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This chapter addresses the challenges associated with compilation and optimiza-
tion techniques for heterogeneous multicore computing systems in the embedded in-
dustry. Wireless terminals and modems are typical examples of such systems, which
demand high performance and energy efficiency at the same time. To fully exploit the
computing power of those systems, the existing compiler technology for single pro-
cessor systems does not suit the need and scale for multicore architectures anymore.
The authors have applied a systematic approach to tackle the problems of application
modeling, source-to-source compilation, flexible compiler infrastructure construction
and software distribution for multicore architectures from a practical perspective. Sev-
eral real-world multicore platforms as well as system-level virtual platforms have been
successfully used to demonstrate the achievable speed-ups and versatility of the com-
pilation and optimization techniques developed in this work.
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Figure 1.1 – Mobile data traffic in Western Europe from 2006 to 2021 (2019-2021 are
projections), adapted from (A.T. Kearney 2010) and (Cisco Systems 2017)

1.1. Introduction

In the HPC (High-Performance Computing) industry, computer architecture evo-
lution is predominantly driven by the increasing demand for superior performance.
The trend of scaling up the frequency and number of transistors continued as long
as possible, until the physical limits were reached and the power consumption be-
came unmanageable, and CPU performance growth hit a wall around 2003. Between
2003 and 2005, multicore architectures were first introduced in mainstream comput-
ing products, such as desktop PCs and high-end servers, by semiconductor vendors for
enhanced computing capabilities. The embedded industry followed suit, particularly
adopting those multicores that consist of different types of processor (aka heteroge-
neous multicores).

Take the mobile phone as an example. Fig. 1.1 shows the ongoing mobile traffic
growth in western Europe with projections until 2021. In 2016, western Europe’s mo-
bile data traffic amounted to 736,377 terabytes per month (Cisco Systems 2017). In
2021, the western European traffic from mobile devices (smartphones, laptops, tables,
M2M connections, etc.) is projected to reach 4,189,615 terabytes per month. This
projected compound annual growth rate (CAGR) amounts to 42 percent.

High-end smartphones nowadays feature high-definition video playback, fully
fledged Internet capabilities, and multi-standard radio protocols. The list of
integrated functions demanded by consumers continues to grow. The workload of a
typical 4G smartphone had increased to 100 giga operations per second (GOPS) per
Watt in 2010, including 40 GOPS for radio, 20 GOPS from media processing and 6.5
GOPS for graphics. The workload continues to increase at a steady rate, roughly by
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Figure 1.2 – SOC Consumer Portable Design Trends (adapted from (International
Technology Roadmap for Semiconductors 2011)). The processing elements are re-
ferred to cores or parallel execution units in CPUs, GPUs, accelerators, etc.

an order of magnitude every five years (van Berkel 2009). Multiprocessing was
introduced to mobile phone technology to address this requirement shortly after the
shift in the HPC industry. The International Technology Roadmap for
Semiconductors (ITRS) has recently predicted an exponential growth in the number
of processing elements that consumer portable products will contain, estimated to
reach almost 6000 cores in 2026 (as illustrated in Fig. 1.2).

Compared to other domains, embedded systems have much more stringent require-
ments in terms of power/energy efficiency. Today’s mobile phones are expected to run
on a single battery for hours to days without requiring recharging. As mentioned ear-
lier, the power budget for the digital workload of a 4G smartphone (100 GOPS) is
around 1W. This is significantly more power efficient than most modern PCs. The
breakdown analysis of the workload vs. power consumption has shown that even ho-
mogeneous multiprocessing is realistically insufficient to meet this requirement (van
Berkel 2009). The only feasible approach is to adopt heterogeneous multicore archi-
tectures that consist of specialized programmable processors and/or hardware acceler-
ators; these offer a superior solution for the trade-off between performance and power.

Unfortunately, the flourishing of multicore architectures led by semiconductor
companies has left several unresolved challenges from the perspective of software
development.

To illustrate the current practice of MPSoC programming, Fig. 1.3 shows a com-
parison of programming flows for uni-processor systems and for MPSoCs. In the uni-
processor flow, software programmers follow the sequential programming model (C
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being the most popular language) and rely on the compilers to generate the target-
specific code correctly and optimally, as shown in Fig. 1.3 (a). Software programmers
focus on structuring algorithms correctly and are shielded from low-level architec-
tural details by using a vendor compiler. This has been a successful practice in recent
decades prior to the introduction of MPSoCs, thanks to the pivotal role of compil-
ers. However, the traditional compiler technology does not scale for MPSoCs. Fig.
1.3 (b) demonstrates the current problematic programming flow for MPSoCs, which
results in low software productivity. Applications must first be partitioned into par-
allel tasks, followed by spatial and temporal mapping of those partitioned tasks onto
the MPSoC processing elements. As explained earlier, the programmable processors
in heterogeneous MPSoCs nowadays often come with their own compilers and have
their own software stacks (API, OS). Therefore, after partitioning and mapping, the
correct code must be generated for each of the individual processors respectively, to be
further compiled. Compared to the uni-processor, these are new, non-trivial tasks that
are the programmers’ responsibility. Unlike the pivotal role of traditional compilers in
the uni-processor flow, there is little compiler support for the MPSoC programming.
This practice is currently labor-intensive, error-prone and costly.

Figure 1.3 – Programming Flow (a) Uni-processor: Compilers perform an end-to-end
translation from parsing source code, target independent optimization, target depen-
dent optimization to final binary generation. (b) MPSoC: No compilation framework
for MPSoCs is in place. The process (task partitioning, mapping/scheduling and code
generation) is manual.
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This chapter addresses the challenges associated with developing compilers and
their optimizations for heterogeneous multicores for software development, focusing
on embedded systems and using dataflow models 1. This work has been developed as
part of the MPSoC Application Programming Studio (MAPS) research project at the
Institute for Communication Technologies and Embedded Systems (ICE) of RWTH
Aachen University, which provided the technology foundation of the software tool
provider Silexica Inc.

The remainder of the chapter is organized as follows. The dataflow modeling (es-
pecially process networks) is discussed in section 1.2. A clean, lightweight C lan-
guage extension, CPN (i.e., C for process networks), is defined to capture streaming
programming models. A retargetable source-to-source compiler has been developed
to provide the key capabilities that facilitate the construction of compiler infrastruc-
tures for real-world, complex multicore architectures. Their details are explained in
section 1.3. Some optimization techniques for software distribution are explained in
section 1.4. Our experimental results are presented in 1.5. The chapter ends with a
short summary in section 1.6.

