
Generalized Data Placement Strategies for
Racetrack Memories

Asif Ali Khan, Andrés Goens, Fazal Hameed and Jeronimo Castrillon
Chair for Compiler Construction

Technische Universität Dreden, Germany
{asif ali.khan, first.last}@tu-dresden.de

Abstract—Ultra-dense non-volatile racetrack memories (RTMs)
have been investigated at various levels in the memory hierarchy
for improved performance and reduced energy consumption.
However, the innate shift operations in RTMs hinder their
applicability to replace low-latency on-chip memories. Recent
research has demonstrated that intelligent placement of memory
objects in RTMs can significantly reduce the amount of shifts with
no hardware overhead, albeit for specific system setups. However,
existing placement strategies may lead to sub-optimal perfor-
mance when applied to different architectures. In this paper we
look at generalized data placement mechanisms that improve
upon existing ones by taking into account the underlying memory
architecture and the timing and liveliness information of memory
objects. We propose a novel heuristic and a formulation using
genetic algorithms that optimize key performance parameters.
We show that, on average, our generalized approach improves
the number of shifts, performance and energy consumption by
4.3×, 46% and 55% respectively compared to the state-of-the-art.

Index Terms—Data placement, racetrack memory, domain wall
memory, shift operations.

I. INTRODUCTION

The increasing capacity requirements along with the quest
for higher performance and lower energy consumption have
made memory system design extremely challenging. Tradi-
tional SRAM and DRAM technologies are unable to meet
these antithetical requirements of today’s applications due to
larger cells and higher leakage power. On the contrary, emerg-
ing non-volatile memory (NVM) technologies such as STT-
RAM, phase change memory, magnetic RAM and racetrack
memory (RTM) [17] offer a promising solution to fulfill these
conflicting requirements. Recently, RTM has emerged as a
leading contender due to its unprecedented capacity, energy
efficiency and improved latency [14], [17]. For a feature size
of F , the cell size of RTM is 2̃F 2 whereas for STT-RAM and
PCM cell sizes are 6̃-50F 2 and 4̃-12F 2 respectively. Due to
these promising characteristics, recent research advocate using
RTM at various levels in the memory hierarchy [13].

A single RTM cell is a magnetic nanowire – called nan-
otrack – that can store up to 100 domains where each
domain represents a single bit [17]. Each RTM nanotrack
is equipped with one or more access ports that perform
read/write operations (cf. Fig. 1). To access a domain in a
nanotrack, the relevant domain must be shifted and aligned
to the access port. Typically, multiple nanotracks are grouped
together into Domain Block Clusters (DBCs) to overlap the

access transistor’s footprint and thus effectively use the chip
area budget. These shift operations not only induce latency
and energy overheads but also lead to variable access latencies,
making RTM controller design especially challenging.

Domain wall Access port

IshIsh

Substrate

Fig. 1. RTM cell structure (red and blue dots on the nanowire represent
upward and downward magnetization directions respectively)

Recent literature suggests that intelligent placement of
memory objects in a DBC substantially reduces the amount
of RTM shifts (up to 50%), improving both latency and
energy consumption [2], [7]. These initial solutions showed
promising results for simplified system setups. For instance,
the heuristics in [2], [7] provide data placement solution for
a single DBC and the multi-DBC heuristic in [2] assumes
a fixed multi-port architecture. In addition, the multi-DBC
heuristic in [2] ignores valuable information of memory traces
such as timing and liveliness information of memory objects,
leading to sub-optimal solutions. In this paper, we propose
generalized data placement strategies that are independent of
the RTM architecture and exploit the timing information in
memory traces before deciding the layouts. The proposed
solutions carefully distribute memory objects across DBCs
and judiciously assign exact locations to objects within DBCs.
Concretely, we make the following contributions:

1) A novel fast heuristic that analyzes the memory trace
for objects with disjoint lifespans and steers disjoint
and non-disjoint memory objects to separate DBCs. This
separation significantly improves temporal locality of the
memory objects and reduces the number of shifts.

2) A more time-consuming heuristic based on genetic al-
gorithms that achieves near optimal results.

3) A thorough analysis of the interplay of different solu-
tions for inter- and intra-DBC placements of memory
objects. We also analyze the impact of increasing the
number of DBCs on performance, energy and area.

II. BACKGROUND

This section presents a detailed description of RTM archi-
tectures and their organization. It also provides background on

ar
X

iv
:1

91
2.

