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1 Executive summary 
The EVEREST project aims to design a platform for implementing big data 
applications with both high performance and edge workloads following a data-
driven model. With the goal of designing the programming interface for this 
envisioned platform, we studied the use cases of the EVEREST project. This 
document reports on the results of this study and lists requirements on 
languages and tooling to be developed for the EVEREST programming 
framework. Together with the application requirements reported in D2.1 and the 
data requirements formulated in D2.3, they define the work on the EVEREST 
design environment to be done in work packages 3-6. Therefore, the three 
deliverables D2.1, D2.2, and D2.3 are closely linked and were carefully checked 
for consistency. Despite the many links between, e.g., the language and 
application requirements, we attempted to make the three documents self-
contained and easy to read. Therefore, some basic requirements are stated in 
two or all of the deliverables D2.1-D2.3, because cross-linking all of them would 
make the individual documents unreadable. 
 
We observe two different major workload types in the use cases. The first type 
is characterized by single-location heavy computational workload (e.g., weather 
simulations, or machine learning). The second type corresponds to computation 
distributed across loosely coupled systems, like data acquisition tasks. The 
highest potential gain achievable by specialized language support is exhibited 
by the heavy computational workloads that directly profit from the novel 
heterogeneous node architecture of the EVEREST platform. We thus propose a 
custom tool flow with tailor-made domain-specific abstractions coupled with 
runtime components which enables us to achieve high interoperability and 
retargetability at a low cost to users of existing code bases. In addition, to 
unlocking the potential of EVEREST nodes, we consider language support for 
coordination tasks to better support the second type of workload. We describe 
how the proposed language support and associated tooling integrates with 
existing code bases and development environment. To accomplish this, we 
derive requirements on the different tools and system software of the EVEREST 
programming framework, including compilers, runtime auto-tuner, runtime 
system and high-level synthesis tools.  
 

1.1 Structure of this document 
Section 2 first introduces the overall aim of the EVEREST project. Section 3 
breaks down the use cases of the project to identify functionality that could profit 
from domain-specific optimizations and hence should be supported by the 
EVEREST programming framework. Part of this analysis looks for libraries and 
code sections that are shared between the use cases. In Sections 4 and 5, 
functional requirements for the language abstractions to be developed are 
analyzed and discussed. Section 6 refers to the requirements considerations 
related to the FPGA experimental research platforms of EVERETS. Extra-
functional requirements are detailed in Section 7. Finally, Section 8 concludes 
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with a detailed requirement analysis on the different components of the 
EVEREST programming framework. 
 

1.2 Related documents 
This report is closely related to: 
D2.1 - Definition of the Application Uses Cases,  
D2.3 - Definition of data requirements,  
D4.1 - Definition of the compilation framework (M9), 
D2.4 - Refined definition of application uses-cases (M24), 
D2.5 - Refined definition of language requirements (M24), 
D2.6 – Refined definition of data requirements (M24) 
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2 Introduction 
 
The EVEREST project will put forward a platform for heterogeneous, distributed, 
scalable and secure High-Performance Big Data Analytics (HPDA). The design of 
a programming framework and the underlying programming abstractions take a 
key role in this undertaking. Providing designers with development tools that are 
widely platform agnostic and are able to perform meaningful optimizations on 
the code poses a unique challenge. These tools should seamlessly integrate in 
current development flows, requiring minor changes to established practices.  
 
The development of the platform and programming framework is driven by three 
industry-relevant use cases, namely, renewable-energy prediction, air-
quality monitoring, and traffic modeling. Apart from the high societal 
relevance of these use cases, they are excellent representatives of HPDA, 
combining challenging high-performance computing, machine learning (ML) 
modeling, and state of the art algorithms for decision making. Given the use 
cases heterogeneity, established programming practices differ across the 
different domains. This makes it even more challenging to design and implement 
a seamless programming framework.  
 
This report summarizes the requirements for language abstractions and the 
programming framework as a whole. We start by introducing the use cases in 
more detail, extracting important underlying computational patterns that can 
profit from language and compiler support. One such pattern are HPC and ML 
kernels, common to the different use cases as well as the coordination and 
workflow aspects of the applications. These aspects will steer the development 
of the big data framework and associated language abstractions by means of 
dataflow models. We also describe extra-functional constraints that have to be 
respected for the different use cases. Finally, we list identified requirements for 
the different components of the use cases and the EVEREST programming 
framework. 
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3 Use Case Analysis 
The EVEREST platform will support applications that process large amounts of 
data in a distributed setting. In order to better understand the requirements and 
find optimization potential in such applications, we first analyze the use cases of 
the project with the aim of identifying common bottlenecks and aspects that can 
profit from language support. 
 
