with
other Concurrency Models? In: vol. 7920, pp. 302–326. isbn: 978-3-642-39037-1 (cited on pages 15, 59).

Tasharofi, Samira, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko Marinov, and Gul Agha (2012).
TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for Testing Actor Programs. In: Formal Techniques
for Distributed Systems. Ed. by Holger Giese and Grigore Rosu. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 219–234. isbn: 978-3-642-30793-5 (cited on page 17).

Tasharofi, Samira, Michael Pradel, Yu Lin, and Ralph Johnson (2013). Bita: Coverage-guided, Automatic Testing
of Actor Programs. In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 114–124 (cited on page 17).

Tchidjo Moyo, Noel, Eric Nicollet, Frederic Lafaye, and Christophe Moy (2010). On Schedulability Analysis of
Non-cyclic Generalized Multiframe Tasks. In: 2010 22nd Euromicro Conference on Real-Time Systems, pp. 271–278
(cited on page 12).

Team SimPy (2023). SimPy: Discrete Event Simulation for Python (cited on page 28).
[SW] The Actix Team, Actix: Actor Framework for Rust . lic: Apache-2.0. url: https://github.com/actix/actix,

(visited on Nov. 10, 2023) (cited on page 15).
[SW] The KIELER Project, KIELER Lightweight Diagrams. lic: Eclipse Public License 2.0. url: https://github.c

om/kieler/KLighD, (visited on Nov. 10, 2023) (cited on page 87).
[SW] The KIELER Project, KLighD for the Web. lic: Eclipse Public License 2.0. url: https://github.com/kiele

r/klighd-vscode, (visited on Nov. 10, 2023) (cited on page 88).
The MISRA Consortium, Roberto Bagnara, Dave Banham, Andrew Banks, Jill Britton, Alex Gilding, Daniel Kästner,

Gerlinde Kettl, Michael Rozenau, and Chris Tapp (Sept. 2023). MISRA C:2023: Guidelines for the Use of the C
Language in Critical Systems, p. 325. isbn: 1911700081 (cited on page 59).

Theelen, Bart D., Marc C.W. Geilen, Twan Basten, Jeroen P.M. Voeten, Stefan V. Gheorghita, and Sander Stuijk (2006).
A Scenario-aware Data Flow Model for Combined Long-run Average and Worst-case Performance Analysis. In:
Fourth ACM and IEEE International Conference on Formal Methods and Models for Co-Design, 2006. MEMOCODE
’06. Proceedings. Pp. 185–194 (cited on page 22).

Thiele, Lothar, Iuliana Bacivarov,Wolfgang Haid, and Kai Huang (2007).Mapping Applications to Tiled Multiprocessor
Embedded Systems. In: Seventh International Conference on Application of Concurrency to System Design (ACSD
2007), pp. 29–40 (cited on page 137).

Thies, William, Michal Karczmarek, and Saman Amarasinghe (2002). StreamIt: A Language for Streaming Appli-
cations. In: Compiler Construction. Ed. by R. Nigel Horspool. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 179–196. isbn: 978-3-540-45937-8 (cited on page 22).

Thoman, Peter, Kiril Dichev,Thomas Heller, Roman Iakymchuk, Xavier Aguilar, Khalid Hasanov, Philipp Gschwandt-
ner, Pierre Lemarinier, Stefano Markidis, Herbert Jordan, Thomas Fahringer, Kostas Katrinis, Erwin Laure, and
Dimitrios S. Nikolopoulos (Apr. 2018). A Taxonomy of Task-Based Parallel Programming Technologies for High-
Performance Computing. In: The Journal of Supercomputing 74.4, pp. 1422–1434 (cited on pages 11, 14).

Thomas, Dave (2018). Programming Elixir 1.6: Functional|> Concurrent|> Pragmatic|> Fun. The Pragmatic Bookshelf.
isbn: 9781680502992 (cited on page 15).

Thomas, Donald E. and Philip R. Moorby (2008). The Verilog Hardware Description Language. USA: Springer New
York. isbn: 978-0-387-84930-0 (cited on page 28).

