
Reactors: A Deterministic Model for

Composable Reactive Systems⋆

Marten Lohstroh1, Íñigo Íncer Romeo1, Andrés Goens2, Patricia Derler3,
Jeronimo Castrillon2, Edward A. Lee1, and Alberto Sangiovanni-Vincentelli1

1 Dept. of Electrical Engineering and Computer Sciences, UC Berkeley, USA
{marten,inigo,eal,alberto}@berkeley.edu

2 Chair for Compiler Construction, TU Dresden, Germany
{andres.goens,jeronimo.castrillon}@tu-dresden.de

3 National Instruments
patricia.derler@ni.com

Abstract. This paper describes a component-based concurrent model
of computation for reactive systems. The components in this model, fea-
turing ports and hierarchy, are called reactors. The model leverages a
semantic notion of time, an event scheduler, and a synchronous-reactive
style of communication to achieve determinism. Reactors enable a pro-
gramming model that ensures determinism, unless explicitly abandoned
by the programmer. We show how the coordination of reactors can safely
and transparently exploit parallelism, both in shared-memory and dis-
tributed systems.

1 Introduction

In the mid-80s, David Harel and Amir Pnueli introduced the notion of reac-
tive systems as those systems which maintain an ongoing interaction with their
environments [28]. Arguing that a suitable decomposition mechanism for the de-
velopment of complex reactive systems was lacking at the time, Harel proposed
Statecharts [29], a formalism based on state machines. State machines, how-
ever, must keep track of a global state, a demand too stringent for programming
today’s distributed systems.

More recently, the term “reactive system” has been adopted by the reactive
programming community, which is focused on building flexible, loosely-coupled,
and scalable systems [34]. Central to the so-called reactive design patterns is
the idea of decomposing systems into non-blocking, asynchronous tasks that

⋆ The work in this paper was supported in part by the National Science Foundation
(NSF), awards #CNS-1836601 (Reconciling Safety with the Internet) and #CNS-
1739816 (Quantitative Contract-Based Synthesis and Verification for CPS Security)
and the iCyPhy Research Center (Industrial Cyber-Physical Systems), supported by
Camozzi Industries, Denso, Ford, Siemens, and Toyota. This work was also supported
in part by the Center for Advancing Electronics Dresden (cfaed) and the German
Academic Exchange Service (DAAD).



2 M. Lohstroh et al.

communicate via messages (or events). The ideas expressed in the Reactive
Manifesto [10] can largely be seen as a revival of the concepts behind the Ac-
tor model by Hewitt and Agha [30]. While scalability, resilience, elasticity, and
responsiveness—all tenets of the manifesto—are clearly important, the gains in
these dimensions come at the loss of testability due to the admittance of non-
determinism. This is a rather high price to pay, because systematic testing is
still the single most common technique for ensuring the correctness of software.
We argue that the goals of reactive programming can also be achieved without
adopting a nondeterministic programming model, with the advantage of main-
taining the ability to reliably reproduce and debug potential problems.

In this paper we describe reactors, a model of computation that offers many
desirable properties for designing and programming reactive systems. Our model
is deterministic by construction while allowing for nondeterminism that is intro-
duced explicitly. Unlike most reactive design patterns and programming models,
timing is a fundamental element in the semantics of reactors. As such, reactors
are also particularly suited for specifying real-time requirements in software. The
carefully-coordinated relationship between logical and physical time during the
execution of reactors allows for the detection and handling of timing violations.
By the same token, safe-to-progress analysis (as it is known from Ptides [61,21]
and Google Spanner [16]) can be leveraged to maintain a deterministic seman-
tics between reactors distributed across networked nodes. Similar to reactive
programming languages, the execution of reactors is governed by a precedence
graph. More generally, this graph is a partial order which exposes parallelism
that can be exploited at runtime. Finally, the interfaces of reactors readily ex-
pose dependencies, allowing their functionality to be treated as a black box, and
opening up the possibility for a polyglot language design.

Reactors were first proposed in [46] and have been discussed in subsequent
papers [44,45]. The main contribution of this paper is to provide a formal de-
scription of reactors as well as algorithmic descriptions of the key building blocks
required for implementing a reactor runtime system.

1.1 The case for determinism

It may be argued that rapid recovery at run time to ensure correct behavior
is preferable to statically asserting properties of software. After all, hardware
failures, power outages, and other external influences can break the very as-
sumptions in the programming model that imply determinism. While this is
true, the dramatic success of software is squarely due to the high probability of
hardware behaving deterministically, so the value of such a deterministic model
is undeniable. Moreover, particularly in a cyber-physical system (CPS), the cost
of recovery may be unacceptable, as the effects of unintended behavior could be
irreversible–even disastrous. And even when recovery from unexpected errors is
necessary, it is helpful to test those scenarios to assure that they are handled
correctly.

We can look at Toyota’s unintended acceleration case to underscore the im-
pact of nondeterminism on testability. In the early 2000s, there were a number of



Reactors: A Deterministic Model for Composable Reactive Systems 3

serious car accidents involving Toyota vehicles that appeared to suffer from un-
intended acceleration. The US Department of Transportation contracted NASA
to study Toyota software to determine whether software was capable of causing
unintended acceleration. The study [52] was unable to find a “smoking gun,”
but concluded that the software was “untestable,” making it impossible to rule
out the possibility of unintended acceleration [33]. The software used a style of
design that tolerates a seemingly innocuous form of nondeterminism. Specifi-
cally, state variables representing, for example, the most recent readings from a
sensor, were accessed unguardedly by a multiplicity of threads. The spirit of this
style of programming is to favor reactivity over consistency; the trade-off that
is also central to the reactive programming paradigm. This programming style,
however, renders software untestable, because, given any fixed set of inputs, the
number of possible behaviors is vast.

A programming model can meaningfully limit the kinds of behaviors that
a programmer can express. While weakening the constraints of a programming
model can be useful for very specific optimization purposes, by far, most pro-
grammers will greatly benefit from a stricter rule set that facilitates the design
of systems that will behave correctly and predictably [38]. Lightweight formal
methods, such as type checking and static analysis, are well known to greatly
reduce programming faults, for instance. The goal of reactors is to impose re-
strictions on the set of allowable behaviors without being too restrictive. For
instance, the reactor model allows mutable shared state, but only across code
segments that are guaranteed to execute sequentially to ensure mutual exclusion,
and must execute in a predefined order to ensure determinism, making it much
easier for the programmer to reason about side effects. Similarly, reactors are co-
ordinated so that they automatically exploit opportunities for parallel execution,
but only when possible without introducing nondeterminism. This relieves the
programmer of the burdensome task of performing such coordination explicitly.
In essence, the programming model prevents the formulation of programs that
exhibit nondeterminism accidentally; nondeterminism is allowed, but it requires
the express intent of the programmer.

1.2 Outline

The paper is organized as follows. We present the concept of reactors infor-
mally (Section 2) with a motivating example. We then proceed to formally define
our model (Section 3) and show how our construction achieves a deterministic,
synchronous-reactive model with a modular, hierarchical structure and an in-
herent notion of time. In Section 4, we explain how our model is amenable to
distributed execution. We discuss related work in Section 5. Finally, we conclude
and discuss avenues of future work in Section 6.