1.2. Dataflow Modeling

1.2.1. General Concepts

Dataflow models subsume a family of models of computation where parallel
entities are only allowed to communicate over dedicated channels (Ptolemaeus
2014). Intuitively, in a dataflow model an application is represented as a graph where
nodes represent computation and edges represent first-in first-out (FIFO)
communication buffers. Dataflow models differ from each other in the way
computation can be triggered upon conditions in incoming edges. For instance, in
synchronous dataflow (SDF) (Lee and Messerschmitt 1987), a prominent dataflow
model, nodes have a fix condition upon which they can be executed (or fired).
Additionally, one a node is executed it always produces a fixed amount of data items,
called tokens. In the example in Fig. 1.4a, node a2 requires 4 data items in its input
channel and, when executed, it consumes the tokens and produce a single data item
in its output. Such a node can, for example, model an averaging task that takes four
integer and returns the average as floating number. A model as in the example,
enables automatic reasoning about how such an application may make progress. For
example, given that two tokens are available in e3, node a1 can be executed twice,
each time producing 2 tokens on e1. If extended with estimates of the duration each
node execution, a schedule can be constructed to understand the earliest time at

1. Sequential code partitioning is also an important and essential part of this work. Due to the chapter
length constraint, we omit the details here. Please refer to (Castrillon et al. 2011 ; Leupers and Castrillon
2010) and (Castrillon Mazo 2013).
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which a2 can be executed. The ability to construct efficient schedules at
compile-time made SDFs quite appealing for modeling real time applications.

a1 a2 a3
2 4 1 1

21

e1 e2

e3

p1 p2 p3
e1 e2

e3a) b)

Figure 1.4 – a) Example SDF graph. Actors have fixed consumption and production
rates. Initial tokens are represented as dots on the channels. b) Example of a process
network. The abstract specification expresses that nodes can communicate if there is a
channel that connects them, but does not specify how this communication takes place.

SDFs are simple in that they can only model static behavior. Over time, models
have been extended to describe applications with more dynamic behavior, e.g., Cyclo-
static SDF (CSDF) (Bilsen et al. 1996) and Variable-rate Phased Dataflow (Wiggers
2009) (see also (Stuijk et al. 2011) for an attempt to compare different models). The
popularity of these models for embedded software (Sriram and Bhattacharyya 2009 ;
Bhattacharyya et al. 2010) motivated research on frameworks for the analysis and
synthesis of dataflow models (DOL (Thiele et al. 2007 ; Giannopoulou et al. 2016),
CAL (Eker and Janneck 2003 ; Brunet 2015), MAPS (Leupers and Castrillon 2010 ;
Leupers et al. 2017), SystemCoDesigner (Haubelt et al. 2007 ; Keinert et al. 2009),
PREESM (Pelcat et al. 2014) or Daedalus (Bamakhrama et al. 2012 ; Nikolov 2009)
to name a few).

1.2.2. Process Networks

Process networks are a model of computation in which applications are also repre-
sented as a graph with FIFO communication channels, similar to dataflow models. In
contrast to dataflow models, there are no triggering conditions specified in the input
channels of a node in a process network, i.e., no firing semantics. Instead, the graph
representation only specify that nodes (aka processes) can communicate if a channel
connects them. In Fig. 1.4b, for instance, processes p1 and p2 could execute in paral-
lel for a long time before any actual data exchange take place. A process network can
model not only SDF, CSDF and other simple dataflow graphs, but also more complex
communication behavior. In particular, in a process network, it is possible to model
channel accesses that depend on concrete values of incoming data.

Process networks are more expressive than many dataflow models, in the sense
that they can model a larger set of applications. Since every process can be thought
of as a independent thread, questions about termination or scheduling are undecid-
able. An interesting property of Kahn Process Networks (KPN) is that their execution
is determinate (Gilles Kahn 1974), i.e., provided with the same input, the history
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1 typedef struct { int i; double d; } my_struct_t;
2 typedef union { float f; short s[4]; } my_union_t;
3

4 __PNchannel char B[3][3];
5 __PNchannel my_struct_t C;
6 __PNchannel my_union_t D;
7 __PNchannel int A = {1, 2, 3}; /* Initial channel tokens */

Listing 1 – CPN Example Code: Channel Declaration

of tokens in all the channels is independent of the schedule. This is enabled by the
fact that processes are not allowed to peek into channels before reading, but would
block immediately when attempting to read from an empty channel. This is typically
called blocking-reads semantics. Intuitively, whether peeking into a channel is suc-
cessful depends on the time of arrival of tokens which does depend on the schedule.
Determinism is an important property that enables automatic optimization of process
networks without modifying the application behavior.

1.2.3. C for Process Networks

MAPS defines a clean, light-weight C language extension called CPN (C for Pro-
cess Networks) to capture streaming models. A minimum set of new keywords is
added to the C language to describe processes and channels. A language extension ap-
proach allows the user to specify the semantics of process networks at a high level, for
example, containing enough structural information about the channel accesses. This
first enables retargetability towards typical embedded MPSoCs where processing ele-
ments have different APIs and specific low-level primitives (that often cannot be ab-
stracted by a common API). Second, programs are portable and the semantic analysis
offers abundant opportunities for code transformations and optimizations (e.g. process
fusion and fission). Although C is not an ideal vehicle in which to carry the concur-
rency specification, this design compromise is made considering the large C legacy
code base and popularity of C in the embedded industry.

Channels

Channel declaration in CPN is similar to declaring a global variable in C with an
additional keyword __PNchannel. Examples can be found in Listing 1. Elementary
C types, such as int, char and float, and enumerations are valid channel types.
Structures, unions and arrays of valid channel types are valid, too.

A channel is, by default, empty at the beginning of the execution. If initial tokens
are needed on the channels, e.g., to avoid deadlocks, CPN also supports having initial
tokens in channels by specifying initializers in the channel declaration (channel A at
line 7 in Listing 1).
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Processes

Similar to C++ templates, the concept of process templates is used in CPN for code
reuse. A process template describes the functionality of a process and the channels
this process needs to access (either read or write). Processes are always created as
instances of process templates. The code’s readability and conciseness is improved,
for example, when multiple processes in a network share the same functionality.