Thompson, Mark and Andy D. Pimentel (2013). Exploiting Domain Knowledge in System-Level Mpsoc Design Space
Exploration. In: Journal of Systems Architecture 59.7, pp. 351–360. issn: 1383-7621 (cited on page 144).

Thönes, Johannes (2015). Microservices. In: IEEE Software 32.1, pp. 116–116 (cited on page 18).
Tilkov, Stefan and Steve Vinoski (2010). Node.js: Using Javascript To Build High-Performance Network Programs. In:

IEEE Internet Computing 14.6, pp. 80–83 (cited on page 87).
Tindell, Ken W., Alan Burns, and Andy J. Wellings (Mar. 1994). An Extendible Approach for Analyzing Fixed Priority

Hard Real-Time Tasks. In: Real-Time Systems 6.2, pp. 133–151 (cited on page 12).

http://www.gotw.ca/publications/concurrency-ddj.htm
https://www.cs.vu.nl/~ast/Publications/Papers/euteco-1988.pdf
http://dx.doi.org/10.1007/978-981-4585-87-3_29-1
http://dx.doi.org/10.1007/978-3-642-39038-8_13
http://dx.doi.org/10.1007/978-3-642-39038-8_13
http://dx.doi.org/10.1007/978-3-642-30793-5_14
http://dx.doi.org/10.1109/ASE.2013.6693072
http://dx.doi.org/10.1109/ASE.2013.6693072
http://dx.doi.org/10.1109/ECRTS.2010.24
http://dx.doi.org/10.1109/ECRTS.2010.24
https://simpy.readthedocs.io/en/latest/
https://github.com/actix/actix
https://github.com/actix/actix
https://github.com/kieler/KLighD
https://github.com/kieler/KLighD
https://github.com/kieler/KLighD
https://github.com/kieler/klighd-vscode
https://github.com/kieler/klighd-vscode
https://github.com/kieler/klighd-vscode
https://misra.org.uk/product/misra-c2023-hardcopy/
https://misra.org.uk/product/misra-c2023-hardcopy/
http://dx.doi.org/10.1109/MEMCOD.2006.1695924
http://dx.doi.org/10.1109/ACSD.2007.53
http://dx.doi.org/10.1109/ACSD.2007.53
http://dx.doi.org/10.1007/3-540-45937-5_14
http://dx.doi.org/10.1007/3-540-45937-5_14
http://dx.doi.org/10.1007/s11227-018-2238-4
http://dx.doi.org/10.1007/s11227-018-2238-4
https://pragprog.com/titles/elixir16/programming-elixir-1-6/
http://dx.doi.org/10.1007/978-0-387-85344-4
http://dx.doi.org/10.1016/j.sysarc.2013.05.023
http://dx.doi.org/10.1016/j.sysarc.2013.05.023
http://dx.doi.org/10.1109/MS.2015.11
http://dx.doi.org/10.1109/MIC.2010.145
http://dx.doi.org/10.1007/BF01088593
http://dx.doi.org/10.1007/BF01088593

Tomlinson, Christine, Won Kim, Mark Scheevel, Vineet Singh, Becky Will, and Gul. Agha (1988). Rosette: an
Object-Oriented Concurrent Systems Architecture. In: SIGPLAN Not. 24.4, pp. 91–93. issn: 0362-1340 (cited on
page 15).

Torres Lopez, Carmen, Robbert Gurdeep Singh, Stefan Marr, Elisa Gonzalez Boix, and Christophe Scholliers (2019).
Multiverse Debugging: Non-Deterministic Debugging for Non-Deterministic Programs (Brave New Idea Paper).
In: 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Ed. by Alastair F. Donaldson.
Vol. 134. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 27:1–27:30. isbn: 978-3-95977-111-5 (cited on page 17).

Torres Lopez, Carmen, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter Mössenböck (2018). Programming with
Actors: State-of-the-Art and Research Perspectives. In: ed. by Alessandro Ricci and Philipp Haller. Cham: Springer
International Publishing. Chap. A Study of Concurrency Bugs and Advanced Development Support for Actor-
based Programs, pp. 155–185 (cited on page 15).

