TETRIS: a Multi-Application Run-Time System for Predictable
Execution of Static Mappings

Andrés Goens, Robert Khasanov,

Jeronimo Castrillon
Chair for Compiler Construction
TU Dresden,
Center for Advancing Electronics Dresden (cfaed)
{firstname.lastname}@tu-dresden.de

ABSTRACT

For embedded system software, it is common to use static mappings
of tasks to cores. This becomes considerably more challenging in
multi-application scenarios. In this paper, we propose TETRIS, a
multi-application run-time system for static mappings for hetero-
geneous system-on-chip architectures. It leverages compile-time
information to map and migrate tasks in a fashion that preserves
the predictable performance of using static mappings, allowing
the system to accommodate multiple applications. TETRIS runs
on off-the-shelf embedded systems and is Linux-compatible. We
embed our approach in a state-of-the-art compiler for multicore
systems and evaluate the proposed run-time system in a modern
heterogeneous platform using realistic benchmarks. We present
two experiments whose execution time and energy consumptions
are comparable to those obtained by the highly-optimized Linux
scheduler CFS, and where execution time variance is reduced by a
factor of 510, and energy consumption variance by a factor of 83.

CCS CONCEPTS

« Software and its engineering — Run-Time environments;
« Computer systems organization — System on a chip;

KEYWORDS

Heterogeneous, MPSoC, run-time, adaptivity, symmetry,
multi-application

ACM Reference format:

Andrés Goens, Robert Khasanov,

Jeronimo Castrillon and Marcus Héhnel, Till Smejkal,

Hermann Hartig. 2017. TETRIS: a Multi-Application Run-Time System for
Predictable Execution of Static Mappings. In Proceedings of SCOPES ’17,
Sankt Goar, Germany, June 12-14, 2017, 10 pages.

DOIL: http://dx.doi.org/10.1145/3078659.3078663

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SCORPES 17, Sankt Goar, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5039-6/17/06...$15.00

DOI: http://dx.doi.org/10.1145/3078659.3078663

Marcus Héhnel, Till Smejkal,

Hermann Hartig
Chair of Operating Systems
TU Dresden,
Center for Advancing Electronics Dresden (cfaed)
{firstname.lastname}@tu-dresden.de

Application 1 (néar—)
task graph OPtl‘T‘al
static
mapping
Application 2 (near-)
task graph optimal
static
mapping

no strategy TETRIS

unpredictable (CFS)

Figure 1: The basic idea behind TETRiS

1 INTRODUCTION

When designing software for embedded systems, reliability and
predictability are usually just as much an asset as raw perfor-
mance [1, 7, 16]. Today, with the increasing availability of high-
performance embedded devices, like the ARM big. LITTLE™ plat-
forms [11] or the many-core Epiphany-based systems [20], the
lines between commodity, high-performance and embedded system
devices and ecosystems are becoming increasingly blurred. Sev-
eral modern embedded systems interact with the environment in a
plethora of ways at the same time. This increases the unpredictabil-
ity of software execution, since the workload of the system depends
on many different and independent applications [16].

In several cases, the traditional notions of real-time software do
not always apply anymore: many applications are too complex and
variable, yet not critical enough for a rigorous worst-case execution-
time analysis and verification. Consider a modern mobile phone. It
has to keep several background processes running for the normal
functioning of the phone, while being used for high-quality video
playback. If then, a high-performance request gets scheduled, e.g.,
from a bluetooth device which wants to do simultaneous location
and mapping using the phone, it would be ideal to keep the same
performance for the other tasks, without changing the user expe-
rience. To ensure this, the allocation of resources might need to

SCOPES ’17, June 12-14, 2017, Sankt Goar, Germany

be adapted dynamically, while keeping the performance equal. We
need approaches that ensure an execution that is predictable and
efficient on average, even in the presence of dynamic changes in
the system’s load.

A large body of research has been dedicated to programming
applications for these modern embedded systems [5, 8, 19, 21, 25].
Common approaches structure the application in an abstract way,
and can thus make decisions based on these abstract models of com-
putation. Usually: how to partition the application code, and where
and how to schedule this partitioned code. The “where” question is
sometimes also called mapping. In particular, it is a common prac-
tice to use static mapping and scheduling strategies at compile-time
to obtain predictable outcomes [2].

However, flows considering static resource allocation and con-
centrating on a single application struggle when dealing with mul-
tiple applications. The estimated performance of an application
does not consider other applications that will compete for system
resources. This leads to significantly worse and less predictable per-
formance when, at run-time, this isolated view of the application
does not hold anymore. To avoid contention in the communication,
hardware support like Network-on-Chip technologies or mecha-
nisms at the hardware level to ensure isolation and predictable
communication patterns between tasks [12, 15] are required. These
concepts, along the lines with the concept of precision timed (PRET)
machines [7], require very specific hardware, not all of which has
been embraced by chip manufacturers yet.

In this paper we present a novel approach to keep applications
in their isolated view at the software level, obtaining reliable perfor-
mance in dynamic multi-application scenarios. While the methods
should produce the best results on precision-timed machines, our
implementation also works on off-the-shelf heterogeneous multi-
processor system-on-chips (MPSoCs) and is compatible with Linux.
We call our approach the Transitive Efficient Template Run-time
System (TETRIS).

