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Abstract—Racetrack memories (RTMs) have drawn considerable attention from computer architects of late. Owing to the ultra-high
capacity and comparable access latency to SRAM, RTMs are promising candidates to revolutionize the memory subsystem. In order to
evaluate their performance and suitability at various levels in the memory hierarchy, it is crucial to have RTM-specific simulation tools
that accurately model their behavior and enable exhaustive design space exploration. To this end, we propose RTSim, an open source
cycle-accurate memory simulator that enables performance evaluation of the domain-wall-based racetrack memories. The
skyrmions-based RTMs can also be modeled with RTSim because they are architecturally similar to domain-wall-based RTMs. RTSim
is developed in collaboration with physicists and computer scientists. It accurately models RTM-specific shift operations, access ports
management and the sequence of memory commands beside handling the routine read/write operations. RTSim is built on top of
NVMain2.0, offering larger design space for exploration.

Index Terms—Memory simulator, racetrack memory, domain wall memory, memory system, main memory, cache, scratchpad,
simulation, emerging memory technologies, NVM.
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1 INTRODUCTION

With the transition of computer systems from multi- to
many-cores, the search for low-power and high-capacity
memories has gathered unprecedented momentum. As a
result, multiple volatile and non-volatile memories (NVMs)
have emerged in the last decades. The evolutionary DRAM
standards (low power DDR4, die-stacked WIO, HBM and
HMC), spin-transfer-torque RAM (STT-RAM), phase change
memory (PCM), resistive RAM (RRAM) and racetrack mem-
ory (RTM) are prominent examples. While some of these
memories have already made it to the market, others are
still in their infancy. Amongst all, the racetrack memory is
believed to offer “faster-than-Moore’s-law” scaling path and
is a promising candidate to bridge the processor memory
gap [10], [11].

Proper evaluation and exploration and of these new
memory technologies require availability of accurate sim-
ulation tools. In the past, memory researchers have de-
veloped multiple device and architecture level memory
simulators. In particular, DRAMSim [16], DRAMSim2 [14],
DRAMSys [5] and Ramulator [7] are available to explore
wide varieties of DRAM standards. Similarly, new memory
simulators have been developed to model these emerging
NVMs as well. For instance, NVMain [12], NVMain2.0 [13]
and the recently extended NVMain [6] can model STT-
RAM, PCM, HMC and WIDE I/O besides modeling the
conventional DRAMs and SRAM technologies.

The relatively newer spin-orbitronics based RTMs are
fundamentally different than all existing memory technolo-
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gies. Unlike contemporary memory technologies, a single
access point in RTMs can store multiple bits i.e., 1 to 100.
These bits are stored in the form of magnetic domains in a
tape-like structure called track which can be placed vertically
(3D) or horizontally (2D) on the surface of a silicon wafer as
depicted in Figure 1. Each track in RTM is equipped with
one or more magnetic tunnel junction (MTJ) sensors, referred
to as access ports (AP), that are used to perform read/write
operations.
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Fig. 1. Racetrack horizontal and vertical placements (Ish represents the
shift current)

To evaluate the performance of RTMs and enable system
design, new simulation tools are needed that accurately
model the shift operations and manage the access ports. In
the literature, people have reported modifications to exist-
ing simulators such as gem5 [2], [8], simplescalar [1] and
NVMain for exploring RTMs at various hierarchy levels in
the memory subsystem [15], [19]. However, these extensions
are not available in the public domain. This not only de-
prives the memory research community of exploring RTMs
but also makes it near to impossible to compare results, a
process that is key for advancing the field.

To fill this gap, we present RTSim; an architectural-
level cycle-accurate simulation framework for RTMs that
accurately models the shift operations, manages the access
ports and the RTM specific memory commands sequence.
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TABLE 1
RTM device level parameters [17]

Parameter Value
Thickness, width and length of the nano-wire 6 nm, 1F and 128F

Domain Length 2F
Nanowire resistivity 4.8× 10−7Ω m

Critical current density for Shifting (Jc) 6.2× 107A/cm2

Critical current density for write (Jw) 5.7× 106A/cm2

RTSim is configurable and allows architects to explore the
design space of RTMs by varying the design parameters
such as the number of tracks, domains and access ports per
track, port update policy and the domains access policy. The
modular design of RTSim facilitates the development and
easy integration of new extensions such as position error
correction schemes [18].