2 Reactors

In our model, a reactor is a collection of routines, called reactions, which share
common state. The anatomy of a reactor is illustrated in Figure 1. The quadri-





Reactors: A Deterministic Model for Composable Reactive Systems 5

The rounded boxes in the top-left corner of Figure 1, annotated as mp, where
p denotes priority, are not reactions; we call them mutations. We make a dis-
tinction between reactions and mutations because, unlike a reaction, a mutation
can modify the dependency graph of the reactor that contains it by adding con-
nections to its topology, removing connections, and/or adding or removing its
reactions. As a consequence, to preserve determinism, all mutations triggered at
a given logical time t must be carried out prior to the execution of any contained
reactions that are triggered at t. There are important advantages to limiting the
scope of mutations to the internals of a reactor. For example, it allows mutations
to be carried out without requiring any coordination with adjacent reactors. A
mutation has to declare all the ports that it references. Hence, it can only es-
tablish new connections such that when this would introduce an algebraic loop,
it would be detectable locally, considering only the elements contained by the
reactor itself and without inspecting the broader connection topology the reactor
is embedded in. In other words, hierarchy helps to contain the effects of run-time
mutations.

The usage of ports (filled black triangles in the figure) establishes a clean
separation between the functionality and composition of reactors; a reactor only
references its own ports or ports of reactors it contains, not the ports of adja-
cent reactors. This is a key difference with Hewitt actors [31]—as featured in
Akka [55], for instance—which address each other directly in a single shared
address space. If, for a given tag, a reactor sets the value of an output port it
has, this value will be propagated to the input ports of downstream reactors con-
nected to it. Reactions are logically instantaneous. Logical time does not elapse
during a reaction. Reactions have dependencies on input ports and antidepen-
dencies on output ports, shown as dashed edges in the figure. A reaction is not
allowed to execute before all values associated with its dependencies are known
(i.e., an upstream event with a tag t may not be emitted after a downstream
reaction dependent on that event has already executed at t).

Just like in functional reactive programming languages, the dependency in-
formation of reactions is used to avoid so-called “glitches” (i.e., transient appear-
ances of inconsistent data [15]) and ensure that execution unfolds in a predictable
fashion. Rather than inferring dependencies from code, however, reactions must
declare them, similar to how a function has to declare its arguments. This ap-
proach decouples the coordination problem from the implementation language,
which led us to develop a meta language we call Lingua Franca (LF). This
language serves the sole purpose of declaring and composing reactors, and su-
perimposing a timing semantics on their execution. The program logic can then
be written in the target language of choice. The specifics of the language and
compiler toolchain are outside of the scope of this paper.

2.1 Runtime API

Reactions have access to a small set of primitives:

– LogicalTime: Returns the current tag ;



6 M. Lohstroh et al.

– Get: Returns the value associated with given port/action at the current tag;

– Set: Binds given value to a given port at the current tag;

– PhysicalTime: Returns the last observed physical time; and

– Schedule: Schedules given action with minimum delay of one microstep.

These primitives are the only means provided for reactors to interact with other
reactors4. While Get and Set facilitate synchronous communication with re-
actions in other reactors, Schedule is intended to trigger reactions within the
same reactor, via an action. Actions can have a delay associated with them,
which Schedule uses to determine the tag of the resulting event. Moreover,
an action must have a specified origin: logical or physical. When scheduled, an
action with a logical origin (i.e., a logical action) will be scheduled relative to the
last known logical time. Conversely, actions with a physical origin (i.e., physical
actions) are scheduled relative to the last known physical time, a time value
obtained from the platform. To avoid causality loops, logical actions are always
scheduled with a minimum delay of one microstep. A microstep delay is an in-
crement of the index in superdense time [40,47,3] with respect to the current
logical time.

Like ports, actions can carry values. If more than once a particular action
gets scheduled to occur at a particular time, the last set value persists. The same
holds for ports. Multiple reactions could be triggered at the same logical time,
and when two such reactions set the value of the same port, the earlier set value
is overwritten. Because all triggered reactions within a reactor are executed in a
predefined order, this semantics does not lead to nondeterminism, and it assures
that each value is defined uniquely for each tag. Of course, this is only true if
each port can have at most one incoming connection. This requirement has to
be strictly enforced. Ports and actions that have not been set have the value
absent. After all reactions for a given tag have been executed, the values of all
ports are set to absent. In other words, ports and actions are, by default, not
persistent.

The subtle interaction between logical and physical time in the reactor model
establishes an interface between inherently asynchronous and nondeterministic
concurrent tasks (e.g., a sensor that monitors a physical process) and determin-
istic computational tasks that benefit from testability and could require precise
and predictable timing (e.g., to drive an actuator to influence said physical pro-
cess). Rather than superimposing a deterministic world view on things that are
inherently unpredictable, or, rejecting determinism entirely—thereby fundamen-
tally compromising testability—reactors provide a model of computation that
avoids this false dichotomy.

While all reactors in a reactor program share the same logical and physical
clock, reactor programs can interact with one another in a distributed setting,
where each program has its own logical and physical clock. The preservation of
a deterministic semantics in such a setting relies on assumptions about network

4 Primitives used by a mutation to effect changes to its container’s connection topology
or its reactions are not discussed here due to space limitations.



Reactors: A Deterministic Model for Composable Reactive Systems 7

delay and clock synchronization error. In this setting, reactions must have access
to PhysicalTime to check for violations of these assumptions. This is explained
in more detail in Section 4.

2.2 Example: Drive-by-wire system

To illustrate how reactors behave, let us return to the Toyota example mentioned
in the introduction and consider a power train implemented using reactors, il-
lustrated using the diagram in Figure 2. It features six reactors that jointly
coordinate the control of the brakes and the engine. While this example is obvi-
ously oversimplified, it features enough complexity to allow us to highlight some
of the most interesting aspects of our model. Following the “accessor” pattern
from [12], each reactor in the figure (represented by a rectangular box) endows
a complex subsystem of the car with a simple interface that allows it to be con-
nected to other reactors. Connections are shown as solid lines in the diagram.

Consider the LP (left pedal) reactor, in Figure 2, which is used to control the
brakes. We assume that updates from the pedal are reported via an interrupt,
which enables an interrupt service routine (ISR) that schedules an internal ac-
tion. This internal action triggers a reaction that sets the value of the angle and
on/off output ports. In order to avoid overwhelming the system, we assume that
the interrupts have a minimum interarrival time. The values angle and on/off, if
present, are propagated to BC (brake controller) and EC (engine controller), re-
spectively. Notice that LP only has to set on/off at times that the pedal changes
from being released to pressed and vice versa. This prevents the system from
being burdened with handling insignificant events.

Let us now consider the EC reactor, which has three reactions. We interpret
the number associated with each reaction as its execution priority; this way, we
obtain an execution order in case both on/off and angle are present at the same
logical time. The first reaction, EC.1, is triggered by on/off; it updates the state of
the reactor to reflect that the brake pedal is currently pressed and sets the value
of torque to zero. The second reaction is triggered by the angle input; it checks
whether the brakes are applied, and if not, sets the torque output. The third and
last reaction sets the value of check to trigger a reaction in the RP (right pedal)
reactor, which represents the accelerator pedal. It only sets the value of check,
however, if the brake pedal is known not to be pressed. This reaction is triggered
by an action, which, in a naive implementation, could arrive at regularly spaced
intervals. The frequency of these periodic actions, however, would have to match
the maximum number of rotations per second of the crankshaft, which, under
normal driving conditions, is rarely realized. Therefore, it would be more efficient
to trigger the second reaction with variable intervals depending on the number
of revolutions of the crank shaft.