Figure 1 summarizes the idea of the TETRIS approach. It uses
near-optimal static mappings for the isolated applications, as de-
picted on the upper side of Figure 1. Then, it revolves around an
innovative strategy for mapping multiple applications by identify-
ing and selecting mappings with equivalent performance properties.
By using a formal, mathematical model it can automatically and
precisely identify, at compile-time, classes of mappings that will
have the same performance on a system. Figure 1 shows what
would happen when using no strategy at all, which results in a very
inefficient resource distribution, an unpredictable redistribution,
as would probably be computed, e.g., by the operating system’s
scheduler (CFS, the Completely Fair Scheduler, in the case of Linux),
and TETRIS, where the structure of the mapping is preserved. Since
our method leverages the structure of the architecture only, it is
agnostic to the mapping strategy and its objectives. By using a
strategic precomputation step, this can be done with almost no
overhead at run-time.

We evaluate the TETRIS approach by embedding it into a state-
of-the art commercial compiler for multicore systems, from the
“SLX Tool Suite” by Silexica [23]. We use it then to execute multiple
applications from the signal processing and multimedia domains
on a modern heterogeneous architecture.

A. Goens et al.

TETRIS
equivalences

TETRIS
symmetry detection

architecture
description

traditional static
mapping approaches

static T
mapper pping TI-T‘I'RIS

config.
application
description

design-time

compile-time run-time

Figure 2: An overview of the TETRIS flow

The rest of the paper is structured as follows. Sections 2 and 3
describe the TETRIS system and the evaluation. Then, related work
is discussed in Section 4, and finally, Section 5 concludes the paper.

2 THE TETRIS RUN-TIME SYSTEM

TETRIS, the Transitive Efficient Template Run-time System, is a
run-time mapping and scheduling meta-strategy that enables the
efficient use of near-optimal static-mappings in dynamic multi-
application scenarios. The basics of the TETRIS runtime system are
depicted in Figure 2. The gray area (blue boxes) represents the pro-
cess flow of traditional static-mapping approaches, like [5, 8, 19, 21,
25]. On a high level of abstraction, it takes a model of the architec-
ture and the application and uses them to calculate a near-optimal
static mapping of the application to the architecture. The run-time
system schedules the application respecting this mapping. The ad-
ditions from TETRIS, the green boxes in Figure 2, calculate how
to identify mappings that are equivalent using only the architec-
ture description. This information is given to the TETRIS runtime
system, which uses the original static mapping as a template to
schedule applications by transitively iterating over the equivalence
class of mappings.

In this section we describe the TETRIS system in detail. We
integrate it into the multicore compiler provided by the SLX Tool
Suite, which we briefly introduce. Since our approach is agnostic
to the mapping strategy, any other static-mapping approach as
described above could be used instead. TETRIS is not concerned by
the properties of the mappings themselves, it just preserves them.
Finally, we explain how the symmetry engine of TETRIS identifies
and generates mapping equivalences, and how these are selected
at load-time when a new application starts.

2.1 The SLX Tool Suite

The SLX Tool Suite is a set of tools for programming multicore
systems. It is a commercial spin-off of the academic Multicore Ap-
plication Programming Studio, MAPS [5]. At its core, the multicore
programming flow follows the structure from the gray area in Fig-
ure 2.

Applications are described using the Kahn Process Networks
(KPN) programming model [13], using an extension to the C pro-
gramming language, called C for Process Networks (CPN). A KPN
describes computation as processes, which in CPN are simply pieces
of C code. These processes communicate via FIFO buffers, called
channels. Parallelism can be easily extracted from this so-called

TETRIS: Predictable Execution of Static Mappings

L Ll L1 L1
PE PE

PE1 PE2 5 6

Ll) (L1 L1 Ll

L2
M

RA]

Exynos

Figure 3: The heterogeneous Exynos architecture.

Cortex A7 O L1
Cortex A15 © — L2

Figure 4: The architecture graph of the Exynos.

dataflow representation of a program. Programs can be either writ-
ten in this representation directly or obtained from sequential code
with automatic parallelizing heuristics.

Hardware architectures, on the other hand, are modeled by metic-
ulously measuring communication times between different parts
in the topology to construct analytic models. These models are
usually stored in a structured format (xml), where a description
of the topology is given alongside the estimated communication
times between different parts of the architecture, and the different
processing element (PE) types, in the case of an heterogeneous
architecture.

These two descriptions are used, combined with either accurate
estimations or, when available, measurements from an execution
trace to drive heuristics that statically determine a near-optimal
static mapping. Here, a mapping refers to an allocation of resources
(PEs and memory) for the components of the KPN, i.e., the processes
and channels. In this paper, we are not concerned with the mapping
heuristics and objectives themselves. The aim of the TETRIS system
is to be agnostic to them, leveraging the structure of the target
architecture to preserve the properties of the mappings. Thus, the
approach could have been implemented in any other task-based
multicore mapping system.

2.2 Equivalent mappings

Hardware architectures, even heterogeneous ones, exhibit symme-
try to some degree. When all the properties of the PEs and the
communication between them are equal, we intuitively expect two
mappings to yield the same results. In the following, we will show

SCOPES ’17, June 12-14, 2017, Sankt Goar, Germany

how this intuitive concept of equality can be described formally
and used to automatically find equivalent mappings in MPSoCs.