An example of a KPN process template is shown in Listing 2. It describes the
functionality of Run-Length Decoding (RLD). Run-Length Encoding (RLE) is a sim-
ple data compression technique used in fax machines, for example. Data are encoded
into a stream of duos, i.e., the number of appearances and the data element itself. For
example, the original data AAAABBCCCCCDDD is compressed into 4A2B5C3D. RLD is
the inverse of RLE. A KPN process template (__PNkpn) with the identifier RLD is
shown in Listing 2. It reads integers from its input channel EncIn and outputs integers
to the channel DecOut indicated by keywords __PNin and __PNout respectively. The
body of a KPN process template can contain arbitrary code, which is allowed to access
input and output channels at any point of its control flow.

The access to a channel is always explicitly made via __PNin or __PNout in the
body for KPN-like processes, as the code generator cannot know if two consecutive
accesses to the same channel intend to access the same channel item (token) or the
next channel item in the general case. Those statements enable access to the next data
tokens (read) or free entries (write) in the channel, respectively. The code inside the
body of the __PNin or __PNout statement can access those items like a local variable.
At lines 6-7 of Listing 2, first, a token from the input channel EncIn is read and
assigned to a local variable count. Next, the data are decoded by writing the encoded
data into the output channel DecOut using in the loop of lines 9-11. Both the __PNin
and the __PNout statements have blocking semantics, i.e. they will suspend process
execution until the channel contains enough data tokens or free entries.

The explicit channel access annotation looks somewhat unnecessary in the first
place. A brief explanation is provided here to illustrate why such an explicit annotation
is required, using Listing 2 as an example. If the example were without __PNin and
__PNout statements, the accesses to channel EncIn at line 7 and 11 would become
ambiguous. It is not possible for the code generator to reason that, in the case of line
7, a new token from the channel EncIn is read while in the case of line 11 a new
token is read from the channel EncIn only at the first loop iteration and will be reused
during the rest of the loop (lines 9-11). Any form of dependence analysis would not be
sufficient to solve the problem because it requires the understanding of the application
behavior. Therefore, the functionality of RLD could not be correctly specified. The
code generator requires a clear, unambiguous indication as to whether or not to fetch
tokens from a channel (or write tokens to a channel).
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1 /* Run Length Decoding , e.g. 4A2B5C3D -> AAAABBCCCCCDDD */
2 __PNkpn RLD __PNin(int EncIn) __PNout(int DecOut)
3 {
4 int count , i;
5 while (1) {
6 __PNin(EncIn) /* read a token (# of appearances) from

EncIn , e.g. 4 */
7 count = EncIn;
8 __PNin(EncIn) /* read a token (data itself) from EncIn ,

e.g. A */
9 for (i = 0; i < count; ++i) /* write data to DecOut ,

e.g 4 times of A */
10 __PNout(DecOut)
11 DecOut = EncIn;
12 }
13 }

Listing 2 – CPN Example Code: KPN Process Template (Run Length Decoding)

1 __PNsdf Add __PNin(int a, int b) __PNout(int sum) {
2 /* initialization code could be placed here */
3 __PNloop { /* infinite loop */
4 /* a and b are read from the channel implicitly */
5 sum = a + b; /* channel variables are accessible in C code */
6 /* sum is written to the channel implicitly */
7 }
8 }

Listing 3 – CPN Example Code: SDF Process Template (Adder)

As the SDF frequently appears in streaming applications, a shortcut is provided
in CPN to simplify the program representation. The example in Listing 3 defines an
SDF process template (__PNsdf) for the functionality of an adder, reading integers
from input channels a and b and writing integers to channel sum. The __PNloop
statement resembles the infinite loop of an SDF process. Its body contains all the
code to be executed between reading from all input channels and writing to all output
channels. SDF-like processes implicitly access all their input and output channels in
the __PNloop statement (line 3 in Listing 3). The number of tokens to access in every
iteration is given in the __PNin and __PNout clauses of the SDF template header. If
this number is not specified, the default value 1 is used.

Processes can be instantiated from previously defined process templates using
__PNprocess. Listing 4 creates processes from the process templates defined above
and connects channels to them.

Parallelism Types

CPN is designed to describe streaming applications and, more importantly, specify
the parallelism in those programs explicitly. In this section, the parallelism types that



14 MPSoC: Vol. 2 – Applications

1 __PNchannel int decoder1_input = {4, ’A’, 2, ’B’, 5, ’C’, 3, ’D’};
2 __PNchannel int decoder2_input = {3, ’E’, 5, ’F’, 4, ’G’, 2, ’H’};
3

4 __PNchannel int decoder1_output , decoder2_output;
5 __PNchannel int add_output;
6

7 __PNprocess decoder1 = RLD __PNin(decoder1_input)
__PNout(decoder1_output);

8 __PNprocess decoder2 = RLD __PNin(decoder2_input)
__PNout(decoder2_output);

9 __PNprocess add = Add __PNin(decoder1_output , decoder2_output)
__PNout(add_output);

Listing 4 – CPN Example Code: Process Instantiation

...
DS1 DSn

T1

...

T1 Tn

...
DS1 DSn

DS2

DS1

T1 T2 T3 ...

..
.

(a) (b) (c)

Figure 1.5 – Types of Parallelism: (a) DLP, (b) TLP, (c) PLP. (DS stands for Data Set
and T stands for Task)

are most commonly seen in embedded streaming applications are introduced first and
we demonstrate that CPN is able to express all of those parallelism types succinctly.

Many different types of parallelism exist in real-world applications. In the embed-
ded domain that is the focus of this chapter, the most prominent types of coarse or
macroscopic parallelism are data-level, task-level, and pipeline-level. These are illus-
trated in Figure 1.5 with descriptions below.