The second reaction of RP is triggered by the check input and sets in motion
some asynchronous activity that senses the angle of the accelerator pedal and
writes it to the reactor’s shared state. Before concluding the second reaction,
an action is scheduled at the current time plus a delay of 2 milliseconds, to give





Reactors: A Deterministic Model for Composable Reactive Systems 9

3 Formalization

In this section we formalize the concept of reactors. Some of the central concepts
we will introduce are described by lists of elements. In order to simplify notation,
we will use the symbol for the element of a list to also denote a function that
maps the list to the element corresponding to that symbol. For example, if x is
defined as the list x = (a, b), we reuse the symbols a and b to be functions that
map x to its elements a and b, respectively. Thus, we will commonly use the
notation a(x), where x is a list, and a is the symbol of one of the elements in
that list.

First, we need to introduce some notation. Let Σ be a set. We refer to the
elements of Σ as identifiers. We will use identifiers to uniquely refer to various
objects to be introduced. There is no need to further define the structure of
identifiers.

Let V be a set, which we refer to as the set of values. This set represents the
data values exchanged between or within reactors. Similarly, we do not assume
any structure in the values, i.e., reactors are untyped. We define one distinguished
element in the value set: ε ∈ V is called the absent value.

As motivated in Section 2, a reactor is a composite of various objects. Some
of these objects have roles which are tightly intertwined with the model of com-
putation in which reactors operate. This model of computation is the discrete
event model. In discrete event systems, the execution of a program occurs at
given tags. These tags belong to a denumerable and totally ordered set.

3.1 Notions of time

Our model uses a superdense representation of time (see [40,47]). Each tag is
denoted by a pair, of which the first element is a time value—an integer represen-
tation of time in some predefined unit (e.g., milliseconds or nanoseconds)—and
the second element denotes a microstep index. Two events are logically simul-
taneous if and only if their tags are equal. Formally, the set of tags, T of the
reactor execution model is T = N2, where N is the set of natural numbers. We
define a total order on T lexicographically: if (a, b), (a′, b′) ∈ T, we say that
(a, b) < (a′, b′) if and only if (a < a′) ∨ (a = a′ ∧ b < b′) . T has an addition
operation that operates element-wise. Using an integer representation for time
ensures that addition is associative, which is not necessarily the case when using
floating-point representations [17]. We define a function timeVal on tags which
extracts the time value: let (a, b) ∈ T, then timeVal ((a, b)) = a.

Events are used to exchange messages between reactors.

Definition 1 (Event). An event e is defined as a list e = (t, v, g), where t ∈ Σ

is called the event trigger, v ∈ V the trigger value, and g ∈ T the event

tag. Events inherit an order from their tags. If e and e′ are events, we say that
e < e′ if and only if g(e) < g(e′).

Definition 2 (Event queue). We define the event queue QE as a set of
events ordered by their tags.



10 M. Lohstroh et al.

This model uses two distinct notions of time: logical time and physical time.

Definition 3 (Logical time). Logical time is a monotonically increasing se-
quence of tags of the form (a, b), where a is referred to as the time value and
to b as the microstep index.

Definition 4 (Physical time). Physical time refers to a time value that is
obtained from a clock on the execution platform.

Remark 1 (Time units). The time values of logical time and physical time must
be given in some unit of measurement. In order to meaningfully relate two time
values, their units must be the same. Whenever we omit units in expressions
that relate time values, we simply assume the units match. Microstep indices,
on the other hand, are unitless.

3.2 Reactors

We now proceed to define reactors. Note that reactors contain reactions and
mutations. We first discuss reactors to clarify how the domain of constituents of
a reaction or mutation is determined by the containing reactor.

Definition 5 (Priority set). Let Z be the set of integer numbers, Z+ the set of
integers larger than zero, Z− the set of integers smaller than zero, and ∗ a symbol
which is not an integer. The priority set, P, is given by P = Z−

∪ Z+
∪ {∗}.

The set P has a partial order given by the order in Z extended with ∗ ≤ ∗ and
p < ∗ for all p ∈ Z−.

The use of ∗ is to allow particular reactions to be executed in parallel if
they do not touch the reactor’s state. For instance, reactions n0, n5, and n6 in
Figure 1 would qualify as such if their only purpose is to relay values between
ports.

Definition 6 (Action). An action is a list a = (x, d, o), where x ∈ Σ is the
action identifier, d ∈ N is the delay of the action, and o ∈ O is the origin of
the action. We use the notation d(x) to refer to the delay of a, and o(x) to refer
to its origin. As we will see, actions belong to exactly one reactor. If A is a set
of actions, we will also let x(A) denote the set of identifiers of each action in A.

When a reaction or mutation schedules an event for an action, this event
will have a tag that includes the action delay plus either the current logical
time or the current physical time, depending on whether the action’s origin is
logical or physical, respectively. This is described in more detail in Algorithm 2
in Section 3.5.

Definition 7 (Reactor). A reactor r is a list r = (I,O,A, S,N ,M,R,G, P, •, ⋄),
where

1. I ⊆ Σ is a set of inputs,



Reactors: A Deterministic Model for Composable Reactive Systems 11

2. O ⊆ Σ a set of outputs,

3. A ⊆ Σ × N×O a set of actions,

4. S ⊆ Σ a set of state variables,

5. N a set of reactions,

6. M a set of mutations,

7. R a set of contained reactors,

8. G ⊆
(
⋃

r∈R
O(r)

)

×
(
⋃

r∈R
I(r)

)

a topology graph,

9. P : N ∪M → P the priority function, and

10. •, ⋄ ∈ A(r) actions called initialization and termination, respectively.

Given two reactors r and r′, the sets I(r), O(r), x(A(r)), S(r), I(r′), O(r′),
x(A(r′)), and S(r′) are all pairwise disjoint. Similarly, the sets R(r) and R(r′)
are disjoint, and so are the sets N (r) and N (r′) and M(r) and M(r′).

Remark 2 (Hierarchy). We define an atomic reactor as above, with an empty
contained reactor set and empty topology graph, and we call these degree-0
reactors. Then, for n ≥ 1 we define a reactor of degree n as a reactor with a
set R of reactors of degree at most n − 1 and a corresponding topology set.
Moreover, the reactor set of a degree-n reactor contains at least one reactor of
degree n− 1.

Reactors use their inputs and outputs to communicate with other reactors.
Reactions and mutations can schedule events for actions in order to trigger the
execution of other reactions or mutations contained in the same reactor.

Reactors can be built up hierarchically. As such, the reactor set lists the
reactors contained by a reactor. The reaction and mutation sets list the reactions
and mutations, respectively, contained by a reactor. The topology graph specifies
how the reactors contained in a reactor are connected to each other. This graph
consists of pairs (o, i), where o and i are the output and input of two reactors,
respectively. If (o, i), (o′, i′), are two different elements of G, then i 6= i′; that is,
inputs are connected to at most one output. The priority function plays a role in
the concurrent execution of reactions and mutations and is discussed in Section
3.8. Initialization and termination actions are discussed in Section 3.7.

Let us consider the constituents of the reactor shown in Figure 1: I = {ii}
2
i=0,

O = {oi}
3
i=0, A = {ai}

1
i=0 ∪ {•, ⋄}, N = {ni}

6
i=0, M = {mi}

k
i=0, and R =

{ri}
2
i=0. The priorities of the reactions and mutations shown in the figure are

equal to their respective subindices. The topology graph is the set of pairs which
indicate connections from the outputs to the inputs of contained reactors. In the
figure, these pairs are (r0.o0, r1.i0) and (r0.o0, r2.i0).