2.2.1 The Architecture Graph. For the TETRIS approach, we for-
malize the notion of equivalence of mappings by using graph theory.
To recognize the equivalence of mappings, our approach uses a
structure called the architecture graph to capture the architecture
topology [3]. This multigraph A = (V4, E 4) has a node v € V4 for
every PE in the architecture. A function / labels all the PEs in V4
with their PE type in heterogeneous architectures.

For every communication resource r that can be used between
two PEs v, vy € V4, the architecture graph has an edge (v1,vz,7) €
E4, where r is a label for that communication resource. As an
example, consider the Exynos architecture, as illustrated in Figure 3.
It has eight ARM PEs, following the big. LITTLE™ principle, with
four ARM Cortex A7 PEs (the “little” ones) and four ARM Cortex
A15 PEs (the “big” ones). For it, the architecture graph of the Exynos
architecture is depicted in Figure 4. The labels for the different
communication resources and PE types can be seen in the colors of
the edges and nodes in the graph.

This architecture graph can be readily obtained from the archi-
tecture description in the SLX Tool Suite, or any similar description
which includes the structure of the hardware architecture. In fact,
the objective of the architecture graph is to allow us to capture, in
a mathematical object, precisely this structure: the topology, PE
types and the communication resources available. Only by using
the formal nature of this architecture graph we can extract the
symmetries of the architecture algorithmically, i.e., in an automated
fashion.

2.2.2 Extracting Symmetry. In order to extract the symmetry
from the architecture graph, we first need to understand how the
intuitive concept of symmetry can be described in this graph-based
formalism.

Let K be the KPN graph and consider a (valid) mapping m : K —
A. We can identify a subgraph A, < A of the architecture graph
A which corresponds to m. Namely, the subgraph with precisely
those nodes and edges to which a process or channel is mapped,
i.e., the image of K under m, A, = m(K). This means that, for
all KPN processes p1,p2 connected via the channel c¢1, we have
m(p1).m(p2) € Va,, and (m(p1). m(pz). m(c1)) € Ea,. Figure 5
illustrates these subgraphs for two example mappings onto the
Exynos architecture. On the left of the figure, the mappings are
depicted: the tasks A, B, C and D are mapped to different PEs, this
is illustrated by drawing the tasks inside the PEs. On the right of
the figure, the corresponding subgraphs to each of the two depicted
mappings are shown; these are subgraphs of the architecture graph
depicted in Figure 4.

By leveraging the corresponding sub-architectures, we can define
the equivalence of two mappings. We say two mappings m1, my
are equivalent if the function ¢ : Ay, — Ap,, which takes the
subgraph of mj to that of m; is a graph isomorphism and, for
heterogeneous architectures, respects the vertex labels [. Here,

SCOPES ’17, June 12-14, 2017, Sankt Goar, Germany

Mappings

A. Goens et al.

Architecture Subgraphs

o
~ (@ T am
L (PE, ¢ PE6>

PE7 i
PE5)
Py
PE1 PE4‘ \/\PE6/’
) O >
= \\PE7/)

Cortex A7 O ® ‘
Cortex A15 ©

Figure 5: Two equivalent mappings and the corresponding isomorphism of architecture subgraphs.

¢ is defined as:
o(m1(p)) = ma(p) for all p KPN process (1)

@(m1(p1), mi(p2), mi(cr)) = (m2(p1), mz(p2), ma(c1))
for all ¢y KPN channel connecting p; and py (2)

A graph isomorphism is a bijective function ¢ between the vertex
sets of two graphs G; = (V1, E1) and Gz = (Va, Ez), such that two
nodes are adjacent if and only if their images under ¢ are adjacent,
ie.

(¢(v), p(w)) € E2 & (v, w) € Ey

An example of this can be seen in Figure 5. In the example, a task
graph consisting of tasks A, B, C and D is mapped to the Exynos
in two equivalent ways: in the upper diagram, A, D + PE3,B
PE4,C +— PE;. This is equivalent to the mapping in the lower
diagram, namely A, D - PE;, B — PE4, C — PEs. This is the case
because the isomorphism, ¢ : PE3 - PEq, PE4 > PE4, PE; > PEs,
respects the labels of the nodes and edges of the subgraphs, as
depicted on the right side of the figure.

If the function ¢ is a graph isomorphism, then we can think of it
basically as a renaming of the PEs, which does not alter the struc-
ture of the architecture (as captured by the architecture graph A). If,
additionally, Vi = V3 = A, then ¢ is what is called an automorphism
of A. The symmetries of hardware architectures can be also studied
by analyzing all such functions, using the mathematical theory of
groups [9]. However, our approach can identify much more symme-
try, since it is not restricted to global symmetries, as are groups.
Similarly, our approach can leverage symmetries that are not intu-
itive from a geometric perspective. To understand this, consider the
example of a regular 4 by 4 mesh Network-on-Chip (NoC), and the
sub-architectures depicted in Figure 6. For two sub-architectures
to be equivalent, they have to respect the communication pattern
in the NoC, i.e., the number of hops (Manhattan distance) between

the processors. If we consider a group-theory based solution as
outlined above, which only considers global symmetries, we can
get rotations (or reflections) of the architecture. Translations,
however, are not such global symmetries: these would be captured
in a geometrical approach that understands the geometric shape of
the sub-architecture. However, this geometric view is also limited:
it cannot consider transformations which retain the communica-
tion structure but are not geometrically the same.

