
A D A P T I V E A N D E N E R G Y- E F F I C I E N T M A N A G E M E N T F O R
H E T E R O G E N E O U S M U LT I - C O R E A R C H I T E C T U R E S

Dissertation
zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt an der

Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Robert Khasanov
geboren am 16.01.1990 in Tschaikowski, UdSSR

Gutachter:

Prof. Dr.-Ing. Jeronimo Castrillon

Technische Universität Dresden

Prof. Dr.-Ing. Jürgen Teich

Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der Verteidigung:

25.03.2025

A D A P T I V E A N D E N E R G Y- E F F I C I E N T M A N A G E M E N T F O R
H E T E R O G E N E O U S M U LT I - C O R E A R C H I T E C T U R E S

robert khasanov

June, 2025

Robert Khasanov: Adaptive and Energy-Efficient Management for Hetero-
geneous Multi-Core Architectures, Dissertation © 2025

A B S T R A C T

The evolution of processor architectures has seen a significant shift
over the past few decades, driven by increasing application demands.
Historically, general-purpose computing systems focused on increas-
ing clock speeds and later transitioned to multi-core architectures.
At the same time, embedded systems focused on energy-efficient de-
signs and shifted to heterogeneous architectures to handle increasingly
complex applications. Over time, the boundaries between embedded
and general-purpose systems began to blur: embedded systems in-
tegrated multitasking operating systems and started handling more
dynamic workloads, while general-purpose systems have adopted
energy-efficient principles. This convergence led to the emergence of
Heterogeneous Multi-core Architectures (HMAs), which combines cores
with different performance-energy characteristics but a shared Instruc-
tion Set Architecture (ISA), enhancing energy efficiency while allowing
workloads to migrate between core types. Initially introduced in em-
bedded systems, HMAs have since expanded to powerful desktop and
server platforms, further blurring the boundaries between the two
domains.

Dynamic and unpredictable workloads, now prevalent in both do-
mains, demand flexibility and adaptivity in resource management and
application execution. HMAs add complexity to these challenges: re-
source managers must account for heterogeneous cores when allocat-
ing resources, while applications must adapt not only to dynamically
changing allocations but also to the heterogeneity of the assigned
cores.

This thesis proposes a series of solutions to address these adaptivity
challenges. At the resource management level, it builds upon Hybrid
Application Mapping (HAM) methodologies, introducing novel al-
gorithms for generating spatio-temporal mappings and leveraging
domain-specific knowledge to enhance adaptivity in real-time sys-
tems. At the application level, this thesis introduces an extension to
Kahn Process Networks (KPNs), improving adaptivity in dynamic
and heterogeneous environments. Finally, it asserts that fully utiliz-
ing HMAs requires coordinated adaptivity between these two levels.
This coordination is demonstrated with HARP, a novel resource man-
agement framework, which can also efficiently manage unforeseen
applications, thereby extending its applicability to desktop and server
systems. By addressing both embedded systems and general-purpose
platforms featuring HMAs, this thesis optimizes the utilization of
these architectures and improves energy efficiency across domains.

v

P U B L I C AT I O N S

Several ideas, figures and arguments that are presented in this disser-
tation have been published in prior works. The following lists all the
publications cited in this thesis that I co-authored:

[1] Till Smejkal, Robert Khasanov, Jeronimo Castrillon, and Her-
mann Härtig. E-Mapper: Energy-Efficient Resource Allocation for
Traditional Operating Systems on Heterogeneous Processors. June
2024. arXiv: 2406.18980 [cs.OS].

[2] Robert Khasanov, Marc Dietrich, and Jeronimo Castrillon. “Flex-
ible Spatio-Temporal Energy-Efficient Runtime Management.”
In: 2024 29th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC). Jan. 2024, pp. 777–784. doi: 10.1109/ASP-
DAC58780.2024.10473885.

[3] Robert Khasanov, Julian Robledo, Christian Menard, Andrés
Goens, and Jeronimo Castrillon. “Domain-specific Hybrid Map-
ping for Energy-efficient Baseband Processing in Wireless Net-
works.” In: ACM Trans. Embed. Comput. Syst. 20.5s (Oct. 2021).
issn: 1539-9087. doi: 10.1145/3476991.

[4] Christian Menard, Andrés Goens, Gerald Hempel, Robert
Khasanov, Julian Robledo, Felix Teweleitt, and Jeronimo Cas-
trillon. “Mocasin—–Rapid Prototyping of Rapid Prototyping
Tools: A Framework for Exploring New Approaches in Map-
ping Software to Heterogeneous Multi-cores.” In: Proceedings
of the 2021 Drone Systems Engineering and Rapid Simulation and
Performance Evaluation: Methods and Tools Proceedings. DroneSE
and RAPIDO ’21. Budapest, Hungary: Association for Comput-
ing Machinery, Jan. 2021, pp. 66–73. isbn: 9781450389525. doi:
10.1145/3444950.3447285.

[5] Robert Khasanov and Jeronimo Castrillon. “Energy-efficient
Runtime Resource Management for Adaptable Multi-application
Mapping.” In: 2020 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE). Mar. 2020, pp. 909–914. doi: 10.
23919/DATE48585.2020.9116381.

[6] Robert Khasanov, Andrés Goens, and Jeronimo Castrillon. “Im-
plicit Data-Parallelism in Kahn Process Networks: Bridging
the MacQueen Gap.” In: Proceedings of the 9th Workshop and
7th Workshop on Parallel Programming and RunTime Management
Techniques for Manycore Architectures and Design Tools and Archi-
tectures for Multicore Embedded Computing Platforms. PARMA-
DITAM ’18. Manchester, United Kingdom: Association for Com-

vii

https://arxiv.org/abs/2406.18980
https://doi.org/10.1109/ASP-DAC58780.2024.10473885
https://doi.org/10.1109/ASP-DAC58780.2024.10473885
https://doi.org/10.1145/3476991
https://doi.org/10.1145/3444950.3447285
https://doi.org/10.23919/DATE48585.2020.9116381
https://doi.org/10.23919/DATE48585.2020.9116381

puting Machinery, Jan. 2018, pp. 20–25. isbn: 978-1-4503-6444-7.
doi: 10.1145/3183767.3183790.

[7] Andrés Goens, Robert Khasanov, Jeronimo Castrillon, Marcus
Hähnel, Till Smejkal, and Hermann Härtig. “TETRiS: a Multi-
Application Run-Time System for Predictable Execution of
Static Mappings.” In: Proceedings of the 20th International Work-
shop on Software and Compilers for Embedded Systems. SCOPES ’17.
Sankt Goar, Germany: Association for Computing Machinery,
2017, pp. 11–20. isbn: 9781450350396. doi: 10.1145/3078659.
3078663.

The following publications are co-authored by me but not cited in
this thesis:

[1] Shaokai Lin, Tassilo Tanneberger, Jiahong Bi, Guangyu Feng,
Yimo Xu, Julian Robledo, Robert Khasanov, and Jeronimo Cas-
trillon. “Navigating Time and Energy Trade-Offs in Reactive
Heterogeneous Systems.” In: IEEE Embedded Systems Letters
(2024), pp. 1–1. doi: 10.1109/LES.2024.3469278.

[2] Markus Hahnel, Frehiwot Melak Arega, Waltenegus Dargie,
Robert Khasanov, and Jeronimo Castrillon. “Application inter-
ference analysis: Towards energy-efficient workload manage-
ment on heterogeneous micro-server architectures.” In: 2017
IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS). 2017, pp. 432–437. doi: 10.1109/INFCOMW.
2017.8116415.

[3] Andres Goens, Robert Khasanov, Jeronimo Castrillon, Simon
Polstra, and Andy Pimentel. “Why Comparing System-Level
MPSoC Mapping Approaches is Difficult: A Case Study.” In:
2016 IEEE 10th International Symposium on Embedded Multicore-
/Many-core Systems-on-Chip (MCSoC). 2016, pp. 281–288. doi:
10.1109/MCSoC.2016.48.

viii

https://doi.org/10.1145/3183767.3183790
https://doi.org/10.1145/3078659.3078663
https://doi.org/10.1145/3078659.3078663
https://doi.org/10.1109/LES.2024.3469278
https://doi.org/10.1109/INFCOMW.2017.8116415
https://doi.org/10.1109/INFCOMW.2017.8116415
https://doi.org/10.1109/MCSoC.2016.48

It takes a village to raise a child.

— African proverb

A C K N O W L E D G M E N T S

First and foremost, I want to express my sincere gratitude to my
supervisor Prof. Jeronimo Castrillon for his continuous support, in-
sightful guidance, and encouragement throughout my Ph.D. journey.
His mentorship helped me grow as a confident and independent re-
searcher, and also taught me to focus on important problems that
matter from a research and practical perspective. I am also grateful
for his timely feedback, even on weekends, and for building a friendly
and supportive atmosphere within the group.

Speaking of friendly atmosphere in the group, I owe a huge thank
you to my current and former colleagues: Justus Adam, Jiahong
Bi, Hasna Bouraoui, Alexander Brauckmann, Sebastian Ertel, Mees
Frensel, Andrés Goens, Fazal Hameed, Gerald Hempel, Hamid Farza-
neh, Clément Fournier, Karl Friebel, Sven Karol, Asif Khan, Nesrine
Khouzami, Steffen Köhler, Guilherme Korol, Galina Kozyreva, João
Paulo Cardoso de Lima, Christian Menard, Norman Rink, Julian Rob-
ledo, Lars Schütze, Anderson Faustino da Silva, and Felix Suchert. You
all made this time unforgettable, from the insightful discussions to
the fun team activities. And thank you for (patiently!) putting up with
my reminders to give a tech talk. A special thanks to Conny Okuma,
whose responsiveness and support with administrative matters were
invaluable, as well as for urging us to participate in running trainings.
I also enjoyed sharing skiing and snowboarding trips with you and
other colleagues.

I also want to thank everyone who worked with me as a student.
This includes Marc Dietrich, Hannes Frank, Karl Friebel, Dylan Gageot,
Fabius Mayer-Uhma, and Tianrui Zheng. Working with you allowed
me to explore side projects, many of which influenced my research
vision. It was also rewarding to witness your efforts and growth as
you overcame challenges in your work. I am happy to see some of you
already becoming successful engineers and researchers, and in one
case, a colleague.

During my work, I have closely collaborated with the Chair of
Operating Systems. First and foremost, I am honored to have Prof.
Hermann Härtig as my second advisor, and I am grateful to him for
his valuable feedback on my status talk and the papers we worked
on together with members of his chair. This collaboration included
Marcus Hähnel and Till Smejkal, with whom I worked on the TETRiS
project. Over time, this project evolved into HARP, presented in this
thesis, on which I collaborated intensively with Till Smejkal. Till,

ix

it was an amazing collaboration. Looking back at how this project
evolved over time, especially in the last two years, it feels like we
wrote multiple different papers.

I also want to thank the rest of my collaborators that I have not
mentioned personally so far. While not all of these projects became
part of this thesis, they influenced my broader research vision. Thanks
to Markus Hähnel and Frehiwot Melak Arega for the insightful work
on the application interference analysis. I thank Arka Maity, Nishant
Budhev and Tulika Mitra for sharing their LTE traces with our chair.
Thanks to Tung Doan for collaborating on the adaptive self-driving
car control project, which resulted in a well-received demonstration.
I thank also Shaokai Lin for inviting me to contribute to the work of
integrating the Lingua Franca and Mocasin projects.

During my time at the chair, I had an opportunity to work with
several tools and frameworks that were generously provided to our
group. This includes the Silexica Tool Suite, which was valuable at the
beginning of my research. My earliest prototype of Adaptive Process
Networks was implemented within this framework.

The work conducted in this thesis would not have been possible
without funding. My Ph.D. studies were initially funded by the Ger-
man Research Foundation (DFG) in the Collaborative Research Center
912 “Highly Adaptive Energy-Efficient Computing” (HAEC), and later
by Federal Ministry of Education and Research of Germany (BMBF)
within the programme of “Souverän. Digital. Vernetzt.” (6G-life). Both
projects also provided an excellent environment for collaboration,
which was invaluable throughout my Ph.D. studies.

Finally, and most importantly, I want to thank my friends and family,
who constantly reminded me about other aspects of life beyond work.
Here in Dresden, I have found friends who have accompanied me
through these nine years — thank you for making this one of the best
times of my life. To my friends from Russia, whom I met during my
time at MIPT and even earlier during my school years, I am grateful
that we maintain our friendships. Even though we are spread around
the world, I am glad that we occasionally have the chance to visit each
other.

I would not have been able to write this thesis without the tremen-
dous support of my family. My parents, grandparents, little brother,
aunt, and cousins — it is difficult to express how thankful I am for
your constant encouragement and for always being there for me, even
from afar. To my mother, I am especially grateful for nurturing my
curiosity and giving me the freedom to pursue my passions.

Robert Khasanov, December 2024

x

C O N T E N T S

1 Introduction 1

1.1 Heterogeneous Multi-Core Architectures 2

1.2 Need for Adaptivity . 4

1.2.1 Adaptivity at the Resource Management Level . 5

1.2.2 Adaptivity at the Application Level 6

1.3 Contributions of This Thesis 7

1.4 Synopsis and Outline . 10

2 Foundations of Application Mapping onto HMAs 11

2.1 Preliminaries . 11

2.1.1 Mapping, Scheduling, and Spatio-Temporal Map-
ping . 11

2.1.2 Performance and Energy Estimation 14

2.1.3 Static and Dynamic Power Consumption 15

2.1.4 Notation . 16

2.2 System Model . 16

2.2.1 Architecture . 17

2.2.2 Application . 18

2.2.3 Mapping . 19

2.3 Mapping of Dataflow Applications 19

2.3.1 Dataflow Models of Computation 20

2.3.2 Design-time and Runtime Mapping Approaches 22

2.3.3 Trace-Based Simulation 23

2.4 Hybrid Application Mapping 25

2.4.1 Pareto-Optimal Operating Points 27

2.4.2 Spatial Mapping Optimization 30

2.4.3 Spatio-Temporal Mapping Optimization 32

2.4.4 Addressing Adaptivity Challenges 34

2.5 Mocasin Framework . 35

2.5.1 Overview of Mocasin 35

2.5.2 Contributions to Mocasin 37

2.6 Synopsis . 37

3 Related Work 39

3.1 Design-Time Application Mapping 39

3.2 Runtime Application Mapping 40

3.2.1 Runtime Mapping of Embedded Software . . . 40

3.2.2 Runtime Mapping within OS Schedulers 42

3.3 Hybrid Application Mapping 43

3.4 Application Adaptivity 45

4 Efficient Spatio-Temporal Mapping Generation 47

4.1 Motivational Example 48

4.2 Spatio-Temporal Mapping Strategies 50

4.3 Fixed-Point Spatio-Temporal Mapping 52

xi

xii contents

4.3.1 MMKP-based Algorithm 52

4.3.2 Evaluation . 56

4.4 Flexible Spatio-Temporal Mapping 60

4.4.1 STEM: Spatio-Temporal Evolutionary Mapping 60

4.4.2 FFEMS: Fast Flexible Energy-Minimizing Sched-
uler . 64

4.4.3 Evaluation . 67

4.5 Synopsis . 74

5 Domain-Specific Hybrid Mapping for Baseband Processing 75

5.1 Approaches to Baseband Processing 76

5.2 Baseband Processing Architecture and Parameterization 78

5.3 Task Graph with Phase-Sequential Structure 79

5.4 Efficient Mapping Algorithm for Phased Task Graphs . 80

5.5 Spatio-Temporal Mapping Reusing Previous Solutions 84

5.6 Evaluation . 86

5.6.1 Platform Setup 86

5.6.2 Workload Model 87

5.6.3 Generation and Estimation of Operating Points 88

5.6.4 Energy-Efficient Runtime Mapping 91

5.7 Synopsis . 95

6 Extending Kahn Process Networks with Adaptivity 97

6.1 Limitations of KPNs: A Motivational Example 98

6.2 Adaptive Process Network 100

6.2.1 Parallel Regions 100

6.2.2 Parallel Channels and Workload Distribution . 102

6.2.3 Malleability . 104

6.3 Dynamic Process Manager (DPM) Library 105

6.3.1 Programmer Interface 106

6.3.2 Runtime Topology 108

6.3.3 Configuration Management 108

6.4 Evaluation . 110

6.4.1 Experimental Setup 110

6.4.2 Performance Scalability with Parallelization . . 111

6.4.3 Runtime Adaptivity 112

6.5 Synopsis . 113

7 Coordinating Adaptivity in General-Purpose Environments 115

7.1 Need for Two-Way Communication 116

7.2 Adapting HAM Methodologies 118

7.3 HARP Design . 119

7.3.1 Application Support via libharp 120

7.3.2 Resource Allocation 123

7.4 Runtime Exploration of Operating Points 125

7.4.1 Runtime Performance and Power Monitoring . 126

7.4.2 Selection of the Regression Model 126

7.4.3 Runtime Exploration Algorithm 128

7.5 Evaluation . 130

contents xiii

7.5.1 Experimental Setup 131

7.5.2 Intel Raptor Lake Evaluation 133

7.5.3 Odroid-XU3-E Evaluation 135

7.5.4 Evaluation of the Learning Process 137

7.5.5 Performance Overhead of HARP 140

7.6 Synopsis . 141

8 Conclusions and Outlook 143

Glossary 149

List of Figures 155

List of Tables 157

List of Algorithms 159

List of Listings 161

Bibliography 163

1
I N T R O D U C T I O N

The evolution of processor architectures has seen a significant shift
over the past few decades, driven by the increasing demands of appli-
cations. In general-purpose computing, early performance improve-
ments were primarily driven by Moore’s Law [134], which predicted
that the number of transistors on a chip would doubles every 18–24
months. As transistor sizes shrank, clock frequencies also doubled
over the same period, since the processing speed is inversely related
to the distance between transistors. This trend was further aided by
Dennard Scaling [55], which maintained constant power density [59].

However, starting at 65 nm process technology and below, leak-
age power began to rise exponentially, breaking Dennard Scaling
and preventing further increases in clock frequency. To continue per-
formance scaling, computer systems transitioned toward multi-core
architectures, where multiple processing elements are integrated on
a single chip [67]. In these systems, individual core frequencies and
complexity were kept constant or even reduced to accommodate for
the breakdown of Dennard scaling, and performance improvement
were instead achieved through Thread-Level Parallelism (TLP) [131].

After certain point, core scaling hit the power budget: additional
cores could be added, but they often had to be switched off or sig-
nificantly underclocked to satisfy the Thermal Design Power (TDP)
constraints. This phenomenon has been termed as Dark Silicon [59].
In response, processor designs began transitioning to heterogeneous
architectures, where only the cores best suited to the application are
activated, enabling faster and energy-efficient computing [131].

The shift toward heterogeneous architectures was seen much ear-
lier in the embedded systems domain. In embedded systems, the
focus was traditionally on energy efficiency, real-time constraints, and
cost-effectiveness rather than solely increasing performance [125]. His-
torically, embedded software consisted of simple routines within a
single control loop, that were often programmed in assembly. However,
modern embedded devices run much more complex applications such
as baseband and multimedia processing, including video conferencing
and voice recognition [19, 95, 213]. This shift necessitated the adop-
tion of multi-core architectures to handle increased computational
demands while maintaining low power consumption and meeting
real-time performance requirements [18].

To achieve energy efficiency and meet application needs, embedded
systems have traditionally employed heterogeneous architectures that
integrate different types of processing units, such as Central Processing

1

2 introduction

Units (CPUs), Digital Signal Processors (DSPs), Application-Specific
Instruction-Set Processors (ASIPs), and hardware accelerators (e.g.,
FPGAs) [84, 125]. While this approach allows for specialized and
energy-efficient designs, it also presents challenges due to differing
Instruction Set Architectures (ISAs), making software development
more complex and limiting task migration across processing units.

Over time, the boundary between embedded and general-purpose
computing systems began to blur. Embedded systems have adopted
functionalities commonly associated with personal computers, such
as multitasking operating systems in mobile devices [82], and have
started handling more dynamic workloads [22]. Conversely, general-
purpose computing systems, facing the limitations of the TDP con-
straints, began adopting energy-efficient design principles traditionally
associated with embedded systems [14]. This convergence has led to
the emergence of Heterogeneous Multi-core Architectures (HMAs),
which combine different core types within a single processor [8, 106].

These core types share the same ISA but differ in microarchitecture,
offering different performance-energy trade-offs while maintaining
software compatibility. This design enhances flexibility and allows for
the dynamic resource allocation across core types [72]. Initially intro-
duced in the embedded domain [8, 72], HMAs have since expanded
to general-purpose computing [7, 86, 118], offering opportunities to
optimize performance and energy-efficiency across domains.

However, this new form of heterogeneity also brings new chal-
lenges in resource allocation and application design [103]. Dynamic
and unpredictable workloads, now prevalent in both embedded and
general-purpose domains, demand flexibility and adaptivity at both
resource management and application levels. Resource managers must
account for the differing characteristics of heterogeneous cores when
scheduling and distributing workloads, while applications must adapt
not only to dynamically changing resource allocations but also to the
heterogeneity of the assigned cores. Traditional methods may not be
well-suited for fully leveraging the capabilities of these heterogeneous
systems [163], requiring new strategies for scheduling, workload dis-
tribution, and application design.

This thesis explores the adaptivity challenges posed by HMAs and
proposes comprehensive solutions at both the resource management
and application levels. By addressing these challenges, the work aims
to enhance performance and energy efficiency of modern processors,
spanning embedded to general-purpose computing systems.

1.1 heterogeneous multi-core architectures

Heterogeneous Multi-core Architectures (HMAs) were initially introduced
in mobile and embedded devices, with Arm’s big.LITTLE architec-
ture [8], which features two core clusters — one with high-performance

1.1 heterogeneous multi-core architectures 3

Exynos 5422 CPU
Cortex-A15 Quad (2.0GHz)

Cortex-A15
32KB/32KB I/D-Cache

Cortex-A15
32KB/32KB I/D-Cache

Cortex-A15
32KB/32KB I/D-Cache

Cortex-A15
32KB/32KB I/D-Cache

SCU and ACP

2MB L2-Cache

Cortex-A7 Quad (1.4GHz)

Cortex-A7
32KB/32KB I/D-Cache

Cortex-A7
32KB/32KB I/D-Cache

Cortex-A7
32KB/32KB I/D-Cache

Cortex-A7
32KB/32KB I/D-Cache

SCU

512KB L2-Cache

2G
B

LP
D

D
R3

 R
A

M
G

PU

G
bit Ethernet

eM
M

C
 / m

icroSD

Figure 1.1: Samsung Exynos 5422 CPU implementing the Arm’s big.LITTLE
architecture with two core clusters: a four-core Cortex-A15 (big)
cluster and a four-core Cortex-A7 (LITTLE) cluster.

cores and one with energy-efficient cores (see Figure 1.1). This design
later evolved into Arm’s DynamIQ, which supports more flexible core
configurations and more core types [9, 203]. Since then, HMAs have
been adopted in desktop systems, beginning with Apple’s M1 chip [7],
and followed by incorporation into powerful x86 processors for desk-
tops and servers, such as Intel’s Alder Lake and Raptor Lake [86],
as well as AMD’s Phoenix 2 [29, 118] and Strix Point [79] processors.
Most of these processors feature two types of cores, but different ven-
dors use various names for these core types: Arm refers to them as
“big” and “LITTLE” cores, while Intel labels them as “P-cores” and
“E-cores”.

The performance-energy differences between core types arise from
their microarchitectures. Energy-efficient cores typically have sim-
pler designs with shorter pipelines, in-order execution, and smaller
caches, which contribute to lower power consumption but also lower
single-thread performance. On the other hand, high-performance cores
often feature deeper pipelines, out-of-order execution, larger caches,
and other features like Simultaneous Multithreading (SMT), enabling
higher performance but at the cost of increased power consumption.

This difference is also reflected in the die area. As illustrated in
Figure 1.2, high-performance P-cores on modern Intel Raptor Lake
processors occupy significantly more space on the die than energy-

Figure 1.2: Labeled die shot of an Intel Raptor Lake Core i9-13900K. P-cores
are located in the blue rectangle, and E-cores in the red one.
Original die shot from [89].

4 introduction

efficient E-cores, even though the number of E-cores is larger than that
of P-cores. The larger area required by P-cores also results in higher
static power consumption.

Despite these microarchitectural differences, both core types share
the same ISA, ensuring compatibility at the software level. This al-
lows the Operating System (OS) to schedule and migrate tasks seam-
lessly across them, enabling dynamic trade-offs between performance
and energy consumption. This flexibility allows systems to optimize
performance and energy efficiency based on current workloads and
requirements. For instance, compute-intensive tasks can be assigned
to high-performance cores, while background and less demanding
tasks can run on energy-efficient cores, reducing power consumption
without compromising user experience.

However, HMAs also introduce new challenges for efficient applica-
tion execution and resource allocation. Traditional execution models
and resource allocation strategies may not be sufficient to fully lever-
age the capabilities of HMAs. This necessitates new approaches to
application design, scheduling, and resource management that can
exploit the advantages of heterogeneous cores.

In the following section, we explore the specific adaptivity chal-
lenges posed by modern HMAs and highlight the need for adaptive
solutions that can fully leverage their potential.

1.2 need for adaptivity

As already mentioned, modern systems, both embedded and general-
purpose, often execute dynamic and unpredictable workloads. Ap-
plications may start and stop unpredictably, triggered either by user
interaction in general-purpose systems or by external sensors and
events in embedded systems. Moreover, applications exhibit varied be-
haviors: some are compute-intensive and others are memory-intensive.
Workloads also vary in priority, ranging from high-priority tasks to
less critical background processes. The heterogeneity of input data
also contributes to the unpredictability of resource demands.

At the same time, systems must ensure performance requirements
are met. Embedded applications often have strict deadlines, while
non-real-time applications in general-purpose systems, though not
bound to explicit deadlines, must maintain acceptable performance to
meet user expectations. Energy efficiency has also become a critical
consideration across both domains.

To meet these demands, systems must balance energy efficiency and
performance while being flexible and adaptive to dynamic workloads.
These adaptivity requirements can be categorized at two levels: the
resource management level and the application level (see Figure 1.3).

1.2 need for adaptivity 5

Resource
Management
Adaptivity

Application
Adaptivity

Dynamic Resource
Mediation

Accounting to
Behavior

Characteristics

Parallelization
Adaptivity

Load Distribution
Adaptivity

Fine-Grain Mapping
to Available
Resources

Algorithmic
Adaptivity

Input Data
Adaptivity

Figure 1.3: Some adaptivity challenges at the resource management and
application levels brought by modern processors.

1.2.1 Adaptivity at the Resource Management Level

Since the introduction of multi-core systems, the system has to perform
the resource management tasks: space-sharing, allocating tasks across
processor cores. Traditionally, resource management was integrated
within OS schedulers, which were previously focused on dividing
processor time among tasks through time-sharing.

Resource managers must dynamically consider current workloads
and system conditions when making decisions. This dynamism is nec-
essary because systems often run multiple applications concurrently,
with applications starting and stopping at any time, leading to fluc-
tuating resource demands and necessitating dynamic reallocation of
processor cores. The Resource Manager (RM) must adaptively assign
cores to applications, ensuring efficient utilization of resources and
maintaining system performance metrics such as overall throughput,
fairness, or for real-time applications, meeting deadlines.

The introduction of HMAs adds complexity to resource allocation
due to the varying performance-energy characteristics of different
core types. The RM now also needs to determine which core type
to allocate to each running task. This decision can be guided by
different strategies, ranging from checking which of the applications
are running in the background or actively used by a user [52] to
analyzing applications’ live behavior characteristics. For example, for
memory- and I/O-bound applications, the performance gap between
the core types may be minimal, making it more energy-efficient to run
these applications on energy-efficient cores, while compute-intensive
applications are located to high-performance cores.

Resource managers must make informed decisions about assign-
ing tasks to appropriate core types. These decisions should optimize
performance and energy efficiency while adapting to the dynamic
workload, which requires consideration of the applications’ character-
istics and how they interact with different core types.

6 introduction

1.2.2 Adaptivity at the Application Level

Since the RM changes the resource allocation dynamically, each ap-
plication may have access to different processor resources at different
times. However, many applications are not designed to dynamically
adjust their resource usage, whether by modifying their parallelization
degree or accounting for heterogeneity in processor cores. Moreover,
applications are often unaware of the specific processors on which they
are executed, as the RM decisions are not explicitly communicated to
them. To fully utilize processor resources, applications must adapt to
the processor cores allocated by the RM.

Parallel applications typically spawn multiple threads to parallelize
execution, such as data-parallel applications that distribute data pro-
cessing among worker threads. Ideally, the number of threads should
align with the available processor cores. This alignment helps to pre-
vent inefficiencies such as the contention among threads for the same
core. To handle the dynamic availability of processor cores, appli-
cations must be capable of adjusting their parallelization degree at
runtime, scaling down their resource usage when cores are needed by
other applications, and scaling up when additional resources become
available.

Heterogeneous processors introduce additional challenges for ap-
plications, requiring adaptivity in workload distribution, application
topology, or even algorithms. For instance, if parallel threads are dis-
tributed across both high-performance and energy-efficient cores, the
slower threads on energy-efficient cores can create a bottleneck, caus-
ing load imbalance and underutilization of high-performance cores,
thereby reducing overall performance.

In some cases, these adaptivity challenges can be addressed ag-
nostically, without requiring the application to know which threads
are assigned to which core types. For example, workload distribution
can be dynamically managed using techniques like work-stealing in
shared task pools (e.g., in OpenMP [160]). However, other solutions
may require explicit awareness of the processor cores available to
the application. This includes the ability to adjust the parallelization
degree, reconfiguring application topology, or selecting algorithms
optimized for specific core types [155, 156, 166].

Apart from adapting to available resources, applications may also
adapt to their input data, which contributes to the unpredictability of
resource demands. Input data can significantly influence an applica-
tion’s behavior [153, 165, 184]. For example, a WLAN application may
switch between send and receive modes depending on input, altering
the active component within the application. Internally, applications
are often designed to adapt to input data, but these adaptations can
result in varying execution characteristics and the resource demands.

1.3 contributions of this thesis 7

Thus, to fully utilize processor resources, there is a need for a
communication mechanism to ensure applications are aware of the
available processor cores. Conversely, RM should also be aware of
the dynamic characteristics of applications, to make more informed
resource allocation decisions.

1.3 contributions of this thesis

The adaptivity challenges posed by modern systems executing dy-
namic workloads require comprehensive and flexible solutions. While
no single solution can fully address the adaptivity challenges of HMAs,
this thesis proposes a series of approaches that enhance adaptivity in
different scenarios, targeting both resource management and applica-
tion behavior.

In the embedded domain, one promising state-of-the-art approach
is Hybrid Application Mapping (HAM), which combines design-time
application optimization with runtime resource management that dy-
namically adapts resource allocations based on current workloads.
By integrating extensive offline analysis with online decision-making,
HAM effectively addresses adaptivity challenges at the resource man-
agement level, such as dynamic resource mediation and accounting
for unique application characteristics. Building upon the advantages
of HAM, this thesis adopts it as a central methodology and enhances
it to further improve adaptivity in resource management.

Beyond resource management, this thesis also examines adaptivity
challenges at the application level, focusing on dataflow Models of
Computation (MoCs). Furthermore, it proposes a coordinated mech-
anism that integrates adaptivity at both resource management and
application levels.

The following subsections outline the key contributions of this
thesis.

Spatio-Temporal Mapping in Real-Time Systems

This thesis tackles the challenge of efficiently mapping parallel appli-
cations in dynamic real-time environments where workloads may start
sporadically. Each application is associated with a specific deadline,
and the RM must ensure that all applications complete within their
time constraints. State-of-the-art approaches typically generate only
spatial mappings, which limit the overall performance and energy
efficiency when responding to workload changes.

To overcome the limitations, this work proposes a novel resource
management approach that generates spatio-temporal mappings. This
decision model allows the resource manager to not only allocate
resources spatially but also strategically postpone execution or ad-
just mappings at a later time, accounting for foreseen workload

8 introduction

changes. Two efficient algorithms are presented to generate energy-
efficient spatio-temporal mappings within milliseconds. Additionally,
a memetic algorithm generating near-optimal solutions is proposed to
validate and demonstrate the efficiency of the rapid heuristics.

Domain-Specific Hybrid Mapping for Baseband Processing

Baseband processing is a critical component of wireless communi-
cation systems. Modern standards demand high flexibility to han-
dle heterogeneous and dynamic workloads. This thesis introduces a
domain-specific HAM methodology tailored to the phased-sequential
structure of baseband receiver applications, which comprise hundreds
of tasks, with execution behavior depending on specific input data
parameters.

The proposed approach leverages this phased structure to efficiently
exploit processor heterogeneity. It presents a fast algorithm that gener-
ates optimal mappings accounting for the performance-energy char-
acteristics of different cores. Additionally, a refined runtime resource
allocation algorithm is proposed to utilize prior decisions, reducing
runtime overhead, which is highly critical for low-latency baseband
systems, and ensuring efficient resource utilization and improved
performance.

Adaptive Process Networks

While the previous contributions focus on resource management
through mapping selection, applications themselves must also adapt
to dynamically allocated processor resources. This thesis examines
application-level adaptivity within the Kahn Process Networks (KPNs),
a MoC commonly used in embedded systems for streaming and
dataflow applications due to their deterministic properties, expressive-
ness, and pipeline parallelism. Traditional KPNs, however, suffer from
rigid application topology that limits their ability to adapt dynami-
cally.

This thesis proposes Adaptive Process Network (APN), an implicit
data-parallel extension to KPNs. This extension enables runtime repli-
cation of process subnetworks, allowing applications to adapt their
topology dynamically. It also introduces parallel channels that dy-
namically distribute workloads among processes and merge results
without compromising application determinism. The Dynamic Process
Manager (DPM) library is developed to provide runtime support for
APN applications and facilitate communication with the RM, enabling
application awareness of the assigned resources.

1.3 contributions of this thesis 9

Coordinated Adaptivity in General-Purpose Environments

To fully address adaptivity challenges, resource management and
application-level adaptivity must be considered together and, there-
fore, coordinated. This thesis proposes HARP, a resource management
framework integrated into Linux, which provides a unified resource
allocation solution across various desktop system with heterogeneous
processors.

HARP coordinates resource management across diverse application
models through the libharp library, which facilitates communication
with the RM via a well-defined interface. This enables applications to
internally adapt to allocated resources, such as adjusting their paral-
lelization degree upon receiving the RM decisions. The libharp library
supports common application models like OpenMP and Intel TBB,
while also allowing customization, for instance, for APN applications.

This contribution also expands the scope of the thesis to powerful
desktop and server systems. This shift necessitates overcoming a key
limitation of HAM: its reliance on offline analysis to generate Pareto-
optimal application configurations. Since general-purpose systems
may run unknown applications without pre-generated configurations,
this thesis introduces a runtime algorithm that monitors application
behavior to quickly identify optimal configurations.

In summary, this thesis advances the state-of-the-art by addressing
adaptivity challenges at both the resource management and applica-
tions levels. The initial contributions of this thesis focused on embed-
ded systems, where HMAs were first introduced. With HMAs now
being adopted by major processor manufacturers for general-purpose
systems, this work has evolved to address the adaptivity challenges in
desktop and server environments as well.

A Note on Originality

The thesis primarily focuses on contributions that result from my own
research. However, some of the presented work result from collabo-
rative efforts. I believe that outstanding research often results from
exchanging of ideas and collaboration. However, it can sometimes be
challenging to attribute specific ideas or results to a single individual.
To ensure transparency, I have made an effort throughout the thesis
to clearly distinguish my contributions from those of collaborators.
Additionally, I have indicated when the presented material appeared
in joint publications. If in doubt, any idea or result that I have included
here which has already been published elsewhere is also due to my
coauthors.

10 introduction

1.4 synopsis and outline

This chapter has provided an overview of the evolution of modern
processors, highlighting the transition from single-core designs to
multi-core processors and, more recently, to heterogeneous multi-core
architectures. It explored the opportunities and challenges brought
by heterogeneous processors, emphasizing the need for adaptivity to
fully exploit their capabilities. The chapter also provided an overview
of this thesis’s contributions, demonstrating how the identified adap-
tivity challenges are addressed at both the resource management
and application levels, targeting both embedded and general-purpose
computing systems.

The remainder of this thesis is organized as follows. The next chap-
ter, Chapter 2, provides essential background information on applica-
tion mapping and hybrid application mapping methodologies. The
chapter also formalizes the system model and the optimization prob-
lems addressed in this thesis. Following this, Chapter 3 reviews the
state-of-the-art, discussing relevant work in relation to the contribu-
tions of this thesis. The core contributions of the thesis are presented
in Chapters 4 to 7, which cover spatio-temporal mapping for real-time
systems, domain-specific hybrid mapping for baseband processing,
the Adaptive Process Network (APN) application model, and a re-
source management approach coordinating adaptivity at both levels in
general-purpose environments. Finally, Chapter 8 draws conclusions
and outlines potential future research directions.

2
F O U N D AT I O N S O F A P P L I C AT I O N M A P P I N G O N T O
H M A S

The previous chapter highlighted the need for adaptivity in mod-
ern heterogeneous multi-core processors and provided an intuitive
overview of the Hybrid Application Mapping (HAM) methodology,
emphasizing the existing gaps in fully utilizing Heterogeneous Multi-
core Architectures (HMAs). To provide a foundation for the sub-
sequent chapters, this chapter introduces the key concepts, formal
models, and tools relevant to our work, offering detailed information
about application mapping to heterogeneous processors.

The chapter begins with Section 2.1, introducing basic terminology,
discussing performance and energy estimation, and presenting the
notation used throughout the thesis. Section 2.2 formalizes the system
model. Section 2.3 explores the dataflow Model of Computation (MoC),
including its mapping to heterogeneous multi-core architectures. Sec-
tion 2.4 introduces the Hybrid Application Mapping (HAM) method-
ology, presenting its core principles and formalizing the optimization
problems addressed in this thesis. Section 2.5 describes the Mocasin

framework, a rapid prototyping framework that is used in this re-
search for modeling, simulating, and analyzing application mappings.
The chapter ends with a summary in Section 2.6.

2.1 preliminaries

Before introducing the formal problem definitions, this section intro-
duces the fundamentals of mapping, scheduling, and spatio-temporal
mapping, basic concepts of performance and energy estimation, static
and dynamic power consumption, and the notation used throughout
this thesis.

2.1.1 Mapping, Scheduling, and Spatio-Temporal Mapping

Efficient utilization of processing resources in multi-core and hetero-
geneous computing systems requires careful allocation of tasks to
processor cores and the management of their execution over time. This
involves two fundamental concepts: mapping and scheduling [42]. These
terms recur throughout this thesis and are essential for understand-
ing the proposed resource management strategies. Additionally, the
concept of spatio-temporal mapping is a key aspect central to this work.
Therefore, it is crucial to clearly define and distinguish them.

11

12 foundations of application mapping onto hmas

Mapping is the process of assigning tasks to processor cores, deter-
mining which tasks run on which cores. This process can be performed
either statically or dynamically. Static mapping determines task-to-
core allocations at design time, remaining fixed during execution. It is
common in systems with predictable workloads where timing guaran-
tees are critical, such as real-time and embedded systems. In contrast,
dynamic mapping assigns tasks to cores at runtime according to a
mapping policy, allowing the system to adapt to changing workloads
and resource availability.

Scheduling process decides on the order and timing of task execution
on allocated cores, determining at which time instants tasks are to be
run, managing the execution of multiple tasks that may compete for
the same processing core. Similar to mapping, scheduling can also be
static or dynamic. Static scheduling determines task order and timing
at design time, providing precise control over task execution but
lacking flexibility to adapt to dynamic workloads or varying system
condition. Dynamic scheduling makes decisions about task execution
at runtime based on scheduling policies, allowing the system to respond
to unpredictable workloads.

Mapping and scheduling can either be coupled or decoupled. A de-
coupled mapper dispatches tasks to local schedulers on each processor
core, which then decide on task execution. This approach might, for
example, combine a fixed mapping strategy with a dynamic schedul-
ing policy such as First-Come, First-Served (FCFS), where tasks are
executed in the order they arrive at the scheduler [172]. In a coupled
approach, both the where (mapping) and the when (scheduling) deci-
sions are made jointly. An example is the Earliest Finishing Time (EFT)
scheduling strategy, where tasks are assigned to processor cores in
a way that minimizes their earliest finish time, making task-to-core
assignment and scheduling order decisions simultaneously.

Alongside mapping and scheduling, the concept of spatio-temporal
mapping play a central role in this thesis. Spatio-temporal mapping
extends the mapping by introducing a temporal component and is de-
fined as a sequence of mapping segments, where each segment specifies
task-to-core allocation (the mapping) and the duration for which this
mapping is active. In each mapping segment, multiple tasks may be
assigned to the same core (as in conventional spatial mapping), but
the specific order and timing of task execution within the segment
are governed by scheduling, which may be governed by dynamic
scheduling policy at runtime. While scheduling details the precise
task timing and sequence (including context switches and preemp-
tions), spatio-temporal mapping operates at a higher abstraction level,
providing a time-dependent task allocation plan without specifying
detailed scheduling decisions.

Figure 2.1 illustrates the concepts of mapping, scheduling, and
spatio-temporal mapping. In this example, two applications, each rep-

2.1 preliminaries 13

a1

a2

a3

a4

a5

b1

b2

b3

b4

b6

b5

Execution time on Cortex-A15

Execution time on Cortex-A7

(a) Sample Applications

Cortex-A15 (B1)

a1 a3

a4

Cortex-A15 (B2)

a2 a5

Cortex-A7 (L1)

b1 b3

b5b4

Cortex-A7 (L2)

b2 b6

(b) (Spatial) Mapping

B1

B2

L1

L2

a11 a31 a41

b21

b31

b61

a12

b32

b22 b62

a21 a22 a51

a32 a42

a52

b11 b12 b51 b41 b52 b42

t

(c) Mapping with FCFS Scheduling

(d) Spatio-Temporal Mapping

Cortex-A15 (B1)

a1 a3

a4

Cortex-A15 (B2)

a2 a5

Cortex-A7 (L1)

b1 b3

b5b4

Cortex-A7 (L2)

b2 b6

Duration

Cortex-A15 (B1)

b1 b3

b4

Cortex-A7 (L2)Cortex-A7 (L1)

b2

Cortex-A15 (B2)

b5 b6

Duration

(e) Spatio-Temporal Mapping with FCFS Scheduling

B1

B2

L1

L2

a11 a31 a41

b21

b31

b41a12

b32

b22

b42

b52a21 a22 a51

a32 a42

a52

b11 b12 b51

b61

b22*

b62

t

Figure 2.1: Mapping, scheduling, and spatio-temporal mapping of two
dataflow applications

resented as a Directed Acyclic Graph (DAG) and shown in Figure 2.1a,
perform computations for two sample input data on HMA consisting
of two Cortex-A15 (big) and two Cortex-A7 (LITTLE) cores. The col-
ored bars attached to the nodes represent the execution time on each
processor core, with communication costs ignored for simplicity.

Figure 2.1b shows spatial mapping, where tasks from the first ap-
plication are mapped to the big cores, and tasks from the second
application are mapped to the LITTLE cores. These tasks are then
scheduled with the FCFS policy, shown in a Gantt Chart in Figure 2.1c,
where time is plotted on the horizontal axis and the processor cores
on the vertical axis.

Figure 2.1d and Figure 2.1e illustrate an alternative approach uti-
lizing spatio-temporal mapping, with two mapping segments shown
in Figure 2.1d. The first mapping segment is the same as the spatial
mapping, while the second reassigns some tasks from the second ap-
plication to the big cores as they become available. Scheduling within
each segment still follows the policy (as shown in Figure 2.1e), but
the overall execution benefits from the dynamic adjustment of task
mappings over time.

The resource management algorithms in this thesis focus primarily
on mapping techniques — both spatial and spatio-temporal — with-
out delving into the specifics of scheduling policies. During Design
Space Exploration (DSE) and performance evaluation, a scheduling
policy is assumed implicitly to assess the effectiveness of the mapping
strategies. Therefore, mapping in this context refers broadly to both

14 foundations of application mapping onto hmas

task assignment and the underlying scheduling policy governing task
execution.

2.1.2 Performance and Energy Estimation

Evaluating the effectiveness of application mappings (i.e., how ap-
plications perform under different mappings regarding performance
and energy efficiency) on HMAs is essential to optimizing resource
utilization, system performance, and energy efficiency. Common per-
formance metrics include execution time, throughput, and application-
specific utility, which may be defined based on the application’s
goals [101]. Energy metrics include energy consumption, average power
consumption, and peak power consumption. Energy and performance
metrics can be combined, resulting in metrics like the Energy-Delay
Product (EDP), which considers both energy consumption and execu-
tion time [124, 144].

Various methods exist for assessing performance and energy metrics,
depending on the application model, target architecture, available
tools, and desired accuracy. Common evaluation methods include [42]:

• Annotation-Based: Estimates performance and energy by annotat-
ing code with expected values based on prior knowledge.

• Source-Level Instrumentation: Instruments source code to collect
information about the execution of elementary operations, re-
trieving the costs of these operations from a table. While useful,
this method may not accurately model complex operations, non-
scalar architectures, or the effects of compiler optimizations [28].

• Simulation-Based: Uses simulators to model execution of the appli-
cation on target hardware. Performance simulators estimate exe-
cution time by modeling processor behavior, while energy simu-
lators use energy models to estimate energy consumption [31,
194].

• Measurement-Based: Measures actual performance and energy
consumption by running applications on target hardware. This
approach is potentially the most accurate but requires access to
the real hardware. Energy measurements can be obtained using
built-in sensors or external measurement tools, which vary in
temporal and spatial granularity, accuracy, and cost [85].

This thesis relies primarily on measurement-based methods due
to their accuracy. When possible, applications are executed on real
hardware platforms equipped with energy measurement capabilities.

Specifically, we employ Odroid-XU3
1 and Odroid-XU4 [78] boards;

both feature Samsung Exynos 5422 CPUs (Figure 1.1), but only the

1 Currently discontinued, https://www.hardkernel.com/shop/odroid-xu3

https://www.hardkernel.com/shop/odroid-xu3

2.1 preliminaries 15

Odroid-XU3 has onboard INA231 energy sensors2 to monitor the
big and LITTLE cores, Graphics Processing Unit (GPU) and DRAM
individually. For Odroid-XU4, we use the ZES Zimmer LMG450 power
meter, which measures the power consumption of the entire system at
a sampling rate of 20 Sa/s [218].

For the Intel Raptor Lake system, energy data is collected using
the Running Average Power Limit (RAPL) interface, which provides
data with high temporal (as fine as 1 ms) and spatial (RAM, CPU per
socket) granularity [54, 85]. The accuracy of RAPL for fine-grained
energy measurements has been validated in several studies [51, 74, 75,
164, 179].

When direct measurement is not feasible — for instance, when
evaluating a virtual target architecture — we utilize simulation-based
methods. For KPN applications, we employ trace-based simulation
using the Mocasin tool (Section 2.5) to estimate performance and
energy consumption based on collected execution traces [42].

2.1.3 Static and Dynamic Power Consumption

Processor power consumption consists of static and dynamic compo-
nents:

P := Pstatic + Pdynamic (2.1)

• Static Power Consumption: Power consumed due to leakage cur-
rents even when the processor is idle.

Pstatic := Iq ·Vdd (2.2)

where Iq is leakage current and Vdd is supply voltage.

• Dynamic Power Consumption: Power consumed due to active
computation and switching activities within the processor.

Pdynamic := γ · Ĉeff ·V2
dd · fop (2.3)

where γ ∈ [0, 1] is average switching activity, Ĉeff is effective
capacitance, and fop is operating frequency.

Distinguishing between static and dynamic power is important
for evaluation the application’s energy efficiency, especially in multi-
application scenarios, to avoid double-counting static energy when
evaluating the total energy consumption.

Accurate modeling of static power is challenging, as it depends on
both voltage and temperature. Notably, static power is not equivalent
to the system’s idle power consumption: When the platform is idle
(executing no applications), power consumption is reduced due to

2 https://www.ti.com/product/INA231

https://www.ti.com/product/INA231

16 foundations of application mapping onto hmas

power optimization techniques like power and clock gating, where
parts of the processor are powered down or clock signals are disabled
to save energy [154].

To estimate the static power, we apply regression models to correlate
measured power and the number of active cores. By extrapolating to
zero active cores, we can approximate the system’s static power con-
sumption [80]. By distinguishing between static and dynamic power,
we can avoid overestimating energy consumption when aggregating
results from multiple applications.

2.1.4 Notation

This thesis employs a consistent and intuitive notation system to
describe various elements in the system model, problem formulations,
and algorithm descriptions. The notation is designed to resemble
familiar programming concepts to readers.

• Objects and Attributes: An object X with specific attributes is de-
noted as X⟨a1, a2, . . . , an⟩, where a1, a2, . . . , an are the attributes
of the object X. In some cases, objects may be annotated with con-
textual information, to indicate, for example, their relationship to
another object, e.g., XC⟨. . .⟩, where C is an abstract context. For
simplicity, the object can be referred to as X, with its definition
indicated by :=, i.e., X := XC⟨a1, a2, . . . , an⟩.

• Accessing Attributes: Attributes of an object X are accessed using
the square brackets, denoted as X[ai] for the attribute ai. This
notation is analogous to accessing elements in a data structure.

• Derived Information: Some objects may have associated derived
values or other related information, which are accessed similarly
to attributes. These derived values are also accessed using square
brackets and are defined using :=. For example, given an object
X with two parameters tst and tfin representing the start and
finish times, i.e., X := X⟨tst, tfin⟩. A derived value, such as the
duration d, can then be defined as:

X[d] := X[tfin]− X[tst]

2.2 system model

This section provides formal definitions for the architecture, appli-
cation, and mapping models that serve as the foundation for the
approaches presented in this thesis.

2.2 system model 17

2.2.1 Architecture

A Heterogeneous Multi-core Architecture (HMA) consists of process-
ing elements of different types, each exhibiting distinct characteristics,
as well as the interconnection mechanisms that enable communication
between them.

