
V International Conference on Particle-based Methods – Fundamentals and Applications
PARTICLES 2017

P. Wriggers, M. Bischoff, E. Oñate, D.R.J. Owen, & T. Zohdi (Eds)

A LANGUAGE AND DEVELOPMENT ENVIRONMENT FOR
PARALLEL PARTICLE METHODS

Sven Karol1,4, Tobias Nett1, Pietro Incardona2,3, Nesrine Khouzami1,
Jeronimo Castrillon1, Ivo F. Sbalzarini2,3

1 Chair for Compiler Construction
Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
[tobias.nett|sven.karol|nesrine.khouzami|jeronimo.castrillon]@tu-dresden.de

2 Chair of Scientific Computing for Systems Biology, Faculty
of Computer Science, TU Dresden, Dresden, Germany

3 MOSAIC Group, Center for Systems Biology Dresden,
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

[incardon@mpi-cbg.de|ivos]@mpi-cbg.de

4 Baselabs GmbH, Ebertstr. 10, 09126 Chemnitz, Germany

Key words: Particles Method, discrete element method, Gray-Scott, Lennard-Jones,
PPME, PPML, DSL

Abstract. We present the Parallel Particle-Mesh Environment (PPME), a domain-
specific language (DSL) and development environment for numerical simulations using
particles and hybrid particle-mesh methods. PPME is the successor of the Parallel
Particle-Mesh Language (PPML), a Fortran-based DSL that provides high-level abstrac-
tions for the development of distributed-memory particle-mesh simulations. On top of
PPML, PPME provides a complete development environment for particle-based simu-
lations usin state-of-the-art language engineering and compiler construction techniques.
Relying on a novel domain metamodel and formal type system for particle methods, it
enables advanced static code correctness checks at the level of particle abstractions, com-
plementing the low-level analysis of the compiler. Furthermore, PPME adopts Herbie for
improving the accuracy of floating-point expressions and supports a convenient high-level
mathematical notation for equations and differential operators. For demonstration pur-
poses, we discuss an example from Discrete Element Methods (DEM) using the classic
Silbert model to simulate granular flows.

1 INTRODUCTION

Developing applications for scientific high-performance computing (HPC) requires in-
depth knowledge of the underlying, potentially heterogeneous hardware and programming

1

S. Karol, T. Nett, P. Incardona, N. Khouzami, J. Castrillon and I. F. Sbalzarini

models, as well as the corresponding numerical simulation methods and parallel program-
ming patterns. This leads to a low level of achievable abstraction, which is known to cause
the “knowledge gap” in scientific programming [22]. To address this gap, scientific libraries
and domain-specific languages (DSLs) have evolved into an important toolset in scientific
HPC. In the domain of particle methods, this notably includes the Parallel Particle Mesh
library (PPM) [23, 22, 4] and the Parallel Particle Mesh Language (PPML) [3, 5] as a
library and a DSL for large-scale scientific HPC. The abstractions in PPM and PPML
allow scientific programmers to write more concise and declarative code in comparison to
hand-coded implementations. Essentially, it frees developers from the burden of writing
boilerplate code that manages parallelism, synchronization, and data distribution. How-
ever, PPML has downsides, which we address in PPME [17]: The lightweight embedding
of PPML into Fortran, based on language macros, and the lack of a fully integrated lan-
guage model prevent advanced code analysis and complex compile-time computations.
This makes debugging PPML programs hard and prohibits domain-specific static code
optimization [11]. In contrast, PPME closely follows the paradigm of language-oriented
programming [28], where extensible DSLs are created to describe and solve software prob-
lems instead of writing programs in general-purpose languages. This serves to increase
maintainability and productivity through domain abstractions. PPME is integrated into
the meta programming system (MPS) [8, 16], a model-driven language workbench [9].
We developed a language model that enables us to implement analysis and optimization
algorithms that are well-suited for particle methods. The model is the basis of a formal
type system for particle simulations, including optional verification of physical dimen-
sions. This enables advanced domain-specific correctness checks at compile time, such as
checking for dimensional correctness. PPME further supports numerical accuracy opti-
mization capabilities of floating-point expressions by leveraging domain knowledge and
adopting the Herbie accuracy checker [19]. Due to MPS’ projectional editing capabilities,
convenient high-level mathematical notation for equations and differential operators is
supported. In this paper, we present PPME and show its use in Discrete Element Meth-
ods (DEM). In particular, we use PPME to implement a simulation of granular flows on
distributed-memory parallel computers using a classical Herzian contact force model.