This concept of equivalence of mappings preserves the perfor-
mance of the application. By making sure the labels are preserved,
the PE and communication types are exactly the same in both map-
pings. Furthermore, the fact that ¢ takes all processes mapped onto
one PE to another (Eq. 1), and the same for communication (Eq.
2), ensures the execution of the application with both mappings
behaves identically.

Several software packages exist, like nauty [17], which accom-
pany a large body of research aimed at finding graph isomorphisms
efficiently. For the comparatively small graphs of hardware archi-
tecture, this is a negligible computation, especially considering it
has to be done once, at design time, since it only depends on the
architecture and not on the tasks being mapped.

2.2.3 Changing Mappings at Run-time. We can encode a sub-
architecture very efficiently, since a single bit for every involved
PE is required. For the Exynos this means a byte for every sub-
architecture. The run-time system can then store the PEs which
are in use, and using a simple logical and it can find out if there are
conflicts.

In order to change a mapping at run-time, however, the isomor-
phism ¢ has to be stored. To calculate an equivalent mapping at run-
time is thus straightforward: taking the reference mapping m..¢ that
the application wants to use, an equivalent sub-architecture Ay,
from the stored sets has to be found, such that Ap, N Ay, ., =0,

TETRIS: Predictable Execution of Static Mappings

Rotation

Original

SCOPES ’17, June 12-14, 2017, Sankt Goar, Germany

Translation Transformation

Global symmetries (groups)

Geometric shapes

Isomorphic subgraphs (TETRiS)

Figure 6: Different intuitive symmetry concepts are captured in the TETRIiS approach.

a comparison which can be realized with a single binary bit-wise
and. Then, using the stored isomorphism ¢ : Ap, ; — Ap,,,,, the
new mapping can be obtained by changing every instance of one
PE for its image under ¢, and similarly for the channels. Altogether,
the run-time overhead of selecting a different variant is negligible,
since only a search in the pre-calculated database of equivalences
is required.

2.24 Current Limitations. In general, these simple methods do
not scale well with the architecture size. While the storage for sub-
architectures scales linearly with architecture size n, the number
of isomorphisms grows much faster (in general they are bounded
by n!). To cope with this, we can define a product between iso-
morphisms of subarchitectures. Using it, we can compose a small
number of these isomorphisms (called a generating set) to obtain
any possible isomorphism. This uses methods of algorithmic in-
verse semigroup theory, and their application to software synthesis,
which is outside the scope of this paper (see [6, 10]).

The method, as described here, has an additional limitation that
is important to note. It will fail if none of the equivalent variants of
the mapping can be deployed on the free PEs. In that case, some PEs
will be used by multiple applications, which will result in worse
and less predictable results. In future work we plan to develop a
strategy where non-equivalent variants are also considered, and
based on priority, the applications that need the best results are
ensured to have an ideal mapping.

2.3 The TETRIS Software Architecture

As implementation, we introduce a software component called the
TETRIS architecture, which manages all mapped applications, co-
ordinates their mappings for best utilization of the processors and
dynamically changes mappings of running applications when addi-
tional programs are started. The TETRIS architecture consists of
two components. The first is the global TETRIS server that reads
the static mappings. It knows all mapped applications running in
the system and assigns cores to tasks according to a user-defined
mapping policy. The second component is the TETRIS client li-
brary. We do not require modifications to applications that can be

scheduled using the TETRIS system. Our client library is loaded
by using the LD_PRELOAD mechanism present in Linux. At library
startup, the aforementioned server is contacted and the program is
registered with the TETRIS server. When required, the server may
decide to re-map existing applications to accomodate for a new
program. At this point the server also selects a mapping for the new
application. The client library then interposes calls to functions of
the threading library (here pthreads) such as pthread_create and
sched_set_affinity. When a call to pthread_create is detected,
the new thread is reported to the server and mapped to a core ac-
cording to the application’s current mapping policy. The server also
records the thread internally for (pontential) future re-mapping.

3 EVALUATION

In this section, we evaluate our approach by using a modern off-the-
shelf heterogeneous multicore system and real benchmarks from
the signal processing and multimedia domains. With these:

o We check that equivalent mappings are indeed equivalent,
by measuring variations in performance and energy con-
sumption between several equivalent mappings.

e We compare the performance and predictability of static
mappings, deployed with the TETRIS approach, with the
dynamic scheduling performed by the Linux CFS schedul-
ing algorithm in single and multi-application scenarios.

e We analyze the overhead incurred by TETRIS task migra-
tions.

3.1 Experimental Setup

To evaluate our approach, we used the Hardkernel Odroid XU3, a
modern off-the-shelf heterogeneous multicore system. The system
features an Exynos 5422 big. LITTLE chip with four Cortex-A15
cores and four Cortex-A7. Further, the system features 2 GB of
LPDDR3 RAM clocked at 933 MHz. All data used in the experiment
was read from and written to a temporary filesystem (unix tmpf's).
We set fixed frequencies of 1.4 GHz for the A7 (little) cluster and
1.6 GHz for the A15 (big) cluster. The big cluster was not able to
sustain higher frequencies, due to the inability of the stock fan

SCOPES ’17, June 12-14, 2017, Sankt Goar, Germany

Table 1: Strategies used in the evaluation

Uses Dynamic

Strategy Optimization Goal

Tetris Scheduling
CFS X v resource usage
Dyn v v N/A
T1 v X CPU time
T2 v X wall-clock time
T3 v X execution time

Table 2: Benchmarks and the properties of their dataflow
graphs.

