IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

A Novel Hybrid DRAM/STT-RAM
Last-Level-Cache Architecture for Performance,
Energy and Endurance Enhancement

Fazal Hameed, Jeronimo Castrillon

Abstract—High capacity L4 architectures as Last-Level-Cache
(LLC) have been recently introduced between L3-SRAM and
off-chip memory. These LLC architectures have either employed
DRAM or Spin-Transfer-Torque (STT-RAM) memory technolo-
gies. It is a known fact that DRAM LLCs feature a higher
energy consumption while STT-RAM LLCs feature a lower write
endurance compared to their counterparts. This paper proposes
an efficient hybrid DRAM/STT-RAM LLC architecture that
exploits the best characteristics offered by the individual memory
technologies while mitigating their drawbacks. More precisely, we
introduce a novel mechanism for the storage and management of
the hybrid LLC tags, and a proactive L3-SRAM writeback policy
that combines multiple dirty blocks that are mapped to the same
LLC row. Our hybrid architecture reduces LLC interference by
having less writeback accesses and row fetches. The endurance
is improved by reducing the number of STT-RAM block writes.
We show that our LLC architecture reduces the total number
of STT-RAM block writes by 78% and improves the average
performance by 13% compared to a recently proposed STT-
RAM LLC. Compared to the state-of-the-art DRAM LLC, we
report an average energy and performance improvement of 24 %
and 17.1% respectively.

Index Terms—Architecture, cache, memory, memory hierar-
chy.

I. INTRODUCTION

The increasing processor-memory speed gap has made
memory accesses extremely expensive. In addition, the in-
crease in the memory and bandwidth requirements of emerging
applications [1] has further magnified the impact of the gap.
Therefore, the miss rate of traditional SRAM-based Last-
Level-Cache (LLC) has worsened due to its limited capacity.
One way to mitigate this problem is to reduce the number
of off-chip accesses by employing an additional level of high
capacity L4 cache (> 128MB) on top of L1/L2/L3 SRAM
caches. Therefore, die-stacked memory technologies have been
employed as LLC [2]-[7] since they provide a natural way to
integrate high capacity memory on top of the processor die.

Fig. 1 depicts a typical multi-core cache hierarchy used
in [3], [4], [8]. A larger LLC (DRAM or STT-RAM) is
composed of many banks where each bank is provided with a
Row Buffer (RB). When an access is made to an LLC bank,
one row of the bank is fetched into the bank’s RB. The data
in the RB can be accessed at much lower latency and lower
energy than accessing it from the DRAM bank. State-of-the-
art LLC use a large RB size (i.e. 2KB or 4KB) per LLC bank.

The authors are with the Chair for Compiler Consruction, Technische Uni-
versitiit Dresden, Germany e-mail: {fazal.hameed, jeronimo.castrillon}@tu-
dresden.de. Fazal Hameed is also affiliated with Institute of Space Technology,
Islamabad, Pakistan.

This large RB organization incurs high energy consumption
via buffering large number of unnecessary data. To reduce
energy consumption, state-of-the-art employs multiple small
subarrays (each provided with a RB) instead of a single
large RB per bank [9], [10]. This small RB organization has
shown improved performance benefits compared to the large
RB organization in the context of off-chip memory due to
an improved subarray-level-parallelism. However, we found
that employing small RB organization [9] using existing LLC
tag designs [4]-[6], [8] incur performance degradation due
to a high tag lookup latency. To address this problem, we
rethink the LL.C tag design to make it viable for small RB
organization.

Recent works have focused on relatively small hybrid
SRAM/STT-RAM architectures for on-chip LLCs [11]-[16],
e.g., 32 KB to 8 MB. To the best of our knowledge, hy-
brid DRAM/STT-RAM architectures have not been explored
for larger on-chip LLCs, e.g. 256 MB. For large hybrid
DRAM/STT-RAM LLCs, tag management is key to strike a
good trade-off between storage, latency, endurance and energy
consumption. For instance, a 256 MB cache would require
24 MB of tag storage assuming conventional 64-byte block
size. One design option is to store the tags in a dedicated
SRAM memory to lower access latency. However, this design
is impractical due to large area and energy (especially leakage)
requirements [5]. Storing the tags in STT-RAM, on the other
hand, would exacerbate its write endurance [17]-[20] because
tags are written more frequently than data. An obvious solution
would be to store the LLC tags in a DRAM memory, not
only avoiding the area and energy penalty of storing tags
in SRAM but also addressing the STT-RAM write-endurance
issue. However, a naive LLC tag design in DRAM may waste
memory space due to internal fragmentation which is caused
by leaving unused space in the LLC row.

In addition, existing LLC architectures suffer from per-
formance degradations due to row buffer interference (see
Section II-A) which is caused by increased number of write-
backs accesses. The row buffer interference arises when a non-
critical writeback request induces a row buffer conflict with a
critical read request.

In particular, we make the following contributions:

1) A novel LLC tag design for small RB organization that
significantly improves performance via fast tag lookups
compared to existing tag designs [4]-[6], [8].

2) While the tag design provides fast tag lookp it leads to in-
ternal fragmentation when applied to hybrid DRAM/STT-

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Coreq Core; Corep.q
Ll L L] 12] L
) i7)
’| L3 Writeback Policy | L3-SRAM Cache ‘
v $ Miss - -
Tag- k| Miss Main Memory |- Main
Cache Predictor Controller «<—| Memory
L4 Controller 3 0 Hit

-------- > Address and control «<— Data |:| Our Contributions

Fig. 1: Typical LLC organization with four-level cache hier-
archy employing die-stacked memory as LLC [3], [4]

RAM LLC. To reduce the unused space caused by
the internal fragmentation, we provide an improved tag
design that intelligently stores the tags and the data.

A Data Placement Policy for the hybrid LLC that reduces
the number of row fetches compared to existing data
placement policies.

A proactive L3-SRAM Writeback Policy that evicts dirty
adjacent blocks from L3-SRAM which are mapped to the
same LLC row. These dirty blocks are serviced efficiently
with much lower latency compared to existing writeback
policies by reducing row buffer interference.

3)

4)

This paper is organized as follows. Section II outlines
the background and the related work. Section III presents
the details of our LLC architecture. The experimental setup
and the benchmarks used for the evaluation are discussed in
Section IV. Sections V and VI provide qualitative and quan-
titative comparisons with state-of-the-art approaches followed
by conclusions in Section VII.

II. MOTIVATION AND BACKGROUND

This section describes the movitation and introduces the
background and the particulars of the most recent tag designs.
It also provides the details of state-of-the-art hybrid LLC
architectures.

A. Large RB Organization

Typically an LLC (either based on DRAM or STT-RAM)
is organized into a number of logically independent banks
where each bank consists of multiple rows of data. In a large
RB organization [3]-[5], [8], [21], [22], a single large RB is
available at each bank. When an access is made to a bank, one
row of the bank is fetched into the bank’s RB. This operation
is called as row-activate. Any subsequent access to the row
residing in the RB (called RB hit) will not require the row-
activate operation. When an access is made to a different row
of the same bank (called RB miss), the contents of the RB are
substituted by the new row after the current row residing in
the RB is written back to the bank. This operation is called as
precharge. An RB miss requires to store the contents of the
current row (precharge operation), time to read the new row
(row-activate operation) and the RB read/write access time.
On the other hand, an RB hit only requires the RB read/write
access time which significantly reduces access latency and
energy compared to an RB miss. Removing a row from the

2KB row contains 1 cache set with 29 way associativity

(@) [Lo o] - (o]t [w]s]

28 TAD entries [28 x 72-Byte TAD = 2016 Bytes]

(o) [l] [l L= Tw

Tag [8 Bytes] Data [64 Bytes] m

Unused ‘

‘Legend [Tag/Tags [] CL:64-Byte Cache Line ‘
Fig. 2: The row organization of (a) LH-Tag design [5], [6] (b)
Direct-mapped Alloy-Tag design [21]; for a 2KB row size

row buffer to accommodate a new row is called row buffer
interference.

B. Small RB Organization

The small RB organization proposed in [9] employs multiple
small RBs per bank instead of a single large RB per bank.
Their approach divides the large row and the RB into multiple
sub-rows and sub-RBs respectively. They only fetch the re-
quested sub-row into one of the sub-RB instead of fetching the
entire row. Compared to large RB organization, the small RB
organization significantly improves the energy consumption
due to reduction in the energy consumed by the activate and
precharge operations on the smaller sub-rows. Additionally, in
a large RB organization the entire bank is unavailable while
an operation is being performed on the RB, and therefore any
access to other rows of the same bank will be delayed until the
current operation on the RB completes. Serialized accesses to
two different rows of the same bank suppresses the bank-level-
parallelism, which increases the queuing delay at the LLC
controller. The use of multiple RB’s in small RB organization
allows multiple accesses to the same bank in parallel which
improves bank-level-parallelism, herby reducing the queuing
delay.