– Data-Level Parallelism (DLP): DLP represents a typical scenario where the same
computational task is carried out on several disjoint data sets as illustrated in Fig-
ure 1.5 (a). DLP can be considered as a generalization of Single Instruction, Multiple
Data (SIMD). DLP exists abundantly, e.g., in multimedia applications, where a decod-
ing task performs the same operations on different portions of an image or video (e.g.,
Macroblocks in H.264). An example code to describe the DLP is shown in Listing 5.
As with other programming models like OpenMP, where data parallelism is defined
implicitly, we have worked on extensions that allow defining data-parallel processes
and methodologies to change the amount of parallelism dynamically (Khasanov et al.
2018).
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1 __PNchannel int DS1 , DS2 , DSN;
2 __PNchannel int Result1 , Result2 , ResultN;
3 __PNprocess T_1 = SameTaskT1 __PNin(DS1) __PNout(Result1);
4 __PNprocess T_2 = SameTaskT1 __PNin(DS2) __PNout(Result2);
5 __PNprocess T_N = SameTaskT1 __PNin(DSN) __PNout(ResultN);

Listing 5 – CPN Example Code: DLP

1 __PNchannel int DS1 , DS2 , DSN;
2 __PNchannel int Result1 , Result2 , ResultN;
3 __PNprocess T_1 = Task1 __PNin(DS1) __PNout(Result1);
4 __PNprocess T_2 = Task2 __PNin(DS2) __PNout(Result2);
5 __PNprocess T_N = TaskN __PNin(DSN) __PNout(ResultN);

Listing 6 – CPN Example Code: TLP

– Task- (or functional) Level Parallelism (TLP): It is common that in a computer
program, different tasks can compute in parallel on different data sets. TLP is used to
specify this kind of behavior, as shown in Figure 1.5 (b). Tasks may have dependencies
on one another, but once a task has its data ready, it can execute in parallel with the
already-running tasks in the system. An example code to describe the TLP is shown
in Listing 6.

– Pipeline-Level Parallelism (PLP): In PLP, computation is broken into a sequence
of tasks that are executed repetitively for different data sets, as shown in Figure 1.5
(c). These tasks are also called pipeline stages. It follows the principle of pipelining to
achieve a higher throughput. At a given time, different tasks of the original function-
ality are executed concurrently on different data sets. This type of parallelism is most
common in the signal processing domain, where the throughput is a critical system
performance indicator. An example code to describe the PLP is shown in Listing 7.

1 __PNchannel pixels DS, intermediate1 , intermediate2 , intermediate3 ,
output;

2 __PNprocess source = ReadImage __PNout(DS);
3 __PNprocess T_1 = PipelineTask1 __PNin(DS) __PNout(intermediate1);
4 __PNprocess T_2 = PipelineTask2 __PNin(intermediate1)

__PNout(intermediate2);
5 __PNprocess T_3 = PipelineTask3 __PNin(intermediate2)

__PNout(intermediate3);
6 __PNprocess T_N = PipelineTaskN __PNin(intermediate3)

__PNout(output);
7 __PNprocess sink = WriteImage __PNin(output);

Listing 7 – CPN Example Code: PLP
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1.3. Source-to-source Based Compiler Infrastructure

Once applications are written in CPN, a compiler framework is needed to take
them as input, compile and generate the correct and optimized binary code for target
MPSoC platforms. The complexity of MPSoCs nowadays requires a more flexible de-
sign in reality. In this section, the compiler design rationale is first discussed, followed
by the details of our implementation.

1.3.1. Design rationale

Many previous approaches for multiprocessor systems have followed the principle
of compiler design for uni-processors: the compiler works on input programs, builds
an internal intermediate representation, performs optimizations and generates the tar-
get binary code. This black box monolithic design philosophy is:

1) the compiler generates the correct and optimized target code without (much)
help from programmers;

2) the compiler has as much information about architectural details as possible in
order to perform target-specific code generation and optimization.

The essence of this design philosophy is to incorporate the complexity into a single
tool (compiler) that has been developed by a small group of highly skilled experts.
Therefore, programmers exhibit enhanced productivity in designing the software that
assumes a straightforward programming model (sequential) and a simple, common
memory model.

We studied and revisited this monolithic design approach used in the past few
decades (shown in Figure 1.6) and our observations are:

1) The complexity of hardware architectures grows so rapidly that a monolithic
compiler is unable to keep pace with it. For most uni-processors, such as RISCs, com-
pilers still manage to include architectural details. However, the gap between the ar-
chitecture complexity and the amount of information that a single tool can incorporate
has grown wider: more complex architecture templates appear, such as (clustered-)
VLIW DSPs, ASIPs (Application-Specific Instruction set Processors) and eventually
multicores, which have multiple scalar processors on a single chip. The level of user
intervention required in developing and using compilers increases rapidly (shown in
Figure 1.6), which offers further proof that the monolithic approach is reaching its
feasibility limits.

2) Compilers usually take a significant amount of time to mature along with exten-
sive investment. As already explained, heterogeneous MPSoC platforms will increas-
ingly utilize individual IPs from different vendors. Therefore, a monolithic approach
to multicores that generates the target specific binary code (for different processors)
directly is not economically sound, since it does not leverage the existing C compilers
for uni-processors.
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Figure 1.6 – Evolution of compiler development vs. architecture development

3) Compiler usage scenarios are now more diverse, particularly in the embedded
domain. Multiple optimization goals are commonly seen, such as the performance, the
energy efficiency and the code size.

Moving along the trajectory shown in Figure 1.6, we argue that for heterogeneous
multicore systems, a new flexible, extensible compiler design is both desirable and
required, as opposed to persisting with the monolithic approach. The user interven-
tions to account for the new architecture trends will increase, including a user-defined
mapping specification and objective functions for code generation and optimization.

1.3.2. Implementation strategy

The software architecture of the compiler framework developed to compile CPN
programs to heterogeneous MPSoCs is introduced below. The complete compilation
flow for a specific MPSoC is a tool framework consisting of many components. The
core component cpn-cc, a source-to-source (CPN-to-C) compiler, is first elaborated,
followed by a description of how the complete compilation framework can be con-
structed in a flexible, extensible manner guided by the user.

Instead of a monolithic approach, a source-to-source (CPN-to-C) compiler, cpn-
cc, was developed as the core component in the framework. The cpn-cc is imple-
mented based on Clang (Lattner 2008), the C frontend of the LLVM compiler infras-
tructure. Figure 1.7 (a) shows a high-level, internal structure of cpn-cc which consists
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Figure 1.7 – (a) Structure of the source-to-source compiler cpn-cc (b) An example
of a complete compiler framework for a three-processor heterogeneous MPSoC: the
parts with a shaded background are optional to the core compiler framework.

of the frontend, generic and platform-specific transformations, and a C code gener-
ator. Those components and some special considerations during the implementation
are described below:

– Frontend: The frontend starts with C preprocessors to provide the functionalities,
such as the inclusion of header files. After preprocessing, the source code is processed
by the tokenizer, to which new CPN keywords were added, and the parser, which
was extended with new grammar rules for CPN syntax elements, such as process
templates and channel accesses. Then, the CPN-aware semantic analysis builds the
abstract syntax tree (AST) as an intermediate representation in the memory for further
processing. It contains all CPN language elements and constructs occurring in the
source code.