03
50

7v
1

 [
cs

.D
C

]
 7

 D
ec

 2
01

9

both inter and intra-DBC data placements and highlights the
importance of inter-DBC memory objects distribution.

DBCBank

RT0 RTT-1

b0 bT-1

Sub-
array

V0

V1

VK-1

Fig. 2. RTM architecture

A. RTM architecture

Fig. 2 illustrates a common RTM architecture. Similar to
other memory technologies, RTM consists of multiple banks
where each bank contains one or more subarrays. Each subar-
ray in RTM comprises multiple DBCs, each of them with T
nanotracks. A nanotrack stores K domains (i.e., bits) and has
one or more access ports to perform read/write operations (cf.
Fig. 1). Typically, data is stored in a bit-interleaved fashion so
that all T bits of a memory object are kept in the T nanotracks
of a DBC as illustrated in Fig. 2. To access a memory object,
bits are shifted in a lock-step fashion until they are aligned to
the access port positions [21].

B. State-of-the-art data placement in RTMs

The data placement problem in RTMs can be artificially
decomposed into two subproblems, the inter-DBC data place-
ment problem which steers program variables (or memory
objects) to different DBCs, and the intra-DBC data placement
problem. The latter finds a suitable placement of the variables
in a particular DBC. To this end, heuristics are employed
which aim to find near-optimal intra-DBC data placement
in reasonable time [2], [7]. These solutions pay little to no
attention to the inter-DBC distribution of memory objects.

Intra-DBC placement heuristics are inspired by the well-
known heuristics for single offset assignment [4], [9]. The
problem consists in assigning a set of variables V =
{v1, . . . , vn} a location in the memory, based on an access
trace referred to as access sequence S = (s1, . . . , sk) where
s1, . . . , sk ∈ V . The access sequence is typically summarized
in a weighted undirected access graph. Vertices in the access
graph represent variables while an edge e = {u, v} expresses
that the variables corresponding to u and v were consecutively
accessed in S. The edge weight wuv models the number of
such consecutive accesses. Finally, the access frequency of a
variable u is the number of times u is accessed in S.

Based on the information in the access graph, heuristics
aim to place memory objects within a DBC to maximize the
likelihood that consecutive accesses in S access the same or
nearby locations in a DBC, resulting in a reduced shift cost.
The shift cost between two accesses u and v in S is the
absolute difference of their exact locations in a DBC, as this

corresponds to the number of shifts an RTM controller will
need to execute in order to access u after accessing v [2], [7].

State-of-the-art heuristics mainly focus on addressing the
intra-DBC data placement problem. What has got little atten-
tion is the inter-DBC distribution of memory objects which is
equally important because, as evidenced by Sec. II-A, typical
RTM organizations have more than one DBCs. Chen et al. [2]
briefly explain the inter-DBC data placement and present a
heuristic that distributes memory objects across DBCs based
on their access frequencies (cf. Sec. III-A). However, we argue
that access frequencies alone are not sufficient to find a good
memory layout. Memory objects with disjoint lifespans when
placed in the same DBC while maintaining their access order
substantially reduces the amount of shifts. Similarly, Chen’s
multi-DBC heuristic is designed for RTMs with two or more
access ports per track. The next section discusses generalized
data placement solutions that are independent of the number of
ports and use timing and liveliness information of the memory
objects to find efficient inter- and intra-DBC placement.

III. GENERALIZED DATA PLACEMENT IN RTM

This section describes our proposed solutions for data
placement in RTMs after explaining the state-of-the-art inter-
DBC placement technique.

A. Baseline inter-DBC placement

To the best of our knowledge, the current best inter-DBC
data placement heuristic was proposed in [2]. The Access Fre-
quency based Distribution (AFD) heuristic initially sorts the
variables in V in descending order of their access frequencies.
It then iteratively selects variables and distributes them to
DBCs in a round-robin manner. The basic idea is to place
frequently accessed variables as close as possible to reduce
the shift overhead.

Fig. 3 shows a placement example to two DBCs for the
variables in Fig. 3-(a) and access sequence in Fig. 3-(b). The
AFD heuristic, in Fig. 3-(c), assigns variables a, g, b, d, and
h to DBC0 and e, i, c, and f to DBC1. Since accesses are
partitioned between DBC0 and DBC1, the access sequence S
is split into two disjoint subsequences S0 and S1. Applying the
AFD heuristic to the sample access sequence incurs 24 and 15
shifts for accessing variables in S0 and S1 respectively. As a
result, the overall shift cost amounts to 39. In the next section,
we show that by better exploiting the access order and timing
information an improved placement can be obtained.