C. LH-Tag Design

The LH-Tag stores the tags and data of LLC in the same
row [5], [6]. The LH-Tag for a 2KB row is shown in Fig. 2-
(a). Each 2KB LLC row comprises one cache set with 29-
way associativity. The row consists of three tag blocks and 29
cache lines. Once the entire 2KB row is fetched into the RB,
the three tag block must be be accessed before the cache line.
Both of these operations are directly performed on the RB.

D. Alloy-Tag Design

The direct-mapped Alloy-Tag [21] arranges the tag and data
side by side in an LL.C row to constitute a single Tag and Data
(TAD) entry, as shown in Fig. 2-(b). Compared to LH-Tag, the
Alloy-Tag leads to reduced LLC hit latency because a single
access of the TAD entry is required from the row buffer instead
of having isolated accesses for the tag and data. However, this
reduction in the hit latency comes at the expense of higher
LLC miss rate when compared to LH-Tag. To service an LLC
hit after the tag matches, the data field of the corresponding
TAD is transferred to the requesting core.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE I: Latency of a read request for different scenarios in
state-of-the-art DRAM cache [3], [4], [8] excluding controller

latency
RB Hit | Tag-Cache | Tag Check | Cache Line Total
Hit Latency Latency Latency
No No 24 cycles 40 cycles 64 cycles
Yes No 24 cycles 22 cycles 46 cycles
No Yes 2 cycles 40 cycles 42 cycles
Yes Yes 2 cycles 22 cycles 24 cycles

E. LAMOST-Tag Design with a Tag-Cache

In LAMOST-Tag design, each 4KB LLC row consists of 8
cache sets each set with 7-way associativity [3], [4], [8]. Each
set consists of one tag block and seven cache lines as shown
in Fig. 4-(b). The authors also propose a small low latency
hardware structure namely Tag-Cache that caches the tags of
recently accessed LLC sets. Table I shows the latency of a
read request for different scenarios in LAMOST-Tag design.
Note that the latency values do not show the queuing delay in
the LLC controller (time spent in the LLC controller before
having an access to an LLC bank). Accesses that hit in the
Tag-Cache are serviced with much lower latency because they
do not require LLC access for the tags. Similarly, accesses that
hit in the RB are serviced with much lower latency because
they do not require LLC bank access for the cache line. The
performance of a DRAM cache depends upon both RB and
Tag-Cache hit rates.

F. State-of-the-art Hybrid LLC Architectures

Until now, small caches have been combined in hybrid
LLCs with fast SRAM and slow STT-RAM regions [11]-
[16]. These LLC architectures aim to exploit the best of
the positive characteristics of both SRAM and STT-RAM
technologies. In some of these techniques, the SRAM cache is
used to store frequently written data to tackle high STT-RAM
write latencies and write energy [11]-[14]. For instance, a
migration technique is presented in [13] that migrates high-
reused data at runtime from slower STT-RAM regions to
faster SRAM regions. The hybrid SRAM/STT-RAM LLC
architecture in [16] applies power gating to memory arrays
for power reduction while considering the application cache
access patterns.

Existing techniques originally proposed for hybrid
SRAM/STT-RAM LLC, e.g., in [11]-[14], cannot be directly
applied to hybrid DRAM/STT-RAM LLC designs. First,
existing designs store the tags of STT-RAM LLC in a
separate SRAM tag array which is not a viable option for a
larger LLC due to large area and power overheads. Second,
existing data placement policies do not consider row buffer
interference because smaller SRAM and STT-RAM caches
do not require row buffers. It is to expect that these kinds
of row-buffer-agnostic policies to degrade performance when
applied to hybrid DRAM/STT-RAM LLC. Please note that
row buffers are employed for larger memories (i.e. DRAM
or STT-RAM [7], [23]-[25]) to hide the long bank access
latencies.

G. Challenges of a hybrid LLC architecture

As discussed above, existing hybrid LLC architectures have
remained relatively small in the past combining small SRAM
and STT-RAM caches. These hybrid LLC architectures have
a severe limitation because they can only provide a limited
cache capacity from 1 MB to 16 MB. This Capacity Wall
is particularly critical for emerging applications with large
working set sizes, e.g., graphic processing, scientific, and
multimedia applications. A larger LLC is required to close
the speed gap between processor and off-chip memory for
emerging applications.

To address the Capacity Wall, previous studies have intro-
duced larger DRAM LLCs [2]-[5] and STT-RAM LLC [7].
However, the DRAM LLC energy consumption has become
a significant concern in high-performance computing plat-
forms. For instance, the authors of [26] showed in an energy
breakdown of a recent multi-core platform that DRAM LLC
contributes around 15-25% to the total system energy con-
sumption.

The high DRAM energy consumption is primarily caused
by high refresh energy to avoid data loss in the DRAM
cell, whereas STT-RAM-based designs suffer from high write
latency and worse endurance [17]-[20]. These conflicting
characteristics motivate hybrid designs that overcome the
limitations of the single technologies, while still providing the
high bandwidth required by emerging application. Key to such
a hybrid design is a novel LLC tag design and an architecture
that mitigates destructive row buffer interference. These two
aspects are the matter of the next section.

III. PROPOSED LLC ARCHITECTURE

The high-level overview of our hybrid LLC architecture
is shown in Fig. 1. Similar to [9], we employ small RB
organization as shown in Fig. 3. The small RB organization has
been shown to have performance and energy benefits compared
to the large RB organization [3], [4], [8] as explained in
Section II-B. However, the main drawback of existing small
RB organization is that it suffers from reduced Tag-Cache
hit rate. To improve it, we devise the Split-Tag design (cf.
Section III-A) depicted in Fig. 3 and Fig. 4-(a). Consequently,
we present the details of our hybrid LLC tag design in
Section III-B followed by our Data Placement Policy in
Section III-C. Section III-D explains our L3-SRAM Writeback
Policy to reduce row buffer interference by taking the LLC
characteristics into account.

A. Split-Tag Design

The high level view of the Split-Tag design is illustrated in
Fig. 3 where each bank contains 8 subarrays, i.e., Subarrayg
to Subarray;, with Subarray, dedicated for storing the tags. A
logical row size of 4 KB includes 8 sub-rows spread across 8
subarrays, each sub-row containing 512 bytes, i.e., eight 64-
byte blocks. With Subarray, reserved for the tags, each sub-
row accommodates an 8-way associative set. The tag block
(shown in green box in Fig. 4-a) stores the tags of all cache
lines within a set. In contrast, LAMOST-Tag design [4], [8],

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[e[sak] [e | []
One LLC J)anki:‘&ﬁfains 8 subarrays. The r0\;/-§i"z'é‘is4‘t(~8
Subarray, Subarray; Subarrayg ""~Subarray;
|— Sub-Row, l Sub-Rowg/Sets J Sub-Row;/Sets ~J

| Sub-Row,/ Set, ‘
J Sub-Rowg |\§ub-Rowg/Set7 ‘

! : N .

:'l Sub-Rowg;g, “Setrie: ‘) ‘

f Y 7

[Sub-Row-Buffers I Sub-Row-Buffer,] “\
/ Setg 3

[Lfu]u]ufu]u]u]y]

8 64-byte lines

‘ Sub-Row14/Set11'| Sub-Row;s /Sety; }‘
raur \

1024 rows

Setyigs” l

\
\
Setzigr ‘ \‘

,," [Sub-Row-Buffer, I Sub-Row*Buffer;]
] 512 bytes N
RAENEAEAEA A AT

/

|Tago |Tag1 | Tag, |Tag; |Tag4 | Tags |Tag6 |Tag7| Unused |
Tags of Setg (48-bytes) 16-bytes
Legend Sub-Row dedicated for the tags Tag column for Set;
Tag for Ly, within a set Cache Line “k” in a set
Sub-Row buffer associated with Subarray, [JUI] Unused column
Fig. 3: High level view of the Split-Tag design

4KB row contains 7 cache sets with 8 way associativity

Sub-row-0 Sub-row-1 Sub-row-7
(a) OEEBEBELII[[[[[[] - [ITIII[[]]
Set-0 Set-6

4KB row contains 8 cache sets with 7 way associativity

(b) OITTITTITETTITITIT] - ELITIITT]
Set-0 Set-1 Set-7

‘ Legend [K] Tags for set “k” within a row[] CL: 64-Byte Cache Line ‘

Fig. 4: The row organization of (a) Our Split-Tag desing (b)
LAMOST-Tag design [4], [8], [22]

[22] stores the tag block with in the same sub-row along with
the cache lines as shown in in Fig. 4-(b).