3.3 Reactions

We now discuss the elements that carry out computation in the reactor model.
These are called reactions. First, we define a function to navigate the reactor
hierarchy:



12 M. Lohstroh et al.

Definition 8 (Container function). The container function C maps a reactor
r to the reactor which contains it. The function returns ⊤ (pronounced “top”)
if no reactor contains r. Since the sets R(r),R(r′) are disjoint for r 6= r′, C
is well-defined. Let r be a reactor. If C(r) = ⊤, we say that r is top-level.
We also define the container function for reactions and mutations: let n be a
reaction; then C(n) yields the reactor r such that n ∈ N (r). The same applies
to mutations. Finally, we define the container function for inputs, outputs, and
action identifiers: let i, o, and a be an input, output, and action, respectively, of
three reactors r, r′, and r′′. Then C(i) = r if and only if i ∈ I(r), C(o) = r′ if
and only if o ∈ O(r′), and C(x(a)) = r′′ if and only if a ∈ A(r′′). Similarly, the
function C is well-defined here since all the relevant sets are pairwise disjoint
for two distinct reactors.

With this function in place, we state the definitions of reactions:

Definition 9 (Reaction). A reaction n is defined as n = (D, T , B,D∨, H),
where

1. D ⊆ I(C(n)) ∪
⋃

r∈R(C(n)) O(r) is a set of dependencies, identifiers on
which the reaction depends in order to execute;
2. T ⊆ D ∪ x(A(C(n))) is a set of triggers, identifiers whose events cause the
execution of the reaction’s body;
3. B is the body of the reaction (e.g., executable code);
4. D∨ ⊆ O(C(n))∪

⋃

r∈R(C(n)) I(r) is the set of antidependencies, identifiers
for which the reaction can produce events at the current logical time; and
5. H ⊆ x(A(C(n))) is the set of schedulable actions, actions for which n can
generate events.

3.4 Mutations

Now we introduce the concept of a mutation. These are used to modify the in-
ternal structure of a reactor by connecting and disconnecting ports. Ports that
a mutation declares as dependencies are the only sources that it can establish
connections from. Ports that it declares as antidependencies are the only desti-
nations that it can establish connections to. While mutations give reactors the
ability to dynamically reconfigure their internal topology, the above constraints
prevent a reactor from introducing dependencies between its ports of which its
container is not already aware.

Definition 10 (Mutation). A mutation m is defined as m = (D, T , B,D∨, H),
where

1. D ⊆ I(C(m)) is a set of dependencies, identifiers on which the mutation
depends in order to execute, and the only sources from which the mutation can
establish connections;
2. T ⊆ D∪x(A(C(m))) is a set of triggers, identifiers whose events cause the
execution of the mutation’s body;



Reactors: A Deterministic Model for Composable Reactive Systems 13

3. B is the body of the mutation (i.e., executable code);
4. D∨ ⊆ O(C(m))∪

⋃

r∈R(C(m)) I(r) is the set of antidependencies, identifiers
for which the mutation can produce events at the current logical time, and the
only destinations to which the mutation can establish connections; and
5. H ⊆ x(A(C(m))) ∪

⋃

r∈R(C(m)) x ({•(r), ⋄(r)}) is the set of schedulable

actions, actions for which m can generate events.

Reactions and mutations differ as follows:

– Mutations can modify the reactor topology; reactions cannot.
– A mutation can schedule initialization and termination actions for reactors
that its container contains.
– The outputs of contained reactors are allowed in the dependencies of a reac-
tion, but not in the dependencies of a mutation. This is important because, in
contrast to reactions, mutations have the capability of scheduling initialization
actions, which do not incur a microstep delay. Disallowing outputs of contained
reactors rules out the introduction of undetectable causality loops.

Appendix A summarizes all definitions we introduce.

3.5 Event generation

We will find it convenient to have available functions that return the reactions
which depend on the given input, and which are antidependent on the given
output. We find no reason to introduce new notation. Thus, we define the maps

N (i) = {n ∈ N (C(i)) | i ∈ D(n)} and

N (o) = {n ∈ N (C(o)) | o ∈ D∨(n)} .

We define M(i) and M(o) for mutations in a similar manner. Moreover, given
an identifier t, we will identify the reactions and mutations that are triggered by
t. We define

T (t) = {k ∈ N (C(t))∪M(C(t)) | t ∈ T (k)} .

We now discuss how events are created. The body of a reaction is a container
for application code in the reactor framework. Let n be a reaction. Then the body
B(n) of this reaction is allowed to run two functions that affect the execution
environment: Schedule and Set.

A reaction can only execute Set on its antidependencies. The execution of
Set in the body of a reaction propagates the set value to downstream ports and
adds triggered reactions to QR, the set of reactions to be executed at the current
logical time. Set is shown in Algorithm 1.

A reaction can only call Schedule on its set of schedulable actions. The
event created on a call to schedule is shown in Algorithm 2. The algorithm
shows that reactions can add an additional delay to the delay of a schedulable
action upon scheduling. Note also that Schedule can be called synchronously,



14 M. Lohstroh et al.

Algorithm 1 Propagate values to downstream ports

1: procedure set(port, value)
2: WriteValue(port, value)
3: reactionsAndMutations← T (port)
4: r ← C(C(port))
5: topology ← G(r)
6: for all (o, i) ∈ topology do
7: if port = o then
8: WriteValue(i, value)
9: reactionsAndMutations← reactionsAndMutations∪ T (i)
10: end if
11: end for
12: QR ← QR ∪ reactionsAndMutations
13: end procedure

from a reaction, but also asynchronously, from another thread of execution.
Mutual exclusion between concurrent calls to Schedule is achieved via locking.
The same mutex is also used in Next, the function that drives the execution of
triggered reactions (see Section 3.8). The mutex protects the event queue QE ,
as well as the variable t that holds the current logical time, from data races.

Algorithm 2 Schedule an action

1: procedure schedule(a, additionalDelay, value)
2: interval ← d(a) + additionalDelay
3: lock(mutex) ⊲ Mutual exclusivity with concurrent Schedule and Next
4: if o(a) = Physical then
5: tag ← (PhysicalTime() + interval, 0)
6: else
7: if interval = 0 and a 6= •(C(x(a))) then
8: tag ← LogicalTime() + (0, 1) ⊲ Add microstep delay
9: else
10: tag ← (timeVal(LogicalTime()), 0) + (interval, 0)
11: end if
12: end if
13: e← (x(a), value, tag)
14: QE ← QE \ {e

′ ∈ QE | t(e
′) = t(e) ∧ g(e′) = g(e)} ⊲ Overwrite if already set

15: QE ← QE ∪ {e}
16: unlock(mutex) ⊲ Release mutex
17: end procedure

3.6 Reaction precedence

During the execution of a reactor, there may be multiple events scheduled at the
same logical time. These events may trigger multiple reactions and mutations.





16 M. Lohstroh et al.

change the operation of the container reactor and can schedule the initialization
action of the contained reactors with zero delay.

After computing the precedence graph using Algorithm 3, the graph must be
checked for directed cycles. Cyclic precedence graphs must be rejected, as they
represent algebraic loops; we do not handle them.

Algorithm 3 Construct precedence graph

1: procedure γ(r)
2: (V,E)←

⋃

r′∈R(r) γ(r
′)

3: V ← V ∪N (r)∪M(r)
4: E ← E ∪

⋃

(o,i)∈G(r)

(N (i)∪M(i))× (N (o)∪M(o))

5: E ← E ∪
⋃

n∈N (r)

i∈D∨(n)\O(r)

(N (i)∪M(i))× {n}

6: E ← E ∪
⋃

n∈N (r)
o∈D(n)\I(r)

{n} × (N (o)∪M(o))

7: E ← E ∪
⋃

k,k′∈N (r)∪M(r)

{(k, k′) | P (k′) < P (k)}

8: E ← E ∪

(

⋃

r′∈R(r)

N (r′)∪M(r′)

)

×M(r)

9: return (V,E)
10: end procedure

3.7 Initialization and termination

All reactors have a special initialization action •. At the start of executing a
reactor program, the execution environment generates one event at tag (T, 0)
for the initialization action of the top-level reactor. Every reactor contains a
mutation that is triggered by that reactor’s initialization action; this mutation
initializes that reactor and schedules an event with no microstep delay on the
initialization actions of all reactors that its container reactor contains.