– AST Transformations: After preparation by the frontend, the AST transfor-
mations perform source-to-source translation. They are categorized into generic and
platform-specific transformations, similar to the sequence of code optimizations in
a classic uni-processor compiler (Aho et al. 2006). Generic transformations are
platform-independent. One example is the transformation from SDF templates to
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KPNs, whereby SDF process templates are rewritten into KPNs with an endless loop
with explicit channel accesses in the behavior code. Platform-specific transformations
replace the AST nodes of CPN constructs by C nodes representing platform-specific
API calls, e.g. FIFO primitives. Therefore, the result of the AST transformations will
be a plain C code AST without any of the extensions introduced by CPN (but with
target-specific API calls). Several ASTs are built in this phase, one for each processor
on the target MPSoC platform.

– C Code Generator: As the last step of source-to-source translation, the AST
Clang printer generates the C source code from the ASTs after transformations. In
some cases, other additional auxiliary files, such as configurations and makefiles, also
need to be generated to be further compiled with the individual processor native C
compilers.

Compared to other source-to-source translation tools that are not based on a for-
mally built AST (e.g., textual replacements), our approach provides a cleaner and
more powerful infrastructure for source code transformation based on the AST. The
full semantic information allows code optimizations in a larger program context. For
example, data type checking and variable manipulation can be carried out in the com-
pilation while other textual replacement approaches cannot do this reliably. The read-
ability of the generated source code is also retained and the structure is close to the
original code. Compared to other approaches not based on an AST, more effort is
needed to build a fully working compiler, however. The effort is well justified, in that
cpn-cc is designed to be retargetable, and most cpn-cc components can be re-used for
different target MPSoC platforms.

A complete compilation framework for heterogeneous MPSoCs can be built
around the cpn-cc in a flexible and extensible manner to suit different MPSoC target
platforms in different scenarios. An example of such a framework for a specific
MPSoC is shown in Figure 1.7 (b):

– In addition to CPN programs that are considered as the functional specification,
an important input provided by the user is the mapping info, which specifies the spatial
mapping of processes to processing elements and temporal order for execution. The
mapping info, together with the CPN program, determines the performance of the ap-
plication on the target hardware platform. Unlike the monolithic approach, which tries
to automatically compute the mapping and scheduling, we have designed the mapping
info as an input to the core compiler in order to keep a clean and lean software archi-
tecture. The mapping info can be provided by the user manually or can be generated
by an external tool.

– Transformations are implemented in a modular way, and can thus be customized
for different target platforms in a plug-and-play fashion. A large portion of common
transformations can be reused among many MPSoC targets, which significantly eases
the retargeting process of the framework. Target specific transformations can be de-
veloped to better exploit the specific hardware details.
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– The compilation framework can be used in collaboration with other state-of-the-
art tools, thanks to the extensible design. For example, an intelligent mapping info
generator, referred to as Mapping Generator in Figure 1.7 (b), can be easily integrated
with the core compiler framework. In some embedded system design scenarios, the
software development needs to proceed simultaneously with the architecture devel-
opment, e.g., using a Platform Generator (see Figure 1.7). Our work also facilitates
the retargeting of the compiler framework to work with the Electronic System Level
(ESL) design tools for early system level design.

The main concept of this flexible and extensible design is to enable the re-use
of components in constructing compiler frameworks for different MPSoC platforms.
Therefore, retargetability can be achieved with minimal effort. Furthermore, the retar-
geting only needs to be done once for every new platform. As designing embedded
systems today inevitably involves many other third-party and vendor tools, this design
also makes it easy to collaborate with those tools, thus preserving existing software
investments.

1.4. Software Distribution

The MAPS framework was built as an interactive tool for the programmer to mod-
ify and optimize the application within the IDE. To further aid the programmer, MAPS
also includes a set of configurable algorithms to automate different steps of the opti-
mization process. The most notable such a process is that of software distribution,
which accounts to mapping computation (processes) to the heterogeneous cores of the
platform and communication (channels) to communication resources (e.g., communi-
cation APIs, memories and interconnect). Several works address automatic software
distribution in a similar way to MAPS, for performance, energy, thermal distribution
among other optimization goals, e.g., (Thiele et al. 2007 ; Quan and Pimentel 2014 ;
Hascoët et al. 2017 ; Marwedel et al. 2011 ; Das et al. 2015). Given the require-
ments imposed by the process networks programming model, MAPS rely on analysis
of traces to determine static and hybrid mappings, as discussed in the following.

1.4.1. KPN Analysis

As discussed in section 1.2, static dataflow programming models like SDF ex-
pose the communication patterns in the access rates to channels. For this reason, most
frameworks for the analysis of such graphs consider actors as black boxes. KPN ap-
plications does not do so, so that communication patterns need to be analyzed by
looking in the actual implementation of the behavior of processes. Consider the ex-
ample in Fig. 1.8. Given the hypothetical control flow of process P1, a tool can infer
how many times the process writes to channel C2 before reading from channel C1

(determined by the variable x and the initial value of i). In MAPS, a gray model of
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processes is obtained by analyzing the processes in isolation and collecting traces of
channel access events as exemplified on the right of Fig. 1.8.

Figure 1.8 – Illustration of process traces. Example process network with sample code
of the logic of process P1, alongside a hypothetical trace of read and write events that
may result from the processes inner control flow.

Trace-based analysis is enabled by the deterministic nature of KPNs. That is, pro-
vided with the same input stimuli, every process will always produce the same history
of tokens in the channels, independent of the schedule. MAPS leveraged this property
to abstract processes as trains of events with annotated execution costs corresponding
to the different core types of the platform (Castrillon et al. 2010). Technically, this
was achieved via source code instrumentation and by using source code cost estima-
tion tools (Gao et al. 2009 ; Eusse et al. 2014) whenever the target hardware was
unavailable. Based on traces, algorithms could optimize the placement of events in
the virtual execution time line on the target heterogeneous systems without changing
the application semantics (cf. next section). Naturally, different input stimuli would
create different traces, each of which would have to be analyzed independently. Some
recent efforts have tried to jointly optimize for multiple execution traces of the same
application by clustering process behaviors (Goens and Castrillon 2015). Results are
so far inconclusive.