The remainder of this paper is structured as follows: Section 2 discusses related work.
Section 3 presents the architecture of PPME and its integration with the PPM Library.
Section 4 introduces our case study from the domain of discrete element methods while
its implementation in PPME and results are discussed in Section 5. Section 6 concludes
the paper and gives an outlook of future work.

2 RELATED WORK

In scientific computing, several DSL-like approaches have successfully been proposed
in the past: Blitz++ [25] is a template-based library and DSL for generating stencils
from high-level mathematical specifications of mesh-based computations. Freefem++ [10]
is a software toolset and DSL for finite-element methods. This DSL allows users to

2

S. Karol, T. Nett, P. Incardona, N. Khouzami, J. Castrillon and I. F. Sbalzarini

define analytic or finite-element functions using domain abstractions such as meshes and
differential operators. Liszt [7] extends Scala with domain-specific statements for defining
solvers for partial differential equations on unstructured meshes with support for several
parallel programming models including message passing. The FEniCS project [13] created
a finite element library, the unified form language (UFL) [1], and several optimizing
compilers for generating code that can be used with the library. Firedrake [20] adds
composing abstractions such as parallel loop operations.

Domain-specific optimizations carry great potential since scientific codes often induce
specific boundaries on data access and numeric algorithms. This has been particularly
studied for representation code of element tensors in the finite-element method [18]. The
representation code is written in UFL variational forms. The proposed optimization
strategies yield significant runtime speedups and leverage domain knowledge to automate
nontrivial optimizations. Loop-level optimizations for finite-element solvers in the COm-
piler For Fast Expression Evaluation (COFFEE) [15] are discussed in Ref. [14]. Therein,
heuristics are used to predict operation counts at runtime, using well-known transforma-
tions such as code motion, expansion, and factorizations. Domain-specific optimizations
are superior to general-purpose ones that are used by standard compilers to reduce the
operation count in nested loops.

This includes checking and optimizing variables based on their physical dimensions.
For this, an analysis technique based on unit annotations has been proposed [6] that does
not require extending or changing the base language. Furthermore, unit annotations for
linear-algebra and finite-element calculations are available [2], which is comparable to
what we have realized for particle methods with dimensional annotations in PPME.

3 THE PARALLEL PARTICLE-MESH ENVIRONMENT (PPME)

PPME is part of the PPM stack and provides several abstractions and analysis algo-
rithms for parallel particle-mesh methods. The PPM library supports simulations of both
discrete and continuous models using either particles, meshes, or a combination thereof.
In discrete models, particles directly interact by pairwise kernels. In continuous models,
differential operators are discretized on particles using, e.g., the SPH or DC-PSE meth-
ods [24]. In DC-PSE, the discretized kernels are automatically computed at runtime. As
PPM is a Fortran library, clients are required to write plain Fortran code in order to use
the library. PPML partially frees the developer from this burden by providing a collection
of macros and code transformations that can be used as high-level abstractions. However,
using PPML can be problematic as it does not provide error checking and debugging
capabilities so that errors are only detected by the compiler in the generated Fortran code
and are not related to the PPML program. PPME addresses this problem by analyzing
the user code and providing an extensible infrastructure for incorporating domain-specific
optimizations.

3

S. Karol, T. Nett, P. Incardona, N. Khouzami, J. Castrillon and I. F. Sbalzarini

PPM language

PPM core PPM numerics

single processordistributed memoryshared memoryvector

Message Passing Interface (MPI) PETSc METIS FFTW

PPM Environment

Figure 1: Layered architecture of the PPM/PPME stack.

3.1 Architecture of PPME

Figure 1 provides an overview of the current PPM/PPME stack. The architectural
details of the computer hardware are located on the lowest layer and are accessed through
common low-level libraries such as MPI for message passing, PETSc for direct and itera-
tive solvers, METIS [12] for graph partitioning, and FFTW for Fourier transforms. In the
layer above, the PPM library provides its major subcomponents: PPM core contains the
distributed Fortran data structures and methods for describing particle simulations, while
PPM numerics provides frequently used numerical algorithms such as multi-grid solvers,
spectral solvers, boundary element methods, and fast multipole methods [21]. These are
partly implemented using the objects provided by the PPM core, and partly based on
wrapping external libraries. PPML sits on top of PPM. Based on its abstractions, mixed
with plain Fortran for direct library access, PPML provides a high-level domain-specific
language that is translated to plain Fortran code code that links against the PPM Library,
as well as the underlying libraries [3, 5]. Offering a consistent DSL layer, PPME resides
in the top-most layer and does not require any adaptation of the underlying framework.
Thus, it uses PPML as an intermediate representation, preserving its concepts and ab-
stractions so that the original tool chain remains intact. However, PPME allows scientists
to bypass the details of the PPML programming languages and the problem associated
with debugging or optimizing PPML programs. PPME is generic to all types of particle
and particle-mesh methods, such that different “client applications”, symbolized by the
square boxes on top, can be implemented.

