
Meta-programming for Cross-Domain Tensor

Optimizations

Adilla Susungi
MINES ParisTech

PSL Research University
France

Norman A. Rink
Chair for Compiler Construction
Technische Universität Dresden

Germany

Albert Cohen
INRIA & ENS DI

France

Jeronimo Castrillon
Chair for Compiler Construction
Technische Universität Dresden

Germany

Claude Tadonki
MINES ParisTech

PSL Research University
France

Abstract

Many modern application domains crucially rely on tensor
operations. The optimization of programs that operate on
tensors poses difficulties that are not adequately addressed
by existing languages and tools. Frameworks such as Ten-
sorFlow offer good abstractions for tensor operations, but
target a specific domain, i.e. machine learning, and their
optimization strategies cannot easily be adjusted to other do-
mains. General-purpose optimization tools such as Pluto and
existing meta-languages offer more flexibility in applying
optimizations but lack abstractions for tensors. This work
closes the gap between domain-specific tensor languages
and general-purpose optimization tools by proposing the
Tensor optimizations Meta-Language (TeML). TeML offers
high-level abstractions for both tensor operations and loop
transformations, and enables flexible composition of trans-
formations into effective optimization paths. This composi-
tionality is built into TeML’s design, as our formal language
specification will reveal. We also show that TeML can ex-
press tensor computations as comfortably as TensorFlow
and that it can reproduce Pluto’s optimization paths. Thus,
optimized programs generated by TeML execute at least as
fast as the corresponding Pluto programs. In addition, TeML
enables optimization paths that often allow outperforming
Pluto.
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1 Introduction

Tensors are the central data structure in many modern ap-
plication domains, including scientific computing, image
processing, and machine learning. Operating on tensors re-
quires multi-dimensional and computationally intense loop
nests that are difficult to optimize. Optimization strategies
are complex, including not only loop transformations but
also data layout and mapping decisions as well as algebraic
transformations. Moreover, optimization choices frequently
depend on the target platform and the application domain.

Existing frameworks such as Theano [7] or TensorFlow [2]
support the development of machine learning programs that
operate on tensors, but their built-in optimization strategies
cannot be expected to generalize well to other applications
domains. This is also the case for TACO [18], which targets
applications that mix dense and sparse tensors. The state-of-
the-art polyhedral loop optimizer Pluto [8] provides more
flexibility in optimizing general loop nests from any appli-
cation domain. However, since Pluto is a general-purpose
tool, it has no abstractions for tensors, and hence suitable
algebraic and layout transformations are out of its scope.
Moreover, Pluto’s built-in heuristics for loop optimizations
limit its flexibility in composing finely tuned sequences of
transformations.
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High-level meta-programming languages and optimiza-
tion APIs [4, 9, 10, 12, 13, 19, 21, 23, 39] offer more flexibility
in expressing typical loop transformations, e.g. fusion, tiling,
or interchange. Moreover, the level of abstraction for loop
transformations both improves productivity in manual code
optimization and eases the automation of searches for opti-
mizations. However, existing languages and APIs often rely
on an imperative programming style with limited flexibility
in composing loop transformations. This makes it difficult to
meet the needs of a wide range of tensor-based applications
from different domains.

To address the lack of cross-domain solutions for optimiz-
ing programs that operate on tensors, this paper presents
TeML, the Tensor optimizations Meta-Language. TeMLmakes
tensor expressions and loop transformations first-class citi-
zens, and it overcomes the limitations of existing solutions
by embracing two key ideas. First, TeML provides high-level
abstractions for characteristic tensor operations such as con-
traction, the outer product or the Hadamard product (i.e. en-
trywise multiplication). These abstractions encode algebraic
information that is required to perform algebraic transfor-
mations. Second, TeML unifies the stages of program con-
struction and transformation, both of which are specified
in a functional programming style, thus rendering TeML’s
language constructs fully and flexibly composible.

After giving an overview of TeML (Section 2), we present
a formal specification of TeML’s semantics (Section 3), which
enables clean reasoning about interactions between tensor
expressions and loop transformations, and also highlights
some subtleties in defining semantics for meta-languages.
The power of TeML’s functional style is brought to bear
when we show how TeML’s more abstract tensor operations
and loop transformations can be defined in terms of more
fundamental TeML constructs (Section 4). Using a set of char-
acteristic benchmarks from a range of application domains,
we demonstrate that TeML is as expressive as high-level
tensor languages and that it offers the flexibility to compose
loop optimizations such that better program performance
can be achieved than with state-of-the-art tools (Section 5).

2 Overview

As a meta-programming language, TeML is designed to spec-
ify how programs in a target language (typically C) are to
be generated and transformed. In particular, TeML specifies
target language programs that operate on tensors; and such
programs are generally formed of tensor expressions and
loop nests. TeML is purposefully low-level, including no ab-
stractions for more advanced mathematical structures that
occur in the context of tensor algebra (e.g. co-/contravariant
indices). Thus, TeML meta-programs operate only on two
kinds of objects: tensor expressions and loop nests. As a conse-
quence, TeML can be used as an intermediate language for

a wide range of tensor algebra frameworks that implement
more abstract structures and rewrite rules at a higher level.

According to the TeML grammar in Figure 1, a TeMLmeta-
program is a sequence of statements. Statements include
assignments of the form id = expression, and an expression
produces either a tensor (Texpression) or a loop (Lexpression).
Identifiers (id) can refer to either of these objects.
A new tensor (scalar) is introduced by tensor (scalar).

The dimensions of the new tensor are specified as a list
of integers, and we subsequently refer to this list as the
shape of the tensor. All scalars and elements of tensors are
assumed to be of a fixed type that can be set globally for the
TeML system, e.g. to a floating-point or integer type. Tensors
(and scalars) are the fundamental building blocks of complex
tensor expressions, which are formed with the TeML built-
ins eq, vop, and op. Since only identifiers are allowed as
arguments, TeML specifies complex tensor expressions in a
3-address format, e.g. t2 = vop(t0, t1, [, ]).
The vop built-in implements arithmetic expressions and

can be either of vadd, vsub, vmul, or vdiv. The op-
tional arguments to vop are lists of iterators (iters) that
are used to index tensors. For example, if t0, t1 re-
fer to tensors of shapes [N1, N2] and [N3] respectively,
then vadd(t0, t1, [[i1, i2], [i3]]) represents the expression
t0[i1][i2] + t1[i3] in the target language. The v in vop
is for virtual, indicating that the elements of the resulting
tensor expression are not stored in memory, as opposed to a
real tensor that is backed by memory. In the previous exam-
ple, the values of t0[i1][i2] + t1[i3], for varying values
of i1, i2, i3, do not reside in memory but must be computed
from the elements of the real tensors t0 and t1.

The eq built-in yields an assignment in the target language,
e.g., the TeML assignment t2 = eq(t0, [i1, i2]→ [i2, i1])
represents the target language assignment t2[i2][i1] =
t0[i1][i2]. As a consequence, t2must refer to a real tensor
that has previously been introduced by t2=tensor([N2, N1]).
The op built-in is syntactic sugar for the combination of vop
and eq, i.e. op assigns the value of a tensor expression (viz. a
virtual tensor) to a real tensor.