Trencher, Gregory (2019). Towards the Smart City 2.0: Empirical Evidence of Using Smartness As a Tool for Tackling
Social Challenges. In: Technological Forecasting and Social Change 142, pp. 117–128. issn: 0040-1625 (cited on
page 1).

Tripakis, Stavros, Christos Stergiou, Chris Shaver, and Edward A. Lee (2012). A Modular Formal Semantics for
Ptolemy . In: Mathematical Structures in Computer Science. Accepted for publication (cited on page 153).

Turing, Aalan M. (1937). On Computable Numbers, With an Application To the Entscheidungsproblem. In: Proceedings
of the London Mathematical Society s2-42.1, pp. 230–265 (cited on page 2).

Van Cutsem, Tom, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Carreton, Dries Harnie, Kevin Pinte,
and Wolfgang De Meuter (2014). AmbientTalk: Programming Responsive Mobile Peer-To-Peer Applications With
Actors. In: Computer Languages, Systems & Structures 40.3, pp. 112–136 (cited on page 16).

Veitch, Edward W. (1952). A Chart Method for Simplifying Truth Functions. In: Proceedings of the 1952 ACM National
Meeting (Pittsburgh). ACM ’52. Pittsburgh, Pennsylvania: Association for Computing Machinery, pp. 127–133.
isbn: 9781450373623 (cited on page 6).

Venkataramani, Vanchinathan, Bruno Bodin, Aditi Kulkarni, Tulika Mitra, and Li-Shiuan Peh (2020). Time-
Predictable Software-Defined Architecture with SDF-based Compiler Flow for 5G Baseband Processing. In: ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1553–1557
(cited on page 146).

Virding, Robert, Claes Wikström, Mike Williams, and Joe Armstrong (1996). Concurrent Programming in Erlang
(2nd Ed.) GBR: Prentice Hall International (UK) Ltd. isbn: 013508301X (cited on page 15).

Waxman, Ronald, Jean-Michel Bergé, Oz Levia, and Jacques Rouillard (1996). High-Level System Modeling. Springer.
isbn: 9780792396604 (cited on page 4).

Wellings, Andrew (2004). Concurrent and Real-time Programming in Java. John Wiley & Sons, Inc. isbn: 978-
0470844373 (cited on page 154).

Wildermann, Stefan, Andreas Weichslgartner, and Jürgen Teich (2015). Design Methodology and Run-Time Manage-
ment for Predictable Many-Core Systems. In: 2015 IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops, pp. 103–110 (cited on page 145).

Wilhelm, Reinhard, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David Whalley, Guillem
Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner,
Jan Staschulat, and Per Stenström (2008). The Worst-Case Execution-Time Problem-Overview of Methods and
Survey of Tools. In: ACM Transactions on Embedde Computing Systems 7.3. issn: 1539-9087 (cited on page 57).

Wittig, Robert, Andrés Goens, Christian Menard, Emil Matus, Gerhard P. Fettweis, and Jeronimo Castrillon (Oct.
2020). Modem Design in the Era of 5G and Beyond: The Need for a Formal Approach. In: Proceedings of the 27th
International Conference on Telecommunications (ICT). Virtual. Bali, Indonesia, pp. 1–5 (cited on pages xi, 146).

[SW] Yadan, Omry, Hydra—A Framework for Elegantly Configuring Complex Applications 2019. url: https://git
hub.com/facebookresearch/hydra, (visited on Dec. 18, 2023) (cited on page 145).

Yang, Jixiang and Qingbi He (Apr. 2018). Scheduling Parallel Computations By Work Stealing: a Survey . In: Interna-
tional Journal of Parallel Programming 46.2, pp. 173–197. issn: 0885-7458 (cited on page 155).

Yu, Xinghuo and Yusheng Xue (2016). Smart Grids: a Cyber-Physical Systems Perspective. In: Proceedings of the IEEE
104.5, pp. 1058–1070 (cited on page 1).

Yuan, Simon, Li Hsien Yoong, and Partha S. Roop (2011). Compiling Esterel for Multi-core Execution. In: 2011 14th
Euromicro Conference on Digital System Design, pp. 727–735 (cited on page 31).