3.2 Internal Structure of PPME

Internally, PPME is organized in language packages as illustrated in Figure 2. These
packages correspond to solutions in MPS, constituting the domain language model. We
briefly describe the packages here. For a more detailed discussion on the model and type
system we refer to Ref. [17].

The package ppme.expressions provides a domain-independent set of notations for

4

S. Karol, T. Nett, P. Incardona, N. Khouzami, J. Castrillon and I. F. Sbalzarini

ppme.modules

ppme.statements ppme.expressions

ppme.core

extensions

JetBrains MPS
code generation

PPML/Fortran

ppme.physunits ppme.analysis

Figure 2: Internal structure of PPME and integration into the MPS language workbench.

mathematical and logical expressions, and literals for integer and floating-point num-
bers. Moreover, the base types available in PPME and parts of the type system (static
analysis) are defined in this package. The package ppme.statements contains universal
imperatives, such as expression statements, if-else clauses, and loops. The type system
is enriched with variable support where necessary. The core package ppme.core contains
elements that are tailored to particle methods, domain-specific types, expressions, and
statements, e.g., a timeloop construct. The package ppme.modules provides the top-level
structure for client programs written in PPME. Modules contain the simulation code and
optional control parameters. A module translates to a PPML client that then translates
to Fortran code.

A major concept of PPME, and of language-oriented programming in general, is to
flexibly add language extensions as needed. So far, we have incorporated two optional
extensions: The package ppme.physunits enables annotating further meta information
to variables and constants. This includes specifications of physical units and dimension
which are then accessible to the type system. The package ppme.analysis provides an
exemplary binding of Herbie as an external analysis tool for improving floating-point
expressions [19]. This integration is based on a general framework enabling the access
of custom tools into the environment. For details on both extensions and application
examples, we refer to Ref. [17].

3.3 Code Generation

We illustrate PPME by comparing the input and output of the PPME code generator
in a simple example: a Gray-Scott reaction-diffusion simulation. The two versions of
the code, PPML and PPME, are juxtaposed in Figure 3. For both, we show the part
that integrates the governing equations discretized over the particle set c using the 4th-
order Runge-Kutta method (“rk4”). In PPME, the equations are conveniently defined
over particle attributes, here the two scalar fields U and V . Static analysis extracts the
required information from the code, for example identifying two applications of differential
operators, ∇2c→ U and ∇2c→ U , and automatically deriving and adding local variables

5

S. Karol, T. Nett, P. Incardona, N. Khouzami, J. Castrillon and I. F. Sbalzarini

A

P
P
M

E

1 deqn method "rk4" on c

2 ∂c→U
∂t

= constDu * ∇2 c→U - c→U * c→V2 + F * (1.0 - c→U)

3 ∂c→V
∂t

= constDv * ∇2 c→V + c→U * c→V2 + (F + kRate) * c→V

4 end deqn

P
P
M

L

1 rhs grayscott_rhs_0(U=>c, V)
2 get_fields(dU, dV)
3
4 dU = apply_op(L, U)
5 dV = apply_op(L, V)
6
7 foreach p in particles(c) with positions(x) sca_fields(U, V, dU, dV)
8 dU_p = constDu * dU_p - U_p * (V_p**2) + F * (1.0 - U_p)
9 dV_p = constDv * dV_p + U_p * (V_p**2) - (F + kRate) * V_p

10 end foreach
11 end rhs

Figure 3: Equations of a Gray-Scott reaction-diffusion system in PPME (input) and
PPML (output).

dU and dV for them. In the generated PPML code, this information is then contained
explicitly, demonstrating some key benefits of a holistic code representation and analysis:
since all required information is extracted by the PPME compiler, redundant statements
encoding this information are explicitly avoided, which leads to less code, less compile-
time errors, and improved readability. Also note PPME’s support of basic mathematical
notation, such as the Nabla operator ∇ and the partial derivative ∂. From the initial 4
lines of PPME code, 11 lines of PPML code, and more than 100 lines of Fortran code are
generated, which corresponds to factor of 25 in code-size reduction (cf. [17]).