The identifier id1 in the TeML assignment id1 = expression
has two meanings. First, from TeML’s meta-programming
perspective, id1 is used to reference a tensor expression. Sec-
ond, in the generated target program, id1 is the name of
the tensor variable that is assigned to. This default behav-
ior can be overridden by using an assignment of the form
id1 = @id2 : expression. Then, id1 still refers to the tensor ex-
pression in TeML, but id2 is used in the generated target
program. It is not uncommon in meta-programming that
names and objects acquire multiple meanings that depend
on the abstraction level under consideration.
Low-level arithmetic operations such as add, sub, and

mul give TeML a high degree of expressiveness. However,
to leverage the full potential of meta-programming, it is
desirable to manipulate higher-level operations, e.g. tensor
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⟨program⟩ ::= ⟨stmt⟩ ⟨program⟩
| ϵ

⟨stmt⟩ ::= ⟨id⟩ = ⟨expression⟩
| ⟨id⟩ = @⟨id⟩ : ⟨expression⟩
| codegen (⟨ids⟩)
| init (. . . )

⟨expression⟩ ::= ⟨Texpression⟩
| ⟨Lexpression⟩

⟨Texpression⟩ ::= scalar ()
| tensor ([⟨ints⟩])
| eq (⟨id⟩, ⟨iters⟩?→ ⟨iters⟩)
| vop (⟨id⟩, ⟨id⟩, [⟨iters⟩?, ⟨iters⟩?])
| op (⟨id⟩, ⟨id⟩, [⟨iters⟩?, ⟨iters⟩?]→ ⟨iters⟩)

⟨Lexpression⟩ ::= build (⟨id⟩)
| stripmine (⟨id⟩, ⟨int⟩, ⟨int⟩)
| interchange (⟨id⟩, ⟨int⟩, ⟨int⟩)
| fuse_outer (⟨id⟩, ⟨id⟩, ⟨int⟩)
| fuse_inner (⟨id⟩, ⟨int⟩)
| unroll (⟨id⟩, ⟨int⟩)

⟨iters⟩ ::= [⟨ids⟩]
⟨ids⟩ ::= ⟨id⟩ (, ⟨id⟩)*
⟨ints⟩ ::= ⟨int⟩ (, ⟨int⟩)*

Figure 1. TeML core grammar

contraction, that abstract common tensor kernels such as
the matrix product, the matricized tensor times Khatri-Rao
product, or the sampled dense-dense matrix product. Con-
traction is also a specific example of a class of higher-level
operations known as reductions. We defer the introduction of
various high-level operations to Section 4 to avoid blowing
the formal specification of the core of TeML (in Section 3)
out of proportion. It is one of the strengths of TeML that
complex operations can be defined compositionally from
more fundamental constructs. Note, however, that virtual re-
duction operations, e.g. vcontract for contraction, must be
considered fundamental, as is explained in Section 4.2.3. An
identifier idt that refers to a tensor expression is wrapped in
a loop nest by idl = build(idt ). The identifier idl then refers
to this loop nest, whose depth equals the number of iterators
that appear in the tensor expression idt . Building the loop
nest idl automatically numbers the iterators that appear in
the tensor expression idt : iterator ik is introduced by the
loop at nesting level k inside the loop nest idl . The range of
each iterator ik is inferred from how it is used in the tensor
expression idt .
The loop nest idl can be transformed by stripmine,

interchange, fuse_outer, fuse_inner, and unroll. Loop
transformations are non-destructive and thus always return
a new loop nest without affecting what idl refers to. Note
that build generates a perfect loop nest, but the transforma-
tions stripmine, interchange, fuse_outer, fuse_inner,
and unroll may lead to non-perfectly nested loops.

n

t1 t2

Figure 2. ⟨n, [t1, t2]⟩

n

n1 n2

Figure 3. ⟨n, [⟨n1, []⟩, ⟨n2, []⟩]⟩

TeML’s purpose is the specification and manipulation of
programs that operate on tensors, both of which are fully de-
coupled from the data held by tensors. Nonetheless, to initial-
ize individual elements of tensors, TeML provides the special
init statement, details of which we omit since they are not
central to the presentation of TeML. The codegen statement
generates the target language code for the loops that are ref-
erenced by the arguments (ids) of codegen. Presently, code
generation straightforwardly translates a TeML loop into its
equivalent in C, similar to the process described in [26].

3 Formal Specification

This section gives the denotational semantics of TeML. Since
TeMLmanipulates tensor expressions and loop nests, both of
which can be represented as trees, domains of trees feature
prominently in TeML’s semantics.

3.1 Domains of Trees

Trees are pairs ⟨n, ts⟩, where n is the root node and ts is a list
of subtrees whose roots are the children of n. Thus, the pair
⟨n, []⟩, where [] is the empty list, is a leaf node. Figures 2
and 3 illustrate this notation of trees.

Tensor expressions are represented as trees whose nodes
are triples (op, S, I ), where op is an operation or identifier, S
is the shape of the tensor expression (i.e. a list of its dimen-
sions), and I is a list of iterators. Figures 4–6 give examples of
such trees. Note that only identifiers, i.e. nodes (op, S, I ) with
op = id, may appear as leaf nodes. Internal nodes represent
operations. It is not meaningful to give an iterator list for
an operation, which is indicated by the special value • in
Figures 4–6. Thus, the domain T of tensor expressions can
be given the following recursive definition:

T = { ⟨(op, S, I ), ts⟩ | (ts = []) ∨ (ts = [t1, . . . , tk ] ∧ ti ∈ T) ,
I , • ⇒ ts = [] ∧ op = id } . (1)

For identifiers we also allow I = ϵ , indicating that the iterator
list has not been set yet. Note that ϵ , [], and also ϵ , •.

Shapes can also take the special value •. This happens only
for tree nodes (=, •, •) that represent assignment operations.
TeML assignments do not produce tensor-valued expressions
in the target language and thus have no meaningful shape
(viz. dimensions) at the meta-level.

Loop nests are also represented as trees of a certain struc-
ture: the nodes are iterators and the children of a node are
either loop nests or tensor expressions. Thus, the domain L′

of loop nests can be recursively defined as

L′ = { ⟨id, [x1, . . . ,xk ]⟩ | xi ∈ L′ ∪ T } . (2)
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A = tensor([N1, N2])
B = eq(A, [i1, i2] -> [i2, i1])

(=, •, •)

(B, [N2, N1], [i2, i1]) (A, [N1, N2], [i1, i2])

ℰl ⟦build(B )⟧σ2 = ⟨i1, [⟨i2, [σ2 (B )]⟩]⟩ :

for (int i1 = 0; i1 <= (N1-1); i1++)
for (int i2 = 0; i2 <= (N2-1); i2++)
B[i2][i1] = A[i1][i2];

σ1 = 𝒫stmt⟦A = tensor([N 1, N 2])⟧∅ = {A 7→ ⟨(A, [N 1, N 2], ϵ ), []⟩ }

σ2 = 𝒫stmt⟦B = eq(A, [i1, i2]→ [i2, i1])⟧σ1
= {A 7→ ⟨(A, [N 1, N 2], ϵ ), []⟩ ,

B 7→ ⟨(=, •, •), [⟨(B, [N 2, N 1], [i2, i1]), []⟩,
⟨(A, [N 1, N 2], [i1, i2]), []⟩]⟩ }

Figure 4.Matrix transposition implemented with eq. The tree on the left depicts σ2 (B). The target language (C) code at the
bottom results from build(B).

