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Preamble

“The function of good software is to make the complex appear to be
simple.”

— Grady Booch

Abstract

Since the computer revolution, the invention of the microprocessor and the ubiquitously
accessible internet software have transformed industries. This process was accompanied
by the emergence of new methods and tools to handle the increasing complexity of
software due to the more complex problems that computers could solve. Over the
past 40 years, role-based modeling and programming have been proposed as solutions
to many different technical spaces, such as data modeling, framework design, and
adaptive software for cyber-physical systems.

This thesis deals primarily with role-oriented concepts in programming languages as
a basis for adaptive code execution. The role-based programming paradigm extends
the object-oriented paradigm. Objects may assume or discard roles that dynamically
superimpose new behavior, for example, by changing the interface or binding functions
to new definitions at run time. Contexts are entities that encapsulate roles and may
be activated or deactivated. The roles an object plays modify its behavior as long as
the context that provides the roles is active.

This thesis provides an extensive review of role-oriented programming languages
since 1990. We summarize design decisions and compare implementations. From the
review, we conclude efficient implementation and mapping strategies. Through bench-
marking, we assess the performance of state-of-the-art implementations. By investi-
gating their abstractions and implementation techniques we examine the semantic gap
that incurs a high runtime overhead to role-oriented programming languages.

We focus on the implementation of contextual role-oriented programming language
semantics, particularly on efficient execution. In most approaches the semantics is
implemented via meta-object protocols. The execution of role-oriented programs uses
the meta-object protocol to evaluate the runtime state. We explore the applicability
of partial evaluation at different stages of compilation to increase efficiency.

First, we explore the application of partial evaluation to the evaluation algorithm of
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the runtime state. We discuss the approach in the context of dynamic code generation.
Second, we postulate essential primitives required to bridge the semantic gap of role-
oriented programming languages. We extend a virtual machine with these essential
primitives, explore the optimization potential based on partial evaluation, and compare
it with state-of-the-art implementations.
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1 Introduction

“The major cause of the software crisis is that the machines have
become several orders of magnitude more powerful! To put it quite
bluntly: as long as there were no machines, programming was no
problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers,
programming has become an equally gigantic problem.”

— Edsger W. Dijkstra (EWD340)

The human mind can think on many levels of abstraction. By creating abstractions
one encapsulates the details and creates well-defined boundaries. This enables us to
understand complex scenarios and interactions and to reason about them. At the same
time, it is the boundaries that need to be crossed to create dynamically adaptable soft-
ware. This Chapter introduces the problems that have been addressed by well-known
approaches such as Object-oriented Programming. We then introduce the domain of
dynamically adaptable software where Object-oriented Programming struggles to de-
liver satisfactory solutions and how its extension with roles—Role-oriented Program-
ming—provides all the necessary properties. We define the problem responsible for
runtime overheads in Role-oriented Programming and the dissertation’s contributions.
Last, the content of the dissertation is outlined.

1.1 Reusable and Interchangeable Software Components

In his well-known article “Why Software Is Eating The World” [And11] Marc An-
dreessen covers how many economic fields were disrupted by software. He relates how
the technologies of the computer revolution, the invention of the microprocessor, and
the ubiquitously accessible internet made software viable to transform industries.

All this has been possible, because, at the same time, the methods to develop soft-
ware and the programming paradigms evolved, too. The reason is the increase in the
complexity of the software systems based on the needs of the market or problems that
they were trying to solve. For example, in the late 1960s, truly large software systems
were attempted to be built commercially–the OS 360 operating system for the IBM 360
computer family was one of them. It was realized that building large software systems
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was significantly different from building smaller systems. The idea was to approach
the problem of building software in the same way that engineers used to build large
complex systems. Thus, software engineering was born [GJM03].

Dijkstra stated the software crisis existed because of the missing methods and
tools [Dij72]. They were inadequate to take on the increasing complexity of the prob-
lems that computers could solve. In general, the complexity of a software system
results from the problem domain being inherently complex and naturally requiring a
complex solution [SVL08]. The task is to manage the essential complexity and to avoid
accidental complexity.

Building software systems was not only impacted by the organizational aspects in-
troduced by software engineering but also the programming languages used in software
development. They have a profound influence on how well the software engineering
goals can be reached. For instance, modularity features such as separate specification
and implementation supported the development of large software systems in teams.
Ada 95, for example, divides a software system into packages. Libraries of packages
can be separately developed, deployed, and consumed as components.

“What does is realizing that encapsulated complexity is no longer complex-
ity at all. Its gone, buried forever in somebody else’s problem. This shifts
the focus to the human systems that manage complexity successfully ver-
sus those that don’t.”

– Brad Cox [Cox94]

It was the object-oriented (OO) paradigm that provided technical solutions to the
software crisis and allowed a paradigm shift towards reusable and interchangeable soft-
ware components [Cox95]. At its core were the principles of abstraction, encapsulation,
generalization, and polymorphism. As Cox states, encapsulation made it possible to
hide a complex problem and make it accessible through interfaces.

Object-oriented Analysis (OOA) helped to understand and capture the problem
domain and offered tools to communicate among stakeholders such as domain experts
and software engineers. The Unified Modeling Language (UML) became one of the
main tools providing well-defined models and meta-models as a means to communicate;
and later to generate code. Object-oriented Design (OOD) provided a final model
solution that required a mere implementation. This built the foundation for subsequent
research in software engineering that ultimately resulted in one of the seminal books
on principals of reusable object-oriented software [Gam+95].
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Figure 1.1: The technical spaces modelware and grammarware and the meta-level hi-
erarchy.

Figure 1.1 highlights the importance of advances in Model-driven Software Devel-
opment (MDSD) because of the relation between programming languages and meta-
models. The technical spaces of grammarware and modelware can be aligned in a
meta-level hierarchy [FD99] where for each level in the hierarchy the technical spaces
co-relate. For example, consider a UML class diagram to be a model that is confor-
mant to the UML meta-model. It can represent the static structure of a specific Java
program P , that is at the same meta-level, which is conformant to the Java grammar.

1.2 Software Adaptability Problem

To organize object-oriented programs there are two key principles: One is to identify
and categorize similar objects into classes known as classification. The other is how
relationships of classes are organized into a class hierarchy using generalization, i.e.,
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sharing common behavior and attributes in a superclass. Classes encapsulate the imple-
mentation and provide interfaces. Object-oriented Programming (OOP) excels at rep-
resenting the structure of a domain but struggles to represent dynamic collaborations
of objects over time. In most class-based object-oriented systems the association be-
tween an instance of a class and the class itself is permanent [GSR96]. In such systems,
the requirements are set and can hardly be adapted at runtime. Thus, class hierarchies
need to be carefully planned to support (dynamic) extensions [Fow97]. However, in
real-world systems, it was noticed that objects tend to change their types and associa-
tions over time [AGO93]. The inflexibility of the association of instances to their classes
becomes a problem in a dynamic, frequently changing environment, where objects need
to change accordingly. Capturing the semantics of context-dependent adaptations is
a verbose and error-prone task. In such a system, the application of object-oriented
patterns [Gam+95] to reduce coupling and improve cohesion constitutes an overhead
on the runtime and may introduce subtle errors when not implemented carefully.

The importance of roles during OOA has been pointed out by Pernici [Per90],
Papazoglou [Pap91], and Morton and Odell [MO92]. Roles are analogous to human
conceptual understanding and have been naturally found in data models [BD77] and
conceptual modeling [RWL96]. Role-oriented Programming (ROP) is a programming
paradigm where roles encapsulate behavior. The association of an instance of a class
to the class itself is not as rigid as in OOP. Objects can adapt to changes in their envi-
ronment, or context, by assuming roles. Role-oriented programming languages achieve
this by providing classes, roles, and contexts as first-class citizens. So far, they have
provided the most natural solution to the adaptivity problem.

Since their inception over four decades ago [BD77], research focused on roles in
different contexts. This thesis is concerned with the research on roles in programming
languages. In 2000 - 2005 and beyond, context (or compartment) was introduced as a
new conceptual entity. Roles became aware of the context they are defined within and
in which they must be used. This tamed the increased complexity of contemporary
context-sensitive, distributed software systems.

1.3 Problem Definition

The previous section discussed that contextual roles can balance the complexity of
current context-sensitive, distributed software systems. To implement the concept
of contextual roles, approaches explored patterns of delegation and forwarding where
multiple instances represent parts of a conceptual whole. Solutions based on pat-
terns [Bäu+97; Fow97] had undesired properties such as object schizophrenia [CJ02].
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It is noticed that compiler-based approaches, among other benefits, could work around
object schizophrenia [Her10].

The issue is that implementation strategies produce a verbose description of con-
textual roles in an object-oriented execution environment which incurs an overhead.
The context-dependent nature of roles impedes a direct mapping of role fulfillment into
class hierarchies since the introduction of contexts as first-class citizens, increasing the
need for compilers and optimizations. Since the object-oriented target machine model
does not understand aspect semantics role-oriented concepts are emulated using mul-
tiple instructions. However, approaches did not take into account whether compilers
and language runtimes could optimize the resulting programs. In consequence, the re-
sulting semantic gap produces a runtime overhead of managing the dynamic relations
between objects and the roles they play in different contexts.

Thus, this thesis makes the following contributions to contextual, role-based pro-
gramming languages and implementations:

1. It surveys past and contemporary literature on role-oriented programming lan-
guages, their features, and implementation strategies (Chapter 5).

2. It quantitatively analyzes contemporary role-oriented programming languages
using different benchmarks, highlighting the need for optimizations (Chapter 6).

3. A discussion about the semantic gap resulting from mapping role-oriented pro-
grams to object-oriented programming languages (Chapter 7).

4. Dispatch Graphs, a runtime-generated, graph-based approach is proposed to over-
come the semantic gap and enable compiler optimizations to role dispatch (Chap-
ter 8).

5. It proposes a Virtual Machine (VM) implementation of contextual roles which
closes the semantic gap in Chapter 9.

1.4 Outline

We consider (contextual) Role-oriented Programming not only as an extension of
Object-oriented Programming but as an independent, advanced programming con-
cept that lives on its own. Thus, we divided this thesis into three parts as shown in
Figure 1.2.

The first part introduces the many concepts the thesis is built on. Chapter 2
introduces the different approaches of method resolution and late binding referenced
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Figure 1.2: Overview of this Dissertation.

throughout the thesis. In Chapter 3 we introduce the different related approaches and
give a deep introduction to Role-oriented Programming. Partial evaluation, as one of
the main concepts applied by this thesis, is introduced in Chapter 4.

The second part reviews and analyses past and contemporary Role-oriented Pro-
gramming approaches. Chapter 5 surveys Role-oriented Programming languages pub-
lished later than 1990. Surveyed approaches are classified according to their role fea-
tures and compiled into a list of implementation strategies. To discover and explain
performance characteristics of Role-oriented Programming languages a quantitative
analysis is conducted in Chapter 6. The discovered semantic gap is explained in Chap-
ter 7 based on a description of the Metaobject Protocol of a contemporary Role-oriented
Programming language used to represent features ascribed to roles in Object-oriented
Programming paradigms.

The third part proposed solutions to enable optimizations of Role-oriented Pro-
gramming languages at runtime. In Chapter 8 a reference object model of Role-oriented
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Programming is introduced. The model allows us to describe role dispatch in detail
abstracting from a concrete implementation and to define optimizations based on par-
tial evaluation at runtime. Chapter 9 proposed a Virtual Machine architecture and
Abstract Syntax Tree interpreter to enable partial evaluation of dispatches in Role-
oriented Programming.

Last, related work is discussed and the thesis is concluded.
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2 Foundations of Dispatch

“Language shapes the way we think, and determines what we can
think about.”

— Benjamin Lee Whorf

This chapter starts with a brief introduction to the basic mechanisms of resolving
function calls and their usage in Multi-Dimensional Separation of Concerns (MDSoC)
approaches. The goal is to develop an understanding of the similarity of the problems
the approaches were set out to solve and the introduction of a common terminology
used in this thesis. The distinction is also necessary to undermine the fact that Role-
oriented Programming is a paradigm in its own right that has its root in domain
modeling for object-oriented databases and object-oriented analysis. The presented
implementations provide unique solutions to the problems related to dealing with roles.

2.1 Models of Dispatch

A key design feature of contemporary programming languages is their support for some
kind of modularization, such as classes, namespaces, and packages. Advanced modular-
ization support beyond these basic capabilities, more often than not, are transformed
into core language constructs of their host languages, i.e., the languages that the lan-
guage extension or Domain-specific Language (DSL) translates or compiles to. The
realization may have a severe impact on the resulting run-time performance. It is
the responsibility of the compiler, language implementation, or runtime to consider
performance as another quality metric for these transformations.

A mechanism to increase modularity is polymorphism where a concrete module must
not declare (or refer to) another concrete module, but only abstractly specify the refer-
ence. Types of polymorphism range from receiver-type polymorphism that is commonly
used in OOP languages nowadays, to multiple dispatch [KG89] and predicate dis-
patch [EKC98], over pointcut-advice in Aspect-oriented Programming (AOP) [MK03],
and layered methods in Context-oriented Programming (COP) [HCN08].

The task of the dispatching mechanism is to resolve, i.e., lookup, the polymorphic
code locations to concrete procedures that will be executed. The resolution can be done
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statically at compile-time using the static type or at run-time using the dynamic type
of one or more arguments upon method invocation. Often the resulting procedure
is bound to the code location and reused when the same argument types are seen
again. Retaining multiple mappings from argument types to resolved procedures at
code locations is an optimization called Polymorphic Inline Cache (PIC) [HCU91].

Implementations of role-oriented programming languages often build on established
programming languages, using existing concepts and implementations as their interme-
diate representations. In the following, we will introduce the main dispatching mech-
anisms used in class-based object-oriented programming languages since they govern
implementation techniques used in role-oriented programming languages. Depending
on the desired features of the role model different dispatching semantics are favored.

2.1.1 Single Dispatch

In the Simula dispatching model [DN66], the first argument in a procedure call is
implicitly the receiver—the object’s dynamic type determines the concrete procedure
executed. This model is inherited by Smalltalk [GR89] which is a precursor to today’s
many object-oriented programming languages, such as C++ and Java. In object-
oriented class-based approaches methods are associated with classes in a class hierarchy
or partially ordered set. Given that encapsulation is provided in some form, i.e.,
records, or classes, this yields the benefits of abstract data types and provides the
receiver-type polymorphism. The model is well aligned with decompositions following
the class hierarchy but unaligned with problems involving multiple associated classes
(or class hierarchies), a problem well-known to several classical problems in Object-
oriented Programming.

2.1.2 Multiple Dispatch

Using the dynamic type of more than one argument to decide the procedure that is
executed is called multiple dispatch. There exist multiple programming languages that
implement multiple dispatch such as CLOS [KG89], Cecil [Cha92], Diesel [Cha98], Mul-
tiJava [Cli+00], and more [Sha96; MHH91; PSS07; CM95; Bez+12]. A procedure that
uses multiple dispatch is called multimethod. Multimethods may be defined as exter-
nal to the classes they are concerned with and are not encapsulated resulting in open
classes. One method overrides another method if its specializer classes are subclasses
of the other’s using either lexicographic (CLOS [KG89]) or pointwise (Cecil [Cha92])
ordering.

Multiple dispatch can solve problems occurring with object-oriented design patterns.
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For instance, the visitor pattern [Gam+95] requires a dispatch over the concrete type
of the visitor as well as the concrete type of the visited object. With multiple dispatch,
multimethods can be defined for each case while in single dispatch this will require
a generic procedure that uses if and instanceof to delegate to the concrete visited
type. This phenomenon is also called double dispatch [Mus+08].

Role-oriented Programming defines two related class hierarchies where one is of the
role-playing entities and the other is of the roles these entities play. Chimera [CM95]
uses multi-method dispatch (argument specificity approach) for role dispatch. In [Kni96,
p.19] it is discussed that multi-method dispatch without open classes does not allow
dispatch over context-dependent behavior.

2.1.3 Predicate Classes and Predicate Dispatch

The concept of Predicate Classes [Cha93] involves the automatic classification of an
object as a subclass of a predicate class A based on the object satisfying a predicate
expression associated with A. The predicate expression can test the value or state of
the object. By linking methods to predicate classes, method lookup can depend not
only on the object’s class but implicitly on its dynamic value or state. This approach
enables method dispatching even when an object’s effective class may change over time.

In single and multiple dispatch, the overriding relationship depends on whether a
subclass defines a same-named method with the same argument types1. In predicate
dispatching arbitrary predicates and logical implications between predicates may define
the overriding relationship [EKC98]. A method m2 overrides another method m1 if the
predicate of m2 implies m1. Predicate dispatch subsumes the aforementioned principles
of single and multiple dispatch as well as facilities known from pattern matching as in
ML [Mil97] and Haskell [Hud+92].

Since predicate expressions can test the value or state of the object, one of the prin-
ciples of object-oriented design–encapsulation–is undermined. An example extracted
from [EKC98] is shown in Listing 2.1 which shows the implementation of an optimizing
compiler using a programming language with predicate dispatch. In that example, the
default method of ConstantFold is overridden when the predicate holds. The predi-
cate is that the expression e is of type BinopExpr and its properties fulfill a specific
type, i.e., the operation is of type IntPlus and the arguments are of type IntConst.

1The Liskov substitution principle defines that a function f1 : A1 → B1 is replaced by a function
of a sub-class f2 : A2 → B2 when it holds that B2 ≤ B1 (covariant return type) and A1 ≤ A2

(contravariant argument type). Some languages relax the model. For instance, Java does not
support contravariant argument types in overridden functions
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Listing 2.1 Predicate dispatch example. Adapted from [EKC98].
type Expr;

signature ConstantFold(Expr):Expr;
-- default implementation
method ConstantFold(e) { return e; }

type Binop;

class BinopExpr subtypes Expr {
op: Binop, arg1: AtomicExpr, arg2: AtomicExpr };
-- override default to constant fold binops with const args
method ConstantFold(

e@BinopExpr { op@IntPlus, arg1@IntConst, arg2@IntConst } ) {
return new IntConst { value := arg1 + arg2 };

}

2.1.4 Multi-Dimensional Dispatch

In single dispatched object-oriented languages the lookup of a method is rather rigid.
Multiple dispatch can encode the selection of different methods based on the type of
receiver and the sender. Smith et al. [SU96] argue that it needs a more fine-grained way
to select appropriate functions based on the sender-receiver relation for each message
send2, an approach called Subject-oriented Programming (SOP) [HO93]. Smith et al.
form the idea of the dimensionality of method dispatch, contemplating how subjective
programming forms a third dimension, where object-oriented languages form the second
dimension, and procedural languages the first. This idea has since been extended to a
fourth dimension also taking the context of a message into account [HCN08]. Figure 2.1
presents the idea of Hirschfeld et al. and shows the different dimensions and the parts
they are concerned with. The arrows represent messages sent and their resolution
schematically. In this thesis, we will investigate the semantics expressed by these
arrows and their implementations in Context-oriented Programming and Role-oriented
Programming languages.

2In the object-oriented language SELF [CUL89] dispatching is represented by objects sending mes-
sages to other objects.
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Figure 2.1: Four-dimensional dispatch, adapted from [HCN08, Fig.3].

2.2 Concepts of Object Inheritance

In Chapter 2.1 we introduced the foundations of dispatch in class-based object-oriented
programming languages. Role-playing and its implementation are all about the com-
munication of objects. Prototype-based object-oriented programming languages played
a key role in early role-based programming language research as exchanging messages
between objects is a fundamental concept of object-based OOP.

Inheritance introduces the methods from the super-object into the inheriting object.
When invoking a method of the super-object the question is to what object self is
bound.3 We found different approaches to object inheritance in the literature, each
serving a different purpose. These approaches represent the type of object-oriented pro-
gramming language they are employed in. Delegation and inheritance are mechanisms
for sharing in object-oriented systems [Ste87]. For example, delegation is a mechanism
commonly used in prototype-based object-oriented programming languages as an in-
heritance mechanism. In contrast, forwarding is often used in class-based inheritance.
A taxonomy of prototype-based object-oriented programming languages can be found
in [DMB98]. We want to note that being classless and providing a delegation mecha-

3self describes the implicit self-reference of an object or instance. In C++ or Java it is known as
this.
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Figure 2.2: The effect of forwarding, consultation, and delegation on self. Figure
adapted from [KRC91, Fig.1].

nism are orthogonal features of object-oriented programming languages [Mal95]. Nev-
ertheless, delegation-based approaches exist in class-based, single-dispatched object-
oriented programming languages [RO13]. In the following, we will present each mech-
anism so the implications of approaches using them become clear.

2.2.1 Fowarding and Consultation

Inheritance introduces the methods from the super-object into the inheriting object.
Although a subclass has an explicit super -object, in the presence of forwarding, re-
questing super is not the same as making a direct request to the super-object, as the
value of self will be bound to the inheriting object. Under forwarding (also termed
consultance [KRC91]), inherited methods are redirected to the super-object. By early-
binding the value of self when an object is created in both its methods and field
accessors the super-method receives the same arguments and self binding. The result
of this change is that the late-binding of self in requests (both normal and to super)
no longer achieves anything because self has already been bound to the object that
the method or field originally appeared in [Jon+16]. This also implies that forward-
ing does not permit down-calls; to achieve down-calls from the inherited object the
inheriting object must explicitly be passed as a parameter. 4

2.2.2 Delegation

In class-based object-oriented programming, classes must be created before their in-
stances can be used and behavior is only associated with classes. This relation fixes

4Be reminded that we discussed object-based inheritance. In the class-based object-oriented program-
ming paradigm, the super-calls will be bound to self permitting down-calls from the inherited to
the inheriting object.
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the communication pattern of objects at instance creation time. The delegation mech-
anism, as it is defined in [LSU88; Lie86] is not exactly a message redirection but a kind
of inheritance mechanism that can be understood in a way as message redirection.
Delegation in this sense is thus a kind of inheritance mechanism that is commonly
associated with prototype-based programming [LSU88; US87; Weg87]. The delega-
tion mechanism is based on a link (generally called parent or delegation link) between
entities holding values, i.e., objects or classes. There is a subtle distinction from for-
warding: a self request in a method called under delegation goes back to the original
object, while under forwarding a self request to a delegatee will be handled only by
that delegatee [Jon+16]. Because any object can be used as a prototype and messages
can be retargeted to other objects at any time, delegation is the more flexible, dynamic,
and general approach of the two techniques.

2.3 Meta-Object Protocols and Open Implementation

There exist multiple object-oriented design patterns to realize possible extensions of
a program either concerned with the extension/adaptation of single entities or groups
of entities [Gam+95]. However, patterns are restricted by their expressiveness. Cross-
cutting extensions of unrelated entities often lead to extension logic being scattered
across the program. The idea of a Metaobject Protocol (MOP) is to provide an inter-
face to the language that “give the users the ability to incrementally modify the lan-
guage’s behavior (semantics) and implementation, as well as the ability to write the pro-
grams with the language” [Pae93]. In a language based upon Metaobject Protocols, the
language implementation itself is structured as an object-oriented program [KDB91].
A MOP is composed by a set of entry points, i.e., (abstract) functions, whose spe-
cialization allows the introduction of new behavior. In general, MOPs are based on
meta-objects offering ways of specializing their behavior and representation specific
aspects of the base level. This may be realized using reflective programming capa-
bilities of the programming language itself (such as realized in Common Lisp Object
System (CLOS) [GWB91]) or at the application level itself in object-oriented class hi-
erarchies as realized in many modern object-oriented programming languages. MOPs
may be used to realize open implementation principles where meta-objects of the sys-
tem can be used to define the structure and static properties and their protocols are
extended, i.e., the dynamic behavior of these objects are adapted.
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3 Foundations of Roles

“All information that can be expressed in a class-based model can be
expressed in a role model. All information that can be expressed in an
object-based model can be expressed in the same role model.”

— T. Reenskaug, P. Wold, and O. Lehne, 1996

This chapter starts with a brief introduction to the basic mechanisms of resolving
function calls and their usage in MDSoC approaches. The goal is to develop an un-
derstanding of the similarity of the problems the approaches were set out to solve
and the introduction of a common terminology used in this thesis. The distinction is
also necessary to undermine the fact that Role-oriented Programming is a paradigm in
its own right that has its root in domain modeling for object-oriented databases and
object-oriented analysis. The presented implementations provide unique solutions to
the problems related to dealing with roles.

3.1 Multi-Dimensional Separation of Concerns

Separation of Concerns (SoC) is a universal approach to managing large and complex
software systems. Reduced complexity and increased comprehensibility require some
decomposition mechanism to divide software into meaningful and manageable artifacts.
It also requires composition mechanisms to assemble the software artifacts. Most con-
temporary programming languages provide these mechanisms. However, in general,
decomposition and composition are only supported along a single domain, e.g., by
function, object, or class. This “Tyranny of the dominant decomposition” [Tar+99] is
a constraining factor in developing context-dependent software that must decompose
functionality among multiple dimensions.

Design patterns improve the extensibility and adaptability of software architectures
and often they directly impact the overall quality. However, they do not provide a suf-
ficient solution to implement cross-cutting concerns resulting in tangled and scattered
context-dependent code fragments. Moreover, object-oriented programming languages
do often fail to express solutions to the expression problem [ZO04]. The expression
problem arises when recursively defined data types and operations defined on them have
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Figure 3.1: A role model of the office number example using Compartment Role Object
Model (CROM) [Küh+14]. In the context of a Business, a Person behaves
as Employee.

to be extended simultaneously. To solve these problems, different Separation of Con-
cerns approaches have been proposed with varying degrees of granularity ranging from
adapting single objects or functions to classes and components [OT99; Aßm03]. To
enable dynamic SoC approaches focus on the interaction of classes, such as in Subject-
oriented Programming (SOP) [HO93], Aspect-oriented Programming (AOP) [Kic+97],
and Context-oriented Programming (COP) [HCN08]. This enables us to decompose
the application into different views and concerns during development and to compose
them at runtime adaptively. The result is a flexible software development process and
an adaptive execution model.

In the following, we will use the case of a business number as a running example
to introduce the different concepts. The role model representing the use case using
Compartment Role Object Model [Küh+14] is shown in Figure 3.1. The system consists
of an entity Person with the defined behavior to hand out his private phone number.
Given a change in the context, for instance, at work, the person’s behavior will adapt
and return an appropriate phone number from his office. The base application is
depicted as a snipped of Java code in Listing 3.2. Concepts introduced in the following
sections will present implementations based on this scenario.

3.1.1 Crosscutting Concerns and the Aspect-oriented Paradigm

In Aspect-oriented Programming (AOP) [Kic+97] cross-cutting concerns are decom-
posed into aspects that would be otherwise scattered over the code and tangled with the
application logic. Masuhara et al. devised a framework to classify different models of
Aspect-oriented Programming [MK03]. They identified four different flavors that each
apply a different type of crosscutting: pointcuts and advice, traversal specifications,
class compositions, and open classes. We focus on the pointcuts and advice model.
Aspects encapsulate such cross-cutting concerns and provide expressions to define in-
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Listing 3.2 Base application for the running example.
class Person {

private PhoneNumber number;
public Person(PhoneNumber number) {

this.number = number;
}

PhoneNumber getNumber() {
return number;

}
}

terceptors, class extensions (inter-type declarations), and their properties [Bri+05]. An
aspect can alter the behavior of non-aspect parts of the program, called base class, by
applying the advice that defines the additional behavior. Alternative behavior can be
applied at join points in the base program including function calls and property access.
The conditions when behavioral adaptations are applied are expressed in pointcuts pro-
viding predicates that quantify the set of existing join points and choose the set of join
points where the execution of the advice is desired. To let applications use the specified
aspects they are “woven into” the application using special compilers called weavers.
Weaving can be done at all binding times such as system construction, generation time,
and runtime. Join points where advice invocation code is woven in are called join point
shadows [HH04].

Implementations of the AOP paradigm on top of the Java Virtual Machine (JVM)
include AspectJ [Kic+01] (which has incorporated AspectWerkz [Vas04; Bon04] since
2005), CaesarJ [Ara+06], Spring AOP [Piv19], PROSE [NA05], and many more [Bri+05].
A compiler for the aspect-oriented language consists of a module for evaluating point-
cuts and the aforementioned weaver, besides the elements of a traditional compiler. Af-
ter evaluating a pointcut, the resulting join point shadows are forwarded to the weaver.
At weaving time, it cannot be decided for all join point shadows whether pointcuts ap-
ply or not. That happens when the pointcut quantifies over dynamic properties such
as cflow, target, this, and args pointcut designators.5 Thus, for some join points,

5Pointcut designators for dynamic properties such as cflow quantify over the control flow, and
target, this, and args can be used to filter objects from the join point by their dynamic type,
and check whether they are the active or an argument object.
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Listing 3.3 An AspectJ example aspect adding context-dependent behavior to a per-
son. If asked for the number in the control flow of a business the business-related
number is returned instead.
public aspect OfficeNumber {

// inter-type declarations to enrich Person
private PhoneNumber Person.officeNumber =

new PhoneNumber("0049", "0351", "123456");
public PhoneNumber Person.getOfficeNumber() {

return officeNumber;
}

public pointcut askOfficeNumber(Person p) :
// in the context of Business
cflow(execution( * Business.*(..) ))
// calling getNumber() on p
&& call( PhoneNumber Person.getNumber() ) && target(p);

// replace getNumber() with getBusinessNumber()
PhoneNumber around(Person p) : askOfficeNumber(p) {

return p.getOfficeNumber();
}

}

the advice invocation logic is compiled into the application and evaluated at runtime,
called residual [Hau05].

An aspect-oriented implementation using AspectJ of the context-dependent behavior
adaptation is shown in Listing 3.3. Inter-type declarations defined inside the aspect
allow the addition of members to external classes. Therefore, the Person class could be
extended with an office number and the behavior to return that number in the context
of a business. To be able to describe that behavior we must define that whenever
Person.getNumber() is called in the control flow of any functions defined in Business
we must intercept the call and delegate to Person.getOfficeNumber().

Capturing the semantics of context-dependent advice invocation in a pointcut def-
inition is a verbose and error-prone task. Remember, how aspect-oriented compilers
(partially) evaluate those pointcuts, and advice invocation is woven into the join points.
As such, the aspect compiler produces a verbose description of aspects in an object-
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oriented programming language which incurs an overhead [HS07]. The reason is, that
function invocations and member accesses are typical locations for join point shadows
that will be decorated with advice invocation logic (i.e., residues). Since the object-
oriented target machine model does not understand aspect semantics residues consist
of multiple instructions instead of simple invocations. Standard object-oriented opti-
mizations such as caching the result of the dynamic binding at the call site do not apply
to the aspect-oriented execution semantics where advice code is being implemented ex-
ternally to the advised class or object which obscures control flow. The performance
penalty is not only observable when the aspect is woven and active, but also when no
advice is executed due to advice-guarding predicates. Besides the overhead related to
advice invocation, there is also the overhead of the pointcut evaluator as well as the
time it takes to weave pointcut invocation into the program.

Moreover, the focus of Aspect-oriented Programming is on cross-cutting, class-centric
aspects. Object-centric, so-called instance-local aspects, introduce even higher perfor-
mance penalties. One reason for this is that they prevent inlining, which is one of the
most effective optimisations [Hau05].

3.1.2 Context-Oriented Programming

While AOP is able to handle homogenous cross-cutting concerns, Context-oriented
Programming (COP) [CH05; HCN08] is concerned with heterogenous cross-cutting
concerns [ALS08]. To adapt the behavior of an application to well-known contexts
COP applies pre-defined contextual variations. As shown in the prior section, to achieve
the same with Aspect-oriented Programming, context-sensitive adaptations have to be
embedded in the predicates of a pointcut. Context-oriented Programming provides
dedicated language support to achieve this. Similar to AOP the base program is
altered at join points, mostly with the granularity of methods. The components of
a COP program are presented in Figure 3.2. To achieve contextual variation, layers
encapsulate the context-dependent behavior implemented in partial methods. Partial
methods can be executed before, after, or replace a base method. To apply variants
from multiple layers, partial methods may use proceed as a mechanism to delegate to
the next active layer. The adaptation is guided by the activation and deactivation of
appropriate layers. That can be defined by imperatively annotating the program with
scopes, in a declarative [AHL13] way, or a reactive programming style [App+10] driven
by events. In COP, the rewrite process is called sideway composition [HMI13] as the
inheritance hierarchy of the base program is enhanced orthogonally at runtime.

In an object-oriented execution model, the execution of a function can be understood
as a two-dimensional dispatch taking the dynamic type of the receiver object and the
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Figure 3.2: An overview of classes and layers in context-oriented programming and
their influence on the execution semantics (adapted from [Lin+11, Fig.1]).

name of the function to be executed. In COP, dispatch is extended to four dimen-
sions, as shown in Figure 2.1, which does not only take the receiver object and the
name of the function but also the sender object and the context of the actual message
sent into account [HCN08]. Indeed, the first implementation, called Flavors [Moo86],
used the multiple-dispatch provided by Lisp to dispatch to modularized implemen-
tations of partial methods. In ContextL [CH05] the Common Lisp Object System
(CLOS) [Bob+88] is extended with context-oriented language constructs without the
need of the programmer to design the inheritance hierarchy to fit into multiple-dispatch
carefully.

With single dispatch found in modern object-oriented programming languages such
as C++, Smalltalk, and Java, dispatch only takes the runtime type of the receiver and
the method name into account. Thus, dispatching requires a new dynamic binding
mechanism to subscribe partial methods from activated layers to a call site and to
dispatch them to the respective partial methods on invoking base methods. To realize
this semantics the implementations rely on verbose descriptions of partial methods and
layers resulting in a similar problem we have seen in AOP (see Section 3.1.1). In the
following, we will bring our attention to the implementations of COP approaches based
on single dispatch.