Definition 2.1 (Processing Element Type). A processing element type
Ω represents a class of computational units that are instantiated,
possibly multiple times, in the HMA. Each processing element type
is characterized by its Instruction Set Architecture (ISA), performance-
energy cost model, and other hardware attributes such as the number
of hardware threads if it supports Simultaneous Multithreading (SMT).
Formally, a processing element type is defined as Ω := Ω⟨isa, cm, X⟩,
where:

• isa specifies the underlying ISA used by the processing element
type.

• cm is an abstract cost model specifying power consumption and
performance characteristics.

• X is a set of additional attributes providing information about
the processing element type. For example, xsmt ∈ X specifies the
number of simultaneous hardware threads.

Different processing element types can share the same ISA while
differing in other characteristics. With appropriate OS support, a task
can be migrated between processing elements of types Ωi and Ωj if
they share the same ISA, denoted as Ωi ∼ Ωj.

The processing element types available in the HMA are represented
as a finite sequence (Ω1, Ω2, . . . , Ω|(Ωi)|), or concisely as (Ωi), where
|(Ωi)| is the number of processing element types.

Each processing element type Ω could represent either a general-
purpose processor core or an application-specific accelerator. Where
needed, we explicitly distinguish between them.

Definition 2.2 (Processing Element). A processing element ψ is an in-
stance of a given processing element type Ω, denoted as ψ := ψ⟨Ω⟩. It
inherits the ISA, cost model, and attributes from its processing element
type Ω. The set of all processing elements in the HMA is denoted Ψ.

Although the performance-energy cost model Ω[cm] is left abstract,
we may denote specific power consumption metrics for processing
elements ψ where needed. Specifically, for a processing element ψ, we
denote ψ[Pstatic], ψ[Pdynamic] and ψ[P] as the static, dynamic and total
power consumption, respectively.

18 foundations of application mapping onto hmas

Definition 2.3 (Platform). A platform P for an HMA is defined as
P := P⟨Ψ, IC⟩. Ψ is the set of processing elements available in the
platform and IC is an abstract interconnection model characterizing
inter-processor communication.

For convenience, let P [ωi] denote the number of processing ele-
ments of type Ωi, i.e.,

P [ωi] := |{ψ ∈ P [Ψ] | ψ[Ω] = Ωi}| (2.4)

Let P [ω⃗] denote the resource vector of the platform P :

P [ω⃗] :=
[
P [ω1],P [ω2], . . . ,P [ω|(Ωi)|]

]⊤
(2.5)

This thesis focuses on HMAs such as ARM big.LITTLE (Figure 1.1)
or the Intel Alder Lake and Raptor Lake families (Figure 1.2). These
systems feature two types of processor cores: high-performance cores
(referred to as “big” in ARM, and “P-core” in Intel) and energy-
efficient cores (referred to as “LITTLE” in ARM and “E-core” in Intel).

In the proposed algorithms, we assume that all cores of the same
type are symmetrical from an interconnection point of view. This
assumption is valid for the ARM big.LITTLE platform, which features
a single cluster for big cores and a single cluster for LITTLE cores. For
Intel’s architecture, this assumption is partially true: while each P-core
is located in its own cluster, E-cores are grouped into several clusters
with four E-cores per cluster. The difference lies in the fact that two
E-cores within the same cluster can communicate starting via the L2

cache (which is the closest shared cache level), while communication
between E-cores in different clusters begins through the L3 cache.

2.2.2 Application

The HMA executes multiple applications that may vary in their MoC.
In addition to information about application components (tasks or
threads), applications may also provide a way to control their internal
configuration through so-called adaptivity knobs. By controlling these
adaptivity knobs, the RM can change the application topology, the
degree of parallelization, the algorithms used, and more. Along with
resource allocation, the RM may leverage these knobs to better adapt
the application to the current workload.

This section defines an abstract application model that allows the
formulation of the application mapping problem in a general way.

Definition 2.4 (Application). An application is a tuple A := A⟨M, Γ,V⟩,
where

• M is an abstract model of the application.

• Γ is a set of configuration parameters.

2.3 mapping of dataflow applications 19

• V is a set of application components (e.g., tasks, processes, threads)
that need to be mapped.

A configuration γ is an assignment of values to the configuration
parameters in Γ. For each configuration γ, the corresponding set of
active application components is denoted by Vγ ⊆ V . The set of all
applications is denoted by A.

This definition deliberately separates the application parameters
into configuration parameters and application components. The config-
uration parameters specify the internal settings of the application, such
as the degree of parallelism or algorithmic choices. The application com-
ponents represent the computational elements (e.g., tasks or threads)
that need to be mapped onto the platform’s processing elements.

As an example, consider a simple parallel application where the
configuration parameter is the number of threads Γ = {nthreads}. A
specific configuration Γ = {nthreads = k} determines the number of
threads used by the application. The set of application components Vγ

would then consists of k threads that need to be mapped, i.e., |Vγ| = k.

2.2.3 Mapping

As discussed in Section 2.1.1, mapping can be performed either stati-
cally or dynamically. This work focuses on static assignments of tasks
to processing elements, which can be defined formally as follows.

Definition 2.5 (Mapping). A mapping µ for application A⟨M, Γ,V⟩
with a selected application configuration γ on a platform P⟨Ψ, IC⟩
is a specific assignment of each application component v ∈ A[Vγ] to
exactly one core ψ ∈ P [Ψ] in the HMA, i.e.,

µ : A[Vγ]→ P [Ψ] (2.6)

The set of processing elements utilized by the mapping is referred
to as the allocation µ[Ψ], defined as:

µ[Ψ] := {ψ | ∃v ∈ A[Vγ] : ψ = µ(v)} (2.7)

The resource vector µ [ω⃗] specifies how many instances are allocated
per processing element type:

µ[ω⃗] :=
[
µ[ω1], . . . , µ[ω|(Ωi)|]

]⊤
(2.8)

where µ[ωi] := |{ψ ∈ µ[Ψ] | ψ[Ω] = Ωi}| (2.9)

2.3 mapping of dataflow applications

Building upon the system model introduced in the previous section,
this section discusses dataflow Models of Computation (MoCs), which

20 foundations of application mapping onto hmas

are common application models for streaming applications used in
embedded systems. These models naturally represent the flow of data
between computational components [107]. Particularly, the section
introduces common MoC such as Synchronous Dataflow (SDF), and
Kahn Process Network (KPN). We define these dataflow MoCs, discuss
their mapping onto platforms, and outline the trace-based simulation
used for performance and energy analysis.

2.3.1 Dataflow Models of Computation

Dataflow Models of Computation (MoCs) have gained momentum
in the embedded domain, especially for describing streaming and
signal processing applications. These models represent computations
as directed graphs where the nodes denote computational tasks, and
the arcs represent communication channels [107]. Depending on the
specific model, these nodes may be referred to as actors or processes.
Each node performs computations based solely on its input values.

Dataflow models have become attractive for several reasons: they ex-
plicitly expose parallelism, are well-suited for graphical programming
— a common specification paradigm for signal processing algorithms
— and the properties of the underlying MoC enable tools to perform
analysis and compile the specifications into both software and hard-
ware [37].

Various dataflow models have been proposed for embedded pro-
gramming, each offering different trade-offs between expressiveness
and analyzability. Examples include Synchronous Dataflow (SDF) [109],
Cyclo-Static Dataflow (CSDF) [21], Boolean Dataflow (BDF) [108], Dynamic
Dataflow (DDF) [33], Process Network (PN) and Kahn Process Network
(KPN) [91].

2.3.1.1 Synchronous Dataflow

Synchronous Dataflow (SDF), introduced by Lee and Messerschmitt [109],
is a dataflow model where the nodes, called actors, have the amount of
data produced and consumed by each actor firing fixed and known at
compile time. The execution of an SDF (firing) is controlled by data in
its edges; each actor executes or fires once it has enough tokens in its in-
put channels. This deterministic behavior makes SDF models statically
analyzable: properties such as deadlock-freedom, bounded memory
usage, and throughput can be analyzed at design time, making SDF
suitable for real-time and resource-constrained applications.

If each actor in SDF consumes and produces exactly one token per
firing, the graph is referred to as a Homogeneous SDF (HSDF). Any
SDF graph can be transformed into an equivalent HSDF graph [186].
Acyclic HSDF (i.e., those without cycles) are structurally equivalent to
Directed Acyclic Graphs (DAGs) and can effectively model task graphs.

2.3 mapping of dataflow applications 21

2.3.1.2 Kahn Process Networks

Kahn Process Network (KPN), first introduced by Gilles Kahn [91],
is a more general and expressive Model of Computation (MoC). In
this model, each node executes concurrently as a separate process,
typically a non-terminating program that reads data tokens from
input unbounded First In, First Out (FIFO) channels and writes data
tokens to output unbounded FIFO channels. Unlike actors in dataflow
models such as SDF, processes in KPN do not have firing semantics;
instead, they are either ready to execute or blocked waiting for input.
All processes execute simultaneously [110].

Communication between processes is characterized by blocking reads
and non-blocking writes (also referred as Kahn-MacQueen execution
semantics [92]). A process attempting to read from an empty channel
will block until data becomes available, whereas writing to a channel
is non-blocking as channels are assumed to be unbounded in size.

Importantly, processes cannot check whether data is available on
a channel without attempting to read from it. Due to this restriction
and the deterministic behavior of each process, the entire KPN is also
deterministic. Regardless of the relative speeds of processes or com-
munication delays, the overall system behavior remains predictable
and consistent for any given set of input sequences.

KPNs are Turing-complete, meaning they can represent any com-
putation that a Turing machine can perform [33]. This makes them
expressive model and capable of representing complex applications.
Task graphs and SDF can be considered as restrictions of Kahn Process
Networks [107].

Relating KPNs to the application model, defined earlier (Defini-
tion 2.4), we observe that for a KPN, the application model M is a
directed multigraph (V, E), where V is the set of processes and E is
the set of unbounded FIFO channels connecting them. This graph
encapsulates the computational structure and data dependencies of
the application. Since the structure and behavior of the KPN are fixed,
there are no tunable parameters, thus, Γ = ∅. The set of application
components V consists of all the processes in the KPN that need to be
mapped onto processing elements in the platform.

However, in practical implementations channels cannot be truly un-
bounded due to physical memory limitations. As a result, channels are
implemented as bounded FIFO [143]. This introduces the possibility of
blocking writes: If a channel is full when a process attempts to write, the
process must block until space becomes available. This deviation from
the theoretical model can introduce deadlocks and requires careful
application design and buffer size determination to avoid such issues.

As an example, Figure 2.2 depicts the implementation of a JPEG
Image Encoding application [201] as a KPN graph. The Source node
reads the input pixel data and distributes the RGB components to the
R2BRed, R2BGreen, and R2BBlue processes. These R2B (Row-To-Block)

22 foundations of application mapping onto hmas

Source

R2BRed

R2BGreen

R2BBlue

DCTRed

DCTGreen

DCTBlue

QRed

QGreen

QBlue

ZZE RLE Sink

Figure 2.2: JPEG Image Encoding application as a KPN graph

processes convert the pixel data into 8× 8 blocks for each color channel.
The DCT nodes then transform the blocks from the spatial domain to
the frequency domain using the Discrete Cosine Transform. Quantization
is applied by QRed, QGreen, and QBlue, reducing the precision of the
DCT coefficients. The Zig-Zag Encoding (ZZE) process reorders the
quantized coefficients into a one-dimensional array, which is further
compressed by RLE through the Run-Length Encoding algorithm. Finally,
Sink prepares the compressed data for output.

This implementation demonstrates a key strength of the KPN:
pipeline parallelism. The Source node continuously streams pixel data
to the R2B processes, which convert this data into fixed-size blocks.
While R2B prepares the next blocks, subsequent processes immediately
begin working on the first block. As the blocks move through the
pipeline, the Source keeps sending new pixel data, and R2B contin-
ues converting them into blocks. This overlap in processing across
different stages creates an efficient pipeline structure that maximizes
parallelism.

Due to their deterministic properties, expressiveness, and ability
to exploit pipeline parallelism, KPNs are well-suited for embedded
software, particularly in streaming and signal processing applications.

2.3.2 Design-time and Runtime Mapping Approaches

The process of mapping application tasks or processes onto multi-
core systems involves allocating and coordinating tasks and their
communications across platform resources. The objective is to optimize
criteria such as computational performance and energy consumption.

The mapping problem is similar to the Quadratic Assignment Problem,
a well-known NP-hard problem [66]. As a result, finding an optimal
solution that satisfies all constraints is computationally expensive and
time-consuming. To achieve near-optimal solutions within a reason-
able timeframe, heuristics, leveraging domain-specific knowledge, are
frequently employed.

Extensive research has been conducted on application allocation
methodologies, which can be broadly classified based on the workload
scenarios they address. For static workloads, design-time mapping
approaches optimize resource allocation prior to runtime, while run-

2.3 mapping of dataflow applications 23

time mapping methodologies dynamically allocate resources during
application execution [175].

2.3.2.1 Design-Time Mapping

Design-time mapping determines task allocation to processor cores
before application execution begins. These methods utilize exten-
sive computational time to perform sophisticated DSE, aiming for
near-optimal mappings that optimize metrics such as execution time,
throughput, and energy consumption.

Common strategies in design-time mapping include domain-specific
heuristics, which leverage application-specific insights to generate
efficient mappings, and metaheuristics, such as Evolutionary Algo-
rithms (EAs), which iteratively explore the search space to identify
high-quality solutions. Metaheuristics are often integrated with trace-
based simulations to estimate application performance and energy
consumption. More details on trace-based simulation are provided in
Section 2.3.3.

While design-time mapping can produce high-quality mappings,
it has notable limitations. As the number of applications increases,
the number of possible use cases increases exponentially, making
exhaustive analysis impractical. For n applications, exhaustive analysis
would require evaluation of 2n use cases. Additionally, design-time
mapping lacks flexibility in adapting to dynamic scenarios, such as
changes in application standards or the addition of new applications.

2.3.2.2 Runtime Mapping

In contrast, the runtime mapping defers resource allocation decisions
to runtime, enabling adaptation to the current set of executing ap-
plications. These approaches typically rely on mapping policies (see
Section 2.1.1) implemented as lightweight heuristics to rapidly assign
tasks to resources.

Although runtime mapping is well-suited for unpredictable work-
loads, the constraints of rapid decision-making limit the complexity of
the heuristics used. This often results in suboptimal mappings, leading
to inefficient resource utilization and higher energy consumption.

A detailed survey of design-time approaches is presented in Sec-
tion 3.1, while runtime mapping methodologies are explored in Sec-
tion 3.2.

2.3.3 Trace-Based Simulation

For dataflow applications such as KPNs, performance and energy
consumption can be evaluated through trace-based simulation. This
approach simulates the sequential execution of processes and their

24 foundations of application mapping onto hmas

communication patterns, allowing for detailed analysis of application
behavior under different mappings [41, 42].

In trace-based simulation, a KPN application is analyzed with a
given input stimulus. As discussed in Section 2.3.1, KPN applications
exhibit deterministic behavior, allowing us to rely on the fact that each
process will follow the same sequence of operations regardless of how
the application is mapped onto the target hardware.

To perform trace-based simulation, we first generate a process trace
for each process in the KPN application. A process trace is defined as
a sequence of segments, each representing a sequence of statements
executed and ending with a communication event (a channel read or
write) or process termination.

The set of all process traces forms the application trace, which serves
as the basis for the simulation. Given a mapping µ, the trace-based
simulation emulates the runtime system of the target platform, pro-
ducing a Gantt chart (such as one shown in Figure 2.1c) that visually
represents application execution by replaying the process traces. Each
segment in the traces can be divided into two parts: the computation
part, representing the sequential computations performed by the pro-
cess, and the communication event, representing the interaction with
other processes via channel reads or writes.

The computational parts are analyzed to determine execution time
and dynamic energy consumption on each processor core type Ω.
As discussed in Section 2.1.2, execution time and energy estimations
can be obtained through techniques like source-level instrumentation,
measurement-based methods, or simulation.

To formalize this, consider a process π executing a segment s, charac-

terized by performance-energy data ⟨⃗τ, ε⃗⟩. Here, τ⃗ =
[
τ1, . . . , τ|(Ωi)|

]⊤
and ε⃗ =

[
ε1, . . . , ε |(Ωi)|

]⊤
, where τi and ε i represent the latency and

energy consumption on the processing element type Ωi. We denote
π[s][τi] and π[s][ε i] as the latency and energy consumption of a pro-
cess π executing a segment s on the processing element type Ωi.

Communication costs are estimated by calculating the transfer time
and energy based on factors such as message size and the characteris-
tics of the communication channels between processor cores ψi and ψj.
Communication cost functions may exhibit non-linear behavior, such
as a step function, due to factors like buffering effects and protocol
overhead.

The trace-based simulation also takes into account the dependencies
between segments and communication events, including sequential
order, read-after-compute, block-reads and unblock-reads, and block-writes
and unblock-writes [42]. The blocking and unblocking write dependen-
cies are introduced due to bounded channels in KPNs. The simulation
also emulates scheduling policies and events such as context switches,
to reflect the behavior of the target system.

2.4 hybrid application mapping 25

At the end of the simulation, the total execution time of the ap-
plication is measured from the application start to its completion,
while the dynamic energy consumption is estimated by summing the
energy consumed during computational and communication events.
This method provides insights into the performance and energy char-
acteristics of KPN applications under different mappings, offering
lightweight simulation for faster Design Space Exploration (DSE).

To perform mapping exploration and trace-based simulation, this
thesis employs the Mocasin framework, which implements the simu-
lation techniques described above. Further details about the Mocasin

framework can be found in Section 2.5.

2.4 hybrid application mapping

As discussed in Section 2.3.2, design-time mapping approaches pro-
duce high-quality mappings but cannot adapt to dynamic workloads.
In contrast, runtime mapping approaches can easily adapt to dynamic
workloads but cannot afford extensive computational time to find
good mappings, potentially resulting in suboptimal solutions.

To overcome the limitations of both design-time and runtime ap-
proaches, researchers have proposed Hybrid Application Mapping (HAM),
which combines the strengths of these two mapping classes while mit-
igating their weaknesses. In HAM, the mapping generation process is
split into two stages: a design-time stage and a runtime stage. At de-
sign time, HAM performs sophisticated analysis to generate mapping
candidates, each varying in resource usage and performance-energy
characteristics. Then, at runtime, the Resource Manager (RM) analyzes
the current workload and selects one of the pre-generated mapping
candidates for each application, so that all applications satisfy the
constraints and the overall system utilization is maximized.

Figure 2.3 illustrates a typical Hybrid Application Mapping (HAM)
flow. At design time, each application is analyzed in isolation using
DSE, leveraging the models of application and target architecture
(Figure 2.3a). Similar to pure design-time mapping, DSE in HAM may
use iterative metaheuristics, such as Evolutionary Algorithms (EAs),
or domain-specific heuristics. As a result, DSE generates a set of Pareto-
optimal operating points, a (possibly partial) mapping annotated with
non-functional characteristics (i.e., performance and energy metrics).
Pareto optimality is defined in multi-dimensional objective space:
each operating point is not dominated by any other, meaning that it
is better than others in at least one objective, such as performance,
energy consumption, and the number of processing elements used
per type. The operating points may be partial mappings, given as
constraints [204], or complete mappings that are later adapted at
runtime.

26 foundations of application mapping onto hmas

Mapping Generation

Performance Estimation

Pareto-Optimal
Operating Points

Application Model

Architecture Model

Operating Point Generation

Pareto
Front

𝜀

𝜏

(a) Design-time generation of operating points

Variant Selection

Variant Transformation

Resource Manager

Pareto-Optimal
Operating Points

Pareto-Optimal
Operating Points

Pareto-Optimal
Operating Points

Job 𝜎! Job 𝜎"Job 𝜎#

Workload

𝜎! 𝜎!	 𝜎!	

𝜎"

𝜎"

𝜎"
𝜎# 𝜎#

Multi-Application Mapping

L1
L2
L3
L4
B1
B2
B3
B4

𝜎!

𝜎!
𝜎!

𝜎"
𝜎"
𝜎"

𝜎#
𝜎#

𝜎!
𝜎!
𝜎!

𝜎!
𝜎!
𝜎#
𝜎#

𝜎#

𝜎#

𝜎#

𝜎#

𝑀! 𝑀" 𝑀#

(i) Spatial Mapping

(ii) Spatio-Temporal Mapping

(b) Runtime resource management stage. The decision model is depicted in two
variants: (i) Spatial multi-application mapping, and (ii) Spatio-temporal multi-
application mapping

Figure 2.3: Overview of Hybrid Application Mapping, showing the two key
stages: (a) Design-time exploration and (b) Runtime resource
management.

2.4 hybrid application mapping 27

The identified Pareto-optimal operating points are provided to the
Resource Manager (RM), which manages applications at runtime, as
depicted in Figure 2.3b. For each executing application, the RM selects
the most appropriate operating point based on the current system
state and workload. The selected variant is then adapted to the current
system workload, either by finalizing the mapping from a partial one
or by transforming a complete mapping to utilize the free resources
in the platform.

To improve predictability — so that applications behave in the
same way as they were analyzed, during the design-time stage — the
applications at runtime are mapped with spatial isolation [68]. This
means that threads from different applications do not compete for
the same processor cores (although threads of the same application
may share cores, and this behavior is already accounted for in the
operating point’s non-functional characteristics). To further improve
predictability, some approaches also take into account composability
at the interconnection level [204].

The runtime decision-making leverages scalable, lightweight heuris-
tics, benefiting from the precomputed options provided by the design-
time analysis. Traditional runtime algorithms employed in HAM gen-
erates spatial mappings and therefore select a single operating point
for each application (as depicted under (i) in Figure 2.3b). In this thesis,
Chapter 4 proposes novel algorithms that generate spatio-temporal
mappings (described in Section 2.1.1, and depicted under (ii) in Fig-
ure 2.3b). In such approaches, the RM may select different operating
points for different mapping segments, allowing for better adaptivity
and thereby enhancing system performance and energy efficiency.

In the following, Section 2.4.1 introduces a formal model of operat-
ing points and Pareto optimality. Sections 2.4.2 and 2.4.3 define the
resource management problem for spatial and spatio-temporal multi-
application mappings, respectively. Finally, Section 2.4.4 explores how
HAM approaches address adaptivity challenges in modern Heteroge-
neous Multi-core Architectures (HMAs).

2.4.1 Pareto-Optimal Operating Points

Operating points are the primary data structures that link the design-
time and runtime stages of Hybrid Application Mapping (HAM). They
represent specific application configurations and their mappings onto
the HMA, annotated with performance and energy characteristics.

The total number of possible operating points is extremely large,
growing exponentially with the number of application components
that need to be mapped. Fortunately, methods exist to efficiently
reduce this number to a manageable set of high-quality operating
points, enabling fast decision-making at runtime.

28 foundations of application mapping onto hmas

This section formalizes the concept of operating points and explores
their optimization through Pareto optimality.

2.4.1.1 Operating Point

The concept of operating points is formalized as follows.

Definition 2.6. An operating point o for application A⟨M, Γ,V⟩ on a
platform P⟨Ψ, IC⟩ is a tuple o := oA⟨γ, µ, η⟩, where:

• γ is a specific configuration from the set of application configu-
ration parameters in A[Γ].

• µ : A[Vγ]→ P [Ψ] is a mapping of the application’s active com-
ponents under configuration γ onto the platform’s processing
elements (see Definition 2.5).

• η := η⟨•, •, . . .⟩ is a set of non-functional characteristics represent-
ing the performance and energy efficiency of the application
under this operating point.

The set of all operating points for the application A is denoted OA.

Depending on the specific multi-application optimization problem,
the non-functional characteristics η can be defined differently. For
real-time applications, η := η⟨τ, ε⟩, where τ is the execution time and
ε is the energy consumption. The information about execution time is
crucial for checking real-time constraints.

For non-real-time applications, the characteristics may be repre-
sented with instant metrics, such as utility υ or power consumption p,
i.e., η := η⟨υ, p⟩.

For convenience, indirect access to nested attributes is permitted. For
example, o[ω⃗] := o[µ][ω⃗] refers to the resource vector, or o[ε] := o[η][ε]
refers to the energy consumption.

2.4.1.2 Pareto Optimality

To evaluate how “good” a particular operating point is, it is necessary
to have criteria for assessment, expressed as objective functions. In most
cases, multiple objectives are optimized simultaneously, and these
objectives often conflict with each other, resulting in a partial rather
than a total ordering on the search space [49].

For operating points defined above, the following objectives are
generally considered:

1. Minimization of execution time o[τ] or maximization of utility
o[υ].

2. Minimization of energy consumption o[ε] or minimization of
power consumption o[p].

2.4 hybrid application mapping 29

3. Minimization of the number of resources used per type o[ω⃗].

With a single objective function, the optimal solution is usually
unique. However, with multiple objective functions, the notion of
“optimum” changes, leading to a large number of different solutions.
These solutions vary in their values across the objective functions,
but each solution is superior to any other by at least one objective,
thus, representing a compromise or “trade-off”. Each of these optimal
trade-offs is termed Pareto optimum.

Objective functions can be represented as a vector function:

F⃗(o) = [f1(o), f2(o), . . . , fk(o)]
⊤ (2.10)

Assuming minimization of the objective functions the concepts of
Pareto dominance and Pareto optimality can be formalized as follows.

Definition 2.7 (Pareto Dominance [49]). A vector u⃗ = [u1, . . . , uk]
dominates another vector v⃗ = [v1, . . . , vk] (denoted by u⃗ ⪯ v⃗) if and
only if u⃗ is partially less then v⃗, i.e., ∀i ∈ {1, . . . , k} , ui ≤ vi ∧ ∃i ∈
{1, . . . , k} : ui < vi.

Definition 2.8 (Pareto Optimality [49]). An operating point o ∈ O is
Pareto Optimal if and only if there is no o′ ∈ O such that F⃗(o′) ⪯ F⃗(o).

Definition 2.9 (Pareto-Optimal Set [49]). The Pareto-optimal set of
operating points OA

opt is defined as:

OA
opt :=

{
o ∈ OA | ∄o′ ∈ OA s.t. F⃗(o′) ⪯ F⃗(o)

}
(2.11)

The objective vectors of the Pareto optimal solutions are termed
nondominated and form the Pareto front.

Definition 2.10 (Pareto Front [49]). For a given F⃗ : OA → Rk, and
Pareto optimal set OA

opt ⊂ OA, the Pareto Front (also called Pareto
frontier) F A

opt is defined as:

F A
opt :=

{
u⃗ = F(o) | o ∈ OA

opt

}
(2.12)

Reducing the set of operating points to only the Pareto optimal ones
significantly decreases the number of points, retaining only a select
set of high-quality operating points. This reduction aids the runtime
heuristics employed by the RM, enabling rapid selection among these
points to effectively balance performance, energy efficiency, and re-
source usage. If the number of operating points remains large, further
reduction can be achieved through distillation techniques [149].

2.4.1.3 Problem Statement

The problem of finding the Pareto-optimal set of operating points can
be formalized as follows:

30 foundations of application mapping onto hmas

Definition 2.11 (Multiobjective Optimization Problem). Given an ap-
plication A⟨M, Γ,V⟩, a target platform model P⟨Ψ, IC⟩, and a set of
objective functions F⃗(o) = [f1(o), f2(o), . . . , fk(o)]

⊤, find the Pareto-
optimal set of operating points OA

opt ⊂ OA.

While this thesis does not focus on DSE in general, it describes the
generation of operating points for task graphs with phased structures
in Chapter 6. Additionally, Chapter 7 proposes a runtime algorithm
for rapid estimation of operating points for general-purpose systems.

2.4.2 Spatial Mapping Optimization

At runtime, the Resource Manager (RM) manages the execution of
multiple applications by handling incoming job requests and optimiz-
ing the allocation of resources. Each job request is associated with
an application, with predefined operating points generated during
the design stage. The RM generates a multi-application mapping that
integrates these requests while ensuring energy efficiency and optimal
resource utilization.

This section focuses on the optimization problem for spatial multi-
application mapping, a conventional decision model in HAM method-
ologies (see Section 3.3). In this model, each job request is assigned
a specific operating point, ensuring that the jobs do not overlap on
resources.

While this thesis highlights the benefits of the spatio-temporal map-
ping, the spatial variant is more appropriate when job completion
times are unpredictable. This scenario arises, for example, when the
operating points are annotated with instantaneous metrics rather than
expected (worst-case) execution times. This is particularly relevant for
general-purpose systems where applications are typically non-real-
time and their execution time and energy consumption can vary based
on input. Given this unpredictability, the RM generates the spatial
multi-application mappings.

The following subsections formalize the models of job requests and
multi-application mappings and formulate the optimization problem.

2.4.2.1 Job Request

When a new job request arrives, the RM is activated to generate a
new multi-application mapping that incorporates this request along-
side other ongoing jobs. If a suitable multi-application mapping is
successfully generated, the job is admitted into the system. The follow-
ing definition applies to both spatial and spatio-temporal mapping
optimizations.

Definition 2.12. A job request σ to execute an application on the HMA
is defined as σ := σ⟨A, tarr, θ, ρ⟩, where

2.4 hybrid application mapping 31

• A is the application to execute,

• tarr is the arrival time of the request,

• θ is the (relative) deadline (optional, used in real-time scenarios),

• ρ ∈ [0, 1] is the current progress ratio (optional, used in real-time
scenarios).

The set of all job requests is denoted Σ. Σnew denotes the set of job
requests that are not yet admitted by the RM, and Σadm is the set of
previously admitted job requests.

2.4.2.2 Spatial Multi-Application Mapping

The RM generates a multi-application mapping to allocate resources
across applications. Spatial multi-application mapping is defined as
follows:

Definition 2.13 (Spatial Multi-Application Mapping). A spatial multi-
application mapping M assigns each job request σ ∈ Σ an operating
point o ∈ Oσ[A]

opt ∪ {⊥} where ⊥ represents no operating point. This
assignment is denoted as M[σ] := M[σ]⟨o⟩.

For convenience, some derived information is denoted as follows:

• Resource vector M[σ][ω⃗]:

M[σ][ω⃗] := M[σ][o][ω⃗] (2.13)

• Non-functional characteristics of the selected operating point M[σ][τ],
M[σ][ε] or M[σ][υ], M[σ][p], each defined as:

M[σ][•] := M[σ][o][η][•] (2.14)

2.4.2.3 Problem Statement

As discussed in Section 2.4.1.1, the non-functional characteristics of
operating points can vary, encompassing metrics such as execution
time and energy consumption or instantaneous metrics like utility
and power consumption. To generalize the optimization problem, an
energy-utility cost η[ζ] is introduced, defined as a function of other
values within the non-functional characteristics η. The optimization
problem is formalized as follows.

Definition 2.14 (Spatial Multi-Application Mapping Optimization
Problem). Given a set of job requests Σ and the Pareto Optimal set of
operating points Oσ[A] for each σ ∈ Σ, find a spatial multi-application
mapping M that minimizes the overall system’s energy-utility cost:

minimize M[ζ] = ∑
σ∈Σ

M[σ][ζ] (2.15)

32 foundations of application mapping onto hmas

subject to the resource constraint, which ensures that the total resource
demand does not exceed the available resources for each processing
element type:

M[ω⃗] = ∑
σ∈Σ

M[σ][ω⃗] ≤ P [ω⃗] (2.16)

2.4.2.4 Equivalence to the Multiple-choice Multidimensional Knapsack
Problem

The optimization problem in Definition 2.14 is equivalent to the
Multiple-choice Multidimensional Knapsack Problem (MMKP) [123]. In the
MMKP, items have a scalar value and a multi-dimensional weight, and
they are divided into several groups. The goal is to select a single item
per group (multiple-choice) such that the overall value is maximized
and the total weight does not exceed the maximum allowed weight at
each dimension.

In our optimization problem, each application’s operating points
represent items in a group. The goal is to select one operating point
per application (one item per group) such that the overall energy-
utility cost is minimized. Here, the weight corresponds to the number
of used processing elements of each type, and the value of an item is
represented as a negative energy-utility cost.

Given that MMKP is NP-hard [151], finding an optimal solution
is computationally challenging, particularly for a large number of
applications and operating points. Section 3.3 discusses heuristics to
rapidly approximating solutions to MMKP. In Chapter 7, a runtime
system, HARP, employs a state-of-the-art Lagrangian relaxation to
efficiently solve the optimization problem by relaxing constraints and
then selecting feasible operating points [206, 207].

2.4.3 Spatio-Temporal Mapping Optimization

This section focuses on the optimization problem for spatio-temporal
multi-application mapping, which extends the spatial mapping model
by incorporating the time dimension. Algorithms using this model
consider postponing and reconfiguring applications as part of the
decision-making process. To achieve this, they account for the expected
completion times of jobs to determine when resources will be released
and available for other jobs, thereby extending the plan-ahead window.
This approach improves the acceptance rate and the system’s overall
energy efficiency.

In this scenario, the non-functional characteristics η include the
execution time τ and energy consumption ε. The workload is assumed
to be real-time, meaning jobs have a deadline σ[θ] that must be met.
Additionally, the RM tracks the current progress ratio σ[ρ] for each job.
The primary goal is to minimize energy consumption while ensuring
that all admitted jobs meet their deadlines.

2.4 hybrid application mapping 33

This section builds upon the workload model introduced in Sec-
tion 2.4.2.1, presenting the model for spatio-temporal multi-application
mapping and the corresponding optimization problem.

2.4.3.1 Spatio-Temporal Multi-Application Mapping

Spatio-temporal multi-application mapping is represented as a se-
quence of spatial mappings, each paired with a duration to form a
mapping segment. The model is defined as follows.

Definition 2.15 (Spatio-Temporal Multi-Application Mapping). A
Spatio-Temporal Multi-Application Mapping K is a sequence of pairs:

K :=
(
⟨M1, δ1⟩, ⟨M2, δ2⟩, . . . , ⟨M|K|, δ|K|⟩

)
(2.17)

where each pair ⟨Mi, δi⟩ represents a mapping segment, with Mi being a
spatial multi-application mapping (Definition 2.13) and δi its duration.
The notation K[Mi] and K[δi] denotes access to these fields.

The cumulative duration of the first n segments, denoted K[∆n], is
defined as:

K[∆n] :=
n

∑
i=1

K[δi] (2.18)

The overall energy consumption of the spatio-temporal multi-appli-
cation mapping K, denoted K[ε], is defined as:

K[ε] := ∑
⟨M,δ⟩∈K

∑
σ∈Σ

M[σ][ε] · ρ(M[σ], δ) (2.19)

where ρ(M[σ], δ) is the progress ratio of job σ during the mapping
segment ⟨M, δ⟩, defined as:

ρ(o, δ) =

 δ
o[τ] for o ̸= ⊥
0 for o = ⊥

(2.20)

2.4.3.2 Problem Statement

The goal of the RM is to minimize system energy consumption while
ensuring that all admitted jobs meet their deadlines. The optimization
problem is formulated as follows.

Definition 2.16 (Spatio-Tempotal Multi-Application Mapping Opti-
mization Problem). The spatio-temporal multi-application mapping opti-
mization problem is defined as:

minimize K[ε] (2.21)

where K[ε] is defined in Equation (2.19).
The solution must satisfy the following constraints:

34 foundations of application mapping onto hmas

1. Resource constraint: The total resource demand of each mapping
segment must not exceed the available resources:

M[ω⃗] := ∑
σ∈Σ

M[σ][ω⃗] ≤ P [ω⃗], ∀⟨M, δ⟩ ∈ K (2.22)

2. Deadline constraint: Each job must finish before its deadline:

tact + K[∆nσ
last
] ≤ σ[tarr] + σ[θ], ∀σ ∈ Σ (2.23)

where tact is the activation time of the RM and nσ
last is the index

of the last segment in which job σ is active:

nσ
last = max {i | K[Mi][σ] ̸= ⊥, 1 ≤ i ≤ |K|} (2.24)

3. Completion constraint: Each job must complete its execution:

σ[ρ] + ∑
⟨M,δ⟩∈K

ρ(M[σ], δ) = 1, ∀σ ∈ Σ (2.25)

If a feasible solution exists, the RM admits the job and activates the
new multi-application mapping; otherwise, the job request is rejected.

Note that the formulation excludes runtime overhead associated
with preemption and switching operating points. While some plat-
forms exhibit negligible runtime overhead [68], this is not true for all
platforms. Here, a simpler formulation is adopted, excluding overhead.
Nevertheless, overhead can be easily incorporated into the algorithms
proposed in Chapter 4.

2.4.4 Addressing Adaptivity Challenges

As discussed in Section 1.2, Heterogeneous Multi-core Architectures
(HMAs) present adaptivity challenges at both the resource manage-
ment and application levels. HAM approaches aim at addressing these
challenges by integrating extensive offline optimization with rapid
online adaptation.

At the resource management level, the system must dynamically
allocate tasks to processor cores, considering the current workload and
system conditions. The RM needs to make informed decisions about
assigning tasks to appropriate core types to optimize performance
and energy efficiency. HAM effectively addresses these challenges by:

• Dynamic Resource Allocation: By deferring the final mapping de-
cisions to runtime, HAM allows the RM to adaptively partition
cores among applications based on the current workload.

• Incorporating Application Characteristics: Sophisticated DSE gen-
erates optimal mappings with performance and energy anno-
tations. These annotations allow the RM to consider specific
characteristics of the entire application rather than individual
threads.

2.5 mocasin framework 35

• Optimizing for Heterogeneity: The precomputed operating points
capture the performance and energy trade-offs across core types,
enabling the RM to optimize energy efficiency of HMAs.

While addressing adaptivity at the resource management level,
HAM typically focuses on thread-to-core pinning and does not address
adapting the application internally. Applications are often not aware
of the processor resources allocated to them, which limits their ability
to fully utilize processor resources.

Enabling the application adaptivity to the allocated resources re-
quires coordination between the RM and applications, with the RM
informing applications about resource allocations and receiving back
application behavior data. This two-way coordination between RM and
applications is essential to enable both system and application-level
optimizations.

This thesis bridges this gap by extending HAM with such two-way
coordination mechanism. Chapter 6 presents an Adaptive Process
Network (APN) model, in which the application topology can be
dynamically changed based on the RM decision communicated. Chap-
ter 7 presents HARP and libharp, a RM and application library that
facilitate this two-way communication between the RM and various
types of applications, not limited to KPNs. Additionally, HARP ad-
dresses a core limitation of HAM — the need for prior analysis at
design time to obtain operating points — by introducing online moni-
toring and approximating Pareto-optimal points at runtime, thereby
enabling efficient resource management even without prior design-
time analysis.

2.5 mocasin framework

This thesis uses Mocasin, an open-source3 rapid prototyping frame-
work designed to support research on mapping applications to Multi-
Processor Systems-on-Chip (MPSoC) [130]. Developed as a collabo-
rative effort among multiple researchers at the Chair for Compiler
Construction at TU Dresden, Mocasin is tailored for researchers and
developers working on MoC-based analysis and simulation. While the
framework itself is a joint effort, several algorithms and approaches
presented in this thesis were both developed and tested in Mocasin,
reflecting the author’s contributions to the tool.

2.5.1 Overview of Mocasin

Mocasin supports multiple dataflow models of computation, particu-
larly KPN, along with other models like SDF or task graphs, which
can be viewed as specializations of KPN [107]. Figure 2.4 illustrates

3 https://github.com/tud-ccc/mocasin

https://github.com/tud-ccc/mocasin

36 foundations of application mapping onto hmas

ApplicationPlatform

Traces Mapping

SimulationStatic CFS

Mapping Algorithms

Platform
Designer

D
at

a
St

ru
ct

ur
es

In
te

rn
al

M

od
ul

es
In

pu
t

Pr
oc

es
si

ng
O

ut
pu

t
Pr

oc
es

si
ng

MAPS reader

Input Readers

toMAPS

Adapters

toDot

Visualizer

Spatio-Temporal
Mapping

FFEMS

Runtime Mappers

Sim. History
toJSON

Logging

Figure 2.4: Overview of the Mocasin framework architecture (adapted
from [130]). Components highlighted in green indicate contri-
butions made as part of this thesis.

the modular architecture of the Mocasin framework, where each
component stands independently and interacts with other modules
as needed, enabling users to create specific tools, such as mapping
algorithms or trace-based simulation.

The framework provides internal data structures to represent data-
flow applications, platforms, mappings, and additional information
about the runtime behavior, such as pre-recorded application traces.
These structures are utilized by other components, including mapping
algorithms and trace-based simulation module, as well as several
convenience tools (e.g., for visualization).

A core component of Mocasin is its discrete-event simulation,
which estimates application performance and energy consumption
on the given platform based on application traces and mapping [129]
(also discussed in Section 2.3.3). The simulation module considers com-
munication events and dependencies between processes, providing a
detailed estimation of application performance and energy efficiency.
The execution of all processes in the system is controlled by a set of
schedulers, such as the FCFS and Round Robin schedulers. The results
are produced in the form of Gantt charts and simulation statistics.

Mocasin also features a modular mapper structure with a common
interface for rapid prototyping of mapping algorithms and includes
several pre-implemented algorithms based on heuristics and meta-
heuristics. The heuristics utilize domain knowledge and internal data
structures to derive mappings efficiently. For instance, Mocasin pro-
vides a static fair mapper that follows the basic design principle of the

2.6 synopsis 37

Linux Completely Fair Scheduler (CFS) scheduler [142]. Metaheuristic
methods explore the design space of possible mappings by evaluating
multiple candidates (invoking the simulation component) and refin-
ing them through iterative searches. The implemented metaheuristics
include genetic algorithms (using the DEAP framework [64]), tabu-
search [121], and simulated annealing [141].

2.5.2 Contributions to Mocasin

During the course of this thesis, Mocasin framework served as a
platform for implementing and evaluating novel mapping algorithms
and resource management algorithms. Key contributions include:

1. Energy Estimation in Simulation: The simulation module was ex-
tended to estimate energy consumption by incorporating core
power characteristics (static and dynamic power consumption),
enabling it to calculate the dynamic energy usage, as described
in Section 2.3.3.

2. Domain-Specific Mapping Algorithm: A fast, energy-efficient map-
ping algorithm was added for task graphs with a phased struc-
ture, taking into account the performance-energy characteristics
of the cores. This algorithm generates Pareto-optimal mappings
by considering different processor core subsets, as discussed in
Chapter 5.

3. Runtime Resource Management: A new module was developed in
Mocasin for prototyping runtime resource management algo-
rithms within Hybrid Application Mapping (HAM) approach.
This contribution includes the introduction of a spatio-temporal
mapping data structure, as outlined in Section 2.1.1 and defined
in Definition 2.15. This data structure is utilized in newly de-
veloped runtime resource management algorithms described in
Chapter 4. Additionally, a state-of-the-art algorithm based on
Lagrangian Relaxation [206, 207], which generates spatial map-
pings, was also implemented in Mocasin. These management
algorithms were subsequently integrated into the simulation
module and used for evaluations presented in Chapter 5.

Through these contributions, Mocasin facilitates rapid prototyping,
testing, and validation of these novel runtime resource management
approaches, advancing research on adaptive resource management on
HMAs.

2.6 synopsis

This chapter established the foundational concepts and methodolo-
gies underpinning the research presented in this thesis. Key topics

38 foundations of application mapping onto hmas

introduced include: (1) an overview of the terminology for mapping,
scheduling, and spatio-temporal mapping in Section 2.1.1, (2) a survey
of the performance and energy estimation methods in Section 2.1.2,
(3) an explanation of static and dynamic components of power con-
sumption in Section 2.1.3, (4) the background knowledge on dataflow
models of computation in Section 2.3.1, along with their mapping ap-
proaches in Section 2.3.2, (5) the hybrid application mapping method-
ology in Section 2.4, and (6) an overview of the Mocasin framework
in Section 2.5. Throughout the chapter, formal models were introduced
to systematically represent the optimization problems for mapping ap-
plications onto heterogeneous platforms. Additionally, the Mocasin

framework was presented, a critical tool used in this research for
modeling, simulating, and analyzing application mappings.

Before delving into details of the solutions proposed, the next chap-
ter presents an overview of solutions to similar problems.

3
R E L AT E D W O R K

Building upon the foundational concepts introduced in the previous
chapter, this chapter surveys existing methodologies and research
efforts related to application mapping and application adaptivity. The
chapter begins by examining design-time application mapping ap-
proaches (Section 3.1), which focus on optimizing task placement
prior to runtime. It then explores runtime mapping methodologies
(Section 3.2), which make mapping decisions during application exe-
cution, with a focus on efforts targeting both embedded systems and
general-purpose OS schedulers. Hybrid application mapping, which
leverages the strengths of both design-time and runtime methods,
is discussed in Section 3.3. Finally, existing methods for application
adaptivity are reviewed in Section 3.4.

3.1 design-time application mapping

For embedded software applications, often represented as dataflow
applications, researchers have employed efficient mapping methodolo-
gies for decades. Broadly, these methodologies can be classified based
on workload scenarios. For static and dynamic workload scenarios,
the mapping methodologies optimize at design-time and runtime,
respectively, classifying them as design-time and runtime methodolo-
gies [175].

Design-time mapping methodologies are particularly well-suited for
static workload scenarios where both the set of applications and the
hardware platform remain constant. In such environments, applica-
tions exhibit predictable computation and communication behaviors.
This predictability allows design-time approaches to leverage a com-
prehensive, global view of the system, facilitating more informed and
optimized resource allocation decisions. These methodologies can uti-
lize detailed information, such as static code analysis, execution traces,
profiling data, and hardware models, to determine optimal resource
allocation.

Various strategies have been employed to find efficient mappings.
Well-established search algorithms are often used to find optimal
or near-optimal placement of tasks on platform cores. For example,
Simulated Annealing (SA) have been utilized in [116, 141], Evolution-
ary Algorithm (EA) in [4, 47, 94, 152, 209], and Tabu Search in [121].
Additionally, some approaches have formulated the mapping prob-
lem as an Integer Linear Programming (ILP) [88, 157] or employed

39

40 related work

Satisfiability Modulo Theories [120], solving them with dedicated
solvers.

While these search-based methods can provide efficient mapping so-
lutions, they often come with high computational costs, particularly for
large-scale problems such as applications with a large number of tasks.
To address this challenge, various strategies have been developed to
reduce the computational overhead by pruning the search space. Tech-
niques such as constraint programming have been used to effectively
limit the search space [24, 158]. Additionally, analytical performance
models can be leveraged in the early stages of iterative algorithms
to reduce the overhead associated with simulating multiple mapping
candidates [193]. Simpler heuristics based on domain-specific knowl-
edge are also employed to generate mappings more efficiently [32, 38,
40, 43, 174, 187]. While these approaches provide mapping solutions
faster than exhaustive search methods, they may miss higher-quality
solutions due to search space pruning.

Despite their advantages, design-time mapping approaches have
limitations in dynamic environments, as they cannot adapt to un-
predictable workload changes. Since the mappings are determined
statically, they lack the flexibility to adjust to runtime variations, po-
tentially leading to suboptimal performance in dynamic scenarios.

3.2 runtime application mapping

In contrast to design-time mapping, runtime application mapping
methodologies must account for the time taken to map each task, as
this time contributes to the overall application execution. Addition-
ally, tasks are typically mapped one by one as they arrive, unlike in
design-time mapping, where all tasks are mapped simultaneously
with a global view of the system. Consequently, runtime mapping
approaches often rely on fast, greedy heuristic algorithms to efficiently
map tasks, aiming to optimize metrics such as execution time, energy
consumption, communication latency, and resource utilization.

Schedulers used in general-purpose operating systems can also be
viewed as runtime mappers. This section first reviews runtime map-
ping strategies in embedded systems, which often focus on dataflow
applications and specialized hardware architectures, and then dis-
cusses developments in general-purpose OS schedulers.

3.2.1 Runtime Mapping of Embedded Software

In the embedded domain, runtime mapping approaches often target
dataflow applications, such as task graphs, Synchronous Dataflow
(SDF), or Kahn Process Networks (KPNs). These applications exhibit
characteristic communication and computation patterns that can be
leveraged for efficient mapping. While the mapping occurs at runtime,

3.2 runtime application mapping 41

some approaches also utilize pre-obtained execution traces to improve
predictability and ensure timing guarantees.

For homogeneous MPSoC platforms with Network-on-Chip (NoC)
interconnections, where all Processing Elements (PEs) are identical,
runtime mapping methods focus on both computation and communi-
cation aspects. For example, Singh et al. [176] capture trace information
of individual applications at design-time and merge execution inter-
vals of multiple applications at runtime. Other approaches focus on
communication optimization, such as ensuring timing requirements
are met when time-multiplexing messages at NoC routers [135], or
minimizing energy consumption due to communication overhead [48,
128].

In heterogeneous MPSoC NoC-based architectures, where PEs have
different performance characteristics, mapping approaches account for
this heterogeneity to optimize resource utilization. Strategies include
self-adaptability that adjusts scheduling parameters based on resource
utilization [83], multi-step heuristics that generate initial solutions and
then refine them through re-mapping [167], and methods to reduce
communication overhead by minimizing network congestion [36] or
mapping adjacent tasks to the same or nearby PEs [177]. Addition-
ally, there are runtime mapping strategies that target architectures
featuring reconfigurable hardware components, such as multi-core
reconfigurable processors [3], multi-core systems with shared recon-
figurable fabric [45], NoC systems with Field-Programmable Gate
Array (FPGA) fabric tiles [139] or Domain-Specific Reconfigurable
Hardware (DSRH) tiles [181].

For further energy efficiency, resource management strategies incor-
porate Dynamic Voltage Frequency Scaling (DVFS). Brião et al. [30]
propose a strategy that deactivates idle processors and applies DVFS
to processors with slack time, conserving energy. Das et al. [53] use
energy-awareness of single applications to improve both energy con-
sumption and thermal dissipation.

With Arm’s big.LITTLE platform — the first commercially available
HMA — researchers began focusing on strategies specific to such plat-
forms. Venkataramani et al. [200] present a runtime greedy approach
that schedules multiple applications to increase overall throughput by
exploiting the concavity of throughput in multi-threaded applications,
though they do not explicitly optimize for energy efficiency.

Other runtime managers targeting the big.LITLLE platforms aim
for energy efficient execution. Tzilis et al. [196] use profiling data to
predict performance and energy consumption of a single-threaded
application when co-scheduled with other applications, and decide
on application placement and frequency settings. Similarly, Libutti
et al. [115] utilize offline-collected data, such as CPU demands and
memory sensitivity, for a job co-scheduling algorithm that optimizes

42 related work

resource usage while mitigating contention, thus improving perfor-
mance and energy efficiency.