Name Short description No. of pr No. of ch.
AF Stereo frequency filter. 8 8
MIMO Multiple-input multiple-output 10 16
orthogonal frequency-division
multiplexer

to adequately cool the chip. We used two different applications
for benchmarks. Table 2 gives a summary of the properties of the
corresponding dataflow graphs, as well as a brief description of
both applications. As input to the AF benchmark, we provided a
36s, 16 bit file at 48 kHz as an input. For the MIMO benchmark, we
used randomly generated packets, 15000 in our setup.

For our benchmarks we measured two time metrics, wall-clock
time and CPU-time, as well as the energy consumed by the system.
Wall-clock time is the time as (humanly) perceived from start to fin-
ish, while CPU-time is the total time all PEs used during execution.
Time was measured using the Unix time utility, while energy was
measured by accessing the on-board energy sensors featured on
the Odroid XU3. These INA-231 sensors are connected via the I2C
bus and measure the energy at the voltage regulators of individual
components. They provide detailed energy data for the big cluster,
little cluster, memory and GPU of the system, sampled at 10 Hz. In
our experiments, we report the aggregate of those four values, due
to space constraints.

In all scenarios, we used up to four instances of the applications.
To fit four instances with the TETRIS approach, we generated static
mappings for the two benchmarks using two PEs, one “big” and
one “little” (ARMy and ARMy, in Figure 3). Since in this particu-
lar example the numbers are tractable, we exhaustively tested all
possible mappings on these two PEs to find the mapping which
yielded the best CPU time (T1), and the best wall-clock time (T2).
We used the compiler flow described in Section 2.1 to generate a
third static mapping (T3). For each fixed mapping, T1, T2, and T3,
we generated symmetric mappings (e.g., T1-b, T1-c, etc.) that use
different big and little cores. We did so using the approach outlined
in Section 2.2.2. We compared our static mappings against the Linux
scheduler (CFS), as well as an additional strategy: we let the Linux
scheduler only use the same two cores as in the static mappings
(also transformed with TETRIS for the multi-application scenar-
ios) but schedule the processes dynamically with these constraints
(Dyn). This allows the Linux scheduler to dynamically move tasks
between the “little” and “big” core, providing better utilization but

A. Goens et al.

10.6 — .
= 105 : T
%)
g
= 104 —
10.3 — %
Ti-a T1i-b Ti1-c Ti-d
(a) CPU time
8.4 —
2 8.3 - ! .
< X |]
£ ! X 1
= 8.2 —
., . = = =
T1-a T1-b T1-c Ti-d
(b) Wall-clock time
= 22
= | Y
N |]
V
s 5
- = -
(==
T1-c

T1-a T1-b - T1-d
(c) Energy

Figure 7: Four equivalent mappings for mapping strategy T1
for the AF benchmark.

also leading to less predictable execution times and energy usage.
The different strategies are summarized in Table 1. All benchmarks
were run 50 times for each configuration reported and we present
the results as boxplots.

We evaluated the TETRIS approach from three different perspec-
tives. First, we show the performance variation between symmetric
mappings in Section 3.2. We evaluate performance and predictabil-
ity in single and multi-application scenarios in Section 3.3. Finally
we demonstrate the overhead of a switching event and its implica-
tion on power usage in Section 3.4.

3.2 Symmetry

In the first experiment, we check that mappings from the same
equivalence class have no significant deviation in terms of the per-
formance and energy usage. In other words, we check that equiva-
lent mappings are, indeed, equivalent. To evaluate that, we ran the
AF benchmark with each of the mappings T1-a, T1-b, T1-c, T1-d.
These are all different variations of the mapping T1 according to our
TETRIS principle, each with a different pair of PEs. Figure 7 shows

TETRIS: Predictable Execution of Static Mappings

the CPU time and energy consumption of each mapping strategy.
The relative standard deviations of the average values between the
symmetric mappings are the following: 0.13 % for CPU time, 0.12 %
for wall clock time, and 1.33 % for energy usage. These deviations
are negligible, which allows us to rely on the performance equiv-
alence of the symmetric mappings. In the following sections, we
do not specify which particular mapping we use among equivalent
ones.

3.3 Predictability

To show predictability, we tested three different scenarios. The
first one is a single instance of Audio Filter (1XAF) running alone;
the results are shown in Figure 8. The second scenario consists
of four instances of Audio Filter (4XAF), with results shown in
Figure 9, whereas the third scenario combines the two benchmarks
by running two instances of AF and two instances of MIMO (2XAF
2XMIMO). The results of this third scenario are depicted in Figure 10.
All scenarios were evaluated for the mappings T1, T2, and T3, and
compared with the Dyn strategy and the CFS scheduler.

The results illustrate that using fixed mappings guarantees stable
and predictable execution times in terms of both, resources used
(CPU Time) and actual time passed (wall clock time). The energy
usage, albeit higher than when using dynamic scheduling, is also
significantly more stable and predictable. The higher energy usage
in this case is understandable, since for this benchmark, CFS uses
four times as many physical resources as the TETRiS-based strate-
gies. The MIMO benchmark has a higher amount of inter-process
communication. The consequences of this can be seen in the time
fluctuations in Figure 10.