1.4.2. Static KPN Mapping

A static mapping is one that is computed at compile time and, typically, one in
which compile-time decisions are not allowed to be overwritten at runtime. For the
problem setup considered in MAPS, this boils down to (i) mapping computation, i.e.,
deciding which particular core executes which process, and (ii) mapping communica-
tion, i.e., deciding with which API over which hardware resources a channel is to be
implemented. The latter one allocates memory for communication channels and thus
includes the process of buffer sizing, i.e., deciding what bounds are to be set on the
logical FIFO buffers to reduce the chances of encountering deadlocks and improving
throughput.

Given the lack of information in KPN specification, most mapping approaches
resort to metaheuristics, most prominently with Genetic Algorithms (Pimentel et al.
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Figure 1.9 – Overview of the mapping flow.

2006 ; Nikolov 2009 ; Thiele et al. 2007). MAPS aimed at leveraging the information
in the traces to devise faster heuristics to compute the mapping (Castrillon et al. 2013).
The generic mapping flow within MAPS is shown in Fig. 1.9. After analysis and se-
quential performance estimation, an iterative process is started that computes static
mappings on an increasing set of allowed resources. By adding resources (cores and
memory space), the tool can expose different trade-offs to the programmer and also
attempt to find the minimal resource configuration that meets application constraints.
Internally, each mapping configuration is simulated in a parallel performance estima-
tion that uses the traces collected during analysis to emulate how the target system
would execute the application.

Different heuristics are included in MAPS to compute the mapping of the appli-
cation given a set of resources. Among them, Group-Based Mapping (GBM) is worth
highlighting (Castrillon et al. 2012). This heuristic works on a graph representation of
the traces, where dependencies between events are explicitly modeled with edges. De-
pendencies include traditional read-after-write dependencies which model the block-
ing read semantics of KPN applications. In the example trace in Fig. 1.8, the event rC2

1

of P2 can only succeed after process P1 has executed the corresponding write event
(wC2

1
). Blocking write semantics due to finite buffer sizes are also modeled via simi-

lar dependencies. In the example, assuming a buffer size of 2 for channel C2, would
mean that the third write to the channel (wC2

3
) can only execute after the consumer

process P2 has read twice. More complex dependencies, e.g., supporting events that
write multiple tokens at once and more complex communication protocols are also
supported (Odendahl et al. 2013). GBM uses this graph representation to compute
mappings of traces to cores in the platform in a similar way to other heuristics for
directed acyclic graphs. The key idea of GBM is to iteratively compute mappings
of groups of application elements (processes or channels) to groups of platform re-
sources (cores or memories). The priority in which groups are created and mapped is
determined by the equivalent of the critical path, considering all possible mappings.
By mapping to groups, the heterogeneity of the platform is directly addressed. Con-
crete resources are decided in a final step. For further details, the reader is referred
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to (Castrillon et al. 2012). For an analysis and comparison of heuristics and genetic
algorithms, the reader is referred to (Goens et al. 2016).

1.4.3. Hybrid KPN Mapping

With embedded systems becoming more adaptive and running multiple workloads
at once, fixed mapping approaches became outdated. Hybrid approaches refer to at-
tempt to make mappings more flexible but still retain properties computed at compile
time (predictable performance and energy consumption). Typically this consists in
producing multiple mapping configurations with different resource utilization at com-
pile time and letting the runtime decide which variant to deploy (Schor et al. 2012 ;
Quan and Pimentel 2013). In (Quan and Pimentel 2014) for example, the authors
propose a method in which pareto-optimal points are computed at compile-time for
different configurations, with an adaptable runtime presented in (Quan and Pimentel
2016). These configurations are switched at runtime according to the given set of ac-
tive applications. A similar strategy is used in (Weichslgartner et al. 2016 ; Schwarzer
et al. 2018).

We have worked on identifying application and architecture symmetries that allow
defining mapping equivalent classes (Goens, Siccha and Castrillon 2017). Symme-
tries enable transformations by the compiler or the runtime that preserve design trade-
offs, so that properties predicted at compile time are preserved at runtime. By making
the runtime system aware of such transformations we demonstrated better time pre-
dictability on off-the-shelf multi-core systems (Goens, Khasanov, Hähnel, Smejkal,
Härtig and Castrillon 2017). Our runtime featured up to 510× less performance vari-
ability and 83× less energy variability when compared to the default Linux scheduler
on an Odroid XU4. We are currently working on joint application optimization, proac-
tively looking into future workload change (Khasanov and Castrillon 2020).

1.5. Results

A tooling infrastructure must be validated in real use cases, which are presented
below as experimental results. We have evaluated this design in:

– illustrative uses of MAPS for real-word MPSoC platforms and other scenarios;
and

– how retargetability of MAPS for different MPSoC platforms is achieved.

1.5.1. Applications and experiences

MAPS, as a MPSoC compiler infrastructure, has been applied and retargeted to a
number of MPSoC platforms to demonstrate its feasibility and value in automating the
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Figure 1.10 – (a) OMAP3530 Block Diagram (b) Overview of TI OMAP Software
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Figure 1.11 – TI C6678 block diagram

compilation process. Those platforms include commercial platforms that are available
in silicon such as TI OMAP3530 and TI C6678. Virtual prototypes of MPSoC plat-
forms (e.g. Synopsys MCO (Schirrmeister and Sheridan 2011)) are also supported,
and other multicore platforms (mostly x86 or ARM based) where a Pthreads environ-
ment is available. First, we briefly describe those platforms below.

– TI OMAP3530 was announced as a multimedia processor by TI in 2009, and is
shown in Fig. 1.10 (a). It consists of two processors, an ARM Cortex A8 CPU running
at 550 MHz and a TI C64x DSP clocked at 400 MHz. The hardware evaluation board
used in this work possesses 128 Mbyte DDR SDRAM at 166MHz shared between the
ARM and the DSP. Software-wise, Linux is used as OS on the ARM side. The Pthread
library and the POSIX IPC (Inter-Process Communication) are available for realizing
the thread management and communications. On the DSP side, a proprietary light-
weight multitasking operating system, called DSP/BIOS (Dart 2001), is provided by
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TI. The communication between ARM and DSP is handled by TI’s DSP/Link layer.
Fig. 1.10(b) gives an overview of the software stack for the OMAP platform. General
TI OMAP programming strategies are discussed in (Kloss 2003). The rule of thumb is
to map signal processing tasks to DSP and control flow processing to ARM. However,
no systematic methodology or tooling support is available.

