
Comparing Dataflow and OpenMP Programming for Speaker
Recognition Applications

Hasna Bouraoui
Technische Universität Dresden,

Germany
Dresden, Germany

hasna.bouraoui@tu-dresden.de

Jeronimo Castrillon
Technische Universität Dresden,

Germany
Dresden, Germany

jeronimo.castrillon@tu-dresden.de

Chadlia Jerad
University of Manouba & University

of Carthage
Tunis, Tunisia

chadlia.jerad@ensi-uma.tn

ABSTRACT

The still increasing number of transistors per chip offered byMoore’s
law, together with the Post-Dennard scaling era shifted the per-
formance gain from frequency increase to multi-core processing.
Consequently, the support of parallel execution of applications is
becoming mandatory. Furthermore, the need for efficient parallel
models and languages is more critical for the embedded domain, due
to power consumption andmemory constraints, among others. This
work focuses on parallelizing an embedded speaker recognition
application, which is a biometric technique for identification.

While a lot of work has been done for speech recognition, fewer
efforts have focused on recognizing who the speaker is. In this
paper, we analyze two implementations for speaker recognition
applications (SRA), namely dataflow and shared memory program-
ming models. More precisely, we use Process Networks (PNs) as a
dataflow representation, which is an intuitive way to design stream-
ing applications. We use the language “C for Process Networks” for
the dataflow implementation and OpenMP for the shared memory
one. For two different target platforms, we compared two implemen-
tations using OpenMP (exploring data-level parallelism only and
with pipelining) against a dataflow-based compiled implementation
that allows for functional optimization. Despite faster communi-
cation over shared memory, we show that the dataflow model is
superior in terms of performance (up to twice as fast).

CCS CONCEPTS

• Software and its engineering→ Parallel programming lan-

guages;Data flow languages; •Theory of computation→Models
of computation; • Computing methodologies→ Speech recog.

KEYWORDS

Dataflow models, Shared memory programming, Multicore pro-
gramming, Speaker recognition

ACM Reference Format:

Hasna Bouraoui, Jeronimo Castrillon, and Chadlia Jerad. 2019. Comparing
Dataflow and OpenMP Programming for Speaker Recognition Applications.
In Proceedings of PARMA-DITAM 2019 Workshop (PARMA-DITAM’19). ACM,
New York, NY, USA, 6 pages. https://doi.org/00.001/000_1

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PARMA-DITAM’19, January 2019, Valencia, Spain
© 2019 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/00.001/000_1

1 INTRODUCTION

According to Moore’s law, the number of transistors in integrated
circuits is doubling every 18 months. Mainly due to the break down
of Dennard’s scaling, the extra transistors are going into multi-
core architectures, rather than into a single monolithic core. As a
consequence, parallel programming stopped being a niche and be-
came mainstream through many domains in computing, including
embedded. Furthermore, as embedded computing has significant
power budget constraints coupled with increasing needs for faster
processing, parallel programming is mandatory.

We are interested in the parallelization of embedded signal pro-
cessing applications for biometric authentication, that is, the pro-
cess of automatically recognizing a person based on physical or
personal behavior traits (e.g. iris, fingerprint, voice). Automatic
speaker recognition, in particular, is generally related to the auto-
matic identification of a person based on his vocal tract (i.e. voice).
This could be used for many applications based on authentication
such as in banking or building access control.

Many parallel programming models have been proposed in the
last years, most of them in the area of desktop and high-performance
computing. In the embedded domain, instead, there is a large body
of research on software synthesis [10], with a strong focus on dataflow
parallel programming models. These models are appropriate for
describing intrinsically parallel processing over streams of data that
flow from one node to the other. Therefore, these kinds of models
are a good match for digital signal processing and multimedia ap-
plications. Furthermore, dataflow has been used for the synthesis
and analysis of real-time embedded systems [5, 6] and automatic
code generation from them has been investigated [8, 11].

Another prominent parallel programmingmodel is OpenMP [23],
a pragma-based approach for shared memory machines. OpenMP
offers a good migration path for sequential code and includes a
powerful runtime system to schedule threads in a transparent way
to the programmer. In the embedded domain, OpenMP is poorly
supported. For some platforms, the OpenMP stack alone consumes
most of the resources, leaving only little for the application code
and data. Parallel programs are thus still written by hand, using
low-level application programming interfaces (APIs) like Pthreads.

In this paper, we investigate the expressiveness along with the
performance, in terms of achieved speedup, of dataflow and shared
memory implementations for speaker recognition applications. For
the dataflow implementation, we use the MAPS dataflow frame-
work (MPSOC Application Programming Studio), that uses an ex-
tension of the C language called CPN (C for Process Networks) [9].
For the shared memory implementation, we use OpenMP. As tar-
get systems, we use a 16-core desktop machine and an embedded

https://doi.org/00.001/000_1
https://doi.org/00.001/000_1

PARMA-DITAM’19, January 2019, Valencia, Spain H. Bouraoui et al.