Since the Exynos architecture is based on a single bus and a
shared-memory model, contention is unavoidable. We see that,
while TETRIS allows an isolated view of the applications resulting
in predictable execution times for a given system-load, the effects
of contention from communication still affect the overall execution
time. To better compare this, and to quantify the differences in
predictability, Table 3 gives the means and variances for the wall-
clock time and energy consumption of all three scenarios. For space
reasons, only the results for the static mapping strategy T3 are
presented, which is the one obtained from the tool. From the table
we can see that, by using TETRIS, the variance of the energy is
reduced by a factor of up to 83 compared to CFS. For the wall-clock
time, this factor reaches up to 510.

3.4 Remapping

As changing a mapping during runtime might incur overhead due
to the cache state and additional system calls performed, we wanted
to quantify this effect. To that end, we measured the overhead for
each of the mapping strategies when switching from one symmetric
mapping for AF to another. The results are illustrated in Figure 11.
In it, a switch to a symmetric mapping is performed after the ap-
plication was running for roughly half its expected execution time
and the wall-clock time, CPU time and energy consumption were
measured. We normalize the results to the average wall-lock time,
CPU time and energy for the same application while running with-
out remapping (compare to Figure 8) and show a boxplot of the
values from 50 runs.

SCOPES ’17, June 12-14, 2017, Sankt Goar, Germany

CPU time
18 —
— 16 —
<k
g =
12 —
10 —
CFS Dyn T1 T2 T3
Wall-clock time
- -
e B
S 6
S
4 ..
CFS Dyn T1 T2 T3

Energy

16 == ==
== S

14 —

Energy [J]

12 —

10 —
CFS Dyn T1 T2 T3

Figure 8: Audio Filter (AF) running alone in the system
scheduled on two cores (CFS uses all PEs).

Table 3: Means and Variances of the Different Experiments
(all values for Audio Filter)

Scenario Strat. Exec. time [s] Energy [J]
Mean Var Mean Var

1XAF CFS 435 1.7-107% 12.07 1.2-10°
1XAF Dyn 7.25 2.1-107% 1495 9.6-1072
1XAF T3 752 9.4-107° 15.96 8.9-1072
4xAF CFS 7.96 13-107' 43.79 2.9-10°
4xAF Dyn 835 93-1072 44.81 3.9-10°
4xAF T3 8.17 2.7-1073 4435 6.9-1071

2xAF, 2xMIMO CFS 6.31 4.3-107' 37.00 1.6-10
2XAF, 2xMIMO Dyn 7.59 6.3-1072 41.08 2.6-10!
2XAF, 2xMIMO T3 7.65 8.5-107% 34.05 1.9-107!

SCOPES ’17, June 12-14, 2017, Sankt Goar, Germany

Wall-clock time

time [s]

A. Goens et al.

CPU time
7 T F55TF
7 _
CFS Dyn T1 T2 T3

Instances: 1 2 3 4‘

Figure 9: Four instances of Audio Filter (AF) running at the same time.

20 —
18 —
"% .
2 16 — §¥?§ —
= 14 —
12 — —T
CFS Dyn T1 T2 T3
CPU time
40 7 e
“ 30 -
WV
S
-~ 20 ! .
=
10 — ==
AF MIMO
Wall-clock time
30 — —_—
-,
g0 i
10 ~ =
AF MIMO

[Mcrs @Dy MTI M2 TS |

Figure 10: Two instances of Audio Filter (AF) running to-
gether with two MIMO instances.

’ [l wall-clock time [cpu time [J] energy ‘

1.05 —

Normalized

0.95

T1 T2 T3

Figure 11: Switching overhead

Time [s]

Figure 12: External power trace for a switching event.

In an ideal case, where we do not witness any overhead, we would
expect a box plot with minimal variance, centered at the value 1.
The figure shows that this is roughly the case for all of our mapping
strategies. The average overhead is between 0.017 % in terms of CPU
time when using strategy T2 and 0.29 % in terms of energy when
using mapping strategy T3. The distribution of the values (quartiles,
outliers) is comparable to the distribution of the measurements
obtained when running the application without switching. Overall,
the overhead of switching static mappings running TETRIS at run-
time is negligible for our benchmarks.

To better understand remapping, Figure 12 illustrates the power
trace of a typical switching scenario. It shows a four-core mapping
of AF running (1) and, after 2 seconds, three more instances be-
ing added (2). TETRIS then remaps all AF instances to a two-core
mapping utilizing one big and one little core for each program to
accommodate all of them equally. After a short while, the orignal
AF instance finishes (3) and then the remaining three AF instances
terminate (4). The trace shown was collected with an external
power meter to avoid influencing the running applications by the
measurement. Accordingly, the power consumption contains more
components and is higher than the value reported by internal power
sensors used in the previous figures.

We also measured the overall overhead of using the TETRIS
server. The average overhead for wall-clock time was 0.25 %. The
maximum overhead we observed was 1.8 %.