Implementations focused on using libraries [App+09; SGP12], for example, context-
aware execution semantics implemented using imperative control flow in single dis-
patched languages like Self [UOK14], or as source-to-source compilers [AH12b]. How-
ever, there are also declarative approaches that allow to definition of layer composition
rules resembling pointcuts of aspect-oriented programming languages [AH12a].
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The following will exemplarily introduce JCOP [AH12b] a language extension of
Java that provides control-flow-specific scoped activation of layers. Executing a func-
tion within the scope requires consulting the stack for active layers to delegate to the
appropriate partial method. Listing 3.4 shows how to implement the office number
use-case using layers that change the implementation of Person::askNumber. Layer
composition allows specifying the sequence of layer activations and excluding layers
from the composition. Every partial method can provide its context-dependent im-
plementation and forward execution to the next active layer using proceed. Lay-
ers can form their inheritance hierarchy and overwritten implementations of partial
methods can be delegated to with superproceed. JCOP also features declarative
context-activation support, providing a simple pointcut model limited to functions
only [AHL13]—highlighting its close relationship to aspect-oriented programming. Those
pointcuts can be defined in a contextclass by either defining functions or predicates
using on or with that enable layer activation. Listing 3.5 provides a short example of
how to declaratively define layer activations.

COP language abstractions, namely layers and dynamic activation, increase the
expressiveness of programming languages. However, these abstractions come with a
cost. Across different implementations severe performance penalties exist [App+09].
It is of interest to note that COP combines context-dependent variations and the
composition of crosscutting concerns at a class-wide granularity. Context-dependent
variations with object-level granularity are not the primary feature of the language
constructs and require manual work.

Listing 3.4 A JCop example with scoped layer activation.
public class Business {

public PhoneNumber getNumber(Person p) {
with(new OfficeNumberLayer()) {

return p.askNumber()
}

}
}

public layer OfficeNumberLayer {
public PhoneNumber p.Person.askNumber() {

return new PhoneNumber("0049", "0351", "123456");
}

}
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Listing 3.5 A JCop example with declarative layer activation.
public contextclass OfficeNumber {

on(PhoneNumber p.Person.askNumber()) : with(new OfficeNumberLayer());
}

3.2 The Role-oriented Paradigm

Turing Award winner Charles W. Bachman viewed the “programmer as a naviga-
tor ” [Bac73] which became able to explore and navigate data records in a database
instead of the data coming from a tape. This change in the possibilities to store, access,
and model data records allows a completely new approach to data modeling using the
concepts of items and sets. The first account for roles in modeling can be found by
Bachman and Daya; they proposed the role data model as an extension to the network
model [BD77]. It describes roles as “a defined behavior pattern which may be assumed
by entities of different kinds.” [BD77, p.2]. The role data model defines the role types
that can be assumed by different entity types coherently. Defining a data model for an
object-oriented database can be seen as a similar activity to defining the class model
during conceptual modeling in object-oriented analysis. Therefore it is not surprising
that Reenskaug et al. proposed a conceptual framework as a result of 20 years of con-
sulting experience, named OOram [RWL96] which identifies and uses roles. Moreover,
they state:

“All information that can be expressed in a class-based model can be ex-
pressed in a role model. All information that can be expressed in an object-
based model can be expressed in the same role model.”

– Reenskaug et al. [RWL96]

They propose that static properties and relations, such as attributes and inheritance
relations, are best expressed in terms of classes. Dynamic properties, such as use cases
and scenarios, are best expressed in terms of objects. The role model is a combined
model that can express both dimensions.

In the literature the term “role” occurred in different contexts such as Role Based
Access Control (RBAC) [FCK+95], knowledge representation, conceptual modeling,
data modeling, and object-oriented design and implementation [Ste00a]. While the
application of roles in data modeling and conceptual modeling has proven to be suc-
cessful it had next to no impact on software programming languages and development
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in practice.6 However, role modeling had a prevailing impact on the programming lan-
guage research community inspired by the idea of a flexible model that can represent
static and dynamic properties of entities. Multiple role-based programming languages
have been proposed that extend the concept of OOP to include roles. The approaches
range from static implementations where role-playing can never be changed, to semi-
dynamic where role-playing is allowed in a pre-defined manner, to fully dynamic with
no prior restrictions. We review role-based programming languages and account for
the classification of their features in Chapter 5.

Since early 2000 computer scientists encountered a new research problem. The soft-
ware has been deployed on mobile devices which became ubiquitously available and
required “the necessity to integrate varying functionality at runtime being activated de-
pending on the current context.” [Pie+12]. In a broader sense, Piechnick et al. argued
that distributed mobile applications need to continuously adapt to different contexts to
fulfill their requirements. This context-aware software adaptation led to the introduc-
tion of notions of contexts or compartments as first-class citizens to role-based modeling
and programming languages [Küh+14], leveraging the potential of roles about the ease
of extensibility and (unanticipated) adaptation of existing program code.

The roles an object plays modify its behavior as long as the context that provides
the roles is active. For example, the context is the Business where a Person plays the
role of an Employee. Figure 3.1 shows a Compartment Role Object Model (CROM)
that models the example mentioned above. In that model, Business is modeled as
a compartment. Employee is a role that is played in the context of a business and
played by Person. That means any Employee role is dedicated to a Person object
while also being dependent on the Business object itself. This type of dependency
forms dependent types, leading to family polymorphism [Ern01; Her04]. While in recent
years the context-dependent nature of roles again became of interest to the research
community there is no combined concept for both relational and context-dependent
approaches [Küh+15].

3.2.1 Role-based Modeling and Programming Languages

The successful adoption of roles in software analysis and modeling [AR92; RWL96;
RG98] led to a demand for programming language support. Because software inher-
ently becomes more complex, it subsequently becomes more complicated to evolve or
adapt the software. Role-oriented Programming (ROP) is able to increase (1) com-

6Mads Torgersen opened a discussion on Dec 1, 2021, called “Roles and extensions in C#” [Tor21]
that proposes language and compiler extensions to provide some of the proposed role features of
[Küh+14] to C#.
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prehensibility as the system is represented with less complex components with a clear
boundary, (2) changeability and adaptability because changes are isolated inside indi-
vidual components, and (3) reusability because components can be plugged and played.
However, during the last forty years, different views of roles emerged. An attempt to
reconcile and classify existing approaches by their features ascribed to roles has been
made [Ste00a; Küh+14]. Steimann [Ste00b] provided a list of features for relational
roles. In Kühn et al. [Küh+14] the list of features is further extended to account
for context-dependent roles and a taxonomy for the models and meta-models of role-
oriented modeling and programming languages is proposed. They highlight that some
features are mutually exclusive and propose a feature model and intra- and inter-feature
constraints to generate meta-models from feature configurations. Each feature configu-
ration can be represented in Compartment Role Object Model (CROM), a metamodel
representing a particular role-oriented programming or modeling language that can
represent the chosen features. Compartment Role Object Instance Model (CROI), a
metamodel to represent instances concerning a CROM model, can be leveraged to check
whether instances conform to a CROM model [Küh+15]. However, as a consequence
of the static nature of the model, CROM cannot capture the dynamic semantics of
these languages, while CROI can check a specific snapshot only.

The first approaches to support roles in programming languages resulted in the role
concept being hidden in the implementation of the host language [Bäu+97; Fow97],
effectively losing the notion of roles (and contexts) when implementing the role models.
Bäumer et al. have introduced the Role Object Pattern (ROP) because of the need for
a flexible design pattern that allowed for unanticipated changes without the need to
recompile the whole application [Bäu+97]. The pattern represents players and roles in
an inheritance hierarchy. An abstract class of the entity represents the root, the player
is split into a core class that implements the basic behavior. Role classes are inherited
from the root and delegated to their core. It allows modeling of different views of an
object designed as role objects which are dynamically added and removed from the
core object. The pattern has no realization for context-dependent roles. Furthermore,
possible implementation techniques heavily depend on the implementation language.
For example, Andersen et al. stated that “... to realize the joint implementation of
a composite role [...] can often be constructed by multiply inheriting the classes of
the synthesized roles.” [AR92] If the language of the implementation does not support
multiple inheritance, nontrivial restructuring must be carried out. Fowler suggested
different implementation strategies for roles but highlighted that these strategies are
only to fulfill functional requirements not taking non-functional requirements such as
performance into account [Fow97].

Role-oriented programming distinguishes between the base entities themselves and
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the roles they play in a collaboration. This provides explicit support for object collab-
oration in a way not normally supported by language features [HHG90]. At runtime,
the collaboration among objects is predetermined by the functional requirements of
the application. This means that at different points in time, different parts of an ob-
ject’s interface are used by other objects. This context-based usage cannot be directly
represented in OOP but is scattered over the object-oriented program. The reason is
that functions are reused from multiple concerns or may encapsulate code for multiple
different concerns. Previously discussed approaches achieve Separation of Concerns at
the granularity of functions, classes, or modules. Roles take the idea further, as “no
object is an island. All objects stand in relationship to others” [BC89].

The implementation techniques used for role-oriented programming can be assigned
to two groups naturally following their target languages’ division into class-based and
prototype-based (or object-based) OOP [Bor86]. In class-based object-oriented pro-
gramming languages, classes include all implementations for the foreseen collaborations
of their instances, resulting in functions and interfaces that contribute to multiple col-
laborations. On the other hand, instead of defining classes with interfaces that span
all use cases, the dynamic composition of collaborating objects should define the inter-
face. While the former represents the traditional object-oriented approach to design
and implement software the latter can integrate software into use contexts that have
not been foreseen by their designers [RG98].

3.2.2 Roles in Prototype-based Object-oriented Languages

Object-oriented programming that follows the prototype-based or object-based concept
is concerned with individual objects and their relations to other objects. A well-
known representative of this category is JavaScript (JS), a language heavily inspired
by Self [CU89; CUL89]. In this category, objects consist of named slots, each of which
contains a reference to another object. Some slots may be parent slots, others can be a
reference to methods. To create a new object an existing object — the prototype — is
simply cloned (shallow-copied). Because these languages are dynamically typed, they
support objects admitting or removing properties.

Method dispatch in this category works in the way that the receiving object’s slots
are searched for a slot name equal to the name of the method. However, an optimization
commonly used nowadays is to create a Polymorphic Inline Cache (PIC) [HCU91] that
stores the prototype an object is constructed from.

The rest of this section, introduces the Scala ROles Language (SCROLL) [LA15;
Leu17b] a role-oriented programming language providing contextual roles. SCROLL,
following the idea of CROM, provides a MOP for compartments, roles, and base
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Listing 3.6 The Scala ROles Language implementation of adding context-dependent
behavior to a person. If asked for the number in the scope of a business the business-
related number is returned instead.
object BusinessNumberExample {

case class Person(privateNumber: PhoneNumber)

class Business extends Compartment {
class Employee(officeNumber: PhoneNumber) {

def getNumber(): PhoneNumber = officeNumber
}

}
def main(args: Array[String]): Unit = {

val joe = Person(new PhoneNumber("0049", "0351", "987654"))
val business = new Business {

joe play new Employee(new PhoneNumber("0049", "0351", "123456"))
+joe.getNumber // Returns Employee::getNumber

}
}

}

types implemented as an internal DSL in Scala. While Scala is a class-based, func-
tional, object-oriented programming language, SCROLL uses a combination of com-
piler rewrites, implicit arguments, and the ease of embedding domain-specific elements
in the host language Scala. For this reason, we use SCROLL as a representative of a
prototype-based object-oriented implementation for contextual roles. Instead of being
viewed as a programming language on its own, it could also be viewed as an internal
DSL in a class-based object-oriented programming language.

In Listing 3.6 we provided an implementation of the running example in SCROLL.
The class Business must extend the Compartment class of the provided MOP to become
treated as a context. The role Employee is defined as an internal class of the compart-
ment. SCROLL chose not to provide annotations or metafunctions to constrain the
plays relation. Any class can fill the role. A role that defines methods with the same
name and signature as the player can replace methods. A method that is neither im-
plemented in one of the roles that will be played when the method is called nor defined
by the player’s type will result in a runtime error. SCROLL can enforce this property
only at runtime, which corresponds to the prototype-based object-oriented implemen-
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Listing 3.7 SCROLL uses a combination of compiler rewrites, implicit conversion of
arguments, and the ease of embedding domain-specific elements in the host language
Scala.
+joe.getNumber

~~> joe.unary_+().getNumber()
~~> new Player[Person](joe).getNumber()
~~> new Player[Person](joe).applyDynamic("getNumber")()

tation of the approach. In line with Self’s undefinedSelector error, SCROLL throws
an DynamicBehaviorNotFound exception when a method cannot be resolved.

In his thesis Leuthäuser describes that “With SCROLL, we identified dispatching as
fundamental to role-based programming and propose a declarative and parameterizable
approach for four-dimensional, context-aware dispatch at runtime.” [Leu17a, p. 39]. As
such, SCROLL hooks into method dispatch using a combination of compiler rewrites,
implicit arguments, and the ease of embedding domain-specific elements in the host
language Scala using dynamic traits. The statement +joe.getNumber defines the role
invocation on the object joe represented by the unary plus operator. In Listing 3.7 we
exercised the automatic rewrite the Scala compiler will apply to statements using this
operator. It shows on one side how the DSL can be nicely embedded into Scala code
and on the other side how seemingly normal type-safe function calls will be rewritten
to type-unsafe operations that may fail at runtime.

Languages such as SCROLL keep a representation of the state of the application at
runtime. The data structure is coined the Role-Play-Graph.

3.2.3 Roles in Class-based Object-oriented Languages

To organize object-oriented programs there are two key principles: One is to identify
and categorize similar objects into classes known as classification. The other is how
relationships of classes are organized into a class hierarchy using generalization, i.e.,
sharing common behavior and attributes in a superclass. Classes encapsulate the
implementation and provide interfaces. OOP excels at representing the structure of a
domain [Bor86] but struggles to represent dynamic collaborations of objects over time.
In most class-based object-oriented systems the association between an instance of a
class and the class itself is permanent [GSR96].

Most object-oriented programming languages implement roles and compartments as
separate classes. Role-playing adds another (spatial) dimension to the principle of gen-
eralization in OOP. It introduces a relationship between classes or their instances that
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is orthogonal to inheritance and may be valid for a limited time. This relationship
is, in most approaches, not implemented via inheritance but emulated with delega-
tion [Her10].

In the following, we present ObjectTeams (OT) [Her03] and ObjectTeams/Java
(OTJ) [Her05; Her07], the implementation of the model in Java.7 ObjectTeams is
a representative of the class-based object-oriented approaches. The language bridges
the statically typed, class-based object-oriented world and the dynamic, object-based
world interestingly. OT introduces aspect-oriented and role-based concepts that are
smoothly integrated with object-oriented concepts like inheritance and polymorphism.
Highlighting the possible crosscutting nature of object collaboration the semantic of
roles in ObjectTeams (OT) is similar to instance-local dynamic aspects. The context
in which roles can be played is represented using teams; a higher-order module for
contained roles. The roles themselves are contained as inner classes within a team.
In contrast to languages presented in the prototype-based approach, ObjectTeams is
a type-safe programming language. Types that are valid to fill a role can be declared
by the playedBy relation restricting role-playing to the defined base type. Where it
gaps the class-based and object-based world is when taking a look at bindings. A callin
method binding intercepts the control flow at a method of the base entity and redirects
it to a role method. That is how an object can delegate a method call to another object
to handle it. As OT introduces aspect-oriented features these bindings can come in
different flavors such as before or after the specified method. When specifying a replace
callin binding, the effect is the same as overriding a method in the context of inheri-
tance. At runtime, there exist several means to define whether a binding is effective,
i.e., whether or not the interception takes place. For example, a team instance can be
activated or deactivated, which has the effect that all callin bindings of all contained
roles are enabled or disabled.

Listing 3.8 presents an implementation of the role model shown in Figure 3.1. OTJ
is an extension to the Java programming language. The OTJ compiler provides static
semantic analysis such as type-checking the extended Java program, the playedBy re-
lations, and method bindings. The example uses the concept of declared lifting where
a specific Person class is lifted to its Employee role using Person as Employee. Meth-
ods that define new behavior affecting the base class are prefixed with callin. For
each callin there must be a binding declaration. In our example, it declares that
Person::getNumber is replaced by Employee::getNumber.

7While the model is named ObjectTeams (OT), the implementation of the model in Java is denoted
ObjectTeams/Java (OTJ). We will use ObjectTeams (OT) throughout the thesis for both model
and implementation. We will not discuss prior iterations of ObjectTeams [HM00; MSL01; HM01;
Vei14].
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Listing 3.8 ObjectTeams Java Example
public team class Business {

public void employ(Person as Employee emp) { } // Declared lifting
public class Employee playedBy Person // Adapt iff Person has role

base when(Business.this.hasRole(base, Employee.class)) {
private PhoneNumber officeNumber;
callin PhoneNumber getNumber() {

return officeNumber;
}
// Replace Person::getNumber with Employee::getNumber
PhoneNumber getNumber() <- replace PhoneNumber getNumber();

}
}
Business business = new Business();
Person joe = new Person();
business.activate();
business.employ(joe);
joe.getNumber(); // Returns Employee::getNumber
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4 Foundations of Partial Evaluation

“Computers are incredibly fast, accurate, and stupid. Human beings
are incredibly slow, inaccurate, and brilliant. Together they are
powerful beyond imagination.”

— Albert Einstein

This chapter provides a brief introduction to the basic mechanisms of Partial Evalu-
ation. We will show how introducing different compilation stages allows to partially
evaluate a program and how that may be applied to program generation and pro-
gram optimization. Last, we introduce how the reapplication of Partial Evaluation is
program generation and produces compilers out of interpreters.

4.1 Partial Evaluation

Partial Evaluation (PE) provides a unifying paradigm that represents tasks commonly
seen in program optimization, compilation, interpretation, and the generation of auto-
matic program generators [Jon96]. It is a technique to specialize a (general) program
with regard to a given input. The main motivation to apply PE is speed, given that
an unspecialized program has to execute more code than the equivalent specialized
program.

Assume a fixed set of data values including program terms, for example, first-order
functional programs or Lisp’s list [JGS94; Jon96]. Given a program implemented in
the discussed language S, i.e., programS , then JprogramSK denotes its meaning. The
program meaning function J_K (or interpretation) is described equationally as:

JprogramSKin1, . . . , inn = output

Thus, output is the result of interpreting programS with the input values [in1, . . . , inn]
given the program terminates. Assume we know any value ink with k ∈ {1, . . . , n} then
the program can be partially evaluated given the value ink producing an equivalent
specialized program program′

S where the occurrence of the variable has been replaced
by the value ink and possible computations or optimizations, such as constant folding,
had been carried out.
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JprogramSKin1, . . . , inn ≡ Jprogram′
SKin1, . . . , ink−1, ink+1, . . . , inn = output

We call input values that are known at compile-time static values while the input
values only known until execution are called dynamic values. Given the notion of
stages, one could say that a static value is known at the evaluation stage while the
dynamic values must be retained as variables in the target program. Static values
applied in the first stage are written in brackets [_] while dynamic values applied in
the second stage are without brackets.

While compilers often embed Partial Evaluation directly in program optimization it
can also be treated as a separate component. In that sense, the partial evaluator is
another program called mix that evaluates a program and its static inputs and returns
the specialized program w.r.t. to those inputs.

JJmixK[programS , ink]Kin1, . . . , ink−1, ink+1, . . . , inn

≡ Jprogram′
SKin1, . . . , ink−1, ink+1, . . . , inn

= output

It has to be highlighted that PE requires that there is a pre-phase and a post-phase
(that is to check terms) and that, given the values of terms in the pre-phase, a reduction
is possible. In [DP01] it is shown that modal logic could be used to check whether a
separation of phases is possible. Otherwise, annotations tell whether a variable is
eliminable or residual [Jon96]. Program generators and compiler-compilers are well-
known from the domain of parser generators and have been applied, for example, to
produce specialized LR(k) parsers [ST95]. In this work, however, we will not look at
compiler-compiler generators that specialize from language specification languages, but
compilers that use PE to specialize predefined programming languages.

4.2 Futamura Projections

Traditionally we use compilers to transform a high-level source language S to a lower-
level target language L (or executable). But instead of a compiler, the gap between the
source language S and the lower-level target language L may also be bridged with the
use of an interpreter. The interpreter interprets statements in language S, evaluates
static inputs, and produces values or statements in language L. Given the notion that
we just introduced in the prior section, we may describe the interpretation pattern
equationally as:
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Figure 4.1: cogen is a generator of program generators (inspired by [Jon96, Fig.8])
realized by self-application. Rounded boxes represent data, rectangles rep-
resent generators, a combination means both. Arrows represent data flow.

JJinterpreterLS K[programS ]Kinput = JprogramLKinput = output

At some point the interpretation overhead of the program generator to construct
programL may be unacceptable. In that case one may want to produce faster gener-
ators of specialized programs. An overview of such a generator of program generators
is given in Figure 4.1. The generator of program generators cogen accepts a two-input
program p and generates the program generator p-gen. The program generator or
generating extension as coined by Ershov [Ers82] produces a specialized program pin1
given the known value in1 for the first input of p. Program pin1 produces the same
output given the dynamic input in2 as p would compute given the input in1 and in2.

We encourage the interested reader to visit [WP17] where a diagrammatic approach
to Futamura Projections is taken.

4.2.1 Compiling by First Futamura Projection

Interestingly, the interpreter can also be partially evaluated with the program being
its static input. Thus, mix can be used to compile. The resulting target programL is
a specialized interpreter of the given program. This is often called the 1st Futamura
projection which has been first reported in [Fut71].
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output = JprogramSKinput

≡ JinterpreterLS K[programS , input]

≡ JJmixK[interpreterLS , programS ]Kinput
≡ JprogramLKinput

4.2.2 Compiler Generation by Second Futamura Projection

With our partial evaluator mix we can also generate a compiler which can be used
standalone. Let us highlight the difference between the first and second futamura pro-
jection. In the first futamura projection, mix is evaluated on the interpreter with the
program as its input to directly generate the target program. In the second futamura
projection, mix is applied to itself with the interpreter as static input to generate a
specialized version of the interpreter.

compilerLS = JmixK[mix, interpreterLS ]

We can now use the compiler to compile input programs written in language S to
programs in language L. A concrete example can be found in [JGS93, Ch.4].

programL = JcompilerLS KprogramS

4.2.3 Compiler-Compiler Generation by Third Futamura Projection

The compiler generator cogen is a program that transforms interpreters into compilers.
It generates compilers that are versions of mix itself specialized to various interpreters it
is applied to. Let us show how cogen can be created given the scenario from Figure 4.1.

JprogramK[in1, in2]

≡ JJmixK[program, in1]Kin2

≡ JJJmixK[mix, program]Kin1Kin2

≡ JJJJmixK[mix,mix]KprogramKin1Kin2

≡ JJcogenK[program, in1Kin2

While being hard to understand intuitively from the above set of equivalences we
may imagine program is a program parser and in1 a given grammar as its known input.
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That means that cogen transforms the input grammar into a specialized parser program
for that grammar. This had been realized to produce specialized LR(k) parsers [ST95].
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Part II

Problem Analysis
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5 Implementation Techniques for
Role-oriented Programming
Languages

“The language designer should be familiar with many alternative
features designed by others, and should have excellent judgement in
choosing the best and rejecting any that are mutually inconsistent...
One thing he should not do is to include untried ideas of his own. His
task is consolidation, not innovation.”

— Tony Hoare

Almost half a century ago, the concept of roles was introduced, which led to the
development of numerous approaches. In this chapter, we provide an overview of
previous literature reviews that have explored role-oriented programming and modeling
languages. We will highlight their shortcomings concerning the reported information
on the implementation techniques used. To fill this gap, we present a review of role-
oriented programming languages published between 1990 and 2020 designed with a
strong focus on the execution model of Role-oriented Programming. We are interested
in the mapping of language constructs used to represent roles to the target execution
environments, the representations of the plays relation, and the implementation of
method dispatches of role-playing objects in the target execution environments. To
previously unreviewed literature, we apply a classification of role-oriented programming
and modeling languages found in the literature. Last, we extend a classification found
in the literature to contextual roles and apply the extended classification.

5.1 Features of Role-oriented Programming and Modeling
Languages

In the past, multiple reviews have been conducted focusing on different aspects of role-
oriented programming and modeling languages. In the following, we will introduce
them in chronological order by date of publication.
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Kniesel presented a taxonomy concerning the dynamic binding, the support of multi-
ple perspectives, and the interface of references to role-playing objects [Kni96]. The au-
thors reviewed role-oriented programming languages published up to 1996 and grouped
reviewed approaches into distinct groups of roles with objects and objects with roles.
In the former objects may acquire new roles but the new behavior is not perceived
through existing references. This class comprises roles as external perspectives distinct
from the role-playing object such as aspects or views. In the latter approach, existing
references to objects reflect changes such that the interface changes and old behavior
is adapted or new behavior becomes available. The review highlights interesting points
discussing the implications of accessing object attributes over time and the perceived
changes applied to the object.

The review of Steimann includes the results of prior conducted reviews on the topic
of role-oriented modeling and programming languages. The authors compiled a list of
15 features ascribed to role languages [Ste00b] which can be found at the top part of
Table 5.1. Steimann is concerned about the potential of roles for conceptual modeling
of software systems. In their view, the implementation of roles can be translated to
role interfaces which will be implemented by role-playing classes [Ste01]. A role change
is a mere cast of an object to one of the role’s interfaces. While the review captured
features attributed to role-oriented modeling languages it does not distinguish between
the meta-levels. We think that it does not sufficiently consider the many nuances
programming languages offer to host the presented features.

Kühn et al. extended the list of features proposed by Steimann with features con-
cerning contextual roles [Küh+14]. We list the set of proposed features in Table 5.1.
Additionally, the authors reviewed role languages published between 2000 and 2015.
They highlight that some features proposed by Steimann are mutually exclusive and
propose a feature model and inter-feature constraints to generate valid feature config-
urations. Each feature configuration can be represented in Compartment Role Object
Model (CROM), a metamodel representing the provided features of a particular role-
oriented programming or modeling language [Küh+14]. However, due to the focus on
modeling languages and as a consequence of the static nature of the model, it cannot
be used to reason about the semantics of role-oriented programming languages. It
neglects the rich set of semantics on method lookup found in the literature making it
only applicable to a small subset of approaches. CROM does capture the static seman-
tics and can be used to generate skeleton implementations for role-oriented programs.
This has been exercised for the code generation of Scala ROles Language from CROM
models [Leu19]. This is in part possible because SCROLL closely mimics the semantics
of CROM realizing many of the constraints provided by the meta-model [Leu17a, Sec.
9.2.6]. This allows to generate code that uses the program logic of SCROLL to check
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constraints for role-playing and cardinalities, to name a view properties. While CROI
can check the well-formedness of a model instance [Küh+15] it may not be applica-
ble to represent and check an (abstract) program as it does not capture any dynamic
semantics usually found to describe dynamic programming language semantics.

A taxonomy and feature model to describe aspects of the semantics of role-oriented
programming languages published until 2006 was proposed by Graversen [Gra06]. To
instantiate configurations of the feature model they opted for a framework approach
because “using a dynamically typed language [Python [Van+07]] helped to avoid all the
problems raised [...] on types” [Gra06, p.148]. Thus, instead of providing a grammar
plus lexer and parser, a configuration can be elaborated as a Python program using
(meta-) classes and (meta-) functions provided by the framework. Consequently, the
review does not discuss static semantics to map the terms of a program to a feature
configuration. An interesting line of thought is presented in [Gra06, p.207] on role
termination that resembles similarity to problems arising from dangling pointers in
use-after-free, that is a pointer or reference to an object that was previously freed.
While caching and reusing roles in the process of role lifting (cf. Object Teams in
Chapter 3.2.3) efficiently speeds up role-oriented programs and reduces the required
memory of an application the question is when to remove a role. A dedicated role ter-
mination mechanism unlinks a role instance from the player, however, it is unspecified
what happens if the role is used after being unregistered. We imply that all roles with
objects kind of approaches that externalize roles, i.e., allow references to roles, suffer
from the same problem.

5.2 A Review on Role-oriented Programming Languages

Role-oriented programming has been exercised since its inception as a data model for
object-oriented databases in 1977 [BD77]. The aforementioned reviews unearthed a
trove of literature about the features of roles and role-oriented modeling and program-
ming languages and their applicability to model or program software systems. However,
none of the aforementioned reviews emphasized the implementation techniques used to
realize the provided language features. We think that the way particular features are
realized has a huge impact on the perceived performance of a programming language.
For example, there exist multiple runtimes for the Ruby [FM08] programming language
that each deliver different run-time performance [Sea16]. The reason is the different
design decisions, different techniques, and different programming languages used in the
runtimes. This applies to each mainstream programming language that has multiple
different implementations.
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Table 5.1: 26 classifying features extracted from [Küh+14]. Features 1-15 have been
proposed by Steimann [Ste00b]. Features 16 - 26 have been proposed from
Kühn et al. [Küh+14].

# Description Meta Level

1. Roles have properties and behaviors (M1, M0)
2. Roles depend on relationships (M1)
3. Objects may play different roles simultaneously (M1, M0)
4. Objects may play the same role (type) several times (M0)
5. Objects may acquire and abandon roles dynamically (M0)
6. The sequence of role acquisition and removal may be restricted (M1, M0)
7. Unrelated objects can play the same role (M1)
8. Roles can play roles (M1, M0)
9. Roles can be transferred between objects (M0)
10. The state of an object can be role-specific (M0)
11. Features of an object can be role-specific (M1)
12. Roles restrict access (M0)
13. Different roles may share structure and behavior (M1)
14. An object and its roles share identity (M0)
15. An object and its roles have different identities (M0)

16. Relationships between roles can be constrained (M1)
17. There may be constraints between relationships (M1)
18. Roles can be grouped and constrained together (M1)

19. Roles depend on compartments (M1, M0)
20. Compartments have properties and behaviors (M1, M0)
21. A role can be part of several compartments (M1, M0)
22. Compartments may play roles like objects (M1, M0)
23. Compartments may play roles which are part of themselves (M1, M0)
24. Compartments can contain other compartments (M1, M0)
25. Different compartments may share structure and behavior (M1)
26. Compartments have their own identity (M0)
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Figure 5.1: A timeline of publications of role-oriented languages which are attributed
to be either behavioral (•), relational (□), or contextual (◦) approaches.

5.2.1 Presentation Framework

To fill this gap, we present a review of role-oriented programming languages published
between 1990 and 2020 designed with a strong focus on the features of Role-oriented
Programming and, if possible, the implementation techniques used to realize these
features. Starting from the aforementioned literature reviews [Kni96; Gra06; Ste00b;
Küh+14] we did a forward and backward search on the referenced papers. In Figure 5.1
we show a timeline of the role-oriented programming languages that we identified in
our review process. The review comprises a total of 25 role-oriented programming
languages. We assigned 15 approaches to belong to the behavioral category, 1 approach
to belong to the relational category, and 9 approaches to belong to the category of
contextual role-oriented languages.

Our framework to analyze the ROP implementations focuses on execution models.
We captured the implementation techniques used to support particular language fea-
tures in the chosen target languages. It is especially important to understand how
the object-oriented concept was extended considering the available language features,
for example, multiple inheritance or multi-methods. We paid special attention to the
mapping of the semantics of method lookup and method dispatch. The presentation
framework presents selected topics of interest that help to understand, compare, and
classify the different approaches.
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Language Presentation The ROP language implementation is briefly described. We
do not deliver a throughout description of the language features but consider the points
important to understand the approach. Since ROP implementations support different
features and provide solutions for different problems, we introduce the application
scenario or use case where the approach is applied.

Architecture The overall architecture concerning the representation of roles in the
ROP implementation is considered. This includes a brief overview of the formal or
informal type system. We also present how the implementation considered access to
ROP entities such as contexts and classes.

Programming Model Implementation This section of the framework is concerned
with the representation of role-oriented entities in the target implementation as well
as semantic properties concerning method lookup and dispatch.

Weaving or Mapping Implementation This section addresses concerns about the
strategy of how application code is altered or how the role-oriented entities are mapped
into the target runtime model.

Context and Role Instance Management This section of the framework considers
how the ROP implementation associates instances with the objects or class for which
they represent a role and behavior.

5.2.2 Classification of Role-oriented Programming Language
Implementations

Table 5.2 classifies technical aspects such as the year of publication, the target pro-
gramming language, and whether the type system has been formalized. We believe
that the programming language used or targeted has a strong influence on the im-
plementation techniques used. If the ROP implementation uses a custom syntax or
extends the syntax of an existing programming language then a mapping to either a
specific target language must be implemented or a custom language runtime must be
designed. For this case we distinguish between a compiler—that is a "full-fledged" tool
that transforms an input language into another language with a non-trivial mapping
from one to the other—and a transpiler that converts language mechanisms between
an input language into an output language. In other cases, the ROP implementation
has to resort to the mechanisms provided by the programming language. For example,
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programming languages that provide meta-programming capabilities are better suited
for internal DSLs and Metaobject Protocols than languages that do not. The difference
between a MOP and an internal DSL is small. We specify that an approach uses a
MOP if it defines metaclasses that must be inherited to enable the approach’s mech-
anism. An internal DSL on the other hand can use the target programming language
mechanisms to hide the process of creating and managing roles and contexts. The last
resort is to base the implementation on a library or framework approach where the
ROP implementation is managed by using library functions. In that sense, it is crucial
to classify how approaches make roles and contexts available as language constructs
and by what mechanism the method lookup is realized. Last we summarize how the
plays relationship is implemented.