B. Sequence-aware inter-DBC distribution

The access graph, commonly used to summarize the access
sequence, discards the order and the timing information of
memory objects. Our heuristic takes these information into
account and combines them with the access frequencies for
a more efficient inter-DBC placement. Two variables u and v
are said to have disjoint lifespans if the last occurrence of u in
S is before the first occurrence of v in S and vice versa. The
lifespan of a variable is then defined as the absolute difference
of its first and last occurrences. For instance, in the access

sequence S in Fig. 3-(b), the lifespan of variable b is 2 (4−2)
and variables b and c have disjoint lifespans.

(a)

a g b d hDBC0:

DBC1:

S0: a b a b a a d d a g g h g h

S1: c c i e f e f e i i
39

DBC0:

S1: a a a a a a i f f g g g i i

e i c f

26

15

DBC1:

a (5)
11

b (2)

4

2
c (2)
7

5
d (2)

10

9
e (3)
18

13
f (2)

16

14
g (3)
21

17
h (2)

23

20
i (3)

24

12

(b)

(c)

(d)

(e)

a b c f g h id e

aa b ca a db c ed a ef f gi e igh i hg

1 2 3 76 8 94 5 1810 11 1514 16 1712 13 242120 22 2319

b c d e h

a f g i

S0: b b c c d d e e e h h

11

04

07

1

V:

S:

index:

v (Av)
Lv

Fv

No. of shifts

Fv: first occurence of variable (v) Lv: last occurence Av: access frequency

Fig. 3. Example showing (a) Variable set (b) Access sequence and the time
of occurrence of each access (c) AFD placement [2] (d) Sequence-aware
placement (e) Timing and access frequency of each variable

Our heuristic exploits the fact that l disjoint variables, if
stored in the same DBC while respecting their access order,
require at most l − 1 RTM shifts. This implies that once an
access port is aligned to one of the l variables in the DBC,
the following accesses to the same variable will not incur any
shifts at all. Accessing the next variable in the same DBC will
always incur only a single shift. To explain this further, let us
consider the sample access sequence from Fig. 3-(b) and the
corresponding access frequency and timing information from
Fig. 3-(e). Our heuristic extracts a list of disjoint variables
having maximum sum of access frequencies by performing
the liveliness analysis on all memory objects. In other words,
the heuristic picks a variable combination that maximizes the
number of self accesses which in turn reduces the total amount
of shift operations. For the illustrating example, our heuristic
analyses memory object a by comparing its access frequency
with the sum of access frequencies of all those objects that
lie in the lifespan of a (b, c, d). If the access frequency of a
(5) is greater than the sum of access frequencies of all those
memory objects (6), the heuristic appends a to the list of
disjoint variables otherwise it moves to the next object and
repeats this exact same process. For the illustrating example,
our heuristic selects combination b, c, d, e, h having sum of
access frequencies equal to 11.

Variables in the selected combination are allocated to the
same DBC (i.e., DBC0 in the illustrating example) in their
access order. Note however that this preservation of access
order is only restricted to the DBC that stores variables with
disjoint lifespans. For other DBCs, heuristics such as [2], [7]
are employed to find an efficient intra-DBC placement. The
leftover variables (i.e., a, f , g, and i) are assigned to the
remaining DBCs (i.e., DBC1), which is shown in Fig. 3-(d).
Compared with the AFD solution [2] in Fig. 3-(c), the shift
cost is reduced from 39 to 11 (i.e., 3.54× shifts improvement).