An access to a cache line in our Split-Tag requires two sub-
rows accesses (one for the tag block and other for the cache
line access) in contrast to a single sub-row access in LAMOST-
Tag (tag block and the cache line reside in the same sub-row).
To reduce the number of accesses to the tags in the bank, we
employ a small low-latency SRAM-based Tag-Cache similar
to [3], [4], [8] that exploits the temporal locality by caching
the tags of spatial adjacent LLC sets. Therefore, a Tag-Cache
hit bypasses the sub-row access dedicated for the tags while
reading the tags directly from the Tag-Cache. Let us assume
that there is an LLC read request to a cache line that belongs
to Set-6 in Fig. 4-(a). To elaborate how our approach works
along with the Tag-Cache, we describe the implementation of
the following important events to service the above request:

Tag-Cache miss: On a Tag-Cache miss, the sub-row ded-
icated for the tag blocks (i.e. Sub-row-0) is accessed to read
the requested tag block (i.e. tag block 76”). This tag block
indicates the location of the cache line in Set-6 (stored in Sub-
row-7). After reading the tag block, the LLC controller issues
a read request to access the requested cache line in Sub-row-7
(i.e. Set-6) which is forwarded to the requesting core. After
that, subsequent read requests are sent to access the remaining
tag blocks (i.e. tag blocks ”0” to ”’5”) from Sub-row-0 which
are placed in the Tag-Cache. We exploit the temporal locality
of applications that these prefetched tag blocks will likely be
accessed in the near future. In contrast, using LAMOST-Tag
design [4], [8], [22] employing small RB organization [9] need
to fill only the requested tag block (i.e. tag block ”6”) in the
Tag-Cache. The reason is that accessing adjacent tag blocks

Blocks in Main Memory

Super-Blocky [Block-0,1,2,3 —>{ LLC Sub-Row,
Super-Block;, Block-4,5,6,7 | —>| LLC Sub-Row,
Super-Block, | Block-8,9,10,11 |—>| LLC Sub-Row,
Super-Blocks | Block-12,13,14,15 —>{ LLC Sub-Row,

Fig. 5: Memory block to sub-row mapping in the Split-Tag
design

will require multiple sub-row accesses (see Fig. 4-b) which is
not a viable option in the small RB organization.

Tag-Cache hit: A Tag-Cache hit does not require any LLC
lookup for the tag block (i.e. it is directly accessed from
the Tag-Cache), so a read request is directly sent to Sub-
row-7 to access the requested cache line in Set-6. The tag
block 76 is updated in the Tag-Cache (e.g. to update LRU
and dirty information etc.) but not in the LLC. In contrast
to our approach, existing tag designs [4], [8] always update
the tag block both in the Tag-Cache and the LLC. In our
implementation, the tags in the LLC are only updated after its
eviction from the Tag-Cache.

RB miiss: If there is an RB miss for the sub-row (i.e. Sub-
row-0) containing the tag block, then it is fetched into one
of the small sub-RBs available at the LLC bank shown in
Fig. 3. Note that Sub-row-0 only needs to be accessed after
a Tag-Cache miss. If the sub-row containing the requested
cache line (i.e. Sub-row-7 in the above example) does not
reside in the RB, then it is fetched into one of the small sub-
RB’s. In contrast to our approach, state-of-the-art large RB
organization [3]-[5], [7], [8], [22] fetches all sub-rows (i.e.
Sub-row-0 to Sub-row-7) into the the large RB after an RB
miss. Our proposed approach only fetches the requested sub-
rows instead of fetching all sub-rows that provides significant
energy saving compared to the large RB organization. On the
other hand, the small RB organization [9] only fetches one
sub-row after an RB miss because the tag block and the cache
line resides in the same sub-row (see Fig. 4-b). Compared
to the small RB organization, the additional latency incurred
in fetching the sub-row dedicated for the tag-blocks in our
proposed approach is compensated by significant improvement
in the Tag-Cache hit rate (see Section V-A and Table V for
evaluation).

Fig. 5 illustrates how the Split-Tag design maps memory
blocks to sub-rows. This design assigns 4 consecutive memory
blocks to the same LLC sub-row. For instance, memory blocks
0-3, 4-7, 8-11, and 12-15 are assigned to LLC Sub-Row, Sub-
Rowsy, Sub-Rows, and Sub-Row, respectively. For the rest of
the paper, four consecutive memory blocks are referred to as
a super-block (see Fig. 5). This mapping exploits the spatial
locality of applications, i.e., adjacent memory blocks are likely
accessed together, thereby improving the row buffer hit rate.
Note that each LLC set is stored in a separate sub-row as
shown in Fig. 3 and Fig. 4-(a).

1) Internal fragmentation: In the Split-Tag design, the sub-
rows in Subarrayg contains 7 tag blocks, i.e., Ty to Tg, with
one 64-byte block left unused. In each tag block, 16 bytes are
not used, for a total of 112 unused bytes. As a result, the total
unused space in the 4 KB row is 176 bytes. This unused space
leads to internal fragmentation in the LLC. Each physical row

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Hybrid LLC is logically partitioned into three regions

“ DRAM Tag Region| [DRAM Data Region| | STT Data Region |

Alogical 4 KB row in hybrid LLC containing 3 sets Round
[Logical 2KB row in DRAM JLogical 2KB row in STT-RAM | Robin counter
- 4 fixed-size rows ‘\ 3 variable 8ize WS ™ ~xen,_
| Tag-snow,, [DRAM-SRow,| DRAM-SRow, | DRAM-SRow, \ \ STT-SRow, | _ STT-SRow; | STT- snow, \
8 cols 8 cols 8 cols 8 cols 11 cols 11 cols 10 cols

Tags Tegs Tags 8 ways 11 ways \ 8 ways 10 ways 2 ways -
Sety .~Seti set, [st | |
128 bytes S Toluly] - -
[Tag [Tag: |- - [Tagss [RRC |Unused | \ DRAM-SRow,| _ STT-SRow, _ | 20-way associativity

6 bytes 6 bytes 6 bytes 3 bits ~7.6 bytes 8 Ways 11 ways

Fig. 6: High level overview of our Hybrid-Split-Tag LLC
design.

in Subarray; to Subarray; accommodates a single set.

B. Hybrid-Split-Tag

As mentioned above, Split-Tag design incur internal frag-
mentation due to two reasons. First, 16 bytes are left unused
in each tag block of Subarray, (i.e. dedicated for storing
the tags). Second, one entire 64-byte block is left unused in
Subarrayg. Our Hybrid-Split-Tag design mitigates the former
problem by packing more tag entries in the tag blocks (referred
to as Rule-1). The later problem is addressed by storing
additional ways in the unused blocks of Subarrayy (referred
to as Rule-2).

Fig. 6 gives an overview of our Hybrid-Split-Tag design.
As shown, the hybrid LLC is logically organized into three
regions called DRAM-Tag-Region, DRAM-Data-Region and
STT-Data-Region. A logical 4 KB row in our Hybrid-Split-Tag
LLC comprises one logical 2 KB DRAM row and one logical
2 KB STT-RAM row. The logical 4 KB row consists of three
LLC sets namely Setg-Sets. The logical 2 KB DRAM row
consists of 4 fixed size sub-rows each containing eight blocks.
The first sub-row, i.e., Tag-SRowy, stores the tags of the three
sets. The next three rows, i.e., DRAM-SRowy-DRAM-SRows,
store the data. The logical 2 KB STT-RAM row consists of
3 unequal size sub-rows where the first two sub-rows contain
11 blocks and the third one contains 10 blocks. The tag block
pairs To-T1, To-Ts, and T4-T5 of Tag-SRow, store the tags of
Setg, Sety, and Seto respectively. Sety and Set; provide 19-way
associativity with 8 and 11 ways stored in a DRAM sub-row
and an STT-RAM sub-row respectively. Sety provides 20-way
associativity where 8 and 10 ways are stored in a DRAM
sub-row (in DRAM-SRows,) and an STT-RAM sub-row (in
STT-SRow,) respectively. The remaining two ways (Dg and
D;) are stored in Tag-SRowy.

A request to the hybrid LLC set requires an access to the two
tag blocks to identify (a) an LLC hit/miss and (b) the location
of the cache line, i.e., whether in the DRAM-Data-Region,
in the DRAM-Tag-Region (last two blocks of Tag-SRow for
Sets), or in STT-Data-Region. In Hybrid-Split-Tag 35 bytes are
left unused in each logical 4 KB row as opposed to 176 bytes
in the Split-Tag (see Section III-A). Thus, our proposal reduces
the waste of space due to DRAM internal fragmentation. This
savings are made possible by packing more tag entries in the

M¢RU LRU MRU LRU
1 DY A Y R P Y R Y N A EA K E P EN AT

DRAM-Row (8 ways)
LLC Set (19 ways)

STT-Row (11 ways)

RRC

[olulss[r[u]r]ala] [Nuc o e H]co] s [os]6]Hs]

N

2 N EN 2 Y Y M N T M A EN N A Y IS P EN

[o[ula[r]ulm]n]A]

el [u e e [u [Fs]

el = [e [F: [

[NalNai] c: [ou [o [[[oo o

N

[No[NsTN] . [o: [6o [s [o s [0 s |

w

[NofNs[Na] . [0 [Go [[o[2 [[

w

JEEEEE
N

BT ro[u o [R un] [P [Na]Ns[Na]c: o[G0 o [o] i o]

Fig. 7: Example of Data Placement Policy (MRU: Most
Recently Used, LRU: Least Recently Used)

tag blocks. Also, the last two blocks in Tag-SRow, are used
to store two ways of Sety. The efficient storage utilization
and high LLC associativity of our Hybrid-Split-Tag design
provides reduced LLC miss rate compared to Split-Tag design
as will be discussed in Section VI-D (Fig. 21b).