To give a detailed account from multiple perspectives we also classified each ap-
proach using the taxonomy of Kühn et al. [Küh+14]. The features proposed by Kühn
et al. [Küh+14] are focused on “the representation of roles and role models in role-based
languages, [...] focused on the type level representation of roles rather than their im-
plementation.” [Küh17, p.32] It thus complements our implementation-focused review
with an account for the structural properties of ROP implementations. The result of
the evaluation is summarized in Table 5.3. For completeness, we included some role-
oriented programming languages already classified in the literature [Küh+14; Leu17b;
Ste00b] highlighted by a gray background. The rest of the section will present the
ROP implementations using an extended classification scheme from [Kni96].

5.2.3 Behavioral Role-Oriented Programming Languages

5.2.3.1 Fibonacci

Fibonacci [AGO93; AGO95] is an object-oriented database programming language
and successor of Galileo [ACO85; AGO88] which is a statically and strongly typed
programming language.

Language Presentation The overall idea was motivated because “techniques used by
object-oriented languages for modeling objects and associations between sets of objects
are not satisfactory” [AGO95, p.1f]. As a database programming language, it builds an
incarnation of the data model proposed by Bachmann [BD77]. It integrates an abstrac-
tion mechanism of a data model within the programming language to overcome the
limitations of traditional approaches using ad hoc mechanisms to exchange information
between a program and the Database Management System (DBMS). They observed
that the “object-oriented data model is best suited to represent complex data types, es-

49



Table 5.2: An overview of the technical aspects of the implementations of Role-oriented
Programming Languages and key principles applied to method lookup and
dispatch.
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Table 5.3: Classification of role-based programming languages. An overview of the fea-
tures is presented in Table 5.1. We differentiate between fully supported
(■), partially supported (⊞), not supported (□), and not applicable (⌀).
Columns with a gray background have already been reported in litera-
ture [Küh+14; Leu17b; Tai17].
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pecially when the database is a graph of interconnected entities with a structure that
is not as homogeneous and regular as in traditional business applications.” [AGO95,
p.4] Fibonacci is a general-purpose programming language that also provides trans-
action mechanisms. Side effects on persistent and transient values are undone when
transactions are reverted.

Architecture Fibonacci provides roles and behavior evolution as first-class concepts.
The type system of Fibonacci is presented informally. Fibonacci distinguishes between
role types and object types. Object types are mere placeholders; empty supertypes
without properties and behavior. The only operations that are computed on object
values (instances of object types) are equality operation, role casting, role inspection,
and role extension.

In object-oriented languages, there normally exists one most-specialized type only,
i.e., the most concrete sub-type the object is instantiated with. In Fibonacci, a single
object may have different most specialized roles. For example, a Person role is extended
by Student and Employee; the object value plays both roles at the same time.

The implementation uses a compiler that type-checks a Fibonacci program and
generates the corresponding Persistent Hierarchical Abstract Machine (PHAM) code.
PHAM is a stack machine using zero-address operations to manipulate data and clo-
sures such as compiled functions. In Fibonacci all information, not only data, but
the complete runtime state including the types, are persistent. The runtime lowers
the complex and specialized Fibonacci data structures into the primitive and general-
purpose data structure supported by the persistent Napier store [Bro89]. An interpreter
executes the compiled Fibonacci code and stores it as first-class data.

Programming Model Implementation In Fibonacci dispatch always depends on the
object that receives the message. This means that different sub-objects may dispatch
the same message to different methods. Fibonacci supports two lookup mechanisms:
inheritance and message passing (super call). By inheritance, the super-role is searched
for a method when the queried role does not define such a method. Message passing
means that the sub-role calls the method of the super-role directly via super. Internally
the objects represent the roles they play in a Directed Acyclic Graph (DAG), where
the object value is the root and roles are the leaves. Objects must be accessed via their
roles only. If a message is sent to a most specialized role of an object then upward and
double lookup coincide.

Both upward and double lookup are two forms of late binding that we depicted in
Figure 5.2. Upward Lookup means that the method is looked up first in the receiving
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PersonRole

StudentRole EmployeeRole

PersonObject

msg ⃝1
⃝2

PersonRole

StudentRole EmployeeRole

PersonObject

msg

⃝1 ⃝1

⃝2

⃝3

Figure 5.2: Upward lookup (left) and Double lookup (right) depicted on a role in-
heritance hierarchy according to Fibonacci [AGO95]. Dashed arrows with
numbers represent the order applied using the lookup strategies.

role and then in its ancestor roles. The syntax in Fibonacci for upward lookup is
object!message. On the other side, there is Double Lookup where the method is looked
up first for all descendants of the receiving role, then in the receiving role, and, finally,
in its ancestor roles. The syntax in Fibonacci for double lookup is object.message.

Weaving or Mapping Implementation The ROP implementation directly captures
role entities in the programming language. The literature did not specify how terms
of the Fibonacci programming language are represented in the PHAM. It is also not
specified how the PHAM represents the runtime state in the persistent store.

Context and Role Instance Management The language does not support context-
oriented programming according to the definition of Compartments [Küh+14]. Role
instances are directly managed in the internal DAG representation.

5.2.3.2 Chimera

Chimera [CM95] is a strongly typed object-oriented database language. It consists of
an object-oriented data model and a database language that supports a declarative
query language, data definition, and data manipulation primitives and operations. For
this review, we concentrate on the solutions that arise from problems in multiple direct
memberships of objects [BG95; GBB98].

Language Presentation Chimera also supports objects that belong to multiple most
specific classes [BG95]. Though Chimera does not have reified contexts (compartments)
it states to provide context-dependent dispatch. To achieve this it provides a preferred
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class approach combining static and dynamic information. The argument specificity
approach only uses dynamic information closely resembling multiple-dispatch by taking
into account the run-time types of the actual parameters of the invocation. The authors
reference roles as the de-facto alternative to their approach [BG95, p.105]. While
Chimera is not a role language itself the authors reference data models supporting
roles as alternatives to realize context-dependent behavior.

Architecture In Chimera’s [CM95] expressions, the type of each variable used in the
expression is stated with class formulas using unary predicate symbols. Thus, the
formula of a variable X of type T is T (X) and declares that T is the static type (or
context) of variable X. The scope of a type assignment for a variable is that of an
expression. At execution time X is instantiated with a value of type T . If T is a class
name the variable is instantiated with an instance of the class identified by T . At
execution time that variable may also be instantiated with a subclass T ′ of class T . T ′

is said to be the dynamic type of variable X. The set of dynamic types of an object is
constrained such that a variable’s dynamic types must have a common ancestor in the
inheritance hierarchy.

Programming Model Implementation While most object-oriented languages restrict
objects to belong to a single most specific class, i.e., a single subclass, Chimera [CM95]
supports objects that belong to multiple most specific classes [BG95]. This requires a
more complex protocol for method lookup and dispatch since each class in the hierar-
chy may define a different implementation for the same method. The preferred class
approach supports a context-dependent behavior by combining static and dynamic in-
formation to resolve method invocations. Dispatching is dependent on the context (or
static type) and the preferred class of a variable that is referencing the object. To
assign a preferred class to each object in each expression for method dispatching the
total order of classes of the class hierarchy is used. This order is determined by the
definition order of classes. The dynamic information consists of the set of most specific
classes of the object which is determined at run-time.

Weaving or Mapping Implementation We could not find any information on that
matter.

Context and Role Instance Management We could not find any information on that
matter.
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5.2.3.3 Object With Roles

Objects with roles8 [GSR96] proposes the extension of class-based object-oriented sys-
tems to handle evolving objects.

Language Presentation The approach is embedded into the class-based object-oriented
programming language Smalltalk [GR89]. Class hierarchies are complemented by role
hierarchies in which a node represents a role type and the root represents the object.
At the schema level, a role hierarchy looks like a class hierarchy—role types define a set
of instance variables and methods. The difference to ordinary class hierarchies is that
a subtype in a role hierarchy does not inherit the definitions of variables and methods
from the supertype. Instances of a subtype and of the supertype that represent the
same real-world entity are related by a roleOf relationship. In contrast to ordinary
class-based inheritance, this permits an instance of a subtype to inherit properties and
methods from the instance of the corresponding supertype. The approach is embed-
ded into the Smalltalk dispatch mechanism where every message not understood by
the former is delegated to the latter. 9 Thus, a real-world entity is represented by
multiple instances each representing the same logical object in a different role which
can answer messages collaboratively. By allowing different simultaneous views of an
entity context-dependent behavior can be realized.

Architecture In Objects with Roles [GSR96], the role hierarchy relates role types
in a tree-shaped hierarchy by a roleOf relationship. The root of the tree defines
the invariant properties of the object. Other nodes in the tree define the properties an
object may acquire and lose over time. To extend the Smalltalk programming language
with roles the approach defines two classes—ObjectWithRoles and RoleType—that
serve the purpose of meta-classes. Nodes in a role hierarchy are subclasses of the meta-
classes. Relations between role types are not mapped into class inheritance but are
captured in a property that is dynamically evaluated during dispatch. The approach
supports the assumption of multiple instances of the same role type called qualified
roles. Same-typed role instances are identified by the instance provided as a qualifier.
For example, a ProjectManager is qualified by the Project supervised.

8The authors did not assign a name to the approach. We deliberately assigned a name that appro-
priately describes the approach.

9Smalltalk being a dynamically typed, class-based programming language, a class can define an
exception handler that reacts to messageNotUnderstood, i.e., a call to a function that is not
implemented in the class and can delegate the call to another instance to handle the message
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Programming Model Implementation The approach unifies the ideas of class-based
inheritance and object-based inheritance (also known as prototype-based inheritance).
Class hierarchies are complemented by role hierarchies in which a node represents a
role type and the root represents the object. The meta-classes ObjectWithRoles and
RoleType form a MOP by defining methods to handle the membership of instances of
subclasses of meta-classes. This is similar to how the Role Object Pattern (cf. Sec-
tion 3.2.1 and Section 6.3.1) is realized in statically typed, class-based object-oriented
programming languages. Entities are assigned a unique system-defined identifier and
the entity identity is provided by the object at the root of the role hierarchy. Roles are
identified by the unique system-defined object identity. That is, two role instances of
the same entity are not equal given their different object identities. Entity equivalence
is defined by two role-type instances having the same root objects, i.e., their entity
identifiers being equal. Instances of a subtype and of the supertype that represent the
same real-world entity are related by a roleOf relationship. This permits an instance
of a subtype to inherit properties and methods from the instance of the corresponding
supertype. Every message not understood by the former is delegated to the latter. The
standard scheme for method dispatch is similar to upwards lookup. Besides handling
messageNotUnderstood the MOP also provides means to cast an instance of a role
type to another role type10.

Weaving or Mapping Implementation The approach is directly embedded into the
dynamically typed, object-oriented programming language Smalltalk [GR89]. The im-
plementation uses a MOP. The exception handling methodology of Smalltalk based
on messageNotUnderStood is used to realize the approach as an internal DSL.

Context and Role Instance Management Role instances are directly represented as
objects in the Smalltalk runtime.

5.2.3.4 Split Objects

Split Objects [BD96; BD95] are proposed as an example of a disciplined and semanti-
cally founded use of delegation [Lie86].

Language Presentation The approach discusses name sharing, property sharing, and
value sharing between objects. Name sharing means that two objects that share a
10For example, a message will fail if the role type or any instance of the supertypes do not implement

a method, whereas the message (studentSmith as: Employee) salary will return the salary of
Smith as an employee.
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name will have a property under the same name. Property sharing implies name
sharing. Thus, when two objects have the same property identified by the same name.
Property sharing expresses viewpoints within objects. In Split Objects, delegation
is used inside objects to express property sharing between different perspectives or
viewpoints. Value sharing describes the sharing of property values. If both objects
have properties identified under the same name their values will be equal. In the
author’s view inheritance is a sharing relation. Thus, inheritance in a class-based
system is name sharing for variables and property sharing for methods.

Architecture Split Objects [BD96] overcomes the problems that arise in a pure object-
based object-oriented system using delegation. Method dispatch is described with the
delegation method in terms of name sharing, property sharing, and value sharing. An
important property of split objects is that delegation can be used to achieve a per-
viewpoint representation of a single identity of the real world.

Programming Model Implementation In delegation-based systems, declarations of
property names and value declarations are done at the object level. Objects are linked
together by delegation links. Given two objects o1, o2 linked together by a delegation
link. When o1 is asked for the value of a property named n which is not defined on the
object o1 itself then o2 is asked for the value of that property. The relation to class-
based inheritance is imminent. 11 The approach highlights how problems connected to
property sharing stem from the fact that a pure object-based system requires dedicated
support to clone an object. 12

Messages sent to an object must specify the viewpoint by giving the identifier of
the piece denoting it. A lookup is then performed, starting at the identified piece and
eventually continuing to its ascendant pieces (upward lookup).

Weaving or Mapping Implementation The approach represents real-world entities
as split objects which can be referenced and have an identity. Views of the real-world
entity are represented as pieces which do not have their own identity but can be accessed
through the encompassing split object by specifying the piece name.

11Given a subclass that does not override but inherits a definition the method m will not be found in
the definition of the subclass but in the parent class.

12In later iterations of object-based object-oriented systems this is realized with prototypes that objects
will be cloned from. In the prototype-based JavaScript [Moz24] programming language, one could,
for example, change the value of a property of a prototype which will be visible to all its clones
that do not provide a same-named property in the object itself.
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Context and Role Instance Management The approach is embedded into the object-
oriented SELF [US87] programming language. The language runtime handles role
instances.

5.2.3.5 Role Components

Role Components [VN96c; VN96b; VN96a; VN95] is an approach that focuses on
a closer mapping from responsibilities in the collaboration-based analysis model to
entities in the implementation. The approach improves the adaptability and code
reuse of the implementation using Role Components. In [VN95] the authors highlight
the similarity of the approach to the GenVoca [Bat+94] design pattern.

Language Presentation The approach is based on language features of the C++
programming language, especially the meta-programming capabilities using class tem-
plates. The language describes roles as refinements or extensions to a class’ interface.
In C++ this can be achieved by the means of class templates and inheritance as a
logical glue for composing roles into classes. In that way, a role type can be defined
by parameterizing the collaborators of that role. By instantiating the parameterized
role types, the approach effectively generates specialized classes to fulfill the role. List-
ing 5.9 shows an example instantiation of Role Components showcasing how to realize
a father-husband relationship.

Architecture Roles are represented by parameterized types realized by C++ class
templates. Thus, a role has no independent identity and requires the instantiation
together with the base class. Different template instantiations can provide different
combinations of roles without modifying the role definitions themselves.

Programming Model Implementation Different template instantiations can provide
different combinations of roles without modifying the role definitions themselves. While
this allows to handle various orders of inheritance it also increases the responsibility
of the application designer. Because when composing multiple roles into a single class
the order of the composition is important. When multiple roles contribute the same
method newly composed roles override the methods of roles composed prior. The
authors propose the roles/responsibilities matrix [Bur95] to aid system designers in
the implementation process.

Weaving or Mapping Implementation The approach is embedded into C++ using
the class templates language feature. Roles are mapped to parameterized types.
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Listing 5.9 An example of Role Components adapted from [VN96c]. The father-
husband relationship is implemented by initializing C++ class templates.

template<class ChildType, class MotherType, class SuperType>
class FatherRole: public SuperType {

ChildType* child;
MotherType* mother;
...

}
template <class WifeType, class SuperType>
class HusbandRole: public SuperType {

WifeType* wife;
...

}
class Father1: public HusbandRole<MotherClass, emptyClass> {};
class Father: public FatherRole<ChildClass, MotherClass, Father1>{};

Context and Role Instance Management Role instances are instantiations of pa-
rameterized types. There is no automatic memory management. Freeing allocated
memory is the responsibility of the application designer.

5.2.3.6 DOOR

Dynamic Object-Oriented database programming language with Roles (DOOR) [WCL96;
WCL97a; WCL97b; WC98] is a dynamic object-oriented database programming lan-
guage with role extension to address dynamic type changes of real-world entities over
time. While migration is often represented by changing the object that represents
the entity this creates problems such as dangling references and does not allow the
presentation of historical information.

Language Presentation At any point in time, entities are represented by their in-
stance of the class and the instances of the roles the object currently plays.

The approach is implemented in Scheme [SS98; SG93] a dynamically typed functional
Lisp[Bob+88] dialect. It uses a Metaobject Protocol and meta-functions that directly
allow it to represent role-oriented programming constructs. An interesting idea in
DOOR is that the model makes a distinction between the dropping or (temporary)
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suspension of a role [WCL97a].

Architecture DOOR is implemented as a MOP with meta-functions that directly
allow it to represent role-oriented programming constructs.
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Figure 5.3: The different method lookup schemes for o1!r1 ⇐ m provided by the MOP
in DOOR adapted from [WCL97a, Fig.4]. The schemes differ in their en-
capsulation and data-sharing properties but provide higher flexibility. The
delegation path is depicted with a dashed arrow: (a) r1; o1. (b) r1; r3; r4. (c)
r1; o1; r3; r4. (d) r1; r3; r4; o1. (e) r1; r3; r4; o1; r2; r5. (f) r1; o1; r3; r4; r2; r5.
(g) r1.

Programming Model Implementation In DOOR the role model is formed by intro-
ducing the role class hierarchy (played-by relationship) into the object class hierarchy
(is-a relationship) where roles and classes are orthogonal to each other. the role class
hierarchy is formed by the played-by relationship and the object class hierarchy is rep-
resented by the is-a relationship. The difference between roles and classes is found
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in their object identities. The is-a relation results in a class having the same object
identifier as its superclass. This is not the case with the played-by relation between a
class and its roles; roles have no globally unique identifier than their players do. Roles
in contrast to ordinary objects are never referenced by their object identifier but by
their role (class) name.

The implementation uses delegation to keep the program free of type errors, i.e.,
suppose the instance e of the role type employee played by a person p. A person
has the property sex such that sex is an attribute of persons but not of employ-
ees. Then sex(e) would be a type error which is fixed by delegating the evaluation
to played-by(e). Figure 5.3 shows the implemented method lookup schemes imple-
mented as MOP. The implementation provides support for seven pre-defined lookup
schemes [WCL97a]. The schemes differ in their encapsulation and data-sharing prop-
erties but provide higher flexibility. The default scheme is described as an upward
lookup in Figure 5.3 (a). The authors present a formalization of the type system based
on ad-hoc polymorphism and function overloading [WC98].

Weaving or Mapping Implementation The DOOR data model is implemented in
Scheme. Objects including their roles are represented as language objects, for exam-
ple, a role is represented as a quadruple capturing the role class name the object is an
instance of, the properties of the instance, roles played by the role itself, and meth-
ods defined for the role object. An object, on the other hand, is a quintuple which
in addition defines an object identifier that identifies the instance inside the system.
Method invocation is represented by a path expression. To express the invocation of
an attribute id# of a particular role DOOR defines a role selection criteria using the
pipe operator |. For example, to access the ClubMember role of the object peter, the
DOOR statement is peter!(ClubMember|clubname = "CS Club").id#.

Context and Role Instance Management The Scheme runtime manages instances.
We could not find any more information on that matter.

5.2.3.7 Darwin/Lava

Lava [CKC99] describes the implementation of the Darwin model [Kni99; Kni94], which
is presented in the technical report aptly titled “Objects don’t migrate! ” [Kni96]. The
conceptual model introduces semantics for roles and objects with roles.

Language Presentation The approach based on object-based inheritance is imple-
mented as an extension of the class-based, object-oriented Java programming lan-
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guage [Kni94]. The language Lava [CKC99] extends the Java language specification
by introducing new keywords, and modifiers, changing semantics in existing defini-
tions. For example, the keyword mandatory can be applied to delegation links if its
value must be non-null, or <- which denotes explicit delegation of a method such as
parent<-msg(arg).

Architecture Lava is compiled into Java Bytecode [Kni00, Chap. 7].

Programming Model Implementation Darwin models a conceptual object as the set
of all its simultaneously existing roles. An entity of the real world can be described by
a single essential role (similar to a natural [Küh+14]) and a set of transient roles which
can be required and abandoned. A class hierarchy in Darwin is an orthogonal combi-
nation of inheritance and role-playing. On the type level, a relationship between the
essential concept and its potential roles can be defined (cf. fill relationship [Küh+14]),
and at the same time its static partitions are defined by inheritance.

Each part of the entity presents the full (conceptual) entity perceived from the
perspective of the role. During the interaction of entities one of its roles typically
dominates the other roles.

Roles can be organized in a partial order having the essential roles as the greatest
element. Inheritance is defined w.r.t. that order; a role that is smaller (bigger) con-
cerning the partial order is called a subrole (superrole). Incomparable roles are called
sibling roles.

A subrole r is a specialization of a superrole r′ and may override methods (behavior)
of r′. Furthermore, r can use methods of sibling roles or its own subroles, but cannot
modify their semantics. The former is achieved by delegating to the superrole while the
latter is achieved by consulting the subroles and sibling roles. An informal discussion
of the operational semantics of Darwin—especially on the implications of applying the
static delegation features in a dynamic setting where delegation links can be reassigned
at runtime—can be found in [Kni00].

Weaving or Mapping Implementation The implementation realizes delegation meth-
ods by using a new method signature, for example, T msg(T1 arg) is compiled into
T $msg$(...receiver, T1 arg). To be compatible with external code the compiler
generates bridge methods. A bridging method replaces an existing method and calls
the newly generated method which has a different signature. Accessing properties is
also realized via method calls. For a property access the methods arg.$getvar$() and
arg.$setvar$(val) are generated.
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Listing 5.10 The BNF rule extension to define mixin layers in Java implemented
in [BLS98]. Non-terminals are enclosed in arrow brackets, and optional elements are
enclosed in brackets.

<layer_definition> ::=
layer <layer_name> (<param_list>)

realm <realm_name> [<super>] {<declaration_list>}

Sub-typing as described in the Darwin model is achieved in the generated code by
adding implements declarations to the child class and eventually creating a suitable
Java interface for the parent class. All methods of the inheritance hierarchy are added
to the interface according to [Kni00, Table 7.5]. Finally, the name of the original
declared parent class is replaced by the name of the generated interface in all type
declarations.

Context and Role Instance Management The approach does not define objectified
contexts. The implementation statically compiles roles into the inheritance hierarchy.

5.2.3.8 Mixin Layers

Mixin Layers [SB02] is an implementation technique for collaboration-based or role-
based designs building on modular large-scale refinements. Fragments of classes and
functions that–when composed–yield fully-formed classes; an area of research that is
heavily applied in software product lines. The approach was applied in the Jakarta
Tool Suite to implement DSLs [BLS98] and is heavily inspired by GenVoca [Bat+94].

Language Presentation The approach presents mixin layers as an extension to the
Java programming language with language constructs to support collaboration-based
design. The design is influenced by the OORAM approach [RWL96] where objects
participate in collaborations via their roles. Roles fulfilled by an object inside a col-
laboration only affect the collaboration and will not propagate throughout the whole
application. As shown in Listing 5.10 the extension of Java provides specific language
constructs to define mixin layers [BLS98]. The keyword layer is analogous to class
but defines a mixin layer. The keyword realm specifies interface conformance for mixin
layers which can be understood analogous to Java’s implements keyword.
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Architecture A refinement is a functionality addition to the program that introduces
a conceptually new service, capability, or feature. The approach considers large-scale
refinements, where a single refinement alters multiple classes of an application. It is
exhibiting cross-cutting such that the refined entities must be updated simultaneously
and consistently.

The approach considers a static composition of collaborations, where roles played
by an object are uniquely determined by its class. The implementation uses mixins
which, in the general case, are abstract subclasses [GC90], representing a mechanism
for specifying classes that eventually inherit from a superclass without specifying the
concrete superclass at the mixin’s definition. Mixin layers represent collaborations as
outer mixins that encapsulate roles as inner mixins. A concrete instantiation of a mixin
(layer) creates a concrete realization of the mixin. We see similarities shared by mixin
layer and compartments (cf. [Küh+14]).

Programming Model Implementation Static mixins can be directly represented in
C++ using template parameters for super-types. To ease the discussion, mixin layers
are discussed in the context of C++ [SB02]. The extension of the Java language
provides language constructs to define mixin layers but not general-purpose mixins.
Each instantiation of a mixin layer is mapped into a specific Java class. Inner classes
are used to represent inner mixins.

Weaving or Mapping Implementation The filling of a role inside a collaboration is
statically mapped by instantiating a mixin or mixin layer.

Context and Role Instance Management Because mixins are statically instantiated
there is no extra need for instance management.

5.2.3.9 Chameleon

Chameleon [GØ03; Gra03a; Gra03b; GØ02] is a role model that has similarities with
AOP. The authors postulate that the role mechanisms are stronger than aspects
because the former is a per-object mechanism while the latter is a per-class mecha-
nism. The authors proposed the following terminology: base classes, also known as
naturals [Küh+14], are named intrinsics. Constituent methods are role methods that
override or introduce behavior in intrinsics.

Language Presentation The approach extends the Java programming language with
a dynamic extension mechanism that is transformed into plain Java. A simple snipped
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Listing 5.11 A code snipped from Chameleon adapted from [Gra03a]. I defines an
intrinsic, R declares a role of I and defines the constituent method bar.

class I {
void foo(int i) { bar(i);}
void bar(int j) {...}

}
role R roleifies I {

void bar(int k) {...}
}

of a Chameleon program is shown in Listing 5.11 where a role R defines a constituent
method bar for intrinsic I.

Architecture The prototype has been implemented in OpenJava [Tat+00] which pro-
vides extensive support for program transformation. The approach resembles Compo-
sition Filters [ABV92] by filtering all access to intrinsics via role manager meta-objects.
This is achieved by renaming the original methods of an intrinsic, replacing the original
method with a same-named generated method that forwards to the role manager. To
realize field access for constituent methods and roles access methods are generated.

Programming Model Implementation Constituent methods serve the same purpose
as aspects in the AOP language AspectJ [Kic+01]. Roles extend players to get access
to methods via inheritance mechanisms.

Roles can be used without the use of role-specific references. Constituent methods
cannot be invoked explicitly but by their role manager who is in complete control of
dispatching in the application. That way the aspect-oriented mechanisms of before,
replace, and after can be delivered.

The delegation mechanism [Lie86] is implemented by overloading the methods of an
intrinsic with extra arguments for self. The newly generated method for the intrinsic
will call the overloaded method attaching this to the call. All implicit method calls
will be transformed to call the passed self reference. Figure 5.4 depicts a simplified
sequence diagram of method resolution in Chameleon.

Weaving or Mapping Implementation Access to intrinsics is filtered via role man-
ager meta-objects. This is achieved by transforming all methods to consult their role
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: App R : Role I : Intrinsic RM : RoleManager

foo(5)

foo(this, 5)

RM.invoke(self, ”foo”, [5])

self.org foo(self, 5)

I.foo(self, 5)

self.bar(self, 5)

RM.invoke(self, ”bar”, [5])

self.org bar(self, 5)

Figure 5.4: Simplified UML sequence diagram of method execution of the Chameleon
program depicted in Listing 5.11. Adapted from [Gra03a].
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manager.

Context and Role Instance Management The approach uses a meta-object role
manager for bookkeeping role objects and role-playing. Each object has exactly one
role manager attached to it.

5.2.3.10 Lasagne/J

The Lasagne model [Tru+01] and its implementation Lasagne/J [JT03] provide refine-
ment operators for component-based systems as dynamic extensions to a core system.
A subset of Lasagne/J has been formalized in [Moo+05]. The approach is highly
influenced by the Role-Object Pattern [Bäu+97] and similar patterns such as the Dec-
orator pattern [Gam+95]. Roles are represented by (dynamic) wrappers that attach
new services to core component instances.

Language Presentation The Lasagne model [Tru+01] and its implementation coined
Lasagne/J [JT03] provide system-wide and consistent refinements; cross-cutting con-
cerns in the terms of AOP. A subset of Lasagne/J has been formalized in [Moo+05].

A collaboration is an n-ary interaction between objects. A dynamic adaption of col-
laborations is the change in the interface of participating objects dynamically widening
the component’s types. The subset of extensions that is selected depends on contextual
properties [BDD00; De +05].

Architecture The model and implementation is realized with mixin-like wrappers [GC90].
Wrappers suffer from object identity problems [Höl93] and may result in object schizophre-
nia if not used correctly [CJ02; Her10]. Because wrapper-based designs can only sup-
port customization of a single component at a time the Lasagne model proposes a
generic dispatch mechanism in the runtime component. This mechanism interprets an
externally specified wrapper composition logic encapsulated in a composition policy.
This is achieved by augmenting the object-oriented programming model with a compo-
nent identity that unifies the constituents of a component and its decorating wrappers.
An extension identifier binds a unique name to an extension. Extensions define the
wrapper definitions to their members. The composition logic specifies the extension
identifiers that must be applied to specific sets of collaborators. The composition pol-
icy is attached to each message send and may be updated for each ingoing or outgoing
message of each component rather than being scattered across the program code.
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Programming Model Implementation Mixin-like wrappers support modular cus-
tomization of existing components of an application where each wrapper add behavior
and state to its core component instance. The composition logic encapsulated in a
composition policy can be customized on a per collaboration basis. The run-time
component model supports dynamic construction of the wrapper chain by introduc-
ing a generic dispatch mechanism called variation point. At each variation point of a
component instance the policy is interpreted and message dispatch redirected accord-
ingly [TJJ00].

Weaving or Mapping Implementation The implementation Lasagne/J [JT03] is
based on Java. Components and wrapper are implemented as a Java class. The core
component is bound to its role instances at run-time where the wrapper instance holds
a reference to its core component instance. Each call to the role interface will forward
to the inner core component. The implementation adopts the mechanism to request
role instances based on the Role-Object Pattern by querying the component instance
using role instance specification objects. The role instance specification objects are the
extension identifiers represented by strings.

Context and Role Instance Management Instances are managed via the component
and wrappers. Addition and removal of roles is managed via the execution of policies.

5.2.3.11 Warped Hierarchies

Domain modeling often results in taxonomies of entities that could be represented by
class hierarchies. In Warped Hierarchies [VDD04] it is found that when doing role
modeling the entities follow the standard hierarchical taxonomy but the corresponding
code demands the reverse version of this hierarchy. These warped hierarchies cannot
be implemented in class-based object-oriented languages.

Language Presentation Warped Hierarchies is an approach build in Self based on the
principles of multiple inheritance, shared parent objects, and copy-down techniques.
Managing the roles of an object is achieved by applying meta-programming techniques
provided from the Self language.

Architecture The approach is embedded in Self using multiple language features of
the prototype-based object-oriented programming language. The authors make use of
delegation to form role hierarchies but distinguish between where data and behavior is
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provided by an entity. The approach makes use of Self trait objects to provide behav-
ior and prototype objects to hold data and the use of careful parent links (delegation
links), copy-down, and reverse copy-down operations.

Programming Model Implementation Data and behavior is implemented separately.
For each role a prototype object is created that keeps the data. A trait object of that
role keeps the behavior. The role prototype is assigned a parent* link to the trait
object of the role which is assigned a parent* link to the trait object of the natural.

Weaving or Mapping Implementation The dynamic start of playing a role is achieved
by dynamically adding a slot to the prototype of the role-playing object which is
assigned a data parent link to the role prototype. Removing the role is achieved by
deleting the slot from the role-playing prototype.

If multiple roles provide an implementation for the same method the approach uses
Self’s meta-programming capabilities and implement a proxy that sequentially invokes
the method on all roles currently played by that object, i.e., all data parents available.

Context and Role Instance Management Instances, either roles or naturals, are
created as copies from their respective prototypes.

5.2.3.12 Java Role Package

The Java Role Package [ST04] is concerned with how strongly-typed programming
languages such as Java or C++ can effectively implement role hierarchies and thus
support the representation of evolving objects. It succeeds ObjectsWithRoles [GSR96]
that introduced roles to the object-oriented programming language Smalltalk.

Language Presentation The Java Role package introduces a set of Java classes to
support handling of evolving objects without modifying the semantics of Java itself. To
reflect semantically correct usage of roles at runtime it requires role casting to request
the correct role of a role-playing object before role-specific behavior can be invoked.

Architecture The Java Role Package defines role types in a role hierarchy. The
difference from a role hierarchy to class hierarchies using inheritance is that by role-
playing the role does not inherit the definitions of instance variables and instance
methods from the supertype. It acquires a roleOf relationship to the corresponding
role-playing object. Typically a role type can only be played a single time. If a
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<<interface>>
RoleProtocol

getroot(): ObjectWithRoles
as(aRoleTypeName:String): RoleType
existsAs(aRoleTypeName:String): bool

RoleTypeObjectWithRoles

QualifiedRoleTypeObject

roles
*root

1

subroles

roleOf

qualifiedRoles

*

qualifier
1

Figure 5.5: The Java Role Package meta-objects adapted from [ST04]. Naturals are
supposed to extend ObjectWithRoles while roles must extend RoleType.

one-to-many relationship between the role player and its associated roles is required
the qualified role must be used. A qualified role is a role type that uses a qualifier for
precise identification. The MOP provided by Java Role Package is shown in Figure 5.5.
Naturals are supposed to extend ObjectWithRoles while roles must extend RoleType.

Programming Model Implementation The approach uses a MOP approach by pre-
defining a protocol and metaclasses. Domain classes must inherit from these meta-
classes to inherit the protocol interface.

Weaving or Mapping Implementation The approach uses inheritance and a MOP
to map role hierarchies into Java.