8-core Odroid board. We compare a first and intuitive implemen-
tation using OpenMP that explores data-level parallelism, against
the dataflow version. Despite a faster communication over shared
memory, the experimental results show that for the speaker recog-
nition application, a dataflow programming approach achieves a
better speedup. After modifying the OpenMP version to match the
dataflow-like execution, the performance of the OpenMP version
decreased even further. The experiments show that the OpenMP
implementation based only on Data Level Parallelism (DLP), reach
better speedup than the pipelined version.

The rest of this paper is organized as follows. In section 2 we
discuss related work. Section 3 provides background on speaker
recognition applications and Kahn Process Networks (KPNs). Sec-
tion 4 presents the sequential and the OpenMP implementations.
Section 5 describes the KPN model of the application, while sec-
tion 6 compares the results and attempts to interpret the reason
behind the performance gap between the different implementations.
Finally, conclusions are drawn in Section 7.

2 RELATEDWORK

Many works in the literature focus on accelerating speaker recog-
nition process. This problem can be considered from different an-
gles: modeling, software or hardware. From the modeling side, the
speedup is achieved at the expense of accuracy [3, 4, 19, 25]. The lack
of information about the execution platform and/or parallelization
in these approaches let us conclude that the process was running se-
quentially on general purpose processors. From the hardware side,
FPGA-based implementations, as well as custom hardware, have
been used to accelerate speaker recognition applications. Readers
may refer to [7] for a detailed survey.

In this paper we focus on a particular software implementation,
exploiting the parallel processing capabilities of modern proces-
sors. This is enabled by parallel programming models, which, in
an abstract way, allow shaping the parallel execution pattern of
the application. To the best of our knowledge, only shared memory
programming using OpenMP has been employed to accelerate, not
speaker, but rather speech recognition applications [28]. Authors in
[26] compare different programming models (OpenMP, GCD, and
Pthreads) for speech and face recognition applications.

Others works have compared the performance of shared memory
versus message passing implementations. Authors in [20] find no
general conclusions w.r.t. performance. Factors like the load im-
balance of the application as well as the communication overhead
of the hardware have a great impact on the overall performance.
Authors in [13] present the performance of 11 parallel benchmarks.
They compare traditional shared memory against hybrid dataflow
implementations, finding that dataflow offers higher flexibility than
task-based models.

In our work, we explore and compare two different implemen-
tations of the target speaker recognition application, a shared-
memory programmingmodel (using OpenMP) and a dataflow-based
model (using CPN).

3 BACKGROUND

In this section, we describe the general scheme of a speaker bio-
metric recognition system. We then briefly introduce the model of
computation used to specify the application as dataflow graph.

3.1 Speaker recognition applications

The generic process of speaker recognition is illustrated in Fig. 1. At
the highest level, all speaker recognition systems contain two main
modules: feature extraction and pattern matching. In the training
phase, the speech utterances of known speakers are analyzed to
extract their respective features. Speaker models are built based on
these features and are stored in a database. The pattern matching
phase consists in computing the similarity of an unknown speaker
to the speakers’ models in the database according to the speech
signal analysis. The tested speaker model is compared against all
the available models in the database. Once done, the system returns
an identifier of the closest model to the input.

Id
en

tificatio
n

Feature

Extraction

Speaker

Modeling

Feature

Extraction
Pattern Matching

Most likely

Speaker Model

Speech

Utterances

Speech

Utterances

Database

Speaker

Identified

T
rain

in
g

Similarity to each speaker model

ClassificationExtraction

-MFCC

-LPC

-LPCC

-GMM (Gaussian Mixture Model)

-HMM (Hidden Markov Model)

-VQ (Vector Quantization)

-SVM (Support Vector Machine)

Figure 1: Speaker recognition process

Several approaches and algorithms have been used to perform
recognition (as shown in Fig.1). Feature extraction can be performed
by algorithms such as Reflection Coefficient (RCs), Linear Predic-
tive Coding (LPC), Linear Prediction Cepstral Coefficient (LPCCs)
or Mel-Frequency Cepstrum Coefficients (MFCCs). For the classifi-
cation, the most used ones for speaker recognition include Hidden
Markov Model (HMM), Dynamic Time Wrapping (DTW), Vector
Quantization (VQ), Gaussian Mixture Model (GMM) and SVM (Sup-
port Vector Machine). Readers may refer to [7] for further details
about the pros/cons and complexity of these algorithms.