3.2.2 Runtime Mapping within OS Schedulers

Unlike embedded systems, general-purpose operating systems lack
detailed application knowledge such as execution traces or profiling
data, treating applications as black boxes. Since the dawn of multipro-
gramming, OS schedulers have evolved from handling the relatively
simple task of time-sharing a single CPU to managing more complex
resource allocations. Initially, schedulers focused on dividing CPU
time among tasks to execute them concurrently on single-core systems.
However, with the emergence of multi-core processors, schedulers had
to handle space-sharing — allocating tasks across multiple cores. This
transition introduced new challenges, such as contention for shared
resources like caches and memory controllers. To address these is-
sues, advanced thread placement strategies were developed to group
threads that benefit from shared resources while separating those that
would compete for them [27, 220].

Following the introduction of multi-core processors, researchers
began exploring single-ISA heterogeneous processors, which integrate
cores of different performance and power characteristics but share
the same instruction set. These designs promised potential benefits in
performance and energy efficiency but also introduced new challenges
in OS scheduling [6, 106, 133].

Before heterogeneous processors became commercially available,
studies emulated them using cycle-accurate simulation [16, 106], fre-
quency scaling [161, 163], or modified core configurations [103]. Many
of these works focused on optimizing thread performance by assign-
ing CPU-intensive threads to faster cores [16, 103, 106, 163], while
others proposed alternative strategies, such as assigning sequential
applications and sequential phases of parallel applications to fast
cores [161].

As heterogeneous processors entered the market, major operating
systems like Linux and Windows began integrating new scheduling
strategies, following the approach of assigning CPU-intensive tasks
to fast cores. For Arm’s big.LITTLE processors, Linux introduced
the Energy-Aware Scheduler (EAS), which uses CPU energy consump-
tion models to optimize task placement [145]. EAS tracks task CPU
demand via Per-Entity Load Tracking (PELT), allocating tasks to mini-
mize energy consumption while maintaining performance, preferring
LITTLE cores for low-demand tasks. The PELT data is also used by
the DVFS subsystem, making EAS tightly integrated with dynamic
frequency scaling.

Intel’s Alder Lake processors are equipped with the Intel’s Thread
Director (ITD), a hardware-based feature that monitors the runtime

3.3 hybrid application mapping 43

instruction mix of each thread and the state of each core at the nanosec-
ond level [87]. ITD uses machine learning to classify threads and cal-
culate performance and energy-efficiency scores for each core-class
combination. This classification and the corresponding scores are pro-
vided as feedback to the OS at the microsecond level. Windows 11

already supports ITD [52]. The Linux community is working on incor-
porating this functionality through patches that are not yet merged
into the kernel [46, 137]. Meanwhile, PMCSched is a recently pub-
lished research scheduler extension for Linux that can integrate ITD
data into task placement decisions [20, 162].

While these systems account for thread behavior on different core
types to improve energy efficiency, they overlook the collective im-
pact on overall application performance. Additionally, OS schedulers
are inherently limited in their optimization capabilities: the applied
heuristics must remain lightweight to ensure efficient execution, which
restricts them to operating with limited information. Furthermore,
they do not propagate resource allocation decisions to the application
level, which prevents applications from dynamically adapting to the
allocated resources. This lack of coordination between the OS sched-
uler and applications limits the potential for further optimization of
resource utilization.

3.3 hybrid application mapping

To address the limitations of purely design-time and runtime map-
ping methods, a trend towards Hybrid Application Mapping (HAM)
approaches has emerged [148, 175]. HAM strategies effectively com-
bine the strengths of both methods. As discussed in Section 2.4, HAM
leverages extensive analyses from Design Space Exploration (DSE) at
design time while deferring final mapping decisions to runtime. This
dual approach allows systems to adapt rapidly to changing workloads
while benefiting from pre-computed analysis results, ensuring effi-
ciency and flexibility in managing dynamic system loads. The use
of HAM began in the 2000s with pioneers like Yang et al. [210] for
real-time systems.

The goal of the design-time stage is to generate a set of (possibly
incomplete) mapping options, referred to as operating points, each
characterized by the required amount and types of resources and their
expected execution properties. Typically, HAM employs Evolutionary
Algorithms (EAs) during DSE to generate partial or complete Pareto-
optimal mappings [10, 122, 204], though efficient heuristics can also
approximate optimal configurations [126, 140, 174]. Some approaches
also distinguish different application scenarios [153, 165, 168, 183].
Non-functional characteristics are identified through models, traces,
static analysis [40, 77, 122], and direct measurements. The search space
can also be reduced by exploiting system symmetries [68, 69].

44 related work

At runtime, a Resource Manager (RM) uses these precomputed
operating points to allocate resources among concurrently executing
applications, aiming to maximize system energy efficiency. The RM’s
main task is to select the appropriate operating point for each ex-
ecuting application. Since this is an NP-hard problem [151], faster
algorithms are preferred at runtime. Some methods use iterative al-
gorithms to map applications incrementally; Singh et al. [174] use
this approach, while Weischlgartner et al. [204, 205] enhance it with a
repair heuristic.

Other methods select operating points jointly, often framing the
optimization as a Multiple-choice Multidimensional Knapsack Problem
(MMKP) [123], where the goal is to select a single item per group
with multidimensional weights while maximizing overall value. Since
MMKP is NP-hard [151], approximate solutions are commonly applied.
For instance, Ykman-Couvreur et al. [212] propose a heuristic that
represents resource demands of operating points as single values,
then applies a greedy algorithm to solve the MMKP. This heuristic
underlies solutions like those in [122, 126]. Shojaei et al. [171] use a
compositional Pareto-algebraic heuristic, while Wildermann et al. [206,
207] apply Lagrangian relaxation methods.

Some HAM are also scenario-aware. For example, Spieck et al. [183,
184] propose a scenario-aware HAM methodology where DSE clas-
sifies input stimuli into scenarios with similar performance-energy
characteristics. At runtime, the manager identifies scenarios and al-
locates resources accordingly, using the Lagrangian relaxation on
MMKP.

However, these runtime approaches generate only spatial multi-
application mappings, without considering application reconfigura-
tion. To enhance system utilization, some methods consider postpone-
ment and reconfiguration of real-time applications, generating spatio-
temporal mappings. Mukherjee et al. [136] explored spatio-temporal
job scheduling in heterogeneous data centers, proposing an EA-based
algorithm that finds near-optimal solutions, but is time-intensive. An-
other approach, cluster scheduling in heterogeneous cloud environ-
ments, applies Mixed-Integer Linear Programming (MILP) solvers [195],
though this incurs significant overhead as the plan-ahead window
size increases. In the embedded domain, some works generate spatio-
temporal mappings, although these are often limited to single-threaded
applications [138]. In contrast, our approaches proposed in Chapter 4

generate the spatio-temporal mappings for multi-threaded applica-
tions within milliseconds.

Spatio-temporal mapping is inapplicable to general-purpose OS
schedulers, as it may delay application execution, leading to potential
starvation. In desktop environments, scheduling must avoid starvation
and ensure steady application progress. For such system, the proposed

3.4 application adaptivity 45

HARP approach, described in Chapter 7, generates spatial mappings
using a state-of-the-art Lagrangian relaxation heuristic [206, 207].

While HAM approaches adapt to dynamic workloads, they require
sophisticated offline analyses to understand the application behavior
across different mappings. These analyses are time-intensive, making
HAM less practical for general-purpose desktop systems. AdaMD [15]
addresses this limitation by using hardware performance counters
to analyze application behavior on each core type individually at
runtime, after the application has arrived. However, it relies on perfor-
mance models to estimate whole-application performance, which may
introduce inaccuracies. In contrast, HARP executes the application on
various subsets of cores to obtain more reliable measurements and
construct Pareto-optimal set of operating points.

3.4 application adaptivity

To fully leverage modern processing capabilities, solely managing
thread-to-core assignments is insufficient. Many applications remain
unaware of current system load or available cores and do not internally
adapt to the allocated resources, such as adjusting their parallelization
degree.

According to Feitelson and Rudolph’s classification [63], parallel jobs
can be categorized based on who specifies the number of processors
(user or system) and when this decision is made (at job submission
or during execution). Jobs are rigid if the parallelization degree is
specified by the user at submission time (e.g., fixed in the program)
and moldable if specified by the system. If the parallelization degree
can change during execution, jobs are considered evolving when the
program internally adjusts its parallelization (e.g., through different
phases) or malleable when the system can dynamically alter the par-
allelization degree. To better utilize modern processors, applications
need to be malleable, adapting their parallelization degree in response
to resource manager triggers.

In embedded systems, optimizing data parallelism in dataflow ap-
plications is often referred to as fission, partitioning, or replication [81].
While many approaches perform this optimization at design time [62,
70, 71, 105, 182, 188, 219], some address it at runtime. For example, Lee
et al. [111] introduced a dynamic scheduling approach that replicates
actors in SDF applications. Lund et al. [119] offload the computation of
stateless actors to GPU units, though this approach targets RVC-CAL,
a non-deterministic dataflow MoC.

Beyond replication, some approaches propose more generalized
transformations for dataflow MoCs. For instance, Reconfigurable
Dataflow (RDF) [65] extends SDF with transformation rules speci-
fying the conditions under which the topology and actors of the graph
may be reconfigured. Schor et al. [166] introduced Expandable Process

46 related work

Network (EPN) as an extension of a more expressive KPN. Similar
to RDF, EPN introduces refinement and contraction rules for stateful
processes.

While both RDF and EPN address more general transformations,
they do not explicitly consider different performance-energy charac-
teristics of emerging Heterogeneous Multi-core Architectures (HMAs),
such as by employing dynamic load distribution across heterogeneous
cores. Evenly distributing workloads can lead to imbalances, as tasks
executing on energy-efficient cores take longer to execute. In general-
purpose environments, such optimizations have been proposed for
OpenMP [160], but it does not address changes to the parallelization
degree in response to resource availability.

In this thesis, an APN is presented in Chapter 6, introducing im-
plicit parallelism into KPNs. This extension allows applications to
change their parallelization degree in a malleable way and balance
load distribution across heterogeneous cores. Furthermore, instead
of addressing each application model individually, a runtime system,
HARP, is proposed in Chapter 7 that provides a flexible framework for
customizing application model support and offers a unified interface
for controlling adaptivity across various applications. This framework
allows applications to be aware of the allocated resources and perform
internal optimizations such as adapting parallelization degree, load
balancing, or employing techniques like algorithm switching, thereby
fully utilizing the allocated processor cores.

4
E F F I C I E N T S PAT I O - T E M P O R A L M A P P I N G
G E N E R AT I O N

This chapter addresses the spatio-temporal mapping optimization
problem introduced in Section 2.4.3.2, focusing on firm real-time appli-
cations executing on Heterogeneous Multi-core Architectures (HMAs).
The optimization problem focuses on generating spatio-temporal map-
pings that enhance resource utilization and energy efficiency while
meeting application deadlines.

Two strategies for spatio-temporal mappings are explored: fixed-
point and flexible. Both approaches produce spatio-temporal map-
pings, but differ in the flexibility of their solutions.

The chapter introduces three algorithms. The first, MMKP-MDF,
generates fixed-point spatio-temporal mappings by formulating the
problem as a Multiple-choice Multidimensional Knapsack Problem
(MMKP) with a Maximum Difference First (MDF) policy. The second,
Spatio-Temporal Evolutionary Mapping (STEM), creates flexible spatio-
temporal mappings using Memetic Algorithms (MAs). The third, Fast
Flexible Energy-Minimizing Scheduler (FFEMS), also produces flexible
spatio-temporal mappings but employs fast heuristics, making it suit-
able for runtime implementation.

The chapter begins with a motivational example in Section 4.1,
illustrating the benefits of spatio-temporal mapping for improving
system efficiency. Section 4.2 discusses strategies for generating spatio-
temporal mappings. Section 4.3 introduces the MMKP-MDF algorithm
and its evaluation. Section 4.4 presents the flexible mapping algo-
rithms, STEM and FFEMS, along with their evaluations. The chapter
ends with a summary in Section 4.5.

A Note on Publications and Contributions

Most of the content in this chapter, including the motivational ex-
ample, algorithms, figures, and results, was previously published in
Khasanov and Castrillon, “Energy-efficient Runtime Resource Man-
agement for Adaptable Multi-application Mapping,” 2020 [97], and
Khasanov, Dietrich, and Castrillon, “Flexible Spatio-Temporal Energy-
Efficient Runtime Management,” 2024 [98]. The main ideas and al-
gorithms were conceptualized and developed by the author of this
thesis, with one exception: while the idea and design of the STEM
algorithm, including its local search heuristics, were contributions
of the author, the implementation of the core genetic component of
STEM was carried out by Marc Dietrich.

47

48 efficient spatio-temporal mapping generation

4.1 motivational example

The following motivational example illustrates how spatio-temporal
mapping strategies can improve the acceptance of job requests and
reduce the energy consumption in a HMA.

Consider a Resource Manager (RM) managing a HMA with two
energy-efficient cores (denoted as L) and two high-performance cores
(denoted as B). The RM handles job requests arriving according to
two scenarios, S1 and S2, as shown in Table 4.1. Each job request
σ includes the application to execute A, its arrival time tarr, and its
absolute deadline θabs.

Table 4.1: Job request parameters for the motivational example, showing two
execution scenarios S1 and S2. Each job request σ specifies the
application A, arrival time tarr, and absolute deadline θabs.

Scenario S1 Scenario S2

Job σ App. A tarr θabs tarr θabs

σ1 A1 0 9 0 9

σ2 A2 1 5 1 4

Table 4.2 lists the operating points for the two applications, A1 and
A2. The operating points specify the number of energy-efficient cores
(#L) and high-performance cores (#B), execution time τ (in seconds),
and energy consumption ε (in joules). The values of execution time and
energy consumption are synthetic but reflect ratios similar to those
observed in real applications (see Section 4.3.2 and Section 4.4.3).

For application A1, the execution times and energy consumptions
are provided as triples, representing the values at different progress
ratios: initial (0 %), after approximately 19 %, and after approximately
62 % progress. These progress points correspond to specific moments
in the execution where mapping is reevaluated in this motivational
example.

At time t = 0, the RM receives the request σ1 to execute application
A1. An energy-optimizing mapper decides to map it to two energy-
efficient cores and one high-performance core (configuration 2L1B),
since this configuration meets the deadline at t = 9 while consuming
the least energy (8.9 J, as underlined Table 4.2).

After 1 s, the job request σ2 arrives while σ1 has progressed to ap-
proximately 19 % completion. To meet its deadline (θabs = 5 in scenario
S1), σ2 must be executed using one of the following configurations:
2B, 1L1B, 1L2B, 2L1B or 2L2B. If any of these mappings is chosen for σ2,
σ1 must continue with a configuration using the remaining resources,
such as 1L, 2L, 1L1B, or 1B.

4.1 motivational example 49

Table 4.2: Operating points for applications A1 and A2 in the motivational
example. Each operating point is characterized by the number of
energy-efficient (#L) and high-performance cores (#B) used, and
the corresponding execution time τ and energy consumption ε.

A1, pr. 0 % - 19 % - 62 % A2, pr. 0 %

#L #B τ, s ε, J τ, s ε, J

1 0 16.8 - 13.63 - 6.37 7.90 - 6.41 - 3.00 10.0 2.00

2 0 10.3 - 8.36 - 3.91 7.01 - 5.69 - 2.66 7.0 2.87

0 1 11.2 - 9.09 - 4.25 18.54 - 15.04 - 7.03 5.0 7.55

0 2 6.3 - 5.11 - 2.39 17.70 - 14.36 - 6.71 3.5 10.5

1 1 8.1 - 6.57 - 3.07 10.90 - 8.84 - 4.13 3.5 6.44

1 2 7.9 - 6.41 - 3.00 10.60 - 8.60 - 4.02 3.0 6.81

2 1 5.3 - 4.30 - 2.01 8.90 - 7.22 - 3.38 3.0 5.73

2 2 4.7 - 3.81 - 1.78 11.00 - 8.92 - 4.17 2.0 6.58

A mapper that only explores spatial mappings would choose con-
figurations where both jobs meet their deadlines without changing
operating points during execution; for example, mapping both σ1 and
σ2 to 1L1B. By time t = 4.5, σ2 finishes execution, and σ1 progresses to
approximately 62 % completion. If σ1 continues to use configuration
1L1B until completion, as depicted in Figure 4.1a, the overall energy
consumption would be 16.96 J.

Alternatively, if the RM decides to remap σ1 at t = 4.5 to the more
energy-efficient configuration 2L, as shown in Figure 4.1b, the overall
energy consumption reduces to 15.49 J.

However, if at t = 1 the RM runs σ2 on configuration 2L1B and
temporary suspends σ1, then after σ2 completes, σ1 can resume with
configuration 2L1B. This approach leads to an even lower overall
energy consumption of 14.63 J, as depicted in Figure 4.1c.

Now, consider the tighter scenario S2 in Table 4.1. At t = 1, σ2 can
only choose configurations 1L2B, 2L1B, or 2L2B to meet its deadline
(θabs = 4), which leaves at most either one high-performance or one
energy-efficient core available for σ1. Since these configurations are
insufficient for σ1 to meet its deadline under a fixed mapping, a
mapper that does not consider spatio-temporal strategies would fail
to find a feasible solution. Consequently, σ2 would be rejected. By
employing spatio-temporal mapping strategies, the RM can generate
the same solution as in Figure 4.1c and meet the constraints.

This example demonstrates the advantages of spatio-temporal map-
ping strategies over spatial mappings. By extending the plan-ahead
window analysis and allowing applications to change operating points
and be postponed, the RM can improve the acceptance of job requests

50 efficient spatio-temporal mapping generation

𝜎!
𝜎!
𝜎!

𝜎!
𝜎"
𝜎!
𝜎"

𝜎!

𝜎!

L1
L2

B2

0 5 91 2 3 4 6 7 8

B1

(a) Spatial mapper activated only at application start (resulting energy: 16.96 J).

𝜎!
𝜎!
𝜎!

𝜎!
𝜎"
𝜎!
𝜎"

𝜎!
𝜎!

L1
L2

B2

0 5 91 2 3 4 6 7 8

B1

(b) Spatial mapper activated at both application start and completion (resulting
energy: 15.49 J).

𝜎!
𝜎!
𝜎!

𝜎"

𝜎!L1
L2

B2

0 5 91 2 3 4 6 7 8

B1

𝜎"

𝜎"

𝜎!
𝜎!

(c) Spatio-temporal mapper leveraging reconfiguration and postponement strategies
(resulting energy: 14.63 J).

Figure 4.1: Gantt charts comparing three resource management strategies in
the motivational example.

and optimize for energy efficiency, especially under tight timing con-
straints.

4.2 spatio-temporal mapping strategies

As observed in the motivational example in Section 4.1, the choice of
mapping decision model — spatial or spatio-temporal — significantly
impacts system utilization and energy efficiency. This section delves
deeper into strategies for generating multi-application mappings, with
a particular focus on spatio-temporal approaches.

A spatial multi-application mapping strategy requires the RM to
select a single operating point for each application, ensuring that all
applications meet their deadlines without sharing processing elements.
Since spatial mapping does not account for future events, such as the
release of resources when applications complete, its optimization
is limited to a local scope. When some applications finish, the RM
can be reactivated to generate a new spatial mapping, potentially

4.2 spatio-temporal mapping strategies 51

Spatial Mapping

𝜎!𝜎"𝜎#
1L1B2L1B

Fixed-Point
Spatio-Temporal

Mapping

𝜎!𝜎"𝜎#
1L1B1B2L1B

EDF order

Flexible
Spatio-Temporal

Mapping

343Dur.

⊥2L2L1B𝜎#
⊥⊥1B𝜎"
1L1L1B1L𝜎!

L1
L2
L3
B1
B2

𝜎#
𝜎!
𝜎#
𝜎#
𝜎"

𝜎#
𝜎#
𝜎!
𝜎!

𝜎!

𝜇# 𝜇" 𝜇!3 7 10

L1
L2
L3
B1
B2

𝜎#
𝜎#

𝜎#
𝜎"

𝜎#
𝜎#
𝜎!

𝜎!

𝜎!

𝜇# 𝜇" 𝜇!3 5 9

𝜎#
𝜎!

Potential
reconfiguration

point

D
ec

is
io

n
M

od
el

Re
su

lta
nt

Ex

ec
ut

io
n

L1
L2
L3
B1
B2

𝜎#

𝜎#
𝜎#

𝜎"
3

𝜎!

Figure 4.2: Overview of multi-application mapping strategies. Spatial map-
ping selects a single operating point per application, ensuring that
all applications run simultaneously without sharing processing
elements. Fixed-point spatio-temporal mapping assigns a single
operating point per application but schedules applications over
time in a specified order (e.g., EDF policy), and, allowing for
postponement of execution. Flexible spatio-temporal mapping
allows applications to change operating points across different
mapping segments, with the RM specifying segment durations.

improving energy efficiency, as demonstrated in Figure 4.1b. However,
this sequence of locally optimal decisions might result in suboptimal
performance over the entire runtime of the system.

Spatio-temporal mapping strategies address this limitation by incor-
porating the temporal component, enabling improved system utiliza-
tion and energy efficiency. These strategies consider expected changes
in the workload, such as applications completing, to generate more
efficient execution plans. However, incorporating the temporal dimen-
sion leads to a combinatorial increase in the complexity of the search
space.

To address this complexity, two variants of spatio-temporal mapping
strategies are illustrated in Figure 4.2:

• Fixed-Point Spatio-Temporal Mapping Strategy: This strategy as-
signs a single operating point per application, similar to the spa-
tial mapping approach. However, it allows sharing processing
elements in this decision, which is resolved by applying a spe-
cific execution order (e.g., using an Earliest Deadline First (EDF)
policy), thereby finalizing a spatio-temporal multi-application
mapping. This approach benefits from a reduced search space,
allowing for faster heuristics. Compared to pure spatial mapping,
it can postpone application execution to achieve better energy
efficiency and resource utilization.

52 efficient spatio-temporal mapping generation

• Flexible Spatio-Temporal Mapping Strategy: This strategy fully lever-
age the spatio-temporal mapping model by allowing applications
to execute under different operating points in different mapping
segments. The resource manager designates mapping segments
and their durations, providing greater adaptability. While this
approach can enhance system performance and energy efficiency,
it introduces significantly greater number of variables into the
decision-making process, making it more challenging to find
efficient configurations.

Algorithms employing these two spatio-temporal strategies are
presented next. Section 4.3 introduces the MMKP-MDF algorithm,
which employs the fixed-point spatio-temporal strategy. Section 4.4
describes algorithms that generate more flexible decision models:
one based on a Memetic Algorithm (MA) that produces high-quality
solutions but is impractical due to long search times, and another
utilizing more lightweight heuristics for faster decision-making.

4.3 fixed-point spatio-temporal mapping

The first approach producing spatio-temporal mappings builds upon
the work of Niknafs et al. [138], who proposed a rapid heuristic based
on a Multiple-choice Multidimensional Knapsack Problem (MMKP)
formulation. Their heuristic selects a single operating point for each
application, and then the jobs are scheduled according to the Earliest
Deadline First (EDF) policy. As such, their approach can be interpreted
as a fixed-point strategy.

However, their algorithm is limited to single-threaded tasks. Ex-
tending it to multi-threaded execution poses challenges, as multiple
threads of single applications have to be executed on several process-
ing elements at the same time. This work generalizes the approach to
multi-threaded applications, addressing these complexities.

Section 4.3.1 describes a fast algorithm designed for firm real-time
multi-threaded applications. The algorithm analyzes all applications
within scope until the last application completes and generates spatio-
temporal mappings optimized for overall energy consumption. In
Section 4.3.2, this approach is evaluated, demonstrating how the en-
larged scope of the analysis improves system performance.

4.3.1 MMKP-based Algorithm

The MMKP-MDF algorithm is a heuristic based on the Multiple-choice
Multidimensional Knapsack Problem (MMKP) combined with a Maxi-
mum Difference First (MDF) selection policy, adapted for fixed-point
spatio-temporal mapping of multi-threaded applications.

4.3 fixed-point spatio-temporal mapping 53

Processing element types (Ωi) are modeled as knapsacks, where
the capacity of each knapsack represents the available processing time
per resource type over the analysis time horizon. Each operating
point o ∈ Oσ[A]

opt is treated as an item with associated weight and value.
The weight is defined as the product of the execution time o[τ] and
the number of processing elements of each type o[ω⃗], representing
the total resource-time consumption. The total available capacity J⃗
represents the maximum available resource-time product for each
resource type.

Each job forms a group of items (its possible operating points), and
exactly one item must be chosen from each group. By negating the
energy consumption o[ε] of each item to obtain a value, the optimiza-
tion goal becomes to maximize the total value (i.e., minimize the total
energy consumption).

This problem can be formulated as the Multiple-Choice Multidimen-
sional Knapsack Problem (MMKP) [123]. Previously, in Section 2.4.2.4,
we introduced an MMKP-based formulation for spatial mapping. In
the spatial problem, the weights correspond to the resource used per
type. In contrast, in this algorithm, the weights are defined as the
required resources multiplied by the execution time.

Algorithm 4.1 describes our heuristic to solve this problem. At each
activation of the RM, the capacities J⃗ are initialized with the total
available resource time products per resource type, calculated as the
available resource P [ω⃗] multiplied by the time horizon, which is the
largest job deadline (Line 1). The dictionary opc, which stores the
selected operating points for each job, is initialized with the value ⊥
(Line 3).

The algorithm iterates over unmapped jobs (Line 5), using NextJob-
MDF function to select the next job to map (Line 6). This function
performs the following steps:

1. For each unmapped job, it filters its operating points by checking
whether they can meet job’s deadlines and fit within the current
remaining capacities J⃗.

2. It computes the difference in energy consumption between the
most energy-efficient feasible configuration and the second-best
configuration for each job.

3. It selects the job σ∗ with the maximum difference, following the
MDF policy

4. It returns the selected job σ∗ along with its list of feasible config-
urations CL.

The MDF policy prioritizes the job that would experience the high-
est degradation in energy consumption if the most energy-efficient
configuration is not chosen in this iteration.

54 efficient spatio-temporal mapping generation

Algorithm 4.1 Main Procedure of the MMKP-MDF Algorithm

Input: Job requests Σ, platform P , Pareto-optimal operating points
Oσ[A]

opt for each σ ∈ Σ (shortly, OΣ[A]
opt)

Output: Spatio-temporal mapping K
1: J⃗ ← P [ω⃗] ·max(σ[θ] | σ ∈ Σ) ▷ Initialize the capacities
2: for all σ ∈ Σt do
3: opc[σ]← ⊥ ▷ Initialize selected operating points

4: Σrem ← Σ
5: while Σrem ̸= ∅ do
6: σ∗, CL← NextJobMDF(⃗J,

{
⟨σ,Oσ[A]

opt ⟩ | σ ∈ Σrem

}
)

7: while σ∗ ∈ Σrem do
8: if CL = ∅ then return null
9: o∗ ← argmino∈CL{o[ε]}

10: opc∗ ← opc; opc∗[σ∗]← o∗

11: K∗ ← ConstructSTM(Σ, opc∗,P)
12: if K∗ ̸= null then
13: opc← opc∗; K ← K∗; Σrem ← Σrem \ σ∗

14: J⃗ ← J⃗ − (1− σ∗[ρ]) · o∗[τ] · o∗[ω⃗]

15: else
16: CL← CL \ o∗

17: return K

For the selected job σ∗, the algorithm iterates over its feasible con-
figurations in order of increasing energy consumption (Lines 7–16).
For each operating point o∗, it attempts to construct a spatio-temporal
mapping including σ∗ along with already mapped jobs, using the
ConstructSTM function detailed in Algorithm 4.2 (Line 11). If a
feasible mapping K∗ is found, the algorithm updates opc and K, and
adjusts the capacities J⃗ to account for the resource-time product used
by σ∗ (Lines 13–14). If no feasible spatio-temporal mapping with the
current operating point, it removes it from the list CL and continues
to the next operating point.

If all operating points are exhausted (i.e., CL becomes empty) and
no feasible spatio-temporal mapping is found, the algorithm returns
no solution (Line 8).

Algorithm 4.2 takes the selected operating points as input and gen-
erates a feasible spatio-temporal mapping on. In Line 2, the algorithm
initializes the spatio-temporal mapping. It iterates over unmapped jobs
(Lines 3–26) in non-decreasing order of their deadlines, i.e., Earliest
Deadline First (EDF) policy (Line 4).

Within the loop, the algorithm attempts to map the job onto the
existing mapping segments (Lines 7–20). For each segment, it checks
whether there are sufficient resources to accommodate the job’s operat-
ing point (Line 8). If resources are sufficient, it determines whether the
job can execute for the entire duration of the segment (Lines 10–11) or

4.3 fixed-point spatio-temporal mapping 55

Algorithm 4.2 ConstructSTM: Construct spatio-temporal mapping
with EDF policy

Input: Job requests Σ, selected operating points opc, platform P
Output: Spatio-temparoal mapping K

1: Σ̃← {σ ∈ Σ | opc[σ] ̸= ⊥}
2: Initialize an empty spatio-temporal mapping K
3: while Σ̃ ̸= ∅ do
4: σ∗ ← argminσ∈Σ̃{σ[θ]} ▷ Select job with earliest deadline
5: o∗ ← opc[σ∗]
6: trem ← o∗[τ] · (1− σ∗[ρ]) ▷ Remaining execution time
7: for i ∈ {1, . . . , |K|} do
8: if o∗[ω⃗] + K[Mi][ω⃗ ≤ P [ω⃗] then
9: if trem ≥ K[δi] then

10: K[Mi][σ
∗]← o∗

11: trem ← trem − K[δi]

12: else
13: SplitSegment(K, i, trem)
14: K[Mi][σ

∗]← o∗

15: trem ← 0
16: tfin ← K[∆i]

17: break
18: if trem = 0 then
19: tfin ← K[∆i],
20: break
21: if trem > 0 then
22: AppendSegment(K, trem)
23: K[M|K|][σ∗]← o∗

24: tfin ← K[∆|K|]

25: if tfin > σ∗[θ] then return null ▷ Deadline missed

26: Σ̃← Σ̃ \ σ∗

27: return K

only a part of it (Lines 13–17). In the latter case, the mapping segment
is split at the point where the job completes (Line 13), the job is added
only to the first part of split segment.

To track the remaining time of the job while iterating the mapping
segments, the algorithm initialize trem in Line 6 and updates it in
Lines 11 and 15. If the job is not completed after iterating through
all existing segments, the new mapping segment is appended to
accommodate the remaining execution time (Lines 21–24).

After finishing mapping the job, the algorithm verifies that the job
completes before its deadline (Line 25). If the deadline is missed, the
algorithm returns null.

By following the EDF policy, the algorithm prioritizes time-critical
job requests, placing them into the earliest possible mapping segments.

56 efficient spatio-temporal mapping generation

Note that the proposed algorithm is backward-compatible with
the single-threaded version presented in [138], generating the same
spatio-temporal mappings by following the MDF and EDF policies.
However, because multi-threaded applications require all threads to
be scheduled on the same mapping segments, the original single-
threaded algorithm cannot be directly applied.

4.3.2 Evaluation

To assess the effectiveness of the MMKP-MDF algorithm, a set of
experiments was conducted using the representative dataflow applica-
tions mapped to a heterogeneous embedded platform. Section 4.3.2.1
describes the experimental setup, the generation of the experimental
workload, and the alternative algorithms used for comparison. Sec-
tion 4.3.2.2 presents the acceptance rate and the energy-efficiency of the
generated spatio-temporal mappings, while Section 4.3.2.3 analyzes
the runtime overhead of the approach.

4.3.2.1 Experimental Setup and Test Generation

The experiments utilize three dataflow applications from the automo-
tive and multimedia domains:

• A speaker recognition algorithm with 8 processes [25],

• An audio filter, a stereo frequency filter with 8 processes [68], and

• A pedestrian recognition algorithm with 6 processes, provided by
Silexica1.

To obtain the operating points, these applications were exhaustively
benchmarked with input data of different sizes on the Hardkernel
Odroid-XU4, which features an Exynos 5422 big.LITTLE chip with four
Cortex-A15 and four Cortex-A7 cores, fixed at frequencies of 1.8 GHz
and 1.5 GHz, respectively. The power consumption of the Odroid-XU4

board was measured using a ZES Zimmer LMG450 Power Analyzer
connected to the DC input, with an external readout rate of 20 Sa/s.

To identify Pareto-optimal operating points, each candidate con-
figuration was executed 50 times to obtain average execution times
and energy consumptions. This process yielded 36 Pareto-optimal
operating points for the audio filter, 35 for pedestrian recognition, and
28 for speaker recognition.

The multi-application setup consists of 1676 test cases. Each test case
includes one to four jobs, characterized by their current progress ratio
and the remaining deadline. Approximately 31.9 % of the test cases
consist of job requests for a single application (uniformly distributed

1 Silexica was acquired by Xilinx, which was subsequently acquired by AMD. The tool
support for dataflow applications has since been discontinued.

4.3 fixed-point spatio-temporal mapping 57

among each application and input data), while the remaining 68.1 %
are application mixes. In around 22.6 % of the tests, the progress state
of the jobs is set to zero (initial state). For all others, a progress rate
is randomly chosen in the range 0–0.9, except for the first job, which
emulates a newly arrived job.

To set deadlines, an operating point is randomly selected, the re-
maining time to finish the job using this operating point is calculated,
and then scaled by a factor. For weak deadlines, large factors in the
range 2–6 are randomly chosen. For tight deadlines, factors are ran-
domly selected in the range 0.6–2. Table 4.3 reports the number of
tests for each combination of number of jobs and deadline level.

Table 4.3: Number of test cases by jobs and deadline level

Deadline level

Jobs
1 2 3 4

Weak 15 255 255 230

Tight 35 340 340 206

The proposed algorithm, MMKP-MDF (Section 4.3.1) was imple-
mented in Python 3 within Mocasin framework (Section 2.5), and
executed on a 3.20 GHz Intel Core i5-6500 CPU. The RM prototype
receives the Pareto-optimal operating points, reads a test case, and
maps the applications onto the Odroid-XU4 platform.

To evaluate the solution, alternative algorithms were implemented:

• EX-MEM: This algorithm exhaustively checks all possible map-
pings for each of the mapping segments. After constructing each
mapping segment, it identifies the shortest jobs, cuts the seg-
ment at that point, and generates the next mapping segment. To
accelerate the algorithm, memoization is used by storing and
reusing the best energy consumption for a given current state (a
pair of jobs, their progress rates, and time).

• MMKP-LR: Based on the Lagrangian Relaxation algorithm de-
scribed in [207], this algorithm solves Lagrangian relaxations of
the MMKP problem using a subgradient method (limited to 100

iterations) and iteratively maps applications in order of increas-
ing minimum cost. Similarly, during job mapping, the algorithm
iteratively checks the configurations in order of increasing cost.
An operating point is selected if there are enough resources and
the job can meet its deadline either using this operating point
until completion or by reconfiguring to another point at the end
of the mapping segment (an optimistic check). This process is
repeated for the next mapping segment, so the analysis scope is
limited to a single mapping segment.

58 efficient spatio-temporal mapping generation

4.3.2.2 Acceptance Rate and Energy Efficiency

All three implemented algorithms were evaluated with respect to the
percentage of test cases for which they could find a feasible spatio-
temporal mapping. All algorithms successfully found solutions for
100 % of the test cases with weak deadlines. The results differ signif-
icantly for the tests with tight deadline, as shown in Figure 4.3. For
test cases with one or two jobs, all three algorithms achieved a similar
acceptance rate, with differences within 2.3 %. For tests with more
jobs, EX-MEM shows a significantly higher success rate than the other
two algorithms, up to 14.1 % higher. In all test cases, MMKP-LR and
MMKP-MDF achieve similar acceptance rates, with differences within
3.6 % in favour of MMKP-LR.

Figure 4.3: Acceptance rate of different algorithms for test cases with tight
deadlines

In terms of energy efficiency, the algorithms are compared to the
optimal solutions obtained by EX-MEM, which serves as the baseline.
For each successfully found solution, the relative energy consumption
compared to EX-MEM is computed, and the geometric mean of these
values is reported for each test group, as shown in Table 4.4.

All algorithms generate optimal solutions in case of a single job. For
tests with weak deadlines, the relative energy consumption of MMKP-
MDF solutions increases slowly from 0.03 % for two jobs to 0.99 % for
four jobs (in geometric mean). Overall, for tests with weak deadlines,
the MMKP-MDF solutions are off by 0.42 % from the optimal ones.
For tight deadlines, the relative energy consumption of MMKP-MDF
varies non-monotonically with the number of jobs, and they are off by
7.56 % in geometric mean.

For MMKP-LR, the relative energy consumption increases with
the number of jobs, with geometric means of 14.52 % and 19.23 % for
weak and tight deadlines, respectively. Overall, MMKP-MDF generates
more energy-efficient spatio-temporal mappings by 13.1 % compared
to MMKP-LR.

Figure 4.4 presents the relative energy consumption across test
scenarios using a monotonic curve layout. In this figure, the relative
energy values for all test cases are arranged in ascending order. The

4.3 fixed-point spatio-temporal mapping 59

Table 4.4: Geometric mean of the relative energy consumption across different
numbers of jobs and deadline levels compared to EX-MEM.

MMKP-LR MMKP-MDF

Number of Jobs Weak Tight Weak Tight

1 1.0000 1.0000 1.0000 1.0000

2 1.0480 1.1291 1.0003 1.0682

3 1.1534 1.2250 1.0031 1.0978

4 1.2648 1.3404 1.0099 1.0618

Overall 1.1452 1.1923 1.0042 1.0756

(all levels) 1.1665 1.0356

Figure 4.4: Monotonic distribution curves of the relative energy consumption
compared to EX-MEM (lower is better).

curve’s rightmost endpoint indicates the success rate, and its contour
provides insights into the distribution of relative energy values. As
shown, MMKP-MDF generates optimal solutions for 954 tests (69.6 %
of successfully scheduled cases), while MMKP-LR does so for only
125 tests (9.0 %).

4.3.2.3 Runtime Overhead

Figure 4.5 shows the box plots and average values of the execution
times of different algorithms, differentiated by the number of jobs.
The execution time increases with the number of jobs for all three
implementations. As expected, EX-MEM displays exponential growth,
with an average of 152 s to schedule four jobs, while the median and
worst-case values are 22.65 s and 2550 s (≈37.5 min), respectively. The
execution time of MMKP-LR and MMKP-MDF grow less rapidly.
MMKP-LR requires around 1.3 ms to schedule one job and around
163 ms for four jobs. MMKP-MDF is significantly faster, requiring only
5.7 ms on average for four jobs, with a worst-case of 21.6 ms.

60 efficient spatio-temporal mapping generation

Figure 4.5: Box plots and average values summarizing the mapping overhead
for different algorithms

In summary, the proposed MMKP-MDF algorithm achieves com-
parable scheduling success rate to the MMKP-LR approach while
outperforming it in terms of overall energy efficiency and runtime
overhead. MMKP-MDF generates solutions within 21.6 ms, which
makes it a suitable candidate for implementation in a fully functional
runtime resource manager. As mentioned in the experimental setup,
the overhead analysis for all algorithms was performed on a proto-
typed RM written in Python 3. Better performance can be expected
from an implementation in C/C++.

4.4 flexible spatio-temporal mapping

The second class of approaches generates flexible spatio-temporal map-
pings, fully exploring the search space of this decision model. These
algorithms explicitly incorporate application reconfigurations into
their mapping plans, allowing them to better adapt to dynamic work-
loads than fixed-point mapping strategies.

Two mapping approaches are presented. The first, called Spatio-Tem-
poral Evolutionary Mapping (STEM), leverages Memetic Algorithms
(MAs) [57] and is detailed in Section 4.4.1. The second approach, Fast
Flexible Energy-Minimizing Scheduler (FFEMS), employs fast greedy
heuristics, as described in Section 4.4.2. Section 4.4.3 presents the
evaluation of these algorithms.

4.4.1 STEM: Spatio-Temporal Evolutionary Mapping

The Spatio-Temporal Evolutionary Mapping (STEM) algorithm employs
Memetic Algorithms (MAs) to generate flexible spatio-temporal map-
pings, achieving the combined benefits of a Genetic Algorithm (GA)
and knowledge-guided heuristics. The motivation for adopting a MA
is twofold: first, to find near-optimal solutions and evaluate the efficacy
of the fast algorithm; second, to analyze the influence of knowledge-
guided heuristics in the search for optimal spatio-temporal mappings.

4.4 flexible spatio-temporal mapping 61

Population
initialization

Parent
selection Crossover

Local SearchTermination
condition Replacement

Start

Local SearchEnd
T

F

Mutation

Figure 4.6: STEM algorithm flow

Figure 4.6 illustrates the flow of the STEM algorithm. The compo-
nents of STEM include chromosome representation and evaluation,
population initialization, genetic operators, local search methods, and
survival selection, which are detailed in the following subsections.

4.4.1.1 Chromosome Representation and Evaluation

In evolutionary algorithms, a chromosome (also referred to as an in-
dividual) encodes a potential solution to the problem at hand. In the
context of STEM, a chromosome represents a spatio-temporal map-
ping model, as defined in Definition 2.15 and depicted in Figure 4.2.
During evolution, redundancies can arise, such as when jobs com-
plete execution mid-segment or when operating points are assigned
to completed jobs. To address these issues, operating points after job
completion are discarded, and any discrepancy are considered during
the fitness evaluation, thereby relaxing Equation (2.25).

fitness evaluation Chromosomes are categorized based on
compliance with resource and deadline constraints, as defined in
Equations (2.22) and (2.23), respectively:

1. Valid chromosomes that fulfill all constraints.

2. Chromosomes that satisfy resource constraints but violate dead-
lines.

3. Chromosomes that violate resource constraints.

Fitness is represented as a tuple, where the first value indicates
the category, and the second value measures group-specific metrics,
with lower values indicating better solutions. For valid chromosomes,
the second value reflects energy consumption and a genotype-to-
phenotype discrepancy. For the second category, it measures the av-
erage deadline violation as a fraction of the deadline. For the third
category, it considers both the average deadline violation and the
average overuse of processor element types across mapping segments.

4.4.1.2 Population Initialization

STEM generates an initial population of P = 90 individuals using a
structured approach rather than purely random generation to avoid

62 efficient spatio-temporal mapping generation

creating an excessive number of unfit solutions. First, the number
of segments is randomly chosen from the range {1, . . . , 2 · |Σ|}. Seg-
ment durations K[δi] are then sampled from a normal distribution
N (md, (md/2)2), where md is the maximum deadline divided by the
number of segments (rounded up to the nearest valid duration). For
each segment, a random number p ∈ {1, . . . , min (|Σ|, |P [ω⃗]|)} is
generated, and p jobs are randomly sampled. The algorithm then
randomly selects an operating point for these jobs while assigning ⊥
(no mapping) to all others.

4.4.1.3 Parent Selection and Genetic Operators

In each iteration, STEM selects two parent individuals and applies
crossover and mutation operators to produce two offsprings.

parent selection STEM uses exponential ranking selection for
parent selection [23]. In this strategy, the population is first sorted
in ascending order of fitness, placing the fittest individuals at the
beginning: f it1 ≤ f it2 ≤ · · · ≤ f its. The selection probability of indi
is given by psel(indi) = f i−1/c, where f < 1 is typically set close to
1 (e.g., 0.97 in STEM), and c is a normalizing coefficient. Stochastic
universal sampling [57] selects two individuals as parents from the
sorted population.

crossover Selected parents undergo crossover with a probability
of pc = 0.7. STEM randomly chooses one of two crossover operators
shown in Figure 4.7. Given l is the smallest number of segments in the
parent chromosomes, the segment-level crossover (Figure 4.7b) applies
a one-point crossover technique, cutting the parent chromosome at
a random point p ∈ {1, . . . , l} and swapping subsequent segments.
The job-level crossover (Figure 4.7c) randomly decides for each job
whether its mappings should be swapped individually (i.e., uniform
crossover). If so, the swap is performed for the first l segments.

mutation After crossover, each offspring undergoes mutation
with a probability of pm = 0.6. Three mutation operators are defined
for this step:

1. Structure Modification: This operator modifies the mapping struc-
ture by (a) swapping two random segments, (b) inserting a new
segment at a random position, or (c) removing a random seg-
ment and redistributing its duration.

2. Segment Duration Adjustment: This operator changes the duration
of a randomly selected segment.

3. Operating Point Mutation: This operator changes the operating
point index of a random job within a random segment, selecting
the ⊥ value with a probability p⊥ = 0.5.

4.4 flexible spatio-temporal mapping 63

511512

⊥𝑜!𝑜"⊥𝜎#
𝑜#$⊥⊥𝑜%𝜎𝟐
𝑜'𝑜'⊥𝑜'𝜎𝟑

6138713

⊥⊥𝑜#𝑜'𝑜'𝜎#
𝑜#$𝑜#$𝑜)𝑜#)𝑜!𝜎𝟐
⊥𝑜%𝑜*𝑜%𝑜#'𝜎𝟑

(a) Selected parent chromosomes before crossover

61311512

⊥⊥𝑜!𝑜"⊥𝜎#
𝑜#$𝑜#$⊥⊥𝑜%𝜎𝟐
⊥𝑜%𝑜'⊥𝑜'𝜎𝟑

58713

⊥𝑜#𝑜'𝑜'𝜎#
𝑜#$𝑜)𝑜#)𝑜!𝜎𝟐
𝑜'𝑜*𝑜%𝑜#'𝜎𝟑

(b) Segment-level one-point crossover

511512

⊥𝑜!𝑜"𝑜"𝜎!
𝑜!#⊥⊥𝑜$𝜎𝟐
𝑜$𝑜&𝑜$𝑜!"𝜎𝟑

6138713

⊥⊥𝑜(𝑜)⊥𝜎!
𝑜!#𝑜!#𝑜*𝑜!*𝑜(𝜎𝟐
⊥𝑜"𝑜"⊥𝑜"𝜎𝟑

(c) Job-wise uniform crossover

Figure 4.7: Two crossover operators in STEM: segment-level one-point
crossover, and job-level uniform crossover.

4.4.1.4 Local Search Methods

After generating offspring through genetic operators, the algorithm
applies local search heuristics to refine individuals using problem-
specific knowledge. This memetic part of the algorithm comprises
several local search heuristics. The selection of methods is based on
their efficiency and runtime overhead, with individuals subjected to
different sets of methods based on their constraint violations.

For individuals violating resource constraints, the Resource Overuse
Reduction method targets the segment with the highest resource overuse.
It assigns the mapping of each job to ⊥ (no mapping) and selects the
variant with the best resultant fitness. This heuristic is applied with a
probability of pr3 = 0.5.

Individuals that do not violate resource constraints undergo refine-
ment with a probability pr1 = pr2 = 0.8, randomly selecting one of the
following methods:

• Chromosome Simplification This method reduces the genotype-to-
phenotype gap by removing false-active segments. It identifies
the last active segment for each job, marks subsequent segment
mappings as ⊥, and removes idle segments.

• Segment Manipulations These methods explicitly modify the seg-
ment count. The first method merges two segments into one
in one of two ways: (a) merging two segments with identical
operating points, or (b) removing the shortest duration segment

64 efficient spatio-temporal mapping generation

and adding its duration to a longer segment. The second method
splits segments where a job finishes mid-segment. Following a
split, it applies chromosome simplification and alters job map-
pings in the second part of the split segment.

• Segment Duration Adjustment This method adjusts segment dura-
tions within permissible bounds, incrementing or decrementing
by a power of two to reduce the exploration space.

• Front Propagation of Operating Points This method collects all
operating points used in the current individual and attempts to
use them in earlier segments where the job has a ⊥ mapping.
Preference is given to jobs with the most significant deadline
violation or highest energy consumption.

4.4.1.5 Survivor Selection and Termination

At the end of each iteration, the survivor selection strategy deter-
mines which individuals from the combined population advance to
the next generation. The process employs the round-robin tournament se-
lection [57]: For each individual, the algorithm randomly selects q = 8
competitors and assigns a score based on the number of competitors
the individual outperforms based on their fitness. The two individuals
with the lowest scores are eliminated from the population, with ties
resolved randomly.

STEM terminates when the maximum number of iterations is reached.
The termination condition could be further refined, for example, by
terminating if no significant improvement is observed for a certain
number of generations.

4.4.2 FFEMS: Fast Flexible Energy-Minimizing Scheduler

The Fast Flexible Energy-Minimizing Scheduler (FFEMS) algorithm offers
an alternative approach to flexible spatio-temporal mapping, focusing
on energy-efficient scheduling with significantly lower computational
overhead than evolutionary methods. It achieves so by selecting oper-
ating points from an incrementally expanding Candidate Mappings
Set (CMS).

Algorithms 4.3 and 4.4 detail the operation of FFEMS. Initially, jobs
are ordered by Earliest Deadline First (EDF) (Algorithm 4.3, Line 2),
and the operating points of each job are sorted by increasing energy
consumption (Line 4).

The Candidate Mappings Set CMS is initialized to include the most
energy-efficient operating points that cannot meet the job’s deadline,
along with the first operating point that can meet the deadline (Line 5).
By including these operating points, the CMS starts with a set of
highly energy-efficient mappings that might be too slow to satisfy the
deadline constraint individually.