4 CASE STUDY: DISCRETE ELEMENT METHODS (DEM)

Discrete element methods are a fundamental tool for the study of granular materi-
als. It has been shown that DEM methods allow determining material properties [32]
and effective macroscopic dynamics for which closed-form theory lacks. Therefore, DEM
simulations have become invaluable in the search for continuum theoretic descriptions
of granular matter [36, 33, 34, 35]. In the processing industry, granular materials are
center stage, and DEM simulations are widely used to engineer and optimize production
and transport processes. DEM simulations, for example, have been used to understand
packing in a cylindrical container [39] for better silo engineering, and to study concrete
structures under load in order to predict failure points and weaknesses [29, 30, 31].

Granular materials can be modeled by interacting particles, where each particle is
a physical granule or a volume of material [38]. The modeled interaction between the
particles defines the microscopic behavior of the material.

A classical model for DEM simulations of spherical granular flows is the Silbert model [37].
It includes a Herzian contact force, as well as elastic deformation of the grains. Each par-
ticle is represented by the location of its center of mass ~ri and is characterized by its
radius R, mass m, and polar moment of inertia I. Whenever two particles i and j collide
or are in contact with each other, the radial elastic contact deformation is given by:

δij = 2R− rij , (1)

6

S. Karol, T. Nett, P. Incardona, N. Khouzami, J. Castrillon and I. F. Sbalzarini

with ~rij = ~ri−~rj the vector connecting the two particle centers and rij = ‖~rij‖2 its length.
The normal (radial) and tangential components of the relative velocity at the point of
contact are given by:

~vnij
= (~vij · ~nij)~nij , (2)

~vtij = ~vij − ~vnij
−R (~ωi + ~ωj)× ~nij , (3)

where ~nij = ~rij/rij is the unit normal vector connecting the two particle centers, ~ωi is the
angular velocity of particle i, and ~vij = ~vi − ~vj the relative velocity of the two particles.
The tangential elastic displacement ~utij is integrated over time for the duration of contact,
using an explicit Euler time-stepping scheme:

~utij ← ~utij + ~vtijδt (4)

with time-step stize δt. This deformation is stored for each particle and for each contact
point. For a new contact, the tangential elastic displacement is initialized to zero. Thus
for each unique pair of interacting (colliding) particles, the normal and tangential contact
forces become:

~Fnij
=

√
δij
2R

(
knδij~nij − γnmeff~vnij

)
, (5)

~Ftij =

√
δij
2R

(
−kt~utij − γtmeff~vtij

)
, (6)

where kn,t are the elastic constants in the normal and tangential direction, respectively,
and γn,t the corresponding viscoelastic constants. The effective collision mass is given by
meff =

mimj

mi+mj
. In order to enforce Coulomb’s law ‖~Ftij‖2 < ‖µ~Fnij

‖2, the tangential force
of each contact point is bounded by the normal force. This is achieved by scaling the
tangential force with

~Ftij ← ~Ftij

‖µ~Fnij
‖2

‖~Ftij‖2
. (7)

This implies a truncation of the elastic displacement, since the Coulomb limit is reached
when two spheres slip against each other without inducing additional deformations. Thus,
the deformation is truncated as:

~utij = −
1

kt

(
~Ftij

√
2R

δij
+ γtmeff~vtij

)
. (8)

Considering that each particle i interacts with all particles j it is in contact with, the
total resultant force on particle i is computed by summing the contributions of all contact
pairs (i, j). Including also gravity, we obtain the total force on grain i:

~F tot
i = m~g +

∑
j

(
~Fnij

+ ~Ftij

)
, (9)

7

S. Karol, T. Nett, P. Incardona, N. Khouzami, J. Castrillon and I. F. Sbalzarini

A

1

1 create topology topo with
2 boundry condition: "ppm_param_bcdef_periodic"
3 decomposition: <no decomposition>
4 processor assignment: <no processor_assignment>
5 ghost size: cutoff + skin