A = tensor([N, N])
B = tensor([N, N])
C = tensor([N, N])
D = @C:add(A, B, [[i1, i2], [i1, i2]] -> [i1, i2])

(=, •, •)

(C, [N, N], [i1, i2]) (+, [N, N], •)

(A, [N, N], [i1, i2]) (B, [N, N], [i1, i2])

ℰl ⟦build(D )⟧σ4 = ⟨i1, [⟨i2, [σ4 (D )]⟩]⟩ :

for (int i1 = 0; i1 <= (N-1); i1++)
for (int i2 = 0; i2 <= (N-1); i2++)
C[i2][i1] = A[i1][i2] + B[i1][i2];

σ1 = 𝒫stmt⟦A = tensor([N , N ])⟧∅ = {A 7→ ⟨(A, [N , N ], ϵ ), []⟩ }

σ2 = 𝒫stmt⟦B = tensor([N , N ])⟧σ1
= {A 7→ ⟨(A, [N , N ], ϵ ), []⟩ , B 7→ ⟨(B, [N , N ], ϵ ), []⟩ }

σ3 = 𝒫stmt⟦C = tensor([N , N ])⟧σ2
= {A 7→ ⟨(A, [N , N ], ϵ ), []⟩ , B 7→ ⟨(B, [N , N ], ϵ ), []⟩ ,

C 7→ ⟨(C, [N , N ], ϵ ), []⟩ }

σ4 = 𝒫stmt⟦D = @C : add(A, B, [[i1, i2], [i1, i2]]→ [i1, i2])⟧σ3
= {A 7→ ⟨(A, [N , N ], ϵ ), []⟩ , B 7→ ⟨(B, [N , N ], ϵ ), []⟩ ,

C 7→ ⟨(C, [N , N ], ϵ ), []⟩ ,
D 7→ ⟨(=), •, •), [⟨(C, [N , N ], [i1, i2]), []⟩, y]⟩ },

where y = ⟨(+, [N , N ], •), [⟨(A, [N , N ], [i1, i2]), []⟩,
⟨(B, [N , N ], [i1, i2]), []⟩]⟩

Figure 5. The @id construct. The tree on the left depicts σ4 (D). The C code on the bottom left results from build(D).

A = tensor([N, N])
B = tensor([N, N])
C = tensor([N, N])
D = vadd(A, B, [[i1, i2], [i1, i2]])
E = mul(C, D, [[i1, i2], ] -> [i1, i2])

(+, [N, N], •)

(A, [N, N], [i1, i2]) (B, [N, N], [i1, i2])

(=, •, •)

(E, [N, N], [i1, i2]) (*, [N, N], •)

(C, [N, N], [i1, i2]) (+, [N, N], •)

(A, [N, N], [i1, i2]) (B, [N, N], [i1, i2])

ℰl ⟦build(E )⟧σ5 = ⟨i1, [⟨i2, [σ5 (E )]⟩]⟩ :

for (int i1 = 0; i1 <= (N-1); i1++)
for (int i2 = 0; i2 <= (N-1); i2++)
E[i1][i2] = C[i1][i2] * (A[i1][i2] + B[i1][i2]);

σ1 = 𝒫stmt⟦A = tensor([N , N ])⟧∅ = {A 7→ ⟨(A, [N , N ], ϵ ), []⟩ }

σ2 = 𝒫stmt⟦B = tensor([N , N ])⟧σ1
= {A 7→ ⟨(A, [N , N ], ϵ ), []⟩ , B 7→ ⟨(B, [N , N ], ϵ ), []⟩ }

σ3 = 𝒫stmt⟦C = tensor([N , N ])⟧σ2
= {A 7→ ⟨(A, [N , N ], ϵ ), []⟩ , B 7→ ⟨(B, [N , N ], ϵ ), []⟩ ,

C 7→ ⟨(C, [N , N ], ϵ ), []⟩ }

σ4 = 𝒫stmt⟦D = vadd(A, B, [[i1, i2], [i1, i2]])⟧σ3
= {A 7→ ⟨(A, [N , N ], ϵ ), []⟩ , B 7→ ⟨(B, [N , N ], ϵ ), []⟩ ,

C 7→ ⟨(C, [N , N ], ϵ ), []⟩ ,
D 7→ ⟨(+, [N , N ], •), [⟨(A, [N , N ], [i1, i2]), []⟩,

⟨(B, [N , N ], [i1, i2]), []⟩]⟩ }

σ5 = 𝒫stmt⟦E = mul(C, D, [[i1, i2], ]→ [i1, i2])⟧σ4
= {A 7→ ⟨(A, [N , N ], ϵ ), []⟩ , B 7→ ⟨(B, [N , N ], ϵ ), []⟩ ,

C 7→ ⟨(C, [N , N ], ϵ ), []⟩ ,
D 7→ ⟨(+, [N , N ], •), [⟨(A, [N , N ], [i1, i2]), []⟩,

⟨(B, [N , N ], [i1, i2]), []⟩]⟩ ,
E 7→ ⟨(=, •, •), [⟨(E, [N , N ], [i1, i2]), []⟩,

⟨(*, [N , N ], •), [⟨(C, [N , N ], [i1, i2]), []⟩, σ4 (D )]⟩]⟩ }

Figure 6. More complex tensor expression, including assignment to tensor E. The trees on the left depict σ4 (D) (top tree) and
σ5 (E) (bottom tree) respectively. The target language (C) code on the bottom left results from build(E).
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Figures 4–6 also give the tree representations (underlined,
in the ⟨ , [ ]⟩ notation) of the perfect loop nests returned by
build. Non-perfect loop nests may result after applying loop
transformations. While L′ includes non-perfect loop nests,
it does not include assignment operations at the top level
of a TeML program, i.e. assignment operations not nested
inside any loop. To capture such corner cases, we take as the
domain of loops

L = L′ ∪ { ⟨•, [x1, . . . ,xk ]⟩ | xi ∈ L′ ∪ T } . (3)

The trees ⟨•, [x1, . . . ,xk ]⟩ represent sequences of top-level
loops and tensor expressions x1, . . . ,xk , i.e. loops and tensor
expressions not nested inside a loop.

So far we have always referred to iterators by their names,
and TeML’s naming convention for iterators was introduced
in Section 2. However, the iterators that appear as nodes
in the tree representation of loop nests carry additional in-
formation, namely their inferred ranges. The range of an
iterator is a triple (lb, ub, st) consisting of integer values lb
(lower bound), ub (upper bound), and st (step).

3.2 State

The state of a TeML meta-program maps identifiers to trees
representing either tensor expressions or loop nests. Thus,
the domain S of states is defined as

S = identifier→ (T + L) . (4)

Hence, a specific state σ ∈ S is formally a function

σ : identifier→ (T + L) . (5)

3.3 Valuation Functions

We now specify the behavior of TeML programs in terms of
valuation functions. For each syntactic category (statement,
expression etc.) there is a valuation function that defines
how a syntactic entity manipulates a specific state σ ∈ S:

𝒫prog : program→ (S→ S) , (6)
𝒫stmt : stmt→ (S→ S) , (7)
ℰt : Texpression→ (S→ T) , (8)
ℰl : Lexpression→ (S→ L) . (9)

𝒫prog is given in Figure 7 and is straightforward. The defi-
nition of𝒫stmt is split across Figures 8 and 9 since it depends
on whether the right-hand side of an assignment is a tensor
or a loop expression.