Context and Role Instance Management Instances must be managed by the package
user. All maintenance operations must be programmed explicitly. The implementa-
tion uses hash tables to keep track of roles making its performance for role checking
unaffected with the growing sizes of role hierarchies [SE06].
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<<interface>>
RoleInterface

RoleActor
AggregateRole

identifier: String
roles

*

Figure 5.6: The JAWIRO meta-objects adapted from [SE06]. Naturals are supposed
to extend Actor while roles must extend Role.

5.2.3.13 JAWIRO

Java With Roles (JAWIRO) [SE04; SE06] presents a library implementation to enrich
the class-level inheritance from Java with instance-level inheritance using roles.

Language Presentation The approach extends the Java programming language to
introduce object-level inheritance next to the existing class-based inheritance. Fig-
ure 5.6 shows the set of JAWIRO meta-classes that applications must implement or
extend.

Architecture Role types and natural types have to implement a common interface [SE04].
The implementation uses a consultation mechanism where the implicit this parameter
points to the object the message call has been forwarded to (cf. Figure 2.2). It provides
a set of meta-classes that applications must implement or extend.

Programming Model Implementation The implementation defines an API based
on the Role-Object pattern [Bäu+97]. Thus, role instances may be requested from a
role playing object and must be casted to the requested role type. Method execution
happens as usual by calling the method on the returned role objects. In the presence
of multiple inheritance on object-level the implementation reverts to reflection in order
to solve the typing ambiguity created by the resulting diamond inheritance.

Weaving or Mapping Implementation The role model is implemented using Java
classes. Multiple inheritance on object-level is implemented using reflection.

Context and Role Instance Management Instances must be created, added, sus-
pended, and removed by the programmer themselves.
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5.2.3.14 Role Metaclass

The approach proposes a comprehensive implementation for the role relationship [DPZ02]
using metaclass mechanisms [DPZ04]. The implementation depends on the metaclass
approach provided by the VODAK modeling language (VML) [Kla+92].

Language Presentation The approach is based on the VODAK modeling language
(VML) [Kla+92].

Architecture A metaclass ObjectRoleClass captures the generic semantics of natural
types and role types engaging in role relationships. It is used to instantiate application
classes that earn means for defining and querying the role relationship. It allows to
define or delete instances according to the semantics of the role relationship. On the
instance level it provides the methods for establishing or deleting links between objects.

Programming Model Implementation The implementation is based on metapro-
gramming capabilities of the VODAK modeling language. The defined metaclass
ObjectRoleClass provides meta-functions for managing objects with roles. Natural
types or role types must extend this metaclass. The VML does not support predicated
execution. Predicates defined in the role relationship are implemented as boolean func-
tions that return whether a predicate holds. The predicate functions will be invoked
before or after a role is added or removed.

Weaving or Mapping Implementation Natural types and role types are instances of
the generic metaclass ObjectRoleClass.

Context and Role Instance Management Instance management is provided by the
metaclass ObjectRoleClass. The programmer has to invoke the appropriate meta-
functions.

5.2.3.15 Rava

Rava [Che+06] is an extension to the Java programming language. It uses the Role-
Object Pattern [Bäu+97] combined with the Mediator pattern [Gam+95].

Language Presentation The approach extends the Java programming language with
new language constructs and provides a transpiler that translates the concepts of Rava
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into their equivalent Java representation. Language constructs added comprise key-
words to declare roles and their players as well as keywords to annotate role invocations
and access to properties of a role’s player.

Architecture Core objects in Rava become Mediators in the Java representation.
Role objects do not provide a custom constructor because they can not be instantiated
independently but only from within the Mediator implementation.

Programming Model Implementation The approach uses a transpiler which trans-
lates Rava code to Java code. Therefore it has to visit the Rava program and translate
concepts of Rava to equivalent Java representations. For roles, for example, a role
interface is added and maintenance code is generated. References to a role’s core are
converted to the respective core instance. Besides the elements found in the Mediator
pattern [Gam+95] the mediation works using the Role-Object Pattern [Bäu+97].

Weaving or Mapping Implementation Players and roles are represented by Java
classes. The approach employs a single mediator per player type. Thus, the mediator
instance has to store the player-role relationship (i.e., fills relation [Küh+15]) for each
instance of the respective player type it mediates.

Context and Role Instance Management The mediator manages the lifetime of role
objects by instantiating role instances when necessary. The mediator manages player
and role instances centrally.

5.2.3.16 JavaStage

JavaStage [BA12] is an approach that makes static roles known from role modeling
available in Java.

Language Presentation JavaStage is an extension to Java that uses roles as first-
class constructs. Role declarations are similar to ordinary class declarations. Roles
may declare fields and methods. Contrary to many other models, in JavaStage classes
state what role they play and roles state the requirements they impose on their players.

Architecture The approach only considers static roles, i.e., roles of a class that are
active all the time and that can not be attached or detached from an object. They
argue that static roles have been used in role modeling, e.g. used in the OORam
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method [RWL96], and offer higher reuse than dynamic roles. This is grounded on
the proposal, that a design with higher separation-of-concern has more self-contained
components that may be easier to reuse.

A class consists of the class itself and the roles it is assigned to. The interface of
that class is defined by the union of methods defined in the class and the methods
defined by its roles. A role may not access members of a class and vice versa but may
require the class to provide some interface. A role can state requirements the player
must fulfill. By introducing generic type parameters and a requires clause that lists
required methods a player type to be bound must provide.

Programming Model Implementation To increase decoupling the model dictates
that classes and roles only rely on interfaces to communicate or compose. Methods
declared in the player class have precedence over methods declared in roles. If multiple
roles contribute a method to the class the first that introduces the method has prece-
dence. The javac compiler has been extended to compile JavaStage syntax to Java
bytecode.

Weaving or Mapping Implementation Roles are represented as inner classes of their
player classes. Role methods are added to the members of a class. Methods declared
in the player class have precedence over methods declared in roles. If multiple roles
contribute a method to the class the first that introduces the method has precedence.
Conflicts introduced by methods with the same signature raise a warning in the com-
piler and have to be resolved by the developers.

Context and Role Instance Management Roles as inner classes will be instantiated
as soon as the instance of the role-playing class is instantiated. There is no extra
instance management necessary.

5.2.4 Relational Role-Oriented Programming Languages

5.2.4.1 Rumer

Rumer [BGE07; Bal11] proposes a relational programming language that explicitly
and implicitly models collaborations between sets of objects. It allows for modeling
the collaborations of objects in a mathematically rigorous way using relational algebra
enabling reasoning about the program.
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Language Presentation The relational programming language builds from the fol-
lowing primitives: The relational model considers classes as types and as sets. Such a
set contains the objects which are instances of the type defined by the class declaration.
A relationship is a type and a relation. It contains the object tuples that are instances
of the type defined by the relationship declaration. The participants of a relationship
are the classes. These participants of a relationship declaration may carry a name to
indicate the conceptual role the particular class plays in the relationship.

Architecture The programming language is based on relational algebra. The lan-
guage supports value types, class names, relationship names, object instances, and
queries on sets. Rumer represents these elements using tables and maps to formalize
the declarations appearing in a program.

Programming Model Implementation The approach does not specify how the model
is implemented.

Weaving or Mapping Implementation We could not find any information on that
matter.

Context and Role Instance Management We could not find any information on that
matter.

5.2.5 Contextual Role-Oriented Programming Languages

5.2.5.1 ObjectTeams/Java

The ObjectTeams (OT) programming model [Her03] and its most successful imple-
mentation ObjectTeams/Java (OTJ) [Her05; Her07] extends the Java programming
language. The approach emerged from the aspect language Lua Aspectual Compo-
nents (LAC) [HM01] of the Aspectual Components Model [HM00; MSL01] and has
been tried in multiple programming languages [Vei14]. This thesis introduced OTJ in
parts in Section 3.2.3. An in-depth account for OT and its implementation OTJ can
be found in Chapter 7.

Language Presentation ObjectTeams is a representative of the class-based object-
oriented approaches. The OTJ programming language extends Java with new syntacti-
cal features and metaclasses to define contexts and roles. The language and its informal
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semantics are presented in [HHM11]. The language bridges the statically typed, class-
based object-oriented world and the dynamic, object-based world using elements from
the AOP domain. OT introduces aspect-oriented and role-based concepts that are
smoothly integrated with object-oriented concepts like inheritance and polymorphism.
Highlighting the possible crosscutting nature of object collaboration the semantic of
roles in ObjectTeams (OT) is similar to instance-local dynamic aspects.

The first-class entity context (cf. compartment [Küh+14]) in which roles can be
played is represented using teams; a higher-order module for contained roles. The
roles themselves are contained as inner classes within a team (see Listing 3.8 for an
example).

Architecture In contrast to languages presented in the prototype-based approach,
ObjectTeams is proposed as a type-safe programming language. The approach does
not provide a formal definition of the type system but the language and its informal
semantics are presented in [HHM11]. Types that are valid to fill a role can be declared
with the playedBy relation restricting role-playing to the defined base type. The
declaration of bindings is where the approach gaps the class-based and object-based
world. A callin method binding intercepts the control flow at a method of the base
entity and redirects it to a role method. That is how an object can delegate a method
call to another object to handle it. The mechanism of bindings is based on aspect-
oriented features that can come in different flavors such as before or after the specified
method. When specifying a replace callin binding, the effect is the same as overriding
a method in the context of inheritance. At runtime, there exist several means to define
whether a binding is effective, i.e., whether or not the interception takes place. For
example, a team instance can be activated or deactivated, which has the effect that all
callin bindings of all contained roles are enabled or disabled.

Programming Model Implementation The implementation of OTJ uses ahead-of-
time compilation. The approach substitutes the Eclipse Java compiler and extends
the Java programming language backward compatible. The OTJ compiler provides
role-specific static analyses and compiles to Java bytecode.

A team is mapped to a Java class which extends the OTJ meta-class Team. Roles
themselves are contained as inner classes within these team classes. The framework
uses envelope-based weaving [Boc+05] to realize the aspectual properties defined by
callin definitions. The approach uses a MOP to realize the role semantics embedded
within Java (see UML class diagram shown in Figure 7.1).
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Weaving or Mapping Implementation The approach maps teams and roles to Java
classes. A team is mapped to a Java class which extends the OTJ meta-class Team.
Roles themselves are contained as inner classes within these team classes. The runtime
provides Application Programming Interface (API) to realize the discovery of role
methods. The code to realize the API calls is created by the ahead-of-time compiler
and the weaver.

Context and Role Instance Management Caching of roles as an integrated part of
role lifting mechanism [HM00]. The same mechanism later was implemented by Caesar
coined “wrapper recycling” [MO02; MO03].

5.2.5.2 RICA-J

The Role/Interaction/Communicative Action (RICA) theory, integrated relevant as-
pects of Agent Communication Languages (ACL) and Organisational Models to pro-
vide a metamodel centered around roles, interactions, and communicative actions. The
metamodel is made available in the programming language RICA-J [SO04] to support
the development of agent-based applications built on top of the Jade [BPR01] plat-
form following the specification of Foundation for Intelligent Physical Agents (FIPA).
Agent system specifications may be built using the concepts of communicative roles
and interactions.

Language Presentation The RICA model captures agents whose behavior is mani-
fested due to their assigned roles. The type of an agent is inferred by the collection of
the agent’s roles. The set of actions defines the tasks each role can fulfill. Roles that
delegate their functionality are termed enclosing roles. Actions require the definition of
input and output types for their parameters. The RICA theory, based on social-level
analysis, distinguishes between generic and social roles representing the functionality
of agents in social interactions.

While the interactions are responsible for letting agents assume their respective roles,
the concrete behavior of entities and their roles is defined (and constrained) by proto-
cols. Thus, a protocol regulates the behavior of a role in the context of an interaction.
We see protocols as a representation of compartments [Küh+14].

Architecture RICA-J extends the Jade [BPR01] platform, a FIPA-compliant plat-
form implemented in Java. The approach uses a Metaobject Protocol which is repre-
sented by Java classes. RICA-J entities must inherit the MOP to integrate into the
framework. RICA-J takes a protocol-focused approach where interactions are started
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and may be aborted. The implementation checks whenever an agent is created or an
event occurs whether a role must be abandoned or woken up.

Programming Model Implementation The implementation is based on an agent-
based MOP. Metaobjects must be extended to gain access to agent and role function-
ality. Protocols define the behavior that is available on roles. Roles implement the
specifications and are played by agents.

Weaving or Mapping Implementation Concrete implementations of agents, roles,
and interactions are subclasses of RICA-J metaobjects.

Context and Role Instance Management Roles are bound whenever an interaction
is started executing a predefined initialization method.

5.2.5.3 PowerJava

PowerJava [BBvdT06a; BBvdT06b] is a Java-based approach that defines roles to only
exist due to the instance that plays the role as well as the context it is defined within,
so-called institutions.

Language Presentation The approach presents powerJava and provides a transpiler
that translates concepts of powerJava to Java. Roles are defined within an institution
(cf. compartment [Küh+14]).

Institutions, players, and roles are directly defined using custom statements. The
Java language is extended by role casting expressions that allow to cast role-playing
objects to their roles.

Architecture We show a UML class diagram of the metamodel capturing the relation
between roles and institutions present in powerJava in Figure 5.7. Institutions, roles,
and players are translated into ordinary Java classes. powerJava uses delegation to
access role methods but does not reveal how that translation is implemented.

Programming Model Implementation The approach separates the definition of roles
and their requirements stated with a playedBy <Interface>. Interestingly, they ref-
erence interface types instead of concrete base classes in the playedBy clause which
have to be implemented by their players. In the same manner as the definition of an
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<<interface>>
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<<interface>>
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<<playedBy>><<hasRole>>

Figure 5.7: A UML class model depicting the relations of roles and institutions imple-
mented in powerJava. Figure adopted from [BBvdT06b, Fig. 1].

interface, the definition of a role holds a set of function definitions. The implementa-
tion of the other side realizes those function definitions implemented as an inner class
of an institution. Players of a role, on the other hand, have to implement the interface
referenced in the playedBy clause.

Role-playing does not implicitly override the properties and methods of the player.
To invoke methods from a role the player must be explicitly cast into the respective
role. This can be achieved using a role cast expression that casts a player to the
specified role.

Weaving or Mapping Implementation To keep the ontological foundation it requires
the instance playing the role and the instance of the institution the role is defined within
to instantiate roles. Role casting in powerJava conceals a delegation mechanism that
is implemented in Java.

Context and Role Instance Management We could not find any information on that
matter.

5.2.5.4 EpsilonJ, NextEJ, and Featherweight EpsilonJ

EpsilonJ [MT08; TUI05] is a role-based programming language realizing the Epsilon
model [TUI07]. NextEJ [KT09] extends the Epsilon model and introduces new scop-
ing rules. A formal model that captures the scoped role bindings based on the min-
imal core calculus Featherweight Java [IPW01] is presented in Featherweight Ep-
silonJ (FEJ) [KT10].
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Language Presentation The programming language EpsilonJ extends the syntax of
Java with role-specific syntactical elements. Collaborations are represented by a context
which features several roles. Objects participating in the collaboration are called player
and are represented by ordinary classes. Role binding is represented syntactically with
a bind operator provided from the contextual roles.

Architecture A program written in EpsilonJ syntax is transformed into an equivalent
Java program. While NextEJ [KT09] was never realized in a real implementation its
semantics was captured in a minimal core calculus called FEJ [KT10]. The calculus is
based on Featherweight Java [IPW01] and extends the calculus with context activation
scopes known from the COP domain.

Programming Model Implementation The first implementation of EpsilonJ [TUI05]
used the annotation features of Java. This approach is reported to “resulting in the
significant runtime overhead ” [MT08]. It was replaced by a transpiler which translated
EpsilonJ directly to Java [MT08].

Weaving or Mapping Implementation Contexts, roles, and players are represented
using classes. In EpsilonJ [MT08] static roles are represented by fields where non-static
roles are kept in a vector; a dynamic list data structure provided by the Java standard
collections. The dynamic role binding mechanism is implemented using role casting and
delegation mechanisms. Thus, the role cast (todai.Employer)sasaki).pay() that
casts the player sasaki to its role employer played in the context todai is translated
to a search of the correct role instance filled by the player instance inside the given
context instance. While a player could potentially play the same role multiple times
(cf. Feature 4 in Table 5.1) it is not clear which role will be returned by a role cast.

Context and Role Instance Management Access to roles is implemented using col-
lection operators such as iterators.

5.2.5.5 Scala Roles

Scala Roles [Pra08; PO08] is an implementation of contextual roles in Scala. It uses
Scala’s and Java’s language constructs to hide split objects avoiding the problems of
object schizophrenia [Har08].
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Language Presentation The Scala Roles language is embedded into Scala. They
claim to avoid the problems of object schizophrenia [Har08] using dynamic compound
objects.

Architecture The approach is embedded in Scala. The approach uses compound
objects to represent role-playing objects and their roles providing a single interface to
the outside. A compound object is a product type consisting of the type of the player
instance and the types of the role instances that are bound to it. A shortcoming is
that the order of the component types determines the resulting type [Leu17b].

Programming Model Implementation Compound objects are implemented using
Java’s Proxy class which allows the creation of product types dynamically at runtime.
The compound object consists of the player instance as well as arbitrary many role
instances. Method lookup is implemented via delegation using reflection. A proxy
delegates to either a role if that implements a method or the player instance otherwise.

Weaving or Mapping Implementation Contexts, roles, and players are represented
using ordinary Scala traits.

Context and Role Instance Management There is no special management imple-
mented. Role objects are collected by the garbage collector whenever the proxy object
leaves scope.

5.2.5.6 SCROLL

Scala ROles Language (SCROLL) [LA15; Leu17b] enables on the one hand view-based
programming with contextual roles as well as evolving objects embedded into Scala.
A discussion on SCROLL in the context of roles in prototype-based programming
languages can be found in Section 3.2.2.

Language Presentation SCROLL seamlessly embeds into Scala based on compiler
rewrites, implicit conversion of arguments, and the ease of embedding domain-specific
elements in the host language Scala. An example program written in SCROLL can
be found in Listing 3.6. SCROLL provides a MOP where compartments must extend
the Compartment class and roles are defined as inner classes of compartments. Objects
that have to be treated as role-playing objects must be accessed with a preceding plus
operator, e.g., +joe.getNumber, due to the implicit conversion applied.
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Architecture SCROLL does not provide a type system. Arbitrary objects can become
role-playing objects by being wrapped into a Player (meta) class, applying Scala’s
implicit conversions. Methods invoked on a player instance that are not defined on
Player will be rewritten into a dynamic runtime invocation which triggers a search on
the internal role-play DAG (cf. Listing 3.7). The approach requires that the searched
method’s signature must be implemented by the players and their roles. The dynamic
lookup considers a later acquired role to precede any other role (cf. acquisition dis-
patch [Gra06]). A program may provide a user-defined method resolution algorithm.

Programming Model Implementation The implementation uses a combination of
compiler rewrites, implicit conversion of arguments, and the ease of embedding domain-
specific elements in the host language Scala. SCROLL provides a MOP where compart-
ments must extend Compartment and roles are defined as inner classes of compartments.
For example, in Listing 3.7 we show how compiler rewrites by the Scala compiler enable
an opaque embedding of role dispatch in SCROLL.

Weaving or Mapping Implementation Compartments, roles, and players are ordi-
nary objects. The roles played by an object are stored as a DAG inside the compart-
ment.

Context and Role Instance Management The approach does not provide any special
instance management.

5.2.5.7 LyRT

LyRT [Tai+16a; Tai+16b] is a Java-based library that proposes contextual roles to
support unanticipated adaption of instances at runtime. Its purpose is to be used in a
transaction-based environment where role acquisition is transactional [Tai+17].

Language Presentation LyRT provides a library to enhance Java with object-based
dynamic adaptation mechanisms. To be a core object, for example, a user-defined class
must implement the IPlayer interface which already provides implementations for role-
specific functionality. The same applies to user-defined role classes. On the other hand,
a user-defined compartment must extend the framework’s Compartment class. The ap-
proach uses a registry that registers and manages the object adaptations. Therefore,
each class must be reflectively registered. For example, to register a new player ob-
ject with the registry we can use Object ely = registry.newPlayer(Person.class).
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Figure 5.8: The tree spanned from the role-playing relation in LyRT. Method invoca-
tion uses levels and sequences to determine the target of a method invoca-
tion. Adapted from [Tai+16a, Fig. 3].

The role invocation uses a similar reflective mechanism which has to be actively used
by the application developer. For example, the Java code using the registry to in-
voke a role method registry.invokeRole(compartment, ely, "work") realizes the
invocation of ely.work().

Architecture The approach does not provide a type system. However, in LyRT the
role-playing relationship spans a tree where the player is the root and the roles are
leaves. In the tree, each node is labeled. One label captures the level of a node, where
sequence assigns a number to each sibling in order of acquisition. In Figure 5.8 the
tree and its labels before and after the acquisition of role r3 to role r2 are shown.

Programming Model Implementation The approach demands that each compart-
ment, role, and player has to register at the registry. The registry, like a relational
database, keeps all relations between compartments, roles, and their players.

Weaving or Mapping Implementation The approach uses a library to manage classes
and the linking of each class’ provided methods at runtime based on a preview imple-
mentation of invokedynamic in Java 7. That is, all methods declared by a class are
extracted and stored in a map to implement LyRT’s dispatch mechanism.

Context and Role Instance Management The role-playing relation (cf. [Tai17, 4.1.2
Relations]) inside a compartment instance between a player and a role instance (or
between role instances for deep roles) is stored in linked lists.

83



5.3 Conclusion

We reviewed a total of 25 role-oriented programming languages where we assigned 15
approaches to belong to the behavioral category, 1 approach to belong to the relational
category, and 9 approaches to belong to the category of contextual role-oriented lan-
guages. While previous reviews concentrated on the features of role-oriented program-
ming languages we compiled the implementation strategies starting from the concepts
that surfaced in the role-oriented programming languages, ranging over the mapping
strategies used to realize the concepts in a target language, and finishing with specifics
in the management of the conceptual instances.

We agree with Kühn et al. that the “evaluation indicates that more than half of
the approaches were unaware of the possible features of roles or other related ap-
proaches” [Küh+14]. Even more, we conclude that the features that are available
in a target language influence the design space that approaches used to realize their
features. For example, roles have always been considered a context-dependent view.
However, since the inception of reified contexts (compartments) every approach used
delegation-based dispatch. Furthermore, in each approach providing contextual roles
(with LyRT being the exception) roles have been realized as inner classes of compart-
ments.
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6 Quantitative Aspects of Role-oriented
Programming Languages

“Premature optimization is the root of all evil.”
— Donald E. Knuth, 1974

In the previous chapter, we have seen that there is no single understanding of the role-
oriented paradigm and the features that can be ascribed to implementations of this
paradigm [Ste00a; Küh+14]. The review also unearthed the different design choices
taken to realize those features. However, we found no in-depth assessment of the quan-
titative aspects of the different implementation techniques. The authors often qualified
resulting implementations as “slow ” or to “suffer from a run-time performance over-
head ” [Tru+01] missing a rigid evaluation of quantitative aspects. We mean that quan-
titative aspects of computation refer to the use of physical quantities, e.g., time and
memory usage [Ald20]. This chapter will propose a quantitative analysis of contempo-
rary role-oriented programming languages. The goal is to analyze the core properties of
state-of-the-art role-oriented programming languages. Based on the quantities we eval-
uate these systems from different perspectives such as architecture, language design,
and semantics. To this end, we create a synthetic benchmark that makes extensive use
of features ascribed to the role concept. Based on this benchmark, we perform a cross-
language comparison and discuss the results with a focus on performance, scalability,
and memory management provided by the role-oriented runtimes.

6.1 Benchmarking Separation of Concerns Approaches

This section introduces benchmarks conducted in related approaches as well as other
role-based programming languages.

A framework that enhances Java with roles is proposed with JAWIRO [SE04; SE06].
The framework has been compared to other design patterns and has been measured
using micro-benchmarks. The benchmarks measure how fast operations on roles behave
in case of an increasing number of role instances in the stored hierarchy.

EpsilonJ is a role-based programming language that enhances Java with roles [MT08].
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This approach uses a transpiler to translate EpsilonJ programs to standard Java. The
authors measured compilation and execution time to compare the effectiveness of the
generated code against hand-written Java code. They conclude that compilation time
is not a significant factor, but execution time was two times slower compared to the
hand-written Java code.

ContextJS is a context-oriented extension to JavaScript [KLH12]. The author dis-
cusses optimization techniques applied to the host language JavaScript to improve
concepts found in COP. To discuss these techniques a micro-benchmark to measure
the execution time of layer activations and dispatches to (partial) methods was con-
ducted. The conclusion is that most time is spent on dispatching.

In JCOP, a Java implementation of a Context-oriented Programming language, the
dispatch has been implemented using the new invokedynamic bytecode instruction
[AHH10]. The benchmark compares the proof-of-concept implementation based on
invokedynamic bytecode compared to the unmodified JCOP.

There have been different approaches to measuring the performance, e.g., the us-
age of micro-benchmarks or small applications. While employing micro-benchmarks
could highlight performance problems of an implementation they require rigorous han-
dling due to the underlying Just-In-Time (JIT) compilers that many host languages
use. In the rest of this chapter, we propose a quantitative analysis of contemporary
role-oriented programming languages that takes the variability of JIT compilers into
account.

6.2 Approach

To assess a role-oriented programming language its artifact must be available and func-
tional. We gathered the publicly available artifacts of the approaches reviewed in Chap-
ter 5. Of these approaches only ObjectTeams/Java (OTJ) [Her07], LyRT [Tai+16a],
and Scala ROles Language (SCROLL) [LA15] provide an implementation of their com-
piler which remained functional.From those compilers, ObjectTeams/Java is the most
mature, documented, and stable. Most role-based programming languages have been
implemented as a Java library, e.g., SCROLL and LyRT, or use Java as a host lan-
guage, e.g., OTJ. Therefore, we restrict the analysis to state-of-the-art role-based
programming languages executed on the same platform; the Java Virtual Machine.

The benchmark suite we used to define, execute, and measure the benchmarks has
been inspired by the “Are we fast yet? ” benchmark harness [MDM16]. A class diagram
showcasing the harness is shown in Figure 6.1. The classes are loosely coupled where
benchmarks can be run given the appropriate commands from the command line to
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Harness
main (args : String[0..*])

Run
name : String
iterations : int
innerIterations : int
total : long

getSuitFromName(name : String) : Class
runBenchmark() : void
measure(bench: Benchmark) : void
doRuns(bench : Benchmark) : void

run

<<abstract>>
Benchmark

setUp(innerIterations : int) : bool
innerBenchmarkLoop(innerIterations : int) bool

benchmarkSuit

BankBenchmark
setUp(innerIterations : int) : bool
innerBenchmarkLoop(innerIterations : int) bool

Figure 6.1: UML Class Diagram of the Benchmark Suite used in this thesis.

the Harness. Specific benchmarks can be implemented by subclassing Benchmark and
implementing the setUp and innerBenchmarkLoop functions. Run is supposed to set
up the benchmark, execute, and measure the innerBenchmarkLoop execution time. To
increase reproducibility we used ReBench [Mar18] to configure the benchmark execu-
tions and to parse the output of the benchmark suite. ReBench provides configuration
files to start benchmarks with different implementations and stores the output in text
files. We use R [R C18] to statistically analyze these files.

6.2.1 Benchmark Characterization

To benchmark the approaches we have chosen a model which has been used to qualita-
tively assess role-oriented programming implementations. Figure 6.2 shows a CROM-
based role model of the simple use case of a scenario of a bank. There are Person
classes that fill the role of a Customer in a Bank. A bank offers different types of
Accounts, namely SavingsAccount and CheckingsAccount. The different types of
accounts change the behavior of withdrawing money from an account or depositing
money in an account. Besides, there is a Transaction compartment, where an ac-
count can either play the role of a Source or a Target, but not both at the same
transaction defined by the role prohibition. For example, when an account plays the
role of the Source in the transaction one is only allowed to withdraw money from that
account. A more advanced version of the role model that uses role groups to model
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these restrictions can be found in [Küh+15, Fig.2].

Bank
name:String
customers:Customer[0..*]
savingsAccounts:SavingsAccount[0..*]
checkingsAccounts:CheckingsAccount[0..*]

Customer
id:int

SavingsAccount
fee:float

withFee(amount:float)

CheckingsAccount
limit:float

limited(amount:float)

Person
name:String

Account
balance:float

decrease(amount:float)
increase(amount:float)

Transaction
amount:float
execute()

Source

withDraw()

Target

deposit()

Figure 6.2: A CROM-based role model of a bank with different types of accounts.
Customers can possess accounts that can play different roles across the
compartments.

6.2.2 Methodology

Benchmarking the performance of a Java application is far from being trivial. The
performance is affected by various factors such as the application itself, the input to
the program, and the settings of the JVM such as the size of the heap, the selected
garbage collector etc.13 The performance of a single application can change from run
to run because of the many sources of non-determinism such as the JIT compilation
and optimization in the VM is driven by timer-based method sampling, garbage col-
lection, thread scheduling and more. There exist two components to dealing with
non-determinism in managed runtime systems. The first is the experimental design of
the benchmark. The second is the statistically rigorous data analysis to deal with these

13The number of HotSpot JVM options in each version of OpenJDK varied between ~1500 - 1300
(including product, experimental, diagnostic, and developmental) [New21, Fig.4]
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kinds of non-determinism [GBE07]. Existing tools such as the Java Microbenchmark
Harness (JMH) [Ora23a] help with building, running, and analyzing benchmarks writ-
ten in Java and other languages targeting the JVM. It allows the writing of fine-grained
benchmarks at method, loop, or even statement level and supports preventing optimiza-
tions from distorting the result. However, the existence of such a tool does not prevent
the benchmark designer from avoiding pitfalls when designing benchmarks [Dam+19].

Measuring startup performance has the goal of measuring how fast the JVM can
execute a short-running program. These measurements typically include class loading
and are affected by JIT compilation. The JVM will reach a steady-state performance
once all relevant classes have been loaded and hot methods have been JIT compiled.
In steady-state the sources of non-determinism are reduced and the execution suffers
less from variability due to JIT compilation.

6.2.2.1 Data Analysis

Building a confidence interval requires a number of measurements xi, 1 ≤ i ≤ n from a
population with mean µ and variance σ2. The mean of these measurements x (sample
mean) is computed as

x =

∑︁n
i=1 xi
n

. (6.1)

The actual mean µ will be approximated by the sample mean x. Additionally, we
compute the confidence interval [c1, c2] such that the probability of µ being between
c1 and c2 equals the confidence level (1 − α). To compute the confidence interval of
the mean we rely on the central limit theory which states that for large values of n
(typically n ≥ 30) [Lil05], x is approximately Gaussian distributed with mean µ and
standard deviation σ/

√
n. Applying the central limit theorem we find that

c1 = x− z1−α/2
s√
n
, and

c2 = x+ z1−α/2
s√
n
.

(6.2)

The sample standard deviation s is computed as follows

s =

√︄∑︁n
i=1 (xi − x)2

n− 1
. (6.3)

We use the statistical programming language R [R C18] to statistically analyze the
resulting data.
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Startup Performance Measuring startup performance has the goal of measuring how
fast the JVM can execute a short-running program. These measurements typically
include class loading and are affected by JIT compilation and interpreter perfor-
mance [Mar+22]. To gather enough samples xi we measure the execution time of
p VM invocations, each invocation running a single benchmark iteration. Applying
the preconditions to compute the confidence interval we find that p ≥ 30.

Steady-State Performance The JVM will reach a steady-state once all relevant classes
have been loaded and hot methods have been JIT compiled. In steady-state the sources
of non-determinism are reduced and the execution suffers less from variability due to
JIT compilation. To measure steady-state performance we follow a four-step method-
ology advocated in the literature [GBE07] which we shortly recite:

1. Consider p VM invocations, each running at most q benchmark iterations. Retain
k measurements per invocation.

2. For each VM invocation i, determine iteration si where steady-state performance
is reached. This means, that the coefficient of variation (CoV) of the k iterations
(si − k to k) falls below a preset threshold (e.g., 0.01 or 0.02).

3. For each VM invocation compute the mean xi of the k benchmark iterations
under steady-state:

xi =

si∑︂
j=si−k

xij . (6.4)

4. Compute the confidence interval across the computed means xi. The overall
mean is x =

∑︁p
i=1 xi.

6.2.2.2 Experimental Design

The experiment is designed to measure startup performance as well as the steady-state
performance of contemporary role-oriented programming languages. We are interested
in the steady-state performance. To account for the dynamic behavior from the JIT
compilation used by the JVM, the garbage collector, and the underlying operating
system, the benchmark has been repeated several times. The experiments are designed
to provide measurement points fulfilling the statistical requirements iterated previously.
The input sizes and configuration parameters are listed in Table 6.1. We restart the
experiment 3 times and in each execution, the problem is repeated 10 times. For the
benchmark, we set the problem size in the range from 500,000 to 6,000,000 with a step
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size of 500,000, i.e., 12 different values. Thus, we get 30 measurements per problem
size.

For each iteration, the harness will measure the execution time of the executed trans-
actions. The benchmarks work on multiple different input sizes with varying numbers
of Accounts as well as the number of Transactions. The different configurations are
shown in Table 6.1. Thus, for problem size N , there are executed N ∗N transactions,
using N persons with 2N accounts (i.e., a CheckingsAccount and a SavingsAccount).
The main loop of the benchmark (innerBenchmarkLoop) implemented in the language
OTJ is shown in Listing 6.13.

To gather information about hot methods, memory consumption, and where the
application spent its time every benchmark has been repeated once with activated
profiling. Applications running for a longer period with a higher footprint on memory
will result in more pressure on the garbage collector. This could make the garbage
collector a dominant factor for the execution time. For a given role-based language,
the memory footprint indicates how well the runtime manages resources.

