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I. INTRODUCTION

Hybrid platforms like Xilinx Zynq or Altera Cyclone/Arria
V have become increasingly popular. Their power lies in the
combination of a powerful RISC processor with a relatively
large Field Programmable Gate Array (FPGA), that can be
utilized for application specific accelerators. While the FPGA
allows to create a custom system to meet application specific
needs, the CPU delivers the performance to run complex appli-
cations on top of a modern operating system (OS). However,
exploiting the performance gain offered by application specific
accelerators is a complex design task. For that reason many
techniques have been presented in the past that try to automate
that process.

In [1] we introduced a GCC extension that generates ac-
celerators from loops in unmodified, arbitrary C code. The
accelerators interface with a bare-metal application running on
a soft-core CPU while the whole system is implemented on a
plain FPGA. Bare-metal systems use direct physical memory
addressing, hence, accelerators can access main memory just
using the pointers originating from the application code.

Interfacing accelerators in today’s hybrid platforms has be-
come more involved, since platforms typically run an OS, e.g.
Linux. In such an OS, virtual addressing hinders the usage of
pointers for direct memory access from within the accelerators.
In this paper we present a novel solution that makes it possible
to use virtual addresses together with accelerators. We propose
a virtual addressed cache for values to the accelerator. The
key idea is to handle cache misses by the processor. This is
feasible since the processor is usually idle while the accelerator
is running. Additionally, we show how this scheme simplifies
accelerator design.

II. PROBLEM STATEMENT

As mentioned above, having a virtual memory space is key
for running large applications on hybrid systems featuring a
full-blown OS. By automatically migrating portions of appli-
cation code to a hardware unit, pointers are silently moving
from virtual to physical address space and therefore become
invalid.

To solve this issue, recent desktop platforms provide an
Input/Output MMU (IOMMU), translating addresses during
peripheral DMA access. Unfortunately, IOMMUs are not

widespread in the embedded domain. They are for example
inexistent in today’s hybrid processor-FPGA architectures.

In the absence of an IOMMU, a partial solution consists
in allocating all application data pinned to physically con-
tiguous memory regions. In this case, a single translation
of all addresses passed to the accelerator before invocation
suffices. However, this approach is limited, since it misses
arbitrary pointers calculated by the accelerator at runtime.
Apart from that, allocating all data in contiguous pinned
memory contradicts the principle of virtual memory. Such a
design would quickly run out of resources.

III. PROPOSED IMPLEMENTATION

A. IOMMU-Emulation

To overcome the issues mentioned above, one can emulate
the behavior of an IOMMU. For this purpose, memory requests
from the accelerator must be back delegated to software
and transformed into ordinary memory accesses form the
application domain. Explicit address translation even becomes
obsolete and the fetched data can be returned to the accelerator.
This basic attempt must be backed by caching, prefetching
mechanisms and fast memory transfer techniques to deliver
reasonable performance.

Assuming an accelerator implementing a loop that sequen-
tially accesses memory, simple linear prefetching will already
improve things greatly. Admittedly, access patterns are not
necessarily that simple, but often follow similar patterns.

The work in progress presented in this paper targets the
Xilinx Zynq platform [2], featuring a dual core ARM CPU
coupled with an FPGA fabric. Implementing an IOMMU on
the FPGA is not feasible, because it is not possible to synchro-
nize with the internal MMU of the ARM subsystem. Although,
the initial mappings for the IOMMU could be obtained via
software callback, these mappings could be altered by the
OS afterwards without notice of the IOMMU. Considering
the facts that (i) an application idles while waiting for the
accelerator to return and (ii) the CPU operates 5 times faster
than the FPGA (1 GHz vs. 200 MHz) it sounds plausible to
use the power of the CPU to implement a software-backed
IOMMU.
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Figure 1. Cache layout optimized for various access scenarios.

B. Cache Hardware Implementation

As described earlier, caching is essential for the IOMMU
performance. We propose a local cache in the range of a few
kilobytes for each accelerator, which could be implemented in
FPGA Block RAM. For a small footprint, the cache is split
in a hardware and a software part. The former guarantees
fast access in case of a cache hit, while the latter handles
cache misses by fetching data from memory. This functionality
integrates very well with the emulated IOMMU.

A static code analysis during compile time provides in-
formation to optimize caching strategies in order to meet
the characteristics of each accelerator. For each pointer, the
analysis tries to determine the bounds of the underlying array
and whether its address is increasing or decreasing during exe-
cution. In case one of those properties could not be determined,
we consider the pointer unbounded and/or random.

Our cache is organized in equally-sized lines, while their
size and number could be adapted during design time. For
each line, a table holds start address and length of the mapped
memory region (Figure 1). The latter allows mapping of areas
smaller than a cache line. Mappings are not bound to e.g.
memory pages and can start at an arbitrary address. For
consistency reasons, the cache control avoids overlapping of
two distinct cache lines.

C. Cache Software Functionality

The software part is invoked to handle cache misses, cache
write back and replacement. For the latter case, the software
keeps track of the cache’s current mapping. Implementing
cache control in software saves hardware resources and en-
ables flexibility while exploring caching strategies in order to
minimize cache misses.

On a cache read miss for aread, the chunk of data to be
fetched from memory is determined as follows. The predicted
memory access order defines whether aread is mapped to the
begin, end or middle of the cache line (Figure 1). The latter
occurs if the access order is unknown. The size of the memory
chunk is determined such that (i) no overlap with another
cache line occurs, (ii) the bounds of the underlying array are
not exceeded or (iii) no page boundary is crossed. While (i)
avoids aliasing issues due to ambiguous mapping, (ii) and (iii)
avoid accessing memory outside the applications scope. Rule
(iii) only applies in case of unknown bounds. It is a best guess
which only guarantees not causing segmentation faults. When
no cache line is available, cache replacement is triggered. A

proper strategy for handling replacement and write misses still
has to be defined. In order to transfer data to and from the
accelerator, we use DMA transfers.

IV. RELATED WORK

Nymble [3] and COMRADE [4] are compilers aiming at
generating accelerators from annotated C code. Both use the
MARC II [5] memory model, providing highly parallel and
cache-coherent access for hardware accelerators. To handle
virtual memory addresses, all relevant memory regions are
placed in a single contiguous DMA buffer. Although feasible,
this approach does not scale very well. The authors in [6]
present a solution similar to our proposal. However, their
memory operates at the granularity level of pages. Our cache
will handle arbitrary aligned memory efficiently in smaller
chunks and uses static code analysis to optimize the cache
implementation.

V. CONCLUSION AND PERSPECTIVE

We presented a software-backed local cache for arbitrary
generated accelerators combined with an IOMMU-emulation
technique. Key points of our approach are (i) use of virtual
addresses within cache and accelerators, (ii) small cache
hardware footprint, (iii) easy exploration of caching strategies
and (iv) static memory access analysis during compile time
for optimized caching. A future prototype implementation is
targeting the Xilinx Zynq platform.

The overall performance of our proposed cache basically
depends on the DMA throughput. However, additional latency
introduced by software, e.g. kernel operation to initialize DMA
transfers, have to be considered. To gain speedup, one could
move some of the software functionality to the hardware
(trading time vs. space). In the context of having lots of
accelerators, this has to be wisely considered.

On the Zynq platform, the AXI interfaces reach up to
1200 MB/s and the DMA controller reaches up to 3500 MB/s
transfer rate. Even though we do not have implementation
results yet, these numbers look promising to achieve good
overall performance.
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