Our hybrid LLC tag design is based on the notion of the
above-mentioned two rules (i.e., Rule-1 and Rule-2). Fig. 6
shows our Hybrid-Split-Tag desig for a logical 4 KB row size.
However, this design is generic and the same rules can be
applied to other logical row sizes as well.

C. Data Placement Policy

1) Reducing the number of LLC row fetches: The hybrid
LLC architecture has to decide which memory to use after
an LLC miss, i.e., DRAM or STT-RAM. We first present
a motivating example in Fig. 7 that shows how our Data
Placement Policy reduces the number of row fetches. This
example shows a 19-way set of our hybrid LLC mentioned in
Section III-B. For this example we assume that:

1) The set in Fig. 7 initially contains arbitrary blocks from
many super blocks (i.e. from SB4 to SBp).

2) A super block consists of 4 consecutive blocks. For in-
stance, the super block S By consists of four consecutive
blocks Ny-N3. Similarly, the super block SBj contains
Ko-Ks.

3) Every block of a super block is mapped to the same LLC
set which consists of a DRAM sub-row and an STT sub-
row as shown in Fig. 7.

4) The blocks N, N3, and Ny of a super block SBy
are requested at time %, t1, and t5 respectively and are
currently absent in LLC.

Existing data placement policies [13], [14] may place some
blocks (e.g., IN1) of the super block SBy in the DRAM sub-
row and other blocks (e.g., N3 and Ny) in the STT sub-row.
In this scenario, two LLC rows need to be fetched in the
row buffer which exacerbates the energy consumption. Also,
fetching two rows necessitate to evict two victim rows from
the row buffer which deteriorates the row buffer hit rate. This
is due to the fact, as mentioned before, that these policies
were originally proposed for smaller hybrid SRAM/STT-RAM
cache architectures without a row buffer. In our proposal, all
blocks belonging to a super block are either placed in a DRAM
sub-row or in an STT sub-row. For the example in Fig. 7, the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

80%

D O0verall B Read @ Write W Writeback

60%

40%

20%

Row buffer hit rate

AAASRRRNSARRRNYY

MASSSSSSSSSN

TR T TR NI TT

R |

o Ton o PSR TA T

0%

‘ Mix_01 ‘ Mix_02 ‘ Mix_03 ‘ Mix_04 ‘ Mix_05 ‘ Mix_06 ‘Average
Fig. 8: Row buffer hit rates of different SPEC2006 applications
(see Table II) for LAMOST-Tag design with 4KB row buffer
size employing 256 MB DRAM LLC

blocks Ny, N3, and Ny are placed in an STT sub-row as they
belong to the same super block SBy. Thus, our architecture
need to only fetch a single LLC row to place or access adjacent
blocks of a super block.

2) Providing balanced set utilization: Besides reducing
the number of LLC row fetches, another goal of our Data
Placement Policy is to uniformly distribute blocks to DRAM-
Data-Region and STT-Data-Region. This goal is achieved by
assigning more blocks to STT-RAM because an STT sub-row
has 3 more ways compared to the DRAM sub-row. To this end,
we employ a saturating 3-bit Round Robin Counter (RRC) for
each LLC set (see Fig. 6). To illustrate our policy, we assume
that a block Bj.icf0,1,2,3) belonging to a super block S is
absent in the LLC. The adjacent blocks of the missing block
B, are searched in the relevant set after an LLC miss. If any
of the adjacent blocks is found, then B; is placed in a row of
the same memory type as the adjacent blocks. This approach
reduces the number of LLC row fetches as illustrated earlier.
The RRC remains unchanged if the adjacent block of B; is
found in the LLC. If an LLC miss occurs for the super block .S,
i.e., By-Bs are absent in LLC, then B; is placed in a DRAM
sub-row if the previous value of RRC is 2, 5 or 7. Otherwise,
B; is placed in an STT sub-row of the relevant LLC set, i.e.,
with an RRC of 0, 1, 3, 4 or 6. The RRC is incremented when
the super block S misses the LLC.

The set balancing using our Data Placement Policy is
illustrated with the example in Fig. 7. Block N; is placed
in STT sub-row at ¢ty because the previous value of RRC is
1 and adjacent blocks of N; are absent in LLC, i.e. an LLC
miss occurs for the super block S By . The RRC is incremented
after the insertion of block /N7 as a result of an LLC miss for
the super block SBy. The following missing blocks N3 and
Ny are placed in an STT sub-row (since [N; was assigned to
an STT sub-row as well) while the RRC remains unchanged.
Similarly, block K is placed in DRAM sub-row at ¢3 because
the previous value of RRC is 2 and an LLC miss occurs for
the super block K.

D. L3-SRAM Writeback Policy

The different LLC accesses, i.e., read, write, and writeback,
have varying row buffer hit rates as can be observed in Fig. 8.
Writeback accesses have a low row buffer hit rate of less than
2% and are classified as low Row Buffer Locality (RBL)
accesses. These low RBL writeback accesses cause eviction
of high RBL rows, i.e., rows with frequent row buffer hits,
from the row buffer. Therefore, the dirty evicted L3-SRAM

MRU
LRU

t
L3-SRAM Setg& Do | Co | Bo | At (Mo [6 [Yo [To <7
L3-SRAMSet; [P, [, [H | Y, [N [B, | T: [Ar I&
L3-SRAMSet, [N, [T, [M, [P, [D,]G [R | B, |
L3-SRAM Sets [Ny [Fs [Rs | G5 [As] Y5 [G5 | Hs |

t}

Time | Current Traditional WB Policy | Proposed WB Policy
(t) | Request C;g\?vm I_'ﬁ?? Status C%\?vm ,_rf,tB'; Status
b SN | No |Dirty |[ESHEN | No | Diry
4 No | NA No | NA
t (SN | No |Oirty |(SSHEN | NA [Clean
b No | s | EGHE | ves | N
te (SN | No |Dirty |MESHEN | NA |Clean
ts No | Na | NI | ves | na

#WB 3 1

#RB hits 0 2

@ High Row Buffer Locality row
(I Low Row Buffer Locality row
* No LLC access required for the clean line

NA: Not Applicable

RD: Read

WB: Writeback

Fig. 9: Example illustrating traditional and proposed L3-
SRAM writeback policy

lines are the major source of row buffer interference, thereby
reducing the overall row buffer hit rate.

Our L3-SRAM Writeback Policy is based on the notion
of diminishing the penalty of dirty L3-SRAM line eviction
by taking the LLC characteristics into account. We illustrate
the LLC and row buffer interference caused by dirty L3-
SRAM lines using a simple example with four L3-SRAM
adjacent sets, as shown in Fig. 9. We make the following
assumptions: (a) A super block SB4 contains four adjacent
memory blocks Ay-As which are assigned to L3-SRAM Sety-
Sets respectively. (b) Blocks Ag, A;, and Az (grey boxes in
Fig. 9) are currently present in L3-SRAM in dirty state. (c) The
four blocks from super block SB4 are mapped to the same
LLC row namely Row4 (yellow box in Fig. 9). (d) Rowy4 is
a low RBL row because it is accessed by writeback requests.

The table in Fig. 9 presents a sample sequence of dirty block
evictions at different time steps in traditional policies [2], [7],
[21] compared to our proposed policy. This example shows
that the dirty blocks Ay, Az, and Ay are evicted from L3-
SRAM at time ty, te, and t4 respectively. It also shows
that high RBL rows Rowp, Rowc, and Rowp (shown in
red boxes) initially reside in the row buffer at ¢y, to, and
t4 respectively. In the traditional policy, the dirty L3-SRAM
writeback accesses (i.e., A1, A3, and Ag) cause eviction of
the high RBL rows (i.e. Rowp, Rowc, and Rowp) from
the row buffer, thereby causing row buffer interference. Any
subsequent access to the high RBL row results in a row buffer
miss which degrades the performance and energy efficiency.
Therefore, the traditional policy leads to a reduced number of
row buffer hits as illustrated in Fig. 9.