2 RTSIM OVERVIEW

RTSim is built on top of NVMain2.0. We have made
necessary modifications to most of the simulator modules
such as address translators and memory controllers to cater
for RTMs. The modifications to the address translator are
required to translate the physical address to the correspond-
ing RTM device address which is different than the device
addresses of other memory technologies. A bank in an RTM
is made up of one or more subarrays which in turn consists
of multiple Domain Block Clusters (DBCs) as shown in Fig. 2.
Each DBC contains M tracks and N domains per track,
where each domain stores a single bit. Accessing a bit from
a track requires shifting and aligning the corresponding do-
main to the track’s port position. Typically, an M-bit variable
is distributed across M tracks of a DBC. The domains of all
tracks in a particular DBC move in a lock step fashion so
that all M bits of a variable are aligned to the port position
at the same time for simultaneous access.

In some specific cases, storing a variable serially, in a
single racetrack, may be more beneficial compared to the
aforementioned distributed layout. RTSim implements both
layouts and allows designers to set the Layout parameter to
either Interleaved or Serial in the configuration file.
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Fig. 2. Racetrack memory architecture (RT: track, b:bit)

As shown in Fig. 3, RTSim requires a configuration
file and a memory request stream. The configuration file
consists of the system as well as latency/energy parameters.
The system parameters such as number of ranks, banks,
DBCs and word size (number of racetracks per DBC) are
independent of the RTM device and can be configured ac-
cording to design requirements. The device level parameters
are listed in Table 1. Using these parameters, the latency and
energy values can be extracted from circuit simulators such
as NVSim [3] or Destiny [9].
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Fig. 3. RTSim overview

2.1 Address mapping scheme
RTSim translates the physical address of the CPU re-

quests to the corresponding memory address. The memory
address in RTSim consists of domain ID, DBC ID, subarray
ID, bank ID, rank ID and channel ID. The lower log2W bits
correspond to the word bytes where W represents the word
size in bits.

The address mapping scheme in RTMs is more crucial
compared to other memories. This is due to the fact that
other memories optimize address mapping for exploiting
locality, minimizing bank conflicts and improving paral-
lelism. The address mapping scheme in RTMs should also
optimize the request stream for consecutive accesses in
order to mitigate the number of shifts. This implies that
spatially adjacent memory requests should be assigned to
consecutive domains in the same DBC. The default RTSim
addressing scheme looks like RK:BK:CH:DBC:DOM and can
be configured as per the design objectives.
2.2 Memory controller

The memory controller in RTSim buffers CPU requests
in a transaction queue. Subsequently, each transaction is con-
verted into a set of RTM commands which are placed in a
command queue. Similar to NVMain2.0, the model and size of
command queues are configurable.The memory controller
schedules and issues RTM commands to the memory banks
in an out-of-order manner while respecting both timing
and flow of commands constraints. Memory requests are
reordered based on the current ports positions and com-
mands are issued such that the shift overhead is minimized.
Requests starvation is avoided with a set threshold.

Once a command is issued, respective sanity checks
(for timing constraints) are performed at rank, bank and
subarray levels and simulation statistics are updated. The
shift statistics in RTSim are computed at the DBC level and
can be accumulated at more abstract levels e.g. subarray,
bank, rank, and channel levels. At completion, requests are
returned to the memory controller which removes them
from their respective queues and returns them to the owner
of the request.
2.3 Access ports management

Since the number of access ports per track is much
smaller than the number of domains, ports are always
shared among domains. While increasing the sharing degree
increases the area efficiency, it leads to an increased number
of shifts which in turn increases the average access latency.
RTSim faithfully models contention that arises due to shift
delay, queuing delays and bank/port conflicts.