3.2 Dataflow programming

A Model of Computation (MoC) depends on several regulations in-
dicating how a concurrent execution of different components of the
system and their mutual communication should be performed [24].
Such abstract models enable automated analysis that in turn en-
able automated optimization. For streaming applications such as SR,
dataflowmodels, and/or their variants are well suited for describing
them.

Kahn Process Networks (KPNs), or Process Networks (PNs) are
an extension of dataflowmodels. A PN is a graph connecting concur-
rent processes (represented by nodes). The computation is divided
among them and they communicate only through channels (rep-
resented by edges). When processes are arranged in a linear one
directional chain, describing pipelined applications becomes im-
plicit. Indeed, the use of buffers (channels) leads to pipelining in a
natural and convenient way. The data flow between the processes,
which makes them particularly suitable for describing streaming
applications. Kahn showed in [15] that KPNs with unbounded FI-
FOs are deterministic, i.e., they always produce the same output, if
provided with the same input.

For the implementation, we use the language “C for Process
Networks” (CPN), an extension of the C language [8]. It adds new

Comparing Dataflow and OpenMP for Speaker Recognition Applications PARMA-DITAM’19, January 2019, Valencia, Spain

syntactic constructs to describe the dataflow graph. New keywords
were added to describe Processes, Channels and Channel Accesses
of the KPN dataflow model. Every process of the KPN graph ex-
ecutes code written in the standard C language. CPN is used as
input to MAPS (MPSoC Application Programming Studio) com-
piler framework [9]. The framework generates optimized spatial
and temporal process-to-core and logical to physical channel as-
signments for heterogeneous manycores. In our work, we use the
commercially available SLX tool suite [2] for dataflow modeling
and compilation.

4 SEQUENTIAL AND PARALLEL SHARED

MEMORY IMPLEMENTATIONS

For our implementation of the speaker recognition, we use MFCC
(Mel-Frequency Cepstrum Coefficient) [27] for feature extraction
phase and VQ (Vector Quantization) [21] for the pattern matching.
The overall flow of the speaker recognition is presented in Fig. 1.

For the feature extraction phase, the input speech utterance is
divided intoM overlapping frames of size N each (M being propor-
tional to the utterance length). Then, and in order to avoid spectral
effects, a Hamming window is applied to each of these frames that
emphasizes higher frequencies. Afterward, these frames are trans-
formed to the frequency domain by means of an FFT, just before a
triangular filter bank is applied to estimate the human ear frequency.
All M input frames are transformed into M acoustic vectors of a
reduced size. Finally, applying DCT (Discrete Cosine Transform)
transform on these vectors delivers the MFCC coefficients of each
vector. Extracted vectors from speaker utterances are used to build
the speaker model. This step is called the enrollment/training phase,
after which all built models are stored in a database. Now, and to
identify an unknown speaker utterance, the same steps, except for
the enrollment phase, are needed. Then, the resulting model is com-
pared to all the speaker models in the database. This comparison is
performed by the similarity phase. The similarity is expressed in
terms of a calculated distance, and the closest one to the unknown
speaker is selected.

For a first application analysis, we profile the sequential im-
plementation using Vtune1. The results showed that the pattern
matching step is the most computationally intensive part, account-
ing for up to 97% of the CPU time. This computation has a regular
structure with independent computations, i.e., it is highly data level
parallel (DLP). Distances of the current speaker model to the set
of saved models are computed respectively. Finally, the matching
computation is also easily parallelized since it corresponds to a
common reduction pattern.

Introducing DLP to sequential code can be done in an easy and
intuitive way using OpenMP. The basic version of OpenMP im-
plementation, which is a fully static one, is shown in Algorithm 1.
The outer loop (line 6) iterates over the speakers to be recognized
(utterances). The utterances are meant to be received on runtime,
enabling thus stream processing. The computed model of the cur-
rent utterance (uttModel) is fed to the inner loop (line 10), which
iterates through all the models stored in the database, dbSize be-
ing the size of the database. The distance is calculated using the

1https://software.intel.com/en-us/get-started-with-vtune

function Similarity (line 11), and the closest speaker model in
terms of minimum distance is returned.

Here, the compiler OpenMP directive used at the outer loop
is pragma omp parallel and at the inner loop is the for work-
sharing construct with the reduction clause (line 9). The speaker
variable in line 15 is shared and updated by concurrent threads. To
ensure data integrity, we added the clause omp critical. Since
ComputeModel (line 8) and print (line 19) should be executed once
for each utter, we added two omp single clauses (lines 5 and 18).

