
Analysis of Process Traces for Mapping

Dynamic KPN Applications to MPSoCs

Andrés Goens, Jeronimo Castrillon

TU Dresden, Center for Advancing Electronics Dresden (cfaed),
Chair for Compiler Construction

Dresden, Germany
{andres.goens,jeronimo.castrillon}@tu-dresden.de

Abstract. Current approaches for mapping Kahn Process Networks
(KPN) and Dynamic Data Flow (DDF) applications rely on assumptions
on the program behavior specific to an execution. Thus, a near-optimal
mapping, computed for a given input data set, may become sub-optimal
at run-time. This happens when a different data set induces a signifi-
cantly different behavior. We address this problem by leveraging inher-
ent mathematical structures of the dataflow models and the hardware
architectures. On the side of the dataflow models, we rely on the monoid
structure of histories and traces. This structure help us formalize the be-
havior of multiple executions of a given dynamic application. By defining
metrics we have a formal framework for comparing the executions. On the
side of the hardware, we take advantage of symmetries in the architec-
ture to reduce the search space for the mapping problem. We evaluate our
implementation on execution variations of a randomly-generated KPN
application and on a low-variation JPEG encoder benchmark. Using the
described methods we show that trace differences are not sufficient for
characterizing performance losses. Additionally, using platform symme-
tries we manage to reduce the design space in the experiments by two
orders of magnitude.

1 Introduction

Architecture trends show a growing number of processors and heterogeneity in
embedded systems. The problem of leveraging the growing complexity of mod-
ern multi-processor systems-on-chip (MPSoCs) is as relevant as ever. In many
application domains it is well-established to use programming abstractions such
as Kahn Process Networks (KPN) [10] or actor-based data flow models like Syn-
chronous Data Flow (SDF) [12] and dynamic data flow (DDF) [3] for describing
applications. These abstractions allow synthesis tools to reason on a high-level
about physical resource allocation within the chip. They model the application
by using a directed graph, where so-called actors or processes, represented by
the nodes in the graph, communicate with each other via channels, which are
in turn represented by edges. Much work has been done regarding the problem
of mapping KPN and data flow applications to complex hardware architectures

mailto:andres.goens@tu-dresden.de?cc=jeronimo.castrillon@tu-dresden.de

for optimal throughput, resource usage or energy-efficiency [16]. The heuristics
used for this, however, rely on a well-defined program behavior. In the case
of SDF applications, for example, the very nature of the model allows synthesis
tools to reason about mapping by using a topology matrix and finding repetition
vectors in its kernel, which fully describe the communication behavior between
actors [12]. Finding near-optimal solutions in more general models, which do
not have constraints on the program behavior as strong as those of SDF, is a
much more complex task. There are several current approaches to static map-
ping [7,14,18,7]. All these approaches are sensitive to the selection of the input
stimuli that induce the observed trace. To deal with multiple different execu-
tions, authors suggest to compute a mapping for every situation and then pick
the best configuration. For example, for buffer sizing, one approach is to select
the largest size across all configurations [2]. An alternative to deal with varia-
tions is to use the so-called real-time calculus [19], in which events are modeled
by arrival curves that describe upper and lower bounds on the event rates.

In this paper we seek to improve the current state of trace-based mapping
flows to better support multiple traces for one application. We do this in two
ways: by using trace theory, defining metrics in order to compare application
traces and by using group theory to describe and utilize symmetries in the ar-
chitecture. Trace theory has been a well-established model for concurrency for
decades since its first formal formulation in 1977 by Mazurkiewicz [13]. Met-
rics for traces have been defined in very different contexts [8], or for similar
applications very specific metrics have been considered [11]. To the best of our
knowledge, however, trace metrics have never been used in the general context
of analyzing KPN processes.

2 Process Traces and Histories

In this section we present our proposed trace analysis methods for the application
side. To this end we introduce the formal concepts of traces and histories, explain
their relationship and define a metric on the space of traces and of histories.
We then describe experimental results obtained by applying these methods to
randomly-generated KPN traces and on a JPEG encoder.