The initialization of objects such as the instance of the bank, all the customers,
and the accounts that are possessed by those customers are not measured. During
each iteration, we executed System.gc() to release unused objects from the heap
and to make the VM not collect garbage during the measured part itself. As such,
the benchmark measures the combined execution time of creating a new transaction
compartment, its activation, the binding of roles to this transaction, and at last the
deactivation.

Table 6.1: Parameter configurations of the benchmarks. The upper part defines input
parameters for the application, lower part defines parameters for the JVM.

Parameter Values

runs 3
iterations 10
inner iterations range of 500,000 to 6,000,000 with a step size of 500,000

VM heap size (–Xmx) 4G and 8G

Virtual Machines We run the benchmarks on different VM implementations to deter-
mine whether the role-oriented implementations behave differently in different environ-
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ments. The Virtual Machines and their versions are listed in Table 6.2. The OpenJDK
and GraalVM are distributed in binary form while we had to build OpenJ9 on our
own. We used the suggested build parameters and did not tune any other setting from
the build script. Unfortunately, the OpenJ9 build script already was built against the
unreleased OpenJDK 21 while the others were built for Java 20. Due to restrictions of
dependencies from Role4J, we were forced to use Java 1.8 to execute the benchmarks.

Table 6.2: The different Java Virtual Machines and versions used to execute the bench-
marks.

Virtual Machine Version Platform

OpenJDK (HotSpot) 20.0.2 build 20.0.2+9-78 Linux x64
OpenJDK (HotSpot) 1.8.0 build 1.8.0_131-b11 Linux x64
Oracle GraalVM 20.3 build 20.0.2+9-jvmci-23.0-b14 Linux x64
Eclipse OpenJ9 0.40.4 openjdk 21-internal 2023-09-19 Linux x64

Hardware Platforms The experiments have been performed on an Intel® Core™i7-
9700T CPU @ 2.00GHz with 32GB RAM. The operating system used was Ubuntu
22.04. We consider an otherwise idle and unloaded machine in our experiments.

To increase reproducibility we used ReBench [Mar18] version 1.2.0 to configure the
benchmark executions and to parse the output of the benchmark suite. ReBench pro-
vides configuration files to define benchmark suits and experiments with different exe-
cution environments. It stores the output in text files which we statistically analyzed
with R.

6.3 Role-based Benchmark Implementations

There is no single unified understanding of the role concept. Instead, existing role-
based programming languages offer different features [Küh+14]. Next to different
feature configurations, surveyed languages realize the same role concepts with different
approaches. To account for language-specific restrictions of role features we provide
two variants of the benchmark presented before either using deep roles or flat roles to
represent the roles of accounts of a bank within a transaction. Each implementation
provides the variants that are supported by the approach. For example, the Role Object
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Pattern [Bäu+97] does not support contexts, but plain roles. In Role4J [Tai+16a], two
compartments cannot be active at the same point in time. We tried, however, to keep
implementations as similar as possible to enable a fair comparison. In the following, the
different Role-oriented Programming implementations will be introduced. We present
particularly interesting parts of the benchmark implementations.

6.3.1 Role Object Pattern

Bäumer et al. have introduced the Role Object Pattern (ROP) because of the need for
a flexible design pattern that allowed for unanticipated changes without the need to
recompile the whole application [Bäu+97]. The pattern represents players and roles in
an inheritance hierarchy. An abstract class of the entity represents the root, the player
is split into a core class that implements the basic behavior. Role classes are inherited
from the root and delegated to their core. It allows modeling of different views of an
object designed as role objects which are dynamically added and removed from the
core object. In Figure 6.3 the UML model of the role split pattern applied to the role
model from Figure 6.2 is shown. The pattern has no realization for context-dependent
roles. Thus, a Bank is represented as a normal class. Furthermore, as with many design
patterns, the role object pattern suffers from object schizophrenia [Ken99], as common
object-oriented programming languages do not support delegation, but a weaker form
called forwarding. It is the programmer’s responsibility to carefully implement the
forwarding to the core object and to correctly override the method implementations
resulting from the segmentation of the logical entity into multiple physical entities,
where the identity of each entity is different. This responsibility applies to every single
entity that should be able to play roles.

6.3.2 Object Teams/Java

Stephan Herrmann recognized that collaborations are a crosscutting concern as multi-
ple classes are involved [Her03]. ObjectTeams/Java (OTJ)14 is an approach to define
crosscutting concerns realized as a combination of aspect-orientated programming and
software composition. The programming language has already been introduced in
Section 3.2.3 as a representation of roles embedded in a class-based object-oriented
language. The implementation of a bank providing a CheckingsAccount based on
OTJ callin mechanism is shown in Listing 6.12. The implementation of the benchmark
using deep roles is shown in Listing 6.13. Object Teams [Her07] has been measured
using callin to realize the source and target roles of the transaction.
14The website of OTJ: http://www.eclipse.org/objectteams/
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<<abstract>>
Account

accountRoles:Account[0..*]

increase(amount:float): void
decrease(amount:float): void
addRole(role:Account): void
removeRole(role:Account): bool

Source
core:Account
increase(amount:float): void
decrease(amount:float): void

Target

core:Account
increase(amount:float): void
decrease(amount:float): void

Transaction
execute(source:Source, target:Target,
amount:float): void

AccountCore
balance:float
increase(amount:float): void
decrease(amount:float): void

CheckingsAccount

core:Account
limit:float
increase(amount:float): void
decrease(amount:float): void

SavingsAccount

core:Account
limit:float
increase(amount:float): void
decrease(amount:float): void

Bank
addCheckingsAccount(acc:CheckingsAccount,
customer:Customer): void
addSavingsAccount(acc:SavingsAccount,
customer:Customer): void
addCustomer(customer:Customer): void

<<abstract>>
Person

personRoles:Person[0..*]

addRole(role:Person): void
removeRole(role:Person): bool

PersonCore
core:Person

Customer
core:Person

customers0..*

checkingsAccounts 0..*
savingsAccounts

0..*

«u
se

»

«use»

«use»

Figure 6.3: A UML class diagram representing the implementation of the role model
from Figure 6.2 using the Role-Object-Pattern.
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Listing 6.12 The implementation of a Bank which provides a CheckingsAccount based
on OTJ’s callin mechanism by replacing a base method.
team class Bank {

class CheckingsAccount playedBy Account {
callin withFee(float amount) {
...
result = base.withFee(amount * FEE);
...
return result;
}
withFee(float) <- replace withdraw(float)

}
}

6.3.3 Role4J

Role4J15, the successor of LyRT [Tai+16a], allows to vary the behavior of an appli-
cation at the level of single objects. This adaptation mechanism is called dynamic
binding. The implementation is provided as a Java library and offers a Java API to
handle contextual adaptations and role-playing. However, to participate in role-playing
the classes have to implement the IPlayer, IRole, and ICompartment interfaces, re-
spectively. The runtime is designed to use a registry to handle all states in a central
lookup table. The registry must be used to create new instances of players, roles, and
compartments. It also stores the play relations between the players and the roles of
the active compartment. Furthermore, it stores the level of the relation, e.g., when
roles play roles (deep roles) the level will increase by one, and the sequence of the
relation, i.e., the number of multiple roles bound at the same level. If multiple roles
implement the same method, the method resolution mechanism chooses the one im-
plemented by the role with the highest level and the sequence. At a given point in
time, only one compartment can be active and every binding of roles to a core will be
stored relative to the active compartment. The variability is achieved by generating
subclasses at run-time. Into these subclasses, the dispatch logic is implemented using
proxy instances. These can be exchanged without touching the core objects allowing
for unanticipated adaption without restarting the application [Tai+16b]. Role4J uses
ByteBuddy [Raf23] to realize the class rewriting.

15The repository of Role4J publicly available on GitHub: https://github.com/nguonly/role4j
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Listing 6.13 ObjectTeams/Java implementation of the BankBenchmark.
public class BankBenchmark extends Benchmark {

private final Bank bank;

@Override
public boolean innerBenchmarkLoop(final int innerIterations) {

bank.activate();
float amount = 100.0f;
for (Account from : bank.getCheckingAccounts()) {

for (Account to : bank.getSavingAccounts()) {
CallinTransaction transaction = new CallinTransaction();
transaction.activate();
try {

transaction.execute(from, to, amount);
} catch (RuntimeException e) {

e.printStackTrace();
} finally {

transaction.deactivate();
}

}
}
bank.deactivate();
return true;

}

@Override
public boolean setUp(final int innerIterations) {

bank = new Bank();
bank.activate();

System.gc();

for (int i = 0; i < innerIterations; ++i) {
Person p = new Person();
bank.addCustomer(p);
Account sa = new Account(i, 1000.0f);
Account ca = new Account(i, 1000.0f);
bank.addSavingsAccount(p, sa);
bank.addCheckingsAccount(p, ca);

}
return true;

}
}
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Listing 6.14 Role4J implementation of the BankBenchmark’s inner loop.
@Override
public boolean innerBenchmarkLoop(final int innerIterations) {

this.bank.activate();
float amount = 100.0f;

for (Account from : bank.getCheckingAccounts()) {
for (Account to : bank.getSavingAccounts()) {

try {
Transaction transaction = reg.newCore(Transaction.class);
transaction.setAccounts(from, to);
// binds Source and Target roles to from and to
bank.executeTransaction(transaction, amount);

} catch (RuntimeException e) {
e.printStackTrace();
return false;

}
}

}
this.bank.deactivate();
return true;

}

Because of the limit of a single simultaneously active compartment, we implemented
the transaction as another player and bound the Target and Source roles to the
Account. Therefore, we could realize a working setting using a single compartment
and deep roles. Because the implementation of Rol4J is already dated we had to
compile and run it with Java 8 which will limit compareability. We show the main
benchmark loop in Listing 6.14.

6.3.4 SCROLL

Recent implementations of roles in object-oriented programming languages required a
specific runtime environment. Scala ROles Language (SCROLL)16 is an internal DSL
written in Scala that allows role-based programming without a specific runtime [LA15].

16The repository of SCROLL publicly available on GitHub: https://github.com/max-leuthaeuser
/SCROLL
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Listing 6.15 SCROLL implementation of the BankBenchmark’s inner loop.
override def innerBenchmarkLoop(innerIterations: Int): Boolean = {

var amount: Float = 100.0f
for (from <- bank.getCheckingAccounts()) {

for (to <- bank.getSavingAccounts()) {
val transaction = new Transaction
transaction.rolePlaying.addPlaysRelation(from, new transaction.Source)
transaction.rolePlaying.addPlaysRelation(to, new transaction.Target)
transaction.compartmentRelations.partOf(bank)
val transactionRole = new bank.TransactionRole
bank.rolePlaying.addPlaysRelation(transaction, transactionRole)
transactionRole.execute(amount)

}
}
return true;

}

Conceptually, SCROLL uses a Single Underlying Model (SUM) and provides Views on
that model. Roles are embedded in reified contexts, called Compartments. Activating
a compartment activates all its contained roles. To view multiple compartments in a
single view, the involved compartments need to be merged so their underlying DAGs are
merged. Thus, a compartment mimics the behavior of a view. To each compartment,
the role-playing state of its roles is stored in a DAG called the role-play graph. A role-
playing object can be understood as a compound type, an intersection of the role types
that the object is playing. However, the implementation does not use intersection types
but requires technical aspects of Scala, such as the dynamic marker trait to mimic the
concept of losing type safety. To regain some control, SCROLL provides a compiler
plugin [Leu18] that compares a given CROM [Küh+14] model to validate role bindings
in a SCROLL program w.r.t. that model. The dynamic trait uses compiler rewrites
on a Player instance when a function is not available on the role-playing object (see
Listing 3.7 for more detail). The program then queries the role-play graph to dispatch
a function call to the valid implementation. The method dispatch can be configured
to search the DAG by providing a dispatch query [Leu17a, p. 85]. The measured
benchmark’s inner loop implementation using SCROLL is shown in Listing 6.15.
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6.4 Results

This section presents the results of the experiments we conducted according to the
methodology described before. We will first present the results of the performance
measurements and compare the approaches.

We selected the Role Object Pattern to serve as a baseline to compare the other
approaches. We motivate this selection with the Role Object Pattern being the most
lightweight approach to realizing roles in object-oriented programming based on in-
heritance and delegation to a core object. We think that language implementations
should compile a program to the most efficient representation possible. However, as
we will present later, implementations often use a single representation regardless of
the features used, creating a semantic gap that results in an overhead in execution
time and memory.

6.4.1 Performance and Scalability

Due to restrictions of the dependencies from Role4J, we were forced to use Java 1.8 to
execute the benchmarks of Role4J and report the numbers of the other approaches using
OpenJDK 20. Role4J could not complete larger problem sizes other than 10,00017. For
this reason, we present the steady-state performance of the approaches with a problem
size of 10,000 and a maximum heap size of 8GB separately in Figure 6.4. The figure
presents the execution time in the log scale of each iteration of the first run while the
second and third runs were not too much different.

As one can see, Role4J is the slowest approach being 4, 428, 827× slower than the Role
Object Pattern. While all other approaches reduced their execution time throughout
the experiment, Rol4J’s is increasing. The problem is that for each object that is
adapted as a role, the Role4J runtime creates a new proxy class. This not only creates
many more objects than necessary but also makes all profile-based optimizations from
the JVM inapplicable as each role is marked as a newly observed class.

In Figure 6.5 we report the steady-state performance of problem sizes between
500,000 and 6,000,000 with a step size of 500,000 grouped by benchmark, heap size,
and VM used. We see that in the experiments with deep roles and a heap size of 4G
OTJ was aborted with problem sizes above 4,000,000 transactions due to the JVM
reporting out-of-memory errors. Compared to the Role Object Pattern in the experi-
ments with a heap size of 8G we find that the mean slowdown of OTJ is 54.28× and
SCROLL’s mean slowdown is 123.0×. Across the different VMs we do not see striking

17We terminated the experiments of Rol4J after single runs not completing in 5 hours.
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Figure 6.4: The execution time of each tested approach per iteration in the first run.
Executed with OpenJDK 20 (OpenJDK 1.8 for Role4J, respectively) and
a heap size of 8G. Results are shown for the benchmark using deep roles
and flat roles.

differences, but the CoV for some reason is higher for the Role Object Pattern exe-
cuted on OpenJ9 with a mean CoV of 1.50 (min 0.47, max 2.20) compared to the other
VMs. OpenJ9 is a JVM developed with server applications in mind, thus we suspect
the interference of the JIT compiler for the short-running application is introducing
the variance. Compared to a prior comparison of the approaches [SC17] we find that a
rewrite of SCROLL to support Scala 3 improved performance and scalability as it can
handle a growing number of role-playing objects without the paralyzing overhead.
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Figure 6.5: The mean of the execution time of the tested approaches among multiple
JVM implementations, problem sizes, and benchmarks. Error bars show
the standard error.
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6.4.2 Time and Memory Contributions

The Role Object Pattern achieved the best results in all the approaches and all set-
tings. We can see from Figure 6.5 that current approaches do not scale well. Even
for small problems, the second fastest approach was at least 8.95× slower (SCROLL
on OpenJ9, 4G heap size). While the approaches can leverage from JIT compilation
they do not profit the same as the Role Object Pattern does. To better understand
where time is spent, we monitored the JVM with VisualVM [Ora23c] when executing
a benchmark with 2.25 million transactions. We do not only investigate the time spent
in different parts of the applications but also take a look at what parts of the code are
responsible for writing data to the heap. In the JVM a thread can acquire small re-
gions of memory—called Thread Local Allocation Buffer (TLAB)—to allocate objects
on the heap. When objects inside a TLAB die, i.e., are not life anymore, the garbage
collector may free the memory region. The repeated allocation of many intermediate
objects may result in more invocations of the garbage collector which may negatively
impact the performance of an application. Figure 6.6 summarizes the regions grouped
by their purpose. The upper graph shows how much of the overall heap space was
acquired by a given group while the graph below shows the accumulated execution
time of code that belongs to the groups.

Overall the approaches spent little time in the code regions of the benchmark harness.
Most of the time was spent executing code regions that belong to the implementations
of role dispatch and code that manages roles, e.g., the creation or lookup of existing
roles. For example, in SCROLL most of the time during dispatch was spent visiting
the DAG that stores the relation of naturals to their roles. In OTJ lots of the time was
spent in generated dispatch methods. Improving in these areas will greatly improve
the end-to-end latency of these approaches.

VisualVM reported that the Role Object Pattern and OTJ each used approximately
250MB heap memory to represent all types of accounts, transactions, and the bank
itself. A huge difference can be seen in the cumulative acquisition of heap space. In
this case, Role Object Pattern acquired an amount of 365MB of heap space, while OTJ
acquired a total of 8.9GB. For 2,500 transactions SCROLL acquired 21.7GB and Role4J
acquired 3.8GB. For 10,000 transactions Role4J acquired 16.4 GB of heap memory.

As explained before, Role4J stores all relations between the compartment, its play-
ers, and all roles in a central lookup table. When a new relation is added, its level and
sequence are computed. This accounts for 89% of the execution time of the bench-
mark. That is because there is an exhaustive search over the central lookup table
with an algorithmic complexity of O(N) with N being the number of stored relations,
e.g., customers, accounts, and roles. Currently, the lookup table is implemented as an
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Figure 6.6: A stacked barplot of the deep roles benchmark size of 2,250,000. Top:
Percentage of contribution to the heap of different code regions. Bottom:
Time spent during the benchmark in these regions of code.

ArrayDeque18 that stores the relations and is explored multiple times. Second, gener-
ating a new subclass for every player object and role object accounts for 26% of the
overall heap pressure during the benchmark.

In ObjectTeams/Java, when an object begins to play a role in a team, the resulting
role object is stored in a WeakHashMap. Elements in that collection can be garbage
collected when free memory depletes. In the benchmark 17% of heap pressure (1.5
GB) is dedicated only to that cache structure. The implementation of callins in OTJ
does extensive composition of strings at runtime, e.g., a method identifier consists
of the name of the class defining the method and the type names of the parameters.
These strings must be composed with every invocation of callins cumulatively acquiring
5.2GB of heap data, responsible for about 58% of overall pressure to the heap

Role-playing objects are realized with compound objects using Scala’s dynamic trait.

18An ArrayDeque is a performant collection from the Java Collections Framework. This class is faster
than LinkedList when used as a queue.
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Using compound objects results in a high amount of boxing and unboxing instructions
amounting to 64% of execution time spent during dispatching. SCROLL uses a DAG
per compartment to map players to their played roles. In SCROLL, the dispatch
requires a search in the DAG which accounts for 78% of GC pressure (16.9GB) as many
intermediate objects are created. This flexibility for the method dispatch accounts for
64% of the execution time being spent in checking the equality of objects in the DAG.

6.5 Conclusion

Our results are in line with results from related approaches. In Lasagne/J [Tru+01]
the disjunctive wrapper chaining is said to introduce a scalability problem due to
the indirection of method execution through the dynamic wrapper chains. In the
domain of AOP it is concluded that since object-oriented execution environments, i.e.,
virtual machines, do not understand aspect semantics, the aspect compiler produces
a verbose description of aspects in an object-oriented paradigm which results in a
high overhead [HS07]. The reason is that function invocations or property accesses
are typical locations for join point shadows that will be decorated with residuals.
Mechanisms for late binding of advices are not applied to such high-level concept,
resulting in a semantic gap where residuals being evaluated each time in the worst case.
This results in a severe performance penalty ranging from two orders of magnitude in
AspectWerkz [Bon04] to performance losses of less than one decimal power [HM04] in
Steamloom [Hau05].
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7 The Semantic Gap of Roles in
Object-Oriented Programs

“The purpose of abstraction is not to be vague, but to create a new
semantic level in which one can be absolutely precise.”

— Edsger Dijkstra

Throughout this thesis, we recurrently mentioned a semantic gap when describing Role-
oriented Programming implementations. In Chapter 6 we closely benchmarked state-of-
the-art approaches and measured a huge overhead in end-to-end latency. We concluded
that it was caused by the extra overhead resulting from the implementation of advanced
dispatch mechanisms provided by contextual roles, the management of contextual roles,
and the creation of many intermediate objects increasing the overhead of additional
garbage collection. This chapter takes a closer look into ObjectTeams/Java, a role-
oriented programming language implementation providing most of the features ascribed
to roles, and explains the observed overhead.

7.1 Compilation of ObjectTeams/Java Programs

The compilation of ObjectTeams/Java programs is divided into two phases. First, an
OTJ program is statically compiled into Java Bytecode using the OTJ compiler, an
extension of the Eclipse Java compiler. In this step, the compiler checks the static se-
mantics of team and role definitions as well as binding declarations.19 A class hierarchy
analysis is used to identify possible inheritance hierarchies in team classes and whether
callins override callins defined in superclasses. The compiler adds “magic methods” to
each team class, for example, the method callBefore that implements the dispatch
to all defined before callins of the team’s encapsulated roles.20 The compiler requires
these analyses to statically map declarations of callins to identifiers as represented in

19Cf. Section 3.2.3 for an explanation of the terms used to describe OTJ semantics.
20A team class is realized as a normal Java class which happens to extend Team and implements the

interface ITeam. The class Team already provides the mock implementations of these functions, the
compiler only rewrites the function body accordingly.
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Definition 7.1. A base call inside a replace callin, for example, base.withFee in the
implementation of SavingsAccount.withFee as shown in Figure 6.2, will be replaced
with the function call this._OT$callNext.

In this phase, the compiler only requires read access to base classes that are de-
clared in the binding declarations. The semantic analysis does not require access to all
subclasses of the declared base class. These will be processed in the second phase.

Definition 7.1 (Callin Identifier). Given a team and a callin, the compiler assigns a
new identifier. callinId : Callin × Team → Int where callinId(c, t) ↦→ {n | freshn ∈
N for t}.

To take into account any subclass of declared base classes, the second phase in
the compilation process is to rewrite all classes at runtime or load time, i.e. when
classes get loaded into the JVM. The OTJ runtime provides a Java Virtual Machine
Tooling Interface (JVMTI) interface where an agent can intercept class loading. This
agent is used to transform the bytecodes of loaded classes and to rewrite methods
declared in binding declarations.21 For the rewrites, template-based code generation
based on the ASM library [BLC02] is employed. For example, the original body of the
Account.decrease function is moved into Account.callOrig. To identify the base
method the compiler moved to callOrig an identifier is compiled that represents the
base method. The identifier is created according to Definition 7.2 (see boundMethodId
of the function signature in Listing 7.16). ObjectTeams/Java applies the envelope ap-
proach [Boc+05] to execute advices from join point shadows. The original body then
is replaced by a local constant representing that identifier and a call to the generated
function callAllBindings. The envelopes are the entry point to structured role dis-
patch and shown in Listing 7.17. To initialize role dispatch OTJ defines the envelope
callAllBindings. The body of a base class callAllBindings always calls the OTJ
runtime to get all active teams and callins. To realize the rewriting the runtime creates
a MOP representing teams, base classes, and bindings.

Definition 7.2 (Bound Method Identifier). Given a base method, the compiler assigns
a fresh number that represents the base method. boundMethodId : Method×Base→
Int with boundMethodId(m, b) ↦→ {n | freshn ∈ N for b}.

21The Oracle JVM does not allow the redefinition of function signatures or introduction of new
functions at runtime. Classes may get reloaded when a function body is rewritten. Thus, Object-
Teams/Java decided to prepare all classes as possible base classes in case a binding declaration
referencing a base class is loaded after the base class itself has been loaded. We could imagine
a completely different flow with a JVM that would not impose these restrictions, as shown in
[WWS10].
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Listing 7.16 The program code of the function _OT$callNext defined in class Team
of the OTJ runtime. The implementation delegates to the next active team or to the
original method if there is none.
public Object _OT$callNext(IBoundBase2 baze, ITeam[] teams, int idx,

int[] callinIds, int boundMethodId, Object[] args,
Object[] baseCallArgs, int baseCallFlags)

{
// Are there still active teams?
if (idx+1 < teams.length) {

// Yes, so call the next team/callin
return teams[idx+1]._OT$callAllBindings(baze, teams,

idx+1, callinIds, boundMethodId, args);
} else {

//No, call the base method
return baze._OT$callOrig(boundMethodId, args);

}
}

7.2 The Meta-Object Protocol of ObjectTeams/Java

In Chapter 1 we introduced the meta-hierarchy [FD99] and meta-objects that represent
abstractions of objects on a higher level. For reflective systems, it can be stated
that “[t]he metaobjects on the metalevel describe the structure, the features, and the
semantics of the domain objects.” [Aßm03] The open implementation [Kic96] design
principle proposes to expose a part of the implementation strategy to the application
level. This principle allows the design of systems to be open for later (unanticipated)
adaptations. Metaobject Protocols (MOPs) allows the definition of internal DSLs that
extend the capabilities of a given host language using the host language itself [KDB91].
In particular, a meta-object protocol can be seen as an open implementation of an
object-oriented language. Both reflection and MOPs has been used to implement
AOP technology by adapting the semantic properties of the aspect language [DMB09],
applying crosscutting concerns with Composition Filters [BA01; BA04], and using the
meta-object capabilities of the host language Squeak in AspectS [Hir01; Hir03] to name
a view.

In the domain of role-oriented programming languages, SCROLL uses a Metaobject
Protocol [Leu17a, Ch. 9] to represent the semantics of contextual roles. While it
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integrates well with the Scala ecosystem it incurs an execution overhead as shown
in prior works [SC17] and Chapter 6. In ObjectTeams/Java the implementation of
contextual roles is based on a combination of meta objects used at runtime and a
(runtime) code generator that uses the MOP to encode the semantics of role dispatch
in Java Bytecode. Furthermore, the Metaobject Protocol encodes facts about the
extended type system provided by ObjectTeams/Java. 22 To increase the performance
of the OTJ runtime, a pure reflective approach (more on this later) is not used to
realize the extended semantics of contextual roles. Instead, as presented throughout
Chapter 6, the decision-making is already included in the generated code, which is
partly compiled from the MOP at runtime.

In Figure 7.1 we present a UML class diagram of the MOP implemented in OTJ.
To keep the model approachable we only show the immediately necessary parts. Fur-
thermore, we use color coding to assign classes to different groups highlighting their
purpose. Classes colored orange are responsible for the execution and management of
base classes, roles, and teams. They constitute the parts that define the OTJ run-
time. A yellow color means a class is a metaclass describing domain elements, i.e.,
(callin) bindings, base classes, and teams. They provide the metadata to the runtime.
The classes in green are responsible to read and return the appropriate metaclasses
extracted from the metadata stored in the class file format.

Every class that is loaded at runtime is registered with the ClassRepository and
is assigned one of the metaclasses: AbstractBoundClass captures that a class is a
(possible) base class and AbstractTeam captures that a class is a team. The interfaces
IBoundClass and IBoundTeam abstract implementation details the OTJ runtime does
not care about. Roles do not have a direct representation in the model but are sub-
sumed by Binding which stores the role class name, the role method name, and the
role method signature. This is acceptable since the role class was already compiled by
the Object Teams compiler as an inner class of Teams and the code to dispatch to the
role is already generated.

The TeamManager is notified for each activation and deactivation of a Team instance.
This triggers the handling of the state change. The TeamManager will query the
ClassRepository for the metaobject AbstractTeam of the team instance to collect
the provided bindings. For each base class that is referenced therein the corresponding
IBoundClass will be queried and queued for rewriting if that has not happened already.
Th The TeamManager is responsible for bookkeeping active teams and their provided
bindings. This data will be requested whenever the method callAllBindings prepares

22The phenomenon in OT that from a typing perspective, the type of two roles from two different
team instances are unequal has been coined family polymorphism [Ern01].
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<<interface>>
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getBoundClass(name:String,
id:String): IBoundClass
getTeam(name:String, id:String): IBound-
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doRegistration(): void
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handleAddingOfBinding(binding:IBinding):
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IBoundTeam
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AbstractBoundClass
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endTransformation(klass:Class): void
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getMethod( ...): Method

Method
getName(): String
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String*
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IBinding

getDeclaringBaseClassName(): String
getMemberName(): String
getMemberSignature(): String
getRoleClassName(): String
getRoleMethodName(): String
getRoleMethodSignature(): String
getCallinId(): String
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*
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Figure 7.1: A UML class diagram presenting an excerpt of the implementation of
the Metaobject Protocol (MOP) from ObjectTeams/Java. Yellow-colored
classes account for the representation of contextual roles, orange-colored
classes account for the execution and management of the MOP, and green-
colored classes account for the serialization of OTJ-specific metadata in the
class files.
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Listing 7.17 The Java interfaces of the envelope methods callAllBindings and
callNext in ObjectTeams/Java.
// The Java interface of callAllBindings
Object callAllBindings(IBoundBase base, Team[] teams, int index,

int[] callinIds, int boundMethodId, Object[] originalArguments);

// The Java interface of callNext
Object callNext(IBoundBase base, Team[] teams, int index,

int[] callinIds, int boundMethodId, Object[] originalArguments,
Object[] arguments, int superCall);

a role dispatch.

7.3 Method Dispatch in ObjectTeams/Java

Now that we know how an OTJ program is produced let us discuss how a role method
is looked up and how method dispatch is implemented. This equips us with the pre-
requisite to understand the overhead found in our quantitative analysis in Chapter 6
and will allow us to provide a comprehensive and compelling explanation of the results.
Contemporary object-oriented programming languages implement the lookup and ex-
ecution of a call target as two distinct processes (with distinct possible optimizations).
Given the invocation of a method on a polymorphic reference, late binding ensures
that the correct method is looked up and subsequently executed. In OTJ, however,
the process of lookup and dispatch is intermingled and thus, must be explained to-
gether. As a result of embedding the role semantics in the Java Bytecode, there exists
no higher-level notion of a role-polymorphic reference and no mechanism for late bind-
ing that respects the semantics of contexts and roles. To overcome these challenges
the language is implemented using a template-based compilation scheme where the
compiled code contains dispatch code for each possible case. Thus, dispatch code is
part of the application which also affects optimizations employed by the JIT compiler
on the generated code. At this level, there is no possibility to account for special cases
such as turning a virtual function call into a direct call when it is known that there
is no subclass loaded into the JVM. As a consequence, the scheme used to implement
role dispatch does not allow for late binding which normally is used to bind the results
of lookups into a polymorphic call site.

To get an overall picture and to explain the different core parts in this process we will
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Figure 7.2: A simplified UML sequence diagram showing the resolution of the func-
tion call Account.decrease() with active compartments Transaction and
Bank. For readability we omitted leading “_OT$” of functions belonging to
the OTJ runtime.
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refer to the UML sequence diagram in Figure 7.2 which shows the steps of resolving
the dispatch of a call to Account.decrease() when two teams that declare a binding
for that method are active. The body of Account.decrease() had been rewritten
at load time to delegate to callAllBindings because there are binding declarations
in roles that define callins for the decrease function of Account. As we can see in
Listing 7.17 the interfaces of callAllBindings and callNext capture the relevant
runtime information to execute role dispatch. The function callAllBindings of the
next active team, where precedence order is defined on the activation order of teams, is
called next. This function implements the dispatch to before callins, to replace callins,
and finally to after callins. While before and after callins can only add behavior,
the replace callin can change behavior. The base call in Source.withdraw() invokes
callNext. The method—which is shown in Listing 7.16—is central to looking up more
role methods; either it delegates to the next active team’s callAllBindings or the
original method is called. The function signature exposes all the runtime data that is
passed around to realize role dispatch. A copy of the runtime’s stack of active teams
and their callin identifiers is carried freeing the runtime to provide measures to protect
the values from being altered. We can see in Figure 7.2 that dispatch in the next team
follows the same structure and the whole process is repeated.

7.4 The Overhead of Role Dispatch

Because OTJ, as well as other role-oriented programming languages, simulate contex-
tual roles in the class-based object-oriented programming languages the role language
runtime must orchestrate the role dispatch. Contemporary programming languages
implement the lookup and execution of a call target as two distinct processes (with
distinct possible optimizations). The possibilities to optimize, to name a view, range
from capturing different implementations of a same-named function into a call site,
called Polymorphic Inline Cache (PIC) [HCU91] or to turn a virtual function call into
a direct call when it is known23 that there is no subclass loaded into the JVM.

The role-oriented programming languages we have reviewed intermingle the process
of lookup and dispatch. In these implementations, the two processes are indistinguish-
able from the rest of the application and are supported by ordinary host-level data
structures. For example, OTJ [Her03] uses lists and arrays containing active team
instances and active callins, SCROLL [LA15] uses a DAG to connect role instances,
and Role4J [Tai+16a] uses a linked list to store relations between instances.

23The knowledge is inferred at runtime and may be falsified. This kind of optimistic assumption
requires the VM to provide deoptimization capabilities.
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All approaches have in common that dispatch is realized as a (predefined) traversal
over the content of these structures. They also have in common to not take into account
the potential for optimization depending on application states. The implementations
entrust all runtime optimizations to the JIT compiler of the VM. The result is that the
benefit of optimizations tuned to optimize common Java programs does not transfer
to optimizations applied to role-oriented, Java-based programs. On the contrary, the
extra indirections can defeat attempts by the JVM to predict and inline call targets.
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Part III

Runtime Optimization with
Partial Evaluation
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8 Optimizing Role Dispatch with
Partial Evaluation of Meta-Objects

“The whole is greater than the sum of the parts.”
— Aristotle

The semantic gap of simulating role-oriented concepts in an object-oriented target ma-
chine model has been discussed in Chapter 7. This semantic gap has also been faced in
aspect-oriented code between the language’s expressions and their realization [HS07].
Haupt et al. proposed to regard join points, i.e., points in the execution flow of a pro-
gram, as a locus of late binding. Other approaches focused on language support to
allow the superimposition of expressions (methods) on method calls, i.e., the principles
of advice in AOP, using method-call interception [Läm02]. The application of partial
evaluation [JGS94] to gain efficiency in the context of MOPs [MY98] was also discussed.
The strength of partial evaluation has also been shown in the context of the compi-
lation process of AOP programs in removing unnecessary run-time checks [MKD03].
These works have not been ported to contemporary AOP, COP, nor role-oriented pro-
gramming language implementations. However, in recent years interest in PE spiked
as an efficient means to optimize JIT compiled programs [Sea16].