Algorithm 1 shows the pseudocode of our proposed data
placement heuristic. The heuristic maintains two sets of vari-
ables, Vdj and Vndj storing disjoint and non-disjoint variables

Algorithm 1 Proposed data distribution heuristic
Input : Access sequence S, list of variables V and q DBCs

each having N empty locations
Output : Final data distribution across all DBCs

1: . Initialize access freq., first and last accesses
2: for all v ∈ V do Av =

∑
u∈S,u=v 1

3: for all v ∈ V do Fv = min {i ∈ {1, . . . , |S|} | Si = v}
4: for all v ∈ V do Lv = max {i ∈ {1, . . . , |S|} | Si = v}
5: Vndj ←Variables V sorted in the ascending order of Fv

6: Vdj ← ∅
7: tmin ← 0
8: for all v ∈ Vndj do
9: if Fv > tmin then

10: if Av >
∑

u∈Vndj :Fu>Fv,Lu<Lv
then

11: Vdj ← Vdj ∪ {v}
12: Vndj ← Vndj \ {v}, tmin ← Lv

13: K ←
⌈
|Vdj |
N

⌉
14: while |Vdj | > 0 do
15: for i← 1, . . . ,K do
16: v∗ ← argminv∈Vdj

Fv

17: DBCi. append(v
∗), Vdj ← Vdj \ {v∗}

18: while |Vndj | > 0 do
19: for i← K + 1, . . . , q do
20: v∗ ← argmaxv∈Vndj

Av

21: DBCi. append(v
∗), Vndj ← Vndj \ {v∗}

22: for i← K + 1, q do
23: Apply Chen [2] or ShiftsReduce [7] on DBCi

respectively. Similarly, the variables Av, Fv and Lv store the
access frequency, first and last occurrence information of all
variables in V respectively. Initially, Vndj stores all variables
in V (line 5), and when we iterate through it (line 8) we do
so in the ascending order of their first occurrences F . Vdj is
initialized as an empty set (line 6). The algorithm then iter-
atively selects variables vi from Vndj , examines disjointness
and appends only those variables to Vdj that maximize the
number of self accesses (lines 8-12). The variable K (line 13)
computes the number of DBCs required for storing disjoint
variables (Vdj). The variables in Vdj are assigned to DBCs
1 → K and Vndj to the remaining (q −K) DBCs (lines 14-
21) where q represents the total number of DBCs. Finally,
lines 22-23 apply the single DBC heuristics from [2], [7] to
optimize within DBC placement of program variables.

C. Genetic algorithms for data placement in RTM

Practicality in compilers demands fast-executing heuristics,
like the one we propose. However, as a baseline to evaluate
heuristics it is extremely useful to know the optimal solution
to a problem. Given that finding an optimal multi-DBC place-
ment is an NP complete problem [2], we present a formulation
using genetic algorithms (GAs) for finding near-optimal results
that serves as baseline.

In our formulation, individuals represent the final variable
placements (both inter- and intra-DBC). We represent them as
lists of DBC assignments I = (DBC1, . . . , DBCq), whereby
each DBC assignment DBCi = (v

(i)
1 , . . . , v

(i)
|DBC1|) is in turn

a list with the variable placements in the selected order. The
fitness value of an individual is the shifts cost of that variable
placement. Our GA formulation uses a µ + λ algorithm,
whereby we produce λ = 100 offspring each iteration and
select µ = 100 individuals for the next generation. The
individual selection follows a tournament model, selecting
the individual with the best fitness value out of 4 randomly-
selected individuals in the population. These parameters were
chosen to get best-effort results in a reasonable time in our
implementation.

To produce offspring, we use a 2-fold crossover on the
individuals. Let I, J be two individuals. Let V = v1, . . . , vn
where the vi are indexed in the same order as they appear in
the sequence S. We randomly select two variables vf , vl, f <
l,∈ V as crossover points, and separate V into the disjoint
union V = Vswap ∪ Vleave, where Vswap = {vf , vf+1, . . . , vl}
and Vleave = V \ Vswap. Then we swap the assignments of
variables in Vswap between I and J :

∀v ∈ Vswap, s.t. v ∈ DBCI
r , v ∈ DBCJ

s and r 6= s :

DBCI
r . remove(v), DBCI

s . append(v)

DBCI
s . remove(v), DBCI

r . append(v),

This ensures that the within-DBC variable placements that are
not swapped are kept and that both new individuals are still
valid placements. A mutation, on the other hand, selects one
of three possible mutations at random:
• Move a variable from one DBC to another, placing it

at the end of the new DBC and leaving the rest of the
variables in the same order.

• Transpose two variables in a single DBC.
• Apply random permutation to each DBC.
The first mutation slightly modifies the inter-DBC place-

ment. The second and third mutations change the permutation
within a single DBC. Since the third option is more destruc-
tive, we skew the probability so that it is less likely to happen
with in a ratio of 10 : 3. These mutations make sure that
both, the mutated assignments are still correct assignments,
and for any two possible assignments, there is a series of
mutations taking one to the other. This way we can explore
the whole design space of assignments. For comparison,
we also implemented a random-walk search which generates
random placement of variables to DBCs and the create random
permutations within every DBC, selecting the best individual.