RTSim allows users to configure the number of ports.
The memory controller maintains the status/positions of
all access ports corresponding to each track. In the default
interleaved data layout, tracks are grouped into DBCs (cf.
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TABLE 2
RTM configuration parameters

Parameter Description value
DBCS Number of DBCs per bank Positive integer (depending on the memory size and configuration)

Domains Number of domains per track 1-100 (default value is 64)
WordSize Number of tracks per DBC 1 to N bits (default value is 32 bits)

nPorts Number of access ports per track Less than or equal to the number of domains (default is 1)
PortAccess Port access policy Static / dynamic (default is static)

PortsInitPos Initial position of the access ports Assigned automatically if not specified (default 0 for single port)
Layout variable storage format Serial / Interleaved

PortUpdate Port position after each access eager / lazy

Fig. 2) and all ports in a DBC move together in the lockstep
fashion. This implies that the port positions of all tracks in
a DBC are always the same. At abstract level, it appears as
if the ports are per DBC and not per track inside the DBC.
In the serial layout, ports of individual tracks are managed
separately.

The memory controller also decides which port should
access a certain domain if there is more than one access ports
per track. The idea is similar to the tape head selection policy
in [15] and is referred to as the port access policy in RTSim.
Similar to other parameters, the port access policy in RTSim
is configurable, and can be set as either static or dynamic.
In the static port access policy, each domain is assigned
an access port statically depending on its initial placement.
For instance, if a track has N domains and P access ports,
N/P domains are statically assigned to each access port.
Each access port is then responsible for accessing its set of
domains even if the desired domains are closer to the other
access port(s).

On the contrary, in the dynamic port access policy, the
closest access port accesses the requested domain. While the
dynamic policy will tend to reduce the number of shifts
compared to the static policy, it may increase the number of
overflow bits. The overflow bits are required to prevent the
loss of data and store the shifted domains beyond the shift
ports. For a single port per track, N overflow bits are needed
to store the shifted domains. For P access ports and static
port policy, the amount of overflow bits reduces to N/P . In
the dynamic case, P access ports still require N overflow
bits.

RTSim supports two different port update policies. Fol-
lowing a memory access, the port positions in RTM are
updated according to the PortUpdate parameter specified in
the configuration file. In the default lazy policy, the port
that accesses the current domain stays at the position of
the current access and all other ports positions are updated
accordingly. On the contrary, all port positions in the eager
policy are restored to their initially assigned locations after
each memory access. While the eager policy is easy to
implement and simplifies ports selection, it may signifi-
cantlly increase the number of shifts. The configurability of
RTSim allows designers to choose the best configuration by
performing the aforementioned trade off analysis.
2.4 Latency and energy models

RTSim offers flat models for latency and energy. The
latency/energy values are extracted from Destiny [9], em-
ploying device level parameters from our in-house physics
lab. The latency and energy models in RTSim use these
numbers along with the memory access statistics to compute

the total latency and energy of the memory subsystem.
As an example, we simulate a 1 MB cache in Destiny to

obtain the latency and energy numbers for read/write/shift
operations in RTMs. These sample values are given in the
RTSim configuration file RTM.config. Every time the simu-
lator performs a memory operation, the energy and timing
statistics are updated accordingly.
2.5 RTMs specific configuration parameters

Most of the configuration parameters in RTSim are sim-
ilar to NVMain. The newly added RTM-specific parameters
are described in Table 2. The initial positions of the access
ports are set automatically if not specified in the configura-
tion file.

RTSim, being developed on top of NVMain2.0, also
supports other NVMs. The RTM-specific features are only
enabled if the corresponding RTM configuration file is pro-
vided. The integration with NVMain2.0 facilitates interface
to other simulators. For instance, the existing nvmain-gem5
patch can be employed to simulate RTMs in full system
mode with the gem5 system simulator. In a stand-alone
mode, memory traces are fed to RTSim to simulate an RTM-
based memory subsystem.