In our proposed L3-SRAM Writeback Policy, whenever a
dirty block of a super block is evicted from an L3-SRAM set,
it searches for its adjacent dirty blocks in the neighbouring
sets. All adjacent dirty blocks of a super block are then written

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

I

t t2 ts
! 1
'

to ts
' ' '
' ' ' '
a Evict A, { RDRows) ---Y EvictA RD Row, .o EvictA RD Rowp
@ {5 (o) - Cmen) (o) - {) (o)
1 ' 1 ' 1 !
H ' H ' \ '
e , ' // RD 1 |/ RD
(o) D (D) -
' ' '
\ No LLC access required _/
Reduced LLC interference "
time
() Row Buffer Hit) Row Buffer Miss

Fig. 10: Service timeline of requests for the example in Fig. 9
employing (a) traditional (b) proposed; L3-SRAM writeback
policy

back to LLC as a single request. In the above example, when
the dirty block A; is evicted from L3-SRAM at ¢, its adjacent
dirty blocks Az and Ag are also written back to the LLC in a
proactive fashion. This changes the cache state of A3 and Ag
from dirty to clean at ¢y. Note that A3 and Ag are not evicted
from L3-SRAM at ¢y. They are evicted when they are replaced
by new cache lines in their respective sets. The eviction of
blocks As (at t3) and Ag (at ¢4) from L3-SRAM do not
require an LLC access because they are already written back
to LLC. Our L3-SRAM Writeback Policy significantly reduces
LLC interference by reducing the number of LLC writeback
requests. For the example in Fig. 9, the number of writeback
requests are reduced from 3 to 1 compared to the traditional
policy. Our proposal provides improved row buffer hit rate
by mitigating the negative impact of writeback accesses. For
the example in Fig. 9, our proposal provides 2 row buffer
hits compared to none in the traditional policy. It is worth to
mention that dirty writebacks Ay, Az, and Ay are serviced
back-to-back on the same row buffer (i.e. they are mapped
to Row,), thereby resulting in significant LLC service time
reduction. Fig. 10-(a) and Fig. 10-(b) show the timeline of the
example requests in Fig. 9 being serviced by the traditional and
our proposed L3-SRAM writeback policy respectively. Fig. 10
clearly highlights the problem of increased LLC interference
and reduced row buffer hits in the traditional policy compared
to our policy.

E. Comparison with state-of-the-art L3-SRAM Writeback Pol-
icy

Our L3-SRAM writeback policy is similar to existing L3-
SRAM writeback policies [27], [28]. All these policies per-
form early writeback of dirty blocks which are mapped to
the same LLC row. However, for performance benefits, our
proposal has a different L3-SRAM set mapping policy which
is highlighted in Fig. 11. Existing L3-SRAM set mapping
policies map all four blocks of the super block to the same L3-
SRAM set as shown in Fig. 11-(a). The primary disadvantage
of their approach is that they incur high L3-SRAM miss
rate (Fig. 22; Section VI-E). The L3-SRAM miss rate is
exacerbated due to within-set contention since all four blocks
of the same super block are mapped the same L3-SRAM set.
Our L3-SRAM set mapping policy in Fig. 11-(b) eliminates
within-set contention because spatially adjacent blocks of a
particular super block are mapped to different L3-SRAM sets.

Our L3-SRAM set mapping policy requires four set com-
parisons instead of a single set comparison before performing
a writeback operation. These four set comparisons are required

Set;
Setj,y

Row
Row

Setj,,

=
©
n
™
|
o
£
©
(2]

Same LLC
Same LLC

(a) (b)

Fig. 11: For super block SB,4 comprising 4 blocks (a) State-
of-the-art [27], [28] L3-SRAM set mapping (b) our L3-SRAM
set mapping

TABLE II: Benchmarks mixes from SPEC2006. LLC-
intensive applications shown in italic. LLC-Mem-Sensitive
applications shown in non-italic

Super-block A
<— SBy, —

Super-block A

Mix_01 soplex.r, bzip, leslie3d.r, libquantum

milc, astart, leslie3d.t, bzip, omnetpp
Mix_02 leslie3d.r(2), astar.t(2), Ibm(2), libquantum(2)
Mix_03 leslie3d.1(2), bzip(2), omnetpp, milc, Ibm, soplex.r
Mix_04 | astart, leslie3d.r, milc, omnetpp(2), soplex.r(2), leslie3d.t
Mix_05 leslie3d.r(2), milc(2), astar.t, Ibm, libquantum, bzip
Mix_06 | libquantum, soplex.r, omnetpp(2), 1bm, leslie3d.1(2), bzip

to locate the adjacent dirty blocks (if present in L3-SRAM) for
a writeback request. It is worth to mention that an L3-SRAM
read/write hit request only require a single set comparison.
In our and existing implementations, the read and write hit
requests are prioritized over writeback requests. Therefore, the
three additional set comparisons for writeback requests does
not incur a performance penalty. The reason is that writeback
requests are non-critical and are performed off the critical
path. As a result, they do not effect the latency of critical
read requests.

IV. EXPERIMENTAL SETUP

We evaluate our policies using the cycle-accurate multi-core
Zesto simulator [29]. We model eight out-of-order cores where
each core runs a single application. All application mixes
constituted from the SPEC CPU2006 benchmark suite [1], [30]
are listed in Table II. These application mixes were chosen be-
cause they contain applications with different working set sizes
and cache access patterns. For instance, Mix_03 and Mix_06
have low LL.C miss rates compared to other application mixes.
We categorize the applications into LLC-sensitive and LLC-
Mem-Sensitive applications. The LLC-sensitive applications

TABLE III: Configuration details as used in the experiments

Core 3.2 GHz, out-of-order, 4-issue

Private L1 32 KB, 8-way associativity, 2 cycles latency

Private L2 512 KB, 8-way associativity, 5 cycles latency

Shared L3 8 MB, 8-way associativity, 20 cycles latency

L4 (DRAM or 4 channels, 256 MB, 64 banks, 256-bit channel width,

STT-RAM or 2 cycle bus latency, trop-trp-tcas = 18-18-18

Hybrid) (CPU cycles)

twRr 18 and 38 cycles for DRAM and STT-RAM respec-
tively

Tag-Cache 38 KB, 2 cycle latency [3], [4], [8]

Miss Predictor Map-I [21], 256 entries

2 channels, 16 KB row buffer, 64-bit channel width,
tRAS-tRCD-tRP-tCAS-tWR = 144-36-36-36-36 (CPU
cycles)

Main Memory
(DRAM)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE IV: Per-bit energy consumption of memory operations
normalized to the energy of accessing the row buffer taken
from [23]

Operation

DRAM Array Read/Write

Normalized Energy

1.19

DRAM Precharge 0.39
STT-RAM Array Read 1.08
STT-RAM Array Write 2.83
Row Buffer Access 1.00

have a low LLC miss rate and a high LLC access rate.
These appications are very sensitive to the LLC read latency
and are highlighted in italic in Table II. On the other hand,
the performance of LLC-Mem-Sensitive applications depends
on LLC read hit latency as well as LLC miss rate. Each
core is provided with private L1/L2 caches while L3/L4
caches are shared among the cores (recall Fig. 1). Table III
shows a summary of the main architectural parameters of the
simulated system. The energy values (Table IV) of DRAM
and STT-RAM devices are taken from [23]. For all evaluated
configurations, we employ a MAP-I predictor for predicting
DRAM cache misses from [21] and Tag-Cache from [3], [4],
[8]. The LLC scheduler uses FR-FCFS (First Ready First
Come First Serve) policy [31].

V. EVALUATING SPLIT-TAG DESIGN

For the evaluation using DRAM Cache, an x86 simula-
tor [29] with cycle accurate DRAM timing model is extended
to model our Split-Tag-Design. We compare the following
different configurations when applied on top of DRAM cache:

o LH-Tag-2KB: The LH-Tag design (cf. Section II-C) with
a 2 KB RB size employing large RB organization [5], [6].

o LAMOST-Tag-2KB and LAMOST-Tag-4KB: The
LAMOST-Tag (cf. Section II-E), which employs a RB
size of 2 KB [22] and 4 KB [4], [8]. Both of these config-
urations employ large RB organization (cf. Section II-A).

o LAMOST-Tag-Small: LAMOST-Tag with a small RB
organization (cf. Section II-B and Fig. 4-(b)). The size of
the DRAM row and the sub-row is assumed to be 4 KB
and 512 bytes respectively. The memory block to sub-row
mapping is similar to the one shown in Fig. 5.

o Alloy-Tag-Small: The direct-mapped Alloy-Tag design
(cf. Section II-D) build on top of small RB organization
with 512 bytes sub-row size [21].

o Split-Tag: Our Split-Tag design build on top of small
RB organization (i.e. sub-row size is 512 bytes) which is
explained in Section III-A. The memory block to sub-row
mapping is similar to the one shown in Fig. 5.

We do not employ small RB organization for LH-Tag because
it requires fetching all 4 sub-rows to access a cache set which
is not a viable option for small RB organization.