TETRIS: Predictable Execution of Static Mappings

4 RELATED WORK

The problem of predictable scheduling in MPSoCs has attracted
much interest from the research community, and resulted in a large
body of research work. In particular, several methods have been de-
veloped which use static (compile-time or design-time) and dynamic
(run-time) approaches, or a combination of both. Various methods,
like those presented in [4, 14, 28], address multi-application sce-
narios in a static fashion, by knowing the different applications
at compile time. These methods do not scale, since the amount of
possible scenarios grows exponentially with the number of appli-
cations. To deal with these scalability issues, research has drifted
towards so-called hybrid approaches, where the TETRiS methodol-
ogy can be classified. An extensive survey of mapping strategies
can be found in [24]. In it, most of the hybrid strategies presented
are restricted to fixed/homogeneous platforms or also suffer from
the same issues mentioned above, that all the scenarios need to be
known at compile time.

Research methods have resorted to abstractions and modular-
ity to support different applications without knowing them all at
compile-time. For example, the authors in [18] propose a two-tiered
approach, where a mapping is first calculated to virtual processors
and subsequently at run-time to physical processing elements (PEs).
The presented algorithm for mapping to physical PEs, which has a
goal similar to the TETRIS approach is a special-tailored heuristic
which tries to minimize the number of links used. It assumes a
heterogeneous system in terms of PEs and a particular network
topology. Additionally, the goal of the heuristic is to minimize a
particular objective, not to preserve the properties of the original
mapping (to virtual processors). A similar two-tiered approach
has been proposed by the authors in [22]. This approach uses a
divide-and-conquer strategy to leverage partial solutions in order
to calculate a good mapping at run-time. However, this hybrid
approach calculates the mapping at run-time with a greedy heuris-
tic, and is bound to yield less predictable results. It also optimizes
for particular goals, like load-balancing and minimal migration,
which limits the usefulness of the approach to scenarios where this
is desired. Similarly, the approach presented in [26] uses a costly
backtrack algorithm and targets specific goals, by minimizing the
communication distance in the mappings.

Finally, the approach put forward in [27], which aims to isolate
cores motivated by security, shares some of the core ideas with the
TETRIS approach. In it, the authors define the concept of shapes,
which in a sense encapsulates a subset of the mapping equivalences
defined in this paper. This method is limited to very regular archi-
tectures (rectangular 2D-mesh NoCs), and will fail on most other
architectures, bus-based ones, or ones with complex, hierarchical
and heterogeneous structures, where the (euclidean) geometric intu-
ition of shapes breaks down. Moreover, this approach cannot detect
equivalent mappings that are not an affine transformation of the
original (cf. Figure 6), nor will it work for non-contiguous regions
in the NoC. The paper does not also consider dynamic remapping of
applications. Apart from these limits, however, finding a mapping
with this hybrid approach is comparable to the TETRiS mapping
transformation.

To the best of our knowledge, the TETRIS approach is the first
hybrid solution that is completely agnostic to the static mapping

SCOPES ’17, June 12-14, 2017, Sankt Goar, Germany

decisions, works for arbitrary architectures, including off-the-shelf
hardware, and supports Linux, all of which makes it versatile and
modular. Additionally, the TETRIS approach considers equivalences
in mappings explicitly, by transforming a fixed mapping instead
of calculating one from partial solutions. It has the advantage of
having basically no run-time overhead.

5 CONCLUSIONS

In this paper we have introduced a novel method for dealing with
static mappings in multi-application scenarios. It allows remapping
and migrating in a way that preserves the benefits of a static map-
ping, like cache coherence or less resource utilization, resulting in
more predictable outcomes. While not a formal guarantee of perfor-
mance, results of running our TETRIS server using two benchmarks
on a modern heterogeneous multicore showed significantly more
predictable results, especially in multi-application scenarios. While
TETRIS is agnostic to mapping strategies, our experiments showed
how, when communication contention is involved, the optimal map-
pings for the single-application scenario are not necessarily the
optimal mappings in multi-application scenarios. Nevertheless, the
TETRIS approach outperformed the Linux scheduler CFS in terms
of predictability of the execution time by a factor of 510 and a factor
of 83 for the energy efficiency in our benchmarks.

ACKNOWLEDGMENTS

This work was supported in part by the German Research Founda-
tion (DFG) within the Collaborative Research Center HAEC and the
the Center for Advancing Electronics Dresden (cfaed). We thank
Silexica for making their SLX Tool Suite available to us.

REFERENCES

[1] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson, P. Marwedel,
J. Reineke, C. Rochange, et al. Building timing predictable embedded systems.
ACM Transactions on Embedded Computing Systems (TECS), 13(4):82, 2014.

[2] M. Bekooij, O. Moreira, P. Poplavko, B. Mesman, M. Pastrnak, and J. Van Meer-

bergen. Predictable embedded multiprocessor system design. In International

Workshop on Software and Compilers for Embedded Systems, pages 77-91. Springer,

2004.

J. Castrillon, A. Tretter, R. Leupers, and G. Ascheid. Communication-Aware Map-

ping of KPN Applications onto Heterogeneous MPSoCs. In DAC ’12: Proceedings

of the 49th annual conference on Design automation, 2012.

[4] J. Castrillon, R. Velasquez, A. Stulova, W. Sheng, J. Ceng, R. Leupers, G. Ascheid,
and H. Meyr. Trace-based kpn composability analysis for mapping simultaneous
applications to mpsoc platforms. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 753-758. European Design and Automation
Association, 2010.