2

10 {! fields and properties
11 property <real, ppm_dim, "velocity", <no prec>, true> v
12 property <real, ppm_dim, "force", <no prec>, true> F
13 property <real, ppm_dim, "omega", <no prec>, true> omega
14 property <real, ppm_dim, "tau", <no prec>, true> tau
15 property <real, max_contacts_def, "contacts_def", <no prec>, true> cpd
16 property <real, max_contacts, "contacts_ids", <no prec>, true> cpi
17 property <real, 1, "n_cp", <no prec>, true> ncp
18 property <real, 1, "type", <no prec>, true> tt
19 property <real, 1, "gid", <no prec>, true> gid
20 }

3
25 v_nij = (v_rel[1] * n_ij[1] + v_rel[2] * n_ij[2] + v_rel[3] * n_ij[3]) * n_ij;

4
27 v_tij = v_rel - v_nij - v_cross;

5
30 [F_nij = SQRT(delta_ij/2/R) * (k_n*delta_ij*n_ij(:) - gamma_t*m_eff*v_nij(:))]

6
34 F_tij = F_tij * (F_nij_sq / F_tij_sq);

Figure 4: Excerpts of the PPME code for parallel DEM simulations.

where ~g is the acceleration due to gravity. In the Silbert model, particles also have a
rotational degree of freedom. Therefore, the total torque on particle i is calculated as:

~T tot
i = −R

∑
j

~nij × ~Ftij . (10)

We integrate the equations of motion using the second-order accurate leap frog scheme

~vn+1
i = ~vni +

δt

m
~F tot
i , ~rn+1

i = ~rni + δt~vn+1
i (11)

~ωn+1
i = ~ωn

i +
δt

Ii
~T tot
i , (12)

where ~rni , ~vni , ~ωn
i denote respectively the position, velocity, and angular velocity of particle

i at time step n, and δt is the time-step size.

5 RESULTS

We describe how the above DEM model is implemented in PPME and present the
results of a simulation using 82,300 particles. Figure 4 shows excerpts of the PPME code
for the model described in Section 4. The code for setting up the parallel simulation is
in section (1). It defines the external boundary conditions on the computational domain,
decomposes the problem onto the available processors, and adds ghost (halo) layers around
each processor. The particle properties and their datatypes are defined and initialized
by the code section (2). Each particle property has a datatype, a dimension, a human-
readable name, a numerical precision, a flag stating whether this property is required, and

8

S. Karol, T. Nett, P. Incardona, N. Khouzami, J. Castrillon and I. F. Sbalzarini

(a) t = 0 s (b) t = 2.0 s (c) t = 4.0 s

Figure 5: Visualization of PPME simulation results of an avalanche down and inclined
plane. The panels show the particles at the indicated times. Color from blue to red
indicates the x-component of the velocity of the particles.

a variable name. The remaining code (3-6) shows the implementations of Equations 2,
3, 5 and 7, respectively. Equation 2 is an example of native PPME code, using particle
properties. Equation 5 is an example of inline Fortran code, enabling access to functions
not supported in PPME.

We illustrate the PPME implementation using a classical test case for granular flow
simulations: an avalanche down an inclined plane. The same test case has also previously
been implemented in PPM [26, 27], enabling direct comparison of the codes and results.
We set up the simulation as described [27] and run it using 82,300 particles with kn =
7.849, kt = 2.243, γn = 3.401, µ = 1, R = 0.06. All particle masses are set to m = 0.001
and the gravitational acceleration to g = 9.81. The size of the box-shaped domain is fixed
to 8.4× 3.0× 3.18. Initially, the particles are placed on a regular Cartesian grid inside a
box of size 4.26×3.06×1.26. The simulation box is inclined by 30 degrees in the xz plane
by appropriately rotating the gravity vector. The y-direction of the domain is periodic.
Figure 5 visualizes the simulation results at different time points, showing the avalanche
down the inclined plane. Color indicates the x-component of the particle velocity from
low (blue) to high (red). The fixed walls on the bottom, left, and right of the domain
are modeled by immobile particles of the same kind. The visualizations are done using
ParaView, directly reading the VTK files produced by a single PPME “print” statement,
illustrating the parallel file I/O amenities of PPME.