A big research challenge up to date is that the proposed formal models only con-
sider the static binding of advice, spoken in terms of AOP. There is a long way to
practically meaningful language design covering the essentials of AOP implementa-
tions like AspectJ [Kic+01], COP implementations like JCop [AH12b], or role-oriented
programming languages like OTJ [Her07].

In this chapter, we consider a new implementation model of role dispatch in the
role-oriented programming language ObjectTeams/Java inspired by Partial Evalua-
tion. The current execution model intermingles the process of lookup and dispatch
in sequences of instructions. We will repurpose the MOP used to transform, lookup,
and execute OTJ programs to allow separate processes for lookup and dispatch. In-
spired by PE we propose to evaluate the runtime state to enable computing the call
targets according to the evaluated state. The execution of calls at join points will be
intercepted and the returned composition of calls will be installed. As a result, the
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implementation can reuse lookups and enable the late binding of role dispatch at join
points. To further speed up dynamic programs we extend the notion of polymorphism
to contextual roles and implement Polymorphic Inline Caches (PICs) at join points.

8.1 Reference Object Model

Formal model-based solutions such as CROM [Küh+14] and CROI [Küh+15] miss
important semantic details such as concrete bindings and method signatures, thus,
are not a well-suited abstraction to represent a programming language. There exist
type systems for role-based languages with contexts such as Featherweight EpsilonJ
(FEJ) [KT10], or Method Call Interception (MCI) [Läm02] for AOP-like abstractions.
But they omit the intricacies of supporting more complex binding mechanisms such as
bindings with replace callins and base calls (around with proceed in AOP) provided
by OTJ. The possible rewrites of the control flow require a special handling of these
join points. Judging over these (complex) binding types is required to overcome the
semantic gap.

The set of ObjectTeams types T is defined as the union of team types C, role types
R, and base types B. We do not consider modules, packages, or namespaces but flat
collections of types. A nice property of this approach is that in the cases where a
context type fills a role type, we have {∃C|C ∈ B ∧ C ∈ C}. Also deep roles, i.e., role
types fill role types, can be represented as {∃C|C ∈ B ∧ C ∈ R}.

To represent instances we use lowercase letters. The model also allows to judge
over types of instances such as the reflective Java function instanceof(c) returns an
instance of Class<?>; the runtime representation of the class of c. The type of an
instance c is defined as the meta-function isa(c) = T with T ∈ T .

Given a class C ∈ T , M(C) denotes the set of methods of that class. The signature
of method m in class C is denoted as sign(m,C) = T1× · · ·×Tn → Tr for m ∈M(C).

Definition 8.1 (Method Applicability). Given a class C ∈ T and a method im-
plementation m ∈ M(C) we define sign(m,C) = T1 × · · · × Tn → Tr. We can
apply the method m to a method invocation o.m(v1, · · · , vn) when isa(o) = C and
∀i, 1 ≤ i ≤ n, isa(vi) = Ti.

Furthermore, CB(T ) denotes the set of callin bindings of the class T ∈ C. A callin
binding cb ∈ CB(T ) is a tuple (R,B,mR,mB) where R ∈ R is the role type that
defines the binding, B ∈ B is the base class that is bound, mR ∈ M(R) is the role
method and mB ∈ M(B) is the base method that is bound. The domain of a callin
binding dom(cb, T ) for cb ∈ CB(T ) denotes the domain of the binding, which is either
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of the callin value types (CVT) where CV T = {before, after, replace}. The meta-
function loc(cb, T ) denotes the line number where cb is defined in T which is used to
disambiguate bindings in the same team with the same domain.

The evaluation of join points with active bindings requires that we assign a prece-
dence order to active bindings. Therefore, a relation ≤CV T⊆ CB(T ) × CB(T ) where
T ∈ C is defined as follows.

Definition 8.2 (Local Order of Callin Bindings). Given two callin bindings cb1, cb2 ∈
CB(T ), cb2 has lower precedence than cb1 (denoted as cb2 ≤CV T cb1) iff one of the
following condition holds:

• dom(cb1) = {before} and dom(cb2) ∈ {after, replace},

• dom(cb1) = {after} and dom(cb2) = {replace},

• dom(cb1) = dom(cb2) and loc(cb2, T ) < loc(cb1).

At a given point in time, an OTJ program may have multiple active team instances
represented as the tuple γ = (c0, · · · , cn−1). γ is said to represent the runtime state
of the application. Let πk(γ) = ck be the k-th entry of γ. The components in γ
with a lower index represent the recently activated team instances, i.e., the tuples are
ordered ascending by the duration the respective team instances are active. We denote∏︁k

l (γ) = (πk(γ), · · · , πl(γ)) as the projection of γ into a runtime state representing the
l − k contexts in γ starting from k.

Definition 8.3 (Runtime State). Given the n-tuple γ = (c0, · · · , cn−1) and ∀i, 0 ≤ i ≤
n− 1 s.t. πi(γ) = ci it holds that isa(ci) ∈ C.

The application of behavior adaptations is defined concerning the order team in-
stances appear in γ. Therefore, a relation ⪯γ⊆ CB(T )×CB(T ) on the callin bindings
provided by the active team instances in γ is defined as follows.

Definition 8.4 (Total Order of active Callin Bindings). Given j, k where 0 ≤ j ≤
k ≤ n − 1 and γ = (c0, . . . , cn−1). Two team instances πj(γ) = cj , πk(γ) = ck
such that isa(cj) = Tj , isa(ck) = Tk. We define precedence for all callin bindings
cbk ∈ CB(Tk) and for all cbj ∈ CB(Tj) saying cbk has lower precedence than cbj
(denoted as CB(Tk) ⪯γ CB(Tj)) iff one of the following condition holds:

• j < k,

• cbk ≤CV T cbj iff j = k.
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Listing 8.18 The OTJ implementation of the callAllBindings.java function that
delegates to other teams.
public Object _OT$callAllBindings(IBoundBase2 baze, ITeam[] teams, int idx,

int[] callinIds,int boundMethodId, Object[] args)
{

Object res = null;
this._OT$callBefore(baze, callinIds[idx], boundMethodId, args);
res = this._OT$callReplace(baze, teams, idx, callinIds,

boundMethodId, args);
// make result available to param mappings!
this._OT$callAfter(baze, callinIds[idx], boundMethodId, args, res);
return res;

}

8.2 The Case for Partial Evaluation in Role Dispatch

Let us draw our attention to the program code that encodes the role dispatch seman-
tics. Chapter 6 already presented a detailed account of the implementation of role
dispatch in OTJ. However, we never introduced the evaluation strategy employed at
runtime that leads to the sequence of method calls shown in Figure 7.2. That is, there
is a particular evaluation strategy compiled into the code that represents the dynamic
semantics of role dispatch. This section introduces that evaluation strategy and draws
a connection between the evaluation of role dispatch at runtime and runtime-generated
dispatch code. We show that by partially evaluating the state of the runtime plus in-
ferring the call targets using the MOP of OTJ the generated dispatch methods become
unnecessary.

Let us take a look at Listing 8.18. Imagine, at the time of invocation, we observe
the data values

teams ← [bank], idx ← 0, callinIds ← [0].

The array teams is the implementation of the object model element γ = (bank). For
efficiency, the runtime reads the binding attributes once and stores them for subsequent
access. The array callinIds holds all identifiers of callins provided by the respective
team instance at the same index. Thus, when a team contributes multiple callin
bindings the array teams repeats the same team instance for each binding. The reason
is easier access to the arrays coordinated by the index variable idx. For each binding in
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callinIds one of the methods that delegate to role methods—callBefore, callAfter,
or callReplace—will have a catch clause for that callin identifier. The components
are ordered according to ⪯γ .

Jbank.callAllBindingsK[acc, [bank], 0, [0], 0, 100]
≡ Jbank.callBeforeK[acc, [bank], 0, [0], 0, 100]
◦ Jbank.callReplaceK[acc, [bank], 0, [0], 0, 100]
◦ Jbank.callAfterK[acc, [bank], 0, [0], 0, 100]
≡ JskipK[acc, [bank], 0, [0], 0, 100]
◦ Jswitch (callinIds[idx]) case 0 : . . .K[acc, [bank], 0, [0], 0, 100]
◦ JskipK[acc, [bank], 0, [0], 0, 100]
≡ JSavingsAccount sa = bank.liftTo...K[acc, [bank], 0, [0], 0, 100]

(8.1)

Given the join point (e.g., callAllBindings) of a ObjectTeams/Java program and
the data values enumerated earlier applied to the join point. By partially evaluating
the program using the data values we can partially pre-compute the dispatch of that
program as demonstrated in Equation 8.1. The partial evaluator must know the point
it has to stop, otherwise the unimportant code will be included in the partial evaluation
and the compiled code will become too large [Wür+17]. For example, due to the partial
evaluation, it becomes apparent that callBefore and callAfter in this example do not
contribute any role methods and thus can be dead code eliminated from the program
(denoted as JskipK). If there would be a contribution of callBefore and callAfter
we could have them partially evaluated as we did with callReplace. We also see the
limit of this approach as we cannot partially evaluate the lifting because the result of
that function requires the execution of the whole program.

We gave examples of how the approach of partially evaluating role dispatch is benefi-
cial because we can pre-compute parts of the role dispatch, thus, reducing the overhead
introduced by dispatch code of ObjectTeams/Java. However, this would require the
implementation of a partial evaluator J_K that can evaluate a Java program at runtime,
i.e., requires physical access to methods such as callAllBindings, access to runtime
values, and the capabilities to deploying the resulting program code into the Virtual
Machine. The OTJ Metaobject Protocol as presented in Figure 7.1 is delivering all
the required properties. It gives access to classes and their methods, as well as pos-
sibilities to alter them. The runtime provides the data values we require for partial
evaluation. However, we encounter the issue that, for instance, callAllBindings is a
method central to dispatching role methods and is called by each join point. Thus, the

121



Listing 8.19 The OTJ implementation of the callReplace function that lifts base
classes to roles and implements calls to role functions. We used Java to present an
excerpt of the originally generated Java Bytecodes. this is the Team instance stored
in teams[idx].
public Object _OT$callReplace(IBoundBase2 baze, ITeam[] teams,

int idx, int[] callinIds, int boundMethodId, Object[] args)
{

switch (callinIds[idx]) {
case 0:

Account acc = (Account) baze;
Bank$SavingsAccount sa = this._OT$liftTo$SavingsAccount(acc);
float amount = args[0];
return sa.limited(baze, teams, idx, callinIds,

boundMethodId, args, amount);

case 1:
...

default:
return _OT$callNext(baze, teams, idx, callinIds,

boundMethodId, args, null, 0);
}

}

partial evaluator is tasked to create a specialization of the dispatch code for each join
point. The resulting specialized code would have to be installed at the same program
location. Moreover, the data values used to partially evaluate the dispatch code are
not stable, thus on change, the code must be invalidated and rewritten or rolled back.
This would incur a high overhead in time and memory requirements.

8.3 Partial Evaluation of Runtime State using
Meta-Objects

The MOP of OTJ captures all information to infer the required properties of the role-
oriented program under execution. At present a weaver generates dispatch code at “ load
time” by evaluating the Metaobject Protocol of OTJ. As presented before, this code is
responsible for evaluating the runtime information and for subsequently executing the
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related role functions. However, if one could delay code generation until the execution
of a function bound by a role, one could create a dispatch code that only executes
the necessary minimum of functions. In such a case the information that is needed
to compute this necessary minimum is the active team instances γ and the respective
bindings CB(T ) for γ. The runtime stores active context instances γ = (c0, . . . , cn−1)
of length n ≥ 0. Entries in γ are ordered so recently activated contexts come first. This
reflects that recently activated contexts provide roles with a higher priority than older
contexts. From that information, a dispatch plan can be computed that is subsequently
executed.

8.3.1 Inferring Dispatch Plans from Runtime State

The TeamManager functions as a central point of truth for the OTJ runtime. As shown
in Figure 7.1 the current implementation of OTJ stores the state of the application
w.r.t. active bindings and active teams in the TeamManager, i.e., all required informa-
tion to implement role dispatch. We propose Dispatch Plans that are a schedule of role
functions for a specific call site (i.e., base method) and runtime state. The approach
supports the open-world assumption of lazily loaded types at run-time and is inspired
by Partial Evaluation (PE). We show that by partially evaluating the state of the
runtime plus inferring the call targets using the MOP of OTJ the originally generated
dispatch methods such as callAllBindings, callBefore etc. become unnecessary.

Algorithm 1 presents how to partially evaluate the runtime state of the application
to construct a schedule of role methods. The static input to the algorithm is the base
method whose behavior has to be changed, all active context instances, and an index
representing how many context instances already had been evaluated. At the beginning
of a role dispatch (see callAllBindings in Figure 7.2) the index is 0, otherwise 0 ≤
i ≤ n− 1. Given the static input, a schedule can be constructed. The algorithm does
not execute scheduled elements as the schedule still contains unbound variables. These
represent the dynamic input such as the concrete instance of the base class and the
values applied to the function invocation. Information and meta-information required
to construct the schedule are provided by the MOP of ObjectTeams/Java.

The algorithm infers all before, after, and if necessary, replace callins. First, in
lines 1–5 it initializes the variables that hold intermediate results. For example, each
type of callin is sequentially composed into a group with same-kinded callins. When
the overall schedule is created the groups are sequentially composed. The sequential
composition m1;m2 represents the imperative sequence of functions such that m1 is
executed before m2. The initialization of the before and after callins is the identity
function because the sequential composition holds that id;m ≡ m. The replace callin
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Algorithm 1 Construction of a Dispatch Plan
In: Function m declared in base class B ∈ B with sign(m,B) = T1 × · · · × Tn → Tr

In: Active context instances γ = (c0, . . . , cn−1) and the current index i
Out: Dispatch plan P as a sequential composition ; of role functions

1: function ComposePlan(γ,m, i)
2: after ← id ▷ id is the identity function
3: before ← id
4: replace ← m
5: proceed ← true
6: while proceed do
7: ci ← πi(γ) ▷ Access i-th active context
8: T ← isa(ci)
9: for cb← CB(T ) do

10: mB ← π2(cb) ▷ cb = (R,B,mR,mB)
11: if mB = m then
12: lifted ← parmapcb(m) ▷ Lift signature of m to mR

13: if dom(cb, T ) = {before} then
14: before ← before; lifted
15: else if dom(cb, T ) = {after} then
16: after ← after; lifted
17: else if dom(cb, T ) = {replace} then
18: replace ← lifted
19: proceed ← false
20: end if
21: end if
22: end for
23: i ← i+ 1
24: end while
25: return before; replace; after
26: end function
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is initialized to the base method. If there is no replace callin the original function is
scheduled otherwise the replacing role function.

The algorithm iterates over the active context instances either until all have been
visited or a replace callin has been found. This is possible because of the total order (see
Definition 8.4) that places callins in such a way that a replace callin always comes last.
For each context instance ci, the bindings are selected that are concerned with the base
method in question. For each team, the bindings are accessed (lines 8–9). According
to each binding the lifting and parameter mapping function parmap is selected and
scheduled. By applying the parameter mapping function parmap to the base function
the parameters of the base function are mapped to the respective parameters of the
role function. The mapping of the base type to the role type is called lifting. The
result is the lifted role function. Depending on the type of callin the lifted function
is then sequentially composed to the respective group of callins. For example, when
processing a before callin the lifted function is sequentially composed to the already
processed before callins.

According to the OTJ Language Definition [HHM11, § 2.3.1.(b)] a base type B ∈ B
can be lifted to a role type R ∈ R iff there is a team class T ∈ C with a binding
cb ∈ CB(T ) s.t. cb = (R,B,mR,mB). Lifting will be applied to base instances before
each invocation of a role function. Furthermore, the compiler generates a parameter
mapping function parmapcb that maps the signature of mB to the signature of mR in
such a way that sign(parmapcb(mB)) = sign(mR). This is trivial if the signatures of
mB and mR are equal. Otherwise, the parameter mapping must be provided by the
user according to the OTJ Language Definition [HHM11, § 3.2].

Definition 8.5 (Lifting and Parameter Mapping). Given two functions mB ∈ M(B)
and mR ∈ M(R), a team T ∈ C, and a callin binding cb ∈ CB(T ) with cb =
(R,B,mB,mR) that relates both functions. The function signatures are as follows. We
have sign(mB, B) = TB1×· · ·×TBn → TBR

and sign(mR, R) = TR1×· · ·×TRm → TRR
.

Given the lifting function liftToRB : B → R that maps base instances to their respec-
tive roles. The user-provided function parmapcb must be defined for each binding cb. It
is defined as follows: parmapcb : (TB1 ×· · ·×TBn → TBR

)→ (TR1 ×· · ·×TRm → TRR
)

s.t. ∀i, 1 ≤ i ≤ m there is a parameter mapping φcb
i : TB1 × · · · × TBn → TRi .

It is not possible to schedule the whole dispatch plan including all role functions that
must be executed when there is a replace callin to be scheduled. Before or after callins
are sequentially composed to already scheduled before and after callins. Scheduling
finishes when a replace callin has been processed because the callin might have a base
call statement. As the statement is part of the body of the callin the role functions
“deeper” in the stack can not be sequentially composed to the current schedule. For
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the base call (see callNext in Figure 7.2) a new dispatch plan will be created that has
the index set to i+ 1 when i callins had been scheduled prior.

8.3.2 Polymorphic Dispatch Plans

The schedule as discussed before must be recomputed for each reconfiguration where
the activation or deactivation of a team instance changes the elements of active teams
in γ and results in a new configuration γ′ [SC19]. To reduce recomputations one could
imagine to cache (γ,P) and reuse the dispatch plan P whenever the runtime state again
is γ [SC20]. However, this artificially limits the approach because this example defines
the necessity to reuse a dispatch plan based on the instances of active teams in γ and
not by their types. Let us consider the types of each of the contexts in the runtime
state γ. Given γ = (c), π0(γ) = c, and isa(c) = T . Deactivating the team instance c
results in a change from γ to the state γ′ = (). Subsequent activation of another team
instance c′ with isa(c′) = T results in a new state γ′′ = (c′). One could say that γ
and γ′′ are structural equivalent as each type of both states are equal. Since we only
compare the types of the runtime states it makes sense to define an environment that
captures the types of the runtime state as defined in Definition 8.6. Instead of caching
(γ,P) it is sufficient to only cache the environment with the dispatch plan: (Γ(γ),P).

Definition 8.6 (Environment). Given a runtime state γ = (c0, · · · , cn−1) we define
the environment of γ as Γ(γ) = (isa(c0), · · · , isa(cn−1)).

In class-based OOP we most often find receiver-type polymorphism where a poly-
morphic reference is bound to the runtime type of the receiver object. What we just
discussed is the extension of the notion of polymorphism to a set of context instances
that bind callins to a polymorphic call site. The reference is polymorphic concerning
the environment Γ(γ). We define this notion of polymorphism using the structural
equality of runtime states in Definition 8.7. Polymorphism is decided by the equality
of the types of contexts in the runtime state. The order of the contexts in γ (see
Definition 8.4) is important because this decides the order of applicable bindings.

Definition 8.7 (Structural Equality of Runtime State). Given two runtime states γ
and γ′ with n elements. We say γ is structurally equal to γ′ iff. Γ(γ) = Γ(γ′). We
write γ ∼= γ′.

The definition of equality is still rigid because we compare whole runtime states. As
we have seen in the previous section a dispatch plan can only evaluate the runtime
state up to the first occurrence of a replace binding. Thus, all subsequent contexts
will belong to another dispatch plan and are irrelevant to the former comparison.
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To increase reuse one could relax the Definition 8.7 by only comparing subsets of
the runtime states for structural equality. In simple words, one would compare each
runtime state that contributed to a dispatch plan at each index with the contexts of
another runtime state for type equality. If that holds the dispatch plan can be reused
and we say that a runtime state γ is partially structural equivalent.

Definition 8.8 (Partial Structural Equality of Runtime State). Given a dispatch plan
P that resulted by starting evaluation of γ at index k and ended at l = k+ |P|. This is
captured by γ′′ =

∏︁k
l (γ). The new runtime state γ′ has fewer contexts, s.t. |γ′| < |γ|

and |γ′| = |γ′′|. γ′ is partially structural equal to γ iff. Γ(γ′) = Γ(γ′′) are structural
equal. We write γ′ ≲ γ.

Theorem 8.9. For two dispatch plans (γ,P) and (γ′,P ′) where γ′ ≲ γ it holds that
P = P ′. Without loss of generality, this also holds for γ′ ∼= γ.

We conclude that for two runtime states γ, γ′ a dispatch plan can be reused if γ′ ≲ γ
because every context’s type in γ′ is equal to γ when starting comparison with γ′ at
an index k. Values of k are not chosen arbitrarily. k is bounded by either the start
index k = 0 of the resolution of a callin (callAllBindings in Figure 7.2) or the start
of the resolution of a base call (callNext in Figure 7.2) where k = |P| is the length of
the preceding dispatch plan P.24

If we apply Definition 8.8 entirely to environments we get that an environment is
partially equal to another if the former is contained in the latter. This finally provides
us with the extension of the notion of receiver-type polymorphism to the set of context
types that allows late binding callins to a role-polymorphic call site. Thus, the reference
is role-polymorphic concerning the environment Γ(γ). As a result, we can formulate an
extension of Polymorphic Inline Cache (PIC) to contextual roles which implementations
may use as another optimization on top of optimizing contextual role dispatch with
dispatch plans [SKC22].

8.4 Runtime Code Generation and Linking in a Java
Virtual Machine

The JVM has multiple phases during the execution of a program where parts under
execution may be (re)loaded. By generating code at “runtime” we mean the generation
of code after classes have been loaded. With code generating we mean the generation
24If P already followed another dispatch plan P ′ then k is defined as the sum of the length of all

previous dispatch plans.
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of Bytecode or a similar representation of code that can be read and executed by a
JVM. For example, there are ways of redefining the code of method bodies at runtime.
The extension of a JVM to allow the redefinition of method signatures at runtime
has been shown [WWS10]. Our approach requires the generation of code for each
call site bound by a callin separately. Generating code and reloading the respective
method bodies each time for each call site will incur an unacceptable overhead. This
approach would also require to repeat this process every time a context changes. Using
only features available in a standard JVM there is another facility to generate code at
runtime. The facility allows the installation of runtime-generated code into a call site
and can subsequently execute it as any other function implemented in Bytecode.

8.4.1 InvokeDynamic Bytecode Instruction

Instead of implementing super instructions for role invocations in the VM, we use
the invokedynamic bytecode instruction [Ros09b] to link and invoke user-provided,
run-time generated code. The bytecode was originally introduced to support dynamic
languages on the JVM. The instruction is an invocation bytecode that behaves differ-
ently than the other invocation bytecodes such as invokevirtual for virtual function
calls or invokespecial for static or private function invocations. During bytecode
generation, a reference to a static method and the signature of that method is bound
to the instruction–the bootstrap method.25 To generate a valid invokedynamic byte-
code instruction the types of the arguments applied to that function must adhere to
the signature. Upon the first invocation, the call site is not set up, yet, and the static
function is called. The bootstrapping process returns a CallSite which represents an
object that may contain a reference to a method when invoked. The returned call site
will be installed in the place of the invokedynamic instruction. Further invocations will
use the contained reference and the dynamic arguments as defined in the MethodType
provided to the bootstrap method. Dispatching the method invocation is subject to
the user-defined implementation of the call site object.

8.4.2 Method Handles and Method Types

To describe how to resolve a method invocation to a call target the OpenJDK “the
DaVinci machine” project [Ros09a] defines two central Java classes, namely MethodHandle
25The static method is required to at least provide the following arguments: (Lookup, String

MethodType) where Lookup captures the visibility and lookup capabilities that are granted to
the function resolution, the String holds a readable “name” of what is called, and the MethodType
captures the argument and return types required by the returned call site. The bootstrap method
must return a java.lang.CallSite object.

128



and MethodType.26 A MethodHandle represents a typed, directly invocable reference
to a method or field that may be subject to transformations to (individual) arguments
or their return values. A MethodHandle can be constructed either via reflection or
by using a Lookup object that provides lookup capabilities according to the privilege
granted to the object. Given a class name, method name, and method type a reference
to said method is returned. Given enough privilege, a lookup object may even look up
and return method handles to private methods which is beyond what the Java language
specification would allow.

A handle to a method could be directly executed given the arguments are available.
The arguments of method handles may also be transformed by method handle combi-
nators. Depending on the type of combinator, it takes as input a method handle, an
integer denoting the position of the argument of the input method handle that is trans-
formed, and a method handle to the transformation function itself. The result is a new
method handle that may be executed or transformed again. The method handles may
be viewed as the root of a small graph of combinators whose leaves are direct references
to other bytecoded methods [Ros09b]. We give an overview of argument transforma-
tions provided by JSR 292 to build such a graph in Table 8.1. To implement variable
arguments 27 the method handle combinator asCollector allows to define how many
arguments starting from which position will be combined. Using asSpreader one can
spread the elements from the array again as positional arguments. If a method does
not need an argument one can use dropArgument to ignore unused arguments. With
filterArguments one can compose a method handle with filter functions that are ap-
plied to the declared arguments. The combinator foldArguments allows to precompute
a function on the arguments and adjoins the result into the given method handle’s pa-
rameters. As we show later, we use this function to realize the sequential composition
introduced in Algorithm 1. The argument adapters also bind values to arguments and
reorder arguments which possibly drop and/or duplicate arguments.

A MethodType represents the arguments and return type accepted and returned by
a method handle. Method types must be properly matched between a method handle
and all its callers. The JVM enforces this matching among other things during the
execution of invokedynamic instructions. Method types may be described in nominal
form as a type descriptor. For example, the class Account can be either referenced by
its reflective class Account.class or in its nominal form as the string “LAccount;”.

26Especially the Java Specification Request (JSR) 292 introduces the features that may be used by
dynamic programming languages that target the JVM.

27Variable arguments (also varargs) are denoted in Java as the last parameter’s type with an additional
three dots, e.g., DataType... name. This allows a method to accept zero to many arguments of
the declared type which are collected into an array of DataType.
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Table 8.1: Overview of MethodHandle argument adapters used in the implementation
of Dispatch Graphs adapted from [Ros09b].

Combinator Description of argument transformation

asCollector collect N trailing arguments as array (introduce varargs)
asSpreader spread N elements as positional arguments (eliminate varargs)
dropArgument ignore consecutive N
filterArguments unary compose f(g(x1), h(x2), · · · , xn)
foldArguments adjoin f(g(x1, x2, · · · , xn), x1, x2, · · · , xn)
insertArguments bind N values to arguments
permuteArguments reorder (possibly drop and/or duplicate)

8.4.3 Runtime Code Generation with Method Handle Graphs

Method Handles, method types, and method handle combinators are ordinary Java
objects and functions. However, optimizing method handle calls is possible because
the method handle graph structure is immutable and scrutable; it can be walked by the
compiler [Ros09b]. For example, the graph can be inlined whenever the root method
handle can be constant-folded. This behavior is specific to the JVM-dependent imple-
mentation [TR10; XBH16]. We describe the behavior specific to our understanding of
how the OpenJDK/HotSpot implements it. The OpenJDK/HotSpot implementation uses
native 28 method implementations that bridge the gap between the host language Java
and the internal representation of classes, objects, references, and values inside the JIT
compiler and other VM modules. This enables the JVM to comprehend, generate code,
and optimize the method handle graph. The resulting code is stored in the section of
the JVM heap allocated to the code cache.

The invokedynamic bytecode is implemented internally via runtime bytecode gen-
eration. Given a method handle graph, the JVM traverses the graph and generates
internal bytecodes before optimizing the code [TR10]. The bytecode is parsed and
transformed into the internally used Static Single Assignment (SSA) form [BP99] and
subsequently compiled by reusing the compiler infrastructure of the JIT compiler.

28Native means that there is a C/C++/ASM implementation that may be called via Java Native
Interface (JNI). In this case, the implementation is inside the JVM HotSpot JIT compiler.
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8.5 Dispatch Graphs

This section presents the implementation of dispatch plans and the extension of Poly-
morphic Inline Cache (PIC) to contextual roles for ObjectTeams/Java (OTJ) presented
in Section 8.3. We begin by describing how code can be efficiently generated and linked
at runtime in a JVM. Afterward, the implementation of dispatch plans is shown. Last
the usage of guards to represent call sites polymorphic to a set of contexts.

8.5.1 Runtime Generated Role Dispatch Code

We reimplemented the complete dispatch logic of ObjectTeams/Java based on the
invokedynamic bytecode. The proposed implementation uses the runtime code gener-
ation provided by invokedynamic to generate a graph from the resulting dispatch plan
that can be optimized and re-executed by the JVM. Thus, we coined the prototypical
implementation of JIT generated code from dispatch plans as Dispatch Graphs. The
approach requires a mechanism to essentially guard and invalidate the compiled code
upon the invalidation of assumptions. In Figure 8.1 we introduce the architecture as a
UML class diagram. Orange-colored classes represent classes from the invokedynamic
ecosystem such as CallSite from the package java.lang.invoke or DynamicLinker
from the package jdk.dynalink. While CallSite is responsible for bridging the Java
language ecosystem and JVM internals the DynamicLinker is responsible for realiz-
ing linking for language runtimes implemented as GuardingDynamicLinker. We im-
plemented the ObjectTeams/Java runtime into this framework depicted with yellow-
colored classes in Figure 8.1. This required us to provide a static bootstrapping
method which we implemented in the class CallinBootstrap for callAllBindings
and callNext.

In the bootstrapping phase the invokedynamic is (normally) executed for the first
time. The process is shown in the UML sequence diagram in Figure 8.2. The frame-
work from the package jdk.dynalink provides a dynamic linker that either forwards
requests or relinks the call site when required. It holds all applicable concrete linker
implementations to which it will delegate requests. The CallinCallSite holds a target
method handle to which it delegates all further requests. The linker initializes the call
site and installs a handle to the relink method. The result of the bootstrapping is a
call site object from java.lang.invoke installed into the call site.
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DynamicLinkerFactory

+ setPriori-
tizedLinker(linker:GuardingDynamicLinker)
+ setUnstableRelinkThreshold(threshold:int)
+ createLinker(): DynamicLinker

DynamicLinker

+ relink(callSite:RelinkableCallSite,
relinkCount:int): MethodHandle
+ link(callSite:RelinkableCallSite):
RelinkableCallSite

<<interface>>
GuardingDynamicLinker

+ getGuardedInvoca-
tion(req:LinkRequest): GuardedInvo-
cation

<<abstract>>
CallSite

target : MethodHandle

+ setTarget(target:MethodHandle)

MutableCallSite

+ setTarget(target:MethodHandle)

RelinkableCallSite

+ initial-
ize(relinkAndInvoke:MethodHandle)
+ re-
link(invocation:GuardedInvocation,
relinkAndInvoke:MethodHandle)
+ resetAndRelink(invocation:
GuardedInvocation, relinkAndIn-
voke:MethodHandle)

ChainedCallSite

+ relink(invocation:GuardedInvocation,
relinkAndInvoke:MethodHandle)
+ resetAndRelink(invocation: GuardedIn-
vocation, relinkAndInvoke:MethodHandle)
# getMaxChainLength(): int
- prune(): MethodHandle

CallinBootstrap

+ callAllBindings(lookup:Lookup,
name:String, type:MethodType, joinpoint-
Descr:String, boundMethodId:int): CallSite
+ callNext(lookup:Lookup, name:String,
type:MethodType, joinpointDescr:String): Call-
Site

CallinLinker

+ getGuardedInvoca-
tion(req:LinkRequest): GuardedInvocation
+ handleBefore(): MethodHandle
+ handleAfter(): MethodHandle
+ handleReplace(): MethodHandle
+ handleOrig(): MethodHandle
- lift(): MethodHandle
- findRoleMethod(): MethodHandle

CallinCallSite

- maxChainLength: int

+ getMaxChainLength(): int
+ createCallinCallSite(lookup:Lookup,
name:String, type:MethodType, joinpoint-
Desc:String, boundMethodId:int): CallinCallSite
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Figure 8.1: A UML class diagram providing a top-level view of how the architecture
of dispatch graphs (yellow) is embedded in JVM-provided classes of the
invokedynamic ecosystem (orange).
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Figure 8.2: A UML sequence diagram providing an overview of the bootstrapping of a
base method with roles. We omitted some details for brevity.

8.5.2 Role Method Invocations as Revokable and Dynamic Call Site

Any change in the set of active teams impacts the call sites that have to apply role
dispatch. To deal with changing call targets, the approach requires a dynamic call
site that can invalidate linked code and relink new code upon the next invocation.
We, therefore, extended the RelinkableCallSite from jdk.dynalink which already
provided a mechanism for relinking. Its subclass ChainedCallSite implements a poly-
morphic inline caching strategy. Upon linking it builds a chain of cascading method
handles where a handle fails from one to the next. The implementation of polymorphic
dispatch plans is discussed in Section 8.5.4. If too many handles are chained (defined
by maxChainLength in CallinCallSite) the oldest entry will be pruned.