2.1 Traces and Histories

Traces and histories are both generalizations of strings. They are well-known as
models for concurrently executing processes. Informally, we model concurrently
executing processes as a string over an alphabet Σ, where the words of the
alphabet represent events of the system. In a regular string all occurring char-
acters (or events) have a well-defined sequential ordering. When two contiguous
characters, however, represent independent events in the system, then we do not
distinguish their order in the trace: we consider two traces as equal when we can
convert one to the other by just rearranging independent characters.

More formally, let Σ1, . . . , Σn be n alphabets, and consider the alphabet
Σ “ Σ1 Y . . . Y Σn, the union of those alphabets. This union is not necessarily
disjoint. We define a dependence subset D of Σ2 by D “ Σ2

1
Y . . . Y Σ2

n. From
this we define the set I “ Σ2zD. It can be used to define an equivalence relation
„ on the set of strings Σ˚. We say that ab „ ba, if and only if pa, bq P I.
This induces an equivalence relation „ on Σ˚ by extending it to all strings
(the reflexive, transitive symmetric closure). We define the set of traces as the
factor set of equivalence classes Σ˚{ „. Since strings with concatenation have
the algebraic structure of a monoid, and concatenation and the epimorphism to
the equivalence class „ commute, Σ˚{ „ is also a monoid with concatenation.
It is therefore usually called the trace monoid [9].

Histories are similar. Instead of an arbitrary concatenation of the various
independent strings, we consider a history to be a tuple of strings, one in each
of the alphabets Σi. The individual alphabets represent the possible events for
individual processes. These alphabets can have some common characters between
them, in which case Σi X Σj ‰ H holds. These common characters represent
synchronization events: they happen in two or more processes at the same time.

We can think of a history as a log of an application which represents all events
in a parallel execution with different tasks or processes. The projection onto the
alphabet of a single process represents the individual history of that process,
independent of the others. With respect to component-wise concatenation, the
set of histories over the alphabet Σ “ Σ1 Y . . . Y Σn is also a monoid, which
is why it is often called the history monoid [9].

These two structures, the trace and the history monoid, are isomorphic. We
either list events sequentially in a trace, where we don’t distinguish the order of
independent events, or we define the sequential history of each process indepen-
dently. A formal proof of this fact can be found in [9].

2.2 Metrics

A metric acts as a way of measuring distance between objects. If we consider
traces and histories as descriptions of the behavior of individual executions of a
software built of concurrent processes, a metric acts as a way of comparing said
execution behaviors.

There exists a plethora of metrics on strings, which are used from coding
theory to DNA analysis and approximate string matching. Notable examples
include the Hamming distance which only counts the number of equal letters, or
the edit distance, which counts the minimal number of deletions, insertions and
substitutions needed to go from one string to another. We can generalize these
metrics to histories (and thus, traces) with the following theorem:

Theorem 1. Let Σ “ Σ1 Y . . . Y Σn be an alphabet and d be a metric on the
strings Σ˚ over Σ. Then d induces a metric d̄ on the set of histories H over
pΣ1, . . . , Σnq with projections π1, . . . , πn by

d̄px “ px1, . . . , xnq, y “ py1, . . . , ynqq “
n

ÿ

i“1

dpxi, yiq “
n

ÿ

i“1

dpπipxq, πipyqq (1)

Proof. Let x, y, z P H be histories.

1. Let d̄px, yq “ 0. Then dpπipxq, πipyqq “ 0 for all i “ 1, . . . , n. Since d is a
metric, it means that πipxq “ πipyq for all i. This implies that x “ y since
it holds for all projections.

2. By definition (Eqn. 1) it is immediately obvious that, since d is a metric

d̄px, yq “
n

ÿ

i“1

dpπipxq, πipyqq “
n

ÿ

i“1

dpπipyq, πipxqq “ d̄py, xq

3. Finally, the triangle equation also follows in a similar fashion:

d̄px, yq “
n

ÿ

i“1

dpπipxq, πipyqq
looooooomooooooon

ďdpπipxq,πipzqq`dpπipzq,πipyqq

ď
n

ÿ

i“1

dpπipxq, πipzqq ` dpπipzq, πipyqq

“
n

ÿ

i“1

dpπipxq, πipzqq `
n

ÿ

i“1

dpπipzq, πipyqq “ d̄px, zq ` d̄pz, yq

Similar to this construction, and inspired by the lp norms, we can define
other metrics on histories (and traces).