In OpenMP, the for work-sharing construct supports different
scheduling strategies, describing how and when iterations are as-
signed to threads. The aim is to adapt the behavior for reducing
threads idle time. Since Similarity has a fixed size computation,
the suitable schedule of the inner for loop is the default one, which
is static with chunk size equal to the number of iterations divided
by the number of threads.

We also considered another alternative, where we only annotate
the inner loop with pragma omp parallel for reduction. This
version, however, performs sometimes worse due to the additional
overhead of repeatedly opening and closing the parallel region.

Algorithm 1

Speakers_Recognition_version_1
1: procedure ParallelSRA(utterances , dbSize)
2: database ← ReadDatabase (dbSize)
3: distMin ← 9999 ▷ Initialize the minimal distance to an upper value
4: speaker ← null ▷ Recognized speaker in the database
5: #pragma omp parallel
6: for utter in utterances do

7: #pragma omp single private(utter)
8: uttModel ← ComputeModel (utter)
9: #pragma omp for reduction(min:distMin)
10: formInDB = 1 to dbSize do

11: dist ← Similar ity (uttModel, database[mInDB])
12: #pragma omp critical
13: if dist < distMin then

14: distMin ← dist
15: speaker ←mInDB
16: end if

17: end for

18: #pragma omp single
19: pr int (speaker) ▷ Print the identified speaker
20: end for

21: end procedure

5 DATAFLOW IMPLEMENTATION

For the implementation of the SRA dataflow we use the SLX tool
suite. After adding CPN annotations to the sequential C code, we
generate the dataflow shown in Fig. 2. The communication channels
sizes are statically set by the tool, before generating the runtime.

Shifter

Sink

database

D
bS

iz
e

ut
te

r

utter

models

models

models

models

utter

Model

utter

Model

utter

Model

utter

Model

minDist

speaker

minDist

speaker

minDist

speaker

minDist

speaker

Similarity

(worker)

Similarity

(worker)

Similarity

(worker)

Similarity

(worker)

Compute

Model

Source

Figure 2: Process network of the speaker recognition application.

PARMA-DITAM’19, January 2019, Valencia, Spain H. Bouraoui et al.

Speaker identification, presented by the graph in this figure,
starts at the Source node. This node loads the speaker models stored
in the database and sends them (database) to the Shi f ter node. The
number of the tokens is the number of models in the database,
while each one is a 16 × 19 matrix of doubles model. The Shi f ter
distributes the tokens among Similarity (Worker) nodes while en-
suring a balanced distribution (in terms of number). The number of
workers has been changed throughout the implementation, to see
the behavior of different parallel granularities. Source node loads,
in addition, the utterances of the speakers to be recognized and
sends them (utter) toComputeModel node.ComputeModel creates
the respective models of the speaker utterances to be recognized.
First, features are extracted and then form the utterance model
(uttModel). As soon as the first model (uttModel) is created by the
ComputeModel node, it is sent to all Similarity (Worker) nodes to
compare it against the models in the database (each node will com-
pare it to the speaker models it received from the Shi f ter). The total
number of sent utterModel tokens is equal to the number of speak-
ers to recognize. This behavior describes the implicit pipelining in
the dataflow. While Similarity (Worker) node is working on the
current speaker, the previous nodes are computing the model of the
next utterance to recognize. For each Similarity (Worker) node, the
closest model will be returned to Sink which will print the speaker
ID with the smallest distance. Given that the worker nodes run in
parallel, the CPN model features the same data level parallelism
that we expressed in the OpenMP model (cf. Algorithm 1).

6 EVALUATION

For the experiments part, we deploy the speaker recognition appli-
cation on two different platforms. In this section, we compare the
dataflow implementation discussed in Section 5 with the OpenMP
variant presented in section 4. And we analyze another openMP
implementation, that mimics the behavior of the CPN implementa-
tion.

6.1 Experimental setup

To compare the results, we use two different platforms. The desk-
top platform is an x86-64 ISA general purpose platform (denoted
hereafter GPP). It has an Intel Xeon Processor X5550 with 16 cores
and 32GB of memory. The operating frequency of the processor is
1.5 GHz (and up to 2.6 GHz). For the embedded platform, we use
Odroid XU4 [1] board. This is an octa-core board with 4 Cortex A15
cores and 4 Cortex A7 cores. It has a 2 Gbyte LPDDR3 DRAM mem-
ory. The frequencies are 1.4 GHz and 2.0 GHz. Each core has an L1
cache memory level of 32KB. Besides, the 4 Cortex A15 and Cortex
A7 share an L2 cache memory level of 2Mb and 512KB respectively.

As a benchmark, recognition experiments are performed on the
TIMIT corpus [14]. TIMIT contains 630 speakers where 70% are
men and 30% are women.