The UML sequence diagram in Figure 8.4 shows the relinking process. The ini-
tialized call site objects hold a method handle pointing to the relink method of the
dynamic linker. The invokedynamic instruction will execute the installed method.
Role methods are linked by the CallinLinker according to the joinpoint. It returns
a GuardedInvocation that encapsulates a method handle pointing to the root of the
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Figure 8.3: Run-time changes at the call site of a bound method.

dispatch graph. The root of the dispatch graph is the entry point to the execution at
the call site with the arguments present on the call stack. The JVM can (abstractly)
interpret the Intermediate Representation (IR) to yield whether the provided and re-
quired signature of the call site is fulfilled by the graph. Last the linker checks the
call site for stability. A call site is stable when the threshold for relinks is not reached,
yet. Depending on the call site-local count of relinks the call site is either relinked
effectively appending the invocation or—if deemed unstable—reset. A reset throws
away all linkages of the call site. The next invocation flags the call site as unstable and
linkers may react in the linking process.

In our implementation, when the flag is set, the CallinCallSite will degrade and
link the original linking functions from OTJ which is either callAllBindings or
callNext [SKC22]. This is possible because dispatch graphs are a backward-compatible
replacement of the original dispatch implementation in OTJ. The invokedynamic call
site accepts the same signature as the original implementation.

8.5.3 Linking On-Demand Compositions of Role Methods

The process of creating a dispatch plan has been discussed in Section 8.1. This section
discusses points of the method lookup and graph creation process to realize Algorithm 1
and aspects of the implementation. We present the dispatch graph as a high-level IR
generated from a dispatch plan. The IR is inspired by the sea-of-nodes notation [CC95]
and is subsequently optimized by the JVM. Each white box represents a function,
while red boxes represent special nodes such as the beginning of a basic block or return
instructions. Turquoise ellipses represent data. The red edge defines the control flow
while the dashed edges define the data flow. The annotation on dashed edges defines
the order of incoming arguments. A partial order among nodes connected by the
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Figure 8.4: A UML sequence diagram providing an overview of the relinking process
of a base method with roles immediately after initialization. We omitted
some details for brevity.
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(Base, Team[ ], int, int[ ], Object[ ]) void ▷ apply teamGetter:(Team[ ], int)Team

→ (Base, Team, Team[ ], int, int[ ], Object[ ]) void ▷ dropArguments

→ (Base, Team, Object[ ] ) void ▷ unpack arguments
→ ( Base, Team, float) void ▷ permute arguments
→ ( Team, Base, float) void ▷ apply lift:(Team, Base)Role
→ (Role, float) void

Figure 8.5: A sequence of derivations (represented as →) applied to resolve a base
method signature to the respective callin signature. Arguments that are
rewritten are highlighted with a box , ▷ names the applied rewrite rule.
We show the resulting signature (method type) after applying the rewrite.

control flow edges defines a possible execution order, one of which is highlighted by the
annotation on the vertices.

The implementation can access the MOP of OTJ 29 by accessing the arguments on
the call stack during resolution. The call stack comprises the instance of the base class
whose bound function was called, an array of team instances that are currently active
for the given call site, an array of callin identifiers representing actual callins, and the
current index. The index presents the current depth and is used to access both arrays.
As long as the linking proceeds we increment the index and use the values from the
call stack to collect the binding information of a given callin from the TeamManager.

Next, the callins must be discovered using the information from the Binding. We
discuss before and after callins together as they both behave similarly and look at re-
place callins separately. Each binding that is resolved will be attached to its respective
subgraph which will be composed into a single graph at the end. The discussion is
focused on the graph creation process.

8.5.3.1 Before and After Callins

The before and after bindings share the resolution process but will be inserted into
different parts of the graph. In Figure 8.5 the effects of the transformations on the
signatures (method types) are shown. First, a method handle pointing to the role
method is created by looking up the callin method using its name and signature stored
in the binding. The method handle only points to the method but is not bound to a

29We introduced the Metaobject Protocol of ObjectTeams/Java in Chapter 7.2. An overview is given
in Figure 7.1.
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Figure 8.6: A IR representation of a dispatch graph composing before callins with the
base function (adapted from [SKC22]).
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Listing 8.20 A sketch of the implementation of the sequential composition of after
callins using method handle combinators.
MethodHandle afterComposition = null;
...
case AFTER:

MethodHandle handleAfter = computeHandleAfterCallin(...);
afterComposition =

MethodHandles.foldArguments(afterComposition, handleAfter);
break;

concrete instance, yet. The computation of that instance is part of the graph. Second,
a method handle to the lifting function for that particular base-role relationship is
resolved. Since the lifting function is compiled into the enclosing team class it must
be called on the respective team instance the role belongs to. To achieve this we
access the array of teams from the call stack and get the team instance at the current
index. The lifting function uses that respective team instance when being executed.
The next argument of the lifting function is the base instance that has to be lifted
which resides on the call stack. During invocation, it will be consumed and replaced
by the respective role instance. The graph representing the procedure is shown in
Figure 8.6. The resulting method handle will be sequentially composed with already
resolved callins of the respective type. A sketch of the sequential composition is given
in Listing 8.20.

8.5.3.2 Replace Callins

In contrast to before and after callins—which can only have void specified as return
type—replace callins can specify arbitrary return types. This requires us to treat them
differently when composing the complete dispatch graph. If there exist after callins
then the result of the replace callin (or original base function) must be tunneled past
the after callins to be returned to the callee. After callins do not produce any results
and may not change the control flow.

A sketch of the implementation including result tunneling is given in Listing 8.21. If
there exists a replace callin result points to the replace callin, otherwise to the base
function. We guide through the rest of the code in the figure in reverse. First, the func-
tion result points to is executed, and the value computed is added to afterComposition.
The method handle afterComposition then executes the composition of after callins.
Ultimately, the result value will be returned by the call site due to the identity function.
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Listing 8.21 A sketch of the implementation of result tunneling using method handle
combinators.
MethodHandle result = (replace == null) ?

handleOrig(desc, baseClass) : replace;
if (afterComposition != null) {

MethodHandle returnWrapper = MethodHandles.identity(Object.class);
MethodHandle returnWrapperDropped =

MethodHandles.dropArguments(returnWrapper, 1,
afterComposition.type().parameterList());

afterComposition = MethodHandles.foldArguments(
returnWrapperDropped, 1, afterComposition);

result = MethodHandles.foldArguments(afterComposition, result);
}

· · · · · ·

10 Orig/Replace

12 Tunnel

13 result 14 After

15 Return

0

11 result
0

0

0

Figure 8.7: A IR representation of a dispatch graph presenting result tunneling
(adapted from [SKC22]).
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Listing 8.22 Implementation of the guard checking the Partial Structural Equality of
Runtime State according to Definition 8.8.

private static boolean testTeamComposition(final Class<ITeam>[] guardedStack,
final ITeam[] runtimeStack, final int index) {
if (runtimeStack == null ||

index + guardedStack.length > runtimeStack.length) {
return false;

}
for (int i = 0; i < guardedStack.length; i++) {

int j = i + index;
if (!guardedStack[i].isAssignableFrom(runtimeStack[j].getClass())) {

return false;
}

}
if(guardedStack.length == 0) {

return runtimeStack.length == index + 1;
}
return true;

}

The graph resulting from Listing 8.21 is shown in Figure 8.7.

8.5.4 Polymorphic Inline Caches for Contextual Role Dispatches

Until now we ignored that a dispatch graph is only valid if the active teams remain
the same. In Figure 8.3 the box with the label teams[ ] placed on top of a dispatch
graph implies that a dispatch graph captures the runtime state it was created from. For
each dispatch graph, a guard is created that will check the Partial Structural Equality
of Runtime State according to Definition 8.8. The guard ensures that invalid lookup
results will not be executed. Upon success the method handle pointing to the root
of the dispatch graph is executed, otherwise, the next entry is checked. The guard
itself is a method handle to a function that compares two runtime states for partial
equality. The implementation is shown in Listing 8.22. The runtime state captured in
guardedStack is already bound when the guard is created. In the beginning, we must
check whether there are any active teams or if the guarded stack overflows the runtime
stack. Then we check whether the teams of the guarded stack match with the teams
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from the runtime stack taking the current index into account. If there is any difference
we report false. Last, we check whether we have guarded a call to the original base
function.

8.6 Performance Evaluation

This section will evaluate the effectiveness of the implementation of Dispatch Graphs.
To showcase the effectiveness of the optimizations we will compare different configura-
tions.

8.6.1 Experimental Design

We shortly describe the design used for the experiments. Most of the setup is already
described in Chapter 6. To coordinate the execution of the benchmarks we used the
benchmark suite as presented in Section 6.2. Regarding the methodology, if not said
otherwise, the same approach is followed as presented in Section 6.2.2.

The experiments were conducted on a Linux server with Ubuntu 20.04, 32GB RAM,
and Core i7-9700T CPU. For execution, we used Oracle JDK 14.02 and GraalVM
20.2 with a heap size of 8GB heap. The different versions of ObjectTeams/Java are
referenced by their year of publication, i.e., Classic 2019, to express ObjectTeams/Java
published in 2019. The benchmarks in Section 8.6.2, Section 8.6.3, and Section 8.6.5
were implemented with Java Microbenchmark Harness (JMH) and measured for 10
iterations after 10 warmup iterations.

8.6.2 Instrumentation Overhead

Often conditional interception requires that residuals have to be evaluated contributing
to the overall execution time even if there is nothing to adapt [Hau+05]. As we
described in Chapter 7, the compiler generates role dispatch logic for each role that
declares a binding. In this benchmark, we measured the overhead incurred by the
instrumentation compared to the reference implementation ObjectTeams/Java. First,
we measure the time to call a single method that has a registered binding but no active
context instance. After evaluating that there is no active context instance the original
function is executed. Second, a single context instance is activated and we measure
the time to call the single method with the activated binding.

Figure 8.8 shows the geomean execution time. In the case of no operation (Figure 8.8
left) our approach is 2.5× faster than the reference implementation ObjectTeams/Java.
The guard captures that there is no active context and the call site directly links to the
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Figure 8.8: Comparison of no active contexts (noop) and a single context with a replace
role function. Figure adapted from [SKC22].

original method. In the case of a single replace callin (Figure 8.8 right) our approach
is 3.3× faster. The guard captures the active context, generates the dispatch graph
accordingly, and links the call site directly to the replace callin. The same applies to
the base call which directly calls the original method. The reference implementation
always uses the stub methods to dispatch which explains the overhead.

8.6.3 Characteristics of Role Method Types

This benchmark evaluates the impact of different types of callins on the overall run
time. We evaluate the characteristics of each variant of callin in isolation, i.e., use a
synthetic benchmark only consisting of before, replace, and after. In these benchmarks,
a context only provides a single type of adaptation that is subject to evaluation. We
explore the impact of varying the amount of active context instances between 1, 10,
and 100.

The results are shown in Figure 8.9. Due to the fixed dispatch scheme, the execution
time of the original implementation in every scenario is almost the same. Our approach
composes a different plan depending on the types of behavioral adaptations. Dispatch
Plans are on average 2.9× faster (max 3.5×) in the case in which all bindings are of
type before. Role methods of type after are executed on average 3.3× faster (max 3.7×)
than the original implementation. While not changing contexts the guards could be
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Figure 8.9: The contribution of different role function types (before, after, replace) to
the overall execution time. Each type is measured with 1, 10, and 100
active contexts. Figure adapted from [SKC22].

completely reused allowing to execute replace callins on average 2.9× faster (max 3.4×).
For polymorphic dispatch plans without degradation speedups between 3.8× to 4.5×

have been reported for static cases [SC20]. This is comparable to our results as the
guards introduce more computations and jumps in the resulting code.

8.6.4 Impact of Polymorphism and Support for Partial Equivalence

In this Section, we compare the runtime performance of dispatch graphs in a static
scenario and a dynamic scenario with the reference implementation of OTJ from 2019
and 2020. Please note, that for the Polymorphic Dispatch Plans and the reference
implementation of OTJ (named Classic 2020 in Figure 8.10), the Oracle JDK 14.0.2
was used, while the other implementations were run on the Oracle JDK 9.0.4. For this
benchmark, the JVM was set to a maximum heap space of 4GB and to only use the
server compiler. For comparison, an older version of the reference implementation of
OT (Classic 2019) as well as Dispatch Plans [SC19] were also measured.

The benchmark used different problem sizes to evaluate the approaches on different
inputs. In each benchmark, N persons have 2 ·N accounts (a CheckingAccount and a
SavingsAccount). We are interested in the geometric mean execution time, normalized
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Figure 8.10: The bar chart shows the geometric mean of the run-time ratio at logarith-
mic scale, normalized to the classic implementation of Object Teams for
the respective suites. The error bar shows the standard deviation of the
run-time ratio. Figure adapted from [SC20].

to the reference implementation of OTJ, Classic 2020. To observe whether there are
scalability problems, the problem sizes varied in the benchmarks. For example, the
static case uses fewer role objects and could be scaled up to 6 million transactions. In
the dynamic setting, the total number of transactions varied from 1.0 to 2.5 million.

The chart depicted in Figure 8.10 shows the results of the reference implementation
of Object Teams (Classic 2020) compared to our proposed Polymorphic Dispatch
Plans. The plot reports the geometric mean of the run-time ratio, i.e., the run-time
factor. To compare to the current state of the art, the values are normalized to Classic
2020. The y-axis uses a logarithmic scale to highlight where each approach introduces a
run-time overhead or improves over the current implementation. Lower values present
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better results. The error bar shows the standard deviation of the runtime ratio.
Figure 8.10 left shows how the static case benefits both approaches, dispatch plans

as well as polymorphic dispatch plans. While dispatch plans compile the active teams
directly into the DAG, polymorphic dispatch plans still require them to be present on
the argument stack [SC20]. Because the call site is stable, the retrieval of this run-time
data can be optimized. The optimization applied in [SC20] is to enforce copy-on-write
optimizations for the data structure representing the active team stack. Polymorphic
dispatch plans achieve a geometric mean speedup of 3.8× (max. 4.5×) compared to
Classic 2020. They also improve over dispatch plans by 1.4×.

The execution of Polymorphic Dispatch Plans on the GraalVM 20.2 results in a
lower performance. It improves over Classic 2020 by 2.8× but is 2.6× slower than
executed on JDK 14. We want the interesting reader also to note the high standard
derivations across the different benchmarks when running on GraalVM. We assume
that GraalVM does not, in the current implementation, optimize invokedynamic or
graphs of method handles properly enough resulting in lower performance.

Figure 8.10 right shows the results of the dynamic setting. In this setting, we mea-
sured a 14× run-time overhead for Dispatch Plans compared to Classic 2020. Dis-
patch plans realize the reaction to changes in contexts by invalidating the generated
graph triggering deoptimization mechanisms in the JVM. To reuse guarded dispatch
plans, they require the stack of team instances not to change Polymorphic Dispatch
Plans on the other side are designed to reuse generated dispatch plans. Due to the
supported polymorphism, they can leverage the fact that the run-time stack of teams
is structurally equivalent. For smaller problem sizes, the approach of role-polymorphic
inline caches achieves a geometric mean speedup of 1.1×. For bigger problem sizes,
the garbage collection starts to impact the overall execution time introducing more
variance resulting in a median slowdown of up to 2.3× and a standard deviation of
0.95.

Executing Polymorphic Dispatch Plans on the GraalVM 20.2, which is built on
OpenJDK 11, reduced the slowdown to up to 1.2×. To underpin the assumption that
the variance is introduced by the garbage collector we increased the maximum heap
size up to 8GB. As a result, the values level off at a geometric mean speedup of 1.1×.
This result also corresponds to the observations when manually recording the running
JVM in separate runs.

8.6.5 Instability and Graceful Degradation

When variability is high there is no benefit in operating a cache for dispatch plans.
Cache entries would be evicted immediately resulting in high cache contention. This
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considerably impacts the achieved performance. To overcome these problems we pro-
vide a graceful degradation strategy to revert to the original dispatch whenever a call
site becomes unstable. To evaluate the effectiveness of the degradation approach we de-
signed a synthetic benchmark that permutates the set of active contexts. Each context
contributes a before, replace, and after callin. Each time the same call site is called, a
new dispatch plan is created capturing the new runtime state. We report the overall
execution time across these permutations in Figure 8.11. We compare the execution
time of the reference implementation OTJ 2020 against polymorphic dispatch plans
with and without graceful degradation enabled.
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Figure 8.11: The impact of different permutations in the runtime state. The origi-
nal approach is compared to dispatch plans and dispatch plans without
graceful degradation.

Compared to the original implementation, our approach has on average the same
execution time as the original approach since there is no possible reuse. However,
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without graceful degradation the execution time increases by up to 3.8×. This means
that too much variability can be effectively countered by degrading to the original
dispatch.

8.7 Conclusion

This chapter formalized the object model of ObjectTeams (OT) defining roles at run-
time and introduced the Metaobject Protocol (MOP) used in the reference implemen-
tation to realize the OT model in the object-oriented programming language Java. We
discussed how Partial Evaluation (PE) can resolve dispatches given instances of the
reference object model at run-time. The result is a dispatch plan that captures the
resolved role methods. A dispatch plan is only valid when the same types of con-
texts that contributed roles during resolution are still active. Such a constraint can
be checked by a guard extending the notion of Polymorphic Inline Cache (PIC) to the
runtime state of contextual role-oriented programs. Chaining guards enable the stor-
age of multiple results in a call site. A call site can react to dynamic environments and
gracefully degrade from a dynamic call site to a static call site negating the overhead
from repeated evaluation.

The chapter also proposed an implementation for dispatch plans based on the invokedynamic
bytecode and method handles. Method handles, like pointers to functions, can be used
to build custom call graphs. The JVM provides special implementations for the com-
ponents used to compose the dispatch graph. Thus, by describing role dispatch in an
understandable format the JIT compiler can apply optimizations not possible when
dispatch is described in the application logic. The limit of such a description is that it
is not possible to actively guide the JIT compiler to apply optimizations or to declare
custom optimizations that are to be applied.
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9 A Virtual Machine Architecture for
Contextual Roles

“Nothing in life is to be feared, it is only to be understood. Now is the
time to understand more, so that we may fear less.”

— Marie Curie

9.1 High-Performance Dynamic Language Runtimes

This section introduces the Graal JIT compiler as a representative of the class of
method-based Just-In-Time compilers. We then introduce the Truffle DSL and com-
piler for high-performance dynamic language runtimes. Last we introduce Espresso, a
meta-circular Java Bytecode Interpreter implemented as a Truffle DSL.

9.1.1 Just-in-Time Compilation

The success of managed programming languages with automatic memory management
such as the Java programming language, to some degree, resulted from the guarantees
to the security and portability of programs written in those languages. At that time,
programs often were not transportable between architectures and required high efforts
to maintain different implementations for each architecture. To deliver portability
the proposed language runtimes are based on a virtual instruction set—an IR that
programming languages are compiled to. For example, the Java programming language
is compiled to Java Bytecode, which is an instruction set of a statically typed stack-
based VM. First approaches were simply interpreting the IR at runtime leading to
poor performance compared to compiled languages.

To deliver peak performance plus portability and security the VMs provided a
new compilation model that turns the virtual instructions into machine code at run-
time [Cra+97]. Nowadays, Just-In-Time compilation is a generic term representing
a class of different approaches that compile a program (or specification) at runtime.
For example, a runtime may rely on a complex compiler framework such as LLVM to
compile and link code at runtime. We do not consider this kind of runtime compilation
but connect the term Just-in-Time with one of the soft requirements, that is to achieve
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Figure 9.1: High-level Java Virtual Machine Architecture and Subsystems

compilation in a short period of time to make the impact of runtime compilation to the
overall execution time as small as possible. Most often the JIT compilers employ faster
algorithms to construct machine code trading compilation speed for resulting code effi-
ciency. A great example is that JIT compilers often do register allocation using linear
scan [PS99; WF10] instead graph coloring [MMI72] which in general should result in
poorer execution performance but only requires asymptotical time-complexity of O(n)
instead O(n2).

To outweigh the compilation overhead of JIT compilation, only important chunks
of the program are compiled. Thus, VMs provide interpreters and compilers that can
cooperatively execute programs. Decision making whether a compilation may happen
is based on heuristics that range from the size of the compilation unit, call counters
reflecting the “hotness”, or the depth of a method in the call stack. There exist different
approaches to JIT compilation [MD15], where the unit of compilation ranges from
method-based to trace-based. The Graal [Dub+13b] JIT compiler uses a method-based
compilation model where the decision making for optimizations depends on heuristics
such as method execution counts. Approaches such as PyPy [Bol+09], however, focus
on compiling execution traces of the interpreter (meta-tracing) and evaluating the
program under execution. The work proposed in this thesis builds on approaches using
the former model of compilation. Thus, we will explain the compilation flow with the
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Graal [Dub+13b] JIT compiler in mind.

An overview of the JVM architecture and some of its subsystems is presented in
Figure 9.1. Class files—a binary format resulting from compiling Java code—contain
bytecodes and meta-data. The class loader subsystem is responsible to load, check, and
resolve the class files and to provide the respective bytecode to the execution engine
via the runtime data area That subsystem consists of the method area where compiled
code is stored, the heap which is used to store runtime objects and is managed by the
garbage collector. The runtime area also comprises the stacks of running application
threads, as well as registers that store various program counters. Last, it also stores the
stacks of native methods which have been called via the Java Native Interface (JNI).

For our work we care most for the execution engine which is comprised of the in-
terpreter, possibly multiple JIT compilers with different optimization goals (startup
vs peak performance), and various kinds of garbage collectors. The JVM is a stack-
based virtual machine and the interpreter manipulates the stack while executing the
bytecodes. When a method is selected for compilation the Java Bytecode is trans-
formed into a graph-based IR [Dub+13a; Dub+13b] inspired by Sea-of-Nodes (SoN)
representation [CP95] and subsequently compiled by the JIT compiler. JIT compilers
can speculatively optimize units under compilation based on collected statistics of the
running application. This reduces the nodes in the IR to be compiled, for example, by
only compiling likely branches or by specializing methods and method calls towards
observed types. It may also allow more aggressive optimizations that only are possible
due to collected runtime information [SWM14]. This optimizations require a deop-
timization mechanism to be present that returns from compiled to interpreted code
starting the information gathering anew [Flü+17; DWM14]. A particularity of Graal
is that it is written in Java itself instead of C++.30 The idea of a meta-circular VM
is not new and already has been explored with the Jikes RVM [Alp+05] and Maxine
VM [Wim+13]. Each approach provides its own mechanisms to bootstrap the Java-
based compiler. However, recent advances in VM optimization research have opened
the door for these kinds of VMs to be applied in commercial products. At the time
of writing this thesis meta-circular VMs reach peak-performance comparable to state-
of-the-art implementations but require more time of warm up, i.e., to optimize the
important parts of a program.
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Figure 9.2: An overview of the development and build process of a Truffle-based dy-
namic language runtime adapted from [Hum+14, Fig.8].

9.1.2 DSL and Compiler for High-Performance Dynamic Language
Runtimes

Usually, high-performance dynamic language runtimes require a custom VM and com-
piler both implemented using low-level programming languages increasing implemen-
tation and maintenance efforts. Reducing implementation efforts using high-level lan-
guages results in poorer performance. Truffle [Wür14] is a Java-based implementation
framework providing DSL and execution model to implement self-modifying Abstract
Syntax Tree (AST) interpreters [Hum+14]. Combined with the Partial Evaluation
capabilities of Graal peak-performance compared to state-of-the-art implementations
may be reached [Wür+17].

Figure 9.2 provides an overview of the development and build process of a Truffle-
based (dynamic) language runtime. The simplest way to implement an interpreter is
to add an execute method to each AST node. The interpreter could execute the pro-
gram by traversing the AST executing each node’s execute method. The Truffle DSL
builds upon this idea but provides domain-specific annotations via Java annotations,
a mechanism where annotated code is pre-processed by transforming or generating
30This is possible due to the ability to access VM data structures via JVM Compiler Interface

(JVMCI) [Ros19].
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Listing 9.23 A small example using Truffle DSL annotations.
@NodeChild("leftNode") @NodeChild("rightNode")
public abstract class AddNode extends Node {

@Specialization(rewriteOn = ArithmeticException.class)
protected int addInts(int leftValue, int rightValue) {

return Math.addExact(leftValue, rightValue);
}

@Specialization(replaces = "addInts")
protected double addDoubles(double leftValue, double rightValue) {

return leftValue + rightValue;
}

}

derived code [Sea16]. In Listing 9.23 an example AST node which implements the ad-
dition of two numbers is shown. Annotations such as @NodeChild declare child nodes
of the current defined node. Methods annotated as @Specialization can define spe-
cific implementations that assume a specific state. Those specialization methods at
least require arguments for each declared child in its specialized form. For example,
if the addends are of integer type we may use fast integer addition and specialize the
node’s execute method to addInts(int, int). In case the assumption is violated an
exception is thrown which will trigger a rewrite to the next, more broad specialization
which is addDoubles(double, double). addInts(int, int) will be flagged as not
appropriate for that note and will not use that specialization again.

Listing 9.24 shows an excerpt of the code that is generated from Listing 9.23. Truffle
uses a bitset represented as an int to capture the current state the node is special-
ized to. Whenever Truffle rewrites a node’s specialization because of the violation of
the specialization’s constraints the specialization will be excluded. The generic case
executeGeneric() forwards execution to the respective special case using a bitmask
(i.e., 0b1, 0b10). The bitmask is Partial Evaluation friendly allowing to prune the other
cases. The generated code uses the annotation @CompilationFinal to tell the com-
piler that the field’s content might change but may be treated as final when the node
is specialized. This marks the field as being a member of the static input to the partial
evaluator (cf. Chapter 4). Each change in the field’s content must be preceded by the
compiler directive transferToInterpreterAndInvalidate which exactly does what it
is named after; returning from compiled mode to the interpreter and invalidating the
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Listing 9.24 Excerpt of the partial evaluation friendly generated code from List-
ing 9.23.
@GeneratedBy(AddNode.class)
public final class AddNodeGen extends AddNode {

@Child private Node leftNode_; @Child private Node rightNode_;
@CompilationFinal private int state_;
@CompilationFinal private int exclude_;
@Override
public int executeInt(VirtualFrame frameValue)

throws UnexpectedResultException {
int state = state_; int leftNodeValue_;
try {

leftNodeValue_ = this.leftNode_.executeInt(frameValue);
} catch (UnexpectedResultException ex) {

Object rightNodeValue = this.rightNode_.executeGeneric(frameValue);
return expectInteger(

executeAndSpecialize(ex.getResult(), rightNodeValue));
}
int rightNodeValue_;
... /* repeat for rightNodeValue_ */
if ((state & 0b1) != 0 /* is-active addInts(int, int) */ ) {

try {
return addInts(leftNodeValue_, rightNodeValue_);

} catch (ArithmeticException ex) {
// implicit transferToInterpreterAndInvalidate()
...

}
}
CompilerDirectives.transferToInterpreterAndInvalidate();
return expectInteger(

executeAndSpecialize(leftNodeValue_, rightNodeValue_));
}
... /* left out other generated code for brevity */
@Override
public Object executeGeneric(VirtualFrame frameValue) {

int state = state_;
if ((state & 0b10) == 0 /* only-active addInts(int, int) */
&& state != 0
/* is-not addInts(int, int) && addDoubles(double, double) */ ) {

return executeGeneric_int_int0(frameValue, state);
} else if ((state & 0b1) == 0
/* only-active addDoubles(double, double) */ && state != 0
/* is-not addInts(int, int) && addDoubles(double, double) */ ) {

return executeGeneric_double_double1(frameValue, state);
} else {

return executeGeneric_generic2(frameValue, state);
}

}
}

154



Listing 9.25 The bytecode dispatch node of an AST interpreter of a stack-based VM
(adapted from [Gri+17, Listing 4].
int bci = 1;
while (bci != -1) {

int next = bcNodes[bci].execute(frame);
bci = bcNodes[bci].successors[next];

}

current node’s specialization while updating the state of the node.
During the execution of the interpreter type feedback is gathered and used to rewrite,

i.e., to specialize the AST resulting in specialized code being execute. As we have
seen in Listing 9.24 the generated code is especially amenable to partial evaluation
capabilities of the JIT compiler. As discussed in [JGS94] about the offline partial
evaluator we know that binding time analysis is easier when annotations are provided
that mark each parameter, operation, and function call to either be eliminable or
residual. To achieve this Truffle provides the aforementioned annotations regarding
children, compilation final fields, and specializations. To constrain the size of the code
that is partially evaluated another annotation is provided by Truffle. The annotation
@PEBoundary is used to mark the end for the partial evaluator [Wür+17]. The idea to
use first Futamura Projection [Fut99] is not new and has been tried for aspect-oriented
semantics [MKD03]. As explained in Chapter 4 Partial Evaluation can be implemented,
for example, by abstract interpretation of the program. The partial evaluator of Graal
generates the Graal IR of the specialized interpreter code during partial evaluation,
effectively applying the first Futamura projection [Fut99] (see Chapter 4). The resulting
code is further optimized and compiled by the Graal compiler to high-performance
machine code.

9.1.3 Meta-circular Java Bytecode Interpreter for the GraalVM

The Graal compiler normally generates Graal IR from Java bytecode. In collabora-
tion with Truffle the Graal IR is generated by Graal’s partial evaluator which partially
evaluates Truffle-based AST interpreters. TruffleBC [Gri+17] and Espresso31 [Ora23b]
are Truffle-based AST interpreter implementations of the stack-based JVM execu-
tion model. This is achieved by representing every bytecode as an AST node. The
class BytecodeNode implements a bytecode interpreter loop of a method’s bytecodes

31Espresso is a functional prototypical JVM implementation fulfilling the JVM specification.
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as shown in Listing 9.25. For each bytecode the stack effect is either executed im-
mediately or AST nodes implement more complex bytecodes. For example, a jump
bytecode may directly move the stack pointer to the jump target while an invocation
node must lookup the object’s method table. Each operation returns the index of the
top of the stack which is stored as a local variable, thus rendering the implementation
more friendly to partial evaluation. Local variables and method parameters are passed
via instances of the class Frame. Partial evaluation and escape analysis optimize ac-
cess to these frame objects [SWM14]. To improve performance TruffleBC unrolls the
interpreter loop. Espresso applies quickening [Bru10] to AST nodes where general
bytecode nodes are replaced by more specific AST nodes using the feedback gathered
during interpretation. For example, the interpreter can replace a virtual method call
bytecode, e.g., invokevirtual, with a DirectInvoke node. This knowledge can be
gathered because Espresso reimplements JVM internal data structures such as classes
and functions and their meta-data as Truffle-based language runtime objects. This al-
lows, for example, to optimize function invocations of classes without subclasses more
aggressive than classes with subclasses. The partial evaluator or JIT compiler may
subsequently inline the method body if there is currently only one implementation
available for it [DWM14].

9.2 A Virtual Machine Architecture for Contextual Roles

This section presents essential primitives to enable VM support for contextual roles.
We implement these primitives in Espresso for the contextual role-oriented program-
ming language ObjectTeams/Java. Thus, we present ObjectTeams/Truffle, a VM im-
plementation of contextual roles based on the ObjectTeams model [Her07]. While we
specifically discuss our approach in the context of the contextual role-oriented pro-
gramming model ObjectTeams we are confident that our findings can be applied to
other role-oriented, class-based programming languages. We start by introducing the
essential primitives a VM needs to support contextual roles. Then we discuss how these
primitives can be implemented in Espresso, a meta-circular Java bytecode interpreter
for the GraalVM [Wür+13].

9.2.1 Essential Primitives to Enable Contextual Roles in a VM

In Chapter 7 we presented how the representation of contextual role-oriented concepts
and the implementation of its dispatch semantics imposes a challenge to state-of-the-art
VMs. To support contextual roles the components of the VM must be equipped with
role-specific primitives. This requires an extension that crosscuts many components
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such that the VM will be able to apply new optimizations due to these primitives. In
the following we will introduce the primitives that we identified as essential to achieve
VM support for contextual roles.

9.2.1.1 Dynamic Binding

In Section 3.2 we described that roles change the behavior of role-playing objects.
This change in behavior is only constrained by the role model of the application.
This is achieved by not only applying the binding analysis at runtime but also to re-
evaluate bindings whenever objects play or abandon roles. In Section 3.1.1 we explained
that approaches based on AOP provide pointcut languages—declarative languages that
describe sets of points in the program—where each valid point in the program is marked
as join point shadows. ROP provides pointcut languages with different expressiveness,
too. Furthermore, do contexts group roles, maintaining the status of multiple sets of
join points shadows.

The programming model of contextual roles in ObjectTeams is inspired by aspect-
oriented concepts. In consequence it must be ensured that all relevant points in the
application are found and observed, i.e., the points in the program that must be woven.
There are two fundamental ways of weaving join points: The first approach is to
weave all eligible call sites independently. A second way is to create an envelope
method [Boc+05] to which all eligible call sites delegate to, weaving will take place
inside the envelope method. To support roles, a VM must provide support for join
point shadows, facilities to weave instructions in the program code, and to issue the
re-binding of affected call sites.

9.2.1.2 Meta-Objects for Roles and the Plays Relation

An object may simultaneously play roles in multiple contexts. The activation and deac-
tivation of contexts could change the order in which role instances are played [Küh+15]
impacting the observed behavior of the role-playing object itself (cf. Definition 8.3).
In state-of-the-art role-based runtimes this relation is transparent to the VM and han-
dled by language runtimes as library implementations. For example, in OTJ the plays
relation is stored in the meta-data section of class files and loaded at runtime. The
MOP of OTJ represents that information at runtime.