Zhao, Yang, Jie Liu, and Edward A. Lee (2007). A Programming Model for Time-Synchronized Distributed Real-Time
Systems. In: 13th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’07), pp. 259–268
(cited on pages 6, 52, 82).

http://dx.doi.org/10.1145/67387.67410
http://dx.doi.org/10.1145/67387.67410
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
http://dx.doi.org/10.1007/978-3-030-00302-9_6
http://dx.doi.org/10.1007/978-3-030-00302-9_6
http://dx.doi.org/10.1016/j.techfore.2018.07.033
http://dx.doi.org/10.1016/j.techfore.2018.07.033
http://chess.eecs.berkeley.edu/pubs/877.html
http://chess.eecs.berkeley.edu/pubs/877.html
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1016/j.cl.2014.05.002
http://dx.doi.org/10.1016/j.cl.2014.05.002
http://dx.doi.org/10.1145/609784.609801
http://dx.doi.org/10.1109/ICASSP40776.2020.9054285
http://dx.doi.org/10.1109/ICASSP40776.2020.9054285
http://books.google.com/books?vid=ISBN013508301X
http://books.google.com/books?vid=ISBN013508301X
http://books.google.com/books?vid=ISBN9780792396604
http://books.google.com/books?vid=ISBN978-0470844373
http://dx.doi.org/10.1109/ISORCW.2015.48
http://dx.doi.org/10.1109/ISORCW.2015.48
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1109/ICT49546.2020.9239539
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra
http://dx.doi.org/10.1007/s10766-016-0484-8
http://dx.doi.org/10.1109/JPROC.2015.2503119
http://dx.doi.org/10.1109/DSD.2011.97
http://dx.doi.org/10.1109/RTAS.2007.5
http://dx.doi.org/10.1109/RTAS.2007.5

Zurstraßen, Niko, José Cubero-Cascante, Jan Moritz Joseph, Li Yichao, Xie Xinghua, and Rainer Leupers (2023).
par-gem5: Parallelizing gem5’s Atomic Mode. In: 2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE) (cited on page 29).

http://dx.doi.org/10.23919/DATE56975.2023.10137178

	Deterministic Reactive Programming for Cyber-physical Systems
	Abstract
	Acknowledgements
	Publications
	Contents
	Introduction
	Models of Computation
	Challenges and Requirements for CPS Design
	This Thesis

	Models of Computation for Cyber-physical Systems
	Threads
	Task Models
	The Actor Model
	Dataflow and Process Networks
	Models of Time
	Discrete Events
	Synchronous Languages
	Logical Execution Time
	CPS Frameworks and Standards
	Discussion and Conclusion

	Reactors: Deterministic Actors in Adaptive AUTOSAR
	The Reactor Model
	Example Reactor Programs
	Integrating Reactors with Adaptive AUTOSAR
	Case Study: The Adaptive Platform Demonstrator
	Conclusion

	Deterministic Coordination with Lingua Franca
	Polyglot Coordination
	Syntax
	Code Examples
	Coordinating Logical and Physical Time
	Federated Execution: Coordination Across Multiple Timelines
	The lf Toolchain
	C++ Runtime and Code Generator
	Conclusion

	Efficient Deterministic Concurrency
	Scalable Connection Patterns in LF
	Optimized Reactor Scheduler
	Performance Evaluation
	Conclusion

	Partitioning Lingua Franca Programs
	Problem Analysis
	Partitioning with Enclaves
	Coordinating Enclaves
	Examples
	Enclave Patterns
	Limitations
	Conclusion

	Design Space Exploration with Mocasin
	Design Space Exploration
	Mocasin
	Case Study: Simulating a Hybrid Mapping Strategy for an LTE Base Station
	Integrating Mocasin with Lingua Franca
	Conclusion

	Related Work
	Models of Computation
	Languages and Frameworks
	Scalable Connection Patterns and Performance Optimization
	Design Space Exploration

	Conclusions
	Summary
	Future Work

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Symbols
	Index
	Bibliography