4.4 flexible spatio-temporal mapping 65

Algorithm 4.3 Main Procedure of the FFEMS Algorithm

Input: Job requests Σ, platform P , Pareto-optimal operating points
Oσ[A]

opt for each σ ∈ Σ
Output: Spatio-temporal mapping K

1: Initialize an empty spatio-temporal mapping K
2: Sort jobs in σ ∈ Σ by EDF order
3: for each job σ ∈ Σ do
4: Sort the operating points o ∈ Oσ[A]

opt by increasing o[ε]

5: CMS← InitCMS(σ, Oσ[A]
opt)

6: s← False
7: while ¬s ∧ (CMS ̸= ∅) do
8: ρ∗ ← σ[ρ]; θmiss ← False
9: for i ∈ {1, . . . , |K|} do

10: K′ ← GenerateJobTail(K, σ, CMS, i, ρ∗)
11: if K′ ̸= null then
12: K ← K′; ρ∗ ← 1
13: break
14: if σ[θ] ≤ K[∆i] then
15: θmiss ← True
16: break
17: o∗ ← argmaxo∈CMS{o[τ] | o[ω⃗] + K[Mi][ω⃗] ≤ P [ω⃗]}
18: K[Mi][σ]← o∗

19: ρ∗ ← ρ∗ + ρ(K[Mi][σ], K[δi]) ▷ ρ(o, δ) as in Eq. (2.20)

20: if θmiss = False then
21: if ρ∗ < 1 then
22: K′ ← GenerateJobTail(K, σ, CMS, |K|+ 1, ρ∗)
23: if K′ ̸= null then
24: K ← K′; ρ∗ ← 1

25: if ρ∗ = 1 then
26: s← True
27: break
28: if CMS = Oσ[A]

opt then
29: CMS← ∅
30: else
31: CMS← IncrementCMS(CMS, Oσ[A]

opt)

32: if ¬s then
33: for i ∈ {1, . . . , |K|} do
34: K[Mi][σ]← ⊥
35: return K

66 efficient spatio-temporal mapping generation

This approach allows the algorithm to set an upper bound for
the energy consumption of the job in this iteration of CMS. If the
algorithm fails to generate a feasible spatio-temporal mapping with
the job using the current CMS, it expands the set by including the next
operating point from the sorted list. This process is repeated, gradually
increasing the energy budget allocated to the job, until a feasible
mapping is found or all operating points have been considered.

Algorithm 4.4 GenerateJobTail procedure

Input: Current spatio-temporal mapping K, platform P , job request
σ, Candidate Mappings Set CMS, index of the starting mapping
segment istart, current progress ratio ρ∗

Output: Updated spatio-temporal mapping K, or null if unsuccessful
1: o ← FindMappingForTail(K, P , σ, CMS, istart, ρ∗)
2: if o = ⊥ then
3: return null
4: tr ← o[τ] · (1− ρ∗) ▷ Remaining execution time
5: for i ∈ {istart, . . . , |K|} do
6: if K[δi] ≤ tr then
7: K[Mi][σ]← o
8: tr ← (tr − K[δi])

9: else
10: SplitSegment(K, i, tr)
11: K[Mi][σ]← o
12: tr ← 0
13: break
14: if tr > 0 then
15: AppendSegment(K, tr)
16: K[M|K|][σ]← o

17: return K

During the algorithm, for each job and its corresponding CMS,
the FFEMS algorithm iterates over the current mapping segments
(Lines 9–19). It first attempts to find a mapping that can be used con-
tinuously until the job’s completion (call at Line 10 to Algorithm 4.4).
For each potential operating point, the algorithm checks for sufficient
free resources from the current mapping segment to the job’s potential
end time. This corresponds to a call to FindMappingForTail (Algo-
rithm 4.4, Line 1). If a suitable mapping is found, it is applied until
job completion, with mapping segments appended (Line 15) or split
(Line 10) as necessary.

If no suitable continuous mapping until job completion is found,
FFEMS selects the fastest available mapping for the current segment,
anticipating a switch to a more energy-efficient operating point at
later point (Algorithm 4.3, Line 17). If the job remains incomplete at
the end of the spatio-temporal mapping K, a new mapping segment

4.4 flexible spatio-temporal mapping 67

is appended, and the algorithm attempts to schedule the remaining
portion of the job (Line 22).

If FFEMS fails to generate a spatio-temporal mapping including the
current job with the current CMS, it extends the CMS by including
the next operating point from the sorted list (Line 31). If FFEMS fails
to create a valid spatio-temporal mapping with all possible operating
points in Oσ[A]

opt , the algorithm rejects the job (Line 33).
In the worst-case scenario, the time complexity of FFEMS is O(|Σ| ·∣∣∣OA
opt

∣∣∣2 · |K|). This arises from iterating over all jobs in the set Σ, each

operating point in the set OA
opt during CMS expansion, each segment

of the spatio-temporal mapping K, and each operating point within
the CMS during the mapping of the job until completion.

4.4.2.1 Tail-Switch Optimization

The energy efficiency of FFEMS can be improved using tail-switch
optimization. If a power-intensive configuration is initially selected
in GenerateJobTail, the system can switch to a slower but more
energy-efficient mapping at a later point. This optimization involves
iterating over all pairs of mappings (o1, o2) to determine the optimal
switch point from the faster configuration o1 to the more energy-
efficient point o2, while satisfying the deadline constraint. The pair
that minimizes energy consumption is selected. However, this adds
additional computational complexity, resulting in a time complexity

of O(|Σ| ·
∣∣∣OA

opt

∣∣∣3 · |K|).
4.4.3 Evaluation

The proposed approaches are evaluated on two heterogeneous plat-
form models in terms of acceptance rate, energy efficiency, and runtime
overhead.

Section 4.4.3.1 details the experimental setup. Section 4.4.3.2 an-
alyzes the impact of knowledge-guided heuristics in STEM, while
Section 4.4.3.3 examines the impact of different mapping decision
models. Finally, Section 4.4.3.4 evaluates the runtime overhead of the
algorithms.

4.4.3.1 Experimental Setup

The STEM and FFEMS approaches were implemented in Python 3

within the Mocasin prototyping tool, described in Section 2.5. Evalu-
ations were conducted on two platform models:

• 4B4L: An Odroid-XU4 with an Exynos 5422 big.LITTLE chip fea-
turing four Cortex-A15 cores and four Cortex-A7 cores, running
at 1.8 GHz and 1.5 GHz, respectively.

68 efficient spatio-temporal mapping generation

• 8B8L: A larger system similar to the Odroid-XU4 but with double
the cores —– eight big and eight little cores.

application models As in Section 4.3.2.1, three dataflow appli-
cations from the automotive and multimedia domains were utilized in
these experiments: speaker recognition [25], audio filter [68], and a pedes-
trian recognition algorithm. For the 4B4L platform, operating points
were obtained by benchmarking the real platform, yielding 28 to 36

operating points. For 8B8L, operating points were generated using
Genetic Algorithm (GA) in Mocasin, selecting 40 operating points via
the k-means clustering [2].

workload generation Test cases are represented as tables of job
requests, each containing an application, progress ratio, and deadline.
A total of 2000 cases per platform were generated, altering the number
of jobs in the request table from 1 to 10, providing 200 cases per
job count. Half of these tests feature weak deadlines, and the other
half have tight deadlines, thus facilitating observation under more
stress-intensive situations.

Each test randomly assigned an application to each job and allocated
progress ratios between 0 and 0.9 (with the first job set to 0, emulating
a newly arrived job). Deadlines were determined by first selecting a
random configuration, calculating the remaining time based on the
configuration and remaining progress ratio, and then multiplying it
by a factor. The factor was randomly chosen within a range defined
by the deadline level and request number, as detailed in Table 4.5.

Table 4.5: Bounds of factor ranges used during workload generation.

Platform Deadline
Level

Factor Range Bounds

Lower Upper

4B4L
Weak 1.5 + 0.1 · |Σ| 3 + 0.1 · |Σ|
Tight 1 1 + 0.3 · |Σ|

8B8L
Weak 1 + 0.1 · |Σ| 1.5 + 0.1 · |Σ|
Tight 1 1 + 0.1 · |Σ|

evaluated algorithms In the evaluation, several variations of
the proposed algorithms were tested. For STEM, we considered four
variations:

• STEM100K: 100000 MA iterations.

• STEM500K: 500000 MA iterations.

• STEM5M: 5 million MA iterations.

4.4 flexible spatio-temporal mapping 69

• STEMGA
500K: 500000 iterations but omitting the memetic part of

the algorithm to assess the effect of knowledge-guided heuristics.

For FFEMS, a basic version, FFEMS, and its derivative, FFEMSTS,
which applies tail-switch optimization, were included.

Additionally, approaches generating other mapping models were
assessed:

• MMKP-LR [207]: Generates spatial mappings using the Lagrangian
Relaxation algorithm (with 200 iterations). The spatio-temporal
mapping is constructed by applying this algorithm segment by
segment.

• MMKP-MDF: The fixed-point spatial-temporal strategy described
in Section 4.3.1.

overview of results The algorithms were evaluated based on:

• Acceptance Rate: Percentage of successfully generated spatio-
temporal mappings.

• Relative Energy Consumption: Energy consumption normalized to
the best solution found for each test case. Results are reported
as a geometric mean across test cases.

• Runtime Overhead: Average execution time required to generate
solutions.

Tables 4.6 and 4.7 summarize results for the 4B4L and 8B8L plat-
forms, respectively, comparing acceptance rates, relative energy con-
sumption, and runtime overhead under weak and tight deadline
conditions. Figures 4.8, 4.9 and 4.11 illustrate the metrics by job count.
Additionally, Figure 4.10 presents the relative energy consumption
across test scenarios using a monotonic curve layout.

4.4.3.2 Impact of Knowledge-Guided Heuristics in STEM

The incorporation of knowledge-guided heuristics in STEM signifi-
cantly enhances both acceptance rate and energy efficiency. As shown
in Tables 4.6 and 4.7, this improvement is particularly notable in test
scenarios with tight deadlines, where STEM500K finds solutions for up
to 13.5 % more cases than its counterpart, STEMGA

500K. Notably, STEM
with just 100K MA iterations outperforms the version with 500K GA
iterations, highlighting the value of knowledge-guided heuristics.

However, despite leveraging local search heuristics, STEM still re-
quires a substantial number of iterations. Specifically, STEM100K trails
FFEMS in acceptance rate by as much as 5 %. Given its enormous com-
putational overhead, deploying STEM at runtime is impractical. In the
following analysis, for STEM, the focus shifts to STEM5M, which best
demonstrates the algorithm’s peak potential in discovering optimal
solutions.

70 efficient spatio-temporal mapping generation

Table 4.6: Aggregate acceptance rates, relative energy consumption, and av-
erage runtime overhead of resource management algorithms on
the 4B4L platform under weak and tight deadline conditions.

Resource Weak Deadlines Tight Deadlines Avg.

Manager Acc. R. Rel. Energy Acc. R. Rel. Energy Overhead

MMKP-LR 94.6 % 1.2981 71.0 % 1.2442 447.4 ms

MMKP-MDF 96.8 % 1.0260 75.6 % 1.0755 9.3 ms

STEM100K 99.8 % 1.0329 88.5 % 1.0341 65.6 s

STEMGA
500K 99.2 % 1.0672 80.5 % 1.0696 216 s

STEM500K 100 % 1.0180 91.7 % 1.0220 320 s

STEM5M 100 % 1.0070 94.4 % 1.0071 3376 s

FFEMS 100 % 1.0376 91.6 % 1.0982 4.8 ms

FFEMSTS 100 % 1.0270 91.8 % 1.0649 15.6 ms

Table 4.7: Aggregate acceptance rates, relative energy consumption, and av-
erage runtime overhead of resource management algorithms on
the 8B8L platform under weak and tight deadline conditions.

Resource Weak Deadlines Tight Deadlines Avg.

Manager Acc. R. Rel. Energy Acc. R. Rel. Energy Overhead

MMKP-LR 97.9 % 1.1552 81.0 % 1.2103 14.4 ms

MMKP-MDF 98.9 % 1.0746 80.7 % 1.0852 10.9 ms

STEM100K 99.4 % 1.0261 88.4 % 1.0292 68.9 s

STEMGA
500K 97.9 % 1.0396 78.6 % 1.0494 217 s

STEM500K 99.8 % 1.0163 92.1 % 1.0213 342 s

STEM5M 99.9 % 1.0087 94.4 % 1.0113 3671 s

FFEMS 100 % 1.0442 93.6 % 1.0784 5.5 ms

FFEMSTS 100 % 1.0150 94.3 % 1.0445 17.2 ms

4.4 flexible spatio-temporal mapping 71

Figure 4.8: Acceptance rates of resource management algorithms across vary-
ing job counts

Figure 4.9: Relative energy consumption of solutions generated by different
resource management algorithms across varying numbers of jobs.

72 efficient spatio-temporal mapping generation

4.4.3.3 Impact of the Mapping Decision Model

The choice of decision model is critical to the efficiency of mapping
algorithms. Spatial-only approaches, such as MMKP-LR, often yields
suboptimal solutions in both acceptance rate and energy efficiency.
The performance of MMKP-LR varies with platform size and worsens
under increased resource pressure. For instance, under tight deadlines,
MMKP-LR achieves a similar acceptance rate as MMKP-MDF on the
8B8L platform (Table 4.7), but underperforms by 4 % on the smaller
4B4L platform (Table 4.6).

In contrast, MMKP-MDF, which employs the fixed-point spatio-
temporal mapping model, demonstrates significant improvements in
energy efficiency, outperforming MMKP-LR by a 26.5 % on the 4B4L

platform.
The best performance is achieved by the novel methods, FFEMS

and STEM, which leverage the full flexibility of spatio-temporal map-
pings. As shown in Tables 4.6 and 4.7, FFEMS outperforms the spatial
and fixed-point spatio-temporal approaches significantly. Under weak
deadlines, it maps all test cases, while under tight ones, it schedules
16 % more test cases on the 4B4L platform and 12.9 % on 8B8L.

As shown in Figure 4.8, the difference in acceptance rate grows with
the number of jobs, peaking at 25 % for 10 jobs on the 4B4L platform.
The FFEMSTS variant, enhanced with the tail-switch optimization,
achieves comparable acceptance rate but improves on energy efficiency,
saving up to 3.4 % more energy than FFEMS.

Interestingly, FFEMS algorithms even outperform STEM5M in accep-
tance rate on the 8B8L platform, particularly with a bigger number
of applications, as shown in Figure 4.8. This observation might indi-
cate that STEM’s performance declines with increasing platform and
application sizes.

Figure 4.10 illustrates relative energy consumption using a mono-
tonic curve layout. These curves arrange relative energy values for all
test cases in ascending order. The rightmost endpoint indicates the
acceptance rate, while the curve’s contour reveals the distribution of
relative energy values. These curves illustrate the differences between
the decision models.

The curve corresponding to MMKP-LR (employing the spatial map-
ping model) reveals that for most test cases, it fails to select the most
energy-efficient configurations. This behavior can be attributed to
MMKP-LR’s inability to consider postponing certain job executions,
leading it to opt for less energy-efficient configurations.

In contrast, MMKP-MDF’s curve is more aligned with the ideal
energy values, showing a slight improvement in the acceptance rate.
This improvement is explained by a more relaxed constraint, allowing
the selection of configurations otherwise infeasible within a single
mapping segment.

4.4 flexible spatio-temporal mapping 73

Figure 4.10: Monotonic distribution curves of the relative energy consump-
tion for different resource management algorithms. The right-
most endpoint of each curve indicates the acceptance rate.

Figure 4.11: Runtime overhead of different resource management algorithms
(results for STEM are excluded for readability).

74 efficient spatio-temporal mapping generation

Lastly, the adoption of flexible spatio-temporal mappings signifi-
cantly improves the acceptance rate. This improvement is attributed to
the flexible decision structure, which permits jobs to be dynamically
reconfigured to meet their deadlines.

4.4.3.4 Runtime Overhead

Figure 4.11 shows the execution times of different algorithms using
box plots. The results indicate an increase in mapping overhead with
the number of applications for all algorithms. MMKP-LR exhibits
higher overhead on the smaller 4B4L platform where resource pressure
is increased, possibly due to its inability to converge until the final
iteration.

MMKP-MDF and FFEMS achieve similar execution times, both ca-
pable of scheduling ten applications within 100 ms. However, FFEMS
schedules significantly more test cases, making it the superior choice.
As expected, FFEMSTS incurs higher overhead due to tail-switch op-
timization, scheduling 10 jobs within 100 ms – 1 s, a trade-off for
improved energy efficiency.

4.5 synopsis

This chapter investigated the impact of the mapping decision model,
particularly the temporal component of spatio-temporal mappings, on
real-time acceptance and energy efficiency. Three algorithms were pro-
posed: MMKP-MDF, which generates fixed-point spatio-temporal map-
pings, and two flexible spatio-temporal mapping algorithms, STEM
and FFEMS.

The results indicate that employing fixed-point spatio-temporal map-
ping models enhances the energy efficiency of the solutions found,
while the flexible variant of this model significantly increases accep-
tance rate. Among the algorithms, STEM produces the most energy-
efficient solutions, but its enormous overhead makes it unsuitable for
use in runtime systems.

In contrast, FFEMS demonstrates an excellent balance between per-
formance and runtime overhead. With a runtime overhead similar to
MMKP-MDF (up to 100 ms for 10 jobs), FFEMS successfully maps up
to 16 % more test cases successfully. Moreover, its tail-switch optimiza-
tion further improves energy efficiency, albeit with a slight increase in
runtime overhead, which remains acceptable for runtime systems.

5
D O M A I N - S P E C I F I C H Y B R I D M A P P I N G F O R
B A S E B A N D P R O C E S S I N G

Baseband processing is a critical component in wireless communica-
tion systems, responsible for processing signals received by the base
station from multiple User Equipments (UEs). The increasing demands
of modern telecommunication standards — higher data rates, lower
latencies, and support for diverse applications — present significant
challenges for baseband processing implementations. Traditionally,
specialized hardware has been employed to meet performance and
energy efficiency requirements. However, the need for flexibility to
handle heterogeneous and dynamic workloads has led to a shift to-
wards software-based solutions.

This chapter addresses the challenge of balancing flexibility and
efficiency in baseband processing by proposing a domain-specific
Hybrid Application Mapping (HAM) approach. By leveraging the
structure of the baseband processing application and refining mapping
methodologies, the proposed approach improves scalability at design
time and reduces runtime overhead, enabling efficient execution on
heterogeneous platforms.

The chapter begins with a discussion of existing approaches to
baseband processing in Section 5.1, highlights their limitations, and
motivates the need for hybrid application mapping. Section 5.2 details
the structure and parameters of baseband processing, followed by Sec-
tion 5.3, which introduces the phased-sequential task graph model for
these applications. Section 5.4 presents a domain-specific algorithm for
generating efficient operating points for such task graphs. Section 5.5
outlines enhancements to the MMKP-MDF algorithm, including the
reuse of previous solutions to minimize runtime overhead. Section 5.6
evaluates the proposed hybrid mapping methodology, analyzing both
design-time operating point generation and runtime resource manage-
ment. The chapter concludes with a synopsis in Section 5.7.

A Note on Publications and Contributions

The content in this chapter, including the discussion of existing ap-
proaches, baseband processing architecture, application model, algo-
rithms, figures, and results, was previously published in Khasanov,
Robledo, Menard, Goens, and Castrillon, “Domain-specific Hybrid
Mapping for Energy-efficient Baseband Processing in Wireless Net-
works,” 2021 [100]. This work is a collaborative effort with several
contributors, each focusing on specific aspects of the overall approach.

75

76 domain-specific hybrid mapping for baseband processing

Julian Robledo contributed to the benchmarking, modeling, and
validation of the baseband receiver application and developed a multi-
application simulation component within Mocasin. Christian Menard
implemented a work-stealing algorithm mimicking LTE PHY appli-
cation behavior. Andrés Goens developed state-of-the-art mapping
algorithms, including simulated annealing and tabu search, used for
comparison in the evaluation.

The author of this thesis formalized the application model for task
graphs with phased-sequential structure, designed and developed
the algorithms for operating point generation and runtime resource
allocation, and introduced energy evaluation within the Mocasin

framework.
All contributors worked collaboratively to refine the overall ap-

proach through iterative discussions and joint evaluations.

5.1 approaches to baseband processing

The rapid growth of mobile data demands poses significant challenges
for traditional distributed Radio Access Networks (RANs). Compared
to 4G Long-Term Evolution (LTE), the 5G network aims to support
1000× higher data traffic [5], introducing new use cases and increasing
workload heterogeneity for Baseband Units (BBUs). As the number
of connected devices increases in the Internet of Things (IoT), diverse
devices generate data traffic with varying requirements. Meeting these
challenges requires more flexible BBUs, ranging from full-fledged base
stations to femtocells and smart surfaces [190], with demands expected
to grow under future telecommunication standards [159].

To enhance flexibility and adaptability, there has been a shift to-
wards software-based baseband processing. Cloud RANs (cRANs) [44]
improve resource allocation by forwarding preprocessed data from
distributed Remote Radio Heads (RRHs) to a centralized pool of
BBUs [112]. Virtualized RANs (vRANs) [202] further facilitate the
move from costly, Commercial Off-The-Shelf (COTS)-based solutions
to software-based ones, leveraging cRANs and the utilization of pro-
grammable hardware. Software solutions offer the flexibility to sup-
port multiple standards and dynamic workloads, while reducing
development costs and time-to-market. Similar motivations led to
research on Software-Defined Radio (SDR) for handheld devices [39,
170, 197]; however, the dynamic and multi-user nature of BBUs in
cRANs presents additional challenges.

This flexibility, however, comes at the expense of energy efficiency.
Specialized hardware like Application-Specific Integrated Circuits
(ASICs) offers orders of magnitude more efficiency than General-
Purpose Processors (GPPs) for baseband processing tasks [17] but lacks
flexibility to changing standards. Reconfigurable hardware, such as
FPGAs, offers a compromise but struggles with runtime workload vari-

5.1 approaches to baseband processing 77

ability. Modern hardware approaches, including dynamically reconfig-
urable FPGAs, Coarse-Grained Reconfigurable Arrays (CGRAs) [96],
and ASIPs [169], address these issues by targeting different points in
the flexibility-efficiency spectrum, but they also increase hardware
heterogeneity. These systems demand a structured approach to soft-
ware/hardware co-design [12, 73, 208].

Early baseband processing implementations on GPPs used tech-
niques like Single Instruction Multiple Data (SIMD) optimizations,
look-up tables for latency reduction [93], and multi-threading [189]
for performance improvement. However, these approaches relied on
static mappings, limiting their adaptability to dynamic workloads. To
address this, dynamic scheduling methods like work-stealing were
introduced, as seen in the PHY benchmark [178], where tasks are
distributed across processors at runtime. While flexible, such methods
may not fully exploit the capabilities of heterogeneous architectures,
potentially resulting in suboptimal energy efficiency — similarly as in
other application domains (Section 3.2).

Some efforts in small cell base stations include heterogeneous multi-
processor platforms with hardware accelerators and ASIPs [185]. For
resource management, the authors use a task graph and describe a
mapping approach that incurs high power consumption. More re-
cent approaches introduce an array-based multi-core architecture for
baseband processing [198, 199], leveraging dataflow-based mapping
methodology. However, this mapping methodology are tied to the
specific hardware architecture and cannot be easily extended to sup-
port heterogeneous platforms. Although the baseband application
contains certain irregularities potentially leading to divergent control,
authors in [114] proposed a novel algorithm that is well-suited to a
GPU cluster.

In summary, existing approaches involve trade-offs between adap-
tivity, performance, and energy efficiency. Software-based solutions
offer flexibility but lack efficiency, while hardware-accelerated meth-
ods are efficient but struggle with workload variability. As discussed
in this thesis, HAM approaches excel in both efficiency and adaptivity.
However, general HAM approaches are domain-oblivious, designed
for comparatively smaller applications, and, as shown in Section 5.6,
do not scale well to baseband processing, where each UE requires
handling dozens of computational tasks. Scaling these methods ac-
cordingly requires domain-specific improvements which leverage the
structure of the application.

This chapter introduces a domain-specific HAM approach tailored
to baseband processing. By leveraging the inherent structure and
regularity of baseband tasks, the proposed method improves scalability
during design time and reduces runtime overhead. This specialization
enables flexible and energy-efficient execution of baseband processing
applications on heterogeneous platforms.

78 domain-specific hybrid mapping for baseband processing

5.2 baseband processing architecture and parameteri-
zation

Baseband processing is computationally demanding and has histor-
ically required significant effort in hardware-software co-design by
expert teams at telecommunication companies. In LTE uplink commu-
nication at the base station, incoming data is structured into subframes,
each corresponds to 1 ms in the time domain. Every subframe consists
of two adjacent slots, each lasting 0.5 ms and containing 14 symbols.
The frequency domain is divided into subcarriers spaced 15 kHz apart.
Each subframe contains data from up to 10 User Equipments (UEs),
received by the base station’s antennas. Each UE transmits an integer
number of Physical Resource Blocks (PRBs), where a PRB is the small-
est allocatable unit of data for a UE, corresponding to one subframe
in the time domain and 12 subcarriers in the frequency domain [61].

Phase 1 (ϕ1)

(ϕ1[λ] = 1)
Phase 2 (ϕ2)

(ϕ2[λ] = ant× lay)
Phase 3 (ϕ3)

(ϕ3[λ] = sc)

Input
data

Matched
filter

IFFT Windowing FFT Combiner
weights

Antenna
combining

IFFT Symbol
demap

Output
data

Phase 4 (ϕ4)

(ϕ4[λ] = lay× sym)

Phase 5 (ϕ5)

(ϕ5[λ] = sc× slt)

Phase 6 (ϕ6)

(ϕ6[λ] = 1)

Figure 5.1: Block diagram of a baseband receiver

A typical model of a baseband receiver is shown in Figure 5.1. The
physical layer of baseband processing consists of computational tasks
grouped into phases ϕ, which reconstruct transmitted data before pass-
ing it to the upper layers of the communication stack. Typical tasks
include a matched filter, Fast Fourier Transform (FFT), windowing,
Inverse FFT (IFFT), antenna combining, combiner weights calcula-
tion, and soft symbol demapping. These tasks exhibit high runtime
variation due to multiple parameters controlling their functionality.
These include the number of UEs, the number of PRBs allocated per
UE, the number of antennas (ant) at the base station, the modulation
scheme, the number of concurrent data streams (layers, or lay), the
number of slots (slt) per subframe (fixed to two in LTE but variable in
5G), the number of subcarriers (sc) per slot in the frequency domain,
and the number of symbols (sym) per slot in the time domain. This
parameterization supports modern and upcoming wireless commu-
nication standards, driving the trend towards more flexible software
implementations over inflexible hardware.

5.3 task graph with phase-sequential structure 79

These parameters, varying in runtime, influence the computational
structure of the baseband processing chain for a single UE within
a subframe. The parameters determine the data parallelism degree
for each phase ϕ, where all tasks in a phase share the same level
of parallelism, indicated by λ in Figure 5.1. Parameters such as the
number of PRBs allocated to the UE and the modulation scheme
also control the computational intensity of the task instances and
thus the performance requirements. Each user in a subframe may
be served by a different dataflow graph. 5G, operating at a higher
bandwidth, exhibits even greater parameterization. In addition to
Enhanced Mobile Broadband (eMBB), 5G introduces new use cases:
Massive Machine-Type Communication (mMTC), and Ultra-Reliable
Low-Latency Communication (URLLC) [216]. Each UE request in an
upcoming subframe must be processed within its deadline; otherwise,
it is discarded. Use cases have varying deadlines: 2.5 ms for eMBB
and mMTC, and 0.5 ms for URLLC. Upcoming standards show a clear
trend towards richer parameterization and a wider range of supported
use cases.

For this work, the PHY benchmark [178] is utilized, featuring a struc-
ture similar to that in Figure 5.1. The benchmark is an implementation
of an LTE baseband processing system and is suitable for handling
realistic LTE workloads. The benchmark captures the parallelism of
LTE through a configurable multi-threaded implementation.

5.3 task graph with phase-sequential structure

To formalize the application model, jobs are represented as task graphs
with a phase-sequential structure, as shown in Figure 5.2. This model is
suitable for applications that can be divided into distinct, data-parallel
phases, as described in the previous section.

ϕ1

ϕ2 ϕ3

ϕn

π1
1 π1

2 π1
3 π1

1

π1
1 π2

1 π2
2 π2

3 π2
1 π1

1

π
ϕ2[λ]
1 π

ϕ2[λ]
2 π

ϕ2[λ]
3 π

ϕ3[λ]
1

...

...

...

...

. . .

Figure 5.2: Task graph with a phase-sequential structure

A phase in this context represents a group of tasks executed sequen-
tially but capable of data-level parallelization. Formally, a phase is
defined as follows:

Definition 5.1 (Phase). A phase ϕ is a tuple ϕ := ϕ⟨Π, λ⟩, where

80 domain-specific hybrid mapping for baseband processing

• Π =
(
π1, . . . , π|Π|

)
is an ordered set of tasks connected in se-

quence. Specifically, for each i ∈ {1, . . . , |ϕ[Π]| − 1}, a communi-
cation edge connects task πi to task πi+1.

• λ is the parallelization factor of the phase, indicating the number
of data-parallel replicas.

Each phase is parallelized by replicating it λ times. Tasks in each
replica, denoted by ϕ[Πk] =

(
πk

1, . . . , πk
|ϕ[Π]|

)
for k ∈ {1, . . . , λ}, are

independent of tasks in other replicas of the same phase.

The phases in the task graph execute sequentially. The final tasks of a
phase ϕi connect to the first tasks in all replicas of the subsequent phase
ϕi+1. Formally, for all k′ ∈ {1, . . . , ϕi[λ]} and k′′ ∈ {1, . . . , ϕi+1[λ]},
there is a communication edge from ϕi[π

k′
|Π|] to ϕi+1[π

k′′
1].

The task graph with a phase-sequential structure is formalized as
follows:

Definition 5.2 (Phased Task Graph). A phased task graph modelMPTG

is defined by the ordered set of phases Φ = (ϕ1, . . . , ϕ|Φ|), i.e.,MPTG :=
MPTG⟨Φ⟩.

With the definitions above, the phased task graph application is
specified as A⟨MPTG, Γ,V⟩, where Γ is the set of configuration pa-
rameters, and V is the set of all tasks in the application, including all
replicas resulting from parallelization (cf. Definition 2.4). In the context
of the baseband processing application presented in Section 5.2, the
configuration parameters include Γ = (γPRBs, γmod, γlay, γant), repre-
senting parameters such as the number of PRBs, modulation scheme,
number of layers, and number of antennas. Based on these values, the
parallelization degree ϕ[λ] are determined (as depicted in Figure 5.1).

Each task is annotated with performance and energy data. Specif-
ically, each task π is associated with vector τ⃗ and ε⃗, where π[τi]

and π[ε i] denote the execution latency and energy consumption of
task π on processing element type Ωi (cf. Section 2.3.3). If a task
cannot execute on a particular processing element type Ωi, then
π[τi] = π[ε i] = ⊥.

5.4 efficient mapping algorithm for phased task graphs

For this specialized application model, an efficient mapping algo-
rithm is proposed that leverages the phase-sequential structure of
task graphs. The algorithm takes as input the task graph A with its
inherent structure, the performance-energy data for each task π⟨⃗τ, ε⃗⟩,
the sets of regular processor cores Ψreg and accelerators Ψacc. It maps
tasks to the resources sequentially, processing each phase ϕ ∈ A[Φ] in
order.

The implementation of the mapping for a single phase is presented
in Algorithm 5.1. The algorithm mainly consists of two steps: mapping

5.4 efficient mapping algorithm for phased task graphs 81

Algorithm 5.1 Phased-Fast: Mapping a Single Phase onto Heteroge-
neous Processing Elements

Input: A task graph phase ϕ, regular processing elements Ψreg, accel-
erators Ψacc (Ψreg ∪Ψacc = P [Ψ])

Output: A mapping µϕ :
⋃ϕ[λ]

k=1 ϕ[Πk]→ P [Ψ], phase latency τϕ, phase
energy εϕ

// Initialization
1: Initialize an empty mapping µϕ

2: for all ψ ∈ Ψreg do
3: t[ψ]← ∑π∈ϕ[Π] π[τψ] ▷ Latency of a single replica on ψ

4: T[ψ]← 0 ▷ Total latency on ψ

// Load Balancing on Regular Processing Elements
5: for j ∈ {1, . . . , ϕ[λ]} do
6: ψ∗ ← argminψ∈Ψreg (t[ψ] + T[ψ])
7: T[ψ∗]← T[ψ∗] + t[ψ∗]
8: for all π ∈ ϕ[Π] do
9: µϕ[π j]← ψ∗

// Initialization of Accelerators’ Total Latency
10: for all ψ ∈ Ψacc do
11: T[ψ]← 0
12: for all π ∈ ϕ[Π] do
13: if π[τψ] = ⊥ then
14: T[ψ]← T[ψ] + minψ′∈P [Ψ] π[τψ′] ▷ Initial idle time
15: else
16: break

// Re-Balancing to Accelerators
17: for all π ∈ ϕ[Π] do
18: Ψacc

π ← {ψ ∈ Ψacc | π[τψ] ̸= ⊥}
19: if Ψacc

π = ∅ then
20: continue
21: for j ∈ {1, . . . , ϕ[λ]} do
22: Ψreg

π ← {ψ ∈ Ψreg | ∃k, µ[πk] = ψ}
23: ψreg ← argmaxψ∈Ψreg

π
T[ψ]

24: k← min
{

k ∈ {1, . . . , ϕ[λ]} | µ[πk] = ψreg
}

25: ψacc ← argminψ∈Ψacc
π

T[ψ]
26: if T[ψreg]− π[τψreg] < T[ψacc] + π[τψacc] then
27: break
28: µϕ[πk]← ψacc ▷ Remap πk from ψreg to ψacc

29: T[ψreg]← T[ψreg]− π[τψreg]

30: T[ψacc]← T[ψacc] + π[τψacc]

// Calculate Phase Latency and Energy
31: τϕ ← maxψ∈P [Ψ] T[ψ]
32: εϕ ← ∑π∈ϕ[Π],j∈{1,...,ϕ[λ]} π[εµϕ[π j]]

33: return µϕ, τϕ, εϕ

82 domain-specific hybrid mapping for baseband processing

to regular resources (Lines 5–9), and then reassigning some tasks to ac-
celerators (Lines 17–30). A step-by-step visualization of the algorithm
is provided in Figure 5.4, using Phase 2 of the baseband receiver as
the input model of the task graph phase depicted in Figure 5.3.

The sequence of tasks in a single replica of a phase is independent
of the sequences in the other replicas of that phase (cf. Figure 5.2).
To reduce the communication overhead, it is preferable to map all
tasks to a single regular processing element. At this stage, tasks in
the replica are treated as virtually fused, with the replica latency t[ψ]
computed as the sum of the latencies of its tasks (Line 3). The total
latency of already mapped processes on resource ψ is tracked in T[ψ].

For each replica, the resource ψ that minimizes the total latency
after adding the replica is determined, and the replica is mapped to
it (Lines 5–9). This heuristic aims to balance the total latency across
regular resources Ψreg.

Figure 5.4 illustrates the working of the algorithm for a target
platform with three processing elements: a big core ψbig, a little core
ψlittle and an FFT/IFFT accelerator ψfft. In this example, the mapping
is performed on Phase 2 of the baseband processing application (see
Section 5.2), for which the performance and energy data are shown in
Figure 5.3. The sum of the latencies on a big core is 20, and on a little
core is 32 (the setup and numbers are consistent with the platforms
used in the evaluation in Section 5.6).

Initially, the algorithm maps the first line of replicas to the big core,
as this decision minimizes the maximum delay after assignment (Fig-
ure 5.4a). Similarly, the second line of replicas is assigned to the little
core (Figure 5.4b). After all replica lines are distributed among the
regular resources, the total delays on both resources are roughly equal
(Figure 5.4c).

Next, the algorithm reassigns some of the tasks to accelerators Ψacc.
The latency, T[ψ], ψ ∈ Ψacc, is initialized with the minimum delay
before the accelerator can receive the first task replica (Lines 10–16).
In the example, the minimum delay before the accelerator can receive
the first ifft task equals the minimum delay of mf, which is four
units (Figure 5.4c).

After initialization, the algorithm performs re-balancing of tasks
to accelerators (Lines 22–30). For each task π, the algorithm searches
for the regular resource ψreg with the largest total latency that has at
least one replica of π (Line 23). Remapping occurs if the accelerator’s
total time remains below the largest total latency of regular resources
(Line 26). If multiple accelerators are available, the task is assigned to
the accelerator with the least total latency ψacc (Line 25).

In the example in Figure 5.4, the first candidate for remapping is
selected from the little core, which has the highest total latency, T[ψ].
When the task is moved, the values of T[ψ], ψ ∈ P [Ψ] are update
accordingly (Figure 5.4d). After all ifft tasks are migrated (Figure 5.4e),

5.4 efficient mapping algorithm for phased task graphs 83

mf1 ifft1 wind1 fft1

mf2 ifft2 wind2 fft2

mf3 ifft3 wind3 fft3

mf4 ifft4 wind4 fft4

mf5 ifft5 wind5 fft5

fft/ifftwindmf𝛀	\	𝝅

1235Ωlittle

724Ωbig

3--Ωfft

Figure 5.3: Sample phase of the baseband receiver with the execution laten-
cies of the tasks. The latency values on the resources are taken
from measurements of the LTE PHY benchmark on the Odroid-
XU4 and the FFT kernel on a Xilinx Ultra96 FPGA board (see
Section 5.6).

𝜓fft𝜓big𝜓little𝝍

0200𝑻

(a) Mapping of the first
replica to ψbig

𝜓fft𝜓big𝜓little𝝍

02032𝑻

(b) Mapping of the sec-
ond replica to ψlittle

𝜓fft𝜓big𝜓little𝝍

46064𝑻

(c) Mapping of the re-
maining replicas and
initializing T[ψfft]

𝜓fft𝜓big𝜓little𝝍

76052𝑻

(d) The first ifft task is
moved from ψlittle to
ψfft

𝜓fft𝜓big𝜓little𝝍

193940𝑻

(e) Migrating the remain-
ing ifft tasks to the ac-
celerator

𝜓fft𝜓big𝜓little𝝍

253228𝑻

(f) Moving two fft tasks
to the accelerator;
the algorithm is
completed

Figure 5.4: Step-by-step visualization of the fast mapping algorithm applied
to a phase of the baseband receiver onto a platform with three
resources.

84 domain-specific hybrid mapping for baseband processing

the algorithm continues loading the accelerator with fft tasks until the
stopping condition is reached: the total delay of the accelerator should
not exceed the total delay of the regular processors (Figure 5.4f).

Finally, the phase latency is calculated as the maximum total latency
across all resources (Line 31), and the energy consumption is calculated
as the sum of energy consumptions of each task, according to the
generated mapping (Line 32).

Once all phase mappings µϕ have been computed, the final mapping
is constructed µ ← ⋃

ϕ∈A[Φ] µϕ, with the total latency and energy
calculated as: • ← ∑ϕ∈A[Φ] •ϕ.

Note that the algorithm attempts to distribute the workload over the
resources evenly within each phase, so the platform will process the
workload with an approximately constant progress rate. This property
enhances predictability during runtime scheduling, particularly in
scenarios involving job migrations.

generating pareto-optimal operating points The pre-
sented algorithm describes the generation of a single operating point.
To generate the set of Pareto-optimal operating points, the algorithm
is run for different subsets of the resources P [Ψ], varying the amount
of cores of each particular type Ωi. In the evaluation presented in Sec-
tion 5.6, operating points are generated for all ∏|P(Ωi)|

i=1 (P [ωi] + 1)− 1
combinations of processing resources. Supplying the RM with fine-
grained operating points can improve system utilization. However, if
the platform is too large, this strategy may generate an excessive num-
ber of operating points, which, in turn, increases runtime selection
overhead. To reduce runtime overhead, distillation heuristics could be
applied.

limitations Algorithm 5.1 has several limitations. First, the algo-
rithm does not consider communication delays, which is an intentional
choice for the sake of simplicity. Second, the algorithm assumes that
the platform has a regular power model; that is, the dynamic power
usage of the cores is constant, and the energy consumption of tasks
mapped to a specific core is proportional to latency. As a result, the
mappings generated by this algorithm are not guaranteed to be Pareto-
optimal. However, as demonstrated in Section 5.6, they nevertheless
result in effective mappings.

5.5 spatio-temporal mapping reusing previous solutions

As described in Section 5.2, most UE requests must be processed
within 2.5 ms, except for URLLC requests, which have a deadline of
0.5 ms. Given such tight deadlines, a resource management algorithm
needs to be extremely fast to construct spatio-temporal mappings.

5.5 spatio-temporal mapping reusing previous solutions 85

This section introduces an extension to the MMKP-MDF algorithm
presented in Section 4.3.1. Recall that in MMKP-MDF, the RM selects
the operating point for each job request including those that were
previously accepted. This approach considerably increases runtime
overhead, critical for the baseband processing application.

To address this issue, a modified version of the algorithm, called
MMKP-MDF-Reuse, is proposed. This algorithm reduces overhead by
reusing previously generated spatio-temporal mappings.

Algorithm 5.2 MMKP-MDF-Reuse: MMKP-MDF with reuse of prior
solutions
Input: Job requests Σ, platform P , Pareto-optimal operating points
Oσ[A]

opt for each σ ∈ Σ, current spatio-temporal mapping Kold
Output: New spatio-temporal mapping K

1: J⃗ ← P [ω⃗] ·max(σ[θ] | σ ∈ Σ) ▷ Initialize the capacities
2: K ← Kold ▷ Initialize K with Kold (for new jobs, M[σ] = ⊥)
3: for all σ ∈ Σ do
4: opc[σ]← ⊥
5: for i ∈ {1, . . . , |K|} do
6: if K[Mi][σ] ̸= ⊥ then
7: opc[σ]← K[Mi][σ] ▷ Reuse operating point
8: J⃗ ← J⃗ − (1− σ[ρ]) · opc[σ][τ] · opc[σ][ω⃗]

9: break
10: Σrem ← {σ ∈ Σ | opc[σ] = ⊥}
11: while Σrem ̸= ∅ do
12: σ∗, CL← NextJobMDF(⃗J,

{
⟨σ,Oσ[A]

opt ⟩ | σ ∈ Σrem

}
)

13: while σ∗ ∈ Σrem do
14: if CL = ∅ then
15: Σrem ← Σrem \ σ∗ ▷ Reject σ∗

16: continue
17: o∗ ← argmino∈CL{o[ε]}
18: opc∗ ← opc; opc∗[σ∗]← o∗

19: K∗ ← ConstructSTM(Σ, opc∗,P)
20: if K∗ ̸= null then
21: opc← opc∗; K ← K∗; Σrem ← Σrem \ σ∗

22: J⃗ ← J⃗ − (1− σ∗[ρ]) · o∗[τ] · o∗[ω⃗]

23: else
24: CL← CL \ o∗

25: return K

Algorithm 5.2 outlines the modified approach. The algorithm gener-
ally follows the same steps as MMKP-MDF in Algorithm 4.1, with key
differences in how it initializes and updates the operating points and
spatio-temporal mappings.

First, the spatio-temporal mapping K is initialized with the current
mapping Kold (Line 2). In Lines 3–9, the algorithm examines Kold,

86 domain-specific hybrid mapping for baseband processing

populates opc with selected operating points (Line 7), and updates
resource-time capacities J⃗ (Line 8).

In Line 10, the set Σrem includes the newly arrived jobs (i.e., not
previously mapped). These jobs are mapped in the main loop (Line 11),
similar to the original algorithm described in Section 4.3.1. There is
a difference in how the algorithm handles jobs for which no feasible
spatio-temporal mapping is found. If no feasible operating point for a
job σ∗ is found, the algorithm excludes it from the set of remaining
jobs (Line 15), effectively rejecting the job. Unlike MMKP-MDF, this
algorithm does not terminate here but continues to map the remaining
jobs.

5.6 evaluation

A virtual prototype was developed to evaluate the proposed algo-
rithms for generating operating points and spatio-temporal mappings,
leveraging domain-specific knowledge of the baseband processing ap-
plication. Implemented as a plugin1 to the Mocasin prototyping tool,
the prototype integrates a virtual platform, an LTE physical layer up-
link receiver application model, and an implementation of the hybrid
mapping strategy described in the previous sections.

The prototype was created and validated using measurements ob-
tained from realistic LTE traffic workloads. Using this virtual pro-
totype, simulations were conducted to compare the hybrid strategy
with other approaches. In addition to modeling the real platform,
the virtual prototype enables evaluation on a wider range of virtual
platforms by varying the number of cores or accelerators.

The remainder of this section is organized as follows. Section 5.6.1
details the platform models used. Section 5.6.2 outlines the workload
model and LTE traffic trace characteristics. Section 5.6.3 evaluates
the Phased-Fast algorithm for generating operating points, while
Section 5.6.4 shows how hybrid approaches using the MMKP-MDF-
Reuse mapping algorithm enhance performance and energy efficiency
in baseband processing.

5.6.1 Platform Setup

The virtual prototype was developed and simulated using the Mo-
casin prototyping tool (described in Section 2.5). This framework
allows the definition of virtual platforms and simulation of work-
load execution in an LTE uplink receiver using various mapping and
scheduling strategies.

The platform model is based on the Hardkernel Odroid-XU4 board
featuring a heterogeneous Exynos 5422 big.LITTLE chip with four
ARM Cortex-A15 and four ARM Cortex-A7 cores, fixed at frequencies

1 https://github.com/tud-ccc/mocasin-fivegsim

https://github.com/tud-ccc/mocasin-fivegsim

5.6 evaluation 87

of 1.8 GHz and 1.5 GHz. Although this platform does not provide suf-
ficient computational power to meet the high demands of general LTE
base stations, it serves as a readily available heterogeneous platform
for experimentation and extrapolation. Furthermore, the Odroid-XU4

platform has been used in power-efficient implementations of LTE
femtocells [34].

For power modeling, each processor core is assumed to operate in
one of two modes: run and idle [217]. If the core is not executing a
task, it is placed in idle mode and consumes only static power. Tasks
execute only in run mode, during which power consumption includes
the dynamic component (see Section 2.1.3). Table 5.1 summarizes the
power and frequency characteristics of the cores.

Table 5.1: Platform core frequency and power characteristics

Parameter Cortex-A7 Cortex-A15 FFT Accelerator

Frequency 1500 MHz 1800 MHz 300 MHz

Static power 140.3 mW 214.8 mW —

Dynamic power 320.2 mW 1319.6 mW 62.5 mW

To obtain a power model of the Odroid-XU4, power consumption
measurements were conducted using a ZES Zimmer LMG450 Power
Analyzer connected to the DC input with a readout rate of 20 Sa/s.
CPU stressors from the stress-ng tool2 were executed on different
subsets of the platform’s cores to measure dynamic power consump-
tion. Static power was obtained from the SLX Tool Suite’s commercial
platform models, and an additional 763.3 mW was added to account
for the static power consumption of other platform components.

Based on the data for individual cores, the original Odroid platform
was extrapolated to create virtual platforms with a larger number of
cores, up to eight cores of each type. To evaluate the impact of special-
ized accelerators, a virtual FFT accelerator was created and optionally
included in the platform (up to two instances in the experiments).
Performance and power characteristics of the FFT accelerator were
derived from measurements on a Xilinx Ultra96 FPGA board. Due to
overestimated idle power on the FPGA, the experiments report only
dynamic energy consumption.

5.6.2 Workload Model

The workload in the virtual prototype is modeled as phased task
graphs depicted in Figure 5.2 and derived from the PHY bench-
mark [178], an open-source LTE uplink receiver implementation. Each
graph instance represents the workload for processing one UE, with

2 https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html

https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html

88 domain-specific hybrid mapping for baseband processing

size and structure depending on parameters such as the number of
PRBs, layers, and modulation scheme.

Execution times are derived from measurements of each compu-
tational kernel in the PHY benchmark on the Odroid-XU4 for all
parameter combinations. These measurements provide a detailed exe-
cution time model for each task.

During simulations, instances of the task graphs are dynamically
generated based on workload traces that detail the UEs in each sub-
frame. These graphs are then mapped to the available processing
elements, and the execution of the workload is simulated.

To simulate realistic workloads, LTE traffic traces from real base sta-
tions were used [35]. Each trace captures a sequence of subframes over
a specific time period, detailing the UEs processed in each subframe
along with their parameters. These traces, recorded over 15 days,
include real data with over 1.2 million Radio Network Temporary
Identifiers (RNTIs) from different base stations.

Table 5.2: Characteristics of LTE traffic traces used for evaluation. Traces
trace1-trace4 are real LTE traffic traces, while trace0 is con-
structed by removing heavy UEs.

Trace Number of
UEs

Non-empty
Subframes

Average
PRBs

Max. PRBs
in Subframe

trace0 587 543 10.96 48

trace1 688 603 17.21 100

trace2 1473 1197 24.67 100

trace3 1577 1342 31.95 100

trace4 2091 1736 54.83 100

For simulations, the first 5000 subframes from four different base
stations with varying levels of activity were used. Additionally, a syn-
thetic trace (trace0) was constructed by modifying trace1 to exclude
UEs with a large number of PRBs, ensuring all UEs meet their dead-
lines on the evaluated platforms. The goal of this trace is to separate
the energy savings obtained from rejecting UEs from those gained
from more efficient resource utilization.

The main characteristics of the traces are summarized in Table 5.2.
In all traces, the numbers of antennas and layers are fixed to four. As
a result, all UEs have the same number of tasks: 150 (cf. Figure 5.1).

5.6.3 Generation and Estimation of Operating Points

In Section 5.4, an algorithm was introduced to generate (approximately
Pareto-optimal) operating points for all valid combinations of proces-

5.6 evaluation 89

sor resources in the platform. The algorithm also estimates the latency
and energy of each generated mapping.

The proposed method is evaluated in two perspectives. First, the
estimated latency and energy values are validated against simulations.
Second, the algorithm is compared with other approaches regarding
generation overhead and operating point quality.

5.6.3.1 Energy-Performance Data Validation

To validate performance and energy estimations, the generated values
are compared with simulation results from Mocasin. Using Algo-
rithm 5.1, a total of 12000 operating points were generated. This
includes 24 operating points for each of 500 different types of UEs,
varying the number of PRBs and the modulation scheme.

Figure 5.5: Validation of the estimated execution time and energy consump-
tion values obtained with the Phased-Fast algorithm on the
Odroid-XU4 platform.

Figure 5.5 shows the validation points on the Odroid-XU4 platform.
The plots include only points where the simulated time does not
exceed the highest deadline for processing a UE, namely 2.5 ms. The
blue line indicates perfect correlation, and the red line shows the
result of linear regression. The figure shows that the values obtained
in the fast estimation exhibit high accuracy. The energy estimations
are nearly ideal, whereas execution time estimations show slightly
higher dispersion, which can be attributed to the lack of modeling of
communication delays.

Since the Resource Manager (RM) relies on accurate execution time
values, an effective execution time is calculated as a linear function of
the estimated time: τeff = a · τest + b. The RM is simulated on a sample
trace with different values of a and b, and the values that minimize the
number of UE rejections and deadline misses are selected. Figure 5.5
shows the effective time with green lines, closely aligning with the
top edge of the validation points. This indicates that the formula for
effective execution time slightly overestimates the actual execution
times, thereby improving predictability at runtime.