𝒫prog⟦ϵ⟧ = idS (10)
𝒫prog⟦s p⟧ = 𝒫prog⟦p⟧ ◦𝒫stmt⟦s⟧ (11)

Figure 7. Definition of 𝒫prog. ϵ denotes an empty program,
s a statement, and p a program; ◦ is function composition.

.

ℰt ⟦scalar()⟧ = λσ .⟨(□, [], •), []⟩ (12)

ℰt ⟦tensor(S )⟧ = λσ .⟨(□, S, ϵ ), []⟩ (13)

ℰt ⟦eq(t , I0 → I1)⟧ =

λσ .let ⟨(op, S, I ′), ys⟩ = σ (t )

y = ⟨(op, S, I ′′), ys⟩

x = ⟨(□, S ′, I1), []⟩
in ⟨(=, •, •), [x ,y]⟩ , (14)

where
{

I ′ , ϵ ∧ I ′′ = I ′ , if I0 = ϵ
I ′ = ϵ ∧ I ′′ = I0 , if I0 , ϵ

ℰt ⟦vop(t0, t1, [I0, I1])⟧ =
λσ .let ⟨(op0, S0, I

′
0), ys0⟩ = σ (t0)

⟨(op1, S1, I
′
1), ys1⟩ = σ (t1)

y0 = ⟨(op0, S0, I
′′
0 ), ys0⟩

y1 = ⟨(op1, S1, I
′′
1 ), ys1⟩

in ⟨(op, S ′, •), [y0,y1]⟩ , (15)

where
{

I ′i , ϵ ∧ I ′′i = I ′i , if Ii = ϵ
I ′i = ϵ ∧ I ′′i = Ii , if Ii , ϵ

ℰt ⟦op(t0, t1, [I0, I1]→ I2)⟧ =

λσ .let x = ℰt ⟦vop(t0, t1, [I0, I1])⟧σ
in ℰt ⟦eq(t , ϵ → I2)⟧ (σ {t 7→ x }) , (16)
where t is an identifier not in dom(σ )

𝒫stmt⟦id = et ⟧ = λσ .let x = ℰt ⟦et ⟧σ
x ′ = x[id/□]

in σ {id 7→ x ′} (17)

𝒫stmt⟦id1 = @id2 : et ⟧ = λσ .let x = ℰt ⟦et ⟧σ
x ′ = x[id2/□]

in σ {id1 7→ x ′} (18)

Figure 8. Valuation functions ℰt and 𝒫stmt for tensor ex-
pressions. The placeholder □ is filled with an identifier by
𝒫stmt. The shape S ′ in eq and vop must be inferred.

3.3.1 Tensor Expressions

Figure 8 defines the valuation function ℰt . Given a tensor
expression as its argument, ℰt constructs the tree that repre-
sents this tensor expression. The tree that is constructed for
scalar consists of the node (□, [], •), which sets the shape
of a scalar to the empty list [] and forbids iterators to index
scalars since the last component of the triple is •. When a
tree is constructed for tensor, the last component of the
triple is left empty, indicated by ϵ in Equation (13). A list
of iterators is filled in for ϵ when the tensor is used in an
expression. The example in Figure 4 demonstrates this: the
tensor referred to by A has no iterator list (in either state σ1
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or σ2); but when A is used in the expression eq, an iterator
list is filled in based on the arguments of eq (cf. state σ2).
The symbol □ denotes a placeholder for an identifier,

which can only be filled in once the identifier on the left-hand
side of an assignment has been seen. Hence,𝒫stmt (discussed
below) is responsible for filling in an identifier for □.
For eq, the function ℰt constructs a tree representing an

assignment operation. This also uses a placeholder to defer
filling in the identifier for the tensor on the left-hand side of
the constructed assignment. The grammar in Figure 1 allows
the iterator list I0 to be absent, i.e. I0 = ϵ . The where-clause
after Equation (14) specifies when this is possible. If I0 = ϵ ,
the identifier t must refer to a tensor expression that already
has a valid iterator list (I ′ , ϵ), and this then becomes the
iterator list of y (I ′′ = I ′). If I0 , ϵ , then t must refer to a
tensor expression with no iterator list (I ′ = ϵ), and then I0
is filled in as the iterator list of y (I ′′ = I0). The optional
arguments I0 and I1 of vop are handled in the same way.
As pointed out in Section 2, op is syntactic sugar for vop

followed by eq. Equation (16) makes this precise. The no-
tation σ {t 7→ x } means that the map σ is augmented with
a mapping of the identifier t to x . Generally, an existing
mapping for t in σ (t ∈ dom(σ )) is overwritten. In Equa-
tion (16), however, t is chosen to be a fresh identifier not
already mapped by σ .

Note that the arguments I0, I1 of op are simply passed on
to vop in Equation (16). The mul operation in Figure 6 is an
example of the use of an emtpy iterator list, i.e. I1 = ϵ .
𝒫stmt produces a new state from its argument σ by adding

a new mapping for an identifier (id in Equation (17) or id1 in
Equation (18)). The target of this new mapping is an expres-
sion tree x ′ that is produced by first evaluating ℰt ⟦et ⟧ and
then, in Equation (17), replacing potential occurrences of □
with the identifier id (in symbols: x[id/□]). Now, id occurs
in the expression tree x ′ and will thus make it into the target
language program generated by TeML; but id is also mapped
in the new state σ {id 7→ x ′}. This is the double meaning of
id (cf. Section 2) made precise. Equation (18) does not lead
to this double meaning since □ is replaced with id2 from the
@id2 construct, of which Figure 5 gives a worked example.
Generally, the right panes of Figures 4–6 give step-by-step
evaluations of 𝒫prog, broken down into evaluations of 𝒫stmt.

Since TeML assignments have a 3-address format, nested
evaluations of ℰt do not occur. Therefore, there is never more
than one occurrence of □ in the tree x in Equations (17), (18).
In Equation (14) the shape S ′ must be inferred from the

properties ofy; and S ′ in Equation (15) must be inferred from
y0, y1. Shape inference for tensor expressions is straightfor-
ward and follows a strategy analogous to the typing of ten-
sor expressions in [25]. Inference fails for malformed tensor
expressions, in which case TeML cannot generate a valid
target language program. Also analogous to [25], the TeML
assignments in Equations (17), (18) are malformed if id or
id2, respectively, has not been introduced with tensor.

ℰl ⟦build(t )⟧ = λσ .let r = “number of iterators in σ (t )”
ik = (0, ubk , 1) for k = 1, . . . , r

in ⟨i1, . . . , ⟨ir , [σ (t )]⟩ . . . ⟩ , (19)
where σ (t ) = ⟨(=, •, •), [x ,y]⟩

ℰl ⟦stripmine(l , r ,v )⟧ =
λσ .let ⟨i1, . . . ⟨ir ,xs⟩ . . . ⟩ = σ (l )

(b, e, 1) = ir
i ′r = (0, (e − b)/v − 1, 1)
i ′r+1 = (b +v · i ′r ,b +v · i

′
r + (v − 1), 1)

in ⟨i1, . . . ⟨i ′r , [⟨i
′
r+1,xs⟩]⟩ . . . ⟩ (20)

ℰl ⟦interchange(l , r1, r2)⟧ =
λσ .let ⟨i1, . . . ⟨ir1 , . . . ⟨ir2 ,xs⟩ . . . ⟩ . . . ⟩ = σ (l )

in ⟨i1, . . . ⟨ir2 , . . . ⟨ir1 ,xs⟩ . . . ⟩ . . . ⟩ (21)