6 CONCLUSIONS

We presented PPME, an integrated development environment for parallel particle-
mesh simulations. PPME is based on a complete language model for particle methods.
Based on the core model, PPME provides an extensible static type system, including
physical dimensions. For demonstration purposes, we exemplarily implemented a classical
DEM model in PPME and used it to generate executable Fortran code that links against
the PPM library and can be executed on distributed-memory computers using message
passing. In the future, we will extend PPME to support additional abstractions from
the particle-mesh domain. We will improve the internal architecture of PPME by adding

9

S. Karol, T. Nett, P. Incardona, N. Khouzami, J. Castrillon and I. F. Sbalzarini

an additional target-language abstraction layer in order to be able to support output
languages other than Fortran. This will provide a versatile and standard platform for
parallel particle methods across a wide range of applications from discrete to continuum
simulations.

ACKNOWLEDGEMENTS

This work was partly supported by the German Research Foundation (DFG) within
the Cluster of Excellence “Center for Advancing Electronics Dresden”.

REFERENCES
[1] Martin S. Alnæs, Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and Garth N.

Wells. Unified form language: A domain-specific language for weak formulations of
partial differential equations. ACM Trans. Math. Softw., 40(2):9:1–9:37, 2014.

[2] Mark A. Austin. Matrix and finite element stack machines for structural engineering
computations with units. Adv. Eng. Softw., 37(8):544–559, 2006.

[3] Omar Awile. A Domain-Specific Language and Scalable Middleware for Particle-
Mesh Simulations on Heterogeneous Parallel Computers. PhD thesis, Diss. ETH No.
20959, ETH Zürich, 2013.

[4] Omar Awile, Ömer Demirel, and Ivo F. Sbalzarini. Toward an object-oriented core of
the PPM library. In Proc. ICNAAM, Numerical Analysis and Applied Mathematics,
International Conference, pages 1313–1316. AIP, 2010.

[5] Omar Awile, Milan Mitrović, Sylvain Reboux, and Ivo F. Sbalzarini. A domain-
specific programming language for particle simulations on distributed-memory par-
allel computers. In Proc. III Intl. Conf. Particle-based Methods (PARTICLES), Par-
ticles 2013, pages 436–447, Stuttgart, 2013.

[6] Phil Cook, Colin Fidge, and David Hemer. Well-Measuring Programs. In Proc. of
ASWEC’06, volume 54, pages 253–261, Sydney, 2006. IEEE.

[7] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Med-
ina, Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, et al.
Liszt: a domain specific language for building portable mesh-based PDE solvers. In
Proc. of SC ’11, page 9. ACM, 2011.

[8] Sergey Dmitriev. Language Oriented Programming: The Next Programming
Paradigm. JetBrains onBoard, (November), 2004.

[9] Martin Fowler. Language workbenches: The killer-app for domain specific lan-
guages?, 2005.

[10] Frederic Hecht. New development in freefem++. J. of Num. Math., 20(3-4):251–266,
2012.

[11] Sven Karol, Pietro Incardona, Yaser Afshar, Ivo F. Sbalzarini, and Jeronimo Cas-
trillon. Towards a Next-Generation Parallel Particle-Mesh Language. In Proc. of
DSLDI’15, pages 15–18, 2015.

10

S. Karol, T. Nett, P. Incardona, N. Khouzami, J. Castrillon and I. F. Sbalzarini

[12] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for irregular
graphs. 48:96–129, 1998.

[13] Anders Logg, Kent-Andre Mardal, and Garth Wells, editors. Automated Solution
of Differential Equations by the Finite Element Method. Number 84 in LNCSE.
Springer, 1 edition, 2012.

[14] Fabio Luporini, David A. Ham, and Paul H. J. Kelly. An algorithm for the optimiza-
tion of finite element integration loops. Technical Report, arXiv.org, 2016.

[15] Fabio Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe-Teodor Bercea,
J. Ramanujam, David A. Ham, and Paul H. J. Kelly. Cross-loop optimization of
arithmetic intensity for finite element local assembly. ACM Trans. Archit. Code
Optim., 11(4):57:1–57:25, 2015.

[16] MPS - 3.2 - Documentation. User’s Guide, 2015.

[17] Tobias Nett, Sven Karol, Jeronimo Castrillon, and Ivo F Sbalzarini. A domain-
specific language and editor for parallel particle methods. arXiv preprint
arXiv:1704.00032, 2017.

[18] Kristian B. Ølgaard and Garth N. Wells. Optimizations for quadrature represen-
tations of finite element tensors through automated code generation. ACM Trans.
Math. Softw., 37(1):8:1–8:23, 2010.