[5] J.Ceng,]. Castrillon, W. Sheng, H. Scharwichter, R. Leupers, G. Ascheid, H. Meyr,
T. Isshiki, and H. Kunieda. Maps: an integrated framework for mpsoc application
parallelization. In Proceedings of the 45th annual Design Automation Conference,
pages 754-759. ACM, 2008.

[6] J.East, A. Egri-Nagy, J. Mitchell, and Y. Péresse. Computing finite semigroups.
arXiv eprints.

[7] S. A.Edwards and E. A. Lee. The case for the precision timed (pret) machine.
In Proceedings of the 44th annual Design Automation Conference, pages 264—265.
ACM, 2007.

[8] J.Eker,J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,

and Y. Xiong. Taming heterogeneity-the ptolemy approach. Proceedings of the

IEEE, 91(1):127-144, 2003.

A. Goens and J. Castrillon. Analysis of process traces for mapping dynamic kpn

applications to mpsocs. In Proceedings of the IFIP International Embedded Systems

Symposium (IESS), Foz do Iguagu, Brazil, Nov. 2015.

[10] A. Goens, S. Siccha, and J. Castrillon. Symmetry in software synthesis. arXiv

e-prints, Apr. 2017.
[11] P. Greenhalgh. Big. little processing with arm cortex-al5 & cortex-a7. ARM
White paper, pages 1-8, 2011.

[3

[

SCOPES ’17, June 12-14, 2017, Sankt Goar, Germany A. Goens et al.

[12] A.Hansson, K. Goossens, M. Bekooij, and J. Huisken. Compsoc: A template for
composable and predictable multi-processor system on chips. ACM Transactions
on Design Automation of Electronic Systems (TODAES), 14(1):2, 2009.

[13] G.Kahn. The semantics of a simple language for parallel programming. In J. L.
Rosenfeld, editor, Information processing, pages 471-475, Stockholm, Sweden,
Aug 1974. North Holland, Amsterdam.

[14] S.-h.Kang, H. Yang, S. Kim, L. Bacivarov, S. Ha, and L. Thiele. Static mapping of
mixed-critical applications for fault-tolerant mpsocs. In Proceedings of the 51st
Annual Design Automation Conference, pages 1-6. ACM, 2014.

[15] A. Kumar, B. Mesman, B. Theelen, H. Corporaal, and Y. Ha. Analyzing com-
posability of applications on mpsoc platforms. Journal of Systems Architecture,
54(3):369-383, 2008.

[16] E. A.Lee. Cyber physical systems: Design challenges. In 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pages 363-369. IEEE, 2008.

[17] B. D. McKay and A. Piperno. Practical graph isomorphism, {II}. Journal of
Symbolic Computation, 60(0):94 - 112, 2014.

[18] O. Moreira, J. J.-D. Mol, and M. Bekooij. Online resource management in a mul-
tiprocessor with a network-on-chip. In Proceedings of the 2007 ACM symposium
on Applied computing, pages 1557-1564. ACM, 2007.

[19] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zis-
sulescu, and E. Deprettere. Daedalus: toward composable multimedia mp-soc
design. In Proceedings of the 45th annual Design Automation Conference, pages
574-579. ACM, 2008.

[20] A. Olofsson. Epiphany-v: A 1024 processor 64-bit risc system-on-chip. arXiv
preprint arXiv:1610.01832, 2016.

[21] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to exploring
embedded system architectures at multiple abstraction levels. IEEE Transactions
on Computers, 55(2):99-112, 2006.

[22] W.Quan and A. D. Pimentel. A hierarchical run-time adaptive resource allocation
framework for large-scale mpsoc systems. Design Automation for Embedded
Systems, pages 1-29, 2016.

[23] Silexica. SLXMapper, 2016.

[24] A.K. Singh, M. Shafique, A. Kumar, and J. Henkel. Mapping on multi/many-core
systems: survey of current and emerging trends. In Proceedings of the 50th Annual
Design Automation Conference, page 1. ACM, 2013.

[25] L. Thiele, I. Bacivarov, W. Haid, and K. Huang. Mapping applications to tiled
multiprocessor embedded systems. In Application of Concurrency to System
Design, 2007. ACSD 2007. Seventh International Conference on, pages 29-40. IEEE,
2007.

[26] A.Weichslgartner, D. Gangadharan, S. Wildermann, M. Glaf}, and J. Teich. Daarm:
Design-time application analysis and run-time mapping for predictable execution
in many-core systems. In Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), 2014 International Conference on, pages 1-10. IEEE, 2014.

[27] A. Weichslgartner, S. Wildermann, J. Gotzfried, F. Freiling, M. Glaf, and J. Teich.
Design-time/run-time mapping of security-critical applications in heterogeneous
mpsocs. In Proceedings of the 19th International Workshop on Software and
Compilers for Embedded Systems, pages 153-162. ACM, 2016.

[28] D.Zhu, L. Chen, S. Yue, T. Pinkston, and M. Pedram. Providing balanced mapping
for multiple applications in many-core chip multiprocessors.

	Abstract
	1 Introduction
	2 The TETRiS run-time system
	2.1 The SLX Tool Suite
	2.2 Equivalent mappings
	2.3 The TETRiS Software Architecture

	3 Evaluation
	3.1 Experimental Setup
	3.2 Symmetry
	3.3 Predictability
	3.4 Remapping

	4 Related Work
	5 Conclusions
	References