Reactors also have a special action ⋄, called termination. Reactors have the
ability to schedule • and ⋄ actions of their contained reactors. Upon processing
a termination action (which implies the need for the existence of a reaction or
mutation which is triggered by the termination action), a reactor can forward
that action to its contained reactors in order for the hierarchy to terminate safely.
The ⋄ action is scheduled with a microstep delay, to allow any ongoing reactions
to conclude before termination is set into motion.

3.8 Execution

The execution of reactors is based on a discrete-event model of computation that
guarantees determinacy, a property that can be proven by showing the existence



Reactors: A Deterministic Model for Composable Reactive Systems 17

Algorithm 4 Process events for the next tag

1: procedure next()
2: lock(mutex) ⊲ Mutual exclusivity with concurrent Schedule
3: if QE = ∅ then return
4: end if
5: while True do
6: T ←PhysicalTime()
7: tnext ← g(peek(QE)) ⊲ Obtain the tag of the first-in-line event
8: if T ≥ tnext then
9: break
10: else ⊲ Wait until QE changes or physical time matches tag
11: timedWaitForEventQueueChange(timeVal(tnext))
12: end if
13: end while
14: t← tnext ⊲ Advance logical time
15: clearAll() ⊲ Clear all inputs, outputs, actions
16: QR, doneSet, execSet← ∅, ∅, ∅
17: E ← {e ∈ QE | g(e) = t} ⊲ Gather events for current time t

18: QE ← QE \ E
19: unlock(mutex) ⊲ Release mutex
20: for all e ∈ E do
21: WriteValue(t(e), v(e)) ⊲ Set the value associated with identifier t(e)
22: end for
23: QR ←

⋃

e∈E T (t(e)) ⊲ Reactions and mutations triggered by events
24: repeat
25: for all k ∈ execSet do
26: if isDone(k) then ⊲ Check whether executing element is done
27: doneSet← doneSet∪ {k}
28: execSet← execSet \ {k}
29: end if
30: end for
31: if QR 6= ∅ then ⊲ Execute something, if possible
32: if threadIsAvailable() then
33: P ← QR ∪ execSet
34: readyForExec ← {p ∈ P | 6 ∃p′ ∈ P. p′ < p}
35: readyForExec ← readyForExec \ execSet
36: if readyForExec 6= ∅ then
37: k ← Select(readyForExec)
38: execSet,QR ← execSet∪ {k},QR \ {k}
39: runInThread(k)
40: else
41: waitUntilNumberOfIdleThreadsHasIncreased()
42: end if
43: else
44: waitUntilThreadHasBecomeAvailable()
45: end if
46: else
47: if execSet 6= ∅ then
48: waitUntilNumberOfIdleThreadsHasIncreased()
49: end if
50: end if
51: until QR ∪ execSet = ∅
52: end procedure



18 M. Lohstroh et al.

of unique fixed points over generalized metric spaces given that the precedence
graph that governs the execution (see Section 3.6) contains no directed cycles
[43,48]. The execution environment keeps a notion of a global event queue QE

that tracks events scheduled to occur in the future, and of a reaction queue QR

that sorts reactions to be executed at the current logical time by precedence.
While the event loop can be implemented in a single thread, the algorithms
discussed in this section assume a multi-threaded implementation. A single mu-
tex lock is used to guarantee thread-safe operation on the only two shared data
structures: t and QE . A major advantage of this design is that the use of a single
lock ensures deadlock-freedom. At the beginning of execution, logical time starts
at a value of t = (T, 0), and it can only increase as execution progresses. Logical
time increases when there are no further reactions to be executed and there are
one or more events in QE with a tag greater that has a time value greater than
or equal to the current physical time T .

Algorithm 4 shows how the code of reactions and mutations is executed. The
algorithm proceeds as follows:

– L5-13. Determine what the next logical time should be, based on the event
that is currently on top of QE , and wait for physical time to match the time
value of the tag. The procedure timedWaitForEventQueueChange blocks
until either the event queue was modified or the specified physical time was
reached, whichever comes first. timedWaitForEventQueueChange is ex-
pected to release the mutex and reacquire it after receiving a signal that an
event has been added to QE . This allows concurrent invocations of Schedule to
proceed while Next is waiting. In an implementation based on POSIX threads,
pthread cond timedwait could be used for this.
– L14. Advance logical time to match the smallest tag currently in QE .
– L15. Set the values of all ports and actions to ε.
– L17. Obtain events to process at the current logical time.
– L19. Release the mutex, allowing concurrent calls to Schedule to proceed.
– L20-22. Set triggers according to the value of the event.
– L23. Obtain all reactions and mutations triggered by any of the events with
a tag equal to the current logical time and insert them into QR.
– L24-30. If a reaction or mutation that has been under execution is done, move
that reaction or mutation to doneSet and remove it from execSet.
– L32-39. The routine threadIsAvailable reports whether the runtime sys-
tem has a thread available for executing the selected reaction of mutation. If this
is the case, on L34-35, select one reaction or mutation from the set of minimal
elements of items which are either under execution or pending, excepting, natu-
rally, the set of executing reactions or mutations. It is ensured that no reactions
or mutations that precede a ready reaction or mutation in the precedence graph
end up executing concurrently with it. Note that the computation of the minimal
elements uses the order on reactions and mutations defined in Section 3.6.
– L41. If all pending tasks have dependencies on currently-executing tasks, wait
until one of the currently-executing tasks concludes, freeing up a thread. With
POSIX threads, waitUntilNumberOfIdleThreadsHasIncreased could be
implemented using pthread cond wait.



Reactors: A Deterministic Model for Composable Reactive Systems 19

– L44. If there are pending tasks, but the runtime system does not have re-
sources to accept a new task, wait until it can accept a new task. Again,
pthread cond wait could be used to implement the wait.
– L48. If there are no pending tasks, but there are tasks currently in execution,
wait until at least one of the tasks under execution finishes.
– L51. We iterate the loop L24-51 until there remain no reactions or mutations
to be executed, and there are none currently under execution.

4 Distributed Execution of Reactors

We will now describe how reactor programs are executed when distributed over
multiple nodes communicating over network. Many of the concepts around dis-
tributed execution have been introduced in prior work on Ptides [62] and are
applied to reactors here. We can use Ptides to preserve the deterministic se-
mantics of reactors across distributed reactor programs, which requires us to
make some assumptions about our system. Each node in the distributed system
maintains its own event queue and contains a clock that monitors and keeps
track of the passing of physical time. The clocks are synchronized across nodes
with a known bound E on the clock synchronization error. Sending messages
between distributed nodes takes time, but we assume a known upper bound on
the network delay L between any two nodes in the network.

Let us consider the example in Figure 2 and assume the reactors are dis-
tributed across multiple engine control units (ECUs). The reactor network is
split up into multiple, distributed reactor networks. While automotive networks
often do have provisions for deterministic communication, many networks do not
guarantee in-order processing of messages, thus potentially causing the receipt
of messages out of order. We can also envision an extension of this system with
car-to-car communication to enable safe lane-switching, platooning, intersection
management, or emergency slow down. Networks used for such communication
are typically not giving any guarantees on the order of transfer of messages.