ℰl ⟦fuse_outer(l1, l2, r )⟧ =
λσ .let ⟨i1, . . . ⟨ir ,xs⟩ . . . ⟩ = σ (l1)

⟨i1, . . . ⟨ir ,ys⟩ . . . ⟩ = σ (l2)

in ⟨i1, . . . ⟨ir ,xs | | ys⟩ . . . ⟩ (22)

ℰl ⟦fuse_inner(l , r )⟧ =
λσ .let ⟨i1, . . . ⟨ir−1,xs⟩ . . . ⟩ = σ (l )

[⟨ir ,xs1⟩, . . . , ⟨ir ,xsn⟩] = xs

in ⟨i1, . . . ⟨ir−1, [⟨ir ,xs1 | | . . . | | xsn⟩]⟩ . . . ⟩ (23)

ℰl ⟦unroll(l , r )⟧ =
λσ .let ⟨i1, . . . ⟨ir−1, [⟨ir ,xs⟩]⟩ . . . ⟩ = σ (l )

(b, e, s ) = ir

k = (e − b)/s + 1
in ⟨i1, . . . ⟨ir−1,xs ′0 | | . . . | | xs

′
k−1⟩ . . . ⟩ , (24)

where xs ′j is obtained from xs by replacing
the iterator ir with the constant s · j + b (25)

𝒫stmt⟦id = el ⟧ = λσ .let x = ℰl ⟦el ⟧σ in σ {id 7→ x } (26)

Figure 9. Valuation functions ℰl and 𝒫stmt for loop expres-
sions. The symbol | | denotes concatenation of lists.

3.3.2 Loop Expressions

The definitions of ℰl for loop expressions in Figure 9 freely
identify iterators with triples (lb, ub, st) that specify iterator
ranges (cf. the last paragraph of Section 3.1). When a loop
nest is built around a tensor expression in Equation (19),
the upper bounds ubk are inferred based on the positions in
which iterators are used to index tensors in the expression
σ (t ). Note that the where-clause after Equation (19) enforces
that loop nests are only built around assignments of tensors.
Example evaluations of ℰl ⟦build(id)⟧ appear (underlined)
in the bottom left corners of Figures 4–6, together with the
corresponding loop nests in the target language, i.e. C.
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Equation (20) implements a version of stripmining that
does not transform tensor indices inside tensor expressions.
The definition of interchange in Equation (21) is straight-
forward: it swaps iterators. Note that fuse_outer in Equa-
tion (22) fuses identical outer iterators of two loop nests,
and fuse_inner in Equation (23) fully fuses loops at nest-
ing level r . The tree patterns on the left-hand sides in the
let-expressions in Equations (22) and (23) enforce that the
loop nests σ (l1), σ (l2), and σ (l ) have specific shapes that are
required for fusion to be possible.
The definition for unroll in Equation (25) is standard.

Note that unrolling the outermost loop, i.e. r = 1 in Equa-
tion (25), generally results in a sequence of loops and tensor
expressions that are not nested inside another loop and thus
has the form ⟨•, [x1, . . . ,xk ]⟩ ∈ L (cf. Equation (3)).

The definition of𝒫stmt in Equation (26) is completely stan-
dard. No placeholders for identifiers are required for loop
expressions. This is ultimately because loops have no mean-
ingful names at the level of target language programs.

3.3.3 Parallelization

The TeML core language (cf. Figure 1) can be extended with
the loop expressions parallelize and vectorize that spec-
ify that a loop be parallelized or vectorized, respectively, us-
ing pragmas or intrinsic functions. Our representation of
loops as trees in L does not capture this, which is not a prob-
lem since neither parallelization nor vectorization changes
the structure of a loop. Further work is required to enable
more fine-grained control over parallelization, including for
instance the generation of atomic sections or optimized paral-
lel reductions. This would neccesitate extending bothTeML’s
expressivenes and its code generation process.

3.4 Type Safety in TeML

We have defined the valuation functions in a λ-calculus with
a primitive tree type that has the constructor ⟨ , []⟩. In the let-
expressions, we havemade extensive use of patternmatching
against this constructor. Additional constraints are enforced
by where-clauses. Whenever pattern matching fails or a
where-clause is not satisfied, the TeML program that is being
evaluated is malformed. A TeML program is also malformed
when shape inference fails or when real tensors are assigned
to that have not previously been introduced with tensor, as
discussed at the end of Section 3.3.1.

TeML detects whether a program is malformed while the
program is being evaluated. This amounts to dynamic type
checking, where dynamic means during the execution of
a meta-program, i.e. before a target language program has
even been generated.

4 Compositional Definitions

In this section, we extend TeMLwith additional loop and ten-
sor expressions that implement more abstract operations on

loops and tensors. These abstract operations enhanceTeML’s
expressiveness and, from the perspective of a TeML imple-
mentation, are considered built into the language. Nonethe-
less, the key observation in this section is that more abstract
operations can be defined in terms of theTeML core language
by means of the composition in Equation (11). This facilitates
a modular implementation of TeML and also demonstrates
the flexibility of the language.

4.1 Loop Transformations

The loop transformations in the TeML core language, as de-
fined in Figure 9, appear to be rather restrictive. For example,
interchange only operates on immediately adjacent loops,
and unroll performs complete unrolling of a loop. Using
loop tiling as an example, we now demonstrate how com-
mon, more flexible loop transformations can be composed
from the ones in the core language. In order to increase
data locality, tiling organizes the iteration space of a loop
nest into blocks. This can be achieved by multiple applica-
tions of stripmining, each of which introduces blocks into
a single loop, cf. Equation (20). The auxiliary transforma-
tion stripmine_n expands into the multiple applications of
stripmining required for tiling,

𝒫stmt⟦l
′ = stripmine_n(l ,n,v )⟧ =

𝒫prog

������������������
l1 = stripmine(l , 1,v )
l2 = stripmine(l1, 3,v )
. . .

ln−1 = stripmine(ln−2, 2(n − 1) − 1,v )
l ′ = stripmine(ln−1, 2n − 1,v )

������������������ . (27)

Note that if d is the depth of the original (perfect) loop nest
l , then the depth of the resulting loop nest l ′ is d + n.

To arrange the new loops that stripmining has introduced
into the right order for tiling, several interchanges are needed.
To this end, we introduce interchange_n that permutes an
iterator i in a loop nest through the next n iterators (towards
the innermost loop),

𝒫stmt⟦l
′ = interchange_n(l , r ,n)⟧ =

𝒫prog

����������������������������

l1 = interchange(l , r , r + 1)
l2 = interchange(l1, r + 1, r + 2)
. . .

ln−1 = interchange(ln−2, r + n − 2,
r + n − 1)

l ′ = interchange(ln−1, r + n − 1,
r + n)

����������������������������
. (28)

Finally, TeML’s loop transformation tile can be defined,

𝒫stmt⟦l
′ = tile(l ,v )⟧ =

𝒫prog

�����������������������

l0 = stripmine_n(l ,d,v )
l1 = interchange_n(l0, 2, 2d − 2)
l2 = interchange_n(l1, 3, 2d − 3)
. . .

ld−1 = interchange_n(ld−2,d,d ))
l ′ = interchange_n(ld−1,d + 1,d − 1)

�����������������������
, (29)
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i1 i3 i5 xs

a. Initial loop nest.

i′1 i′2 i′3 i′4 i′5 i′6 xs

b. stripmine_n(_, 3,v ) has introduced i ′2, i
′
4, and i

′
6.

i′1 i′3 i′5 i′2 i′4 i′6 xs

c. After three times interchange_n.