A. Performance Analysis

The main performance results for the evaluated configu-
rations are illustrated in Fig. 12, which depicts the perfor-
mance speedup normalized to LH-Tag. As shown, our Split-
Tag improves the overall performance by 41.3%, 15.4%,

TABLE V: Comparisons of different configurations. The red
color indicates a bad value for a parameter

Configuration Tag-Cache | Avg. RB Avg. Bank-level-
Hit Rate Hit Rate | Miss Rate | parallelism
LH-Tag-2KB 6.4% 3.6% 24.3% Worst
LAMOST-Tag-2KB 68.8% 37.1% 26.6% Worst
LAMOST-Tag-4KB 79.2% 44.4% 26.7% Worst
LAMOST-Tag-Small 45.2% 36.5% 26.9% Best
Alloy-Tag-Small NA 48.9% 35.7% Best
Split-Tag 78.7% 37.4% 24.6% Best

(21.8%, 17.7%) and 11.3% compared to LH-Tag, Alloy-Tag,
LAMOST-Tag with (2KB, 4KB) RB sizes, and LAMOST-
Tag-Small, respectively. The performance of DRAM cache
is primarily affected by two metrics namely DRAM cache
read hit latency and DRAM cache miss rate (depends upon
associativity). The DRAM cache hit latency comprises two
components: the DRAM array latency and the queueing delay
at the DRAM cache controller. The DRAM array latency
strongly relies on the row buffer hit rate (higher is better),
Tag-Cache hit rate (higher is better) while the queueing delay
is strongly influenced by bank-level-parallelism.

Table V provides a quantitative and qualitative comparison
of important parameters for the evaluated configurations. The
performance of our approach is primarily enhanced via an
improved DRAM cache read hit latency compared to all
configurations (except Alloy-Tag) as shown in Fig 13. This
is because we simultaneously improve (i.e. close to the best
value) all of the important parameters. Although our proposal
(8-way associative cache) slightly increases the DRAM cache
miss rate compared to LH-Tag (29-way associative cache),
but that is compensated by significant reduction in the read
hit latency (51.2%). LH-Tag provides the worst hit latency
compared to all configurations that is the primary reason
for its worst performance. LH-Tag has a low row buffer
and Tag-Cache hit rate due to reduced temporal locality as
illustrated in Table V. In addition, LH-Tag also suffers from
reduced bank-level-parallelism due to the use of large RB
organization that further worsens the hit latency. The Split-
Tag increases the average DRAM cache read hit latency by
12 CPU cycles compared to direct-mapped Alloy-Tag, but that
is offset by significant reduction in LLC miss rate (31.1%).
Alloy-Tag slightly improves the performance of LLC-Sensitive
applications compared to Split-Tag as depicted Fig. 12(b). The
reason is that LLC-Sensitive applications benefit from lower
LLC read hit latency and are not affected severely by LLC
miss rate. However, Alloy-Tag underperforms for LLC-Mem-
Sensitive applications (cf. Fig. 12¢) because the performance
of these applications severely depends on LLC miss rate.

Compared to all variants of LAMOST-Tag, our Split-Tag
provides simultaneous improvement in DRAM cache read hit
latency and miss rate. It has a better miss rate compared
to all variants of LAMOST-Tag because it provides high
associativity (i.e. 8-way) compared to LAMOST-Tag (i.e. 7-
way). The hit latency compared to LAMOST with (2KB, 4KB)
RB sizes is reduced via an improved bank-level-parallelism
(cf. Section II-B) because we employ small RB organization.
On the other hand, the hit latency compared to LAMOST-Tag-
Small is improved via an enhanced Tag-Cache rate (74.1%

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

B LH-Tag-2KB

@ LAMOST-Tag-2KB
B LAMOST-Tag-4KB
EILAMOST-Tag-Small
DOAlloy-Tag-Small
BSplit-Tag

Normalized HMIPC

Average Performance LLC-intensive LLC-Mem-intensive

Fig. 12: Performance comparison of different configurations.

i
B
o

-
N
=]

[EILH-Tag-2KB
ELAMOST-Tag-2KB
W LAMOST-Tag-4KB
EILAMOST-Tag-Small
DAlloy-Tag-Small
BSplit-Tag

=
1S)
)

=]
=]

@
=]

N
)

DRAM Cache Read
Latency (CPU cycles)

[N
o

o

Average Read Latency
Fig. 13: DRAM cache latency for read request for different
configurations

1.6

S 5 14 B LH-Tag-2KB
z ‘;a 12 B LAMOST-Tag-2KB
< 1
o g B LAMOST-Tag-4KB
T 5 08
29 o6 | [LAMOST-Tag-Small
© b0 :
£ § 0.4 - D Alloy-Tag-Small
=] w
= 02 4 BSplit-Tag

o -

Average Energy
Fig. 14: Energy comparison of our Split-Tag design compared
to state-of-the-art approaches

improvement). The reason for this improvement is that our
Split-Tag exploits the spatial locality by prefetching all adja-
cent tag blocks in the Tag-Cache (details in Section III-A). In
contrast, LAMOST-Tag-Small only fill the requested tag block
in the Tag-Cache.

B. Energy Analysis

The results of our energy analysis are summarized in
Fig. 14. As shown, reducing the RB size significantly reduces
DRAM cache energy consumption due to reduction in the
energy required for the row-activate and precharge operations.
The DRAM cache energy savings of our proposal using
small RB organization are 71%, 60%, and 78% compared
to LH-Tag-2KB, LAMOST-Tag-2KB and LAMOST-Tag-4KB,
respectively, because they employ large RB organization.
Compared to Alloy-Tag-Small, the energy saving translates
to 19% via reduced LLC miss rate (cf. Table V). Our Split-
Tag slightly increases the energy consumption compared to
LAMOST-Tag-Small. However, this slight increase in the
energy consumption is compensated by 11.3% improvement in
performance. The reason for this increase is that our Split-Tag
requires additional sub-row accesses for the tag block because
the tag block and the cache line resides in different sub-rows.
However, caching the tag blocks in the Tag-Cache bypasses
any future sub-row accesses for the tags while reading the tags
directly from the Tag-Cache.

11

B NH-ST-DRAM
o 105 BNH-LT-STT
E 1 B NH-ST-STT
= 095 - WH-ST
£ o9 @ H-ST-S0A
£ oss - OH-ST-WB
2 el B H-ST-WB-DP

Average Performance LLC-intensive LLC-Mem-intensive

Fig. 15: Normalized Harmonic Mean Instruction per Cycle
(HMIPC) results.

[

g
5}

O DRAM-Refresh O DRAM-Non-Refresh

»

WSTT-Energy

% —

0.8

0.6

0.4

0.2

LLC Dynamic Energy Consumption

Z

H-ST-WB H-ST-WB-DP

0.0

NH-ST-DRAM NH-LT-STT NH-ST-STT H-ST H-ST-SOA

Fig. 16: Normalized energy results for the evaluated architec-
tures.

VI. EVALUATING HYBRID-SPLIT-TAG DESIGN

This section describes the benefits of our Hybrid-Split-Tag
design by evaluating the following LLC architectures:

o« NH-ST-DRAM & NH-ST-STT: The best-performing
non-hybrid (NH) Split-Tag design using DRAM and STT
cache respectively with 256 MB LLC.

o NH-LT-STT: Existing non-hybrid 256 MB STT-RAM
LLC [7] employing LAMOST Tag-Design and STT-RAM
specific optimizations in [23].

e NH-LT-STT: The non-hybrid 256 MB STT-RAM
LLC [7] employing LAMOST Tag-Design and STT-RAM
specific optimizations in [23].

e« H-ST: The hybrid 256 MB LLC comprising 128 MB
DRAM and 128 MB STT-RAM with our Hybrid-Split-
Tag design elaborated in Section III-B. This configuration
models the state-of-the-art data placement policy in [13],
[14] and STT-RAM specific optimizations in [7], [23].

o H-ST-SOA: The Hybrid-Split-Tag design extended by
state-of-the-art (SOA) L3-SRAM writeback policy [27],
[28] highlighted in Fig. 11-(a) and described in Sec-
tion III-E.

o« H-ST-WB: The Hybrid-Split-Tag design extended by
our L3-SRAM writeback policy (Fig. 11-b) from Sec-
tion III-D.

o H-ST-WB-DP: The H-ST-WB configuration extended by
our data placement policy in Section III-C.

We make the following assumptions for all evaluated archi-
tectures:

1) We use small RB organization (cf. Section II-B) as in [2],
[9], [10] for energy reduction and Tag-Cache for latency
reduction.

2) To take into account high write latency for STT-RAM
similar to [23], we assume that writes to the STT-RAM
array takes 20 cycles more compared to a DRAM array.
This implies that ¢y r (write recovery time) is 18 cycles
for DRAM and 38 cycles for STT-RAM.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

.
)
=]
X

o
S
X

OOther-column-writes
MTag-column-writes

-
=]
B3

~
Q
xR

STT-RAM column writes
IS
]
X

HiEIEEEE

Number of STT-RAM block writes operations nor-
to NH-LT-STT.

Q
xR

H-ST H-ST-SOA H-ST-WB H-ST-WB-DP

Fig. 17:
malized

3.00

2.50

2.00

1.50

NH-LT-STT NH-ST-STT

Fig. 18: Normalized expected lifetime results for the evaluated
configurations.