For the experimental results, the input to the SRA is audio ut-
terances of these speakers. Models extracted from these speech
utterances are represented by a double-precision 16x19 matrix. In
addition to the database, the SR application takes as input speaker
utterances with a number of frames laying between 408 and 796
each. Every frame is of size 256 (25 ms) sampled at 16 kHz over-
lapped of 100 samples (16 ms).

6.2 CPN-OpenMP comparison

For comparing CPN and OpenMP, we want to explore different
possibilities. We do this by modifying the following parameters:
(i) the platforms: GPP and Odroid, (ii) the size of the database:
2000, 8000 and 16000 speakers, (iii) the number of the speakers to
recognize: 1, 5 and 10, (iv) and the number of workers computing the
similarity (in the case of the CPN implementation), the number of
threads (in the case of the OpenMP implementation) and combined
with the number of cores to run on.

Fig.3 reports the speedup obtained with the OpenMP and the
CPN versions w.r.t. the sequential implementation on both plat-
forms (GPP and Odroid). On GPP, we achieve a higher speedup, for
a bigger number of speakers to recognize, also while maintaining
the same database size, the same number of workers/threads and
cores ((a) refers to 2 workers/threads on 4 cores, (b) refers to 4
workers/threads on 8 cores and (c) refers to 8 workers/threads on
8 cores). The experiments ran on Odroid platform showed similar
results. For space reasons, we only show the achieved speedup for
5 speakers in the same Fig.3.

2000 8000 16000
NB_Models

0

1

2

3

4

5

6

Sp
ee

du
p

(a) (b) (c) (a) (b) (c) (a) (b) (c)
CPN and OpenMP (Recognizing 1 spker) on GPP

CPN OpenMP

2000 8000 16000
NB_Models

1
2
3
4
5
6
7
8
9

Sp
ee

du
p

(a) (b) (c) (a) (b) (c) (a) (b) (c)
CPN and OpenMP (Recognizing 5 spkers) on GPP

CPN OpenMP

2000 8000 16000
NB_Models

1
2
3
4
5
6
7
8
9

Sp
ee

du
p

(a) (b) (c) (a) (b) (c) (a) (b) (c)
CPN and OpenMP (Recognizing 10 spkers) on GPP

CPN OpenMP

2000 8000 16000
NB_Models

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

(a) (b) (c) (a) (b) (c) (a) (b) (c)
CPN and OpenMP (Recognizing 5 spkers) on Odroid

CPN OpenMP

Figure 3: Comparing speedup of CPN and DLP-only OpenMP imple-

mentations on GPP recognizing 1 , 5 and 10 speakers and on Odroid

recognizing 5 speakers.(a) 2 workers/threads on 4 cores (b) 4 work-

ers/threads on 8 cores (c) 8 workers/threads on 8 cores

All the experimental results revealed that the dataflow imple-
mentation performs better (in terms of achieved speedup) than the

Comparing Dataflow and OpenMP for Speaker Recognition Applications PARMA-DITAM’19, January 2019, Valencia, Spain

shared memory implementation using OpenMP. This is unexpected,
considering the overhead involved in managing the FIFO communi-
cation in the generated code from CPN. In order to understand the
reason behind these results, we investigated the execution schema
of both implementations. For clarity reasons, we show the Gantt
charts of the executions using 4 workers on 6 cores for CPN and 4
threads for OpenMP. Both charts consider more than one speaker
to recognize.

Shf

CM

Src

Wk

Wk

Wk

Wk

Sk

...

...

Th
re

ad
s c

re
at

io
n

Th
re

ad
s c

re
at

io
n

Th
re

ad
s d

es
tru

ct
io

n

Th
re

ad
s d

es
tru

ct
io

n

a) Dataflow graph of SRA b) Execution chart of the CPN implementation

c) Execution chart of the DLP only OpenMP implementation

Core 1
Core 2
Core 3
Core 4
Core 5
Core 6

Thread 3
Thread 2
Thread 1

Thread 4

Sp1 Sp1 Sp2 Sp3 Sp1 Sp2 Sp2 Spn

Sp1

Sp1

Sp1

Sp1

Sp2

Sp2

Sp2

Sp2

Sp2

Spn

Spn

Spn

Spn

Sp1

Sp1

Sp1

Sp1

Sp2

Sp2

Sp2

Sp2

Sp2

Sp1 Sp1 Sp1 Sp2 Sp2 Sp2Sp2

Figure 4: Gantt chart graphs. b) Execution graph of the CPN im-

plementation. c) Execution graph of the OpenMP implementation

(only DLP support).