90 domain-specific hybrid mapping for baseband processing

5.6.3.2 Comparison with State-of-the-Art Mapping Methods

The proposed Phased-Fast heuristic is compared with other design-
time mapping methods. To this end, different mapping algorithms are
executed to generate static mappings for UEs with workloads ranging
from 5 to 100 PRBs. For each of these UEs, five different mapping
heuristics are applied:

• Phased-Fast: The proposed domain-specific heuristic.

• Genetic: A multi-objective evolutionary algorithm [58].

• Simulated Annealing: A heuristic based on [141].

• Tabu Search: A heuristic based on [121].

• Static CFS: A simple but fast load-balancing heuristic based on a
static version of the Linux CFS [142]

The mapping algorithms are evaluated by three measures:

1. Exploration Time: The execution time of the mapping algorithm
itself, representing the design-time overhead.

2. Mapping Runtime: The execution time of the UE in the simulation,
measuring the quality of the mapping.

3. Mapping Energy Consumption: The energy consumption of the
UE in the simulation, representing another measure of quality
in this multi-objective setting.

Figure 5.6: Comparison of design-time mapping algorithms for the baseband
processing application relative to the Phased-Fast heuristic as
baseline.

Figure 5.6 presents the comparison of the design-time mapping
heuristics, using Phased-Fast as the baseline (indicated by the dot-
ted line). By showing the relative values, this approach allows for a
uniform comparison across different workloads of the UEs. In terms
of exploration time, Phased-Fast is the fastest heuristic, taking just
0.36 s in median. Among the other heuristics, only static CFS is not
a metaheuristic (i.e., it does not iteratively evaluate mappings). As a

5.6 evaluation 91

result, it is the only one that is comparatively fast, being approximately
0.5 % slower than Phased-Fast in median.

In terms of mapping quality, only the simulated annealing heuris-
tic produces results comparable to the domain-specific Phased-Fast
heuristic. While the mappings from Phased-Fast are slightly faster,
they also consume slightly more energy. Overall, the mapping quality
of these two heuristics is comparable and significantly better than
the other state-of-the-art heuristics for this problem. However, the
simulated annealing heuristic, which produces comparable results,
is approximately four orders of magnitude slower than Phased-Fast.
Due to the large parameter space of UEs and the enormous number
of tasks in the task graphs, fast mapping heuristics are crucial, even at
design time.

5.6.4 Energy-Efficient Runtime Mapping

Runtime resource management algorithms are evaluated based on
their ability to execute UEs within real-time constraints, energy con-
sumption, and resource utilization. Resource utilization is measured
as the number of processing elements required to achieve a given
performance level.

In these evaluations, the design-time mapping algorithm is fixed to
Phased-Fast, and the following runtime algorithms are compared:

• Work-Stealing: A baseline scheduler similar to one used in the
PHY benchmark [178]. Tasks are initially assigned to per-core
queues of general-purpose cores. Worker threads execute tasks
from their own queues, and when empty, they steal tasks from
other queues. Accelerators operate without dedicated queues
and always steal tasks of a specific type (e.g., FFT) from the
general-purpose resources’ queues.

• MMKP-LR: A spatial mapping algorithm using Lagrangian Re-
laxation (with up to 1000 iterations) [207]. The spatio-temporal
mapping is constructed by applying this algorithm segment by
segment.

• MMKP-MDF: The fixed-point spatio-temporal mapping algo-
rithm described in Section 4.3.1.

• MMKP-MDF-Reuse: The proposed variant of MMKP-MDF that
reuses solutions from previous algorithm runs (Section 5.5).

First, all methods are evaluated on two fixed platforms, namely
Odroid-XU4 and a virtual platform with two FFT accelerators. Then,
resource utilization is evaluated by varying platform sizes. The section
concludes with an analysis of runtime overhead.

92 domain-specific hybrid mapping for baseband processing

5.6.4.1 Evaluation on Fixed Platforms

Figure 5.7 presents results for the Odroid-XU4 platform using LTE
traces from Table 5.2. The left plot shows the percentage of UEs
successfully executed within the real-time deadline. In general, all
three hybrid approaches outperform the Work-Stealing scheduler,
especially under high workloads. On trace4, MMKP-MDF-Reuse
reaches up to 29.8 % better success rate than Work-Stealing. Compared
to the other hybrid schedulers, MMKP-MDF-Reuse performs slightly
better on three out of four real LTE traces; however, the differences are
minimal.

Figure 5.7: Successfully executed UEs and energy efficiency on Odroid-XU4

In terms of energy efficiency, the hybrid approaches exhibit substan-
tial dynamic energy savings over Work-Stealing, ranging from 54.1 %
to 78.7 % on the real LTE traces. Even on trace0, where all UEs meet
their deadlines, MMKP-MDF-Reuse demonstrates a 32.7 % energy
savings by selecting energy-efficient configurations. The differences
between the hybrid approaches are minor, with MMKP-MDF-Reuse
achieving a maximum of 3.2 % better energy efficiency under the most
intensive workload.

Total energy savings (right plot of Figure 5.7) follow a similar pat-
tern, with hybrid approaches saving between 4.9 % and 38.5 % com-
pared to Work-Stealing, depending on the workload intensity. These
savings highlight the effectiveness of hybrid approaches in leveraging
energy-efficient configurations and reducing rejected requests under
high workloads.

On a virtual platform augmented with two FFT accelerators (Fig-
ure 5.8), the hybrid approaches also deliver comparable results. MMKP-
MDF-Reuse accepts 4.3 % fewer requests than the baseline on the least
demanding real trace, trace1. However, on all other traces, MMKP-
MDF-Reuse outperforms the baseline, achieving improvements of up
to 24.6 % in Quality of Service (QoS), while reducing dynamic energy
consumption by 43.5 % to 75.5 % across the traces. Due to the absence
of an accurate static power model for the accelerators, total energy
savings are not reported.

5.6 evaluation 93

Figure 5.8: Successfully executed UEs and energy efficiency on a virtual
platform with accelerators

5.6.4.2 Varying the Amount of Resources

The success rates reported in Figures 5.7 and 5.8 are unacceptably low
for production-level LTE baseband processing. Even with increased
cores in a virtual platform, these configurations fail to meet the de-
mands of modern LTE systems.

In real base stations, QoS requirements stipulate a minimal success
rate that must be met. Therefore, comparing the success rate of the
approaches is not conclusive. To address this, in this experiment, the
success rate is controlled by increasing the number of Cortex-A7 and
Cortex-A15 in the virtual platform. To compare the approaches, in-
stances with similar success rates (within a difference of 2 %) were
matched and analyzed for relative energy consumption and resource
utilization. This method yielded 112 distinct points, grouped in pairs
that achieved the same performance with different numbers of re-
sources and energy consumption values.

Figure 5.9: Relative dynamic energy consumption and resource utilization of
the hybrid mapping approach while controlling for the success
rate.

Figure 5.9 compares the hybrid mapping algorithms to Work-Steal-
ing, with the baseline set to one. The MMKP-MDF-Reuse algorithm
achieves a median dynamic energy consumption that is only 35.2 %
relative to Work-Stealing, with a comparable resource utilization of

94 domain-specific hybrid mapping for baseband processing

82 %. This result demonstrates that the hybrid mapper’s ability to
deliver the same performance with slightly fewer resources while
consuming significantly less dynamic energy.

Compared to MMKP-MDF-Reuse, MMKP-LR and MMKP-MDF
achieve slightly less dynamic energy but require 11 % and 1 % more
resources, respectively. The performance differences are negligible, but
the main advantage of MMKP-MDF-Reuse lies in its reduced runtime
overhead, further evaluated in Section 5.6.4.3.

Figure 5.10: Relative total energy consumption of the hybrid mapping ap-
proach while controlling for the success rate on virtual platforms
without accelerators.

Due to the absence of a static energy model for the accelerators,
Figure 5.10 presents results only for virtual platforms without ac-
celerators. Here, MMKP-MDF-Reuse achieves a median total energy
consumption of 74.1 % compared to Work-Stealing, underscoring its
energy efficiency even without specialized hardware.

5.6.4.3 Runtime Overhead Analysis

The hybrid approaches significantly improve the energy efficiency of
baseband processing. However, the more complex spatio-temporal
mapping incurs additional runtime overhead.

Figure 5.11 presents the average execution time per RM activation
on the Odroid-XU4 for all hybrid approaches. These values are not
directly comparable with the execution times of the benchmark; they
are measured on a prototype implementation written in Python 3

using Mocasin and executed on a system with a 3.40 GHz Intel Core
i7-6700 CPU and 32 GB RAM. However, the relative execution times
between the heuristics are comparable since they are all implemented
within the same framework.

As shown in the figure, the mapping overhead of MMKP-MDF and
MMKP-MDF-Reuse is significantly smaller than that of MMKP-LR,
exhibiting at least 99.5 % reduction across all LTE traces. Comparing
the MMKP-MDF-based approaches, the proposed MMKP-MDF-Reuse
algorithm requires less execution time. Moreover, the speedup grows
with workload intensity, from 20.8 % on the lightest trace0 to 37.7 %

5.7 synopsis 95

Figure 5.11: Average runtime overhead per RM activation on Odroid-XU4

on the heaviest trace4. These results highlight the positive impact of
the proposed modifications to the spatio-temporal mapping algorithm.

While the proposed algorithm outperforms other hybrid approaches,
the absolute values of the runtime overhead remain too high for a
real baseband processing system. As mentioned above, the current
prototype is executed with the Python interpreter, causing significant
overhead. It is expected that a production-ready mapping algorithm
implemented in a low-level programming language could execute
10–200× faster.

5.7 synopsis

This chapter demonstrates the potential of HAM methodologies to ad-
dress the demands for flexibility and energy efficiency in baseband pro-
cessing. By leveraging the computational structure of task graphs and
refining the scheduling methodology, the proposed domain-specific
approach effectively scales to the complexities of baseband processing
kernels.

The evaluations highlight significant improvements. At design time,
the Phased-Fast mapping algorithm generates mappings of compa-
rable quality to those obtained by the state-of-the-art simulated an-
nealing algorithm, but those mappings were generated almost four
orders of magnitude faster. At runtime, hybrid approaches, includ-
ing the proposed MMKP-MDF-Reuse algorithm, consume about a
third of the dynamic energy compared to a work-stealing scheduler,
while maintaining the same success rates on equivalent hardware
resources. Furthermore, MMKP-MDF-Reuse achieves a runtime over-
head reduction of up to 37.7 % compared to other hybrid mapping
strategies.

This work serves as a proof-of-concept, showing the applicabil-
ity and benefits of HAM methodologies in baseband processing. To
fully demonstrate its viability, future research could focus on further
optimizing compile-time Pareto point selection to reduce runtime over-
head, exploring integration of voltage-frequency scaling for additional

96 domain-specific hybrid mapping for baseband processing

energy saving, and evaluating the approach on more advanced 5G and
beyond baseband workloads, as well as higher-performing platforms.

6
E X T E N D I N G K A H N P R O C E S S N E T W O R K S W I T H
A D A P T I V I T Y

This chapter shifts the focus from adaptivity at the resource man-
agement level to adaptivity at the application level. To fully utilize
available resources, applications have to adapt their execution to align
with the decisions made by the RM. General HAM methodologies typ-
ically focus on thread-to-core pinning, leaving applications agnostic
to the concrete mapping. Additionally, many applications lack mecha-
nisms for adaptivity, limiting their ability to make internal adjustments
and leading to suboptimal resource utilization.

As discussed in Section 2.3.1, Kahn Process Network (KPN) is a
widely used dataflow Model of Computation (MoC) in embedded sys-
tems due to its expressiveness and deterministic execution guarantees.
However, KPNs have limitations in adaptivity. Their deterministic
properties, based on Kahn-MacQueen execution semantics, restrict
scheduling flexibility and enforce rigid communication patterns. Fur-
thermore, KPNs are ill-suited to expose data-level parallelism, as their
application topology is statically defined and cannot be changed at
runtime.

To address these issues, this chapter proposes an extension that
introduces implicit parallelism into the KPN execution model while
preserving its formal semantics. By relaxing the Kahn-MacQueen ex-
ecution semantics and reverting to the original semantics of KPNs,
runtime adaptivity can be enhanced without sacrificing determin-
ism. This proposed extension, termed Adaptive Process Network (APN),
introduces malleable runtime adaptivity and implicit parallelism, im-
proving application scalability and resource utilization.

The chapter begins with a motivational example in Section 6.1,
illustrating the adaptivity limitations of KPN applications. Section 6.2
introduces the application model of APNs. Section 6.3 presents the
DPM library, which provides runtime support for APN applications
by managing configurations and enabling communication with the
RM. Section 6.4 evaluates the benefits of APNs in improving execution
on HMAs. The chapter ends with a synopsis in Section 6.5.

A Note on Publications and Contributions

An early version of the implicit data-parallel extension to KPNs, in-
cluding the motivational example, application model (featuring par-
allel processes), figures, and results, was previously published in
Khasanov, Goens, and Castrillon, “Implicit Data-Parallelism in Kahn

97

98 extending kahn process networks with adaptivity

Process Networks: Bridging the MacQueen Gap,” 2018 [99]. Since then,
the application model has been extended to include parallel regions,
and the DPM library was developed. While the main ideas, the APN
application model, and the DPM runtime library were conceptualized
and developed by the author of this thesis, the implementation of
the DPM library was carried out by Fabius Mayer-Uhma and Dylan
Gageot.

6.1 limitations of kpns : a motivational example

Consider a KPN application that calculates the Mandelbrot set, de-
picted in Figure 6.1. In this process network, a source process (SRC)
divides the complex plane into lines and sends these lines to four
worker processes (W1-W4). Each worker calculates the convergence or
divergence of points in its assigned lines and sends the results to a
sink process (SNK), which reassembles the lines to output the complete
Mandelbrot set.

W1

W2

W3

W4

SRC SNK

Figure 6.1: KPN application calculating the Mandelbrot Set with four worker
processes.

While this example showcases how the KPN model can express par-
allelism, it also highlights significant limitations regarding adaptivity.

The first limitation is that KPNs lack implicit data-level parallelism
semantics. To achieve data parallelism, application developers have
to explicitly define the parallel structure of the process network at
compile-time. In the Mandelbrot example, the four worker processes
(W1-W4) represent this explicit parallelism.

The second limitation arises from the deterministic execution of each
process. In the example, the source process (SRC) operates according
to a deterministic program that specifies the sequence of write events
to each of its output FIFO channels. While the workload is usually
distributed evenly, this can lead to load imbalances if workload units
differ in computational complexity or when worker processes run on
heterogeneous processing elements.

Similarly, the sink (SNK), which reads the results from the worker
processes, follows a deterministic sequence of read events. This con-
straint is more stringent due to the Kahn-MacQueen blocking-read

6.1 limitations of kpns : a motivational example 99

semantics. Under these semantics, a process with multiple input chan-
nels must read in a predetermined static order. If the first channel
in this order does not have data available, the process blocks, even if
other channels have data ready to be processed. This behavior leads
to suboptimal execution and poor load balancing among processes.

t

W1

W2

W4

W3

𝑇!
𝑇"
𝑇#

𝑇$

𝑇% 𝑇&
𝑇' 𝑇!(

𝑇) 𝑇!!

𝑇* 𝑇!"

t

W1

W2

W4

W3

𝑇!
𝑇"
𝑇#

𝑇$

𝑇%

𝑇&𝑇'

𝑇!(

𝑇)

𝑇!!𝑇*

𝑇!"

∆t

(a) Static token distribution

(b) Dynamic token distribution

Figure 6.2: Gantt charts illustrating (a) suboptimal scheduling in the static
KPN model and (b) improved scheduling with dynamic workload
distribution

These limitations are illustrated in Figure 6.2, which shows a Gantt
chart of the execution of the four workers calculating 12 different
tokens (lines). In the static KPN model (Figure 6.2a), the deterministic
nature and fixed workload distribution lead to poor load balanced
among workers. Some workers may finish their assigned tasks earlier
and remain idle while other are still processing. In contrast, Figure 6.2b
shows a different workload distribution achieved by assigning tasks
to workers as they become available. Such a strategy allows for better
load balancing and faster execution.

These limitations have several consequences:

• Reduced Portability: Programmers have to generate a specific net-
work topology for each target platform, considering the number
of available processors and their characteristics.

• Rigidity in Resource Utilization: Explicit network topologies are
rigid (Section 3.4) and cannot adapt to variations in available re-
sources at runtime. If the number of processing elements changes
because of other applications, the static process network cannot
adjust.

• Inefficient Execution on Heterogeneous Platforms: Even in homoge-
neous systems, variation in token processing times can cause im-
balances, requiring dynamic workload distribution. On HMAs,
where cores differ in performance and energy characteristics,
this need extends to a broader class of applications, including
those with uniform processing times.

100 extending kahn process networks with adaptivity

• Limited Compiler Optimization: The inability of the KPN model
to capture semantic information about data-parallel execution
makes it challenging to design a holistic approach for optimiz-
ing parallelism. As a result, tuning data parallelism cannot be
integrated into the compiler and falls on the programmer’s re-
sponsibility.

Given that data parallelism is a common type of parallelism, ad-
dressing these issues is crucial for leveraging the full capabilities of
modern systems.

6.2 adaptive process network

To overcome the limitations of KPNs, the Adaptive Process Network
(APN) model is proposed to introduce implicit data-level parallelism
and enhance adaptivity while preserving deterministic execution of
KPNs. The APN model consists of several components: parallel regions,
which are special nodes in the process network that encapsulate a
subnetwork of process and can be replicated at runtime; and paral-
lel channels, which facilitate communication between the replicated
parallel regions and the rest of the network. By employing a consis-
tent strategy for distributing and collecting tokens, the APN model
achieves deterministic semantics. Furthermore, the dynamic distribu-
tion strategy offers two key adaptivity features: adaptivity at workload
distribution and malleability.

6.2.1 Parallel Regions

The Adaptive Process Network (APN) model extends the standard
KPN by introducing a new type of node called a parallel region. From
an external viewpoint, a parallel region functions like a regular KPN
process: it has input and output ports to which channels are connected,
and the entire region reads tokens from input channels and produces
tokens on output channels.

Internally, however, a parallel region contains its own subnetwork
of processes and communication channels. This internal subnetwork
comprises processes connected by channels that are classified as either
intra-region channels — connecting processes within the region — or
boundary channels — connecting internal processes to the region’s input
and output ports.

At runtime, a parallel region can be replicated, allowing the work-
load to be distributed among multiple instances of the region. Each
replica operates independently, with no communication channels be-
tween processes in different replicas. This replication enables implicit
data-level parallelism in the process network.

Figure 6.3 illustrates an example of an APN application with a
parallel region. In Figure 6.3a, the application model shows a parallel

6.2 adaptive process network 101

A B C D

(a) An application model with a parallel
region consisting of two processes.

A

B1 C1

D

B2 C2

(b) A runtime topology where the re-
gion is duplicated into two replicas.

Figure 6.3: An APN application with a parallel region consisting of two
processes: an application model and a runtime topology.

region containing two processes, while in Figure 6.3b, the runtime
topology depicts the parallel region duplicated into two replicas that
can execute in parallel.

Not all processes can be included within a parallel region. The exe-
cution of regular KPN processes may depend on the data read from
their input channels, and their communication patterns may vary dur-
ing execution. Moreover, KPN processes can be stateful, meaning that
the processing of a token may depend on the processing of previous
tokens. Including such processes in a replicated parallel region could
lead to incorrect behavior due to unintended dependencies across
replicas.

Therefore, specific requirements must be met for a process to be
included within a parallel region:

1. Constant Input and Output Rates: The process must behave as an
actor with constant rates, similar to actors in dataflow models
with firings [107]. This means that the process consumes and
produces a fixed number of tokens on each of its input and
output channels during each execution. The exact number of
tokens does not need to be the same across different channels
but must remain constant for each channel.

2. Statelessness: The process must be stateless, implying that its
output depends only on the current input tokens and not on
any internal state or previous executions. This ensures that there
are no dependencies between different iterations of the process,
allowing replicas to process data concurrently without interfer-
ence.

Processes meeting these conditions can be safely replicated and
executed in parallel within a parallel region without causing inconsis-
tencies or violating the deterministic semantics. Actors in Synchronous
Dataflow (SDF) [109] naturally meet these requirements, as they are
stateless and have constant production and consumption rates. While
these conditions are sufficient, they are not strictly necessary. The
approach could, in principle, be extended to accommodate actors with
cyclic rates, such as those in Cyclo-Static Dataflow (CSDF) [21].

102 extending kahn process networks with adaptivity

With above requirements, the subnetwork within a parallel region
becomes an open SDF network. For correct operation, the SDF sub-
network must be consistent. This means it can execute repeatedly
without accumulating unbounded tokens on any channel or causing
deadlocks [108].

Since the processes in a parallel region may have different firing
rates on different channels, it is necessary to determine the minimum
workload unit that is independent from other workload units. Every
consistent SDF graph can be transformed into a HSDF graph, in
which actors consume and produce one token on each input and
output channel at each firing [186]. During this transformation, a
repetition vector q⃗ = [q1, q2, . . . , qn]⊤ is calculated, where each element
qi specifies the number of times actor πi must fire in one full iteration
of the subnetwork, so that the network returns to its initial state.
Using this repetition vector, it is possible to determine the number of
tokens on each input and output boundary channel that belongs to a
minimum workload unit assignable to a single replica of the parallel
region.

6.2.2 Parallel Channels and Workload Distribution

When a parallel region is replicated into multiple instances, these
instances need to be connected with the predecessors and successors
of the region. In the standard KPN model, each FIFO channel connects
to a single process on each side. However, with multiple instances of
a parallel region, the channels connecting to these instances involve
multiple processes on one side, requiring a different approach.

To handle this, split and interleave primitives are introduced. Split
primitives distribute tokens among the instances of the parallel region,
while interleave gather tokens from all instances back into a single
channel. The split-interleave functionality can be implemented in
several ways: as additional processes, within the predecessors and
successors of the parallel region, or as part of the channels themselves.

In the APN execution model, special parallel channels are introduced,
which implement the split and interleave primitives. These parallel
channels are specialized FIFO channels that allow tokens to be read
or written based on their identifier, potentially in out-of-order fashion.

To maintain the original KPN semantics and preserve token order,
coordinated access to parallel channels at the boundaries of parallel
regions is essential. In the APN execution model, a shared region man-
ager keeps track of the assignment of workload units to replicas. When
a process in a parallel replica is ready to process the next workload
unit, it requests its identifier from the region manager using its replica
identifier. The process then determines which tokens to read from or
write to in the parallel channels based on this identifier, identifying
their exact positions in the channel buffers. This mechanism ensures

6.2 adaptive process network 103

W1

W2

W2

W1

T1T3
T5

T2

T4T6

Input parallel FIFO Output parallel FIFO

(a) Static token distribution

W2

W1

T1T3
T4

T2

T5T6

Input parallel FIFO Output parallel FIFO

(b) Dynamic token distribution

Figure 6.4: Distribution strategies for split-interleave primitives

that the consumer of the output channel reads tokens in the correct
order, as if only a single replica were executing, thus preserving the
deterministic behavior of the application.

Figure 6.4 illustrates static and dynamic strategies to distribute
tokens among replicas. Figure 6.4a depicts a static assignment of
tokens to workers in a round robin fashion. In this example, tokens
T1 and T3 have already been processed by worker W1, which is now
processing T5. In contrast, W2 is slower and still executing T2, causing
a load imbalance.

Figure 6.4b illustrates a dynamic distribution strategy. In this case,
there is no static assignment of tokens. Instead, tokens are assigned to
replicas dynamically as they become available. Since W2 takes a long
time executing T2, tokens T3 and T4 are assigned dynamically to W1.
This allows for better load balancing, as faster workers can process
more tokens, leading to improved overall performance.

The dynamic distribution of tokens to replicas introduces a key
adaptivity feature in the APN model, which is particularly beneficial
on heterogeneous hardware platforms like HMAs or when some cores
are shared with other applications. This adaptivity is also advanta-
geous when the workload depends on the data, causing significant
variation in execution time between firings.

In both static and dynamic distribution scenarios, the interleave
primitive maintains the correct ordering of tokens in the output. This
demonstrates that, despite the relaxation introduced by parallel chan-
nels, the control provided by the region manager guarantees the
deterministic execution of the entire APN application. This property is
valuable, as many assumptions used in the many analysis methodolo-

104 extending kahn process networks with adaptivity

gies (see Section 2.5 and [42, 147, 150]) implicitly rely on determinism.
For example, it enables compatibility with trace-based simulation
approaches, such as described in Section 2.3.3.

6.2.3 Malleability

Another important adaptivity feature offered by APN with dynamic
distribution is malleability (see Section 3.4 and [63]). In the context of
parallel applications, a regular KPN with static data parallelism is
considered rigid, as the number of parallel processes is specified by
the user at compile time. An APN application with static distribution
enhances flexibility by allowing the system to decide the parallelization
degree at startup, making the application moldable. However, static
distribution strategy does not allow changing the number of replicas
during execution.

APN application with a dynamic distribution policy removes this
restriction, enabling malleability. Since tokens are not pre-assigned
to replicas in advance, creating and terminating replicas becomes
straightforward. New replicas can join and begin processing workload
units from the input channels, while terminating replicas can complete
their current workload units and stop requesting new ones.

To ensure stability and correctness, reconfigurations must be per-
formed safely. In addition to maintaining the distribution strategy,
the region manager is responsible for managing the replica instances.
When new instances need to be created, the region manager generates
runtime instances of the processes and intra-region channels according
to the template network defined in the parallel region and connects
the parallel channels to the newly created processes. The threads exe-
cuting the processes in the new replicas are started, and they begin
pulling workload units.

When a replica needs to be terminated, abrupt termination is unde-
sirable, as processes may be in the middle of processing a workload
unit, leading to data loss and inconsistent states. Instead, the region
manager marks the replica for deletion. Marked replicas are allowed
to complete their current workload units but will not receive new ones.
When the processes in this replica attempt to request a new workload
unit, they receive a terminating signal, exit their processing loops, and
terminate. Once all processes in the replica have finished, the replica
is removed from the runtime application graph.

This approach ensures that the application can dynamically ad-
just its parallelization degree while maintaining correct output. In
Section 6.3, the runtime library providing an interface to the RM is
introduced. This library allows dynamic changes to the number of
replicas, thereby making the application malleable.

6.3 dynamic process manager (dpm) library 105

6.3 dynamic process manager (dpm) library

The Dynamic Process Manager (DPM) is a C++ runtime library designed
for managing and executing Adaptive Process Networks (APNs). It
provides essential functions enabling the creation, management, and
execution of APN applications.

APN Builder
API

APN Topology

Configuration
Manager

RM Mediator

Configuration
Reader

Region
Managers

Pthread
Processes

FIFO
Channels

Parallel
Channels

Runtime Topology

Programmer Interface

Runtime Management

Primitive Objects

External
Interface

Figure 6.5: Overview of the Dynamic Process Manager (DPM) library

Figure 6.5 provides an overview of the DPM library’s component
and functionality. First, it offers a C++ Application Programming
Interface (API) for developers to define an APN application, specify-
ing their topologies and process body implementations. This API is
detailed in Section 6.3.1.

Second, DPM provides the primitives needed to build and manage
the runtime topology of the application. This includes implementa-
tions of FIFO and parallel channels, process wrappers using pthreads1,
and region managers to handle parallel regions. The runtime topology
construction is described in Section 6.3.2.

Finally, DPM acts as a runtime manager, handling application con-
figurations, which specify the number of replica and the mapping of
processes to cores. A central configuration manager coordinates with
region managers and maintains information about available config-
urations. It also interacts with an external Resource Manager (RM)

1 https://man7.org/linux/man-pages/man7/pthreads.7.html

https://man7.org/linux/man-pages/man7/pthreads.7.html

106 extending kahn process networks with adaptivity

to align application configurations with the RM decisions. This is
described in Section 6.3.3.

6.3.1 Programmer Interface

DPM provides a C++ API for defining and implementing APN appli-
cations, including both their topologies and the logic of individual
processes. Listing 6.1 shows an example implementing the topology
of an APN application that calculates the Mandelbrot set.

Listing 6.1: Building APN topology with DPM

1 #include <Dpm/Manager.h>

2 using namespace Dppm;

3

4 // Process body definitions are hidden

5

6 int main(int argc, char* argv[]) {

7 auto manager = Manager::GetInstance();

8 auto testApp = manager->CreateApplication();

9

10 // Construct APN topology

11 auto mainRegion = testApp->MainRegion();

12

13 auto in1 = mainRegion->AddChannel<int>();

14 auto out1 = mainRegion->AddChannel<std::array<int, WIDTH>>();

15

16 mainRegion->AddKpnProcess(" Init ", Init, {}, {in1});

17

18 auto parallelRegion = mainRegion->AddParallelRegion(

19 "pr1", InputChannels{in1}, OutputChannels{out1});

20 parallelRegion->AddSdfProcess("CalcLines", CalcLines,

21 {parallelRegion->InputChannel<0>()},

22 {parallelRegion->OutputChannel<0>()});

23

24 mainRegion->AddKpnProcess("Display", Display, {out1}, {});

25

26 // Start APN

27 manager->RunApplication(testApp.get());

28

29 return 0;

30 }

In this code, Lines 7–8 retrieve the DPM manager singleton and
create a new application. The application topology construction begins
with a main region (Line 11), where communication channels (in1 and
out1) are created (Lines 13–14). These channels carry tokens of type
int and std::array<int, WIDTH>, respectively.

6.3 dynamic process manager (dpm) library 107

In Line 16, the KPN process Init is added to the main region via
AddKpnProcess(). The arguments include the process name, a pointer
to the process function, and lists of input and output channels. Similar
steps apply to the Display process (Line 24).

Line 18 creates a parallel region pr1 with one input port (connected
to in1) and one output port (connected to out1). Inside the region,
an SDF process CalcLines is added and connected to the region’s
boundary channels via InputChannel<0>() and OutputChannel<0>()

(Line 20).

Listing 6.2: KPN process definition with DPM

1 void Init(Application* app, InputRTChannels<>, OutputRTChannels<

int> out) {

2 auto [outChannel] = out;

3 for (int i = 0; i < HEIGHT; i++) {

4 outChannel->Push(i);

5 }

6 }

In addition to defining the topology, the programmer must also
provide the logic of the processes. Listing 6.2 shows an example
of a KPN process definition. The KPN process signature includes a
pointer to the application, and wrappers for input and output channels.
Channel wrappers (InputRTChannels<> and OutputRTChannels<int>)
use templates to specify the types of connected channels.

In this example, Init has no input channels and one output channel
of type int. Within the function body, Line 2 extracts the runtime
output channel from the wrapper, and the function writes a sequence
of integers into the output channel by calling Push.

Listing 6.3: SDF process definition with DPM

1 std::tuple<std::array<int, WIDTH>> CalcLines(int y) {

2 std::array<int, WIDTH> retVal;

3 for (int x = 0; x < WIDTH; x++) {

4 retVal[x] = calc(x, y);

5 }

6 return {retVal};

7 }

Listing 6.3 shows the definition of an SDF process, CalcLines. In
SDF processes, arguments specify input tokens, while return values
(in a std::tuple) define output tokens. This structure is different
from KPN processes, where the function signature includes runtime
channels, and the process explicitly pulls and pushes token from and to
these channels. SDF processes are restricted to a single firing operation

108 extending kahn process networks with adaptivity

per call, ensuring stateless behavior and constant rates as discussed in
Section 6.2.1. Consequently, explicit pull and push operations are not
required in the process code; instead, these operations are handled by
the SDF wrapper functions.

The current DPM implementation limits SDF processes to reading
and writing a single token per firing, making them effectively HSDF
actors. Future extensions may support SDF with different firing rates.

This example demonstrates how to define APN applications using
the DPM library. By relying on C++ templates and compile-time type
checking, the DPM library ensures that channel types and process
signatures match. Programmers only need to specify the topology and
process logic, while DPM handles creating the runtime topology and
managing application configurations.

6.3.2 Runtime Topology

Once the APN application is built, DPM’s manager creates the runtime
application graph. For each regular process in the model, a correspond-
ing runtime process is created. For each channel connecting regular
processes, a FIFO channel is instantiated.

For each parallel region, DPM creates a region manager and spawns
the required number of replica instances according to the chosen con-
figuration (see Section 6.3.3). Each replica instance includes runtime
processes and FIFO channels corresponding to the subnetwork defined
within the parallel region. At the boundaries of parallel regions, DPM
creates parallel channels (as discussed in Section 6.2.2) to connect
replicas to external processes.

When the application starts executing, region managers and par-
allel channels coordinate workload distribution across replicas. With
the dynamic distribution strategy, the application efficiently balances
load, adapts to variations in performance, and preserves deterministic
semantics.

6.3.3 Configuration Management

DPM also manages application’s runtime configurations, including
the number of replicas and process-to-core assignments. These config-
urations are provided in a YAML file, as illustrated in Listing 6.4.

In the mapping_template of the YAML file, the programmer lists
the top-level processes and the parallel regions with their internal pro-
cesses. The mappings section then lists distinct runtime configurations.
Each mapping entry specifies (1) the process-to-core assignments for
the non-parallel processes (under processes), and (2) the number of
replicas and the process-to-core assignments for each replica of the
parallel regions (under par_regions).

6.3 dynamic process manager (dpm) library 109

Listing 6.4: Sample YAML configuration file

1 a p p l i c a t i o n : mandelbrot
2 platform : odroid
3 type : dpm
4 mapping_template :
5 processes : [I n i t , Display]
6 par_regions :
7 pr1 : [CalcLines]
8 metadata : [execution_time , energy]
9 mappings :

10 − name : mapping1

11 processes : [ARM00, ARM00]
12 par_regions :
13 pr1 :
14 − [ARM00]
15 metadata : [1 0 0 , 250]
16 − name : mapping2

17 processes : [ARM00, ARM00]
18 par_regions :
19 pr1 :
20 − [ARM01]
21 − [ARM02]
22 − [ARM03]
23 metadata : [6 0 , 260]
24 − name : mapping3

25 processes : [ARM00, ARM00]
26 par_regions :
27 pr1 :
28 − [ARM00]
29 − [ARM01]
30 − [ARM02]
31 − [ARM03]
32 − [ARM04]
33 − [ARM05]
34 − [ARM06]
35 − [ARM07]
36 metadata : [2 0 , 300]

In the example, mapping1 allocates one replica of the pr1 region
mapped onto core ARM00. mapping2 defines three replicas for pr1, each
assigned to different cores (ARM01, ARM02, ARM03). mapping3 increases
this further to eight replicas for pr1, achieving the maximum resource
utilization on the Odroid-XU4 platform.

The configuration file may also provide extra metadata such as exe-
cution times and energy consumption estimations for each mapping.
Although DPM itself does not directly utilize these metadata fields,
it can forward them to an external Resource Manager (RM) to guide
runtime decisions.

Users can specify a particular mapping from this file at startup.
If connected to an RM, DPM passes the configuration data through
an RM Mediator component (depicted in Figure 6.5). When the RM

110 extending kahn process networks with adaptivity

decides to switch mappings (i.e., select a different operating point), it
sends a command back to DPM, which then applies the correspond-
ing reconfiguration to the running application. In this work, DPM
integrates with HARP, the RM introduced in the next Chapter 7,
demonstrating how both components cooperate to enable adaptive,
energy-efficient, and performance-optimized APN applications at run-
time.

6.4 evaluation

The effectiveness of the proposed APN application model is evaluated
with a focus on its impact on performance and adaptivity across
varying execution conditions.

6.4.1 Experimental Setup

All experiments were conducted on a Hardkernel Odroid-XU4 board
featuring a Samsung Exynos 5422 big.LITTLE chip with four Cortex-
A15 (big) cores and four Cortex-A7 (little) cores, running at 2.0 GHz
and 1.4 GHz, respectively, with 2 GB of LPDDR3 RAM.

The benchmark used is the calculation of the Mandelbrot set, as
described in Figure 6.1 and Listing 6.1. It consists of two KPN pro-
cesses (source and sink) and a parallel region containing a single SDF
process. The processes in the parallel region calculate points in an
iterative manner, where the number of iterations depends on the point
itself, i.e., data-dependent. This characteristic makes the benchmark
suitable for evaluation data parallelism more thoroughly, since the
execution time per point varies. Figure 6.6 shows the number of iter-
ations needed for each point, visually revealing the Mandelbrot set
structure.

Figure 6.6: Iterations per point in the Mandelbrot set

For comparison, two versions of the application are used:

• KPN Version: Implemented with manually introduced data par-
allelism and hard-coded split/interleave functionality in the
processes, using static workload distribution. Different degrees

6.4 evaluation 111

of parallelization are achieved by creating separate versions with
different number of replicas.

• APN Version: Implemented using parallel channels and the dy-
namic workload distribution strategy.

Two problem sizes are used: 4000× 3000 for initial experiments with
static configurations (Section 6.4.2) and 8000× 6000 for adaptivity-
related experiments (Section 6.4.3). In all scenarios, parallel workers
are assigned to distinct cores, while source and sink remain unpinned.

6.4.2 Performance Scalability with Parallelization

The first set of experiments evaluates how both implementations scale
on the Odroid-XU4 when varying the number and type (big vs. little)
of parallel workers.

Figure 6.7: Throughput on Odroid-XU4 for different configurations of little
and big cores as parallel workers. The approximated errors are
shown in parentheses.

Figure 6.7 presents the throughput (in pixels/second) for all combi-
nations of big and little cores assigned to parallel workers. In homoge-
neous scenarios, where only big or only little cores are used, both the
KPN and APN versions achieve similar throughput. However, when
mixing big and little cores, the APN version outperforms the static
KPN version by up to 78.0 %.

A clear illustration of the static approach’s limitations arises when
comparing a configuration four big workers to a configuration with
four big and four little workers. Despite using fewer total cores, the
four-big-worker configuration outperforms the mixed-core config-
uration by 36.8 %. In the static approach, slower workers become
stragglers, reducing the entire system’s throughput.

112 extending kahn process networks with adaptivity

To quantify this observation, consider the following approximations
for total throughput. For the static KPN:

THstat
total ≈

THlittle × (b + l) if l > 0

THbig × b if l = 0
(6.1)

Here, l and b are the number of little and big workers, respectively.
For the dynamic version, in which all cores are utilized fully:

THdyn
total ≈ THlittle × l + THbig × b (6.2)

In Figure 6.7, the relative error of this approximation is shown in
parentheses, and dashed lines indicate equally-performing configura-
tions for the static KPN. For configurations in which the big cluster is
not fully utilized, the relative error does not exceed 3.44 %. However,
when the big cluster is fully utilized, the relative error increases to
11.79 %, largely due to thermal constraints preventing the big cluster
from sustaining high frequencies.

These results demonstrate that in the static approach, a rigid exe-
cution model allows slower workers to impede overall performance,
while the dynamic approach offered by APN mitigates this issue by
adapting the workload distribution at runtime.

6.4.3 Runtime Adaptivity

After examining static configurations, the next experiments focus on
runtime adaptivity, including both workload distribution adaptivity
and malleability.

6.4.3.1 Workload Distribution Adaptivity

In this scenario, the benchmark runs on four little cores. At runtime, a
second application (a sorting task) starts after 15 s, causing contention
by sharing one of the little cores. Another instance of this sorting
application starts 17 s later.

Figure 6.8 shows throughput over time. For reference, the dotted
lines depict performance without contention. The KPN version suffers
a dramatic throughput drop as soon as contention arises, because one
worker becomes a severe bottleneck that slows all the other workers. In
contrast, the APN version only sees a slight reduction in performance.
Its dynamic distribution lets faster workers handle more tokens, mit-
igating the impact of the slowed-down worker. Note that the high
throughput at the beginning and the end of the execution corresponds
to computing regions far from the Mandelbrot set (see Figure 6.6).

6.5 synopsis 113

Figure 6.8: Effect of contention on performance. Dotted lines indicate perfor-
mance without contention.

6.4.3.2 Malleability: Changing Parallelization at Runtime

Finally, the ability of the APN application to adjust its parallelization
degree during execution is tested. This feature is not available in the
KPN version.

Figure 6.9: Dynamic reallocation of resources at runtime

Figure 6.9 shows the evolution of throughput over time. The exe-
cution begins with two little workers. At 15 s, four big workers are
added (marked by 1). 13 s later, three big and one little worker are
removed (2).

The plot illustrates how the APN application seamlessly adapts to
resource availability changes. It fully utilizes resources when present
and scaling efficiently when they are no longer available.

6.5 synopsis

This chapter introduced the Adaptive Process Network (APN) ap-
plication model, an extension to KPNs that enables adaptive data-
parallelism while maintaining deterministic execution. The core contri-
bution is the introduction of parallel regions, which encapsulate process
subnetworks. These regions can be replicated at runtime, and their
communication with the rest of the application is handled through
parallel channels, which allow out-of-order token access by parallel repli-

114 extending kahn process networks with adaptivity

cas. Deterministic semantics are preserved through split-interleave
strategies, carefully controlled by region managers.

Additionally, the DPM library was presented. This library provides
a C++ API for programmers to define APN applications; it constructs
the runtime topology using built-in process wrappers, channels, and
region managers; and it manages application configurations.

The evaluation demonstrated that this approach can improve per-
formance by up to 78.0 % on a heterogeneous Odroid-XU4 platform.
The dynamic nature of the APN model ensures efficient resource
utilization, avoiding bottlenecks caused by straggling processes and
overcoming the rigidity of standard KPN semantics.

By extending adaptivity to the application level, the APN model
complements resource-level adaptivity. The next Chapter 7 introduces
HARP, an RM solution that integrates these capabilities to achieve co-
ordinated adaptivity at both the resource management and application
levels.

7
C O O R D I N AT I N G A D A P T I V I T Y I N
G E N E R A L - P U R P O S E E N V I R O N M E N T S

In the previous chapters, the focus primarily centered on embedded
scenarios, reflecting the early adoption of Heterogeneous Multi-core
Architectures (HMAs) in that domain. Today, however, HMAs have
entered the domain of powerful desktop and server computers, ne-
cessitating research into resource management for modern operating
systems. Although OS schedulers have begun adapting to heteroge-
nous CPUs, as discussed in Section 3.2.2, they typically rely on simple
cost-based thread allocation strategies and fail to fully utilize the
potential of this hardware.

This chapter introduces HARP (Heterogeneity-aware Adaptive Re-
source Partitioning), a Linux-integrated resource management frame-
work designed to optimize execution on heterogeneous processors. A
key contribution is a simple interface that enables efficient two-way
communication between the Resource Manager (RM) and applications.
This interface allows HARP to learn the application characteristics
through online monitoring that generates Pareto-optimal operating
points at runtime, leveraging principles inspired by HAM methodolo-
gies, which rely on these operating points for optimization. With this
knowledge, HARP can allocate resource more effectively and informs
applications about its decisions, enabling them to further adapt to the
assigned resources.

The chapter begins by motivating the necessity of two-way com-
munication channel between the RM and applications in Section 7.1.
Next, Section 7.2 discusses the challenges of applying HAM method-
ologies to general-purpose environments. Section 7.3 presents the
HARP system architecture and libharp client library, which facili-
tates communication between the RM and diverse application models.
Section 7.4 details the runtime exploration of operating points for
previously unknown workloads. Section 7.5 provides an extensive
evaluation of HARP on two HMAs: the Odroid-XU3-E and the Intel
Raptor Lake Core i9-13900K. The chapter ends with a synopsis in
Section 7.6.

A Note on Publications and Contributions

Most of the content in this chapter, including discussion, HARP design,
runtime exploration of operating points, figures, and results, was
previously published in Smejkal, Khasanov, Castrillon, and Härtig,

115

116 coordinating adaptivity in general-purpose environments

E-Mapper: Energy-Efficient Resource Allocation for Traditional Operating
Systems on Heterogeneous Processors, 2024 [180].

The work presented in this chapter is a collaborative effort with
Till Smejkal (Chair of Operating Systems, TU Dresden). The system’s
design and overall approach were developed collaboratively, with
each contributor focusing on different core components. Till Smejkal
designed and developed the HARP and libharp components, estab-
lishing the two-way communication protocol, integrating support for
Intel TBB and OpenMP, and implementing performance and energy
monitoring.

The author of this thesis focused on the resource allocation algo-
rithm, online exploration of operating points (including regression
model evaluation and selection), integrating libharp within the DPM
library to support KPN and APN applications, and developing a
custom wrapper for TensorFlow (implementation of the TensorFlow
wrapper by Marc Dietrich).

Both contributors continuously refined the integrated solution through
iterative discussions and joint evaluations.

7.1 need for two-way communication

The emergence of HMAs in general-purpose desktop and server sys-
tems poses challenges for resource management within operating
systems. Such management must be fast and efficient, which is why
modern OS schedulers typically rely on heuristics (Section 3.2.2).

As discussed in Section 1.2, there are two key facets of adaptivity:

1. Resource managers must account for an application behavior
characteristics to optimize core allocation.

2. Applications must dynamically adapt their execution to chang-
ing resource allocations at runtime.

Regarding the application behavior characteristics, Figure 7.1 illus-
trates that different applications benefit from different core types and
their combinations. The figure presents two NAS Parallel Benchmark
applications running on an Intel Raptor Lake Core i9-13900K.

For bt.C (Figure 7.1a), performance and power consumption scale
smoothly with increasing core counts, particularly towards the upper
right corner, indicating benefits from using both P-cores and E-cores.
In contrast, cg.C (Figure 7.1b) does not benefit from more resources,
especially when they are heterogeneous core combinations. In fact,
its power consumption (size of the dot) increases with higher core
counts without increasing performance (color of the dot). Here, cg.C
performs significantly better on configurations that primarily use a
homogeneous subset of the cores.

Conventional OS schedulers (Section 3.2.2) generally overlook such
fine-grained behavioral differences. They allocate resources at the

7.1 need for two-way communication 117

(a) bt.C (b) cg.C

Figure 7.1: Performance and power consumption of two applications on an
Intel Raptor Lake Core i9-13900K with varying configurations.
Each dot represents an application configuration with its thread
distribution across E-cores (x-axis) and P-Hyperthreads (y-axis).
Dot size reflects power consumption, and color indicates perfor-
mance (darker blue for higher performance). Points highlighted
with black circles represent Pareto-optimal configurations based
on resource usage and an energy-utility cost metric (as defined
later in Section 7.3.2.2).

thread level and often ignore the collective impact on the application
performance. For heterogeneous platforms, a more holistic approach
is needed — one that integrates knowledge of application behavior
directly into its resource allocation strategy.

On the other side of the adaptivity challenge is the application
itself. To fully leverage available resources in a dynamic environment,
applications must adapt their execution at runtime. For data-parallel
applications like those in Figure 7.1, optimal performance is typically
achieved when the number of threads matches the allocated cores.
Running more threads than cores introduces scheduling overhead and
potential issues such as lock-holder preemption, while running fewer
threads leaves resources underutilized.

An additional example of the need for adaptivity is demonstrated
in the previous chapters with KPN applications, which cannot adjust
their parallelization degree dynamically. Furthermore, it was shown
that static distribution strategy also fail to balance parallel workers
running across heterogeneous cores. As a result, energy-efficient cores
take longer to execute, leaving the high-performance cores under-
utilized. The proposed APN application model address both these
issues.

Beyond these examples, applications might exploit other forms of
adaptivity: redistributing cores across different pipeline stages, se-
lecting different algorithms based on the core types, or employing
other application specific adaptivity features [155, 156, 166]. While the

118 coordinating adaptivity in general-purpose environments

adaptivity features vary widely, a common requirement emerges: ap-
plications must be aware of their assigned resources to make informed
adaptation decisions.

Enabling these scenarios requires coordination between a RM and
applications. Ideally, the RM would dynamically provide information
on resource allocations to applications, enabling them to optimize
their resource usage proactively. At the same time, the RM should be
informed of the application’s behavior characteristics and adaptivity
capabilities to better allocate the resources. This two-way communi-
cation between RMs and applications is essential to orchestrate both
system-level and application-level optimizations.

7.2 adapting ham methodologies

The proposed resource management approach, HARP, draws inspi-
ration from Hybrid Application Mapping (HAM) methodologies. As
explored in this thesis, HAM leverages application behavior char-
acteristics through provided Pareto-optimal operating points (see
Section 2.4.1). These points include information about application con-
figurations, mappings, and non-functional characteristics that reflect
application behavior.

However, applying HAM to general-purpose environments intro-
duces several new challenges.

generating operating points In traditional HAM approaches,
applications are often known a priori, enabling Design Space Explo-
ration (DSE) to generate operating points during the design stage.
While the previous section argued that applications should provide
their behavior characteristics (i.e., operating points) to the RM through
a communication channel, it cannot be assumed that all applications
will do so. Operating points may not be available for every application,
and it is unclear whether users or developers should generate them.
Developers would face the impractical challenge of performing DSE
across varying system configurations, while users cannot be expected
to pre-execute applications to generate these points.

execution-time variability Applications behave differently
depending on their inputs, affecting execution time and energy con-
sumption. Estimating these non-functional characteristics for every
input is impractical. Although some embedded systems approaches
distinguish between “data scenarios” [183, 184], predicting completion
times for general applications is as intractable as solving the halting
problem. Furthermore, applications that run continuously, such as web
browsers, require a shift from metrics like execution time and energy
consumption that depend on the input size to instant metrics such as

7.3 harp design 119

utility (e.g., Instructions Per Second (IPS)) and power consumption.
This leads to the next issue.

defining utility Defining a universal utility metric for differ-
ent applications is challenging. From the OS perspective, treating
applications as black boxes limits utility to measurable metrics like
executed instructions, which may not accurately reflect performance.
For instance, busy-waiting loops can inflate instruction count without
contributing useful work. More meaningful performance metrics, such
as transactions per second, would need to be provided directly by the
application.

HARP addresses these issues by utilizing the HAM methodology
in a following way. First, it leverages instant non-functional charac-
teristics that do not depend on data input size. Second, it provides
a mechanism to obtain application-specific utility information via
the communication channel between HARP and applications (as dis-
cussed in Section 7.1). Finally, it introduces a novel component that
performs quick exploration of application configurations through an
online monitoring tool and generates operating points at runtime. This
approach effectively transitions the design-time component of HAM
to runtime.