IV. EVALUATION

This section describes the experimental setup and compares
our proposed solutions to the state-of-the-art.

A. Experimental setup

For evaluation, we use the open-source RTSim simulator [6]
that takes application memory traces and produces latency

TABLE I
MEMORY SYSTEM PARAMETERS (4KiB RTM, 32nm, 32 TRACKS / DBC)

Number of DBCs 2 4 8 16
Number of domains in a DBC 512 256 128 64

Leakage power [mW] 3.39 4.33 6.56 8.94
Write energy [pJ] 3.42 3.65 3.79 3.94
Read energy [pJ] 2.26 2.39 2.47 2.54
Shift energy [pJ] 2.18 2.03 1.97 1.86
Read latency [ns] 0.81 0.84 0.86 0.89
Write latency [ns] 1.08 1.14 1.17 1.20
Shift latency [ns] 0.99 0.92 0.86 0.78

Area [mm2] 0.0159 0.0186 0.0226 0.0279

and energy results. We simulate all 30 benchmarks of the
OffsetStone benchmark suite [9], including real-world applica-
tion domains such as image, signal and video processing, and
control-dominated applications such as GZIP, BISON, Flex
and CPP. Benchmarks vary in terms of number of access
sequences, number of program variables per sequence (i.e.,
1 to 1336) and the length of access sequences (1 to 3640).

The latency, energy and area numbers for different RTM
configurations are obtained from the destiny circuit simula-
tor [15] and are listed in Table I. These values also include the
latency incurred and the energy consumed by the DBC/domain
decoders, access ports, multiplexers, write and shift drivers.
All iso-capacity RTM configurations are chosen so that each of
them has different number of DBCs (i.e, 2 to 16) and domains
per DBC (i.e., 64 to 512).

We evaluate six different data placement solutions as listed
below. Unless otherwise stated, all results are normalized to
the results of the genetic algorithm.
• AFD-OFU: The baseline inter-DBC data placement

heuristic [2]. The intra-DBC placement of variables is
based on their order of first use (OFU).

• DMA-OFU: Our proposed heuristic separating disjoint
memory accesses (DMA) from non-disjoint accesses (cf.
Sec. III-B) with OFU assignment.

• DMA-Chen: Our proposed heuristic paired with the intra-
DBC optimization heuristic (Chen [2], single DBC).

• DMA-SR: Our proposed heuristic paired with the Shift-
sReduce heuristic [7].

• GA: Our proposed genetic algorithm (cf. Sec. III-C).
• RW: A random walk search (cf. Sec. III-C).
We execute GA for 200 generations, and RW for 60000 iter-

ations, which is the upper bound on the number of individuals
that could be evaluated by GA with these parameters.

B. Analysis of heuristics: Reduction in shifts

Fig. 4 shows the normalized shift improvement of our
proposed solutions compared to the baseline. The results are
normalized to the costs obtained from the placement in GA
(i.e. the costs for GA are always 1).

As can be seen, our proposed heuristic significantly reduces
the number of RTM shifts. More concretely, the reduction
as expressed by the geometric mean over all benchmarks is
2.4×, 2.9×, 2.8× and 1.7× compared to AFD-OFU for 2, 4,

80
51

ad
pc

m

an
ag

ra
m

an
th

r

bd
d

bi
so

n

ca
vi

ty

cc
65

co
de

cs

cp
p

dc
t

ds
ps

to
ne

eq
nt

ot
t

f2
c

ff
t

fle
x

fu
zz

y

gi
f2

as
c

gs
m

gz
ip

h2
63

hm
m

jp
eg kl
t

lp
so

lv
e

m
ot

io
n

m
p3

m
pe

g2

sp
ar

se

tr
ia

ng
le

vi
te

rb
i

1

2

80
51

ad
pc

m
an

ag
ra

m
an

th
r

bd
d

bi
so

n
ca

vi
ty

cc
65

co
de

cs
cp

p
dc

t
ds

ps
to

ne
eq

nt
ot

t
f2

c
ff

t
fle

x
fu

zz
y

gi
f2

as
c

gs
m

gz
ip

h2
63

hm
m

jp
eg kl
t

lp
so

lv
e

m
ot

io
n

m
p3

m
pe

g2
sp

ar
se

tr
ia

ng
le

vi
te

rb
i

1

3

10

30

Benchmark

A
ve

ra
ge

C
os

t
(n

or
m

al
iz

ed
,l

og
)