Let p P Rě1 be a real number, greater than or equal to one. Further let
Σ “ Σ1 Y . . . Y Σn be a history alphabet and let d1

i : Σ
˚
i Ñ Rě0 be a metric on

Σi, i “ 1, . . . , n. Let H Ď Σ˚
1

ˆ . . . ˆ Σ˚
n be the set of histories on Σ, with the

corresponding projections πi : H Ñ Σi, i “ 1, . . . , n. We call the mapping

dp : H ˆ H Ñ Rě0, px, yq ÞÑ p

g

f

f

e

n
ÿ

i“1

d1
ipπipxq, πipyqqp

the p-metric on the histories. Similarly, we can define a 8 metric d8 as
d8px, yq “ maxi“1,...,dpπipxq, πipyqq. The proof that these induce metrics is very
similar to that of Theorem 1.

2.3 Trace analysis

To have controlled differences in our traces, we use random KPN traces. We
generate them with a modification of the open-source software tool sdf3 [17].
Concretely, we generate a random SDF application, and subsequently modify
it to have a less static behavior. We do this by generating a set of possible,
different input/output behaviors and randomly varying between them at run-
time. For realistic behavior, we do this only on some KPN processes, while others
keep their static (SDF) behavior. This method is inspired by the random KPN
generation described in [5]. Once the application has been generated, different
traces are created. This is achieved by fixing the possible behaviors and only
randomizing the frequencies of occurrence.

For evaluating mappings we use a discrete-event-simulator similar to the one
described in [6]. As the target architecture we use a virtual platform, also similar

Fig. 1: A diagram of the test architecture used

to the one described in [6]. It has two identical RISC (ARM) processors and four
identical vector DSPs. A diagram of this test architecture can be seen in Figure 1.

For evaluating the methods proposed in this section we used a fixed, randomly
generated process network which had four different processes and four FIFO
channels. We generated 1000 different random process traces of diverse lengths
and behaviors. For each of these 1000 traces we calculated the optimal mapping
by using the discrete event simulator and exhaustively evaluating all 64 “ 1296
different possible (process-to-processor) mappings. For buffer sizing we used a
simple strategy assigning the same size to the buffers on all traces for an accurate
comparison. This approach is inefficient and time-consuming, but only by using
truly optimal mappings can we achieve a valid analysis. Without the optimality
of the mapping there is no guarantee that it is good for a trace, even if it was
specifically calculated for it.

Random traces provide only limited insight into this problem. To validate our
approach we also considered a JPEG encoder with an existing implementation as
a KPN. The JPEG encoder needs to perform run-length encoding, which exhibits
dynamic behavior for the KPN channels. We executed the JPEG encoder on a
benchmark consisting of 200 images adapted from the BSDS500 Benchmark [1].

The exponential scaling of the exhaustive mapping evaluation is also the rea-
son why a network with only four processes was chosen for the random traces.
For larger applications where the problem size makes exhaustive evaluation pro-
hibitively long, as is the case for the JPEG encoder, good meta-heuristics like
evolutionary algorithms can be considered as a replacement. While this does not
guarantee the same accuracy for the comparison, using the results of a good
meta-heuristic should produce a solid basis for comparison nevertheless. For the
JPEG encoder we use simple heuristics from the literature (e.g., load balancing).