3 CASE STUDIES
This section presents a case study to validate the accu-

racy of the simulation framework. RTSim adopts the timing
and energy models from NVMain2.0. Since these models
are already verified with the industrial Verilog models and
validated against other established memory simulators, we
only focus on verifying the modeling of shift operations and
the access ports management.

Unfortunately, no commercial/research prototypes are
available for RTMs which can be used as a reference for
validation. We work around this problem by establishing
our own simulation target. We use synthetic memory traces
as golden references for which we can predict the number of
shifts. The memory traces are developed in a careful manner
such that requests hop among domains, DBCs, subarrays
and banks. We provide these traces to RTSim to verify the
number of shifts. A sample memory trace with expected and
observed number of shifts is shown in Fig. 5.

After verifying the functional correctness of RTSim, we
stress-test it by running the whole set of SPEC2006 [4]
benchmarks. The vertical axis (log scale) in Fig. 4 reports
the number of shifts. The figure highlights the impact of
varying the port access policy as well as the number of ports
while using the best performing lazy ports update policy.
As can be seen, increasing the number of ports reduces the
number of shifts as expected. Similarly, the dynamic port
access policy often reduces the number of shifts compared
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Fig. 4. Impact of varying number of access ports on the number of shifts in SPEC2006 benchmarks

Req    Phy-address    Mem-address*    Num-shifts 
R        0x1e0           0:0:0:0:0:15           15 x 32
W       0x86bc0       67:0:1:0:0:30         30 x 32  
R        0x86bc0       67:0:1:0:0:30         0
R        0x86b00       83:0:1:0:0:24         24 x 32 
R        0x87e38       75:0:3:0:0:49         49 x 32 
R        0x3c0           0:0:0:0:0:30           15 x 32 
R        0x1400         0:0:2:0:0:32           32 x 32

*DBC:RK:BK:CH:SA:DOM       5280

nPorts 1 

PortAccess static 

BANKS 4 

RANKS 1 

CHANNELS 1 

DBCS 128 

DOMAINS 64 

; WordSize in bits 

WordSize 32 

Shifts per memory request Config

RTM.channel0.rank0.bank0.subarray0.totalnumShifts 960 

RTM.channel0.rank0.bank1.subarray0.totalnumShifts 1728 

RTM.channel0.rank0.bank2.subarray0.totalnumShifts 1024 

RTM.channel0.rank0.rank0.bank3.subarray0.totalnumShifts 1568 

Snapshot from RTSim output

Fig. 5. Number of shifts computed from the synthetic trace and reported
by RTSim. The memory request types and physical addresses are taken
from the trace file while the memory address is the output of the RTSim
decoder. The Num-shifts are manually computed.

to the static port access policy. However, for 16 ports per
track configuration, the static policy mostly outperforms
the dynamic access policy. This is due to the fact that the
worst-case shifts in the static policy are always 4 while
in the dynamic policy this can increase up to 63. Detailed
analysis of the two policies is beyond the scope of this paper.
RTSim enables memory researchers to perform exptensive
pros/cons evaluation of the two policies.

4 CONCLUSIONS
Racetrack memory is a promising alternative to exist-

ing (non-)volatile memories. The lack of simulation and
exploration tools in the public domain hinders their ex-
peditious development and exploration for novel memory
subsystem. To overcome this, we present RTSim, a cycle-
accurate simulation tool for racetrack memories. RTSim
accurately models the shift operations and manages the
access ports in RTMs, beside modeling the routine memory
operations. The memory controller in RTSim ensures that
commands are issued to memory in a proper order and
all timing constraints are satisfied. We validate the shift
model of RTSim with a set of synthetic memory traces and
exemplarily show shift analysis for SPEC2006 benchmarks
using different configurations. Being the first RTM simulator
in the public-domain, we believe RTSim will alleviate the
difficulties in RTMs design space exploration and become a
useful tool for the community.
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