Inter-DBC Dist.
AFD
DMA
RW

Intra-DBC Opt.
Chen
OFU
SR
RW

Number of DBCs
4
8
12
16

Fig. 4. Shifts improvement in our proposed solutions for various RTM configurations

8, and 16 DBC RTM configurations respectively. DMA-Chen
and DMA-SR further diminish the amount of shifts by (1.8×,
1.6×, 1.3×, 1.4×) and (2.0×, 1.8×, 1.5×, 1.6×) for (2, 4, 8,
16) DBCs respectively. Fig. 4 also demonstrates that the shift
reduction is less pronounced when more DBCs are employed.
This is because an increase in the number of DBCs leads to
a more sparse variable distribution, making the shift problem
less severe. For the same reason, the gain from intra-DBC
placement is less prominent as we increase the DBC count.

RW results serve to put the GA results in perspective, as RW
evaluated more individuals for every benchmark. To asses how
far the heuristics are from the optimal solution, we executed
GA significantly longer for the benchmark with the largest
access sequence. After 2000 generations, the result from the
best variant of the heuristics was around 38% worse than the
best solution found by the GA. This indicates that our solutions
are likely within a reasonable range of the optimum, less than
an order of magnitude.

The simulation results also suggest that our distribution
heuristic consistently performs well irrespective of the DBC
count and the intra-DBC optimization. In fact, it provides a
promising base for the Chen and ShiftsReduce heuristics to
further improve its performance and minimize the shift cost.
For the above reasons, we expect our heuristic to perform well
with future optimization policies as well.

C. Overall performance and energy analysis

We also compare the heuristics in terms of latency and
energy consumption. DMA-OFU improves the RTM access
latency by 50.3%, 50.5%, 33.1% and 10.4% for 2, 4, 8 and
16 DBC configurations respectively. DMA-Chen and DMA-
SR further improve the latency by (68.1%, 60.1%, 36.5%,
13.4%) and (70.1%, 62%, 37.7%, 14.6%) for (2, 4, 8, 16)
DBCs respectively. The latency gain primarily stems from
reduced number of RTM shifts which reduces the RTM access
latency and ultimately the overall runtime.

Fig. 5 highlights the significant reduction in the total energy
consumed by DMA-OFU (61%, 62%, 44%, 13%) and DMA-
SR (77%, 70%, 50%, 21%) relative to AFD-OFU for (2,
4, 8, 16) DBCs respectively. By breaking down the energy
consumption into leakage energy, read/write and shift energy,
we observe that (1) the gain in shift energy is proportional
to the reduction in the number of shifts, (2) leakage energy

2−DBCs 4−DBCs 8−DBCs 16−DBCs

AFD−O
FU

DM
A−O

FU

DM
A−S

R

AFD−O
FU

DM
A−O

FU

DM
A−S

R

AFD−O
FU

DM
A−O

FU

DM
A−S

R

AFD−O
FU

DM
A−O

FU

DM
A−S

R

0

1

E
ne

rg
y

co
ns

um
pt

io
n

 (
no

rm
al

iz
ed

)

Leakage Energy Read/Write Energy Shift Energy

Fig. 5. Overall energy consumption normalized to the baseline AFD-OFU

becomes more significant as the number of DBCs increases
(cf. Table I), and (3) in both DMA-OFU and DMA-SR, the
leakage energy marks a substantially drop-down. Our analysis
suggest that the latter is due to the runtime reduction. The
performance and energy results indicate that our distribution
heuristic greatly outperforms AFD distribution in both metrics.

0.0

0.5

1.0

1.5

2.0

2.5

Shifts Latency Energy Area

Im
pr

ov
em

en
t (

no
rm

al
iz

ed
)

2 4 8 16

Fig. 6. Impact of varying the number of DBCs for DMA-SR configuration

Fig. 6 shows the trade-off among various parameters for
the best performing DMA-SR configuration as we increase
the number of DBCs from 2 to 16. The area values indicate a
clear rising trend with the increase in the number of DBCs
(or ports). The major reason is that, access ports have a
larger footprint compared to other components of an RTM.
In terms of energy consumption, Fig. 6 demonstrates that a
2-DBC RTM is not competitive due to its high shift energy
contribution (Fig. 5). In this case, the positive impact of a
reduced leakage power is negatively offset by increase in
the shift energy. We also notice that the latency and the
shift improvement diminish significantly with an increased
DBC count. As a consequence, the shift energy contribution
becomes less prominent and in turn a 16-DBC RTM consumes
more energy than a 4-DBC or 8-DBC variant.