7.3 harp design

The Heterogeneity-aware Adaptive Resource Partitioning (HARP) resource
management framework introduced here builds upon principles from
Hybrid Application Mapping (HAM) methodologies. Like HAM,
HARP utilizes application descriptions in the form of operating points.
Unlike traditional HAM, however, HARP does not rely solely on
design-time analysis; instead, it also generates operating points through
online monitoring.

To coordinate resource management across diverse application mod-
els, HARP provides a libharp library, which works in tandem with
the HARP Resource Manager (RM). Figure 7.2 shows the HARP’s
management approach. A single instance of the HARP Resource Man-
ager (RM) oversees all managed applications, while each application
links with libharp, a client library that mediates communication be-
tween the RM and the adaptation.

The HARP RM makes high-level decisions on resource allocations
and core affinities, working alongside the OS scheduler, which handles
lower-level thread scheduling according to these decisions. The RM
adjusts allocations dynamically whenever applications start, exit, or
other system events occur. These decisions are guided by hardware
descriptions (1) and by application operating points, either parsed
from application descriptions (2) by libharp or derived at runtime via
HARP’s fast exploration heuristics (5), further detailed in Section 7.4.

120 coordinating adaptivity in general-purpose environments

cg.C
libharp

bt.C
libharp

P P P P

P P P P

E E

E E

E E

E E

P P P P

P P P P

E E

E E

E E

E E

Operating
Points 𝒪!!

Hardware
	

HARP
Manager

Perf & Power
Monitoring

𝒪!"

Operating Point
Exploration

utility 𝜐

Socket

1

2

3

3

4

5

Figure 7.2: Overview of the HARP management approach and system design
with two example applications.

7.3.1 Application Support via libharp

libharp serves as an intermediary between the RM and applications,
handling tasks like application registration, adjusting application con-
figurations based on the RM triggers, and providing utility metrics.
While it uses a standardized communication protocol to ensure effec-
tive runtime adaptations, libharp can manage applications differently
based on their supported resource types (Section 7.3.1.2) and adaptiv-
ity (Section 7.3.1.3).

7.3.1.1 Communication Protocol

libharp communicates with the RM through a simple interface that
is handled using protobuf1 messages over Unix sockets. Figure 7.3
illustrates a typical interaction between the managed application and
the HARP RM:

1. Registration Request: Upon startup, libharp initializes the connec-
tion with the RM by sending a registration request through the
RM’s Unix socket. This request includes the application’s PID
and the supported resource type (Section 7.3.1.2). At this point,
libharp also creates a dedicated Unix socket for receiving push
messages from the RM.

2. Operating Points and Utility Subscription: After registration, the
application sends available operating points from the applica-
tion description file (2) to the RM. Along with that, the library
indicates further available functionality depending on the appli-
cation adaptivity type (Section 7.3.1.3), for example that it can
provide real-time utility metrics.

3. Operating Point Activation: After completing the initial setup,
the RM generates a new resource allocation. It communicates

1 https://protobuf.dev/

https://protobuf.dev/

7.3 harp design 121

1

2

3

4

HARP
Manager

Hardware
	

cg.C
libharp

Operating
Points 𝒪!!

Startup &
socket init

Startup Read
description

Resource
allocation

Apply
configuration

Reconfigure Run Run

re
gi

st
er

se
nd

_c
on

fi
gs

(c
fg

s)

ut
il

it
y
𝜐

ac
ti

va
te

_c
on

fi
g(

cf
g)

re
qu

es
t_

ut
il

()

ut
il

it
y
𝜐

re
qu

es
t_

ut
il

()

4

Figure 7.3: Typical control flow between a managed application and the
HARP resource manager.

this decision to libharp, specifying the selected operating point
and its allocation on the processing resources (3). The library
will accordingly update the application configuration to the
provided resources. Such reconfiguration messages from the RM
not only happen at the startup of the application but can also
occur whenever the RM is triggered.

4. Utility Feedback: If the utility feedback feature was indicated, the
RM periodically requests the current utility from libharp (4) to
refine its operating point models and improve allocations (5).

7.3.1.2 Resource Allocation Types

libharp supports two types of resource allocations, differing by map-
ping granularity.

• Coarse-grained allocations: Define an extended resource vector in-
dicating the number of cores (and their hardware threads) al-
located per core type. For example, if an application uses 4

E-cores and 3 P-cores (which support simultaneous multithread-
ing), where two of the P-cores use two hardware threads each
and the third only one, the extended resource vector would
be [PST, PHT, E]⊤ = [1, 2, 4]⊤. This extended resource vector is
defined for the entire application, implying a uniform thread
distribution.

• Fine-grained allocations: Define more detailed mappings by as-
signing each application thread to a specific core in the system.
These points may also include application configurations that
can be adjusted at runtime via adaptivity knobs.

The distinction between coarse- and fine-grained resource allo-
cations stems from their differing strengths and trade-offs. Coarse-
grained allocations are simpler since only different core combinations

122 coordinating adaptivity in general-purpose environments

have to be distinguished, offering a fixed and uniform structure across
applications. This simplicity allows the HARP RM to explore operat-
ing points at runtime (Section 7.4). In contrast, fine-grained allocations
define a much larger and more complex search space, making online
exploration impractical.

At the same time, fine-grained mappings are specialized for more
complex application structures and may encode internal application
configurations. Notably, the RM does not receive a detailed infor-
mation about thread-to-core mapping and configurations. Instead,
libharp communicates only the extended resource vector containing
the required hardware resources, just as with coarse-grained alloca-
tions.

7.3.1.3 Application Adaptivity Types

In HARP, applications are categorized into three adaptivity types:
static, scalable, and custom.

static applications Static applications lack runtime adaptation
mechanisms and have fixed internal structures, making them rigid
(Section 3.4). Both fine-grained and coarse-grained allocation types
can be applied to such applications. Fine-grained allocation maps
individual threads to specific cores, while coarse-grained restricts the
entire application to a subset of the cores.
libharp provides native support for static applications, with auto-

matic registration to the RM upon library load. Thread management is
achieved by intercepting pthread_*() functions. A drawback, however,
is that performance can degrade if the number of threads exceeds the
allocated cores, as the OS scheduler will time-multiplex the assigned
cores among the threads.

scalable applications Scalable applications support some
form of runtime scaling. Libraries such as OpenMP and Intel TBB
enable implicit data-level parallelism, making these applications in-
herently scalable. Since parallel worker threads in these applications
usually perform the same operations on different data, they naturally
support coarse-grained resource allocations.

Typically, the parallelization degree is fixed at the launch, classi-
fying these applications as moldable (Section 3.4). libharp extends
them to be malleable, allowing their parallelization degree to be ad-
justed at runtime using a built-in adaptivity knob. For example, in
OpenMP, libharp hooks into the GOMP_parallel function to mod-
ify the num_threads variable, ensuring that the number of worker
threads matches the hardware threads allocated by HARP RM. This
adjustment prevents time-sharing processor cores, which the static
applications may suffer from.

7.3 harp design 123

Additionally, libharp can manage applications with their own scala-
bility knob in a similar manner. For example, a custom wrapper library
developed for TensorFlow [56], utilized in the evaluation (Section 7.5),
implements this functionality on the application side.

custom applications Custom applications extend libharp for
application-specific adaptations, typically employing fine-grained allo-
cations. A prime example is Adaptive Process Network (APN) appli-
cations, which use the DPM library for runtime support (Chapter 6).
Linked to libharp, DPM receives the selected configuration from
HARP RM through the RM mediator component (Figure 6.5). This
integration enables dynamic scaling specific parallel regions and fine-
grained resource allocation across different regions.

Other custom extensions might leverage the communicated resource
allocations by selecting alternative algorithms, using specialized code
paths, or handling ISA-extension differences between core types. This
flexibility makes libharp suitable to a wide range of application-
specific adaptation mechanisms.

7.3.1.4 Making Applications HARP-ready

Most static and scalable applications are supported by libharp out-
of-the-box, without requiring additional modifications. The library
automatically detects supported runtime libraries and application
threads, adapting them through function hooks.

For custom adaptations, developers need to extend a libharp-
internal interface to handle resource allocation updates and implement
the reconfiguration logic based on the provided information. libharp
invokes this mechanism, passing the operating point and resource
allocation to the custom adaptation extension for reconfiguration.
Similarly, developers can also provide utility metric feedback by im-
plementing a corresponding interface in the library.

7.3.2 Resource Allocation

The HARP RM allocates heterogeneous resources to concurrently
running applications, balancing their resource needs while optimizing
system energy efficiency.

7.3.2.1 Non-Functional Characteristics

As discussed in Section 7.2, HARP relies on instant metrics — utility
and power consumption — annotated in each operating point (cf.
Figure 7.1). The power consumption metric, η[p], represents the average
power attributed to the application, while the utility metric, η[υ],
quantifies the useful work performed by the application.

124 coordinating adaptivity in general-purpose environments

Utility can be measured using generic metrics such as Instructions
Per Second (IPS), obtained from perf, or application-specific metrics
like transactions per second, which more accurately reflect meaningful
work. Utility data may come from description files or from a running
application via the utility feedback interface.

To account for varying interpretations and magnitudes of utility
across applications, HARP normalizes utility by dividing it by the
maximum observed value for the application, denoted as η[υ∗].

7.3.2.2 Energy-Efficient Resource Allocation

HARP generates a spatial multi-application mapping as defined in
Section 2.4.2.2. Similar to state-of-the-art spatial resource allocation
techniques (Section 3.3), HARP formulates this as an optimization
problem, as described in Definition 2.14.

To balance energy efficiency and performance, HARP uses an energy-
utility cost η[ζ], which is derived from the traditional Energy-Delay
Product (EDP) formula [124, 144]. Assuming utility is inversely pro-
portional to delay, the energy-utility cost is defined as:

η[ζ] =

(
η[p]
η[υ∗]

)
·
(

1
η[υ∗]

)
(7.1)

Before solving the optimization problem, HARP applies Pareto
filtering to the operating points, retaining only the non-dominated
subset with respect to the following objectives: the values in the
extended resource vector (as defined in Section 7.3.1.2) and the energy-
utility cost.

The optimization problem is then solved using a state-of-the-art ap-
proximation algorithm based on Lagrangian relaxation. This approach
solves the problem under relaxed constraints, selects the final operat-
ing points meeting resource constraints, and finally assigns resources
to applications, ensuring no overlap. The implementation is inspired
by the work of Wildermann et al. [206, 207].

limitations The algorithm may fail to find suitable operating
points for some applications due to prior allocations. While it op-
timizes resource costs to avoid exceeding available resources, such
situations are unavoidable when the number of managed applications
exceeds the number of available resources. In such cases, HARP tem-
porarily relaxes the resource constraint (Equation (2.16)), allowing
applications to execute in co-allocation. Since co-allocation adversely
affects performance, HARP disables performance monitoring during
these periods.

7.4 runtime exploration of operating points 125

7.4 runtime exploration of operating points

As highlighted in Section 7.2, applications running on desktops and
servers usually lack predefined application descriptions with oper-
ating points, or available points may be imprecise due to hardware
variations. To address this, HARP integrates runtime exploration of
operating points, a synergy between Design Space Exploration and
Runtime Resource Management. This integration addresses several
challenges.

First, accurate online measurements of utility and power consump-
tion are essential for determining operating point characteristics dur-
ing application execution. For applications without specific utility
metrics, Instructions Per Second (IPS) serves as a generic utility mea-
sure. Both utility and power metrics, however, are inherently variable
due to factors such as measurement noise and the dynamic behavior
of applications, including shifts between sequential and parallel stages
or between compute- and memory-intensive stages. These fluctua-
tions necessitate periodic re-evaluation to ensure robust and reliable
operating points. This online monitoring component is discussed in
Section 7.4.1.

Second, exhaustive exploration of all possible operating points at
runtime is impractical. Instead, HARP relies on both actual mea-
surements and approximations for unexplored operating points. By
employing a regression model, HARP accelerates the identification of
the Pareto front with a limited number of measurements. The model
is continuously refined as new data becomes available, efficiently en-
suring robustness of the identified Pareto-optimal operating points.
Section 7.4.2 provides an evaluation of different regression models
used in this process.

Third, runtime exploration must seamlessly integrate into the HARP
RM, ensuring that it does not compete with other concurrently run-
ning applications for processor cores. This integration requires allo-
cating sufficient resources to new applications, providing them with
substantial solution space for exploration without compromising the
performance of existing workloads.

To achieve this, HARP RM incorporates operating point explo-
ration directly into its resource allocation algorithm. The algorithm
distributes resources between applications, ensuring that those in
the exploration stage have enough cores to evaluate potential config-
urations. Additionally, the exploration process guides the selection
of operating points for measurement within the allocated resources,
using continuous performance monitoring and regression models
to dynamically adjust configurations. This approach accelerates the
identification of robust Pareto-optimal operating points while main-
taining efficient resource utilization and optimizing overall system

126 coordinating adaptivity in general-purpose environments

performance. Details on the exploration algorithm are presented in
Section 7.4.3.

7.4.1 Runtime Performance and Power Monitoring

Accurate runtime performance monitoring is essential for refining
Pareto fronts. When applications provide their own utility metric,
HARP RM bases its algorithm on these values. Otherwise, HARP
utilizes the Linux perf subsystem2 to monitor IPS as a generic util-
ity measure. With appropriate configuration, perf can automatically
multiplex measurements across applications.

For power consumption, HARP relies on built-in power sensors
available in modern systems, such as the Running Average Power
Limit (RAPL) counters on Intel machines. Since these counters typi-
cally measure system-wide energy rather than per application, HARP
builds atop EnergAt [80], which estimates per-application power usage
by combining RAPL data with thread execution metrics.

To handle heterogeneous systems, the EnergAt approach was ex-
tended to account for different core types. This extension introduces
power coefficients (PP = γ · PE, determined offline) to attribute total
energy consumption (ECPU

∆) to P-cores (EP
∆) and E-cores (EE

∆), based
on CPU time:

ECPU
∆ = EP

∆ + EE
∆ = TP

total · PP + TE
total · PE (7.2)

where TP|E
total represents the total CPU time on P-cores and E-cores,

respectively. Using this model, HARP estimates EP
∆ and EE

∆, then
applies EnergAt’s approach to further attribute energy to applications
running on homogeneous subsets of cores.

To smooth the inherent variability in measured utility and power,
HARP applies an Exponential Moving Average (EMA) with a smooth-
ing factor of α = 0.1, updating values as follows:

valuenew = valuemeasured · α + valueold · (1− α) (7.3)

This approach stabilizes short-term fluctuations while adapting to
significant shifts in application behavior, ensuring accurate and re-
sponsive profiling of performance and power characteristics.

7.4.2 Selection of the Regression Model

To approximate utility and power consumption for unexplored op-
erating points, HARP employs a regression model to predict these
metrics based on coarse-grained resource allocations represented by
the extended resource vector (Section 7.3.1.2).

2 Accessed via the system call perf_event_open

7.4 runtime exploration of operating points 127

To determine the most suitable regression model, Polynomial Re-
gression (degrees 1 to 3), Neural Network (NN), and Support Vector
Machine (SVM) models were evaluated. The evaluation utilized pre-
measured data from 15 applications on the Intel Raptor Lake Core
i9-13900K. Each model was trained on subsets of training data with
varying sizes, with experiments repeated across 10 random seeds to
ensure robustness.

Figure 7.4: Evaluation of regression models for runtime exploration of op-
erating points. Metrics include Mean Absolute Percentage Error
(MAPE) for IPS and Power (lower is better), Inverted Generational
Distance (IGD) (lower is better), and the ratio of common operat-
ing points in the Pareto-front (higher is better), evaluated across
15 different applications on the Intel Raptor Lake Core i9-13900K.

As shown in the top two plots of Figure 7.4, Polynomial Regression
improves in accuracy for both utility and power as training set size
increases. Higher-degree polynomial models achieve greater accuracy
at larger training sizes, albeit requiring more data points to converge.
Conversely, Neural Network (NN) and Support Vector Machine (SVM)
models perform better for power predictions at larger training sizes
but struggle with utility (IPS) predictions.

The bottom two plots in Figure 7.4 evaluate the alignment between
predicted and reference Pareto fronts (derived from measured configu-
rations) using two metrics: Inverted Generational Distance (IGD) [50]
and the ratio of common operating points.

• IGD measures the average distance from points on the reference
Pareto front to the nearest point on the predicted front, indicating
coverage.

• The ratio of common operating points measures the overlap
between the predicted and reference fronts.

128 coordinating adaptivity in general-purpose environments

Polynomial regression consistently outperforms SVM and NN in
aligning with the reference Pareto front. Among polynomial models,
second- and third-degree models show better alignment than the first-
degree model. While the second- and third-degree models achieve
similar accuracy, the second-degree model is more efficient, requiring
only 20 training points to converge and generate robust Pareto fronts.

Based on these findings, HARP adopts a second-degree polynomial
regression model for runtime exploration due to its balance of accuracy
and efficiency.

7.4.3 Runtime Exploration Algorithm

The runtime exploration of operating points integrates seamlessly
with the resource allocation algorithm, ensuring that cores assigned to
applications undergoing exploration do not overlap with cores used by
other applications. At the same time, sufficient resources are allocated
for efficient exploration without adversely affecting the performance
of other concurrently running applications.

To guide the exploration process, the maturity of application oper-
ating points is classified into three stages:

1. Initial Stage: There are insufficient measured operating points,
making approximations unreliable.

2. Refinement Stage: An intermediate number of measured points
exist, but model accuracy is still limited.

3. Stable Stage: A sufficient number of points have been measured,
enabling reliable approximations.

Figure 7.5 illustrates how the runtime exploration of operating
points is integrated with the resource allocation algorithm. The pro-
cess consists of two stages: it begins with spatial resource allocation,
followed by exploration within the bounds of assigned resources.
As shown in the figure, the exploration strategy in the second stage
varies depending on the maturity stage of each application’s operating
points.

To generate a multi-application mapping, the mapper uses a Pareto-
optimal set of operating points comprising both measured and ap-
proximated configurations. If unassigned processor cores remain, they
are evenly distributed among applications in the initial or refinement
stages, allowing them to explore a broader configuration space. Appli-
cations in the stable stage execute on the designated cores, without
additional exploration.

Applications in the initial and refinement stages apply distinct
exploration techniques within the set of assigned cores.

In the initial stage, when measured points are insufficient to create
even a preliminary model, the objective is to evenly distribute the

7.4 runtime exploration of operating points 129

Maturity
Stage

Advanced?

Operating Points 𝒪!!
(Refinement)

Operating Points 𝒪!"
(Stable)

P P P P

P P P P

E E

E E

E E

E E

Resource Allocation

P P P P

P P P P

E E

E E

E E

E E

Utility & Power Predictor

Pareto Filtering

Utility & Power Predictor

Pareto Filtering

Utility & Power Predictor

Pareto Filtering

P P P P

P P P P

E E

E E

E E

E E

Activate Selected
Operating Point

Not selected

Utility & Power
Monitoring

(20 measurements)

𝒪pred
!! 𝒪pred

!"

𝒪opt
!# 𝒪opt

!!

𝒪opt
!"

Operating Points 𝒪!#
(Initial)

Utility & Power
Monitoring

(100 measurements)

Activate Selected
Operating Point
P P P P

P P P P

E E

E E

E E

E E

Utility & Power Predictor

Selected

Distribute Unallocated Resources

Spatial Multi-Application Mapper

No

Select Operating Point
with Negative Predictions

(Rule II-1)

Compare with
Auxiliary Regression

(Rule II-2)

Yes

P P P P

P P P P

E E

E E

E E

E E

Utility & Power
Monitoring

(20 measurements)

Maturity
Stage

Advanced?

P P P P

P P P P

E E

E E

E E

E E

Activate Selected
Operating Point
P P P P

P P P P

E E

E E

E E

E E

Yes No

Select Most Distant
Operating Point

(Rule I)

𝒪pred
!#

Figure 7.5: Integration of runtime exploration of operating points with re-
source allocation. Exploration strategies are tailored to the ma-
turity stage of each application’s operating points: initial, refine-
ment, or stable.

130 coordinating adaptivity in general-purpose environments

measurements across the configuration space. This ensures a diverse
dataset to quickly build a model. To achieve this, the heuristic selects
the next operating point that is maximally distant from all previ-
ously measured configurations in the extended resource vector space,
thereby maximizing diversity (Rule I).

In the refinement stage, a preliminary regression model based on
earlier measurements becomes available, but it may still contain inac-
curacies and anomalies, such as negative utility and power predictions.
The focus at this stage is on refining the model’s accuracy by strategi-
cally selecting configurations for measurements. The selection heuristic
operates as follows:

1. Configurations with negative utility and power predictions are
prioritized. Among those, the configuration with the largest
negative value — calculated as the geometric mean of both
utility and power “errors” (with positive values treated as zero)
— is selected (Rule II-1).

2. If no configurations have negative predictions, the heuristic
compares the primary regression model and an auxiliary one
anchored with a “zero” point (representing zero utility and
power). The next operating point is then selected based on the
largest geometric mean of relative discrepancies in predicted
utility and power values (Rule II-2).

Each selected operating point undergoes a predefined number of
measurements (in the evaluation, 20 measurements at 50 ms intervals).
Once measurements for an operating point are completed, a new
operating point is selected for evaluation. This iterative process repeats
until the application has explored 25 different configurations and
transitions to the stable stage. When an application’s operating point
maturity advances (e.g., from initial to refinement, or refinement to
stable), a new resource allocation is generated.

In the stable stage, active exploration ends, and the application
executes under the operating point selected by the resource alloca-
tion algorithm (Section 7.3.2). The resource allocation process is then
invoked with at longer intervals (e.g., every 100 measurements) to
reassess and, if necessary, update allocations.

This integrated design ensures that applications in the initial and
refinement stages receive sufficient resources for exploration, minimize
interference with concurrently running applications, and benefit from
strategically guided exploration that efficiently improves prediction
accuracy.

7.5 evaluation

To demonstrate how HARP enhances the management of energy-
aware tasks on heterogeneous processors, the proposed resource man-

7.5 evaluation 131

agement approach was evaluated on two distinct platforms — high-
lighting its generality across diverse types of heterogeneous hardware
— and across a range of application models and execution scenarios.

7.5.1 Experimental Setup

The experimental setup comprises two heterogeneous platforms, a
diverse set of benchmark applications and comparative resource man-
agement strategies. The following describes the hardware configura-
tions, application characteristics, and methodology used throughout
the evaluation.

7.5.1.1 Evaluated Platforms

The evaluation is conducted on two platforms, representing embedded
and desktop computing domains.

• Odroid-XU3-E [76]: Representing the embedded domain, this
board features a Samsung Exynos 5422 processor with an Arm
big.LITTLE architecture, comprising a four-core Cortex-A15 (big)
island and a four-core Cortex-A7 (LITTLE) island. It is similar
to the Odroid-XU4 board used in the previous evaluations (Sec-
tions 4.3.2, 4.4.3, 5.6 and 6.4), but includes internal energy sensors
for the core islands, the memory, and GPU. A custom-compiled
Linux 6.6 kernel with full support for the Linux Energy-Aware
Scheduler (EAS) [117, 145] is used in the experiments.

• Intel Raptor Lake Core i9-13900K: Representing the desktop do-
main, this processor comprises 8 high-performance P-cores with
SMT and 16 energy-efficient E-cores without SMT. It is equipped
with 128 GB of memory. Energy measurements are captured us-
ing RAPL counters [54]. A custom-compiled Linux 6.4 kernel is
used, based on the default Debian Testing kernel, with a patch-
set that adds preliminary support for ITD [137]. The patch-set is
further extended to provide user-space access to ITD classifica-
tions of threads and reference Instructions Per Cycle (IPC) per
thread class.

Both platforms use the performance frequency governor, with max-
imum frequencies capped to prevent thermal throttling: 4.6 GHz for
P-cores and 3.8 GHz for E-cores on the Intel Raptor Lake, and 1.2 GHz
for LITTLE and 1.8 GHz for big cores on the Odroid.

7.5.1.2 Benchmarks

To evaluate the features of HARP, different sets of applications are
employed. For testing dynamic adaptability, the OpenMP implemen-
tations of the NAS Parallel Benchmarks [11], version 3.4.2, are used.

132 coordinating adaptivity in general-purpose environments

Since the Intel platform is more powerful than the Odroid board,
different classes of the benchmarks are used: class A for the Odroid
platform and class C for the Intel platform.

On the Intel system, additional evaluations are conducted using
a selection of benchmarks from Intel Thread Building Blocks (Intel
TBB) [146] and two TensorFlow [1] applications. The Intel TBB bench-
marks include binpack, fractal, pp (parallel-preorder), pi, primes,
and seismic, chosen for their comprehensive coverage of the building
blocks provided by the framework. TensorFlow, a widely used open-
source framework for machine-learning algorithms, is evaluated with
the HARP-enabled wrapper library of TensorFlow Lite [192], which
supports runtime parallelism scaling. Two image recognition models,
VGG [173] and AlexNet [104], are used in the experiments.

Additionally, two embedded dataflow applications are employed to
evaluate the custom extensions of HARP: mandelbrot for calculating
the Mandelbrot set (Section 6.4), and lms implementing Leighton-
Micali Signatures [127]. Each application is used in two versions: one
with a static application topology, based on the original KPN model
(denoted as static), and another implemented as an APN application,
with adaptive data-parallelism and scalability features (Section 6.2).
These configurations demonstrate the dynamic adaptation capabilities
of HARP. Since dataflow applications target embedded platforms,
these applications are evaluated only on the Odroid system.

7.5.1.3 Evaluated Approaches

Each scenario is executed with HARP and compared against the
following baselines, depending on the platform:

• For Intel Raptor Lake:

– Completely Fair Scheduler (CFS): The default Linux scheduler
that uses built-in work-distribution techniques.

– ITD-Based Allocation (ITD): An extended allocator inspired
by Saez et al. [162], which leverages hardware-provided
ITD classifications to allocate processor cores to application
threads.

• For Odroid-XU3-E:

– Energy-Aware Scheduler (EAS): The Linux Energy-Aware
Scheduler (EAS), which leverages a power model of the
heterogeneous processor on the Arm big.LITTLE system.

The evaluation includes several configurations of HARP:

• HARP: The standard version of HARP, with enabled adaptivity
features, using stable operating points generated through online
monitoring.

7.5 evaluation 133

• HARP (Offline): A version utilizing pre-generated operating
points, showcasing the potential benefits of prior design-time
exploration.

• HARP (No Scaling): A version with application adaptation dis-
abled, emphasizing the impact of application adaptivity on
HMAs.

On the Odroid-XU3-E platform, simultaneous performance counter
tracking for the big and LITTLE clusters is not supported, making
online monitoring infeasible. Consequently, the evaluation of HARP on
this platform is limited to the version using pre-generated operating
points (HARP (Offline)).

For the Intel Raptor Lake system, additional details on the runtime
exploration process for operating points are provided in Section 7.5.4.

7.5.2 Intel Raptor Lake Evaluation

The evaluation on the Intel Raptor Lake system examines the perfor-
mance and energy consumption of the benchmarks in both single and
multi-application scenarios. For each scenario, the overall execution
time (makespan) and total energy consumption are measured, with
average results reported over ten repetitions. Error bars are displayed
for cases where relative errors exceed 5 %.

Figure 7.6 shows the results for all benchmarks, along with geomet-
ric means for both single and multi-application scenarios. Results are
expressed as improvement factors over the baseline (CFS), where an
improvement factor of F indicates F× faster execution or F× lower
energy consumption compared to the baseline. Naturally, higher im-
provement factors indicate better outcomes.

7.5.2.1 Single-Application Scenarios

In single-application scenarios, HARP effectively reduces energy con-
sumption, often with a slight trade-off in execution time. This behav-
ior aligns with HARP’s cost function, which balances performance
and energy efficiency and often prioritizes configurations that reduce
resource utilization while maintaining acceptable performance. On
average, HARP achieves an improvement factor of 0.96 for execution
time and 1.32 for energy consumption.

One notable outlier is binpack, which exhibits significant improve-
ments of 6.91 in makespan and 1.29 in energy consumption. In this
scenario, binpack achieves a 10× higher IPS with lower thread counts.
Unlike the baseline and ITD-based allocator, HARP successfully scales
the application down to exploit this behavior.

The ITD-based allocator, by contrast, shows only minor improve-
ments over CFS, with average improvement factors of 1.02 for execu-

134 coordinating adaptivity in general-purpose environments

Fi
gu

re
7
.6

:R
el

at
iv

e
im

p
ro

ve
m

en
t

fa
ct

or
of

H
A

R
P

an
d

In
te

l
T

hr
ea

d
D

ir
ec

to
r

(I
T

D
)

ov
er

C
FS

on
th

e
In

te
l

R
ap

to
r

L
ak

e
C

or
e

i9
-1

3
9

0
0

K
(h

ig
he

r
y-

va
lu

e
is

be
tt

er
).

R
es

ul
ts

al
so

in
cl

ud
e

H
A

R
P

w
it

h
of

fl
in

e-
ge

ne
ra

te
d

op
er

at
in

g
po

in
ts

an
d

H
A

R
P

w
it

ho
u

t
ap

pl
ic

at
io

n
ad

ap
ta

ti
on

.B
lu

e
an

d
gr

ee
n

bo
xe

s
in

d
ic

at
e

th
e

av
er

ag
e

m
ak

es
pa

n
an

d
en

er
gy

co
ns

u
m

pt
io

n
fo

r
ea

ch
sc

en
ar

io
w

he
n

ex
ec

ut
ed

w
it

h
C

FS
.

7.5 evaluation 135

tion time and 1.05 for energy consumption, both within the margin of
error.

HARP with offline-generated operating points demonstrates the
advantages of prior design-time exploration, achieving improvements
of 1.29 for execution time and 1.43 for energy consumption. Offline
DSE provides additional insights into application behavior, enabling
better resource allocation.

In contrast, HARP without application adaptation performs very
poorly, with a geometric mean of 0.60 for execution time and 0.73
for energy consumption. These results indicate the critical role of
dynamic application adaptation for effective resource management in
heterogeneous systems.

7.5.2.2 Multi-Application Scenarios

In multi-application scenarios, HARP delivers significant performance
gains, with average improvement factors of 1.47 for execution time
and 1.57 for energy consumption. Most scenarios benefit from HARP,
with only a few cases showing results close to the baseline.

The ITD-based allocator does not show improvements in multi-
application scenarios, similar to the single-application results. Most
scenarios achieve performance close to the baseline, with minor gains
observed in the scenarios is+lu and bt+ep+is+mg+ua. Overall, ITD
achieves improvement factors of 0.91 for execution time and 0.94 for
energy consumption.

As with single-application scenarios, HARP with offline-generated
operating points achieves superior results, with improvement factors
of 1.63 for execution time and 1.79 for energy consumption.

Finally, HARP without application adaptation again shows very
poor results, with improvement factors of 0.54 for execution time and
0.84 for energy consumption. This highlights the necessity of runtime
application adaptivity in dynamic heterogeneous systems.

7.5.3 Odroid-XU3-E Evaluation

As mentioned in Section 7.5.1.3, the Odroid-XU3-E does not support
simultaneous performance counter tracking for the big and the LIT-
TLE clusters. Consequently, online monitoring is not feasible on this
platform. For this evaluation, only HARP (Offline) is used, utilizing
pre-generated operating point tables. This approach aligns with the
common practice of offline DSE in embedded systems (Section 3.3).

The baseline for comparison is the Linux Energy-Aware Scheduler
(EAS), which leverages a power model of the heterogeneous processor.
The results of this evaluation are shown in Figure 7.7.

136 coordinating adaptivity in general-purpose environments

Figure 7.7: Relative improvement factor of HARP over EAS on the Odroid-
XU3-E (higher y-value is better). Blue and green boxes indicate
the average makespan and energy consumption for each scenario
when executed with EAS.

7.5.3.1 Single-Application Scenarios

In single-application scenarios on the Odroid-XU3-E, HARP achieves
an average improvement factor of 1.07 for makespan and 1.27 for
energy consumption. The results for OpenMP benchmarks generally
reflect those from the Intel Raptor Lake experiment, where HARP
reduces energy consumption at the expense of longer execution times.
For instance, the ua benchmark exemplifies this trade-off.

The is benchmark, however, shows increases in both execution time
and energy consumption. As a short-running application, is is signifi-
cantly impacted by the initialization overhead of HARP, particularly
the communication with the RM. During this phase, the application ex-
ecutes in a suboptimal configuration, affecting its overall performance.
In contrast, lu, a longer-running benchmark, benefits significantly
from HARP.

APN applications with internal adaptivity mechanisms show no-
table improvements with HARP. By leveraging application-level adap-
tivity, HARP effectively adjusts configurations to align with available
hardware resources. This results in reduced energy consumption for
lms and improvements in both execution time and energy consump-
tion for mandelbrot.

Static KPN versions of these applications, however, do not benefit
much from HARP. The behavior of mandelbrot-static is similar to

7.5 evaluation 137

the baseline, while lms-static exhibits reduced energy consumption
at the cost of increased execution time.

7.5.3.2 Multi-Application Scenarios

In multi-application scenarios, HARP optimizes resource usage, achiev-
ing average improvement factors of 1.20 for execution time and 1.38
for energy consumption. These results indicate that, similar to the Intel
platform, HARP delivers better performance and energy efficiency
when managing multiple applications.

An exception is the ep+ft scenario, which shows slight degradation
in both metrics compared to EAS. This outcome is attributed to thread
migrations between the big and LITTLE clusters during executions
due to resource reassignments done by HARP. Despite this, the over-
all results emphasize HARP’s effectiveness in optimizing resource
allocation in embedded multi-application environments.

7.5.4 Evaluation of the Learning Process

To examine the behavior of HARP during the learning process in
scenarios where no prior application knowledge is available, an addi-
tional series of experiments was conducted on the Intel Raptor Lake
system.

Each scenario starts with no predefined application behavior data
and begins with a warm-up phase, during which HARP monitors
application execution and learns their behavioral characteristics until
operating points stabilize.

To analyze the learning process, operating points are captured as
snapshots every 5 s. These snapshots are used to determine the qual-
ity of each learning step. Figures 7.8 and 7.9 present the results for
17 single-application and 18 multi-application scenarios, respectively.
Each data point represents an improvement factor for makespan and
energy consumption based on the operating points at the correspond-
ing snapshot. Shaded areas in the figures indicate the duration of the
learning stage.

7.5.4.1 Single-Application Scenarios

In single-application scenarios (Figure 7.8), most applications demon-
strate fluctuating performance and energy efficiency during the train-
ing stages (either the initial or refinement stages, as defined in Sec-
tion 7.4.3). Once stable operating points are reached, performance stabi-
lizes, though minor fluctuations persist. This is expected, as HARP con-
tinues to refine operating points even in the stable stage (Section 7.4.3).
On average, the stable stages are achieved within 35.7± 9.4 s.

However, two applications, binpack and ep, exhibit notable de-
viations. binpack exhibits persistent fluctuations even in the stable

138 coordinating adaptivity in general-purpose environments

Figure 7.8: Relative improvement factor of HARP over CFS during the learn-
ing stage on single-application scenarios on the Intel Raptor Lake
Core i9-13900K (higher y-value is better).

7.5 evaluation 139

Figure 7.9: Relative improvement factor of HARP over CFS during the learn-
ing stage on multi-application scenarios on the Intel Raptor Lake
Core i9-13900K (higher y-value is better).

140 coordinating adaptivity in general-purpose environments

stage. This behavior is likely due to misalignment with the regres-
sion model, causing HARP to continue exploring configurations to
refine the Pareto front. The second outlier, ep, shows poor results
even when compared to the main evaluation in Figure 7.6, despite
being trained in isolation in both cases. This discrepancy may be at-
tributed to the very short execution time of the application (2.43 s),
which can result in limited and potentially unreliable measurements
for certain configurations. As training progresses, the application is
executed repeatedly, but the exploration heuristic may rely on these
unreliable measurements when selecting subsequent operating points,
introducing non-deterministic behavior into the learning process.

7.5.4.2 Multi-Application Scenarios

In multi-application scenarios (Figure 7.9), HARP shows a similar
trend: fluctuating performance and energy efficiency during the train-
ing stage, followed by stabilization in the stable stage. Compared
to single-application scenarios, fluctuations in the stable stage are
more frequent. Stable operating points are achieved on average within
37.6± 9.3 s, slightly longer than in single-application scenarios due to
limited resources available to each application, resulting in delays in
the refinement stage.

Interestingly, as the number of applications increases, the perfor-
mance and energy efficiency during the training stage approach those
in the stable stage. For example, in scenarios with four or five applica-
tions, the results observed during training are already similar to the
final stable outcomes. This behavior can be attributed to the limited
search space available to each individual application under resource
constraints. During the training stage, the exploration heuristic se-
lects the configurations that utilize fewer resources, and the resource
allocation algorithm in the stable stage also tends towards such config-
urations. Consequently, the outcomes of the training and stable stages
become closely aligned.

Across both single- and multi-application scenarios, HARP effec-
tively learns stable configurations that often outperforms CFS. How-
ever, specific limitations, such as the persistent fluctuations observed
in binpack and the non-deterministic results for ep, highlight oppor-
tunities to refine the exploration heuristic, especially for applications
with short execution times or irregular behaviors. Future work aims to
address these issues by enhancing the exploration algorithm, ensuring
more robust and consistent learning outcomes.

7.5.5 Performance Overhead of HARP

Resource management in modern operating systems must be swift
and lightweight to avoid negatively impacting the system performance.

7.6 synopsis 141

To evaluate the performance overhead introduced by HARP with its
full functionality active, additional measurements were conducted on
the Intel Raptor Lake system.

All application scenarios were executed using HARP with its full
functionality enabled: runtime exploration, configuration commu-
nication, and, if supported by applications, utility updates. To iso-
late overhead, configuration assignment messages were ignored by
libharp, leaving applications unadapted and thus scheduled as with
the baseline CFS scheduler. This setup allows for an evaluation of the
cumulative overhead introduced by HARP’s components, including
performance monitoring via perf, energy estimation and attribution,
the resource selection algorithm, and communication between the RM
and applications.

The evaluation indicates that HARP introduced less than 1 % over-
head when managing a single application, and 2.5 % in multi-application
scenarios. These minimal overheads are outweighed by the perfor-
mance and energy efficiency gains achieved with HARP’s resource
allocation strategy and demonstrated in Section 7.5.2.

7.6 synopsis

This chapter introduces HARP, a resource management system de-
signed for energy-aware applications on Heterogeneous Multi-core
Architectures (HMAs). One of HARP’s primary design goals is to
enable seamless coordination between the RM and applications, allow-
ing them to adapt their execution based on the allocated resources. At
the same time, HARP RM receives the information about application
behavior characteristics through pre-generated operating points or a
real-time feedback of utility metrics. This two-way communication, fa-
cilitated via a simple and uniform interface, coordinates the adaptivity
mechanisms of the RM and applications, addressing a core challenge
of resource management in HMAs.

As heterogeneous processors become common even in general-
purpose desktop and server domains, HARP is designed to operate
effectively in such environments. It supports a broad spectrum of ap-
plication models, from static to scalable, and even custom-specific ones
with adaptivity features like reconfiguration options and algorithmic
variations. Crucially, HARP does not require detailed knowledge of
each application’s adaptivity mechanisms. Instead, all applications
interact with the RM through the same uniform interface. Extensions
to libharp allow application-specific adaptivity features to be incorpo-
rated, as demonstrated with APN applications and a custom wrapper
for TensorFlow applications.

Building on Hybrid Application Mapping (HAM) methodologies,
HARP addresses its main limitation: reliance on pre-generated oper-
ating points. To overcome this, HARP integrates an online operating

142 coordinating adaptivity in general-purpose environments

point exploration component that monitors application executions
under different configurations and strategically guides the exploration
process. This process leverages regression models to rapidly construct
robust operating point models while ensuring minimal interference
with concurrently running applications.

Evaluation on two heterogeneous systems shows that HARP sig-
nificantly enhances application execution. Improvements of 16 % in
execution time and 31 % in energy consumption were observed on
the Intel Raptor Lake system, while the Odroid platform achieved en-
hancements of 12 % and 25 %, respectively. Notably, multi-application
scenarios demonstrated better results than single-application scenarios,
highlighting HARP’s efficiency in dynamic and complex workloads.

The evaluation also highlights the rapidity of HARP’s online oper-
ating point exploration, achieving stable configurations within 36.7±
9.3 s. Furthermore, HARP introduces minimal performance overhead,
which is typically outweighed by the resulting gains.

In summary, this work demonstrates the value of a simple yet
effective interface for communicating allocation decisions between
applications and the OS, leveraging adaptivity at both the resource
management and application levels. By aligning these mechanisms,
HARP significantly enhances overall system performance and energy
efficiency.

8
C O N C L U S I O N S A N D O U T L O O K

The emergence of Heterogeneous Multi-core Architectures (HMAs)
in both embedded and general-purpose systems presents new oppor-
tunities and challenges. These architectures combine heterogeneous
cores with distinct performance-energy characteristics while sharing a
common ISA. This design enables systems to optimize performance
and energy efficiency for varying workloads and requirements. How-
ever, traditional execution models and resource allocation strategies
may fail to fully leverage the potential of HMAs.

This thesis examined the adaptivity challenges posed by HMAs at
two levels: resource management and application behavior. At the
resource management level, dynamic allocation of processor cores
to applications and the necessity to account for heterogeneous core
types demand novel strategies. At the application level, applications
must adapt their execution (e.g., parallelization degree or workload
distribution) to align with the allocated resources, especially in the
presence of heterogeneous cores.

While no single solution can fully resolve the adaptivity challenges
of HMAs, this thesis proposed several approaches that enhance adap-
tivity in different scenarios, addressing both resource management
and application behavior.

For resource management adaptivity, the thesis leverages the Hybrid
Application Mapping (HAM) methodology, which has shown bene-
fits in the embedded systems domain. HAM integrates design-time
exploration to identify optimal configurations with runtime resource
management that dynamically adapts resource allocation based cur-
rent workloads. Building on these strengths, this thesis enhances HAM
methodologies to further improve adaptivity.

First, Chapter 4 addressed the challenge of efficiently mapping par-
allel applications in dynamic real-time environments where workloads
may change sporadically. The thesis introduced spatio-temporal multi-
application mappings, an extension of conventional spatial mapping
models, that can account for foreseen workload changes. Two algo-
rithms, MMKP-MDF and FFEMS, were presented to generate spatio-
temporal mappings within milliseconds. Additionally, a memetic al-
gorithm, STEM, was introduced as a baseline to evaluate solutions
generated by these rapid heuristics. These methods demonstrated
significant improvements in resource utilization, energy efficiency,
and Quality of Service (QoS), showcasing the effectiveness of spatio-
temporal mapping strategies.

143

144 conclusions and outlook

Second, Chapter 5 focused on baseband processing, a critical com-
ponent of wireless communication systems, demanding high flexi-
bility to handle heterogeneous and dynamic workloads. The chapter
introduced a domain-specific HAM methodology tailored for the phase-
sequential structure of baseband processing applications. A novel
mapping algorithm was proposed to generate near-optimal operating
points for hundreds of tasks within the baseband receiver kernel. Ad-
ditionally, the runtime resource allocation algorithm was refined to
leverage prior decisions, reducing overhead highly critical for base-
band systems.

Beyond resource management, this thesis also focused on adaptivity
challenges at the application level. Chapter 6 addressed the limitations
of Kahn Process Network (KPN), a widely used dataflow MoC in
embedded systems for signal processing and streaming application.
To enhance adaptivity, the chapter introduced Adaptive Process Network
(APN), an extension of KPNs that enables malleable parallelization —
adapting to varying resource availability — and dynamic workload
distribution to address system heterogeneity, while preserving the
key feature of determinism. The chapter also introduced the Dynamic
Process Manager (DPM) library, which provides runtime support
for APN applications, a programmer interface for developing such
applications, and a configuration manager to facilitate application
adaptations and communication with external resource managers.

The final contribution of this thesis addressed the challenge of
coordinated adaptivity at both resource management and application levels.
Chapter 7 introduced Heterogeneity-aware Adaptive Resource Partitioning
(HARP), a Linux-integrated resource management framework that
enables seamless coordination between the RM and applications. A
key innovation of HARP is its two-way communication interface, which
enables applications to both receive resource allocation decisions —
allowing dynamic adaptation to assigned resources — and provide
real-time feedback on their execution behavior to the RM. This simple
and uniform communication interface allows HARP to support diverse
application models, including OpenMP, Intel TBB, TensorFlow and
dataflow applications.

HARP marks a significant step towards supporting general-purpose
systems, where workloads are dynamic and unpredictable. While
building on HAM principles, it overcomes a critical limitation: re-
liance on pre-generated operating points. To address this, HARP
integrates an online operating point exploration component that monitors
application behavior under various configurations. By leveraging a
preselected regression model, the exploration process strategically
guides measurements to rapidly build robust operating point models
with minimal interference to concurrently running applications.

This thesis demonstrated that adaptivity challenges in HMAs can be
effectively addressed through coordinated strategies at both resource

conclusions and outlook 145

management and application levels. While the proposed approaches
significantly improve energy efficiency and performance, several op-
portunities for future work remain.

Incorporating Dynamic Voltage-Frequency Scaling into HAM

The resource management algorithms presented in this thesis pri-
marily focus on spatial (and spatio-temporal) resource allocation to
optimize energy efficiency, without considering core frequency adjust-
ments. Integrating Dynamic Voltage Frequency Scaling (DVFS) into
HAM presents an opportunity for additional energy savings, although
this is not a novel direction. Prior works have explored methods such
as pruning operating points across the spatial and frequency compo-
nents [140] and applying DVFS during runtime resource management
(e.g., [15, 60, 184, 211]). However, combining DVFS with online explo-
ration of operating points in HARP presents an interesting research
challenge.

Addressing Shared Resource Contention

The resource management algorithms presented in this thesis do not
account for contention of shared resources such as memory compo-
nents. As a result, actual application performance in multi-application
scenarios may deviate from the behavior observed during DSE. Ac-
counting for contention for shared resources within HAM methodolo-
gies requires advanced techniques, such as Memguard [215] and PAL-
LOC [214], to accurately model these effects and ensure predictable
performance in dynamic workloads.

Application Behavior Descriptions across Platforms

While HARP’s online operating point exploration effectively handles
unforeseen applications, evaluations demonstrated that pre-generated
operating points obtained at design time yield superior results. With
the adoption of the HARP approach, manually generating these de-
scriptions across diverse hardware platforms is a nontrivial task for
application developers. Developing methodologies to approximate ap-
plication behavior across different hardware platforms would simplify
this process and encourage broader adoption of the HARP approach.

Design Space Exploration for Adaptive Process Networks

The deterministic nature of the APN application model makes it
well-suited for model-based analysis, such as trace-based simulations
(Section 2.3.3) and Design Space Exploration (DSE) in frameworks

146 conclusions and outlook

like Mocasin (Section 2.5). To enable DSE for APN applications, a
dedicated workflow must be developed, integrating the DPM library
with Mocasin.

This workflow would begin with process trace generation. By lever-
aging the functional equivalence of replicas in parallel regions, traces
could be generated using a single replica, simplifying this step. These
traces would then be fed to Mocasin, which would require extensions
to support the APN application model. In particular, its simulation
component needs to be extended to accurately emulate parallel chan-
nels and distribution strategies.

The final step of the workflow would involve mapping generation.
APN-specific mapping algorithms would need to determine the opti-
mal number of replicas, in addition to conventional process-to-core
assignments. Both metaheuristic and heuristic approaches could be
explored for this purpose.

Broader Opportunities for Application-Level Adaptivity

This thesis primarily focuses on application adaptivity within the
APN application model. Additionally, Chapter 7 demonstrates the
parallelization adaptivity for OpenMP and Intel TBB. Further research
could focus on extending the adaptivity mechanisms to other applica-
tion models, enabling them to integrate with the frameworks proposed
in this thesis.

For example, Multi-Alternative Process Network (mAPN) support-
ing algorithm-switching capabilities could dynamically switch algo-
rithms within processes or even process subnetworks [26, 166]. This
could benefit, for instance, real-time streaming applications such as
video encoding/decoding, which could adjust codec complexity or res-
olution based on available resources and network conditions. mAPN
could leverage the DPM runtime library and the HARP resource man-
agement framework to dynamically select the algorithms best suited
for current resource allocations and workload characteristics.

In the domain of machine learning, adaptivity mechanisms for
Convolutional Neural Networks (CNNs), such as model pruning and
early exits [102, 113, 191], provide opportunities for resource-aware
execution. These methods allow CNNs to trade off between perfor-
mance, energy efficiency, and accuracy based on available resources
and could be supported within HARP for dynamic optimization.

The field of approximate computing offers further opportunities
for exploration. Techniques include software-level approximations
such as reduced-precision algorithms, loop perforation, and algorithm-
level simplifications [132]. Additionally, specialized accelerators for
reduced-precision arithmetic [13] or task-specific units, such as Tensor
Processing Unit (TPU) [90], further enhance the potential of approxi-

conclusions and outlook 147

mate computing. Extending HARP to support such hardware would
also represent a substantial addition to the presented methodology.

Managing Evolving Application Phases

The presented approaches, particularly within HARP, assume constant
application behavior throughout execution. However, some applica-
tions exhibit evolving phases, such as transitions between sequential
and parallel stages, or compute-intensive and memory-intensive parts.
Two potential directions could be explored to address this challenge.

First, applications could explicitly communicate their phases and
associated performance-energy characteristics, as well as phase-switch
events, via the communication interface presented in HARP. For in-
stance, in OpenMP, entry and exit of parallel loops could be detected
by hooking to GOMP_parallel function. The main limitation of this
approach is the reliance on applications to provide such information.

Second, for applications that do not provide explicit phase infor-
mation, more advanced techniques would be needed to dynamically
detect the phase transitions. Additionally, to avoid repeatedly regener-
ating operating points, the system should quickly recognize previously
explored phases and reuse their configurations.