The relation must be promoted to a first-class VM citizen. Changes to this relation
must be observable by the VM. To support efficient access to and retrieval from the
plays relation requires additional first-class support for roles and their relations inside
the components of the VM.
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Figure 9.3: Toplevel Architecture of ObjectTeams/Truffle (adapted from [SC23]).

9.2.1.3 Role Dispatch

To the best of our knowledge, since the advance of contextual roles, all programming
language implementations for contextual roles fall back to delegation-based implemen-
tations to realize role dispatch. We identified multiple reasons for the lack of varying
implementation strategies. First, the representation of contexts in class-based lan-
guages often is realized by encapsulation. Context classes enclose the role classes, i.e.,
in Java role classes often are inner classes of their enclosing contexts. Second, the
access to the plays relation requires multiple indirections which increases the cost of
resolving role-based call sites. Third, join points are evaluated repeatedly at run-time.
The VM must use role-related attributes to generate role-specific code and to provide
role-specific optimizations and use internal invalidation mechanism when assumptions
do not hold.

9.2.2 Role Support in a Meta-circular Java Bytecode Interpreter

This section gives an overview how we realized the aforementioned fundamental re-
quirements to provide support for contextual roles. The following sections will discuss
selected topics more in depth. We based our approach on Espresso, a meta-circular
JVM implemented as a Truffle-based AST interpreter. To support the semantics of
contextual roles we had make cross-cutting changes to several components of Espresso.
In Fig. 9.3 we show the top-level diagram picturing the components of our prototypical
approach. Due to Espresso interpreting Java bytecode we kept the two-stage compila-
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Figure 9.4: ObjectTeams/Truffle classes related to resolving the callin binding at-
tributes parsed from the meta-data section of the class files.

tion process where the OTJ compiler parses and compiles each unit under compilation
producing Java bytecode which is the input to the JVM.

To handle join points in Espresso without changing the programming model of OTJ
we changed the way the ObjectTeams/Java compiler generates envelope methods. Nor-
mally, the body of an original method is rewritten to delegate to the envelope method
which puts OTJ internal data on the stack. The original method that triggered the
call is not directly accessible anymore and requires an expensive stack walk to recover.
Thus, the original method body is changed to put the arguments on the stack just like
the envelope did and to invoke a newly defined intrinsic. At runtime when methods
are parsed and call sites resolved inside Espresso the intrinsic is used to recover the
original method that triggered the call.

The OTJ compiler writes the resolved role bindings (cf. Figure 7.1 depicting the
Metaobject Protocol of OTJ) to the attributes section of team classes. We extended
Espresso’s Java bytecode parser to read the non-standard OTJ-related attributes and
to store them in internal VM class representations. The responsible classes and their
relation is shown in Figure 9.4. After the VM parsed the bytecodes the Object-
Teams/Truffle (OT/Truffle) language implementation, a component responsible with
coordinating the actions of the VM, will build the corresponding AST. In the process
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of resolving call sites, whenever we discovered a bound call site the VM processes the
intrinsic envelope method. Call sites that reference envelope methods will be quick-
ened into intrinsic AST nodes that execute role dispatch. This way the VM is able to
represent the OTJ runtime model directly with VM data structures instead of using a
language level MOP implementations and chains of delegation.

A side effect of having low-level access to VM internal data is that our language
implementation can store references to class and method names efficiently by only
storing the indices of the strings inside the constant pool of the respective class file.
This enables to reuse core VM facilities for method lookup and dispatch. In OTJ all
information inside the MOP related to class names, method names, and join points
were represented as strings.

In the model of OTJ lifting [HHM11, §2.3] realizes the cast-like approach of retrieving
the roles played by an object in the current context. To implement lifting we represent
the access to the plays relation, represented by the binding information, in a separate
AST node. This makes it possible to capture and specialize on values of the domain,
i.e., the particular context type that is accessed. The resulting node may be shared
among multiple identical liftings that occur during a dispatch.

Our prototype ObjectTeams/Truffle supports all the different kinds of callin bind-
ings, i.e., role methods that are invoked before, after, or as replacement of the original
method. The dispatch is realized with multiple AST nodes that implement different
parts of the invocation process. The implementation leverages the internal attribute
representations to compute the amount of role methods contributed by a respective
context and the precedence of the role methods. This allows to unroll loops generat-
ing a concrete sequence of instructions in the compiled code of these nodes instead of
recursively evaluating the stack. For example, for AST nodes that realize the dispatch
to before and after role methods, respectively, the partial evaluator can unroll the loop
over contributed role methods since the bounds are known at evaluation time.

9.2.3 Quickening of Role Invocations

ObjectTeams/Java applies the envelope approach [Boc+05] to execute role methods
from join points, i.e., base methods that are bound by active callins. The envelopes
are the entry point to structured role dispatch and their interfaces are shown in List-
ing 7.17. To initialize role dispatch OTJ weaves the code of the envelope method
callAllBindings. The envelope method has the task to collect the relevant runtime
values that will be used in the dispatch logic to find the call targets and to put the
current runtime state on the stack. The weaver originally statically captured the base
method that initiated the call from the lexical scope during weaving, which is required
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in order to query the runtime for activated contexts (teams) specific to that base
method. Instead of generating role-related bytecodes the implementation of Object-
Teams/Truffle quickens the call to the envelope method into role dispatch AST nodes.
Figure 9.5 shows a UML class diagram that highlights how we embedded the quick-
ening into Espresso. Our VM implementation quickens the invokevirtual bytecode
node to overcome the semantic gap, replacing each intrinsic method with the respective
AST nodes. These nodes encode the role dispatch semantics usually found in envelopes
callAllBindings and callNext plus optimizations not possible before. This is the entry
point to the self-modifying AST that happens during execution.

During the processing of the bytecodes of the base method the interpreter resolves
each invoke bytecode and replaces it with the appropriate AST dispatch node. List-
ing 9.26 shows an excerpt of the method that implements the replacement for the cases
of callAllBindings and callNext. The first case (lines 1–3) resolves callAllBindings
and has lexical access to the base method which makes quickening easy. During the
execution of the quickened node we get access to the stack frames and install the base
method using a magic token. The second case concerning callNext, i.e., to proceed,
evaluating a base call, from a replace callin is more involved (see lines 4 – 23). Proceed
is naturally called from within the body of a role method. The lexical scope of proceed
is not able to capture the method that initiated the role dispatch. To compute the base
method that caused the activation we walk the stack of activation records (i.e., stack
frames) which can be accessed as first-class entities through visitor facilities provided
at VM level (see lines 7–18). We can extract the base method using the magic token
that was installed when executing the quickened callAllBindings node.

9.2.4 A Self-Modifying AST to Represent Contextual Role Dispatch

We postulate that efficient dispatch is key for performance. In recent works it has
been shown that contextual role dispatch could be optimized by applying partial eval-
uation [SKC22]. This can be achieved by representing the dispatch using primitives
that can be understood and optimized by a language runtime. However, we observed
that the results after partial evaluation is a too coarse-grained and rigid structure that
requires new computations and partial evaluations whenever contexts change.

As described in Section 9.2.3 the implementation of ObjectTeams/Truffle provides
VM implementations for essential primitives of contextual roles. The role dispatch is
implemented with several AST nodes providing general and optimized code paths, i.e.,
using assumptions and specializations to declare special application states. In Fig-
ure 9.6 we show part of an AST that replaces the envelope callAllBindings that dele-
gates to the replace callin CheckingsAccount.withFee(*) woven for acc.withdraw(*)
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Listing 9.26 Quickening invokevirtual bytecodes to role invocation AST nodes.
The listing shows an excerpt of the method dispatchQuickened(...) for
callAllBindings and callNext.
1 } else if (opcode == INVOKEVIRTUAL && resolved.isBoundMethod()) {
2 invoke = new InvokeCallAllBindingsQuickNode(
3 resolved, this.getMethod(), top, curBCI);
4 } else if (opcode == INVOKEVIRTUAL && resolved.isCallNext()) {
5 // use VirtualFrame auxilary slots to add OTJ magic objects
6 CompilerDirectives.transferToInterpreterAndInvalidate();
7 FrameInstance iteratedFrame = Truffle.getRuntime().iterateFrames(
8 new FrameInstanceVisitor<FrameInstance>() {
9 @Override

10 public FrameInstance visitFrame(FrameInstance frameInstance) {
11 EspressoRootNode rootNode = getContext().getVM()
12 .getEspressoRootFromFrame(frameInstance);
13 Frame visitedFrame = frameInstance.getFrame(
14 FrameInstance.FrameAccess.READ_ONLY);
15 Method m = rootNode.readFrameBaseMethodOrNull(visitedFrame);
16 return (m == null) ? null : frameInstance;
17 }
18 });
19 Frame otherFrame = iteratedFrame.getFrame(
20 FrameInstance.FrameAccess.READ_ONLY);
21 EspressoRootNode rootNode = (EspressoRootNode) getRootNode();
22 Method baseMethod = rootNode.readFrameBaseMethodOrNull(otherFrame);
23 invoke = new InvokeCallNextQuickNode(resolved, baseMethod, top, curBCI);
24 } else { ... }
25 return invoke;
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Figure 9.5: A UML class diagram highlighting key changes to Espresso to implement
ObjectTeams/Truffle and the quickening of bytecodes into AST nodes to
realize role dispatch semantics.
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InvokeCallAllBindings
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InvokeBeforeCallins
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InvokeReplaceCallins
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![cnt==0]
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InvokeAllKlassBindings
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Figure 9.6: The intrinsic AST that replaces the envelope callAllBindings that del-
egates to the replace callin CheckingsAccount.withFee(*) woven for
acc.withdraw(*) in Listing 6.12. Rectangles represent nodes, dashed
means the node will not be materialized. Ellipses represent call targets.
The edge labels ![...] declare an assumption and $[...] declare a
cached value.

in Listing 6.12. The rectangles represent AST nodes. The edge labels ![...] declare
an assumption and $[...] declare a cached value. Dashed elements means the node or
edge (implemented via references) will not be instantiated. This may happen whenever
a node violates an assumption or a guard. Ellipses represent call targets such as the
callin of the role.

We want to highlight that we decided to not evaluate the whole runtime state at
once and guard the resulting callable by the partial structural equality of runtime state
(cf. Definition 8.8). Instead, the beginning of role dispatch is represented by nodes
that are guarded by the most recent context type of the runtime state, e.g., the team
Bank. For example, if there is no active context the role dispatch will not be executed
at all but the original method. In subsequent calls a guard checks whether the first
active context is of a different type and either reuses the node or embeds a new one,
effectively creating a PIC [HCU91] for contexts. It also enables the possibility to only
change parts of the AST instead of having to recompute the overall dispatch when
the application state changes. Represented in Figure 9.6 is the usage of assumptions
to efficiently prevent the creation of unused subtrees for non-existent callins. For
example, when the InvokeBeforeCallins node is created the VM reads the internally
stored attributes of contexts and their bindings and toggles the assumptions about the
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contributed role methods accordingly. A context can declare multiple roles each with
multiple before and after bindings for the same base method. In such a case all role
methods are called before and after, respectively, ordered by their declared precedence.

On the other hand we can optimize the evaluation for each callin type of the context.
For example, as shown in Listing 9.27 the evaluation loops over the statically known
length of before callins for a specific base method. The annotation @ExplodeLoop
instructs the partial evaluator to unroll the loop. This produces a sequence of instruc-
tions that is easier to optimize by the JIT compiler. Lifting calls the OTJ internal
functions for object management and invokes the role function on the returned object.
This requires proper handling of the arguments and potential insertion of casts from
and to Truffle’s API, for example, StaticObject for Java’s Object of any kind.

9.3 Performance Evaluation

This section evaluates the run-time performance and characteristics of ObjectTeams/Graal,
a VM implementation of ObjectTeams. We compare our approach to the reference im-
plementation ObjectTeams/Java [Her07] and ObjectTeams with Dispatch Plans [SKC22]
(ObjectTeams/InvokeDynamic).

9.3.1 Benchmark Characterization

We based the benchmark on the synthetic benchmark introduced in Section 6.2. To
evaluate different characteristics of context-dependent software we used the dynamic
use-case with variable context activations.

9.3.2 Methodology

We measured the execution time per run and report the geometric mean and standard
deviation for each problem size and approach as discussed in Section 6.2.2. To observe
whether there are scalability problems each approach is executed with multiple problem
sizes varying the problem size from 1.0 to 2.5 million transactions. Because of the
increased execution time every benchmark we deviated from Section 6.2.2 and ran the
benchmark 5 times for each data point.

To coordinate the benchmark execution and to allow proper measurement of the ex-
periments we used the benchmark execution framework ReBench [Mar18]. The bench-
mark was conducted on an Intel Core i7-9700T CPU @ 2.00GHz with 32GB RAM.
For the evaluation we built Espresso from commit 393e30fb1b9 with mx version 6.19.0.
Our VM build is based on LabsJDK CE17 JVMCI v23.0b01.
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Listing 9.27 The implementation of evaluating before callins of a team in Object-
Teams/Truffle.
@ExplodeLoop
@Specialization
Object doAllBefores(Object[] args, StaticObject teams,

@Bind("getIndex(args)") int index,
@Bind("getCallinIds(args)") StaticObject callinIds,
@Bind("getOriginalArgs(args)") StaticObject originalArgs,
@Bind("getBoundBase(args)") StaticObject boundBase) {
/*
* The int[] callinIds is actually already sorted before/after/replace.
* We already know the team klass, the bindings and their precedence and order.
*/
final Language lang = getLanguage();
for (int i = 0; i < length; i++) {

final int updatedIndex = scatterIndeces[i] + index;
StaticObject team = teams.get(lang, updatedIndex);
final int callinId = callinIds.<int[]>unwrap(lang)[updatedIndex];
MultiBinding binding = Utils.getBindingForId(bindings, callinId,

CallinBindingsAttribute.KIND_BEFORE);

if (binding == null) {
return Boolean.FALSE;

}

final int roleClassNameIndex = binding.getRoleClassNameIndex();
Method liftMethod =

Utils.lookupLiftMethod(teamKlass, roleClassNameIndex);
DirectCallNode lift =

DirectCallNode.create(liftMethod.getCallTarget());
StaticObject roleObject = (StaticObject) lift.call(team, boundBase);

Method roleMethod = Utils.lookupRoleMethod(teamKlass,
(ObjectKlass) roleObject.getKlass(), binding);

DirectCallNode roleNode =
DirectCallNode.create(roleMethod.getCallTarget());

Object[] roleCallArgs = new Object[originalArgs.length(lang) + 1];
roleCallArgs[0] = roleObject;
for (int l = 0; l < originalArgs.length(lang); l++) {

StaticObject obj = originalArgs.get(lang, l);
roleCallArgs[l + 1] = getMeta().unboxFloat(obj);

}
roleNode.call(roleCallArgs);

}
return Boolean.TRUE;

}
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9.3.3 Performance Analysis

The results of the dynamic case are shown in Figure 9.7. The figure depicts the
geometric mean in seconds for each approach and each problem size.

From the results we see that for ObjectTeams/Java and ObjectTeams/Truffle the
standard deviation increases with increasing problem size and duration. We assume
the reason is that these approaches cause longer garbage collection pauses and use more
of the assigned heap. This may be caused by the handling of runtime values during the
execution of the dispatch. The standard deviation for ObjectTeams/InvokeDynamic is
lower across all problem sizes. We assume the reason is the implemented copy-on-write
optimization for the data structure representing the active team instances. Such an
optimization is not implemented in ObjectTeams/Truffle.

From the conducted experiment we report that ObjectTeams/Java performs as the
slowest implementation. The role-agnostic VM implementation ObjectTeams/Truffle
reaches a speedup of up to 2.49× (mean 2.23×) compared to ObjectTeams/Java.
Compared to ObjectTeams/InvokeDynamic the approach is up to 1.22× faster (mean
1.18×).

9.3.4 Threats to Validity

We are aware that Espresso is still an early prototype of a meta-circular Java VM. It
passes the Java Compatibility Kit but might have unequally good implementations for
different parts of the JVM specification. This could skew the results and improperly
favor one implementation over the other. However, even under these conditions, we
are confident that the results of this work are meaningful enough.

The reference implementation ObjectTeams/Truffle supports a limited set of fea-
tures provided by ObjectTeams/Java. It is possible that the introduction of other
features may require additional checks or rewrites of the AST imposing restrictions on
the implementation we did not account for, yet. The benchmark purposely avoided
features that have not been implemented across all compared implementations of the
ObjectTeams model to ensure comparability.

9.4 Conclusion

This chapter presented that the first Futamura Projection [Fut99] can create efficient
interpreters and the optimization potential introduced by combining Partial Evalua-
tion and Just-In-Time compilation. We introduced how a state-of-the-art VM can be
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Figure 9.7: Execution time in seconds for the dynamic case. The error bar shows the
standard deviation of the measured run-time.
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extended with essential primitives required to optimize contextual role-oriented pro-
gramming languages. The combination of a role-aware AST, and an partial evaluation
friendly interpreter reduced the semantic gap. For example by annotating compile-time
static values, by annotating parameters used to construct Polymorphic Inline Caches,
and declarative guards used to decide when to reuse a value of a parameter. The result
after PE is a smaller IR with more opportunities for optimization by the Graal JIT
compiler.

Since VMs for object-oriented programming languages do not understand the se-
mantics of contextual roles, the compiler produces a verbose description of roles in
an object-oriented paradigm, which incurs a high overhead. We proposed essential
primitives to support roles in a VM. We present a prototypical VM implementation
to efficiently execute contextual roles. While we specifically discuss our approach in
the context of the contextual role-oriented programming language ObjectTeams we are
confident that our findings can be applied to other role-oriented, class-based program-
ming languages. For a demanding role-based benchmark we achieved a speedup of up
to 2.49× compared to the reference implementation ObjectTeams/Java. Compared to
ObjectTeams with dispatch plans [SKC22] our approach achieves a speedup of up to
1.22×.

Because of their commonalities, we are confident that our approach is also able to
work in the context of AOP languages using the pointcut-advice model and layered
COP languages. The execution of behaviors in each of these related approaches is
concerned with the evaluation of joinpoints and a multi-dimensional dispatch, which
could be mapped to the role dispatch discussed in this thesis.
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10 Related Work

“Think left and think right and think low and think high. Oh, the
thinks you can think up if only you try!”

— Theodore Seuss Geisel, a.k.a. Dr. Seuss

During the last decades a surmount of approaches have been proposed that may be as-
cribed to the domain of MDSoC. We introduce the most relevant of these approaches,
dividing them in the following three sections according their belonging into the cate-
gories of dynamic programming languages and Metaobject Protocols, Aspect-oriented
Programming, and Context-oriented Programming. The approaches in each category
comprise from additional language constructs and domain-specific compilers to VMs
and domain-specific JIT compilers.

10.1 Dynamic Programming Languages and Meta-Object
Protocols

Optimizing dispatch is a recurring topic among approaches that utilize the reflective
capabilities of host languages or MOPs. MOPs enable the definition of extended se-
mantics in the host language itself [KDB91]. It allows defining domain-specific dispatch
semantics from within the host language instead of relying on custom VM or compiler
support.

The meta-tracing JIT compiler of PyPy can be controlled by providing runtime feed-
back in language-specific ways [Bol+11]. Meta-tracing describes that the instruction
sequence, i.e., the trace, of the interpreter is recorded and not the application executed
itself. Language implementers can use hints to allow fine-tuning of the JIT compiler
decisions. Feedback is considered by describing the dynamic shapes of objects and pro-
viding runtime-type information. The optimizations are mainly used to optimize the
object model representing the dynamic programming language inside the interpreter.
Such an object model to optimize dynamic languages in a method-based JIT compiler
can also be found in [Wöß+14].

A call site in a single-dispatched object-oriented programming language (cf. Chap-
ter 2) consists of the name of the function, the argument list, and the type of the

173



callee. The de-facto standard to optimize such a polymorphic call site uses PICs to
capture the lookup result for different types of callees improving the performance of
future dispatches [HCU91]. Dynamic languages often use reflective capabilities of the
VM to implement the flexible dynamic dispatch mechanisms sacrificing performance
by doing so. That is because the argument types of a reflective call site—including
the target’s object type as well as the method name—are only known once the ac-
tual invocation happens. A single PIC is not designed to capture these cases since
same-named methods can be called on unrelated objects. To remove the overhead
of reflection and Metaobject Protocols, a dispatch chain presents a generalization of
Polymorphic Inline Caches that allows optimization of metaprogramming at the VM
level [MSD15]. A dispatch chain consists of a few linked nodes where the last node
resembles an ordinary PIC. Each level can store the result of the intermediate step
of the lookup process for further reuse. For example, for the reflective invocation of
calc.invoke(’inc, [’once]) a dispatch chain for invoke() is created. The first
level observes the ’inc symbol, and the second level then is a classical PIC that maps
the symbol calc to the type Calculator and directly refers to the implementation for
Calculator.invoke(...). Dispatch chains can be used with meta-tracing JIT compil-
ers or compilers using partial evaluation and perform equally well for both approaches.

JIT compilers can reduce the performance gap between dynamic and static pro-
gramming languages tremendously. To successfully speculate the runtime variability
must be low and heuristics must be able to determine when optimization is beneficial.
However, some variability patterns are hard to capture in a heuristic. Compiler heuris-
tics often do not capture ephemeral, warmup, sporadic, and highly indirect variability.
A Metaobject Protocol allows identifying these types of variability at the application
level. To communicate variabilities to the VM call sites in the application can be an-
notated by developers providing additional information to the compiler [CGM17]. The
MOP offers application developers resetting compiler-build dispatch chains or issuing
a node split reducing the pollution of profiles for each resulting local call site. Thus,
speculative optimizations can be issued where heuristics would traditionally fail.

In Chapter 8 we presented a graph-based approach claiming to represent a gener-
alized PICs tuned to capture contextual roles. Our approach did not generalize over
single reflective call sites but compositions of functions that may be invoked from a
single call site. The variability is already captured in the MOP describing the role
semantics. Partially evaluating that MOP results in the dispatch graph already being
specialized for the callins that are going to be expected only. Trimming the profile or
reverting to the most general case is something that all approaches have in common.
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10.2 Aspect-Oriented Programming

The Aspect-oriented Programming concept is a promising approach to many prob-
lems encountered in software engineering and is highly related to Role-oriented Pro-
gramming. However, it experienced a huge performance gap compared to classical
object-oriented approaches. The first approaches used basic capabilities of target ar-
chitectures and languages such as component-based designs using hooks [Paw+01;
BH02]. Research approached the problems by proposing AOP specific extensions to
object-oriented VMs. The availability of meta-circular research VMs, for example,
Jikes Research Virtual Machine (RVM) [Alp+05], MaxineVM [Wim+13], and Graal
VM [Dub+13a; Wür14], that is, for example, a JVM for and in Java, fostered stronger
research in the domain of VMs. Specifically, many approaches extended the Jikes RVM,
an open-source research Virtual Machine [Alp+05] mostly written in Java.

The first approach we introduce here explored to enhance the JIT compiler of the
Jikes RVM [PGA02; PAG03]. To support weaving at join points the JIT compiler is
extended to compile minimal hooks. These hooks add runtime checks that guard the
dispatch to advise code.

To compile and execute AOP programs they must go through many steps that pro-
cess and alter or generate code (see Section 3.1.1 for a background on AOP). For each
point in the program (i.e., join point shadows) that is designated by a pointcut code to
dispatch to advice is woven. Using join point shadows as weaving locations increases
the weaving time as these are, in general, spread all over the program. Envelope-
based weaving reduces the weaving time by introducing changes to the callee, not the
caller [Boc+05]. To decrease the number of weaving locations accessors for fields and
proxies for methods are introduced. These envelopes are generated inside the declaring
class and the original method body is moved. This simplifies the weaving process a lot
and reduces the overall time required to compile aspectual programs.

The indirection introduced by envelopes resulted in an overhead that could not be
mitigated completely by inlining from state-of-the-art VMs. To further mitigate the
overhead envelope-aware optimizations have been introduced to the Jikes RVM [Boc+06].
One approach is to make the inline oracle used by the optimization to inlining methods
always to decide to inline envelopes. On the other hand, the timer-based sampler is
changed to credit the sample of an implementation method to its proxy envelope by
walking down the stack one additional frame. This increased warmup time until the
VM reached a steady state because the proxy envelopes required more rounds of opti-
mizations until being finally optimized away. Inlining became possible due to changes
in RVM’s guarded inlining and code patching strategies.

Another extension of the Jikes RVM is found within the Steamloom VM [Boc+04].
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AOP concepts are represented as first-class entities and advice integration and execu-
tion are managed by the VM. The approach is integrated with CaesarJ’s [Ara+06]
dynamic deployment API and supported thread-local and instance-local deployment
of aspects. In contrast to other approaches, Steamloom does not require pre- or post-
processing such as running a weaver to integrate aspects. Dynamic weaving is embed-
ded in the VM. The Bytecode Augmentation Toolkit (BAT) is responsible for weaving
advice code and uses a custom format to represent an advised method’s bytecodes
instead of using RVM’s byte arrays. Steamloom uses super instructions to implement
AOP semantics [Hau+05]. The required information is stored in an Advice Instance Ta-
ble (AIT) a runtime data structure embedded in the memory representation of classes
managing aspect objects the JIT compiler uses to generate aspect code into method
bodies [HM05]. Each entry of instance-local aspects must be cloned from the class
adapted by the aspect. Inlining method bodies of these classes is not realized as mul-
tiple versions of these classes— advised and non-advised—exist. A shortcoming of
Steamloom is that only before and after advice for method execution join points
can be declared. The authors remark that around advice (the pendant to replace in
role-oriented programming) is a more demanding challenge [HM05].

Our approach is not affected by this limitation. First, roles always represent instance-
local aspects because of their close relation to the playing objects. Second, our ap-
proach is concerned with the callsites themselves and inlining the dispatch code to role
functions. We do not control whether and how inlining is performed by the VM.

Supporting AOP resolves around providing dynamic redefinitions class definitions.
However, state-of-the-art production JVM often limits this support. As a consequence
approaches elude to runtime weaving of previously loaded classes. The authors redesign
a production-grade JVM to offer unrestricted class redefinition and redesign the Hot-
Wave AOP framework [Vil+09] to overcome the aforementioned restrictions [Wür+10].

The Nu VM [DR10] is another extension to Java HotSpot VM but only supports
the interpreter; the JIT compiler is not supported. The authors propose a new IR to
capture and support dynamic AOP features.

10.3 Context-Oriented Programming

COP is another programming paradigm that solves many problems encountered in
OOP but experiences a huge performance gap compared to classical object-oriented
approaches, too.

In JCOP [AH12b], a Java-based COP language, the lookup, and execution of lay-
ered dispatch have been replaced to use the invokedynamic bytecode [AHH10]. The
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invokedynamic bytecode is different than other invoke bytecodes such that it calls a
bootstrap method the first time it is executed by the JVM. The bootstrap method
must return an objectified call site object which is executed on subsequent invocations.
The call site links to an actual method using method handle that may be understood
as typed pointers. The approach uses a map to store call targets to partial methods
that are managed by each layer. Each call to proceed will link the next partial method
of the next active layer stored in that map. When a composition is changed, i.e., a
layer is added or removed, the method handle of the call site is updated. Compared
to the unmodified implementation of JCOP, they report a speedup of 160× when no
layer is activated, as well as a speedup of 48 - 38 × for 1 - 5 layers activated.

ContextJS is a context-oriented extension to JavaScript [Lin+11]. In ContextJS the
layered dispatch is optimized by reducing the number of method calls and lookups
by gradually inlining partial methods into a generated wrapper function [KLH12].
Initially, the wrapper delegates to each partial method but subsequently inlines the
delegatee to reduce the overhead. When the application stabilizes, the partial function
boundaries are removed and the method bodies are inlined. To further speed up
subsequent invocations active compositions can be cached and guarded to check for
no change. While the inlining improves the performance by 10× it still just reaches
3% of the performance of a comparative implementation using the host language only.
We suspect the approach to rewriting the AST at runtime to fasten runtime code
generation instead of generating new code interferes with VM optimizations.

A common approach to speed up dispatching is to use a cache and invalidate ap-
proach. In COP an invalidation happens when a new layer imposition changes the
targeted partial method of an already cached call site. ContextPyPy [PFH16] uses
the meta-tracing JIT compiler to communicate the variability of COP to the VM
via annotations where sideway composition introduces an overhead. By promoting
context-oriented dispatches the JIT compiler ensures that traces are specialized over-
riding the result of any heuristic. Thus, the VM can reuse recorded traces when layer
compositions are stable. Invalidation is realized with a guarded switch.

In contextual role-oriented programming, compartments introduce highly indirect
variability. Our approach encodes opportunities to optimize specific call sites. Layered
method dispatch with invokedynamic [AHH10] uses the same bytecode as our approach
presented in Chapter 8. First, they do not construct a call graph but iterate the
composition of layers using stored handles of each partial method from a map. For
each partial method, there is its call site object that is installed into the call site
whenever layers get activated and deactivated. Invoking a proceed returns the next
call site object pointing to the next partial method. In contrast, our approach defines
the whole execution as a call graph that is optimized by the VM. This approach allows
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us to install guards and to apply PIC on the role-providing contexts. Without applying
compiler directives, we rely on the fact that the abstraction used by dispatch graphs
is optimized by the VM. In Chapter 9 we described an implementation of a role-aware
VM. We do not only provide the heuristics but also the interpreter logic to efficiently
execute role-based programs.
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11 Conclusion

This chapter summarizes the contributions made in this thesis and discusses possible
directions for future work.

11.1 Summary

This thesis reviewed past and contemporary relational, behavioral, and contextual role-
oriented programming languages. The review highlights the different concepts applied
to implement role semantics and, when possible, derives statements about the expected
run time properties of those programming language implementations.

A quantitative analysis of contemporary contextual role-oriented programming lan-
guages makes it possible to determine run-time properties such as run-time performance
and substantiates the existence of a semantic gap. In Chapter 7 the semantic gap based
on a concrete implementation of contextual roles is described. Building on the results
of the quantitative analysis and the description of the semantic gap this thesis proposes
two methodologies and their proof-of-concept implementation.

This thesis contributes a runtime code generation strategy to generate efficient dis-
patch code based on a partial evaluation of the runtime data of the program. This
includes the definition of an object model for the contextual role-oriented program-
ming language ObjectTeams/Java. The partial evaluator uses the object model to
evaluate an invocation of a role-bound call site to a call graph that, when executed, is
semantically equivalent to the original program.

To overcome the semantic gap this thesis introduces an extension of a meta-circular
Java VM to support contextual roles. In Chapter 9 essential primitives to support
contextual roles are enumerated and a VM architecture is presented to provide those
primitives. The implementation is based on quickening and optimizes role-based dis-
patch by defining guards that respect the role semantics resulting in efficient code
generated due to the first Futamura projection applied by the VM.

In conclusion, this thesis introduced two methodologies that closed the semantic gap
measured in Chapter 6 and further described in Chapter 7. If using a custom VM
implementation is undesirable runtime code generation based on partial evaluation
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provides a particularly well-performing runtime of contextual role-oriented programs.
A custom VM implementation even exceeds the performance gain.

11.2 Future Work

While this thesis makes a significant contribution to the implementation techniques for
contextual role-oriented programming languages we identified further and new inter-
esting research opportunities for future work.

11.2.1 Mapping Strategies

Kühn et al. proposed a feature model that describes the role features ascribed to
role-oriented modeling and programming languages [Küh+14]. In his thesis Graversen
describes a feature model to capture the strategies used by role-oriented programming
languages [Gra06]. Surveying past and contemporary role-oriented programming lan-
guages in Chapter 5 introduces multiple mapping strategies to realize role features
and role dispatch. Further research on the relations between role language features
and their implementation strategies may create a knowledge base that combines both
feature models. This opens interesting opportunities to investigate the characteristics
of using different mappings to realize the same role features as future work.

11.2.2 Prototype-based Role-Oriented Programming

The contributions of this thesis towards implementation techniques only touch the
class-based approaches. Implementation techniques for prototype-based approaches
are open to future work.

Acquiring and abandoning roles impacts the properties and methods available on an
object; it changes the observable type of an object. In general, it is possible to statically
represent this dynamic change of types by generating all possible combinations of the
object’s type and its roles and assigning an object to such a type with each change. In
statically compiled languages, however, this results in an exponentially growing class
hierarchy which usually is sparsely inhabited at runtime.

Optimizing access to objects in prototype-based languages is often realized using
hidden classes that represent an object’s current available properties and methods.
This class-like construct, first introduced in SELF [CUL89], allows the VM to apply
PICs to dispatches in prototype-based languages. In prototype-based implementations,
role-playing is usually realized by using delegation. Thus, it is possible to create such
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a class hierarchy on demand by having roles change the hidden class of an object. Dy-
namically creating these intersection classes using runtime code generation or dynamic
compilation supported by the flexibility of prototype-based programming languages is
a research direction worth exploring [Kör21].

Similarly, it is to be discussed how the dynamic approach of SCROLL where role-
playing is based on structural sub-typing mechanisms and predicates may be repre-
sented and optimized using prototype-based programming language runtimes.

11.2.3 Memory Model for Role-Oriented Programming

The discussion of essential primitives in Chapter 9 touches on the requirement for
first-class support to represent roles and the plays-relation. While the implementation
provides first-class support for the plays-relation inside the VM, the role-aware VM still
uses the language-level MOP of OTJ. However, the heap and object graph are imme-
diately accessible within the VM. It is future work to extend the memory model of the
VM and to introduce new VM classes to manage the role-playing relation. For exam-
ple, having the VM handle registering the play-relation whenever a context activation
and deactivation happens could make handling those relations on the language-level
MOP obsolete.
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