Normalized Expected Lifetime

H-ST H-ST-SOA H-ST-WB H-ST-WB-DP

A. Experimental Results

Fig. 15 shows the performance comparisons of different
evaluated architectures normalized to Split-Tag design applied
to DRAM (NH-ST-DRAM). As illustrated, our combined poli-
cies (H-ST-WP-DP) provides a Harmonic Mean Instruction
per Cycle (HMIPC) speedup of 5.8% and 14.1% compared
to Split-Tag (NH-ST-DRAM) and existing STT-RAM LLC
(NH-LT-STT) respectively. The energy and the endurance
results are depicted in Fig. 16 and Fig. 17 respectively. The
energy consumption is reduced by 35% compared to NH-ST-
DRAM and the average number of STT-RAM block writes are
reduced by 78% compared to NH-LT-STT. The qualitative and
quantitative comparison of various architectures is described
in the following.

B. Comparing non-hybrid DRAM and STT-RAM architectures

By leveraging the STT-RAM non-volatility characteristics,
the non-hybrid STT-RAM applies row buffer bypass opti-
mization [7], [23] which improves the LLC row buffer hit
rate from 37.4% (NH-ST-DRAM) to 47.7% (NH-LT-STT).
Despite the improvement in the LLC row buffer hit rate,
existing non-hybrid STT-RAM LLC worsens the performance
by 7.2% compared to our Split-Tag design (NH-ST-DRAM).
The positive impact of the increase in the row buffer hit
rate in STT-RAM LLC is compensated by reduced Tag-
Cache hit rate and high STT-RAM write latency. The Tag-
Cache hit rate is worsened compared to our Split-Tag design
because existing STT-RAM employs LAMOST-Tag design
(cf. Section III-A for details Section V-A for evaluation).
Compared to non-hybrid DRAM, the STT-RAM LLC reduces
the energy consumption by 41% due to increased row buffer
hit rate, the absence of refresh energy and the partial write
optimization [23].

C. Impact of Split-Tag design on STT-RAM

Our Split-Tag design is generic and can be applied to STT-
RAM as well. By applying non-volatility characteristics, row

[mTraditional WB Policy (H-5T)

BL3-SRAM WB Policy (H-ST-WB)

1
0.8
0.6
0.4
0.2

0

Normalized LLC
Writeback accesses

Mix 01 Mix 02 Mix 03 Mix .04 Mix 05 Mix_06

Fig. 19: Total number of LLC writeback accesses normalized
to traditional L3-SRAM Writeback policy

Average

o1 82

Histogram of L3-SRAM dirty
block evictions

Mix_01 Mix_02 Mix_03 Mix_04 Mix_05 Mix 06 Average

Fig. 20: Distribution of L3-SRAM dirty block evictions within
a super block

buffer bypass optimizations in [7], [23], and Split-Tag design
on top of STT-RAM, the performance improvement of NH-ST-
STT translates to 3.1% compared to NH-ST-DRAM. However,
this performance improvement comes at the cost of worst
expected lifetime (cf. Section VI-D) compared to NH-ST-
DRAM and small increase in energy consumption compared
to NH-LT-STT (cf. Fig. 16). The slight energy increase is due
to more sub-row read accesses (cf. Section V-B).

D. Impact of Hybrid-Split-Tag design (H-ST)

While STT-RAM outperforms DRAM in terms of energy
consumption, the major drawback of existing STT-RAM is its
worse expected lifetime. The low expected lifetime is primarily
caused by storing the LLC tags in STT-RAM. By storing the
tags in DRAM, our Hybrid-Split-Tag significantly reduces the
number of STT-RAM block writes by 78% (Fig. 17). As a
consequence, the normalized expected lifetime is improved by
2.3x as shown in Fig. 18. The normalized expected lifetime
in Fig. 18 is calculated using the following equation [32].

NE _ #Writes in baseline x Memory size 0
lifetime = Memory size of baseline x #Writes

Additionally, Hybrid-Split-Tag provides improved speedup
compared to the non-hybrid DRAM (2.5%) and NH-LT-STT
(9.8%) architectures. This speedup is achieved via reduced
LLC miss rate (Fig. 21b) due to high LLC associativity (i.e.,
19-ways compared to 8-ways) and efficient storage utilization
(cf. Section III-B).

60% 30%
25%
20%
15%
10%

5%

0%

BINH-ST-DRAM
ENH-LT-STT
ENH-ST-STT
WH-ST
@H-ST-SOA
BH-ST-WB
EAH-ST-WB-DP
(a) Average Row Buffer Hit Rate

50% -

40% -

LLC Miss Rate

30% -

Row Buffer Hit Rate

20% -

(b) Average LLC Miss Rate
Fig. 21: (a) Average row buffer hit rate (b) Average LLC miss
rate; averaged over all benchmark mixes.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

@ H-ST-SoA

B 1L3-SRAM WB Policy (H-ST-WB)

60%

40%

20%

Mix_01 Mix_02 Mix_03 Mix_04 Mix_05 Mix_06 Average

Fig. 22: L3-SRAM miss rate results

0%

L3-SRAM Miss Rate

E. Impact of L3-SRAM Writeback Policy (H-ST-WB)

With the introduction of the L3-SRAM Writeback Policy
(Section III-D), the LLC experiences a performance improve-
ment of 2.4% (Fig. 15). The performance improvement com-
pared to the traditional writeback policy is achieved by a 60%
reduction in the number of LLC writeback accesses (Fig. 19)
and a higher row buffer hit rate (Fig. 21a). The determining
factor in the reduction of LLC writeback accesses is the
proactive eviction of multiple dirty blocks from L3-SRAM
cache. These multiple dirty blocks are serviced as a single
request instead of multiple isolated requests. Fig. 20 shows
the histogram of L3-SRAM dirty block evictions belonging to
a super block for different application mixes. As demonstrated,
the multiple dirty block evictions (i.e. 66%) from L3-SRAM
are significant compared to a single dirty block eviction (i.e.
34%). By reducing the intensity of low row buffer locality
writeback accesses, the row buffer interference is reduced.
This leads to an improvement in the row buffer hit rate from
38.9% (without writeback policy) to 45.4% (with writeback
policy). This results in energy reduction of 13.8% as shown
in Fig. 16.

F. Comparison with state-of-the-art L3-SRAM writeback pol-
icy

This section quantitatively and qualitatively analyzes the
performance benefits of our approach compared to contempo-
rary L3-SRAM writeback policies [27], [28]. As shown, our
L3-SRAM writeback policy (H-ST-WB) improves the overall
performance by 1.6% and saves energy consumption by 4.7%
compared to existing L3-SRAM writeback policy (i.e. H-ST-
SOA). This performance and energy improvement is primarily
driven by 6.5% reduction in L3-SRAM miss rate as illustrated
in Fig. 22. The high L3-SRAM miss rate of H-ST-SOA
compared to our H-ST-WB is due to within-set contention
which is caused by mapping all block of a super-block to the
same L3-SRAM set (see Fig. 11-a). In contrast, our writeback
policy avoids this within-set contention by mapping adjacent
blocks of the super-blocks to different L3-SRAM sets (see
Fig. 11-b), thereby reducing the L3-SRAM miss rate.

G. Impact of Data Placement Policy (H-ST-WB-DP)

Although H-ST-WB provides high speedup compared to ex-
isting proposals, it suffers from increased energy consumption
due to an increased number of LLC row fetches. Applying
the proposed Data Placement Policy (Section III-C) reduces
the number of LLC row fetches by 3.7%. This reduction is
caused by placing adjacent blocks of a super block in the same

16
15
14
13
1.2 4
1.1 4

1
0.9
0.8

B LH-Tag-2KB-DRAM

B LAMOST-Tag-2KB-DRAM
W LAMOST-Tag-4KB-DRAM
B LAMOST-Tag-Small-DRAM
D Alloy-Tag-Small-DRAM

B LAMOST-Tag-Small-STT
B Hybird-SplitTag-WB-DP

Overall Normalized
HM-IPC Speedup

Average Performance
Performance results showing the impact of our syn-
ergistic policies

Fig. 23:

LLC sub-row. In contrast, existing data placement policy may
place some blocks of a particular super block in a DRAM sub-
row and other blocks in an STT-RAM sub-row [13], [14]. By
reducing the number of LLC row fetches, our data placement
policy reduces the energy consumption by 8.5%.

H. Putting It All Together

This section provides the performance gain of our syner-
gistic policies relative to state-of-the-art non-hybrid DRAM
LLC designs evaluated in Section V and STT-RAM LLC
design evaluated in this section. Our Hybrid-Split-Tag-WB-
DP configuration combines the performance advantages of
Hybrid-Split-Tag design, L3-SRAM Writeback Policy and Data
Placement Policy. The net performance gain is substan-
tially higher than the performance gain of a single pol-
icy which is shown in Fig. 23. On average, Hybrid-Split-
Tag-WB-DP improves the average performance by 47.1%,
27.6%, 23.5%, 17.1%, 21.2%, and 13% compared to LH-
Tag-2KB-DRAM [5], [6], LAMOST-Tag-2KB-DRAM [22],
LAMOST-Tag-4KB-DRAM [4], [8], LAMOST-Tag-Small-
DRAM, Alloy-Tag-Small-DRAM [21], and LAMOST-Tag-
Small-STT [7] respectively.