V. RELATED WORK

RTMs have been employed at various levels in the memory
hierarchy to demonstrate its performance and energy benefits.
For instance, it has been shown that shifts reduction to the
bare minimum in RTM scratchpad improves the performance
and the energy saving by 24% and 74% respectively compared
to an iso-capacity SRAM for tensor contraction [5]. Likewise,
similar benefits have been demonstrated at higher levels, e.g.,
caches [19], [21] and main memory [3].

Many techniques have been proposed in the past to mitigate
the negative impact of RTM shift overhead. These include
data compression [22], reconfigurability of RTM in terms of
deactivating (or activating) rarely (or highly) used domains,
runtime data swapping [20], proactively aligning the likely
accessed domains to the port positions [1], [12], [20], [21],
and intelligent instruction [16] and data placement [2], [5],
[7], [8], [11]. Among these proposals, data placement has
demonstrated significant benefits with trivial or no overheads.
These techniques primarily focus on intra-DBC variable as-
signment to curtail the shift overhead [2], [7]. We showed
that the most recent inter-DBC placement from [2] leads
to sub-optimal performance as it only considers the access
frequency of individual variables but ignores the variable
liveliness information (cf. Sec. II-B, III-A).

Hardware- and software-guided data placement techniques
have also been used in the past in the context of other NVMs
and hybrid memory systems [10], [18] to hide higher NVM
write latency. However, for RTMs we aim at finding a layout
for memory objects that minimizes the number of RTM shifts,
a problem that does not pertain to other random access volatile
or non-volatile memories. As a result, these data placement
solutions are not applicable to RTMs.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we presented a novel solution for generalized
data placement in RTM. We proposed a novel heuristic that
analyzes the lifespans of memory objects and steers them
to DBCs with the objective to minimize the total number
of shifts. Our evaluation showed a substantial reduction of
shifts by 4.3× compared to the state of the art heuristic.
The average improvements in latency and energy consumption
across all benchmarks and all configurations was of 46% and
55% respectively. We demonstrated that our heuristic consis-
tently outperformed the state-of-the-art for different number
of DBCs and can be paired with existing single DBC data
placement solutions. Our formulation as genetic algorithms,
with customized genetic operators and our heuristic result as
initial population, showed that the heuristic results, in terms of
the number of shifts, are likely within an order of magnitude
of the optimum. In future work, we plan to explore placement
of more than one sets of disjoint variables in the same DBC
and in different DBCs and their integration with non-disjoint
variables in a way that further reduces the overall shift cost.

ACKNOWLEDGMENTS

This work was partially funded by the German Research
Council (DFG) through the TraceSymm project CA 1602/4-1
and the Cluster of Excellence ‘Center for Advancing Electron-
ics Dresden’ (cfaed).

REFERENCES

[1] E. Atoofian. Reducing Shift Penalty in Domain Wall Memory Through
Register Locality. In Proc. of the 2015 Int. Conf. on Compilers,
Architecture and Synthesis for Embedded Systems, pages 177–186, 2015.

[2] X. Chen et al. Efficient Data Placement for Improving Data Access
Performance on Domain-Wall Memory. IEEE Trans. Very Large Scale
Integr. Syst., 24(10):3094–3104, Oct. 2016.

[3] Q. Hu, G. Sun, J. Shu, and C. Zhang. Exploring Main Memory Design
Based on Racetrack Memory Technology. In 2016 International Great
Lakes Symposium on VLSI (GLSVLSI), pages 397–402, May 2016.

[4] M. Jünger and S. Mallach. Solving the simple offset assignment problem
as a traveling salesman. In Proc. of the 16th Int. Workshop on Software
and Compilers for Embedded Systems, pages 31–39, 2013.

[5] A. A. Khan, N. A. Rink, F. Hameed, and J. Castrillon. Optimizing Tensor
Contractions for Embedded Devices with Racetrack Memory Scratch-
pads. In Proc. of the 20th Int. Conf. on Languages, Compilers, and
Tools for Embedded Systems, LCTES 2019, pages 5–18, 2019.