2.4 Results

We chose a reference trace for comparing. Then, for each of the 1000 random
traces we compared the optimal run-time obtained using the optimal mapping
with the run-time obtained using the reference mapping (in general only optimal
for the reference trace). From the quotient of both we obtained a slowdown
factor ě 1. Similarly, we calculated the distance between each trace and the

reference one. Using this we analyze the correlation between trace distance and
the slowdown from using the sub-optimal mapping. The results can be seen in
Figure 2. This figure uses three different induced metrics from two string metrics
for a total of six metrics. They have been normalized to one within the data-set
for comparison. The axes on Figure 2b were adjusted not to show the trivial
points at p0, 1q (for the reference trace). This is for the sole purpose of a better
visual scaling of the plot.

(a) Induced from the edit distance (b) Induced from the Hamming distance

Fig. 2: Application slowdown as a function of different trace distances

As an example, consider the point marked in Figure 2a. This point has the
coordinates p0.24, 1.42q. It means that the distance between the trace corre-
sponding to the point, and the reference trace was 24% of the maximal distance
in the plot (concretely, d1 “ 101 with a maximal distance of 424). The 1.42
slowdown factor means that the execution time of the trace with the reference
mapping was 42% slower than with its own optimal mapping.

Altogether, Figure 2 shows a low correlation between the trace distance and
how good the mapping of one trace is for the other one. Concretely, the corre-
lation coefficients are ´0.014, ´0.077, ´0.095, 0.119, 0.010, and ´0.059, for the
d1, d2 and d8 norms induced by the edit and Hamming distances, in that order.

JPEG Encoder

Figure 4 shows a histogram of different trace metrics for the 200 JPEG encoder
executions. The traces were normalized with the distance from the reference
trace to the empty trace, to give an idea of how much variation was between the
traces. The JPEG encoder has variation in traces due to the run-length encoder,
which is a small function that sends a different amount of tokens depending
on the compressed data. However, the majority of the computation time is due
to the discrete cosine transform, which has a static behavior. Even though the

run-length encoder represents just a small fraction of the computation, we found
performance and trace behavior deviations. By using the mapping tailored for
a different trace, a slowdown of up to 1.77% was observed. More importantly
though, we see that different inputs yield different behaviors, represented by
different traces. We also see that these differences have a negative impact on
performance, albeit a small one in this case. In the future we plan to investigate
further applications where the dynamic data flow part of the application amounts
to a more significant percentage of the execution.

3 Permutations of Mappings

From the trace analysis above we see that distance analysis itself does not suf-
fice to infer the performance of different mappings. Instead, in this section we
consider the problem from the perspective of the mappings and the architecture,
as opposed to that of the traces and the application. We take advantage of the
fact that heterogeneous platforms have some degree of symmetry. We formally
define and explore this symmetry, and present a strategy to reduce the design
space that leverages it.

3.1 Problem Formulation

Mathematically, we can formulate our problem as follows: Let P be a set of
physical resources (e.g. processing elements, on-chip memories) and let L be a
set representing logical elements (e.g., processes, FIFO channels). We define a
valid mapping m : L Ñ P as a mapping in the mathematical sense (a function),
such that it respects the KPN structure. Formally, let G be a subgroup of the
symmetric group of the physical resources SP . The canonical action of the group
G on P induces an action on the set of mappings m : L Ñ P : for g P G and m :
L Ñ P a mapping, i.e. pg ¨mqplq :“ g ¨mplq for all l P L. We require of a symmetry
group that the run-time for all traces is an invariant of the group action. In
particular, this means that the action of G on the set of mappings restricts
to an action on the set of valid mappings. This implies, for example, that we
only consider symmetries of the architecture that map processors to processors
and communication resources to equivalent communication resources. We define
equivalence classes for mappings: we say two mappings m,m1 are equivalent if
there exists a symmetry of the architecture g P G such that g ¨m “ m1, i.e., if m
and m1 are in the same orbit under the action induced by G on the set of valid
mappings.