G L O S S A RY

acronyms

API Application Programming Interface

APN Adaptive Process Network

ASIC Application-Specific Integrated Circuit

ASIP Application-Specific Instruction-Set Processor

BBU Baseband Unit

BDF Boolean Dataflow

CFS Completely Fair Scheduler

CGRA Coarse-Grained Reconfigurable Array

CNN Convolutional Neural Network

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

cRAN Cloud RAN

CSDF Cyclo-Static Dataflow

DAG Directed Acyclic Graph

DDF Dynamic Dataflow

DPM Dynamic Process Manager

DSE Design Space Exploration

DSP Digital Signal Processor

DSRH Domain-Specific Reconfigurable Hardware

DVFS Dynamic Voltage Frequency Scaling

EA Evolutionary Algorithm

EAS Energy-Aware Scheduler

EDF Earliest Deadline First

EDP Energy-Delay Product

EFT Earliest Finishing Time

EMA Exponential Moving Average

eMBB Enhanced Mobile Broadband

EPN Expandable Process Network

FCFS First-Come, First-Served

FFEMS Fast Flexible Energy-Minimizing Scheduler

FFT Fast Fourier Transform

149

150 glossary

FIFO First In, First Out

FPGA Field-Programmable Gate Array

GA Genetic Algorithm

GPP General-Purpose Processor

GPU Graphics Processing Unit

HAM Hybrid Application Mapping

HARP Heterogeneity-aware Adaptive Resource Partitioning

HMA Heterogeneous Multi-core Architecture

HSDF Homogeneous SDF

IFFT Inverse FFT

IGD Inverted Generational Distance

ILP Integer Linear Programming

IoT Internet of Things

IPC Instructions Per Cycle

IPS Instructions Per Second

ISA Instruction Set Architecture

ITD Intel’s Thread Director

KPN Kahn Process Network

LTE Long-Term Evolution

MA Memetic Algorithm

mAPN Multi-Alternative Process Network

MDF Maximum Difference First

MILP Mixed-Integer Linear Programming

MMKP Multiple-choice Multidimensional Knapsack Problem

mMTC Massive Machine-Type Communication

MoC Model of Computation

MPSoC Multi-Processor Systems-on-Chip

NN Neural Network

NoC Network-on-Chip

OS Operating System

PE Processing Element

PELT Per-Entity Load Tracking

PRB Physical Resource Block

PN Process Network

QoS Quality of Service

RAN Radio Access Network

glossary 151

RAPL Running Average Power Limit

RDF Reconfigurable Dataflow

RM Resource Manager

RRH Remote Radio Head

SA Simulated Annealing

SDF Synchronous Dataflow

SDR Software-Defined Radio

SIMD Single Instruction Multiple Data

SMT Simultaneous Multithreading

SVM Support Vector Machine

STEM Spatio-Temporal Evolutionary Mapping

TLP Thread-Level Parallelism

TDP Thermal Design Power

TPU Tensor Processing Unit

UE User Equipment

URLLC Ultra-Reliable Low-Latency Communication

vRAN Virtualized RAN

notation

X C ⟨ . . .⟩ Object X with attributes; C is an optional context

X [a] Attribute a of object X

Ω Processor type, Ω := Ω⟨isa, cm, X⟩

(Ω i) Sequence of processor types, (Ωi) = (Ω1, . . . , Ω|(Ωi)|)

ψ Processing element, ψ := ψ⟨Ω⟩

P Platform, P := P⟨Ψ, IC⟩

P [Ψ] Set of all processing elements in platform P

P [ω i] Number of processing elements of type Ωi in platform P

P [ω⃗] Resource vector of platform P

A Application, A := A⟨M, Γ,V⟩

A [M] Application model

A [Γ] Set of all application configurations

A [V] Set of all application primitives

A [Vγ] Application primitives active under configuration γ

152 glossary

o Operating point, o := oA⟨γ, µ, η⟩

o [µ] Mapping, µ : A[Vγ]→ P [Ψ]

o [η] Non-functional characteristics, η := η⟨τ, ε⟩ or η := η⟨υ, p⟩

η [τ] Execution time

η [ε] Energy consumption

η [υ] Utility

η [p] Power consumption

µ [Ψ] Resource allocation of µ

µ [ω⃗] Resource vector of µ

F⃗(o) Objective values of operating point o

u⃗ ⪯ v⃗ Domination: u⃗ dominates v⃗

OA
opt

Pareto Optimal Set of operating points for application A

F A
opt

Pareto Front

σ Job request, σ := σ⟨A, tarr, θ, ρ⟩

σ [tarr] Arrival time

σ [θ] Relative deadline

σ [ρ] Current progress ratio, ρ ∈ [0, 1]

Σ Set of all job requests.

M Spatial multi-application mapping

M [σ] Assignment of the job request σ, M[σ] := M[σ]⟨o⟩

K Spatio-temporal multi-application mapping

K [M i] Multi-application mapping at the i-th mapping segment

K [δi] Duration the i-th mapping segment

K [∆n] Cumulative duration of first n segments

K [ε] Energy consumption of the spatio-temporal multi-application
mapping

MPTG Phased task graph, MPTG := MPTG⟨Φ⟩, where Φ =

(ϕ1, . . . , ϕ|Φ|)

ϕ Phase in a task graph with phase-sequential structure,
ϕ := ϕ⟨Π, λ⟩

glossary 153

ϕ [Π] Ordered set of tasks connected in sequence, Π :=
(
π1, . . . , π|Π|

)
ϕ [λ] Parallelization factor of the phase

ϕ [π k
i] The i-th process in the k-th replica of the phase ϕ

π Task with latency τ and energy consumption ξ for each
resource type Ωi, π := π⟨⃗τ, ξ⃗⟩

L I S T O F F I G U R E S

Figure 1.1 Samsung Exynos 5422 CPU implementing the
Arm’s big.LITTLE architecture 3

Figure 1.2 Labeled die shot of an Intel Raptor Lake Core
i9-13900K . 3

Figure 1.3 Adaptivity challenges at resource and applica-
tion levels . 5

Figure 2.1 Mapping, scheduling, and spatio-temporal map-
ping of two dataflow applications 13

Figure 2.2 JPEG Image Encoding application as a KPN
graph . 22

Figure 2.3 Overview of Hybrid Application Mapping . . 26

Figure 2.4 Overview of the Mocasin framework architecture 36

Figure 4.1 Gantt charts for resource management scenar-
ios in the motivational example 50

Figure 4.2 Overview of multi-application mapping strategies 51

Figure 4.3 Acceptance rate of different algorithms for test
cases with tight deadlines 58

Figure 4.4 Monotonic distribution curves of the relative
energy consumption 59

Figure 4.5 Box plots and average values summarizing the
mapping overhead for different algorithms . . 60

Figure 4.6 STEM algorithm flow 61

Figure 4.7 Crossover operators in STEM 63

Figure 4.8 Acceptance rates of resource management al-
gorithms across varying job counts 71

Figure 4.9 Relative energy consumption of different re-
source management algorithms 71

Figure 4.10 Monotonic distribution curves of the relative
energy consumption across resource manage-
ment algorithms 73

Figure 4.11 Runtime overhead of resource management al-
gorithms . 73

Figure 5.1 Block diagram of a baseband receiver 78

Figure 5.2 Task graph with a phase-sequential structure . 79

Figure 5.3 Sample phase of the baseband receiver with the
execution latencies 83

Figure 5.4 Step-by-step visualization of the fast mapping
algorithm . 83

Figure 5.5 Validation of the estimated execution time and
energy consumption values 89

155

156 glossary

Figure 5.6 Comparison of design-time mapping algorithms
for the baseband processing application 90

Figure 5.7 Successfully executed UEs and energy efficiency
on Odroid-XU4 92

Figure 5.8 Successfully executed UEs and energy efficiency
on a virtual platform with accelerators 93

Figure 5.9 Relative energy and utilization while control-
ling for success rate 93

Figure 5.10 Relative total energy consumption while con-
trolling for success rate on virtual platforms
without accelerators 94

Figure 5.11 Average runtime overhead per RM activation . 95

Figure 6.1 KPN application calculating the Mandelbrot Set 98

Figure 6.2 Gantt charts illustrating static and dynamic
workload scheduling 99

Figure 6.3 APN application with a parallel region 101

Figure 6.4 Distribution strategies for split-interleave prim-
itives . 103

Figure 6.5 DPM library overview 105

Figure 6.6 Iterations per point in the Mandelbrot set . . . 110

Figure 6.7 Throughput on Odroid-XU4 across core config-
urations . 111

Figure 6.8 Effect of contention on performance 113

Figure 6.9 Dynamic reallocation of resources at runtime . 113

Figure 7.1 Performance and power consumption of two
applications on Intel Raptor Lake 117

Figure 7.2 HARP system overview 120

Figure 7.3 Control flow between application and HARP
manager . 121

Figure 7.4 Evaluation of regression models for runtime
exploration of operating points 127

Figure 7.5 Integration of runtime exploration of operating
points with resource allocation 129

Figure 7.6 Relative improvement of HARP over CFS on
Intel Raptor Lake 134

Figure 7.7 Relative improvement of HARP over EAS on
Odroid-XU3-E 136

Figure 7.8 Relative improvement of HARP over CFS dur-
ing learning on single-application scenarios . . 138

Figure 7.9 Relative improvement of HARP over CFS dur-
ing learning on multi-application scenarios . . 139

L I S T O F TA B L E S

Table 4.1 Job parameters for the motivational example . 48

Table 4.2 Operating points for applications in the moti-
vational example 49

Table 4.3 Number of test cases by jobs and deadline level 57

Table 4.4 Relative energy consumption across number of
jobs and deadline levels 59

Table 4.5 Factor range bounds for workload generation . 68

Table 4.6 Acceptance, energy, and overhead of RM algo-
rithms on 4B4L 70

Table 4.7 Acceptance, energy, and overhead of RM algo-
rithms on 8B8L 70

Table 5.1 Platform core frequency and power characteristics 87

Table 5.2 Overview of LTE trace characteristics 88

157

L I S T O F A L G O R I T H M S

Algorithm 4.1 Main Procedure of the MMKP-MDF Algorithm 54

Algorithm 4.2 ConstructSTM with EDF policy 55

Algorithm 4.3 Main Procedure of the FFEMS Algorithm . . . 65

Algorithm 4.4 GenerateJobTail procedure 66

Algorithm 5.1 Phased-Fast algorithm 81

Algorithm 5.2 MMKP-MDF with prior solution reuse 85

159

L I S T O F L I S T I N G S

Listing 6.1 Building APN topology with DPM 106

Listing 6.2 KPN process definition with DPM 107

Listing 6.3 SDF process definition with DPM 107

Listing 6.4 Sample YAML configuration file 109

161

B I B L I O G R A P H Y

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Lev-
enberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. “TensorFlow: a system
for large-scale machine learning.” In: Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementa-
tion. OSDI’16. Savannah, GA, USA: USENIX Association, 2016,
pp. 265–283. isbn: 9781931971331.

[2] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Sham-
sul Islam. “The k-means algorithm: A comprehensive survey
and performance evaluation.” In: Electronics 9.8 (2020). issn:
2079-9292. doi: 10 . 3390 / electronics9081295. url: https :

//www.mdpi.com/2079-9292/9/8/1295.

[3] Waheed Ahmed, Muhammad Shafique, Lars Bauer, and Jörg
Henkel. “Adaptive resource management for simultaneous
multitasking in mixed-grained reconfigurable multi-core pro-
cessors.” In: Proceedings of the Seventh IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System
Synthesis. CODES+ISSS ’11. Taipei, Taiwan: Association for
Computing Machinery, 2011, pp. 365–374. isbn: 9781450307154.
doi: 10.1145/2039370.2039426.

[4] Adrian Alexandrescu, Ioan Agavriloaei, and Mitică Craus. “A
Genetic Algorithm for mapping tasks in heterogeneous comput-
ing systems.” In: 15th International Conference on System Theory,
Control and Computing. 2011, pp. 1–6.

[5] Ali Alnoman and Alagan Anpalagan. “Towards the fulfillment
of 5G network requirements: technologies and challenges.” In:
Telecommunication Systems 65.1 (May 2017), pp. 101–116. issn:
1018-4864. doi: 10.1007/s11235-016-0216-9.

[6] Murali Annavaram, Ed Grochowski, and John Shen. “Mitigat-
ing Amdahl’s law through EPI throttling.” In: 32nd International
Symposium on Computer Architecture (ISCA’05). 2005, pp. 298–
309. doi: 10.1109/ISCA.2005.36.

[7] Apple. Apple unleashes M1. Available at: https://www.apple.
com/newsroom/2020/11/apple- unleashes- m1/ [Online; ac-
cessed 08-April-2025]. Nov. 2020.

163

https://doi.org/10.3390/electronics9081295
https://www.mdpi.com/2079-9292/9/8/1295
https://www.mdpi.com/2079-9292/9/8/1295
https://doi.org/10.1145/2039370.2039426
https://doi.org/10.1007/s11235-016-0216-9
https://doi.org/10.1109/ISCA.2005.36
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/

164 bibliography

[8] Arm Limited. big. LITTLE technology: The future of mobile. White
Paper. Available at: https://armkeil.blob.core.windows.
net/developer/Files/pdf/white-paper/big-little-technology-

the-future-of-mobile.pdf [Online; accessed 08-April-2025].
2013.

[9] Arm Limited. Arm DynamIQ Shared Unit 120 Technical Ref-
erence Manual. Available at: https://developer.arm.com/
documentation/102547/0100 [Online; accessed 08-April-2025].
2023.

[10] Giuseppe Ascia, Vincenzo Catania, and Maurizio Palesi. “Multi-
objective mapping for mesh-based NoC architectures.” In: Pro-
ceedings of the 2nd IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. CODES+ISSS
’04. Stockholm, Sweden: Association for Computing Machinery,
2004, pp. 182–187. isbn: 158113 9373. doi: 10.1145/1016720.
1016765.

[11] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter,
L. Dagum, R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S.
Schreiber, H.D. Simon, V. Venkatakrishnan, and S.K. Weer-
atunga. “The Nas Parallel Benchmarks.” In: Int. J. High Perform.
Comput. Appl. 5.3 (Sept. 1991), pp. 63–73. issn: 1094-3420. doi:
10.1177/109434209100500306.

[12] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh,
Attila Jurecska, Luciano Lavagno, Claudio Passerone, Alberto
Sangiovanni-Vincentelli, Ellen Sentovich, Kei Suzuki, and Bas-
sam Tabbara. Hardware-software co-design of embedded systems:
the POLIS approach. USA: Kluwer Academic Publishers, 1997.
isbn: 0792399366.

[13] A. S. Baroughi, S. Huemer, H. S. Shahhoseini, and N. TaheriNe-
jad. “AxE: An Approximate-Exact Multi-Processor System-on-
Chip Platform.” In: 2022 25th Euromicro Conference on Digital
System Design (DSD). 2022, pp. 60–66. doi: 10.1109/DSD57027.
2022.00018.

[14] Luiz André Barroso and Urs Hölzle. “The Case for Energy-
Proportional Computing.” In: Computer 40.12 (2007), pp. 33–37.
doi: 10.1109/MC.2007.443.

[15] Karunakar R. Basireddy, Amit Kumar Singh, Bashir M. Al-
Hashimi, and Geoff V. Merrett. “AdaMD: Adaptive Mapping
and DVFS for Energy-Efficient Heterogeneous Multicores.” In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 39.10 (2020), pp. 2206–2217. doi: 10.1109/TCAD.
2019.2935065.

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/big-little-technology-the-future-of-mobile.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/big-little-technology-the-future-of-mobile.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/big-little-technology-the-future-of-mobile.pdf
https://developer.arm.com/documentation/102547/0100
https://developer.arm.com/documentation/102547/0100
https://doi.org/10.1145/1016720.1016765
https://doi.org/10.1145/1016720.1016765
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1109/DSD57027.2022.00018
https://doi.org/10.1109/DSD57027.2022.00018
https://doi.org/10.1109/MC.2007.443
https://doi.org/10.1109/TCAD.2019.2935065
https://doi.org/10.1109/TCAD.2019.2935065

bibliography 165

[16] Michela Becchi and Patrick Crowley. “Dynamic thread assign-
ment on heterogeneous multiprocessor architectures.” In: Pro-
ceedings of the 3rd Conference on Computing Frontiers. CF ’06. Is-
chia, Italy: Association for Computing Machinery, 2006, pp. 29–
40. isbn: 1595933026. doi: 10.1145/1128022.1128029.

[17] Sandro Belfanti, Christoph Roth, Michael Gautschi, Christian
Benkeser, and Qiuting Huang. “A 1Gbps LTE-advanced turbo-
decoder ASIC in 65nm CMOS.” In: 2013 Symposium on VLSI
Circuits. Jan. 2013, pp. C284–C285. isbn: 978-1-4673-5531-5.

[18] L. Benini and G. De Micheli. “Networks on chips: a new SoC
paradigm.” In: Computer 35.1 (2002), pp. 70–78. doi: 10.1109/
2.976921.

[19] C. H. (Kees) van Berkel. “Multi-core for mobile phones.” In:
Proceedings of the Conference on Design, Automation and Test in Eu-
rope. DATE ’09. Nice, France: European Design and Automation
Association, 2009, pp. 1260–1265. isbn: 9783981080155.

[20] Carlos Bilbao, Juan Carlos Saez, and Manuel Prieto-Matias.
“Flexible system software scheduling for asymmetric multicore
systems with PMCSched: A case for Intel Alder Lake.” In:
Concurrency and Computation: Practice and Experience 35.25 (2023),
e7814. doi: 10.1002/cpe.7814.

[21] Greet Bilsen, Marc Engels, Rudy Lauwereins, and Jean Peper-
straete. “Cycle-static dataflow.” In: IEEE Transactions on Signal
Processing 44.2 (1996), pp. 397–408. doi: 10.1109/78.485935.

[22] Enrico Bini, Giorgio Buttazzo, Johan Eker, Stefan Schorr, Rapha-
el Guerra, Gerhard Fohler, Karl-Erik Arzen, Vanessa Romero,
and Claudio Scordino. “Resource Management on Multicore
Systems: The ACTORS Approach.” In: IEEE Micro 31.3 (2011),
pp. 72–81. doi: 10.1109/MM.2011.1.

[23] Tobias Blickle and Lothar Thiele. “A Comparison of Selection
Schemes Used in Evolutionary Algorithms.” In: Evolutionary
Computation 4.4 (Dec. 1996), pp. 361–394. issn: 1063-6560. doi:
10.1162/evco.1996.4.4.361.

[24] Alessio Bonfietti, Luca Benini, Michele Lombardi, and Michela
Milano. “An efficient and complete approach for throughput-
maximal SDF allocation and scheduling on multi-core plat-
forms.” In: 2010 Design, Automation & Test in Europe Conference
& Exhibition (DATE 2010). 2010, pp. 897–902. doi: 10.1109/
DATE.2010.5456924.

[25] Hasna Bouraoui, Jeronimo Castrillon, and Chadlia Jerad. “Com-
paring Dataflow and OpenMP Programming for Speaker Recog-
nition Applications.” In: Proceedings of the 10th and 8th Workshop
on Parallel Programming and Run-Time Management Techniques
for Many-Core Architectures and Design Tools and Architectures for

https://doi.org/10.1145/1128022.1128029
https://doi.org/10.1109/2.976921
https://doi.org/10.1109/2.976921
https://doi.org/10.1002/cpe.7814
https://doi.org/10.1109/78.485935
https://doi.org/10.1109/MM.2011.1
https://doi.org/10.1162/evco.1996.4.4.361
https://doi.org/10.1109/DATE.2010.5456924
https://doi.org/10.1109/DATE.2010.5456924

166 bibliography

Multicore Embedded Computing Platforms (PARMA-DITAM 2019).
Valencia, Spain: Association for Computing Machinery, 2019.
isbn: 9781450363211. doi: 10.1145/3310411.3310417.

[26] Hasna Bouraoui, Chadlia Jerad, and Jeronimo Castrillon. “To-
wards Adaptive Multi-Alternative Process Network.” In: 12th
Workshop on Parallel Programming and Run-Time Management
Techniques for Many-core Architectures and 10th Workshop on De-
sign Tools and Architectures for Multicore Embedded Computing
Platforms (PARMA-DITAM 2021). Ed. by João Bispo, Stefano
Cherubin, and José Flich. Vol. 88. Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 1:1–1:11.
isbn: 978-3-95977-181-8. doi: 10.4230/OASIcs.PARMA-DITAM.
2021.1.

[27] Björn B. Brandenburg, John M. Calandrino, and James H. An-
derson. “On the Scalability of Real-Time Scheduling Algo-
rithms on Multicore Platforms: A Case Study.” In: 2008 Real-
Time Systems Symposium. 2008, pp. 157–169. doi: 10.1109/RTSS.
2008.23.

[28] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. “Source-
level execution time estimation of C programs.” In: Ninth In-
ternational Symposium on Hardware/Software Codesign. CODES
2001 (IEEE Cat. No.01TH8571). 2001, pp. 98–103. doi: 10.1145/
371636.371694.

[29] Alexander J. Branover, Benjamin Tsien, and Elliot H. Mednick.
“Method of Task Transition Between Heterogeneous Proces-
sors.” 20210173715. US Patent. June 2021. url: https://www.
freepatentsonline.com/y2021/0173715.html.

[30] Eduardo Wenzel Brião, Daniel Barcelos, and Flavio Rech Wag-
ner. “Dynamic Task Allocation Strategies in MPSoC for Soft
Real-time Applications.” In: 2008 Design, Automation and Test in
Europe. 2008, pp. 1386–1389. doi: 10.1109/DATE.2008.4484934.

[31] David Brooks, Vivek Tiwari, and Margaret Martonosi. “Wattch:
a framework for architectural-level power analysis and opti-
mizations.” In: Proceedings of 27th International Symposium on
Computer Architecture (IEEE Cat. No.RS00201). 2000, pp. 83–94.

[32] Simone Casale Brunet, Marco Mattavelli, and Jorn W. Jan-
neck. “Buffer optimization based on critical path analysis of a
dataflow program design.” In: 2013 IEEE International Sympo-
sium on Circuits and Systems (ISCAS). 2013, pp. 1384–1387. doi:
10.1109/ISCAS.2013.6572113.

[33] Joseph Tobin Buck. “Scheduling dynamic dataflow graphs with
bounded memory using the token flow model.” AAI9431898.
PhD thesis. EECS Department, University of California, Berke-
ley, 1993.

https://doi.org/10.1145/3310411.3310417
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.1
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.1
https://doi.org/10.1109/RTSS.2008.23
https://doi.org/10.1109/RTSS.2008.23
https://doi.org/10.1145/371636.371694
https://doi.org/10.1145/371636.371694
https://www.freepatentsonline.com/y2021/0173715.html
https://www.freepatentsonline.com/y2021/0173715.html
https://doi.org/10.1109/DATE.2008.4484934
https://doi.org/10.1109/ISCAS.2013.6572113

bibliography 167

[34] Nishant Budhdev, Mun Choon Chan, and Tulika Mitra. “PR3:
Power Efficient and Low Latency Baseband Processing for LTE
Femtocells.” In: IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications. 2018, pp. 2357–2365. doi: 10.1109/
INFOCOM.2018.8486276.

[35] Nishant Budhdev, Mun Choon Chan, and Tulika Mitra. Iso-
RAN: Isolation and Scaling for 5G RANvia User-Level Data Plane
Virtualization. 2020. arXiv: 2003.01841 [cs.NI].

[36] Ewerson Luiz de Souza Carvalho, Ney Laert Vilar Calazans,
and Fernando Gehm Moraes. “Dynamic Task Mapping for MP-
SoCs.” In: IEEE Design & Test of Computers 27.5 (2010), pp. 26–35.
doi: 10.1109/MDT.2010.106.

[37] Jeronimo Castrillon, Karol Desnos, Andrés Goens, and Chris-
tian Menard. “Dataflow Models of Computation for Program-
ming Heterogeneous Multicores.” In: Handbook of Computer Ar-
chitecture. Ed. by Anupam Chattopadhyay. Singapore: Springer
Nature Singapore, Jan. 2023, pp. 1–40. isbn: 978-981-15-6401-7.
doi: 10.1007/978-981-15-6401-7_45-2.

[38] Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid. “MAPS:
Mapping Concurrent Dataflow Applications to Heterogeneous
MPSoCs.” In: IEEE Transactions on Industrial Informatics 9.1
(2013), pp. 527–545. issn: 1551-3203. doi: 10.1109/TII.2011.
2173941.

[39] Jeronimo Castrillon, Stefan Schürmans, Anastasia Stulova, Wei-
hua Sheng, Torsten Kempf, Rainer Leupers, Gerd Ascheid,
and Heinrich Meyr. “Component-based Waveform Develop-
ment: The Nucleus Tool Flow for Efficient and Portable Soft-
ware Defined Radio.” In: Analog Integrated Circuits and Signal
Processing 69.2 (Dec. 2011), pp. 173–190. issn: 1573-1979. doi:
10.1007/s10470-011-9670-1.

[40] Jeronimo Castrillon, Andreas Tretter, Rainer Leupers, and Gerd
Ascheid. “Communication-aware mapping of KPN applications
onto heterogeneous MPSoCs.” In: Proceedings of the 49th Annual
Design Automation Conference. DAC ’12. San Francisco, Califor-
nia: Association for Computing Machinery, 2012, pp. 1266–1271.
isbn: 9781450311991. doi: 10.1145/2228360.2228597.

[41] Jeronimo Castrillon, Ricardo Velásquez, Anastasia Stulova, Wei-
hua Sheng, Jianjiang Ceng, Rainer Leupers, Gerd Ascheid, and
Heinrich Meyr. “Trace-based KPN Composability Analysis for
Mapping Simultaneous Applications to MPSoC Platforms.” In:
2010 Design, Automation & Test in Europe Conference & Exhibition
(DATE 2010). Dresden, Germany, Mar. 2010, pp. 753–758. isbn:
978-3-9810801-6-2. doi: 10.1109/DATE.2010.5456950.

https://doi.org/10.1109/INFOCOM.2018.8486276
https://doi.org/10.1109/INFOCOM.2018.8486276
https://arxiv.org/abs/2003.01841
https://doi.org/10.1109/MDT.2010.106
https://doi.org/10.1007/978-981-15-6401-7_45-2
https://doi.org/10.1109/TII.2011.2173941
https://doi.org/10.1109/TII.2011.2173941
https://doi.org/10.1007/s10470-011-9670-1
https://doi.org/10.1145/2228360.2228597
https://doi.org/10.1109/DATE.2010.5456950

168 bibliography

[42] Jeronimo Castrillon Mazo and Rainer Leupers. Programming
Heterogeneous MPSoCs: Tool Flows to Close the Software Produc-
tivity Gap. Cham: Springer, 2014. isbn: 978-3-31900-674-1. doi:
10.1007/978-3-319-00675-8.

[43] Weijia Che and Karam S. Chatha. “Unrolling and retiming
of stream applications onto embedded multicore processors.”
In: Proceedings of the 49th Annual Design Automation Conference.
DAC ’12. San Francisco, California: Association for Computing
Machinery, 2012, pp. 1272–1277. isbn: 9781450311991. doi: 10.
1145/2228360.2228598.

[44] Aleksandra Checko, Henrik L. Christiansen, Ying Yan, Lara Sco-
lari, Georgios Kardaras, Michael S. Berger, and Lars Dittmann.
“Cloud RAN for Mobile Networks—A Technology Overview.”
In: IEEE Communications Surveys & Tutorials 17.1 (2015), pp. 405–
426. doi: 10.1109/COMST.2014.2355255.

[45] Liang Chen, Thomas Marconi, and Tulika Mitra. “Online schedul-
ing for multi-core shared reconfigurable fabric.” In: 2012 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE).
2012, pp. 582–585. doi: 10.1109/DATE.2012.6176537.

[46] Tim Chen. Enable Cluster Scheduling for x86 Hybrid CPUs. Avail-
able at: https://lore.kernel.org/lkml/cover.1688770494.
git.tim.c.chen@linux.intel.com/ [Online; accessed 08-
April-2025]. July 2023.

[47] Junchul Choi, Hyunok Oh, Sungchan Kim, and Soonhoi Ha.
“Executing synchronous dataflow graphs on a SPM-based mul-
ticore architecture.” In: DAC Design Automation Conference 2012.
2012, pp. 664–671.

[48] Chen-Ling Chou and Radu Marculescu. “User-Aware Dynamic
Task Allocation in Networks-on-Chip.” In: 2008 Design, Automa-
tion and Test in Europe. 2008, pp. 1232–1237. doi: 10.1109/DATE.
2008.4484847.

[49] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van
Veldhuizen. Evolutionary Algorithms for Solving Multi-Objective
Problems. Genetic and Evolutionary Computation. Springer US,
2007. isbn: 978-0-387-33254-3. doi: 10.1007/978-0-387-36797-
2.

[50] Carlos A. Coello Coello and Margarita Reyes Sierra. “A Study
of the Parallelization of a Coevolutionary Multi-objective Evo-
lutionary Algorithm.” In: MICAI 2004: Advances in Artificial
Intelligence. Ed. by Raúl Monroy, Gustavo Arroyo-Figueroa,
Luis Enrique Sucar, and Humberto Sossa. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 688–697. isbn: 978-3-540-
24694-7. doi: 10.1007/978-3-540-24694-7_71.

https://doi.org/10.1007/978-3-319-00675-8
https://doi.org/10.1145/2228360.2228598
https://doi.org/10.1145/2228360.2228598
https://doi.org/10.1109/COMST.2014.2355255
https://doi.org/10.1109/DATE.2012.6176537
https://lore.kernel.org/lkml/cover.1688770494.git.tim.c.chen@linux.intel.com/
https://lore.kernel.org/lkml/cover.1688770494.git.tim.c.chen@linux.intel.com/
https://doi.org/10.1109/DATE.2008.4484847
https://doi.org/10.1109/DATE.2008.4484847
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-3-540-24694-7_71

bibliography 169

[51] Maxime Colmant, Mascha Kurpicz, Pascal Felber, Loïc Huer-
tas, Romain Rouvoy, and Anita Sobe. “Process-level power
estimation in VM-based systems.” In: Proceedings of the Tenth
European Conference on Computer Systems. EuroSys ’15. Bor-
deaux, France: Association for Computing Machinery, 2015.
isbn: 9781450332385. doi: 10.1145/2741948.2741971.

[52] Ian Cutress. Thread Director: Windows 11 Does It Best. Avail-
able at: https://www.anandtech.com/show/16959/intel-
innovation-alder-lake-november-4th/3 [Online; accessed
08-April-2025]. Oct. 2021.

[53] Anup Das, Bashir M. Al-Hashimi, and Geoff V. Merrett. “Adap-
tive and Hierarchical Runtime Manager for Energy-Aware Ther-
mal Management of Embedded Systems.” In: ACM Transactions
on Embedded Computing Systems (TECS) 15.2 (Jan. 2016). issn:
1539-9087. doi: 10.1145/2834120.

[54] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul
Khanna, and Christian Le. “RAPL: Memory power estimation
and capping.” In: 2010 ACM/IEEE International Symposium on
Low-Power Electronics and Design (ISLPED). 2010, pp. 189–194.
doi: 10.1145/1840845.1840883.

[55] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo
Rideout, Ernest Bassous, and Andre R. LeBlanc. “Design of ion-
implanted MOSFET’s with very small physical dimensions.”
In: IEEE Journal of Solid-State Circuits 9.5 (1974), pp. 256–268.
doi: 10.1109/JSSC.1974.1050511.

[56] TensorFlow Developers. “TensorFlow.” In: Zenodo (2022).

[57] A. E. Eiben and James E. Smith. Introduction to Evolutionary
Computing. 2nd. Springer Publishing Company, Incorporated,
2015. isbn: 3662448734.

[58] Cagkan Erbas, Selin Cerav-Erbas, and Andy D. Pimentel. “Mul-
tiobjective optimization and evolutionary algorithms for the
application mapping problem in multiprocessor system-on-
chip design.” In: IEEE Transactions on Evolutionary Computation
10.3 (2006), pp. 358–374. doi: 10.1109/TEVC.2005.860766.

[59] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. “Dark silicon and the end of
multicore scaling.” In: 2011 38th Annual International Symposium
on Computer Architecture (ISCA). 2011, pp. 365–376. doi: 10.
1145/2000064.2000108.

[60] Khalil Esper, Stefan Wildermann, and Jürgen Teich. “A Com-
parative Evaluation of Latency-Aware Energy Optimization Ap-
proaches in Many-Core Systems.” In: Second Workshop on Next
Generation Real-Time Embedded Systems (NG-RES 2021). Ed. by
Marko Bertogna and Federico Terraneo. Vol. 87. Open Access

https://doi.org/10.1145/2741948.2741971
https://www.anandtech.com/show/16959/intel-innovation-alder-lake-november-4th/3
https://www.anandtech.com/show/16959/intel-innovation-alder-lake-november-4th/3
https://doi.org/10.1145/2834120
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/TEVC.2005.860766
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108

170 bibliography

Series in Informatics (OASIcs). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 1:1–1:12.
isbn: 978-3-95977-178-8. doi: 10.4230/OASIcs.NG-RES.2021.1.

[61] Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
channels and modulation. Technical Specification (TS) 36.211.
Version 14.2.0. 3rd Generation Partnership Project (3GPP), Apr.
2017. url: https://www.etsi.org/deliver/etsi_ts/136200_
136299/136211/14.02.00_60/ts_136211v140200p.pdf.

[62] Sardar M. Farhad, Yousun Ko, Bernd Burgstaller, and Bernhard
Scholz. “Orchestration by Approximation: Mapping Stream
Programs Onto Multicore Architectures.” In: SIGPLAN Not.
46.3 (Mar. 2011), pp. 357–368. issn: 0362-1340. doi: 10.1145/
1961296.1950406.

[63] Dror G. Feitelson and Larry Rudolph. “Toward Convergence
in Job Schedulers for Parallel Supercomputers.” In: Proceedings
of the Workshop on Job Scheduling Strategies for Parallel Processing.
IPPS ’96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996,
pp. 1–26. isbn: 978-3-540-70710-3. doi: 10.1007/BFb0022284.

[64] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André
Gardner Gardner, Marc Parizeau, and Christian Gagné. “DEAP:
evolutionary algorithms made easy.” In: J. Mach. Learn. Res.
13.1 (July 2012), pp. 2171–2175. issn: 1532-4435.

[65] Pascal Fradet, Alain Girault, Ruby Krishnaswamy, Xavier Ni-
collin, and Arash Shafiei. “RDF: A Reconfigurable Dataflow
Model of Computation.” In: ACM Trans. Embed. Comput. Syst.
22.1 (Oct. 2022). issn: 1539-9087. doi: 10.1145/3544972.

[66] Michael R. Garey and David S. Johnson. Computers and In-
tractability; A Guide to the Theory of NP-Completeness. USA: W. H.
Freeman & Co., 1990. isbn: 0716710455.

[67] David Geer. “Chip makers turn to multicore processors.” In:
Computer 38.5 (2005), pp. 11–13. doi: 10.1109/MC.2005.160.

[68] Andrés Goens, Robert Khasanov, Jeronimo Castrillon, Marcus
Hähnel, Till Smejkal, and Hermann Härtig. “TETRiS: a Multi-
Application Run-Time System for Predictable Execution of
Static Mappings.” In: Proceedings of the 20th International Work-
shop on Software and Compilers for Embedded Systems. SCOPES ’17.
Sankt Goar, Germany: Association for Computing Machinery,
2017, pp. 11–20. isbn: 9781450350396. doi: 10.1145/3078659.
3078663.

[69] Andrés Goens, Sergio Siccha, and Jeronimo Castrillon. “Symme-
try in Software Synthesis.” In: ACM Trans. Archit. Code Optim.
14.2 (July 2017). issn: 1544-3566. doi: 10.1145/3095747.

https://doi.org/10.4230/OASIcs.NG-RES.2021.1
https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/14.02.00_60/ts_136211v140200p.pdf
https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/14.02.00_60/ts_136211v140200p.pdf
https://doi.org/10.1145/1961296.1950406
https://doi.org/10.1145/1961296.1950406
https://doi.org/10.1007/BFb0022284
https://doi.org/10.1145/3544972
https://doi.org/10.1109/MC.2005.160
https://doi.org/10.1145/3078659.3078663
https://doi.org/10.1145/3078659.3078663
https://doi.org/10.1145/3095747

bibliography 171

[70] Michael I. Gordon, William Thies, and Saman Amarasinghe.
“Exploiting Coarse-grained Task, Data, and Pipeline Parallelism
in Stream Programs.” In: SIGOPS Oper. Syst. Rev. 40.5 (Oct.
2006), pp. 151–162. issn: 0163-5980. doi: 10.1145/1168918.
1168877.

[71] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper
Lin, Ali S. Meli, Andrew A. Lamb, Chris Leger, Jeremy Wong,
Henry Hoffmann, David Maze, and Saman Amarasinghe. “A
Stream Compiler for Communication-exposed Architectures.”
In: SIGOPS Oper. Syst. Rev. 36.5 (Oct. 2002), pp. 291–303. issn:
0163-5964. doi: 10.1145/635506.605428.

[72] Peter Greenhalgh. Big.LITTLE Processing with ARM Cortex-A15
& Cortex-A7. Available at: https://www.eetimes.com/big-
little-processing-with-arm-cortex-a15-cortex-a7/ [On-
line; accessed 08-April-2025]. 2011.

[73] Soonhoi Ha and Jürgen Teich. Handbook of Hardware/Software
Codesign. 1st. Springer Publishing Company, Incorporated, 2017.
isbn: 9401772681.

[74] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel
Molka, Joseph Schuchart, and Robin Geyer. “An Energy Effi-
ciency Feature Survey of the Intel Haswell Processor.” In: 2015
IEEE International Parallel and Distributed Processing Symposium
Workshop. 2015, pp. 896–904. doi: 10.1109/IPDPSW.2015.70.

[75] Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Här-
tig. “Measuring energy consumption for short code paths using
RAPL.” In: SIGMETRICS Perform. Eval. Rev. 40.3 (Jan. 2012),
pp. 13–17. issn: 0163-5999. doi: 10.1145/2425248.2425252.

[76] Marcus Hähnel and Hermann Härtig. “Heterogeneity by the
Numbers: A Study of the ODROID XU+E big.LITTLE Plat-
form.” In: 6th Workshop on Power-Aware Computing and Sys-
tems (HotPower 14). Broomfield, CO: USENIX Association, Oct.
2014. url: https://www.usenix.org/conference/hotpower14/
workshop-program/presentation/hahnel.

[77] Marcus Hähnel and Till Smejkal. “Modular Energy Modeling
Using Energy/Utility.” In: Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering. ICPE ’18.
Berlin, Germany: Association for Computing Machinery, 2018,
pp. 73–78. isbn: 9781450356299. doi: 10.1145/3185768.3186311.

[78] Hardkernel Co., Ltd. ODROID-XU4 User Manual. Available at:
https://magazine.odroid.com/wp-content/uploads/odroid-

xu4-user-manual.pdf [Online; accessed 08-April-2025]. 2014.

https://doi.org/10.1145/1168918.1168877
https://doi.org/10.1145/1168918.1168877
https://doi.org/10.1145/635506.605428
https://www.eetimes.com/big-little-processing-with-arm-cortex-a15-cortex-a7/
https://www.eetimes.com/big-little-processing-with-arm-cortex-a15-cortex-a7/
https://doi.org/10.1109/IPDPSW.2015.70
https://doi.org/10.1145/2425248.2425252
https://www.usenix.org/conference/hotpower14/workshop-program/presentation/hahnel
https://www.usenix.org/conference/hotpower14/workshop-program/presentation/hahnel
https://doi.org/10.1145/3185768.3186311
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf

172 bibliography

[79] Christopher Harper. A third AMD Strix Point Ryzen AI CPU has
been officially confirmed— Ryzen AI 9 HX 375 debuts just above
HX 370. https://www.tomshardware.com/pc- components/
cpus/a-third-amd-strix-point-ryzen-ai-cpu-has-been-

officially-confirmed-the-ryzen-ai-9-hx-375-debuts-

just-above-hx-370. [Online; accessed 08-April-2025]. 2024.

[80] Hongyu Hè, Michal Friedman, and Theodoros Rekatsinas. “En-
ergAt: Fine-Grained Energy Attribution for Multi-Tenancy.” In:
Proceedings of the 2nd Workshop on Sustainable Computer Systems.
HotCarbon ’23. Boston, MA, USA: Association for Computing
Machinery, 2023. isbn: 9798400702426. doi: 10.1145/3604930.
3605716.

[81] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and
Robert Grimm. “A Catalog of Stream Processing Optimiza-
tions.” In: ACM Comput. Surv. 46.4 (Mar. 2014), 46:1–46:34. issn:
0360-0300. doi: 10.1145/2528412.

[82] Alan Holt and Chi-Yu Huang. Embedded Operating Systems: A
Practical Approach. 2nd. Springer Publishing Company, Incor-
porated, 2018. isbn: 3319729764.

[83] Jia Huang, Andreas Raabe, Christian Buckl, and Alois Knoll.
“A workflow for runtime adaptive task allocation on heteroge-
neous MPSoCs.” In: 2011 Design, Automation & Test in Europe.
2011, pp. 1–6. doi: 10.1109/DATE.2011.5763189.

[84] Paolo Ienne and Rainer Leupers. Customizable Embedded Pro-
cessors: Design Technologies and Applications. English. Series in
Systems on Silicon. Massachusetts: Morgan Kaufmann, July
2006. isbn: 0-123-69526-0. doi: 10.1016/B978-0-12-369526-
0.X5000-1.

[85] Thomas Ilsche, Daniel Hackenberg, Stefan Graul, Robert Schöne,
and Joseph Schuchart. “Power measurements for compute
nodes: Improving sampling rates, granularity and accuracy.”
In: 2015 Sixth International Green and Sustainable Computing Con-
ference (IGSC). 2015, pp. 1–8. doi: 10.1109/IGCC.2015.7393710.

[86] Intel. Intel Unveils 12th Gen Intel Core, Launches World’s Best Gam-
ing Processor, i9-12900K. Available at: https://www.intc.com/
news-events/press-releases/detail/1506/intel-unveils-

12th-gen-intel-core-launches-worlds-best [Online; ac-
cessed 08-April-2025]. Oct. 2021.

[87] Intel Corporation. What Is Intel® Thread Director? [Online; ac-
cessed 08-April-2025]. url: https://www.intel.com/content/
www/us/en/support/articles/000097053/processors/intel-

core-processors.html.

https://www.tomshardware.com/pc-components/cpus/a-third-amd-strix-point-ryzen-ai-cpu-has-been-officially-confirmed-the-ryzen-ai-9-hx-375-debuts-just-above-hx-370
https://www.tomshardware.com/pc-components/cpus/a-third-amd-strix-point-ryzen-ai-cpu-has-been-officially-confirmed-the-ryzen-ai-9-hx-375-debuts-just-above-hx-370
https://www.tomshardware.com/pc-components/cpus/a-third-amd-strix-point-ryzen-ai-cpu-has-been-officially-confirmed-the-ryzen-ai-9-hx-375-debuts-just-above-hx-370
https://www.tomshardware.com/pc-components/cpus/a-third-amd-strix-point-ryzen-ai-cpu-has-been-officially-confirmed-the-ryzen-ai-9-hx-375-debuts-just-above-hx-370
https://doi.org/10.1145/3604930.3605716
https://doi.org/10.1145/3604930.3605716
https://doi.org/10.1145/2528412
https://doi.org/10.1109/DATE.2011.5763189
https://doi.org/10.1016/B978-0-12-369526-0.X5000-1
https://doi.org/10.1016/B978-0-12-369526-0.X5000-1
https://doi.org/10.1109/IGCC.2015.7393710
https://www.intc.com/news-events/press-releases/detail/1506/intel-unveils-12th-gen-intel-core-launches-worlds-best
https://www.intc.com/news-events/press-releases/detail/1506/intel-unveils-12th-gen-intel-core-launches-worlds-best
https://www.intc.com/news-events/press-releases/detail/1506/intel-unveils-12th-gen-intel-core-launches-worlds-best
https://www.intel.com/content/www/us/en/support/articles/000097053/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000097053/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000097053/processors/intel-core-processors.html

bibliography 173

[88] Haris Javaid and Sri Parameswaran. “A design flow for applica-
tion specific heterogeneous pipelined multiprocessor systems.”
In: 2009 46th ACM/IEEE Design Automation Conference. 2009,
pp. 250–253. doi: 10.1145/1629911.1629979.

[89] JmsDoug and Fritzchens Fritz. Core i9-13900K labelled die shot.
https://en.wikipedia.org/wiki/Raptor_Lake#/media/File:

Intel_Core_i9- 13900K_Labelled_Die_Shot.jpg. [Online;
accessed 08-April-2025]. 2023.

[90] Norman P. Jouppi et al. “In-Datacenter Performance Analysis
of a Tensor Processing Unit.” In: SIGARCH Comput. Archit.
News 45.2 (June 2017), pp. 1–12. issn: 0163-5964. doi: 10.1145/
3140659.3080246. url: https://doi.org/10.1145/3140659.
3080246.

[91] Gilles Kahn. “The semantics of a simple language for parallel
programming.” In: Information processing. Ed. by J. L. Rosenfeld.
Stockholm, Sweden: North Holland, Amsterdam, Aug. 1974,
pp. 471–475.

[92] Gilles Kahn and David B. MacQueen. “Coroutines and net-
works of parallel processes.” In: Information processing. Ed. by
B. Gilchrist. North Holland, Amsterdam, 1977, pp. 993–998.

[93] Niu Kai, Sun Jianxing, He Zhiqiang, and Kok Keong Chai.
“LTE eNodeB prototype based on GPP platform.” In: 2012 IEEE
Globecom Workshops. 2012, pp. 279–284. doi: 10.1109/GLOCOMW.
2012.6477583.

[94] Shin-Haeng Kang, Hoeseok Yang, Lars Schor, Iuliana Bacivarov,
Soonhoi Ha, and Lothar Thiele. “Multi-objective mapping opti-
mization via problem decomposition for many-core systems.”
In: 2012 IEEE 10th Symposium on Embedded Systems for Real-time
Multimedia. 2012, pp. 28–37. doi: 10.1109/ESTIMedia.2012.
6507026.

[95] Lina Karam, Ismail Alkamal, Alan Gatherer, Gene A. Frantz,
David V. Anderson, and Brian L. Evans. “Trends in multicore
DSP platforms.” In: IEEE Signal Processing Magazine 26.6 (2009),
pp. 38–49. doi: 10.1109/MSP.2009.934113.

[96] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and
Li-Shiuan Peh. “HyCUBE: A CGRA with reconfigurable single-
cycle multi-hop interconnect.” In: 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC). 2017, pp. 1–6. doi: 10.
1145/3061639.3062262.

[97] Robert Khasanov and Jeronimo Castrillon. “Energy-efficient
Runtime Resource Management for Adaptable Multi-application
Mapping.” In: 2020 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE). Mar. 2020, pp. 909–914. doi: 10.
23919/DATE48585.2020.9116381.

https://doi.org/10.1145/1629911.1629979
https://en.wikipedia.org/wiki/Raptor_Lake#/media/File:Intel_Core_i9-13900K_Labelled_Die_Shot.jpg
https://en.wikipedia.org/wiki/Raptor_Lake#/media/File:Intel_Core_i9-13900K_Labelled_Die_Shot.jpg
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1109/GLOCOMW.2012.6477583
https://doi.org/10.1109/GLOCOMW.2012.6477583
https://doi.org/10.1109/ESTIMedia.2012.6507026
https://doi.org/10.1109/ESTIMedia.2012.6507026
https://doi.org/10.1109/MSP.2009.934113
https://doi.org/10.1145/3061639.3062262
https://doi.org/10.1145/3061639.3062262
https://doi.org/10.23919/DATE48585.2020.9116381
https://doi.org/10.23919/DATE48585.2020.9116381

174 bibliography

[98] Robert Khasanov, Marc Dietrich, and Jeronimo Castrillon. “Flex-
ible Spatio-Temporal Energy-Efficient Runtime Management.”
In: 2024 29th Asia and South Pacific Design Automation Confer-
ence (ASP-DAC). Jan. 2024, pp. 777–784. doi: 10.1109/ASP-
DAC58780.2024.10473885.

[99] Robert Khasanov, Andrés Goens, and Jeronimo Castrillon. “Im-
plicit Data-Parallelism in Kahn Process Networks: Bridging
the MacQueen Gap.” In: Proceedings of the 9th Workshop and
7th Workshop on Parallel Programming and RunTime Management
Techniques for Manycore Architectures and Design Tools and Archi-
tectures for Multicore Embedded Computing Platforms. PARMA-
DITAM ’18. Manchester, United Kingdom: Association for Com-
puting Machinery, Jan. 2018, pp. 20–25. isbn: 978-1-4503-6444-7.
doi: 10.1145/3183767.3183790.

[100] Robert Khasanov, Julian Robledo, Christian Menard, Andrés
Goens, and Jeronimo Castrillon. “Domain-specific Hybrid Map-
ping for Energy-efficient Baseband Processing in Wireless Net-
works.” In: ACM Trans. Embed. Comput. Syst. 20.5s (Oct. 2021).
issn: 1539-9087. doi: 10.1145/3476991.

[101] Thomas Kissinger, Marcus Hähnel, Till Smejkal, Dirk Habich,
Hermann Härtig, and Wolfgang Lehner. “Energy-Utility Func-
tion-Based Resource Control for In-Memory Database Systems
LIVE.” In: Proceedings of the 2018 International Conference on
Management of Data. SIGMOD ’18. Houston, TX, USA: Asso-
ciation for Computing Machinery, 2018, pp. 1717–1720. isbn:
9781450347037. doi: 10.1145/3183713.3193554.

[102] Guilherme Korol, Michael Guilherme Jordan, Mateus Beck
Rutzig, Jeronimo Castrillon, and Antonio Carlos Schneider
Beck. “Pruning and Early-Exit Co-Optimization for CNN Ac-
celeration on FPGAs.” In: 2023 Design, Automation & Test in
Europe Conference & Exhibition (DATE). 2023, pp. 1–6. doi: 10.
23919/DATE56975.2023.10137244.

[103] David Koufaty, Dheeraj Reddy, and Scott Hahn. “Bias schedul-
ing in heterogeneous multi-core architectures.” In: Proceedings
of the 5th European Conference on Computer Systems. EuroSys ’10.
Paris, France: Association for Computing Machinery, 2010,
pp. 125–138. isbn: 9781605585772. doi: 10 . 1145 / 1755913 .

1755928.