Similar to sensing and actuation wrapped in reactions, network communi-
cation is performed in the body of reactions. A network sending reaction must
combine the event value together with the current logical time t and implement
the network transmission. To ensure timely sending of network messages, a dead-
line on the network sending the reaction is required. Note that a deadline > 0
increases the delay on a path between sensors and actuators.

Just like a network sending a reaction, a reaction receiving a message from
the network implements network communication in the body of the reaction.
We assume an interrupt upon receipt of the network that triggers an action,
which, in turn, triggers the network receiving reaction. This reaction unpacks the
timestamp tm in the message and uses it to determine when it is safe to process
the message. A network receiver in this programming model must ensure that
messages are forwarded to other reactors in logical timestamp order. A network
receiver that receives a message m at physical time T with timestamp tm cannot
release the message until tm + E + L to ensure that no other messages are in



20 M. Lohstroh et al.

the network with an earlier timestamp. When physical time matches or exceeds
tm + E + L, the message is safe to process. A network receiving reaction will
therefore schedule an action a with additionalDelay = tm +E +L− tc, where
tc is the current logical time on the node. A reaction triggered by a will release
the message into the local reactor program.

A violation of the assumptions of clock synchronization error E or network
delay L is detected if a network receiver gets a message with timestamp t at
physical time T with T > t + E + L (see Figure 4). Once such an error is
detected, the mitigation is application dependent, ranging from ignoring such
erroneous network messages to an immediate stop of the program. While we do
not discuss strategies for dealing with such an error, we want to stress that the
strength of this programming model is in the ability to detect such errors.

physical time

send m
receive m ok received m too late

t t + L + E

L + E

Fig. 4. Message exchange between distributed reactors

By relating physical time to logical time at sensors, actuators and network
interfaces, deterministic behavior is implemented without the need for a central
coordinator. The analysis of whether a distributed reactor program can be im-
plemented on a given set of nodes is performed for each node individually, by
treating network interfaces like sensors and actuators.

5 Related Work

The Actor model by Hewitt and Agha [31,1] can be considered the basis for re-
actors. In it, actors execute concurrently and communicate via asynchronously
passed messages, with no guarantees on the order or timing of message arrival.
Implementations can be found in several modern languages and software li-
braries, most notably Erlang [2] by Ericsson, Scala actors [27], Akka [11], and
Ray [50]. The messaging is address-based, and an actor can send messages to
any other actor just using its address, including actors it creates. This flexibility
can be leveraged to make distributed systems more resilient. Dataflow mod-
els [19,9,36] and process networks [32,37] can be seen as subsets of actor models
with deterministic semantics that allows for explicit nondeterminism. Stemming
from the embedded systems community, fixed graph topologies in these models
enable improved static analysis and optimization [53].

The reactive programming community is concerned with developing event-
driven and interactive applications using a wide array of software technologies
ranging from programming frameworks like ReactiveX [49], Akka [11,60], and
Reactors.IO [54] to language-level constructs like event loops [58], futures [5],



Reactors: A Deterministic Model for Composable Reactive Systems 21

promises [23], and reactive extensions [49]. For a more comprehensive survey on
reactive programming techniques, see [4]. Writing software for reactive systems is
difficult when the control flow of a program is driven by external events not under
the control of the programmer, since the conventional imperative programming
paradigm cannot be used. A major goal of reactive programming approaches is
providing abstractions to express programs as reactions to external events (the
observer pattern) and abstracting away the flow of time. Reactors have the same
goal, but instead make use of synchronized time to coordinate such that their
reactions yield predictable results.

In many reactive programming frameworks, futures are used to promote an
imperative, sequential programming style, which avoids an explicit continuation
passing style (also known as “callback hell” [20]), but makes it even more con-
fusing for the programmer when nondeterminism rears its head. Actor-based
frameworks like Ray and Akka rely heavily on futures. All this programmatic
support makes reactive systems especially difficult to debug [6,59]. Another sig-
nificant problem with some of the frameworks, libraries or language primitives
commonly used in reactive programming is that they invite programmers to
break the semantics of the underlying model, mixing models and losing many of
the advantages obtained from them [57].

A different class of very successful models that reactors draw from are discrete-
event models. These models, common in hardware modeling and simulation,
have time as a core element in their semantics. Discrete events are, by design,
the model of computation underlying reactors. From a language level, our lan-
guage proposition is very close to hardware description languages, like Verilog
or VHDL. Noteworthy is the comparison with SystemC [42,25], and the related
SpecC [24], of which reactors are particularly reminiscent.

On the software engineering side, reactors are probably closest to synchronous
languages and Functional Reactive Programming (FRP). In fact, the discrete
event model can be seen as a special case of the model behind synchronous lan-
guages [41]. Synchronous languages like Esterel [8], Lustre [26] and SIGNAL [7]
make time an essential part of the language design. Here, discrete time ticks
are purely logical and not being synchronized to real, wall clock time. This is
reminiscent of the signals used in FRP languages, like Fran [22] or FrTime [15],
or more modern languages like Elm [18]. Unlike reactors, FRP works with pure
functions and does not deal with side effects like reading sensors or operating
actuators, which are essential in cyber-physical systems. In addition, these sys-
tems typically require a central runtime, which makes a dynamic, distributed
execution infeasible.

The reactive extensions [13] to AmbientTalk make this actor-based language
for mobile application design into one that is very similar to reactors. In par-
ticular, it stores a topology graph and can execute distributedly, albeit with-
out avoiding glitches [4]. Myter et al. [51] show how to avoid glitches in reac-
tive distributed systems using distributed dependency graphs and logical clocks
to timestamp values propagated through the system. Timestamps are used to
decouple distributed components thus voiding the need for central coordina-



22 M. Lohstroh et al.

tors and, in effect, implementing a Globally Asynchronous, Locally Synchronous
(GALS) [14] system. Myter et al. propose an execution runtime which guar-
antees that a distributed reactive system eventually reaches a consistent state.
Our work shares several key ideas with this approach, such as the use of log-
ical time and the construction of dependency graphs to circumvent the need
for central coordination, although modeling and implementations choices differ
considerably. In addition, our work is based on ideas presented in Ptides [62],
where logical time is carefully linked to a notion of physical time that is assumed
to be synchronized across nodes with a known error tolerance. This allows for
an always (not just eventual) consistent state. In addition, we can now reason
about end-to-end delays and timing violations, which can help detect errors in
the assumptions about the system or the execution behavior of a system.

6 Conclusions

Reactors are software components that borrow concepts from actors, dataflow
models, synchronous-reactive models, discrete event systems, object-oriented
programming, and reactive programming. They promote modularity through
the use of ports, use hierarchy to preserve locality of causality effects, and pro-
vide a clean interface between asynchronous tasks and reactive programs without
compromising the ability to obtain deterministic reactions to sporadic inputs.
This makes reactors particularly well suited as a programming model for im-
plementing cyber-physical systems, and more broadly, reactive systems that are
expected to deliver predictable, analyzable, and testable behavior.

We have shown how the reactor execution model takes advantage of con-
currency that is naturally exposed in reactor programs; we leave performance
benchmarks, as well as analyses of different scheduling policies and a more thor-
ough discussion of deadlines and runtime mutations as future work. We are cur-
rently developing a compiler tool chain that takes reactor definitions and com-
positions written in the Lingua Franca meta-language and transforms them into
executable target code. Among features we intend to develop for this language
are declarative primitives for the orchestration of distributed reactor programs,
runtime mutations based on state machines, and real-time scheduling analysis
for precision-timed hardware platforms like Patmos [56] and FlexPRET [63].

Acknowledgement

The authors thank the anonymous reviewers for their perceptive feedback on an
earlier version of this paper.