For example, let P “ tRISC1,RISC2,DSP1, . . . ,DSP4u be the processor set
of the architecture from the experimental setup in last section (see Figure 1),
and let L “ tp1, . . . , p4u be the process set of the four-process KPN used in the
example from last section. For simplicity, we consider an elementary, symmetric
communication model in this example where communication resources and pro-
cessors are coupled. Then the group G that can swap both RISC processors and
allows any permutation of the four DSP processors is the symmetry group of

this architecture. It is isomorphic to S2 ˆS4, i.e., the direct product of the sym-
metric groups on two and four elements respectively. As an example, consider
the mappings

m1 : p1 ÞÑ RISC1, p2, p3 ÞÑ DSP2, p4 ÞÑ DSP 3

m2 : p1 ÞÑ RISC1, p2, p3 ÞÑ DSP1, p4 ÞÑ DSP 4

m3 : p1 ÞÑ RISC1, p2, p4 ÞÑ DSP2, p3 ÞÑ DSP 3.

Then, m1 and m2 are equivalent, however neither of them is equivalent to m3.
The motivation for this definition of equivalence is that if two processors are

equal, then it usually should make no difference if one or the other is chosen for
the mapping. This can also be used for taking communication into account, for
example when there is additional symmetry from multiple memories or differ-
ences in local memories break the processor symmetry.

Groups with this structure are by far the most common symmetry group for
heterogeneous architectures. A heterogeneous architecture which has n1 equiva-
lent processing elements of type 1, n2 equivalent processing elements of type 2,
and so forth, will have a symmetry group isomorphic to Sn1

ˆSn2
ˆ¨ ¨ ¨ . However,

the symmetry group of a subset of equivalent processing elements need not be
a full symmetric group. For example, consider a simple homogeneous four-core
architecture with a Network-on-Chip (NoC), such that the communication la-
tency between adjacent processors is considerably lower than to non-adjacent
ones. Then the adjacency of the processors should be kept with any symmetry
transformation, which means the symmetry group is a dihedral group of a reg-
ular polygon with 4 sides, instead of the full symmetric group on 4 points. This
group is called D4, though some references call it D8 because it has 8 elements.
Figure 3 shows a schematic of this symmetry and an example of an allowed sym-
metry, one of the two generators, and a permutation that is not a symmetry of
the architecture. It depicts the symmetry transformations with the green or red
arrows, and an example of the action on a mapping of four processes, represented
by the green or red circles.

3.2 Algorithmic Considerations

To identify equivalent mappings we need to find out if two elements are in the
same orbit. Specifically, if m,m1 are mappings, we need to test if m1 P Gm. This
can in general be done with Op|Gm||S|q group element applications, where |S|
is a generating set of the group G, see Theorem 2.1.1 of [15]. Since we do not
plan to deal with very complex symmetry groups, however, we used a different
approach. Our approach is tailored for groups that have the form

Śk

i“1
Sni

, for
n1, . . . , nk P N. It takes advantage of the fact that group membership testing is a
simple task in groups of this family. We devised a strategy that given mappings
m,m1 generates a tentative mapping σ : t1, . . . , |P |u Ñ t1, . . . , |P |u such that
if there exists a τ P S|P | such that τ ¨ m “ m1, then σ is a permutation and it
holds that σ ¨ m “ m1. We achieve this by iterating over all elements e in the
definition domain of mapping m and updating σ to be correct for that element

(a) The generator element for
the D4 symmetry

(b) A permutation not in-
cluded in the D4 symmetry

Fig. 3: Schematic representation on of the symmetry of a 4-core NoC Architecture

(i.e. pσmqpeq “ m1peq), without guaranteeing that it remains a permutation.
Using this tentative mapping strategy, we can find out if two mappings are in
the same orbit, and if so, obtain a permutation that maps one to the other.

Algorithm 1 Orbit membership testing for direct products of symmetric groups

INPUT: m,m1, n “ |P |
OUTPUT:
if Gm “ m1

then

an element g P G: gm “ m1,
else false

end if

ALGORITHM:
σ = tentativeMapping(m,m1, n);
permutation = isPermutation(σ);
ingroup = isInGroup(σ, G);
maps = mappingsEqual(σ ¨ m, m);
if permutation and ingroup and maps then

return σ

else

return false

end if

Algorithm 1 is more efficient than the standard algorithm. It uses a constant,
single group application instead of Op|Gm||S|q. However, it relies on the fact that
if the proposed element σ is not in G, then there exists no element g P Gmapping
m to m1, which is by no means obvious if G is not of the form

Śk

i“1
Sni

. For the
general case, the standard black-box group algorithms should be used (see [15]).