Figure 10. Tiling.

where d is the depth of the original loop nest l , and the
resulting loop nest l ′ has depth 2d . Figure 10 demonstrates
how tile handles a loop nest of initial depth 3. First, strip-
mining introduces the additional iterators i ′2, i

′
4, and i

′
6 in Fig-

ure 10b. Then, three applications of interchange_n move
these iterators towards the deep positions in the loop nest,
cf. Figure 10c.
Other well-known loop transformations, e.g. partial un-

rolling and unroll-and-jam, can be composed from the trans-
formations defined in Figure 9 in a similar fashion.

4.2 Tensor Operations

Tensor operations that are more abstract than the funda-
mental arithmetic operations, such as add and mul, allow
algorithms to be expressed more concisely in TeML. In par-
ticular, more abstract operations largely hide the explicit,
and therefore error-prone, manipulation of iterator lists. As
was the case for loop transformations, abstract tensor oper-
ations can be defined in terms of TeML’s core operations,
requiring only a few simple side rules for iterator lists and
shapes that a TeML implementation can easily check.

4.2.1 Entrywise Operations

If the tensors t0 and t1 have the same shapes, the core arith-
metic operations add, sub, mul, and div can be applied to
all entries (viz. components) of t0 and t1 simultaneously. Let
r denote the length of the shapes of t0 and t1. The entry-
wise application of arithmetic operations is enforced in the
following definitions by the fact that the same iterator list
I = [i1, . . . ir] is used for both t0 and t1,

ℰt ⟦ventrywise_op(t0, t1)⟧ = ℰt ⟦vop(t0, t1, [I , I ])⟧ , (30)
ℰt ⟦entrywise_op(t0, t1)⟧=ℰt ⟦op(t0, t1, [I , I ]→ I )⟧ . (31)

Theses formulae and their implementations in TeML gener-
alize to arbitrary numbers of arguments.

4.2.2 Transposition

Transposition amounts to reordering an iterator list:

ℰt ⟦transpose(t , [[r1, r2], . . . , [r2k−1, r2k ]])⟧ =
ℰt ⟦eq(t , I → I ′)⟧ , (32)

where I is a list of fresh iterators for t , and I ′ is obtained from
I by swapping pairs of iterators at positions r2i−1 and r2i , for

i = 1, . . . ,k . Since transpose is defined in terms of eq, it re-
sults in an assignment to a real tensor in the target language
program. The corresponding virtual operation vtranspose
does not introduce any operations into the target language
program, it simply causes TeML to reorganize iterator lists.

4.2.3 Contraction

Contraction is central to many complex algorithms that op-
erate on tensors. In particular, the dot product and matrix
multiplication are low-dimensional instances of contraction.

Let S0 and S1 be the shapes of tensors t0 and t1, and let these
shapes have lengths s0 and s1 respectively. The tensors t0 and
t1 can be contracted along dimensions r0 and r1, respectively,
if the r0-th entry of S0 equals the r1-th entry of S1. Then,

𝒫stmt⟦t
′ = contract(t0, t1, [r0, r1])⟧ =

𝒫prog

�
t2 = vmul(t0, t1, [I , J ])
t ′ = add(t ′, t2, [I ′, ϵ]→ I ′)

�
, (33)

where I = [i0, . . . , i(r0 − 1), k, i(r0 + 1), . . . , is0] ,
J = [j0, . . . , j(r1 − 1), k, j(r1 + 1), . . . , js1] ,
I ′ = (I \{k}) | | (J \{k}) .

The iterator k appears at position r0 in I , and at position r1 in
J ; it no longer appears in the iterator list I ′ for the resulting
tensor t ′. Contraction of more than one pair of dimensions
is defined analogously, but the formulae become unwieldy.
Contraction is an example of a reduction operation and

therefore crucially requires an accumulator. In Equation (33),
the resulting tensor t ′ also acts as the accumulator, and thus
t ′ appears both as the result and the argument of the add op-
eration. Because of the add in Equation (33), t ′ is a real tensor,
which in the target language program is backed by memory.
This explains why the virtual counterpart vcontract cannot
be given a definition in terms of more fundamental TeML
operations: in a virtual operation, TeML does not have at its
disposal a real tensor that can play the role of the accumula-
tor. Hence, vcontract is considered fundamental in TeML,
as already pointed out in Section 2.

Analogous statements hold for other reduction operations
that TeML can be extended with by suitable compositional
definitions.

4.2.4 Outer Product

The outer product, often simply referred to as the tensor
product, combines the components of tensors t1, . . . , tn into
a single tensor whose shape then is the concatenation of the
shapes of t1, . . . , tn . In formulae,

𝒫stmt⟦t
′ = vouterproduct(t1, . . . , tn )⟧ =

𝒫prog

������������������
sn−1 = vmul(tn−1, tn , [In−1, In])
sn−2 = vmul(tn−2, sn−1, [In−2, ϵ])
. . .

s2 = vmul(t2, s3, [I2, ϵ])
t ′ = vmul(t1, s2, [I1, ϵ]→ I ′)

������������������ , (34)
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𝒫stmt⟦t
′ = outerproduct(t1, . . . , tn )⟧ =

𝒫prog

�
s = vouterproduct(t1, . . . , tn )
t ′ = eq(s, ϵ → I ′)

�
, (35)

where I ′ = I1 | | . . . | | In , and the iterator lists I1, . . . , In are
pairwise disjoint, so that no iterator appears more than once
in the concatenated list I ′. Note that the implementation
of outerproduct is not quite as modular as Equation (35)
suggests: to construct the final iterator list I ′, the iterator lists
I1, . . . , In from the definition of vouterproduct are needed.

5 Evaluation of TeML

Table 1 describes a range of common tensor kernels from
different application domains. These kernels serve as bench-
marks for our evaluation of TeML that assess three different
aspects of the language:

1. The capability to express tensor computations effi-
ciently. Here we compare with TensorFlow [2], whose
abstractions for tensor expressions are similar to
TeML’s tensor operations from Section 4.2.

2. The ability to reproduce loop optimization paths of
existing tools. It is natural to compare with Pluto [8],
which gives access to powerful polyhedral-based trans-
formations through an interface allowing to enable or
disable transformation heuristics.

3. The ability to easily extend optimization paths by com-
posing with additional transformations, leading to the
generation of C programs that outperform the ones
generated with Pluto.

As this section unfolds, it will become clear that not all ker-
nels from Table 1 can bemeaningfully used in the evaluations
of all of the three aspects.
All experiments reported in this section were performed

on an Intel(R) Core(TM) i7-4910MQ CPU (2.90GHz, 8 hy-
perthreads, 8192KB of shared L3 cache) running the Ubuntu
16.04 operating system. The generated C programs (either
from TeML or Pluto) were compiled with the Intel C com-
piler ICC 18.02 using the flags -O3 -xHost -qopenmp. We
used Pluto version 0.11.4, and TensorFlow version 1.6 with
support for AVX, FMA, SSE, and multi-threading.

5.1 Expressing Tensor Computations

Most benchmark kernels can be implemented using TeML’s
more abstract tensor operations, which keeps the kernel code
short. As shown in Table 1, TensorFlow and TeML programs
are of comparable sizes in terms of lines of code (LOC).