This section briefly discusses the three use cases, highlighting aspects relevant 
for the design of the programming framework. A more detailed presentation of 
the use cases can be found in Deliverable D2.1. All use cases are at different 
levels of maturity, as is explained in detail in the aforementioned document.  

3.1 Air Quality Monitoring 
Industrial plants that emit pollution are naturally subject to strict regulation 
defining acceptable levels of air quality which must be met. But depending on 
the weather situation, the emission dissipation greatly varies. This use case 
intends to provide local monitoring of the air quality and weather on site to help 
regulating the pollution produced by a plant accordingly. Weather data is 
analyzed and used to produce a local weather forecast for a 10km radius around 
pollution sources. The resulting information will then be combined with machine 
learning approaches to assist in deciding whether or not to postpone emission-
heavy activities at the industrial site.  
 

 
Figure 1: Air Quality Monitoring Use Case Flow 
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The overall structure of this use case is shown in Figure 1. It combines different 
functions with different computational requirements and computational 
patterns, executed across multiple sites and systems. The largest and 
computationally most intense aspect of this application is the generation and 
simulation of the weather model using the WRF model. It consists of many 
different kernels computing and simulating the different facets that influence 
weather phenomena such as cloud movement and radiation. Due to the impact 
these kernels have on the computation time of the application, the WRF model 
is a key component for acceleration. Given the experience of the partners in 
Domain Specific Languages (DSLs) for computational fluid dynamics, these 
kernels will serve as initial target for DSL design. From appropriate abstractions, 
compilers can be designed/extended in WP4 that lower the code to multi-core 
computing nodes with and without FPGA acceleration.  

3.2 Renewable-Energy Prediction 
To better harvest the potential of Renewable Energy sources, this application 
will provide a predictive model to forecast upcoming weather events that may 
influence the energy production from renewable sources. It will analyze real-
time weather data and generate a high-resolution weather model that can 
produce highly localized weather forecasts hourly or sub-hourly. Artificial 
intelligence methods will then be used on the output generated by the weather 
model to estimate possible productions by renewable energy sources. 
 
Like the Air Quality use case, this application is mainly built around a weather 
model to generate forecasts. Kernel optimization for the model will thus benefit 
this use case as well.  

3.3 Traffic Modelling 
The main focus of this use case is to optimize traffic flows within cities to reduce 
congestions and travel times, which in turn can help reducing the pollution 
caused by traffic. Based on both historical and real-time traffic data as well as 
weather data, a traffic simulation is run in conjunction with a prediction model 
to allow the forecasting of high-congestion scenarios and route the traffic 
accordingly when routes are requested. 
 
This use case consists of several interconnected workflows that together form a 
larger application, as shown in Figure 2. Both the traffic simulation as well as 
the traffic prediction model contain kernels that will also profit from performance 
improvements brought by the use of custom domain-specific abstractions. By 
using higher-level abstractions, it will be possible for these kernels to 
transparently leverage the compute efficiency of accelerators implemented on 
the reconfigurable fabric of the EVEREST nodes. Apart from kernels, this use 
case requires orchestration of the individual workflows, which are either 
streaming-based or pure batch processing. Moreover, traffic modeling includes 
a prediction model and a traffic simulator. The prediction and simulation access 
the same data, so that the orchestration should allow data sharing between 
workflows to improve memory efficiency. 
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In the next sections we will discuss the specific challenges posed by the use 
cases. In order to make solutions to these challenges widely applicable within 
the EVEREST framework, we will abstract from the specific issues, focusing on 
generalizable solutions.  
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4 Workflow Orchestration 
The use cases are distributed and thus require support for orchestration among 
the different workflows. We will base the discussion in this section on the traffic 
simulation use case. A similar analysis applies to the other use cases. In the 
particular case of traffic simulation, additional language support maybe required 
to optimize the workflow as discussed in the following.  

4.1 Problem Description 
As outlined in Figure 2, the traffic simulation use case is comprised of four 
separate workflows that interoperate with each other. A big data collection 
workflow feeds the traffic simulator, which in turn produces output used for the 
training of the traffic model and the routing algorithm. Each of these workflows 
is computationally intensive. Additionally, loads may vary, depending on the 
input size. Thus, efficient scheduling and orchestration at runtime is necessary. 
 