The permutation approach has limited scalability. Using Burnside’s Lemma
[4], it is straightforward to prove that the factor by which the size of the search
space is reduced is bounded by the cardinality of the symmetry group. In partic-

ular, the asymptotic scaling behavior of the size of the search space is the same,
it still is in Op|P ||L|q. However, we see in the experiments in the next section
that not all equivalence classes of mappings are equally common. Further inves-
tigation could concentrate on identifying the most important equivalence classes
and their corresponding traces.

3.3 Experimental results

For evaluating this approach, we used the same basic setup as in Section 2. Using
Algorithm 1 we identified equivalence classes in the optimal-run-time mappings
of the same set of 1000 random process from Section 2. We selected one trace
and identified all traces which yielded mappings equivalent to it. In general,
for a system with 6 processors total where there are two groups of 4 and 2
equivalent processors respectively, there exist exactly 83 possible mappings of
four processes. This fact can be verified using Burnside’s Lemma. Out of the 1000
traces a total 23 were equivalent to the first one. They all had a slowdown factor
of exactly 1, as would be expected of equivalent mappings. This is, however, only
a fraction of the 161 mappings with a slowdown factor of 1 compared to the first
trace.

Furthermore, of all 83 possible mappings, considering symmetry, only 30
were present in the traces. Figure 5 shows a bar plot of the percentage of traces
belonging to each group, for the 30 groups up to symmetry which had a trace
with an optimal mapping in this group. They are ordered from most common
to least common, and the remaining 53 unrepresented groups are not depicted.

This results show that while there are quite a few possible equivalence classes
of mappings, 83 in this case, only very few are actually good mappings. The two
most common equivalence classes are optimal for almost 30% of the traces, while
the five most common ones actually account for more than half the traces.

The JPEG encoder was not considered for this since it would be too com-
putationally intensive to calculate optimal mappings, and it would have yielded
limited insight for the lack of optimality variations between traces.

Fig. 4: Histogram of normalized traces
differences (JPEG encoder)

Fig. 5: Frequency of the equivalence
classes of optimal mappings

4 Conclusion

In this paper we have considered the differences in execution behaviors of KPN
and dynamic data flow applications as process traces or histories. We defined a
metric space structure on traces and used it to measure the relationship between
the trace distance, and how good the optimal mapping of one trace works for
the other. For this, we also developed a framework for comparing them, which
included exhaustive search on small examples to find true optimal mappings, for
a solid comparison base.

The results from the JPEG encoder showed behavioral variations for different
inputs in a real application. Additionally, the results from our analysis on random
traces suggest no correlation between the trace distance and the goodness of the
mappings of one to the other. This is a very revealing result. Its implications
are twofold. First, it means that the difference between two traces does not
suffice to t if we can use the same mapping for both. In particular this means we
should devise more elaborate strategies for trace grouping, probably application-
specific ones. The second, less obvious implication, is that very small differences
in traces can have a very big impact on performance. Further work will focus on
real applications with more dynamic behavior than the JPEG encoder that was
used.

Apart form the behavior in the form of the traces, we also considered the
problem from the perspective of the mappings. We defined a strategy to leverage
symmetries in the architecture and evaluated it with the experiments used for the
traces. We managed to reduce the search space from 1296 possible mappings to
83 possible equivalence classes of mappings, and found that very few equivalence
classes of mappings account for the optimal throughput in the majority of traces.

Another direction for future work is to define strategies for identifying traces
at run-time and using trace-specific information about the optimal mapping
for dynamically improving adaptive execution. The analysis framework can be
used to consider the problem of buffer sizing for multiple traces, which was not
addressed in this work.

Acknowledgments

This work is supported in part by the German Research Foundation (DFG)
within the Cluster of Excellence “Center for Advancing Electronics Dresden”
(cfaed). We would like to thank Silexica (www.silexica.com) for making their
embedded multicore software development tool suite available to us as basis for
our work.