The 13% performance improvement compared to contempo-
rary non-hybrid STT-RAM LLC architecture (i.e., LAMOST-
Tag-Small-STT) comes at the cost of 9.1% increase in the
energy consumption. It is worth mentioning that the energy
reduction (24%) and performance increase (17.1%) of the
combined policies is prominent compared to existing best-
performaning DRAM LLC architecture (i.e., LAMOST-Tag-
Small-DRAM).

VII. CONCLUSIONS

This paper introduces a novel Split-Tag design for larger
LLC that simultaneously improve bank-level-parallelism (via a
small RB organization) and Tag-Cache hit rate (via exploiting
temporal locality). This design not only retain the energy
benefits of small RB organization but it also improves the
performance by considering the locality characteristics of
applications. Furthermore, we improve the tag design for
a hybrid LLC combining DRAM and STT-RAM memory
technologies. The proposed design mitigates the STT-RAM
endurance issue by storing the tags in DRAM. It also reduces
conflict misses via high associativity and efficient storage
utilization. We demonstrate that existing LLC architectures
suffer from increased LLC interference via increased number
of row fetches and writeback accesses. By placing adjacent

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

blocks of a super block in the same LLC row, our Data
Placement Policy reduces the number of row fetches. In ad-
dition, it uniformly distributes data to DRAM and STT-RAM
to provide efficient set balancing. To reduce the number of
LLC writeback accesses, we propose an L3-SRAM Writeback
Policy that combines multiple isolated dirty requests into a
single request. Simulation results show that our synergistic
policies deliver improved performance (17.1%) and energy
consumption (24%) compared to the existing best-performing
DRAM architecture. It also provides performance speedup of
13% and write endurance improvement of 78% compared to
a contemporary STT-RAM architecture.

ACKNOLEDGMENTS

This work was partially funded by the German Research
Council (DFG) through the Cluster of Excellence ‘Center for
Advancing Electronics Dresden’ (cfaed).

REFERENCES
[

[2

“Standard Performance Evaluation Corporation,” http://www.spec.org,
2017, [Online; accessed 16-May-2018].

F. Hameed et al., “Rethinking On-chip DRAM Cache for Simultaneous
Performance and Energy Optimization,” in /9th conference on Design,
Automation and Test in Europe (DATE), March 2017.

C.-C. Huang et al., “ATCache: Reducing DRAM Cache Latency via
a Small SRAM Tag Cache,” in International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2014, pp. 51-60.

F. Hameed et al., ““Architecting On-Chip DRAM Cache for Simultaneous
Miss Rate and Latency Reduction,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, pp. 651-664, April
2016.

G. Loh et al., “Supporting Very Large DRAM Caches with Compound
Access Scheduling and MissMaps,” IEEE Micro Magazine, Special Issue
on Top Picks in Computer Architecture Conferences, pp. 70-78, 2012.
G. Loh et al., “Efficiently Enabling Conventional Block Sizes for
Very Large Die-stacked DRAM Caches,” in 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2011, pp. 454—
464.

F. Hameed ef al., “Architecting STT Last-Level-Cache for Performance
and Energy Improvement,” in /7th International Symposium on Quality
Electronic Design (ISQED), March 2016, pp. 319-324.

F. Hameed et al., “Reducing Latency in an SRAM/DRAM Cache Hier-
archy via a Novel Tag-Cache Architecture,” in 51st Design Automation
Conference (DAC’14), 2014.

N. D. G. et al., “Multiple Sub-row Buffers in DRAM: Unlocking
Performance and Energy Improvement Opportunities,” in 26th ACM
International Conference on Supercomputing, 2012, pp. 257-266.

J. Meza et al., “A Case for Small Row Buffers in Non-volatile
Main Memories,” in 30th International Symposium on Computer De-
sign(ICCD), September 2012, pp. 484—485.

I. C. Lin et al, “High-Endurance Hybrid Cache Design in CMP
Architecture With Cache Partitioning and Access-Aware Policies,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, pp. 2149—
2161, Oct 2015.

G. Sun et al., “A Novel Architecture of the 3D Stacked MRAM L2
Cache for CMPs,” in 15th International Symposium on High Perfor-
mance Computer Architecture, 2009, pp. 239-249.

X. Wu et al., “Hybrid Cache Architecture with Disparate Memory Tech-
nologies,” in 36th International Symposium on Computer Architecture
(ISCA), June 2009, pp. 34-45.

X. Wu et al., “Design Exploration of Hybrid Caches with Disparate
Memory Technologies,” ACM Transaction on Computer System (TOCS),
pp. 15:1-15:34, December 2010.

S. Lee et al., “Runtime Thermal Management for 3-D Chip-
Multiprocessors With Hybrid SRAM/MRAM L2 Cache,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, pp. 520-533,
March 2015.

Y. T. Chen et al., “Dynamically Reconfigurable Hybrid Cache: An
Energy-Efficient Last-Level Cache Design,” in 15th conference on
Design, Automation and Test in Europe, March 2012, pp. 45-50.

—

[3]

[4]

[5]

[6]

[7]

[8

[t}

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17] Y. Huai, “Spin-Transfer Torque MRAM (STT-MRAM): Challenges and
Prospects,” AAPPS Bulletin, December 2008.

J. Wang et al., “i>WAP: Improving Non-volatile Cache Lifetime by
Reducing Inter- and Intra-set write variations,” in [EEE 19th Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
February 2013, pp. 234-245.

P. Wang et al., “Development of STT-MRAM for embedded memory
applications,” in 2017 IEEE International Magnetics Conference (IN-
TERMAG), April 2017, pp. 1-1.

E. Reed et al., “Probabilistic Replacement Strategies for Improving the
Lifetimes of NVM-based Caches,” in MEMSYS, 2017, pp. 166-176.
M. Qureshi et al., “Fundamental Latency Trade-offs in Architecting
DRAM Caches,” in 45th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2012, pp. 235-246.

F. Hameed et al., “Simultaneously Optimizing DRAM Cache Hit La-
tency and Miss Rate via Novel Set Mapping Policies,” in International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES’13), 2013.

E. Kultursay et al., “Evaluating STT-RAM as an energy-efficient main
memory alternative,” in International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), 2013, pp. 256-267.

F. Hameed et al., “Efficient STT-RAM Last-Level-Cache Architecture
to Replace DRAM Cache,” in International Symposium on Memory
Systems (MemSys), October 2017.

F. Hameed et al., “Performance and energy-efficient design of stt-ram
last-level cache,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, pp. 1059-1072, June 2018.

E. Vasilakis et al., “Decoupled Fused Cache: Fusing a Decoupled LLC
with a DRAM Cache,” TACO, pp. 65:1-65:23, 2019.

C. J. Lee et al., “DRAM-Aware Last-Level Cache Replacement,” 2010.
C.J. Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” 2010.

G. Loh et al., “Zesto: A Cycle-Level Simulator for Highly Detailed
Microarchitecture Exploration,” in International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), 2009.

J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Computer Architecture News, pp. 1-17, September 2006.

S. Rixner et al., “Memory Access Scheduling,” in 32nd International
Symposium on Computer Architecture (ISCA), June 2000, pp. 128-138.
M. K. Qureshi et al., “Enhancing Lifetime and Security of PCM-
based Main Memory with Start-gap Wear Leveling,” in 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2009, pp.
14-23.

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]
[31]

[32]

Fazal Hameed Fazal Hameed received his Ph.D.
(Dr.-Ing.) degree in computer science from the
Karlsruhe Institute of Technology (KIT), Karlsruhe,
Germany, in 2015. He joined the chair for Compiler
Construction at the TU Dresden (Dresden, Germany)
as Post-doctoral researcher in March 2016. Before,
he worked on a similar position at the Chair of
Dependable and Nano Computing (CDNC) Karl-
sruhe Institute of Technology (KIT), Germany. He
is also affiliated with Institute of Space Technology,
Islamabad, Pakistan. He mainly works in the archi-
tecture group with a focus on memories. Mr. Hameed was a recipient of the
CODES+ISSS 2013 Best Paper Nomination for his work on DRAM cache
management in multicore systems. He has served as an External Reviewer for
major conferences in embedded systems and computer architecture.

Jeronimo Castrillon Jeronimo Castrillon is a pro-
fessor in the Department of Computer Science at
the TU Dresden, where he is also affiliated with the
Center for Advancing Electronics Dresden (CfAED).
He is the head of the Chair for Compiler Con-
struction, with research focus on methodologies, lan-
guages, tools and algorithms for programming com-
plex computing systems. He received the Electronics
Engineering degree from the Pontificia Bolivariana
University in Colombia in 2004, the master degree
from the ALaRI Institute in Switzerland in 2006 and
the Ph.D. degree (Dr.-Ing.) with honors from the RWTH Aachen University in
Germany in 2013. Since 2017, Prof. Castrillon is a member of the executive
committee of the ACM “Future of Computing Academy”.