[104] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “Ima-
geNet classification with deep convolutional neural networks.”
In: Commun. ACM 60.6 (May 2017), pp. 84–90. issn: 0001-0782.
doi: 10.1145/3065386.

https://doi.org/10.1109/ASP-DAC58780.2024.10473885
https://doi.org/10.1109/ASP-DAC58780.2024.10473885
https://doi.org/10.1145/3183767.3183790
https://doi.org/10.1145/3476991
https://doi.org/10.1145/3183713.3193554
https://doi.org/10.23919/DATE56975.2023.10137244
https://doi.org/10.23919/DATE56975.2023.10137244
https://doi.org/10.1145/1755913.1755928
https://doi.org/10.1145/1755913.1755928
https://doi.org/10.1145/3065386

bibliography 175

[105] Manjunath Kudlur and Scott Mahlke. “Orchestrating the Exe-
cution of Stream Programs on Multicore Platforms.” In: SIG-
PLAN Not. 43.6 (June 2008), pp. 114–124. issn: 0362-1340. doi:
10.1145/1379022.1375596.

[106] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, and K.I.
Farkas. “Single-ISA heterogeneous multi-core architectures for
multithreaded workload performance.” In: Proceedings. 31st
Annual International Symposium on Computer Architecture, 2004.
2004, pp. 64–75. doi: 10.1109/ISCA.2004.1310764.

[107] Edward A Lee and Thomas M Parks. “Dataflow process net-
works.” In: Proceedings of the IEEE 83.5 (1995), pp. 773–801. doi:
10.1109/5.381846.

[108] Edward A. Lee. “Consistency in dataflow graphs.” In: IEEE
Transactions on Parallel and Distributed Systems 2.2 (1991), pp. 223–
235. doi: 10.1109/71.89067.

[109] Edward A. Lee and David G. Messerschmitt. “Synchronous
data flow.” In: Proceedings of the IEEE 75.9 (Sept. 1987), pp. 1235–
1245. issn: 0018-9219. doi: 10.1109/PROC.1987.13876.

[110] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction
to Embedded Systems: A Cyber-Physical Systems Approach. 2nd.
The MIT Press, 2016. isbn: 0262533812.

[111] Haeseung Lee, Weijia Che, and Karam Chatha. “Dynamic
Scheduling of Stream Programs on Embedded Multi-core Pro-
cessors.” In: Proceedings of the Eighth IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Syn-
thesis. CODES+ISSS ’12. Tampere, Finland: Association for Com-
puting Machinery, 2012, pp. 93–102. isbn: 9781450314268. doi:
10.1145/2380445.2380465.

[112] Aini Li, Yan Sun, Xiaodong Xu, and Chunjing Yuan. “An
energy-effective network deployment scheme for 5G Cloud
Radio Access Networks.” In: 2016 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). 2016, pp. 684–
689. doi: 10.1109/INFCOMW.2016.7562164.

[113] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. “Pruning Filters for Efficient ConvNets.” In:
International Conference on Learning Representations. 2017. url:
https://openreview.net/forum?id=rJqFGTslg.

[114] Kaipeng Li, Rishi R. Sharan, Yujun Chen, Tom Goldstein,
Joseph R. Cavallaro, and Christoph Studer. “Decentralized
Baseband Processing for Massive MU-MIMO Systems.” In:
IEEE Journal on Emerging and Selected Topics in Circuits and
Systems 7.4 (2017), pp. 491–507. doi: 10.1109/JETCAS.2017.
2775151.

https://doi.org/10.1145/1379022.1375596
https://doi.org/10.1109/ISCA.2004.1310764
https://doi.org/10.1109/5.381846
https://doi.org/10.1109/71.89067
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1145/2380445.2380465
https://doi.org/10.1109/INFCOMW.2016.7562164
https://openreview.net/forum?id=rJqFGTslg
https://doi.org/10.1109/JETCAS.2017.2775151
https://doi.org/10.1109/JETCAS.2017.2775151

176 bibliography

[115] Simone Libutti, Giuseppe Massari, and William Fornaciari.
“Co-scheduling tasks on multi-core heterogeneous systems:
An energy-aware perspective.” In: IET Computers & Digital
Techniques 10.2 (2016), pp. 77–84. doi: 10.1049/iet-cdt.2015.
0053.

[116] Liang-Yu Lin, Cheng-Yeh Wang, Pao-Jui Huang, Chih-Chieh
Chou, and Jing-Yang Jou. “Communication-driven task binding
for multiprocessor with latency insensitive network-on-chip.”
In: Proceedings of the ASP-DAC 2005. Asia and South Pacific Design
Automation Conference, 2005. Vol. 1. 2005, 39–44 Vol. 1. doi:
10.1109/ASPDAC.2005.1466126.

[117] Linux Kernel Community. Energy Aware Scheduling. Available
at: https://docs.kernel.org/scheduler/sched-energy.html
[Online; accessed 08-April-2025].

[118] Zhiye Liu. AMD Phoenix 2 Review Evaluates Zen 4, Zen 4c
Performance. Available at: https://www.tomshardware.com/
news/amd- phoenix- 2- review- evaluates- zen- 4- zen- 4c-

performance [Online; accessed 08-April-2025]. Sept. 2023.

[119] Wictor Lund, Sudeep Kanur, Johan Ersfolk, Leonidas Tsiopou-
los, Johan Lilius, Joakim Haldin, and Ulf Falk. “Execution of
Dataflow Process Networks on OpenCL Platforms.” In: 2015
23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. Mar. 2015, pp. 618–625. doi: 10.
1109/PDP.2015.29.

[120] Avinash Malik, Cameron Walker, Michael O’Sullivan, and
Oliver Sinnen. “Satisfiability modulo theory (SMT) formulation
for optimal scheduling of task graphs with communication de-
lay.” In: Computers & Operations Research 89 (2018), pp. 113–126.
issn: 0305-0548. doi: 10.1016/j.cor.2017.08.012.

[121] Sorin Manolache, Petru Eles, and Zebo Peng. “Task mapping
and priority assignment for soft real-time applications under
deadline miss ratio constraints.” In: ACM Trans. Embed. Comput.
Syst. 7.2 (Jan. 2008). issn: 1539-9087. doi: 10.1145/1331331.
1331343.

[122] Giovanni Mariani, Vlad-Mihai Sima, Gianluca Palermo, Vittorio
Zaccaria, Cristina Silvano, and Koen Bertels. “Using multi-
objective design space exploration to enable run-time resource
management for reconfigurable architectures.” In: 2012 Design,
Automation & Test in Europe Conference & Exhibition (DATE).
2012, pp. 1379–1384. doi: 10.1109/DATE.2012.6176578.

[123] Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms
and Computer Implementations. New York, NY, USA: John Wiley
& Sons, Inc., 1990. isbn: 0-471-92420-2.

https://doi.org/10.1049/iet-cdt.2015.0053
https://doi.org/10.1049/iet-cdt.2015.0053
https://doi.org/10.1109/ASPDAC.2005.1466126
https://docs.kernel.org/scheduler/sched-energy.html
https://www.tomshardware.com/news/amd-phoenix-2-review-evaluates-zen-4-zen-4c-performance
https://www.tomshardware.com/news/amd-phoenix-2-review-evaluates-zen-4-zen-4c-performance
https://www.tomshardware.com/news/amd-phoenix-2-review-evaluates-zen-4-zen-4c-performance
https://doi.org/10.1109/PDP.2015.29
https://doi.org/10.1109/PDP.2015.29
https://doi.org/10.1016/j.cor.2017.08.012
https://doi.org/10.1145/1331331.1331343
https://doi.org/10.1145/1331331.1331343
https://doi.org/10.1109/DATE.2012.6176578

bibliography 177

[124] Alain J Martin. “Towards an energy complexity of computa-
tion.” In: Information Processing Letters 77.2 (2001), pp. 181–187.
issn: 0020-0190. doi: 10.1016/S0020-0190(00)00214-3.

[125] P. Marwedel. Embedded System Design: Embedded Systems Foun-
dations of Cyber-Physical Systems, and the Internet of Things. Em-
bedded Systems. Springer International Publishing, 2021. isbn:
9783030609108. url: https://books.google.de/books?id=
qCoXEAAAQBAJ.

[126] Giuseppe Massari, Edoardo Paone, Patrick Bellasi, Gianluca
Palermo, Vittorio Zaccaria, William Fornaciari, and Cristina
Silvano. “Combining application adaptivity and system-wide
Resource Management on multi-core platforms.” In: 2014 Inter-
national Conference on Embedded Computer Systems: Architectures,
Modeling, and Simulation (SAMOS XIV). 2014, pp. 26–33. doi:
10.1109/SAMOS.2014.6893191.

[127] David McGrew, Michael Curcio, and Scott Fluhrer. Leighton-
Micali Hash-Based Signatures. RFC 8554. Apr. 2019. doi: 10.
17487/RFC8554.

[128] Armin Mehran, Ahmad Khadem-Zadeh, and Samira Saeidi.
“DSM: A Heuristic Dynamic Spiral Mapping algorithm for
network on chip.” In: IEICE Electronics Express 5.13 (July 2008),
pp. 464–471. doi: 10.1587/elex.5.464.

[129] Christian Menard, Andrés Goens, and Jeronimo Castrillon.
“High-level NoC model for MPSoC compilers.” In: 2016 IEEE
Nordic Circuits and Systems Conference (NORCAS). 2016, pp. 1–6.
doi: 10.1109/NORCHIP.2016.7792876.

[130] Christian Menard, Andrés Goens, Gerald Hempel, Robert
Khasanov, Julian Robledo, Felix Teweleitt, and Jeronimo Cas-
trillon. “Mocasin—–Rapid Prototyping of Rapid Prototyping
Tools: A Framework for Exploring New Approaches in Map-
ping Software to Heterogeneous Multi-cores.” In: Proceedings
of the 2021 Drone Systems Engineering and Rapid Simulation and
Performance Evaluation: Methods and Tools Proceedings. DroneSE
and RAPIDO ’21. Budapest, Hungary: Association for Comput-
ing Machinery, Jan. 2021, pp. 66–73. isbn: 9781450389525. doi:
10.1145/3444950.3447285.

[131] Tulika Mitra. “Heterogeneous Multi-core Architectures.” In:
IPSJ Transactions on System and LSI Design Methodology 8 (2015),
pp. 51–62. doi: 10.2197/ipsjtsldm.8.51.

[132] Sparsh Mittal. “A Survey of Techniques for Approximate Com-
puting.” In: ACM Comput. Surv. 48.4 (Mar. 2016). issn: 0360-
0300. doi: 10.1145/2893356.

https://doi.org/10.1016/S0020-0190(00)00214-3
https://books.google.de/books?id=qCoXEAAAQBAJ
https://books.google.de/books?id=qCoXEAAAQBAJ
https://doi.org/10.1109/SAMOS.2014.6893191
https://doi.org/10.17487/RFC8554
https://doi.org/10.17487/RFC8554
https://doi.org/10.1587/elex.5.464
https://doi.org/10.1109/NORCHIP.2016.7792876
https://doi.org/10.1145/3444950.3447285
https://doi.org/10.2197/ipsjtsldm.8.51
https://doi.org/10.1145/2893356

178 bibliography

[133] Jeffrey C. Mogul, Jayaram Mudigonda, Nathan Binkert, Partha-
sarathy Ranganathan, and Vanish Talwar. “Using Asymmetric
Single-ISA CMPs to Save Energy on Operating Systems.” In:
IEEE Micro 28.3 (2008), pp. 26–41. doi: 10.1109/MM.2008.47.

[134] Gordon E. Moore. “Cramming more components onto inte-
grated circuits.” In: Electronics 38.8 (Apr. 1965).

[135] Orlando Moreira, Jacob Jan-David Mol, and Marco Bekooij.
“Online resource management in a multiprocessor with a net-
work-on-chip.” In: Proceedings of the 2007 ACM Symposium on
Applied Computing. SAC ’07. Seoul, Korea: Association for Com-
puting Machinery, 2007, pp. 1557–1564. isbn: 1595934804. doi:
10.1145/1244002.1244335.

[136] Tridib Mukherjee, Ayan Banerjee, Georgios Varsamopoulos,
Sandeep K. S. Gupta, and Sanjay Rungta. “Spatio-temporal
thermal-aware job scheduling to minimize energy consump-
tion in virtualized heterogeneous data centers.” In: Computer
Networks 53.17 (Dec. 2009). Virtualized Data Centers, pp. 2888–
2904. issn: 1389-1286. doi: 10.1016/j.comnet.2009.06.008.

[137] Ricardo Neri. Introduce classes of tasks for load balance. Available
at: https://lore.kernel.org/lkml/20230613042422.5344-1-
ricardo.neri-calderon@linux.intel.com/ [Online; accessed
08-April-2025]. June 2023.

[138] Mina Niknafs, Ivan Ukhov, Petru Eles, and Zebo Peng. “Run-
time Resource Management with Workload Prediction.” In:
Proceedings of the 56th Annual Design Automation Conference 2019.
DAC ’19. Las Vegas, NV, USA: Association for Computing
Machinery, 2019. isbn: 9781450367257. doi: 10.1145/3316781.
3317902.

[139] Vincent Nollet, Prabhat Avasare, Hendrik Eeckhaut, Diederik
Verkest, and Henk Corporaal. “Run-Time Management of a
MPSoC Containing FPGA Fabric Tiles.” In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 16.1 (2008), pp. 24–33.
doi: 10.1109/TVLSI.2007.912097.

[140] Gereon Onnebrink, Ahmed Hallawa, Rainer Leupers, Gerd
Ascheid, and Awaid-Ud-Din Shaheen. “A heuristic for multi
objective software application mappings on heterogeneous MP-
SoCs.” In: Proceedings of the 24th Asia and South Pacific Design Au-
tomation Conference. ASPDAC ’19. Tokyo, Japan: Association for
Computing Machinery, 2019, pp. 609–614. isbn: 9781450360074.
doi: 10.1145/3287624.3287651.

[141] Heikki Orsila, Tero Kangas, Erno Salminen, Timo D. Hämäläi-
nen, and Marko Hännikäinen. “Automated memory-aware
application distribution for Multi-processor System-on-Chips.”

https://doi.org/10.1109/MM.2008.47
https://doi.org/10.1145/1244002.1244335
https://doi.org/10.1016/j.comnet.2009.06.008
https://lore.kernel.org/lkml/20230613042422.5344-1-ricardo.neri-calderon@linux.intel.com/
https://lore.kernel.org/lkml/20230613042422.5344-1-ricardo.neri-calderon@linux.intel.com/
https://doi.org/10.1145/3316781.3317902
https://doi.org/10.1145/3316781.3317902
https://doi.org/10.1109/TVLSI.2007.912097
https://doi.org/10.1145/3287624.3287651

bibliography 179

In: J. Syst. Archit. 53.11 (Nov. 2007), pp. 795–815. issn: 1383-7621.
doi: 10.1016/j.sysarc.2007.01.013.

[142] Chandandeep Singh Pabla. “Completely fair scheduler.” In:
Linux J. 2009.184 (Aug. 2009). issn: 1075-3583.

[143] Thomas Martyn Parks. “Bounded scheduling of process net-
works.” UMI Order No. GAX96-21312. PhD thesis. USA, 1996.

[144] Paul I Pénzes and Alain J. Martin. “Energy-delay efficiency of
VLSI computations.” In: Proceedings of the 12th ACM Great Lakes
Symposium on VLSI. GLSVLSI ’02. New York, New York, USA:
Association for Computing Machinery, 2002, pp. 104–111. isbn:
1581134622. doi: 10.1145/505306.505330.

[145] Quentin Perret. Energy Aware Scheduling (EAS) in Linux 5.0.
Available at: https://community.arm.com/arm-community-
blogs/b/architectures-and-processors-blog/posts/energy-

aware-scheduling-in-linux [Online; accessed 08-April-2025].
Feb. 2019.

[146] Chuck Pheatt. “Intel® threading building blocks.” In: Journal
of Computing Sciences in Colleges 23.4 (2008), pp. 298–298. url:
https://api.semanticscholar.org/CorpusID:59747733.

[147] Andy D. Pimentel, Cagkan Erbas, and Simon Polstra. “A sys-
tematic approach to exploring embedded system architectures
at multiple abstraction levels.” In: IEEE Transactions on Comput-
ers 55.2 (2006), pp. 99–112. doi: 10.1109/TC.2006.16.

[148] Behnaz Pourmohseni, Michael Glaß, Jörg Henkel, Heba Khdr,
Martin Rapp, Valentina Richthammer, Tobias Schwarzer, Fedor
Smirnov, Jan Spieck, Jürgen Teich, Andreas Weichslgartner,
and Stefan Wildermann. “Hybrid Application Mapping for
Composable Many-Core Systems: Overview and Future Per-
spective.” In: Journal of Low Power Electronics and Applications
10.4 (2020). issn: 2079-9268. doi: 10.3390/jlpea10040038.

[149] Behnaz Pourmohseni, Michael Glaß, and Jürgen Teich. “Auto-
matic operating point distillation for hybrid mapping method-
ologies.” In: Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017. 2017, pp. 1135–1140. doi: 10.23919/
DATE.2017.7927160.

[150] Claudius Ptolemaeus, ed. System Design, Modeling, and Simula-
tion using Ptolemy II. Ptolemy.org, 2014. url: http://ptolemy.
org/books/Systems.

[151] Jakob Puchinger, Günther R. Raidl, and Ulrich Pferschy. “The
Multidimensional Knapsack Problem: Structure and Algorithms.”
In: INFORMS J. on Computing 22.2 (Apr. 2010), pp. 250–265. issn:
1526-5528. doi: 10.1287/ijoc.1090.0344.

https://doi.org/10.1016/j.sysarc.2007.01.013
https://doi.org/10.1145/505306.505330
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/energy-aware-scheduling-in-linux
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/energy-aware-scheduling-in-linux
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/energy-aware-scheduling-in-linux
https://api.semanticscholar.org/CorpusID:59747733
https://doi.org/10.1109/TC.2006.16
https://doi.org/10.3390/jlpea10040038
https://doi.org/10.23919/DATE.2017.7927160
https://doi.org/10.23919/DATE.2017.7927160
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems
https://doi.org/10.1287/ijoc.1090.0344

180 bibliography

[152] Wei Quan and Andy D. Pimentel. “Towards Exploring Vast
MPSoC Mapping Design Spaces Using a Bias-Elitist Evolution-
ary Approach.” In: 2014 17th Euromicro Conference on Digital
System Design. 2014, pp. 655–658. doi: 10.1109/DSD.2014.46.

[153] Wei Quan and Andy D. Pimentel. “A Hybrid Task Mapping
Algorithm for Heterogeneous MPSoCs.” In: ACM Trans. Embed.
Comput. Syst. 14.1 (Jan. 2015). issn: 1539-9087. doi: 10.1145/
2680542.

[154] Francesco Ratto, Tiziana Fanni, Luigi Raffo, and Carlo Sau.
“Mutual Impact between Clock Gating and High Level Synthe-
sis in Reconfigurable Hardware Accelerators.” In: Electronics
10.1 (2021). issn: 2079-9292. doi: 10.3390/electronics10010073.

[155] João Gabriel Reis and Antônio Augusto Fröhlich. “Mutant Com-
ponents: Efficiently Managing Multiple Implementations.” In:
2016 VI Brazilian Symposium on Computing Systems Engineering
(SBESC). IEEE. 2016, pp. 101–108. doi: 10.1109/SBESC.2016.
023.

[156] João Gabriel Reis and Antônio Augusto Fröhlich. “OS Support
for Adaptive Components in Self-aware Systems.” In: SIGOPS
Oper. Syst. Rev. 51.1 (Sept. 2017), pp. 101–112. issn: 0163-5980.
doi: 10.1145/3139645.3139663.

[157] Chae-Eun Rhee, Han-You Jeong, and Soonhoi Ha. “Many-to-
many core-switch mapping in 2-D mesh NoC architectures.”
In: IEEE International Conference on Computer Design: VLSI in
Computers and Processors, 2004. ICCD 2004. Proceedings. 2004,
pp. 438–443. doi: 10.1109/ICCD.2004.1347959.

[158] Martino Ruggiero, Alessio Guerri, Davide Bertozzi, Francesco
Poletti, and Michela Milano. “Communication-aware allocation
and scheduling framework for stream-oriented multi-processor
systems-on-chip.” In: Proceedings of the Design Automation &
Test in Europe Conference. DATE ’06. Munich, Germany: Euro-
pean Design and Automation Association, 2006, pp. 3–8. isbn:
3981080106. doi: 10.1109/DATE.2006.243950.

[159] Walid Saad, Mehdi Bennis, and Mingzhe Chen. “A Vision
of 6G Wireless Systems: Applications, Trends, Technologies,
and Open Research Problems.” In: IEEE Network 34.3 (2020),
pp. 134–142. doi: 10.1109/MNET.001.1900287.

[160] Juan Carlos Saez, Fernando Castro, and Manuel Prieto-Matias.
“Enabling performance portability of data-parallel OpenMP ap-
plications on asymmetric multicore processors.” In: Proceedings
of the 49th International Conference on Parallel Processing. ICPP ’20.
Edmonton, AB, Canada: Association for Computing Machinery,
2020. isbn: 9781450388160. doi: 10.1145/3404397.3404441.

https://doi.org/10.1109/DSD.2014.46
https://doi.org/10.1145/2680542
https://doi.org/10.1145/2680542
https://doi.org/10.3390/electronics10010073
https://doi.org/10.1109/SBESC.2016.023
https://doi.org/10.1109/SBESC.2016.023
https://doi.org/10.1145/3139645.3139663
https://doi.org/10.1109/ICCD.2004.1347959
https://doi.org/10.1109/DATE.2006.243950
https://doi.org/10.1109/MNET.001.1900287
https://doi.org/10.1145/3404397.3404441

bibliography 181

[161] Juan Carlos Saez, Alexandra Fedorova, Manuel Prieto, and
Hugo Vegas. “Operating system support for mitigating soft-
ware scalability bottlenecks on asymmetric multicore proces-
sors.” In: Proceedings of the 7th ACM International Conference on
Computing Frontiers. CF ’10. Bertinoro, Italy: Association for
Computing Machinery, 2010, pp. 31–40. isbn: 9781450300445.
doi: 10.1145/1787275.1787281.

[162] Juan Carlos Saez and Manuel Prieto-Matias. “Evaluation of the
Intel thread director technology on an Alder Lake processor.”
In: Proceedings of the 13th ACM SIGOPS Asia-Pacific Workshop on
Systems. APSys ’22. Virtual Event, Singapore: Association for
Computing Machinery, 2022, pp. 61–67. isbn: 9781450394413.
doi: 10.1145/3546591.3547532.

[163] Juan Carlos Saez, Daniel Shelepov, Alexandra Fedorova, and
Manuel Prieto. “Leveraging workload diversity through OS
scheduling to maximize performance on single-ISA hetero-
geneous multicore systems.” In: Journal of Parallel and Dis-
tributed Computing 71.1 (2011), pp. 114–131. issn: 0743-7315.
doi: 10.1016/j.jpdc.2010.08.020.

[164] Robert Schöne, Thomas Ilsche, Mario Bielert, Andreas Gocht,
and Daniel Hackenberg. “Energy Efficiency Features of the Intel
Skylake-SP Processor and Their Impact on Performance.” In:
2019 International Conference on High Performance Computing &
Simulation (HPCS). 2019, pp. 399–406. doi: 10.1109/HPCS48598.
2019.9188239.

[165] Lars Schor, Iuliana Bacivarov, Devendra Rai, Hoeseok Yang,
Shin-Haeng Kang, and Lothar Thiele. “Scenario-Based Design
Flow for Mapping Streaming Applications onto on-Chip Many-
Core Systems.” In: Proceedings of the 2012 International Con-
ference on Compilers, Architectures and Synthesis for Embedded
Systems. CASES ’12. Tampere, Finland: Association for Com-
puting Machinery, 2012, pp. 71–80. isbn: 9781450314244. doi:
10.1145/2380403.2380422.

[166] Lars Schor, Iuliana Bacivarov, Hoeseok Yang, and Lothar Thiele.
“AdaPNet: Adapting process networks in response to resource
variations.” In: 2014 International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems (CASES). Oct. 2014,
pp. 1–10. doi: 10.1145/2656106.2656112.

[167] Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele. “Power-
Aware Mapping of Probabilistic Applications onto Heteroge-
neous MPSoC Platforms.” In: 2009 15th IEEE Real-Time and
Embedded Technology and Applications Symposium. 2009, pp. 151–
160. doi: 10.1109/RTAS.2009.24.

https://doi.org/10.1145/1787275.1787281
https://doi.org/10.1145/3546591.3547532
https://doi.org/10.1016/j.jpdc.2010.08.020
https://doi.org/10.1109/HPCS48598.2019.9188239
https://doi.org/10.1109/HPCS48598.2019.9188239
https://doi.org/10.1145/2380403.2380422
https://doi.org/10.1145/2656106.2656112
https://doi.org/10.1109/RTAS.2009.24

182 bibliography

[168] Andreas Schranzhofer, Jian-Jian Chen, and Lothar Thiele. “Dy-
namic Power-Aware Mapping of Applications onto Heteroge-
neous MPSoC Platforms.” In: IEEE Transactions on Industrial
Informatics 6.4 (2010), pp. 692–707. doi: 10.1109/TII.2010.
2062192.

[169] Shahriar Shahabuddin, Aarne Mämmelä, Markku Juntti, and
Olli Silvén. “ASIP for 5G and Beyond: Opportunities and Vi-
sion.” In: IEEE Transactions on Circuits and Systems II: Express
Briefs 68.3 (2021), pp. 851–857. doi: 10 . 1109 / TCSII . 2021 .

3050785.

[170] Chung-Ching Shen, William Plishker, Hsiang-Huang Wu, and
Shuvra S Bhattacharyya. “A lightweight dataflow approach for
design and implementation of SDR systems.” In: Proceedings
of the Wireless Innovation Conference and Product Exposition. Dec.
2010, pp. 640–645.

[171] Hamid Shojaei, Twan Basten, Marc Geilen, and Azadeh Davoodi.
“A fast and scalable multidimensional multiple-choice knap-
sack heuristic.” In: ACM Trans. Des. Autom. Electron. Syst. 18.4
(Oct. 2013). issn: 1084-4309. doi: 10.1145/2541012.2541014.

[172] Abraham Silberschatz, Greg Gagne, and Peter Baer Galvin.
Operating System Concepts. 6th ed. Wiley, 2002. isbn: 0471250600.

[173] Karen Simonyan and Andrew Zisserman. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. 2015. arXiv:
1409.1556 [cs.CV].

[174] Amit Kumar Singh, Akash Kumar, and Thambipillai Srikan-
than. “Accelerating throughput-aware runtime mapping for
heterogeneous MPSoCs.” In: ACM Trans. Des. Autom. Electron.
Syst. 18.1 (Jan. 2013). issn: 1084-4309. doi: 10.1145/2390191.
2390200.

[175] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and
Jörg Henkel. “Mapping on multi/many-core systems: survey of
current and emerging trends.” In: Proceedings of the 50th Annual
Design Automation Conference. DAC ’13. Austin, Texas: Associa-
tion for Computing Machinery, 2013. isbn: 9781450320719. doi:
10.1145/2463209.2488734.

[176] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and
Jörg Henkel. “Resource and Throughput Aware Execution
Trace Analysis for Efficient Run-Time Mapping on MPSoCs.”
In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 35.1 (2016), pp. 72–85. doi: 10.1109/TCAD.
2015.2446938.

https://doi.org/10.1109/TII.2010.2062192
https://doi.org/10.1109/TII.2010.2062192
https://doi.org/10.1109/TCSII.2021.3050785
https://doi.org/10.1109/TCSII.2021.3050785
https://doi.org/10.1145/2541012.2541014
https://arxiv.org/abs/1409.1556
https://doi.org/10.1145/2390191.2390200
https://doi.org/10.1145/2390191.2390200
https://doi.org/10.1145/2463209.2488734
https://doi.org/10.1109/TCAD.2015.2446938
https://doi.org/10.1109/TCAD.2015.2446938

bibliography 183

[177] Amit Kumar Singh, Thambipillai Srikanthan, Akash Kumar,
and Wu Jigang. “Communication-aware heuristics for run-time
task mapping on NoC-based MPSoC platforms.” In: Journal
of Systems Architecture 56.7 (2010). Special Issue on HW/SW
Co-Design: Systems and Networks on Chip, pp. 242–255. issn:
1383-7621. doi: 10.1016/j.sysarc.2010.04.007.

[178] Magnus Själander, Sally McKee, Peter Brauer, David Engdal,
and Andras Vajda. “An LTE Uplink Receiver PHY Benchmark
and Subframe-based Power Management.” In: 2012 IEEE Inter-
national Symposium on Performance Analysis of Systems Software.
2012, pp. 25–34. doi: 10.1109/ISPASS.2012.6189203.

[179] Till Smejkal, Marcus Hähnel, Thomas Ilsche, Michael Roitzsch,
Wolfgang E. Nagel, and Hermann Härtig. “E-Team: Practical
Energy Accounting for Multi-Core Systems.” In: 2017 USENIX
Annual Technical Conference (USENIX ATC 17). Santa Clara, CA:
USENIX Association, July 2017, pp. 589–601. isbn: 978-1-931971-
38-6. url: https : / / www . usenix . org / conference / atc17 /

technical-sessions/presentation/smejkal.

[180] Till Smejkal, Robert Khasanov, Jeronimo Castrillon, and Her-
mann Härtig. E-Mapper: Energy-Efficient Resource Allocation for
Traditional Operating Systems on Heterogeneous Processors. June
2024. arXiv: 2406.18980 [cs.OS].

[181] Lodewijk T. Smit, Gerard J.M. Smit, Johann L. Hurink, Hajo
Broersma, Daniel Paulusma, and Pascal T. Wolkotte. “Run-time
mapping of applications to a heterogeneous reconfigurable
tiled system on chip architecture.” In: Proceedings. 2004 IEEE
International Conference on Field- Programmable Technology (IEEE
Cat. No.04EX921). 2004, pp. 421–424. doi: 10.1109/FPT.2004.
1393315.

[182] Jelena Spasic, Di Liu, and Todor Stefanov. “Exploiting resource-
constrained parallelism in hard real-time streaming applica-
tions.” In: 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE). Mar. 2016, pp. 954–959. doi: 10.3850/
9783981537079_0201.

[183] Jan Spieck, Stefan Wildermann, and Jürgen Teich. “A Learning-
Based Methodology for Scenario-Aware Mapping of Soft Real-
Time Applications onto Heterogeneous MPSoCs.” In: ACM
Trans. Des. Autom. Electron. Syst. 28.1 (Dec. 2022). issn: 1084-
4309. doi: 10.1145/3529230.

[184] Jan Spieck, Stefan Wildermann, and Jürgen Teich. “A Scenario-
Based DVFS-Aware Hybrid Application Mapping Methodology
for MPSoCs.” In: ACM Trans. Des. Autom. Electron. Syst. 29.4
(June 2024). issn: 1084-4309. doi: 10.1145/3660633.

https://doi.org/10.1016/j.sysarc.2010.04.007
https://doi.org/10.1109/ISPASS.2012.6189203
https://www.usenix.org/conference/atc17/technical-sessions/presentation/smejkal
https://www.usenix.org/conference/atc17/technical-sessions/presentation/smejkal
https://arxiv.org/abs/2406.18980
https://doi.org/10.1109/FPT.2004.1393315
https://doi.org/10.1109/FPT.2004.1393315
https://doi.org/10.3850/9783981537079_0201
https://doi.org/10.3850/9783981537079_0201
https://doi.org/10.1145/3529230
https://doi.org/10.1145/3660633

184 bibliography

[185] Manikantan Srinivasan, C Siva Ram Murthy, and Anusuya
Balasubramanian. “Modular performance analysis of Multicore
SoC-based small cell LTE base station.” In: 2015 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-
SoC). 2015, pp. 37–42. doi: 10.1109/VLSI-SoC.2015.7314388.

[186] Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded
Multiprocessors: Scheduling and Synchronization. 1st. USA: Marcel
Dekker, Inc., 2000. isbn: 0824793188.

[187] Sander Stuijk, Marc Geilen, and Twan Basten. “A Predictable
Multiprocessor Design Flow for Streaming Applications with
Dynamic Behaviour.” In: 2010 13th Euromicro Conference on
Digital System Design: Architectures, Methods and Tools. 2010,
pp. 548–555. doi: 10.1109/DSD.2010.31.

[188] Anastasia Stulova, Rainer Leupers, and Gerd Ascheid. “Through-
put driven transformations of Synchronous Data Flows for
mapping to heterogeneous MPSoCs.” In: 2012 International
Conference on Embedded Computer Systems (SAMOS). July 2012,
pp. 144–151. doi: 10.1109/SAMOS.2012.6404168.

[189] Xiaofeng Tao, Yanzhao Hou, Haiyang He, Kaidong Wang, and
Yingyue Xu. “GPP-based soft base station designing and op-
timization (invited paper).” In: 7th International Conference on
Communications and Networking in China. 2012, pp. 49–53. doi:
10.1109/ChinaCom.2012.6417446.

[190] Faisal Tariq, Muhammad R. A. Khandaker, Kai-Kit Wong,
Muhammad A. Imran, Mehdi Bennis, and Merouane Debbah.
“A Speculative Study on 6G.” In: IEEE Wireless Communications
27.4 (2020), pp. 118–125. doi: 10.1109/MWC.001.1900488.

[191] Surat Teerapittayanon, Bradley McDanel, and H.T. Kung. “Bran-
chyNet: Fast inference via early exiting from deep neural net-
works.” In: 2016 23rd International Conference on Pattern Recog-
nition (ICPR). 2016, pp. 2464–2469. doi: 10.1109/ICPR.2016.
7900006.

[192] TensorFlow Lite. https://www.tensorflow.org/lite. [Online;
accessed 08-April-2025; TensorFlow Lite has been renamed to
LiteRT]. 2023.

[193] Lothar Thiele, Iuliana Bacivarov, Wolfgang Haid, and Kai
Huang. “Mapping Applications to Tiled Multiprocessor Embed-
ded Systems.” In: Seventh International Conference on Application
of Concurrency to System Design (ACSD 2007). 2007, pp. 29–40.
doi: 10.1109/ACSD.2007.53.

[194] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. “Power analy-
sis of embedded software: a first step towards software power
minimization.” In: IEEE Transactions on Very Large Scale Integra-

https://doi.org/10.1109/VLSI-SoC.2015.7314388
https://doi.org/10.1109/DSD.2010.31
https://doi.org/10.1109/SAMOS.2012.6404168
https://doi.org/10.1109/ChinaCom.2012.6417446
https://doi.org/10.1109/MWC.001.1900488
https://doi.org/10.1109/ICPR.2016.7900006
https://doi.org/10.1109/ICPR.2016.7900006
https://www.tensorflow.org/lite
https://doi.org/10.1109/ACSD.2007.53

bibliography 185

tion (VLSI) Systems 2.4 (1994), pp. 437–445. doi: 10.1109/92.
335012.

[195] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A.
Kozuch, Mor Harchol-Balter, and Gregory R. Ganger. “TetriSched:
Global Rescheduling with Adaptive Plan-Ahead in Dynamic
Heterogeneous Clusters.” In: Proceedings of the Eleventh European
Conference on Computer Systems. EuroSys ’16. London, United
Kingdom: Association for Computing Machinery, 2016. isbn:
9781450342407. doi: 10.1145/2901318.2901355.

[196] Stavros Tzilis, Pedro Trancoso, and Ioannis Sourdis. “Energy-
Efficient Runtime Management of Heterogeneous Multicores
using Online Projection.” In: ACM Transactions on Architecture
and Code Optimization (TACO) 15.4 (Jan. 2019). issn: 1544-3566.
doi: 10.1145/3293446.

[197] Tore Ulversoy. “Software Defined Radio: Challenges and Op-
portunities.” In: IEEE Communications Surveys & Tutorials 12.4
(2010), pp. 531–550. doi: 10.1109/SURV.2010.032910.00019.

[198] Vanchinathan Venkataramani, Bruno Bodin, Aditi Kulkarni,
Tulika Mitra, and Li-Shiuan Peh. “Time-Predictable Software-
Defined Architecture with Sdf-Based Compiler Flow for 5g
Baseband Processing.” In: ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
2020, pp. 1553–1557. doi: 10.1109/ICASSP40776.2020.9054285.

[199] Vanchinathan Venkataramani, Aditi Kulkarni, Tulika Mitra,
and Li-Shiuan Peh. “SPECTRUM: A Software-defined Pre-
dictable Many-core Architecture for LTE/5G Baseband Pro-
cessing.” In: ACM Trans. Embed. Comput. Syst. 19.5 (Sept. 2020).
issn: 1539-9087. doi: 10.1145/3400032.

[200] Vanchinathan Venkataramani, Anuj Pathania, and Tulika Mitra.
“Scalable Optimal Greedy Scheduler for Asymmetric Multi-
/Many-Core Processors.” In: Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation. Cham: Springer International
Publishing, Aug. 2019, pp. 127–141. isbn: 978-3-030-27562-4.
doi: 10.1007/978-3-030-27562-4_9.

[201] Gregory K. Wallace. “The JPEG still picture compression stan-
dard.” In: IEEE Transactions on Consumer Electronics 38.1 (1992),
pp. xviii–xxxiv. doi: 10.1109/30.125072.

[202] Xinbo Wang, Cicek Cavdar, Lin Wang, Massimo Tornatore,
Hwan Seok Chung, Han Hyub Lee, Soo Myung Park, and
Biswanath Mukherjee. “Virtualized Cloud Radio Access Net-
work for 5G Transport.” In: IEEE Communications Magazine 55.9
(2017), pp. 202–209. doi: 10.1109/MCOM.2017.1600866.

https://doi.org/10.1109/92.335012
https://doi.org/10.1109/92.335012
https://doi.org/10.1145/2901318.2901355
https://doi.org/10.1145/3293446
https://doi.org/10.1109/SURV.2010.032910.00019
https://doi.org/10.1109/ICASSP40776.2020.9054285
https://doi.org/10.1145/3400032
https://doi.org/10.1007/978-3-030-27562-4_9
https://doi.org/10.1109/30.125072
https://doi.org/10.1109/MCOM.2017.1600866

186 bibliography

[203] Govind Wathan. Arm DynamIQ: Technology for the next era of
compute. Available at: https : / / community . arm . com / arm -

community-blogs/b/architectures-and-processors-blog/

posts/arm- dynamiq- technology- for- the- next- era- of-

compute [Online; accessed 08-April-2025]. 2017.

[204] Andreas Weichslgartner, Deepak Gangadharan, Stefan Wilder-
mann, Michael Glaß, and Jürgen Teich. “DAARM: Design-time
application analysis and run-time mapping for predictable exe-
cution in many-core systems.” In: 2014 International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS).
2014, pp. 1–10. doi: 10.1145/2656075.2656083.

[205] Andreas Weichslgartner, Stefan Wildermann, Deepak Gangad-
haran, Michael Glaß, and Jürgen Teich. “A Design-Time/Run-
Time Application Mapping Methodology for Predictable Exe-
cution Time in MPSoCs.” In: ACM Trans. Embed. Comput. Syst.
17.5 (Nov. 2018). issn: 1539-9087. doi: 10.1145/3274665.

[206] Stefan Wildermann, Michael Glaß, and Jürgen Teich. “Multi-
objective distributed run-time resource management for many-
cores.” In: 2014 Design, Automation & Test in Europe Conference
& Exhibition (DATE). Dresden, Germany, 2014, pp. 1–6. isbn:
978-3-9815370-2-4. doi: 10.7873/DATE.2014.234.

[207] Stefan Wildermann, Andreas Weichslgartner, and Jürgen Te-
ich. “Design Methodology and Run-Time Management for
Predictable Many-Core Systems.” In: 2015 IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing Workshops. Apr. 2015, pp. 103–110. doi: 10.
1109/ISORCW.2015.48.

[208] Robert Wittig, Andrés Goens, Christian Menard, Emil Matus,
Gerhard P. Fettweis, and Jeronimo Castrillon. “Modem De-
sign in the Era of 5G and Beyond: The Need for a Formal
Approach.” In: 2020 27th International Conference on Telecom-
munications (ICT). Oct. 2020, pp. 1–5. doi: 10.1109/ICT49546.
2020.9239539.

[209] Dong Wu, B.M. Al-Hashimi, and P. Eles. “Scheduling and
mapping of conditional task graphs for the synthesis of low
power embedded systems.” In: 2003 Design, Automation and
Test in Europe Conference and Exhibition. 2003, pp. 90–95. doi:
10.1109/DATE.2003.1253592.

[210] Peng Yang, Paul Marchal, Chun Wong, Stefaan Himpe, Francky
Catthoor, Patrick David, Johan Vounckx, and Rudy Lauwereins.
“Managing dynamic concurrent tasks in embedded real-time
multimedia systems.” In: Proceedings of the 15th International
Symposium on System Synthesis. ISSS ’02. Kyoto, Japan: Asso-
ciation for Computing Machinery, 2002, pp. 112–119. isbn:
1581135769. doi: 10.1145/581199.581226.

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-dynamiq-technology-for-the-next-era-of-compute
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-dynamiq-technology-for-the-next-era-of-compute
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-dynamiq-technology-for-the-next-era-of-compute
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-dynamiq-technology-for-the-next-era-of-compute
https://doi.org/10.1145/2656075.2656083
https://doi.org/10.1145/3274665
https://doi.org/10.7873/DATE.2014.234
https://doi.org/10.1109/ISORCW.2015.48
https://doi.org/10.1109/ISORCW.2015.48
https://doi.org/10.1109/ICT49546.2020.9239539
https://doi.org/10.1109/ICT49546.2020.9239539
https://doi.org/10.1109/DATE.2003.1253592
https://doi.org/10.1145/581199.581226

bibliography 187

[211] Simei Yang, Sébastien lez Nours, Maria mendez Real, and
Sébastien Pillement. “Mapping and Frequency Joint Optimiza-
tion for Energy Efficient Execution of Multiple Applications on
Multicore Systems.” In: 2019 Conference on Design and Architec-
tures for Signal and Image Processing (DASIP). 2019, pp. 29–34.
doi: 10.1109/DASIP48288.2019.9049177.

[212] Chantal Ykman-Couvreur, Vincent Nollet, Francky Catthoor,
and Henk Corporaal. “Fast multidimension multichoice knap-
sack heuristic for MP-SoC runtime management.” In: ACM
Transactions on Embedded Computing Systems (TECS) 10.3 (May
2011). issn: 1539-9087. doi: 10.1145/1952522.1952528.

[213] Jae-Sung Yoon, Jeong-Hyun Kim, Hyo-Eun Kim, Won-Young
Lee, Seok-Hoon Kim, Kyusik Chung, Jun-Seok Park, and Lee-
Sup Kim. “A Unified Graphics and Vision Processor With a
0.89 /spl mu/W/fps Pose Estimation Engine for Augmented
Reality.” In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 21.2 (2013), pp. 206–216. doi: 10.1109/TVLSI.
2012.2186157.

[214] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo
Pellizzoni. “PALLOC: DRAM bank-aware memory allocator
for performance isolation on multicore platforms.” In: 2014
IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS). 2014, pp. 155–166. doi: 10.1109/RTAS.2014.
6925999.

[215] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo,
and Lui Sha. “Memguard: Memory bandwidth reservation
system for efficient performance isolation in multi-core plat-
forms.” In: 2013 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE. 2013, pp. 55–64. doi:
10.1109/RTAS.2013.6531079.

[216] Ali Zaidi, Fredrik Athley, Jonas Medbo, Ulf Gustavsson, Giu-
seppe Durisi, and Xiaoming Chen. 5G Physical Layer: Principles,
Models and Technology Components. 1st. USA: Academic Press,
Inc., 2018. isbn: 9780128145784.

[217] Gang Zeng, Tetsuo Yokoyama, Hiroyuki Tomiyama, and Hi-
roaki Takada. “Practical Energy-Aware Scheduling for Real-
Time Multiprocessor Systems.” In: 2009 15th IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications. 2009, pp. 383–392. doi: 10.1109/RTCSA.2009.47.

[218] ZES ZIMMER Electronic Systems. 4-Channel Power Meter LMG450.
Available at: https://www.zes.com/en/content/download/
286/2473/file/Brochure_LMG450_Rev1.0_web_e.pdf [Online;
accessed 08-April-2025].

https://doi.org/10.1109/DASIP48288.2019.9049177
https://doi.org/10.1145/1952522.1952528
https://doi.org/10.1109/TVLSI.2012.2186157
https://doi.org/10.1109/TVLSI.2012.2186157
https://doi.org/10.1109/RTAS.2014.6925999
https://doi.org/10.1109/RTAS.2014.6925999
https://doi.org/10.1109/RTAS.2013.6531079
https://doi.org/10.1109/RTCSA.2009.47
https://www.zes.com/en/content/download/286/2473/file/Brochure_LMG450_Rev1.0_web_e.pdf
https://www.zes.com/en/content/download/286/2473/file/Brochure_LMG450_Rev1.0_web_e.pdf

188 bibliography

[219] Jiali Teddy Zhai, Mohamed A. Bamakhrama, and Todor Ste-
fanov. “Exploiting just-enough parallelism when mapping stream-
ing applications in hard real-time systems.” In: Proceedings of
the 50th Annual Design Automation Conference. DAC ’13. Austin,
Texas: Association for Computing Machinery, 2013. doi: 10.
1145/2463209.2488944.

[220] Sergey Zhuravlev, Juan Carlos Saez, Sergey Blagodurov, Alexan-
dra Fedorova, and Manuel Prieto. “Survey of Scheduling Tech-
niques for Addressing Shared Resources in Multicore Proces-
sors.” In: ACM Comput. Surv. 45.1 (Dec. 2012). issn: 0360-0300.
doi: 10.1145/2379776.2379780.

https://doi.org/10.1145/2463209.2488944
https://doi.org/10.1145/2463209.2488944
https://doi.org/10.1145/2379776.2379780

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić. The
style was inspired by Robert Bringhurst’s seminal book on typography
“The Elements of Typographic Style”.

copyright

© 2025, Robert Khasanov

	Abstract
	Publications
	Acknowledgments
	Contents
	1 Introduction
	1.1 Heterogeneous Multi-Core Architectures
	1.2 Need for Adaptivity
	1.2.1 Adaptivity at the Resource Management Level
	1.2.2 Adaptivity at the Application Level

	1.3 Contributions of This Thesis
	1.4 Synopsis and Outline

	2 Foundations of Application Mapping onto HMAs
	2.1 Preliminaries
	2.1.1 Mapping, Scheduling, and Spatio-Temporal Mapping
	2.1.2 Performance and Energy Estimation
	2.1.3 Static and Dynamic Power Consumption
	2.1.4 Notation

	2.2 System Model
	2.2.1 Architecture
	2.2.2 Application
	2.2.3 Mapping

	2.3 Mapping of Dataflow Applications
	2.3.1 Dataflow Models of Computation
	2.3.2 Design-time and Runtime Mapping Approaches
	2.3.3 Trace-Based Simulation

	2.4 Hybrid Application Mapping
	2.4.1 Pareto-Optimal Operating Points
	2.4.2 Spatial Mapping Optimization
	2.4.3 Spatio-Temporal Mapping Optimization
	2.4.4 Addressing Adaptivity Challenges

	2.5 Mocasin Framework
	2.5.1 Overview of Mocasin
	2.5.2 Contributions to Mocasin

	2.6 Synopsis

	3 Related Work
	3.1 Design-Time Application Mapping
	3.2 Runtime Application Mapping
	3.2.1 Runtime Mapping of Embedded Software
	3.2.2 Runtime Mapping within OS Schedulers

	3.3 Hybrid Application Mapping
	3.4 Application Adaptivity

	4 Efficient Spatio-Temporal Mapping Generation
	4.1 Motivational Example
	4.2 Spatio-Temporal Mapping Strategies
	4.3 Fixed-Point Spatio-Temporal Mapping
	4.3.1 MMKP-based Algorithm
	4.3.2 Evaluation

	4.4 Flexible Spatio-Temporal Mapping
	4.4.1 STEM: Spatio-Temporal Evolutionary Mapping
	4.4.2 FFEMS: Fast Flexible Energy-Minimizing Scheduler
	4.4.3 Evaluation

	4.5 Synopsis

	5 Domain-Specific Hybrid Mapping for Baseband Processing
	5.1 Approaches to Baseband Processing
	5.2 Baseband Processing Architecture and Parameterization
	5.3 Task Graph with Phase-Sequential Structure
	5.4 Efficient Mapping Algorithm for Phased Task Graphs
	5.5 Spatio-Temporal Mapping Reusing Previous Solutions
	5.6 Evaluation
	5.6.1 Platform Setup
	5.6.2 Workload Model
	5.6.3 Generation and Estimation of Operating Points
	5.6.4 Energy-Efficient Runtime Mapping

	5.7 Synopsis

	6 Extending Kahn Process Networks with Adaptivity
	6.1 Limitations of KPNs: A Motivational Example
	6.2 Adaptive Process Network
	6.2.1 Parallel Regions
	6.2.2 Parallel Channels and Workload Distribution
	6.2.3 Malleability

	6.3 Dynamic Process Manager (DPM) Library
	6.3.1 Programmer Interface
	6.3.2 Runtime Topology
	6.3.3 Configuration Management

	6.4 Evaluation
	6.4.1 Experimental Setup
	6.4.2 Performance Scalability with Parallelization
	6.4.3 Runtime Adaptivity

	6.5 Synopsis

	7 Coordinating Adaptivity in General-Purpose Environments
	7.1 Need for Two-Way Communication
	7.2 Adapting HAM Methodologies
	7.3 HARP Design
	7.3.1 Application Support via libharp
	7.3.2 Resource Allocation

	7.4 Runtime Exploration of Operating Points
	7.4.1 Runtime Performance and Power Monitoring
	7.4.2 Selection of the Regression Model
	7.4.3 Runtime Exploration Algorithm

	7.5 Evaluation
	7.5.1 Experimental Setup
	7.5.2 Intel Raptor Lake Evaluation
	7.5.3 Odroid-XU3-E Evaluation
	7.5.4 Evaluation of the Learning Process
	7.5.5 Performance Overhead of HARP

	7.6 Synopsis

	8 Conclusions and Outlook
	Glossary

	 Glossary
	 List of Figures
	List of Figures

	 List of Tables
	List of Tables

	 List of Algorithms
	List of Algorithms

	 List of Listings
	List of Listings

	 Bibliography