References

1. Agha, G.: ACTORS: A Model of Concurrent Computation in Distributed Systems.
The MIT Press Series in Artificial Intelligence, MIT Press, Cambridge, MA (1986)



Reactors: A Deterministic Model for Composable Reactive Systems 23

2. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent programming
in Erlang. Prentice Hall, second edn. (1996)

3. Bai, Y.: Desynchronization: From macro-step to micro-step. In: 2018 16th
ACM/IEEE International Conference on Formal Methods and Models for System
Design (MEMOCODE). pp. 1–10 (Oct 2018)

4. Bainomugisha, E., Carreton, A.L., Cutsem, T.v., Mostinckx, S., Meuter, W.d.: A
survey on reactive programming. ACM Computing Surveys (CSUR) 45(4), 52
(2013)

5. Baker Jr, H.C., Hewitt, C.: The incremental garbage collection of processes. ACM
Sigplan Notices 12(8), 55–59 (1977)

6. Banken, H., Meijer, E., Gousios, G.: Debugging data flows in reactive programs. In:
2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
pp. 752–763. IEEE (2018)

7. Benveniste, A., Le Guernic, P.: Hybrid dynamical systems theory and the SIGNAL
language. IEEE Tr. on Automatic Control 35(5), 525–546 (1990)

8. Berry, G., Gonthier, G.: The Esterel synchronous programming language: De-
sign, semantics, implementation. Science of Computer Programming 19(2), 87–152
(1992)

9. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.A.: Static scheduling of
multi-rate and cyclo-static DSP applications. In: Workshop on VLSI Signal Pro-
cessing. IEEE Press (1994)

10. Bonér, J., Farley, D., Kuhn, R., Thompson, M.: The reactive manifesto (2014),
http://www.reactivemanifesto.org/

11. Bonér, J., Klang, V., Kuhn, R., et al.: Akka library (2011-2019), http://akka.io
12. Brooks, C., Jerad, C., Kim, H., Lee, E.A., Lohstroh, M., Nouvellet, V., Osyk, B.,

Weber, M.: A component architecture for the internet of things. Proceedings of
the IEEE 106(9), 1527–1542 (September 2018)

13. Carreton, A.L., Mostinckx, S., Van Cutsem, T., De Meuter, W.: Loosely-coupled
distributed reactive programming in mobile ad hoc networks. In: International Con-
ference on Modelling Techniques and Tools for Computer Performance Evaluation.
pp. 41–60. Springer (2010)

14. Chapiro, D.M.: Globally-Asynchronous Locally-Synchronous Systems. Ph.D. the-
sis, Stanford University (Oct 1984)

15. Cooper, G.H., Krishnamurthi, S.: Embedding dynamic dataflow in a call-by-value
language. In: European Symposium on Programming. pp. 294–308. Springer (2006)

16. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J., Ghemawat,
S., Gubarev, A., Heiser, C., Hochschild, P., Hsieh, W., Kanthak, S., Kogan, E., Li,
H., Lloyd, A., Melnik, S., Mwaura, D., Nagle, D., Quinlan, S., Rao, R., Rolig, L.,
Saito, Y., Szymaniak, M., Taylor, C., Wang, R., Woodford, D.: Spanner: Google’s
globally-distributed database. In: OSDI (2012)

17. Cremona, F., Lohstroh, M., Broman, D., Lee, E.A., Masin, M., Tripakis, S.: Hybrid
co-simulation: it’s about time. Software and Systems Modeling (November 2017)

18. Czaplicki, E., Chong, S.N.: Asynchronous functional reactive programming for
GUIs. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation-PLDI’13. ACM Press (2013)

19. Dennis, J.B.: First version data flow procedure language. Report MAC TM61, MIT
Laboratory for Computer Science (1974)

20. Edwards, J.: Coherent reaction. In: Proceedings of the 24th ACM SIGPLAN con-
ference companion on Object oriented programming systems languages and appli-
cations. pp. 925–932. ACM (2009)



24 M. Lohstroh et al.

21. Eidson, J., Lee, E.A., Matic, S., Seshia, S.A., Zou, J.: Distributed real-time software
for cyber-physical systems. Proceedings of the IEEE (special issue on CPS) 100(1),
45–59 (2012)

22. Elliott, C., Hudak, P.: Functional reactive animation. In: ACM SIGPLAN Notices.
vol. 32, pp. 263–273. ACM (1997)

23. Friedman, D.P., Wise, D.S.: The impact of applicative programming on multipro-
cessing. Indiana University, Computer Science Department (1976)

24. Gajski, D.: SpecC: Specification Language and Methodology. Kluwer Academic
Publishers, Norwell, MA (2000)

25. Group, S.C.S.W., et al.: 1666-2011-IEEE standard for standard SystemC language
reference manual

26. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow pro-
gramming language LUSTRE. Proceedings of the IEEE 79(9), 1305–1319 (1991)

27. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theoretical Computer Science 410(2-3), 202–220 (2009)

28. Harel, D., Pnueli, A.: On the development of reactive systems. In: Apt, K.R. (ed.)
Logics and Models of Concurrent Systems. pp. 477–498. Springer Berlin Heidelberg,
Berlin, Heidelberg (1985)

29. Harel, D.: Statecharts: A visual formalism for complex systems. Science of com-
puter programming 8(3), 231–274 (1987)

30. Hewitt, C.: Viewing control structures as patterns of passing messages. Journal of
Artificial Intelligence 8(3), 323–363 (1977)

31. Hewitt, C., Bishop, P.B., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Proceedings of the 3rd International Joint Conference
on Artificial Intelligence. Standford, CA, USA, August 20-23, 1973. pp. 235–245
(1973)

32. Kahn, G.: The semantics of a simple language for parallel programming. In: Proc.
of the IFIP Congress 74. pp. 471–475. North-Holland Publishing Co. (1974)

33. Koopman, P.: A case study of toyota unintended acceleration and
software safety (2014), http://betterembsw.blogspot.com/2014/09/

a-case-study-of-toyota-unintended.html

34. Kuhn, R., Hanafee, B., Allen, J.: Reactive design patterns. Manning Publications
Company (2017)

35. Lee, E., Reineke, J., Zimmer, M.: Abstract PRET machines. In: 2017 IEEE Real-
Time Systems Symposium (RTSS). pp. 1–11 (Dec 2017)

36. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proceedings of the IEEE
75(9), 1235–1245 (1987)

37. Lee, E.A., Parks, T.M.: Dataflow process networks. Proceedings of the IEEE 83(5),
773–801 (1995)

38. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006)

39. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of com-
putation. IEEE Transactions on Computer-Aided Design of Circuits and Systems
17(12), 1217–1229 (1998)

40. Lee, E.A., Zheng, H.: Operational semantics of hybrid systems. In: Morari, M.,
Thiele, L. (eds.) Hybrid Systems: Computation and Control (HSCC). vol. LNCS
3414, pp. 25–53. Springer-Verlag (2005)

41. Lee, E.A., Zheng, H.: Leveraging synchronous language principles for heteroge-
neous modeling and design of embedded systems. In: EMSOFT. pp. 114 – 123.
ACM (2007)



Reactors: A Deterministic Model for Composable Reactive Systems 25

42. Liao, S., Tjiang, S., Gupta, R.: An efficient implementation of reactivity for model-
ing hardware in the Scenic design environment. In: Design Automation Conference.
ACM (1997)

43. Liu, X., Matsikoudis, E., Lee, E.A.: Modeling timed concurrent systems. In: CON-
CUR 2006 - Concurrency Theory. vol. LNCS 4137, pp. 1–15. Springer (2006)

44. Lohstroh, M., Lee, E.A.: Deterministic actors. In: 2019 Forum for Specification
and Design Languages (FDL). pp. 1–8 (Sep 2-4 2019)

45. Lohstroh, M., Schoeberl, M., Jan, M., Wang, E., Lee, E.A.: Work-in-progress:
Programs with ironclad timing guarantees. In: 2019 International Conference on
Embedded Software (EMSOFT) (Oct 2019)

46. Lohstroh, M., Schoeberl, M., Goens, A., Wasicek, A., Gill, C., Sirjani, M., Lee,
E.A.: Actors revisited for time-critical systems. In: Proceedings of the 56th Annual
Design Automation Conference 2019, DAC 2019, Las Vegas, NV, USA, June 02-06,
2019. pp. 152:1–152:4. ACM (2019)

47. Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: Real-Time:
Theory and Practice, REX Workshop. pp. 447–484. Springer-Verlag (1992), uses
super dense time (super-dense, superdense).