References

1. Arbelaez, P., Maire, M., Fowlkes, C., and Malik, J. Contour detection and
hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 5
(May 2011), 898–916.

http://www.silexica.com

2. Brunet, S. C. Analysis and optimization of dynamic dataflow programs. PhD
thesis, Ecole Polytechnique Federale de Lausanne (EPLFL), 2015.

3. Buck, J. T., and Lee, E. A. Scheduling dynamic dataflow graphs with bounded
memory using the token flow model. In Acoustics, Speech, and Signal Processing,
1993. ICASSP-93., 1993 IEEE International Conference on (1993), vol. 1, IEEE,
pp. 429–432.

4. Burnside, W. Theory of groups of finite order. 1911.
5. Castrillon, J., and Leupers, R. Programming Heterogeneous MPSoCs: Tool

Flows to Close the Software Productivity Gap. Springer, 2014.
6. Castrillon, J., Leupers, R., and Ascheid, G. Maps: Mapping concurrent

dataflow applications to heterogeneous mpsocs. IEEE Transactions on Industrial
Informatics, 99 (2011), p–19.

7. Castrillon, J., Tretter, A., Leupers, R., and Ascheid, G. Communication-
Aware Mapping of KPN Applications onto Heterogeneous MPSoCs. In DAC ’12:
Proceedings of the 49th annual conference on Design automation (2012).

8. de Bakker, J., and Zucker, J. I. Denotational semantics of concurrency. In
Proceedings of the fourteenth annual ACM symposium on Theory of computing
(1982), ACM, pp. 153–158.

9. Diekert, V., Rozenberg, G., and Rozenburg, G. The book of traces, vol. 15.
World Scientific, 1995.

10. Gilles, K. The semantics of a simple language for parallel programming. In
In Information Processing74: Proceedings of the IFIP Congress (1974), vol. 74,
pp. 471–475.

11. Kengne, C. K., Ibrahim, N., Rousset, M.-C., and Tchuente, M. Distance-
based trace diagnosis for multimedia applications: Help me ted! In Semantic Com-
puting (ICSC), 2013 IEEE Seventh International Conference on (2013), IEEE,
pp. 306–309.

12. Lee, E. A., and Messerschmitt, D. G. Synchronous data flow. Proceedings of
the IEEE 75, 9 (1987), 1235–1245.

13. Mazurkiewicz, A. Concurrent program schemes and their interpretations.
DAIMI Report Series 6, 78 (1977).

14. Pimentel, A. D., Erbas, C., and Polstra, S. A systematic approach to ex-
ploring embedded system architectures at multiple abstraction levels. Computers,
IEEE Transactions on 55, 2 (2006), 99–112.

15. Seress, Á. Permutation group algorithms, vol. 152. Cambridge University Press,
2003.

16. Singh, A. K., Shafique, M., Kumar, A., and Henkel, J. Mapping on
multi/many-core systems: survey of current and emerging trends. In Proceedings
of the 50th Annual Design Automation Conference (2013), ACM, p. 1.

17. Stuijk, S., Geilen, M., and Basten, T. SDF3: SDF For Free. In Applica-
tion of Concurrency to System Design, 6th International Conference, ACSD 2006,
Proceedings (June 2006), IEEE Computer Society Press, Los Alamitos, CA, USA,
pp. 276–278.

18. Thiele, L., Bacivarov, I., Haid, W., and Huang, K. Mapping applications to
tiled multiprocessor embedded systems. In Application of Concurrency to System
Design, 2007. ACSD 2007. Seventh International Conference on (2007), IEEE,
pp. 29–40.

19. Thiele, L., Chakraborty, S., and Naedele, M. Real-time calculus for schedul-
ing hard real-time systems. In Circuits and Systems, 2000. Proceedings. ISCAS
2000 Geneva. The 2000 IEEE International Symposium on (2000), vol. 4, pp. 101–
104 vol.4.

	Analysis of Process Traces for Mapping Dynamic KPN Applications to MPSoCs