[6] A. A. Khan et al. RTSim: A Cycle-Accurate Simulator for Racetrack
Memories. IEEE Computer Architecture Letters, 18(1):43–46, Jan 2019.

[7] A. A. Khan et al. ShiftsReduce: Minimizing Shifts in Racetrack Memory
4.0. arXiv e-prints, Mar 2019.

[8] H. A. Khouzani et al. A DWM-Based Stack Architecture Implementa-
tion for Energy Harvesting Systems. ACM Trans. Embed. Comput. Syst.,
16(5s):155:1–155:18, Sept. 2017.

[9] R. Leupers. Offset Assignment Showdown: Evaluation of DSP Address
Code Optimization Algorithms. In Proceedings of the 12th International
Conference on Compiler Construction, CC’03, pages 290–302, 2003.

[10] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu. Utility-Based
Hybrid Memory Management. In 2017 IEEE International Conference
on Cluster Computing (CLUSTER), pages 152–165, September 2017.

[11] Y. Liang and S. Wang. Performance-centric optimization for racetrack
memory based register file on gpus. Journal of Computer Science and
Technology, 31(1):36–49, Jan 2016.

[12] H. Mao et al. Exploring Data Placement in Racetrack Memory Based
Scratchpad Memory. In 2015 IEEE Non-Volatile Memory System and
Applications Symposium (NVMSA), pages 1–5, Aug 2015.

[13] S. Mittal. A survey of techniques for architecting processor compo-
nents using domain-wall memory. J. Emerg. Technol. Comput. Syst.,
13(2):29:1–29:25, Nov. 2016.

[14] S. Mittal, J. S. Vetter, and D. Li. A Survey Of Architectural Approaches
for Managing Embedded DRAM and Non-Volatile On-Chip Caches.
IEEE Tran. on Parallel and Dist. Systems, 26(6):1524–1537, June 2015.

[15] S. Mittal, R. Wang, and J. Vetter. DESTINY: A Comprehensive Tool
with 3D and Multi-Level Cell Memory Modeling Capability. Journal
of Low Power Electronics and Applications, 7(3), 2017.

[16] J. Multanen et al. SHRIMP: Efficient Instruction Delivery with Domain
Wall Memory. In Proc. of the Int. Symposium on Low Power Electronics
and Design, ISLPED ’19, July 2019.

[17] S. Parkin and S.-H. Yang. Memory on the Racetrack. 10:195–198, 2015.
[18] I. B. Peng et al. RTHMS: A Tool for Data Placement on Hybrid Memory

System. In Proc. of the 2017 ACM SIGPLAN Int. Symposium on Memory
Management, ISMM 2017, pages 82–91, New York, NY, USA, 2017.

[19] Z. Sun, X. Bi, W. Wu, S. Yoo, and H. . Li. Array Organization and Data
Management Exploration in Racetrack Memory. IEEE Transactions on
Computers, 65(4):1041–1054, April 2016.

[20] Z. Sun, W. Wu, and H. Li. Cross-layer Racetrack Memory Design for
Ultra High Density and Low Power Consumption. In 50th ACM/IEEE
Design Automation Conference (DAC), pages 1–6, May 2013.

[21] R. Venkatesan et al. TapeCache: A High Density, Energy Efficient
Cache Based on Domain Wall Memory. In Proceedings of the 2012
ACM/IEEE International Symposium on Low Power Electronics and
Design, ISLPED ’12, pages 185–190, 2012.

[22] H. Xu, Y. Li, R. Melhem, and A. K. Jones. Multilane Racetrack Caches:
Improving Efficiency Through Compression and Independent Shifting.
In The 20th Asia and South Pacific Design Automation Conference,
pages 417–422, Jan 2015.

	I Introduction
	II Background
	II-A RTM architecture
	II-B State-of-the-art data placement in RTMs

	III Generalized data placement in RTM
	III-A Baseline inter-DBC placement
	III-B Sequence-aware inter-DBC distribution
	III-C Genetic algorithms for data placement in RTM

	IV Evaluation
	IV-A Experimental setup
	IV-B Analysis of heuristics: Reduction in shifts
	IV-C Overall performance and energy analysis

	V Related work
	VI Conclusions and outlook
	References