The dataflow model behavior, shown in Fig.4 (based on the map-
ping of the nodes to the cores that is generated by the SLX tool
suite), reflects the parallel behavior outlined by the dataflow. How-
ever, the shared memory model behavior outlines the DLP of the
inner loop, leading to a considerable overhead. This overhead is
due to synchronization and runtime jobs/threads management. In-
deed authors in [12] showed that OpenMP overheads increase in
importance with the number of cores, while authors in [22] demon-
strated that OpenMP 3.0 implementations exhibit poor behavior.
Additionally, as shown in Fig.4, the CPN version exposes more
parallelism than the OpenMP version does, due to the pipelining
enabled via the buffering in the communication channels. The next
section analyses a more involved OpenMP version of the code that
mimics the behavior of the CPN implementation.

6.3 Analysis of a dataflow-like OpenMP

implementation

To mimic the dataflow execution with OpenMP, we use a topmost
parallel region with the entire for loop being executed as single
and use tasks inside. Coming up with such solution required to go
through a complex structure and nesting of the tasks. Main addi-
tions to the parallel version that uses OpenMP with DLP support
only are colored in Algorithm 2. In this pseudocode, statements
in purple are OpenMP directives, while statements in blue high-
light the extra needed variables and processing. In this alternative,
tasks are created and scheduled at runtime, leading thus to dynamic
management compared to the static one in the first implementation.

As depicted in Algorithm 2, one main task (single thread in line
5) iterates over the utterances to recognize. For each utterance (i.e.
each iteration), it creates a separate big task (line 8 to line 33). We
notice here that whenever a big task is computing the similarity
of the current model in the current iteration, the main task starts
creating the next utterance model. This enables parallelism between
these two computations.

The big task structure is also complex. It starts computing the
dala level parallelism by applying the Similarity() function on a

chunk of the models existing in the database. Each chunk compu-
tation is ensured by a newly created subtask (line 15). In this case,
within each of these big tasks, nbrWorkers (i.e. line 3) subtasks are
created to execute this similarity function in parallel (i.e. DLP) and
synchronize by the end.

The chunk size is defined at runtime by two variables: istart
(lines 12 and 25) and iend (lines 13 and 26). Before applying the
reduction (line 30), the created subtasks need to synchronize. This
synchronization is ensured by the taskwait construct (line 28) that
imposes a barrier. In fact, the obtained runtime corresponds to as
many created big tasks as the given number of utterances. Despite
the fact that they are created in deferred instants, they still can be
scheduled in parallel. Finally, an additional subtask is created by
the main task (line 29 to 32) to perform the reduction and results
displaying.

Algorithm 2

Speakers_Recognition_version_2
1: procedure parallelSRA_CPNLike(utterances , dbSize)
2: database ← ReadDatabase (dbSize)
3: nbrW orkers ← 4
4: #pragma omp parallel {
5: #pragma omp single {
6: for utter in utterances do

7: uttModel ← ComputeModel (utter)
8: #pragma omp task firstprivate(model) {
9: ▷ distMin and speaker are tables of nbrWorkers local minimums
10: [nbrW orkers]distMin ← [9999, 9999, ...]
11: [nbrW orkers]speaker ← [null, null, ...]
12: istar t ← 0 ▷ Explicitly compute the the model indexes of each worker
13: iend ← dbSize/nbrW orkers
14: forwkInd = 1 to nbrW orkers do

15: #pragma omp task firstprivate (dist, istart, iend) {
16: formInDB = istar t to iend do

17: dist ← Similar ity (uttModel, database[mInDB])
18: #pragma omp critical
19: if dist < distMin[wkInd] then
20: distMin[wkInd]← dist
21: speaker [wkInd]←mInDB
22: end if

23: end for

24: }
25: istar t ← iend
26: iend ← iend + dbSize/nbrW orkers
27: end for

28: #pragma omp taskwait ▷ synchronize distance computation
29: #pragma omp task {
30: r educe (distMin, speaker)
31: pr int (speaker) ▷ Print the identified speaker
32: }
33: }
34: end for

35: }
36: }
37: end procedure

Getting a CPN-like behavior using OpenMP was achieved but at
the expense of a completely non-intuitive new OpenMP implemen-
tation. For the experimental results, we change the same parameters
for both implementations (i.e number of threads, number of work-
ers, etc.).

We compare in Fig.5 the old (and static) OpenMP version speedup
with the CPN-like (and dynamic) one while varying the hardware
platform. The experimental results show that the old OpenMP im-
plementation (with DLP support only) achieves better speedup than
the new one on both platforms. Therefore, CPN implementation
still achieves better speedup. Besides being complex and not intu-
itive, the overhead of the task construct is remarkable. The CPN

PARMA-DITAM’19, January 2019, Valencia, Spain H. Bouraoui et al.

implementation is superior, justifying the extra effort in using the
right MoC for the task at hand.