[19] Pavel Panchekha, Alex Sachez-Stern, James R. Wilcox, and Zachary Tatlock. Au-
tomatically Improving Accuracy for Floating Point Expressions. In PLDI’15, vol-
ume 50, pages 1–11. ACM, jun 2015.

[20] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Lu-
porini, Andrew TT McRae, Gheorghe-Teodor Bercea, Graham R. Markall, and
Paul HJ Kelly. Firedrake: automating the finite element method by composing
abstractions. arXiv preprint arXiv:1501.01809, 2015.

[21] I. F. Sbalzarini, J. H. Walther, B. Polasek, P. Chatelain, M. Bergdorf, S. E. Hieber,
E. M. Kotsalis, and P. Koumoutsakos. A software framework for the portable par-
allelization of particle-mesh simulations. Lect. Notes Comput. Sc., 4128:730–739,
2006.

[22] Ivo F. Sbalzarini. Abstractions and middleware for petascale computing and beyond.
Intl. J. Distr. Systems & Technol., 1(2):40–56, 2010.

[23] Ivo F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber, E. M. Kotsalis, and
P. Koumoutsakos. PPM - A highly efficient parallel particle-mesh library for the
simulation of continuum systems. Journal of Computational Physics, 215(2):566–
588, 2006.

[24] Birte Schrader, Sylvain Reboux, and Ivo F. Sbalzarini. Discretization correction of
general integral PSE operators in particle methods. J. Comput. Phys., 229:4159–
4182, 2010.

11

S. Karol, T. Nett, P. Incardona, N. Khouzami, J. Castrillon and I. F. Sbalzarini

[25] Todd L. Veldhuizen. Blitz++: The library that thinks it is a compiler. In Ad-
vances in Software Tools for Scientific Computing, number 10 in LNCSE, pages 57–
87. Springer, 2000.

[26] Jens H. Walther and Ivo F. Sbalzarini. Large-scale parallel discrete element simu-
lations of granular flow. In Proceedings of the International Conference on Discrete
Element Modelling (DEM07), Brisbane, Australia, 2007.

[27] Jens H. Walther and Ivo F. Sbalzarini. Large-scale parallel discrete element simula-
tions of granular flow. Engineering Computations, 26(6):688–697, 2009.

[28] Martin P. Ward. Language Oriented Programming. Software Concepts and Tools,
15(4):147–161, 1994.

[29] F. Camborde and C. Mariotti and F.V. Donzé Numerical study of rock and con-
crete behaviour by discrete element modelling. Computers and Geotechnics, Vol. 27.,
(2000).

[30] Sébastien Hentz, Laurent Daudeville, and Frédéric V. Donzé Numerical study of rock
and concrete behaviour by discrete element modelling. Computers and Geotechnics,
130(6):709–719, (2004).

[31] W. J. Shiu, F. V. Donzé, and L. Daudeville Compaction process in concrete during
missile impact: a dem analysis. Computers and Concrete, 5(4):329–342, (2008).

[32] Hunt, M.L. Discrete element simulations for graular material flows: effective thermal
conductivity and self-diffusivity. International Journal of Heat and Mass Transfer,
Vol. 40 No. 13, pp. 3059-68, (1997).

[33] Daerr, A. and Douady, S. Two types of avalanche behaviour in granular media. Na-
ture, Vol. 399, pp. 241-3, (1999).

[34] Douady, S., Andreotti, B., Daerr, A. and Cladé From a grain to avalanches: on
the physics of granular surface flows. Comptes Rendus Physique, Vol. 3, pp. 177-87,
(2002).

[35] Dutt, M., Hancock, B., Bentham, C. and Elliot, J. An implementation of granular
dynamics for simulating frictional elastic particles based on the DL_POLY code.
Computer Physics Communications, Vol. 166, pp. 26-44, (2005).

[36] de Gennes, P.G. Granular matter: a tentative view. Reviews of Modern Physics, Vol.
71 No. 2, pp. 374-82, (1999).

[37] Silbert, L.E., Grest, G.S. and Plimpton, S.J. Boundary effects and self-organization
in dense granular flows. Physics of Fluids, Vol. 14 No. 8, pp. 2637-46, (2002).

[38] Stefan Luding Introduction to discrete element methods . European Journal of Envi-
ronmental and Civil Engineering (2008).

[39] Landry, J.W., Grest, G.S., Silbert, L.E. and Plimpton, S.J. Confined granular pack-
ings structure, stress, and forces. Physical Review E, Vol. 67, p. 041303, (2003).

12