– TI C6678 (Texas Instruments 2011) is based on TI’s KeyStone I multicore ar-
chitecture. It integrates eight C66x DSPs shown in Fig. 1.11. Besides the local L1/L2
memory for each DSP and global shared memory, the C6678 platform is featured
with the Multicore Navigator that consists of more than eight thousand queues for
direct communications between processor cores. This feature is particularly desirable
for streaming programs. A software development toolchain (compiler, linker, etc.) is
available for the DSP from TI. However, no platform-wide compilation framework is
available.

– Synopsys MCO (MultiCore Optimization) technology is a SystemC-based vir-
tual platform solution for hardware/software co-development in the early system de-
sign phase. Multicore platforms can be modeled using a high-level abstraction of a
processing element, named Virtual Processing Unit (VPU) (Kempf et al. 2005). The
VPUs on the platform are able to execute SystemC modules that model application
tasks. Those tasks contain C code that can be extended with explicit timing annota-
tions and with communication directives to access the communication infrastructure
of the modeled hardware platform. An automatic compilation framework is desired for
multicore platforms in MCO to enable seamless hardware/software co-development.
MAPS has been retargeted to support MCO so that system architects can quickly eval-
uate software design choices on a high-level virtual platform.

– Pthreads is a widely known parallel programming API and is widely available on
multicore platforms (e.g., x86 or ARM-based). MAPS has been retargeted to generate
streaming programs using the Pthreads API to realize concurrent processes with FIFO
communications. This expands the platforms that MAPS supports to virtually all plat-
forms that are capable of running Pthreads. Alternatively, this option is also valuable
when programmers perform functional verification on the host.

We have successfully applied the MAPS compiler infrastructure for these MP-
SoC platforms. Although there exist some differences in different MAPS instances
for these platforms, the basic principle and flow apply to all. As an example, the case
of using MAPS for the TI OMAP3530 is introduced below, as shown in Fig. 1.12.
The example from Listing 4 is used as an input program for the cpn-cc compiler. A
mapping info file is required for cpn-cc to perform source-to-source compilation, e.g.,
the spatial mapping of processes to processors of OMAP3530. The cpn-cc compiler
builds and transforms the AST to replace __PN nodes by OMAP3530 specific APIs.
At the right side of Fig. 1.12, a simplified code excerpt of the transformation results
for FIFO channel accesses is shown. The generated code is both editable and read-
able, thus creating opportunities for performance fine-tuning by programmers. It is
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Figure 1.12 – A complete compilation framework for OMAP3530 using MAPS

important to note that it is critical that all transformations take place at the AST level
that provides the complete semantic contents of the source code. For instance, the
channel DecOut is a FIFO communication that occurs between different processors
under this mapping, while the channel EncIn communication is local. This informa-
tion must be determined by the compiler in order to select the correct target-specific
API: in this case, interproc_ functions for inter-processor FIFOs and local_ for local
FIFOs. Simple textual replacement techniques are insufficient in this case. After the
source-to-source compilation, target specific C files are generated for the ARM and
the DSP and the existing vendor toolchains are re-used. The compilation flow is thus
fully automated.

Two case studies of applications are presented here by using MAPS on the TI
multi-DSP platform C6678 for completeness. Two signal processing benchmarks were
selected: a digital audio filter and an airborne radar application.

The digital audio application implements fast convolution filtering using the Fast
Fourier Transform (FFT) and inverse FFT and it performs low-pass filtering on a stereo
audio signal. Two parallelized versions of the application are written in CPN pro-
gramming model to explore parallelism: (a) exploiting parallel processing on left and
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right channel of the input signal simultaneously; (b) further parallelization by splitting
1024-point Fourier transforms into two 512-point blocks. Fig. 1.13 shows graphical
representations of both versions of the digital filter. The benchmark existed initially as
sequential C code. The conversion from sequential C code to parallel CPN versions
took around half a day to complete, thanks to the CPN being close to C. As the CPN
language separates the functional specification of processes and overall topology spec-
ification, the two versions differ only by a few lines, in that the further parallelization
mainly modifies the topology.

Source
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Filter

Filter

IFFT

IFFT
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FFT

IFFT

IFFT
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(a) Audio-1 (b) Audio-2

Figure 1.13 – Benchmark: digital audio filter

To evaluate benchmarks on the C6678 platform, we used a mapping heuristic,
Group-Based Mapping (GBM), explained in section 1.4, to generate spatial mapping
for benchmarks. The GBM takes constraints, e.g., available number of processors as
inputs to compute mapping. Fig. 1.14 shows the performance results when the con-
straint on the number of available processors increases from 1 to 8 for the audio filter.
Each data point corresponds to the runtime result of the generated mapping, which
is measured on the hardware board. It is evident that the speed-ups achieved increase
when the number of available processors rises. The higher number of parallel pro-
cesses in Audio-2 gives better results than Audio-1, in that 8 cores on the C6678
platform can be better utilized by Audio-2.

The second is a radar application to detect moving objects on the ground from the
air by sending periodic radar pulses. The benchmark was also initially available as
sequential C code. The first conversion into a CPN program took half a day. Fig. 1.15
shows the graphical representation of the first version. The topology of the paral-
lelized version basically follows the algorithmic division of the application. Similarly,
we performed the mapping step to C6678 platform, and the results are shown in the
Fig. 1.15(a). It is clear that the performance of the first process network version of
the radar application did not scale well beyond 4 cores. The speedup stayed about
the same from 4 cores to 8 cores, which indicated that the efficiency of the parallel
platform usage actually decreased.

We have investigated this saturation, and found the reason to be that the original
algorithmic division of the application led to a process network topology that has
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Figure 1.14 – Results of the audio filter (the percentage indicates the reduction of
runtime between two mappings)

large deviance in the individual process runtime. This indicates that some process
took a long time to finish, while others needed a relatively short time. In particular, the
processes Calculate Filter and Apply Filter (shown in gray in Fig. 1.15) are the main
number-crunching tasks in this application. This imbalance led to an inefficient usage
of the available cores on the C6678 platform.