2000 8000 16000
Database Size

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

(a) (b) (c) (a) (b) (c) (a) (b) (c)
 OpenMP (Recognizing 5 speakers) on Odroid

2000 8000 16000
Database Size

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Sp
ee

du
p

(a) (b) (c) (a) (b) (c) (a) (b) (c)
 OpenMP (Recognizing 5 speakers) on GPP

OpenMP (DLP-only) OpenMP (CPN-like)

Figure 5: Comparing speedup of CPN-like and DLP-only OpenMP

implementations recognizing 5 speakers on GPP and Odroid plat-

form. (a) 2 threads on 4 cores (b) 4 threads on 8 cores (c) 8 threads

on 8 cores.

7 DISCUSSION AND CONCLUSION

Model-based programming helps to address interactions schemes
over the system components in an abstract manner. In this paper,
we analyze dataflow and shared memory programming models for
speaker recognition applications. We first compare the dataflow
implementation using CPN with an intuitive shared memory im-
plementation, yet static, using OpenMP. For two different target
platforms, a notable difference in achieved speedup in the exper-
imental results shows that despite a faster communication over
shared memory, the OpenMP runtime adds significant overhead,
that is partially due to synchronization and runtime management.
Analyzing the Gantt Charts of both implementations, we went for
a fairer comparison by mimicking dataflow behavior in the shared
memory implementation. This version performs worse in all cases,
due to the overhead of dynamic task management. The CPN im-
plementation is superior, despite the slower communication using
channels.

In future work, we plan to further exploit the possibilities that
the dataflow model-based approach offers for speaker recognition.
We could exploit the symmetry-enabled predictable execution of
static mappings introduced in [16, 17]. We could also improve the
run-time adaptability on a heterogeneous platform by providing
implicit parallelism of the KPN, as shown in [18]. Finally, we could
vary the number of threads during runtime with the different levels
of data parallelism.

ACKNOWLEDGEMENTS

This work was partially supported by the German Research Council
(DFG) through the Cluster of Excellence Center for Advancing
Electronics Dresden (cfaed).

REFERENCES

[1] [n. d.]. Ordoid XU4. http://magazine.odroid.com/odroid-xu4/ Accessed: 2017-
02-03.

[2] [n. d.]. Silexica. https://www.silexica.com/ Accessed: 2018-05-9.
[3] Vijendra Raj Apsingekar and Phillip L De Leon. 2008. Efficient speaker iden-

tification using speaker model clustering. In Signal Processing Conference,16th
European. IEEE.

[4] Roland Auckenthaler and John S Mason. 2001. Gaussian selection applied to
text-independent speaker verification. In 2001: A Speaker Odyssey-The Speaker
Recognition Workshop.

[5] Marco Bekooij, Rob Hoes, Orlando Moreira, Peter Poplavko, Milan Pastrnak, Bart
Mesman, Jan David Mol, Sander Stuijk, Valentin Gheorghita, and Jef Van Meer-
bergen. 2005. Dataflow analysis for real-time embedded multiprocessor system

design. In Dynamic and robust streaming in and between connected consumer-
electronic devices. Springer, 81–108.

[6] Shuvra S Bhattacharyya, Praveen K Murthy, and Edward A Lee. 1999. Synthesis
of embedded software from synchronous dataflow specifications. Journal of
VLSI signal processing systems for signal, image and video technology 21, 2 (1999),
151–166.

[7] Hasna Bouraoui, Chadlia Jerad, Anupam Chattopadhyay, and Nejib Ben Hadj
Alouane. 2016. Hardware Architectures for Embedded Speaker Recognition
Applications-a Survey. to appear in ACM Transactions on Embedded Computing
(2016).

[8] Jeronimo Castrillon and Rainer Leupers. 2014. Programming Heterogeneous
MPSoCs: Tool Flows to Close the Software Productivity Gap. Springer. 258 pages.

[9] Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid. 2013. MAPS: Mapping
Concurrent Dataflow Applications to Heterogeneous MPSoCs. IEEE Transactions
on Industrial Informatics 9, 1 (Feb. 2013), 527–545.

[10] Jeronimo Castrillon, Weihua Sheng, and Rainer Leupers. 2011. Trends in Embed-
ded Software Synthesis. In Proceedings of the International Conference Embedded
Computer Systems: Architecture, Modeling and Simulation (SAMOS), 2011. IEEE,
347–354.

[11] Johan Eker and Jörn W Janneck. 2003. CAL language report: Specification of the
CAL actor language. Electronics Research Laboratory, College of Engineering,
University of California.