Most TensorFlow kernels use either einsum or tensordot.
The latter is the equivalent of TeML’s contract. Tensor-
Flow’s einsum operation is more low-level than tensordot
and can thus be used when the semantics of tensordot
are too restrictive, e.g. in batched matrix multiplication. In
TeML, the same functionality can be implemented using
also low-level operations, i.e. add and mul. Batched matrix

multiplication (C = AB) must be built with more low-level
operations in both frameworks due to the batch index b:

C[b][i][j] += A[b][i][k] * B[b][k][j]

Note that einsum is not flexible enough to implement all
kernels that can be expressed in TeML, as evidenced by the
convolution kernel gconv and the stencil kernel blur in Ta-
ble 1. TensorFlow does also not have a dedicated construct
for outer products, but its documentation explicitly recom-
mends using einsum for this purpose.1

In summary, practically all of TensorFlow’s constructs for
tensor expressions have equivalents in TeML that can be
used as effectively. TeML also offers support for expressing
computations that cannot be implemented in TensorFlow.

5.2 Reproducing Pluto’s Optimization Paths

For the tensor kernels from Table 1 we have identified the
fastest program variants that can be generated with Pluto
by manipulating its heuristics for loop fusion, tiling, inter-
change, vectorization, and thread parallelism.2 Table 2 lists
the TeML equivalents of the loop optimization paths that
caused Pluto to generate the fastest programs. Note that the
TeML transformations vectorize and parallelize have
been implemented with compiler-specific pragmas for vec-
torization and OpenMP pragmas for thread parallelization.
The stencil kernel blur is not included in Table 2 since

Pluto’s best optimization path for this kernel performs loop
skewing, which cannot yet be expressed in TeML. Also, as
standard matrix multiplication has been thoroughly studied,
cf. [34] in particular, our analysis focuses on bmm, which
presents a less conventional computation pattern.
Since the sequences of TeML loop transformations in

Table 2 reproduce the effects of Pluto’s optimizations, C pro-
grams generated either from TeML or Pluto for the kernels
listed in Table 2 have equal execution times. For space rea-
sons we have omitted plots of these execution times since
they would only show relative speed-ups of 1.0× (within
measurement accuracy) between Pluto and TeML.

5.3 Performance Comparison

We now study opportunities for composing optimization
paths with TeML that lead to generated C programs that
outperform programs generated with Pluto. For complete-
ness we also indicate the performance of the corresponding
TensorFlow kernels. Figure 11 shows speed-ups relative to
the sequential C implementation that is the starting point for
applying optimizations with Pluto. Speed-ups are shown for
the best program variants generated with Pluto and TeML,
and for TensorFlow kernels whenever they exist (cf. Table 1).

Pluto’s best variants formttkrp, bmm, and sddmm still offer
opportunities for data transposition, which can significantly

1https://www.tensorflow.org/api_docs/python/tf/einsum
2Note that Pluto offers only limited supported for unrolling heuristics.

https://www.tensorflow.org/api_docs/python/tf/einsum
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Table 1. Tensor kernels implemented in TensorFlow and TeML. Application domains: Linear Algebra (LA), Deep Learning
(DL), Machine Learning (ML), Data Analytics (DA), Fluid Dynamics (FD), Image Processing (IP).

TensorFlow TeML

Name Domain LOC Constructs used LOC Constructs used
Matrix Multiplication mm LA 3 matmul 3 contract

transposed tmm 3 matmul:transpose=True 4 transpose, contract
batched bmm 3 einsum 3 mul, add

Grouped Convolutions [38] gconv
DL

N/A Not implemented.
Incompatible with einsum. 5 vmul, add

Matricized Tensor Times

Khatri-Rao product

mttkrp DA 4 einsum or tensordot,
multiply 5 vcontract, contract

Sampled Dense-Dense

Matrix Product

sddmm ML 4 einsum or tensordot,
multiply 6 vcontract,

entrywise_mul
Interpolation [17] interp 3 einsum or tensordot 5 contract

Helmholtz [17] helm
FD

N/A Required division
not well supported. 9 contract, outerproduct,

div, entrywise_mul
Blur blur N/A No stencil support. 9 op, vop

Coarsity [15] coars IP 6 einsum or multiply,
subtract 6 ventrywise_mul,

entrywise_sub

Table 2. Equivalents of Pluto’s optimization paths in TeML. Kernel data sizes in parentheses.

mttkrp
(250*250*250)

sddmm
(4096*4096)

bmm
(8192*72*26)

gconv
(32*32*32*32*7*7)

interp
(50000*7*7*7)

helm
(5000*13*13*13)

coars
(4096*4096)

parallelize(l, 1)
interchange(l, 2, 3)

interchange(l, 2, 3),
parallelize(l, 1),
vectorize(l, 3)

tile(l, 32)
interchange(l, 7,8)
parallelize(l, 1)
vectorize(l, 8)

interchange(l1, 4, 5)
interchange(l1, 5, 6)
parallelize(l1, 1)
vectorize(l1, 9)
parallelize(l2, 1)
vectorize(l2, 9)

interchange(l1, 4, 5),
vectorize(l1, 5),
interchange(l2, 4, 5),
vectorize(l2, 5),
parallelize(l1, 1),
parallelize(l2,1),
parallelize(l3, 1)

fuse_outer(l4, l5, 5),
fuse_outer(l4, l6, 5),
parallelize(l1, 1),
parallelize(l2, 1),
parallelize(l3, 1),
parallelize(l4, 1),
vectorize(l1, 2),
vectorize(l2, 3),
vectorize(l3, 4)

tile(l, 32)
parallelize(l, 1)
vectorize(l, 4)

improve performance if copy overheads are negligible. The
relevant loop nest in the mttkrp kernel is this:

for (int i = 0; i <= (I-1); i++)
for (int j = 0; j <= (J-1); j++)
for (int k = 0; k <= (K-1); k++)
for (int l = 0; l <= (L-1); l++)
A[i][j] = B[i][k][l] * D[l][j] * C[k][j];

The loop interchange j ↔ l would eliminate the column-
major access of D, and j ↔ k would eliminate that ofC . Both
column-major accesses cannot be eliminated at the same time
(without negatively affecting the access patterns of A and
B). Pluto chooses to interchange j ↔ k (cf. Table 2), which
only eliminates the column-major access ofC . The following
TeML meta-program implements mttkrp and resolves the
column-major access of D by means of data transposition,
yielding a speed-up of 1.74× compared to Pluto, with the
cost of transposition included (Figure 11a).