48. Matsikoudis, E., Lee, E.A.: The fixed-point theory of strictly causal functions.
Technical Report UCB/EECS-2013-122, EECS Department, University of Califor-
nia, Berkeley (June 9 2013)

49. Meijer, E.: Reactive extensions (rx): Curing your asynchronous programming blues.
In: ACM SIGPLAN Commercial Users of Functional Programming. pp. 11:1–11:1.
CUFP ’10, ACM, New York, NY, USA (2010)

50. Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol,
M., Yang, Z., Paul, W., Jordan, M.I., Stoica, I.: Ray: A distributed framework for
emerging AI applications. simarXiv:1712.05889v2 [cs.DC] 30 Sep 2018 (2018)

51. Myter, F., Scholliers, C., De Meuter, W.: Distributed reactive programming for
reactive distributed systems. arXiv preprint arXiv:1902.00524 (2019)

52. NASA Engineering and Safety Center: National highway traffic safety adminis-
tration toyota unintended acceleration investigation. Technical assessment report,
NASA (January 18 2011)

53. Parks, T.M.: Bounded scheduling of process networks. Ph.D. Thesis Tech. Report
UCB/ERL M95/105, UC Berkeley (1995)

54. Prokopec, A.: Pluggable scheduling for the reactor programming model. In: Ricci,
A., Haller, P. (eds.) Programming with Actors: State-of-the-Art and Research Per-
spectives, pp. 125–154. Springer International Publishing (2018)

55. Roestenburg, R., Bakker, R., Williams, R.: Akka In Action. Manning Publications
Co. (2016)

56. Schoeberl, M., Puffitsch, W., Hepp, S., Huber, B., Prokesch, D.: Patmos: A time-
predictable microprocessor. Real-Time Systems 54(2), 389–423 (Apr 2018)

57. Tasharofi, S., Dinges, P., Johnson, R.E.: Why do scala developers mix the ac-
tor model with other concurrency models? In: European Conference on Object-
Oriented Programming. pp. 302–326. Springer (2013)

58. Tilkov, S., Vinoski, S.: Node. js: Using javascript to build high-performance network
programs. IEEE Internet Computing 14(6), 80–83 (2010)

59. Torres Lopez, C., Gurdeep Singh, R., Marr, S., Gonzalez Boix, E., Scholliers,
C.: Multiverse debugging: Non-deterministic debugging for non-deterministic pro-
grams (2019)

60. Vernon, V.: Reactive Messaging Patterns with the Actor Model: Applications and
Integration in Scala and Akka. Addison-Wesley Professional (2015)



26 M. Lohstroh et al.

61. Zhao, Y., Lee, E.A., Liu, J.: A programming model for time-synchronized dis-
tributed real-time systems. In: Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS). pp. 259 – 268. IEEE (2007)

62. Zhao, Y., Liu, J., Lee, E.A.: A programming model for time-synchronized dis-
tributed real-time systems. In: 13th IEEE Real Time and Embedded Technology
and Applications Symposium, 2007. RTAS ’07. pp. 259 – 268 (April 2007)

63. Zimmer, M., Broman, D., Shaver, C., Lee, E.A.: FlexPRET: A processor plat-
form for mixed-criticality systems. In: Real-Time and Embedded Technology and
Application Symposium (RTAS) (2014)

A Summary of the Reactor model

Execution environment objects
Set of identifiers Σ (an abstract set)

Set of values V (an abstract set)

Absent value ε ∈ V

Set of priorities P = Z−
∪ Z+

∪ {∗}

Event queue QE

Reaction queue QR

Logical time t

Physical time T

Set of tags T = N2

Set of origins O = {Logical,Physical}

Reactors
Reactor instance r = (I,O,A, S,N ,M,R,G, P, •, ⋄)

Set of input ports for r I(r) ⊆ Σ

Set of output ports for r O(r) ⊆ Σ

Set of actions for r A(r) ⊆ Σ × N×O

Initialization action for r •(r) ∈ A(r)

Termination action for r ⋄(r) ∈ A(r)

Set of state identifiers for r S(r) ⊆ Σ

Set of reactions contained in r N (r)

Set of mutations contained in r M(r)

Set of contained reactors of r R(r)

Topology of reactors in R(r)
G(r) ⊆

(

⋃

r′∈R(r) O(r′)
)

×
(

⋃

r′∈R(r) I(r
′)
)

Priority function P : N ∪M→ P

Reactor containing reactor r C(r)

Inputs and outputs
Input, output instance i, o ∈ Σ

Reactions dependent on i ∈ I(r) N (i) = {n ∈ N (C(i)) | i ∈ D(n)}

Reactions antidependent on o ∈ O(r) N (o) = {n ∈ N (C(o)) | o ∈ D∨(n)}

Actions



Reactors: A Deterministic Model for Composable Reactive Systems 27

Action instance a = (x, d, o)

Action identifier x ∈ Σ

Action delay d ∈ T

Action origin o ∈ O

Events
Event instance e = (t, v, g)

Event trigger t ∈ Σ

Event value v ∈ V

Event tag g ∈ T

Set of reactions and mutations T (t) =

triggered by trigger t {k ∈ N (C(t))∪M(C(t)) | t ∈ T (k)}

Reactions
Reaction instance n = (D, T , B,D∨, H)

Set of reaction dependencies D(n) ⊆ I(C(n))∪
(

⋃

r∈R(C(n)) O(r)
)

Set of reaction triggers T (n) ⊆ D(n)∪ x(A(C(n)))

Reaction body B(n)

Set of reaction antidependencies D∨(n) ⊆ O(C(n))∪
(

⋃

r∈R(C(n)) I(r)
)

Set of schedulable actions H(n) ⊆ x(A(C(n)))

Reactor containing reaction n C(n)

Reaction priority P (n) ∈ Z+
∪ {∗}

Priority of unordered reactions
∀q ∈ Z− ∀p ∈ Z+.

(n < ∗) ∧ (p ≯ ∗) ∧ (∗ ≯ p) ∧ (∗ ≤ ∗)

Mutations
Mutation instance m = (D, T , B,D∨, H)

Set of mutation dependencies D(m) ⊆ I(C(m))

Set of mutation triggers T (m) ⊆ D(m)∪ x(A(C(m)))

Mutation body B(m)

Set of mutation antidependencies D∨(m) ⊆ O(C(m))∪
(

⋃

r∈R(C(m)) I(r)
)

Set of schedulable actions
H ⊆ x(A(C(m)))∪

{x(a) | ∀r ∈ R(C(x)). a ∈ {•(r), ⋄(r)}}

Reactor containing mutation m C(m)

Mutation priority P (m) ∈ Z−