[12] Karl Fürlinger and Michael Gerndt. 2006. Analyzing overheads and scalability
characteristics of OpenMP applications. In International Conference on High
Performance Computing for Computational Science. Springer, 39–51.

[13] Vladimir Gajinov, Srdjan Stipić, Igor Erić, Osman S Unsal, Eduard Ayguadé, and
Adrian Cristal. 2015. DaSH: A benchmark suite for hybrid dataflow and shared
memory programming models. Parallel Comput. 45 (2015), 18–48.

[14] John S Garofolo et al. 1988. Getting started with the DARPA TIMIT CD-ROM:
An acoustic phonetic continuous speech database. National Institute of Standards
and Technology (NIST), Gaithersburgh, MD 107 (1988), 16.

[15] KAHN Gilles. 1974. The semantics of a simple language for parallel programming.
In Information Processing 74 (1974), 471–475.

[16] Andrés Goens, Robert Khasanov, Jeronimo Castrillon, Marcus Hähnel, Till Sme-
jkal, and Hermann Härtig. 2017. Tetris: A multi-application run-time system for
predictable execution of static mappings. In Proceedings of the 20th International
Workshop on Software and Compilers for Embedded Systems. ACM, 11–20.

[17] Andrés Goens, Sergio Siccha, and Jeronimo Castrillon. 2017. Symmetry in Soft-
ware Synthesis. ACM Transactions on Architecture and Code Optimization (TACO)
14, 2, Article 20 (July 2017), 26 pages. https://doi.org/10.1145/3095747

[18] Robert Khasanov, Andrés Goens, and Jeronimo Castrillon. 2018. Implicit Data-
Parallelism in Kahn Process Networks: Bridging the MacQueen Gap. In Pro-
ceedings of the 9th Workshop and 7th Workshop on Parallel Programming and
RunTime Management Techniques for Manycore Architectures and Design Tools
and Architectures for Multicore Embedded Computing Platforms. ACM, 20–25.

[19] Tomi Kinnunen, Evgeny Karpov, and Pasi Franti. 2006. Real-time speaker iden-
tification and verification. IEEE Transactions on Audio, Speech, and Language
Processing 14, 1 (2006), 277–288.

[20] Thomas J LeBlanc and Evangelos P Markatos. 1992. Shared memory vs. message
passing in shared-memory multiprocessors. In Parallel and Distributed Processing,
1992. Proceedings of the Fourth IEEE Symposium on. IEEE, 254–263.

[21] John Makhoul, Salim Roucos, and Herbert Gish. 1985. Vector quantization in
speech coding. Proc. IEEE 73, 11 (1985), 1551–1588.

[22] Stephen L Olivier and Jan F Prins. 2010. Comparison of OpenMP 3.0 and other
task parallel frameworks on unbalanced task graphs. International Journal of
Parallel Programming 38, 5-6 (2010), 341–360.

[23] ARB OpenMP. 2013. OpenMP 4.0 specification, June 2013. http://www.openmp.
org/

[24] Claudius Ptolemaeus. 2014. System Design, Modeling, and Simulation using
Ptolemy II, 2014. Ptolemy.org. http://ptolemy.org/systems

[25] Bing Sun, Wenju Liu, and Qiuhai Zhong. 2003. Hierarchical speaker identifica-
tion using speaker clustering. In Natural Language Processing and Knowledge
Engineering, 2003. Proceedings. 2003 International Conference on. IEEE, 299–304.

[26] Deepak Shekhar TC, Kiran Varaganti, Rahul Suresh, Rahul Garg, and Ramalingam
Ramamoorthy. 2011. Comparison of parallel programming models for multicore
architectures. In Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on. IEEE, 1675–1682.

[27] Roberto Togneri and Daniel Pullella. 2011. An overview of speaker identification:
Accuracy and robustness issues. IEEE Circuits and Systems Magazine 11, 2 (2011),
23–61.

[28] Kisun You, Youngjoon Lee, and Wonyong Sung. 2009. OpenMP-based parallel
implementation of a continuous speech recognizer on a multi-core system. In
2009 IEEE International Conference on Acoustics, Speech and Signal Processing.
IEEE, 621–624.

http://magazine.odroid.com/odroid-xu4/
https://www.silexica.com/
https://doi.org/10.1145/3095747
http://www.openmp.org/
http://www.openmp.org/
http://ptolemy.org/systems

	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Speaker recognition applications
	3.2 Dataflow programming

	4 Sequential and parallel shared memory implementations
	5 Dataflow Implementation
	6 Evaluation
	6.1 Experimental setup
	6.2 CPN-OpenMP comparison
	6.3 Analysis of a dataflow-like OpenMP implementation

	7 Discussion and conclusion
	References