B = tensor(double, [250, 250, 250])
C = tensor(double, [250, 250])
D = tensor(double, [250, 250])
Dt = transpose(D, [[1, 2]])
tmp = vcontract(B, Dt, [3, 1])

A = contract(tmp, C, [2, 1])
ld = build(Dt)
l = build(A)
l1 = parallelize(l, 1)
l2 = interchange(l1, [2, 3])

For bmm, however, when executing on more than two cores,
the copy overhead that results from the transposition loop
is greater than the cost of transposed data accesses, making
it difficult to outperform Pluto (Figure 11b).3 Similarly, an
additional transposition makes sddmm’s execution about 2×
slower. When TeML does not apply the additional transposi-
tion to the bmm and sddmm kernels, performance is on par
with the generated Pluto program as explained in Section 5.2.
This shows that initially appealing transformations do not
always guarantee a gain in performance.
It is known that BLAS implementations can outperform

code generated with Pluto thanks to manually implemented
optimizations that build on a detailed understanding of the
underlying hardware. Some of the relevant transformations
are readily available in TeML (e.g. loop tiling). As TeML is
3Note that previous work [34] produced similar results for standard matrix
multiplication and Pluto.
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designed to be easily extensible, we believe that it can be
extended with missing transformations from which matrix
multiplication will benefit further.
Sequences of contractions are central to both the interp

and the helm kernel. In interp, the C implementation of the
first contraction is as follows.
for (int i1 = 0; i1 <= (N-1); i1++)
for (int i2 = 0; i2 <= (N-1); i2++)
for (int i3 = 0; i3 <= (N-1); i3++)
for (int i4 = 0; i4 <= (N-1); i4++)
t[i1][i2][i3] += A[i1][i4] * u[i4][i2][i3];

Pluto chooses to permute the loops into i1, i2, i4, i3 . How-
ever, all transposed accesses are eliminated if the loops are
ordered into i1, i4, i2, i3with TeML. Figure 11e shows that
this potentially yields slightly better performance. Applying
the analogous permutation to helm inhibits the fusions that
Pluto chooses to apply (cf. Table 2) but leads to noticeably
better performance than Pluto’s fusions (cf. Figure 11f).

Loop unrolling considerably speeds up gconv (Figure 11d)
as small inner dimensions lend themselves well to full un-
rolling. While Figure 11d looks promising, one has to be
cautious when comparing with Pluto since it cannot apply
an unrolling heuristic analogous to TeML.
For the coars kernel we were unable to identify transfor-

mations that outperform Pluto’s heuristics.
It should be noted that it is not fair to compare the per-

formance results for Pluto and TeML directly with those for
TensorFlow in Figure 11. Unlike Pluto and TeML, Tensor-
Flow does not let programmers flexibly configure the loop
optimizations that are applied to a kernel. Furthermore, since
TensorFlow is targeted at the machine learning domain, it
is not reasonable to expect it to perform well at optimizing
kernels from other application domains, e.g. interp.

6 Related Work

Many frameworks for handling tensor computations exist,
ranging from general-purpose [16, 18, 28–31] to domain-
specific solutions [3, 6, 11, 20, 22, 26, 38]. TeML distinguishes
itself from these frameworks in two major ways.
First, the domain-specific solutions offer abstractions for

tensor algebra that are appropriately chosen for the respec-
tive application domain. TeML’s representation of tensor
expressions is purposefully more low-level in the sense that
it does not include abstractions for mathematical structures
that are relevant in any specific domain. This makes TeML
more flexible and enables its use as an intermediate language
that gives compiler implementers direct access to powerful
capabilities for meta-programming and composing optimiza-
tions for different domains and platforms.

Second, the existing general-purpose and domain-specific
solutions both rely on built-in heuristics for transforming
input porgrams into optimized code. Users can only crudely
manipulate these heuristics, if at all. For instance, the Tensor
Contraction Engine [6] within the NWChem system [36] is a

tool that implements fixed loop transformation heuristics for
applications in quantum chemistry. Analogously, Coffee [20]
is a compiler that interfaces with PyOP2 [24] and implements
optimization heuristics tailored to finite element problems.
TeML, on the other hand, is more general in that it lets users
directly specify and manipulate code optimization strategies
by composing transformations at the meta-level.
The TACO [18] framework hits an interesting point in

the design space of tensor languages. TACO does not target
a specific application domain, but as a language and com-
piler for kernels that mix dense and sparse tensor algebra
it focuses on the integration of different data structures for
representing tensors internally. To handle the mix of dense
and sparse structures efficiently, TACO also employs suitable
built-in strategies. Again this means that, unlike in TeML,
code transformation and optimization cannot be controlled
by user input. Furthermore, TACO does not employ classic
loop transformations as found, for instance, in polyhedral
frameworks such as Pluto. Hence, TACO’s transformations
do not directly compare to the ones provided by TeML.
TeML’s level of abstraction is similar to those of Ten-

sorFlow [2], Theano [7], Numpy [1], or SaC [27], while
also capturing explicit transformations available in meta-
programming languages [4, 9, 10, 12, 13, 19, 21, 23, 35, 39].
In terms of design, TeML is much closer to Halide [23] and
TVM [10], with differences in expressiveness and program-
ming style. Identifying tensor operation patterns requires
additional program analysis in Halide and TVM whereas the
patterns of higher-level operations are native to TeML. Also,
Halide and TVM decouple the specification of computation
(which is functional) from the specification of transforma-
tions (which is imperative). TeML, however, unifies both
stages following the same functional style, which has two
advantages. First, considering tensor operation patterns as
native lets TeML directly understand algebraic properties,
which is necessary to enable algebraic transformations. Sec-
ond, generating different program variants does not require
different meta-programs. In TeML, a single meta-program
can include the specification of one tensor computation fol-
lowed by different branches of transformation paths.

Very few existing frameworks and tools come with formal
semantics. One exception is Lift [33], a functional language
from which optimized and portable GPU code can be gener-
ated. The definition of Lift’s core language is given in terms
of denotational semantics [32]. However, Lift’s approach to
abstracting computations and transformations differs from
TeML’s: computations are expressed using combinators, and
rewrite rules are used to transform programs. The meta-
programming tools Clay [4], URUK [12], CHiLL [9], and
Loo.py [19] rely largely on the polyhedral formalism, which
focuses on the representation, analysis, and transformation
of loops. However, none of these tools have semantics that
model loop transformations. To the best of our knowledge,
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Figure 11. Speed-ups relative to sequential (i.e. single-core) C implementations.

TeML is the first (meta-)language that comes with denota-
tional semantics for both tensor computations and explicit
transformations thereof.

7 Summary and Outlook

We have presented TeML, a meta-language for programming
and optimizing tensor computations. TeML offers similar
levels of abstraction for expressing tensor computations as
existing tensor languages, e.g. TensorFlow and Theano. Addi-
tionally, loop transformations are first class citizens in TeML,
enabling meta-programming of optimization schemes com-
parable to and better than those of Pluto, a state-of-art poly-
hedral compiler, in only a few lines of code. The semantics of
TeML have been formally specified in a denotational style,
exhibiting a high level of compositionality as more abstract
tensor operations and loop transformations can be formally
defined by composition of more fundamental ones.
In the future, it would be interesting to augment TeML

with abstractions for memory virtualization and mapping in
order to handle, e.g., NUMA and distributed memory place-
ment, data alignment, and padding. The semantics would
have to be extended accordingly.

Note that TeML currently has no notion of whether loop
transformations preserve the semantics of target language

programs. This is on purpose: past research on affine trans-
formations [5, 14, 37] has highlighted advantages of allowing
non-semantics-preserving transformations as intermediate
steps in optimizing programs so long as the full optimization
process, once completed, retains the original meanings of
programs. Extending TeML with facilities for both requiring
and guaranteeing that certain transformations preserve pro-
gram semantics is an interesting direction for future work.

While the present work has focused on the design of TeML
as a meta-language, future work could assess the possibility
of using TeML to identify platform-independent or portable
optimization strategies, targeting also GPU platforms.
Finally, to enhance the usability of TeML in certain ap-

plication domains, future work should aim at identifying
suitable high-level abstractions for stencil patterns and gen-
eral convolutions. In a similar vein, options for supporting
sparse tensors might be worth investigating.
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