Similar problems often arise in the process of refining the algorithmic specification
for optimized performance towards a particular parallel architecture. We attempted to
solve this by merging the tasks that require a short time to finish and splitting the
long-running processes into small ones. The processes with the same boxing style
in Fig. 1.15 were merged into one process, e.g. Pulse Compression, Reordering2,
Reordering1 and Calculate Steer Vectors. The processes, Calculate Filter and Ap-
ply Filter which has data-level parallelism, are split into four smaller processes. The
changes were implemented using the CPN language with very little effort. The im-
proved process network topology is shown in the Fig. 1.17(a). We then used the same
mapping heuristic to generate the spatial mapping for the improved radar application.
Fig. 1.16(b) showed that performance figures such as the speedup and efficiency are
much better than those from the initial version. Fig. 1.17(b)-(d) plotted the detailed
spatial mapping results for two, four and eight cores, respectively. The process merg-
ing and splitting allowed further exploitation of the computing resources of the C6678
platform.
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Figure 1.16 – Results of the radar applications: Performance (a) initial version; (b) im-
proved version. Speedup =
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Number of cores used

The two case studies represented typical design space exploration process of par-
allelizing applications for multicore platforms. The CPN language not only eases the
initial conversion from sequential code into parallelized form but also facilitates opti-
mizing the process networks incrementally. Software developers’ productivity is also
significantly enhanced as the compilation process is automated. The first case study
(digital audio filter) took around one person-day to finish parallelization and mapping
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Figure 1.17 – Mapping results of the radar application: improved version. (a) process
network topology (only edges that communicate major data traffic are plotted for the
sake of clarity; (b) mapping to two cores; (c) mapping to four cores; (d) mapping to
eight cores.

to the TI platform for each parallelized version. As a comparison, we have also at-
tempted the same procedure for the digital audio filter application manually using the
native tools. It cost a week or so to evaluate just one data point (two cores) in Fig. 1.14.
The majority of the overhead spent was on the debugging effort. We have estimated
that for the audio filter case the productivity improvement is around 30x – 150x, sub-
ject to the programmer’s experience level. The more complex the applications are, the
more productivity the programmer will gain. Last but not at least, programs written in
CPN are also portable to other MPSoC platforms.

1.5.2. Retargetability

One of the main parameters of different MAPS instances is the so-called target
info shown on the left of Fig. 1.12. It contains the target specific information such as
available resources (processors, inter-communication schemes) and API calls, which
needs to be known to the source-to-source compiler. For retargeting MAPS towards
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different MPSoC platforms, it is essential to update this information. Our experience
on the retargetability of the MAPS infrastructure is reported in this section.

Table 1.1 summarizes the retargeting process that was carried out towards the re-
ported MPSoC platforms. The main types of information required for retargeting are:

– Platform details: this includes how many programmable processors the target
platform has. This reveals where it is possible to simultaneously execute concurrent
processes to the compiler.

– Multi-tasking Runtime: this indicates how the run-time environments of proces-
sors of the target MPSoC support concurrent processes. Often in cases such as that of
an OS like Linux or proprietary ones running on a processor, the OS has multi-tasking
APIs to manage concurrent tasks (or processes).

– Communication: processes of streaming applications run simultaneously while
communicating with one another. Therefore, it is necessary for the compiler to know
the possible ways in which communication between processes may be realized. This
also includes the type (inter- or intra- processor) and specific API calls.

TI OMAP3530 TI C6678 Synopsys MCO Pthreads

Platform details ARM + DSP Nx DSPs Nx VPUs Multicores support-
ing Pthreads

Multi-tasking Run-
time

OS thread (ARM
and DSP)

OS thread MCO task modules OS thread

Communication shared memory shared memory or
message-passing

shared memory or
message-passing

shared-memory

Retargeting effort 20d 20d 10d 5d

Table 1.1 – Retargeting MAPS towards MPSoC platforms

The actual retargeting process consists of utilizing this target-specific information
in various locations within the MAPS infrastructure. The effort that we invested in
supporting these platforms is reported in Table 1.1. It ranges from 20 person-days to 5

person-days, depending on the complexity of target platforms. The time also includes
the initial time required to learn the platform details. This effort is acceptable and
justified by the increase in the automation level of the compilation process.

1.6. Summary

More than a decade ago, major computing processor manufacturers began to inte-
grate multiple (simple) cores into a single chip, namely multicores, to maintain scaling
according to Moore’s law. While the transition from scalar (uni)processors to multi-
cores is something of an evolutionary step in terms of hardware, it has instigated fun-
damental changes in software development. Things got even worse when requirements
are so different from the HPC to embedded systems and more and more heterogeneity
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has been seen in the hardware. As commonly agreed, the software development pro-
cess for multicores has to be revolutionized. Though many research efforts have been
made to provide solutions for developing the multicore software, lacking practical
tooling support has seriously jeopardized maximizing the potential of multicores.

This work describes our systematic approach to tackling the multicore program-
ming challenge from a practical perspective. A compiler infrastructure for hetero-
geneous embedded multicores has been developed. As proof and validation of this
work, the tooling infrastructure has been applied successfully in many academic and
industrial case studies of multicore design and development. A clean, light-weight
C language extension called CPN (C for Process Networks) is developed to capture
streaming models which are common in embedded applications. It is designed to keep
the syntax as close to C as possible while making process networks structured and
readable. A minimum set of new keywords is added to the C language to describe con-
current processes and channels which act as the communication between processes. A
source-to-source compiler, cpn-cc, was developed as the core component for a multi-
core compiler framework. The implementation of cpn-cc is based on the Clang/LLVM
by mainly using the AST transformations in the frontend. Unlike the compilers for
scalar processors, the cpn-cc does not only need CPN programs as input but also a
mapping info that specifies the spatial and temporal mapping of processes to process-
ing elements available in the target multicore platform. The cpn-cc and surrounding
software components in the framework are made to be extensible and customizable to
suit different requirements in the multicore design practice. Several real-world multi-
core platforms, such as TI OMAP 3530 and TI C6678 as well as system level virtual
platforms like Synopsys MCO, have been used as target platforms successfully. The
results of mapping many benchmarks onto multicore hardware are presented. The ap-
plications have achieved good speed-ups and software development productivity has
also been greatly improved. In addition, advanced use cases, such as automatic cal-
ibration of streaming applications for software mapping exploration and the legacy
software migration for a tablet (Sheng et al. 2013) have demonstrated the versatility
of the multicore compiler infrastructure developed in this work (Sheng et al. 2014). Fi-
nally, we discussed the state-of-the-art in software distribution, detailing the mapping
flow of the MAPS framework and providing insight into current research directions.
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