For the collection and processing of large amounts of data, different standard 
solutions already exist, making the development of tooling for speeding up this 
workflow uncritical. Once a solution is chosen, its potential for optimization may 
be investigated in the future. 
 
Both the traffic simulation and the training of the traffic prediction model are 
batch operations, being only executed in specific time intervals. HyperLoom [1], 
a platform for defining and executing workflow pipelines in large-scale 
distributed environments, will be used to orchestrate these workflows. 
HyperLoom offers a user-friendly Python interface that eases programmability 
and already supports batch operations with task-graph model across distributed 
nodes. Stemming from an EVEREST partner, HyperLoom will continue to be 
extended to better cater for the EVEREST use cases.   
 
The routing workflow is the most time-critical component of this use case. 
Continuously processing a stream of incoming routing requests, its need for 
computing power may wildly vary throughout the day. Due to the streaming-
based nature of this aspect of the use case, HyperLoom in its current form is ill-
suited, requiring a different tool for the orchestration of this flow. We will analyze 
a solution with a message queuing system for processing the routing requests 
and Kubernetes for dynamic resource allocation to adapt to the varying 
workload.  
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Figure 2: Outline of the traffic simulation use case 

 

4.2 Requirements 
Though already a sophisticated platform for describing and executing batch 
workflows, HyperLoom still needs to be extended for use in this project. Data 
sharing within and across workflows is a concern that should be realized in this 
use case to aid computation. This may require HyperLoom to gain a deeper 
understanding of the data flow within applications. Previous research by project 
partners can be leveraged for this: Ohua [2], a framework for implicit 
deterministic parallelism based on extracting and optimizing dataflow graphs 
and Reactors [3]–[5], a deterministic actor model, based on dataflow extended 
with discrete event semantics. While well-suited for expressing dataflow-based 
applications, these two solutions operate at different granularity levels. 
HyperLoom operates on entire applications, while Ohua and Reactors do it at the 
level of functions within applications. 
 
To better handle the dynamic nature of the applications running on it, the 
HyperLoom platform needs to support communicating with the lower layers of 
the system like the virtualization infrastructure. For the streaming-based routing 
workflow, a framework needs to be found or devised to handle the highly 
dynamic nature of the load. Since energy efficiency is a key goal of EVEREST, 
unneeded computing resources should be freed and made usable for other 
processes. The automatic adaptation of the runtime could employ solutions like 
the mARGOt auto-tuner [6].  
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5 Kernel Computations 
As outlined in Section 3, air quality modeling and renewable-energy prediction 
heavily rely on the WRF weather model. In general, most of the computational 
power required by such computations is for solving differential equations using 
numerical methods. In the case of weather simulations such as WRF, these 
mainly include fluid dynamics problems. Apart from them, models of 
microphysical processes to simulate radiation are particularly computationally 
intensive. For the traffic simulation use case, particle-based simulations are 
foreseen. At the time of writing it is unclear what kind of particle interactions 
must be supported with languages. This aspect will thus not be further discussed 
in this deliverable. In addition to physics simulation, all the three uses cases of 
the EVEREST project use simulation data to drive machine learning algorithms. 
Such algorithms are dominated by linear algebra operations that have often 
been shown to lend themselves to acceleration. 
 
Kernels in physic simulations or machine learning can be conceptually connected 
within a dataflow graph. This allows applying optimization techniques on the 
kernels themselves without needing to consider the whole application. The 
kernels can be interpreted as subsets of general tensor algebra. This view is 
often closer to their actual physical or mathematical formulation. These 
descriptions can also carry crucial expert knowledge about the problems they 
encode, which is lost in lower-level programming languages. This enables more 
impactful abstract transformations as oppose to structure-oblivious standard 
optimizations. The use cases can thus profit from specialized language and 
compiler support for these numerical stencils and general linear algebra kernels. 
 
The rest of this section further explains optimization potential in the kernels that 
underlie the WRF model, as they provide our most common form of expert 
knowledge. Insights gained from the development of optimizations for WRF 
kernels will later also be applied to kernel computations that are part of the 
traffic simulation use case and machine learning algorithms. Tensor 
optimizations for the latter are widespread in the literature. 
 

5.1 Problem Description 
The Weather Research and Forecasting Model [7]  is a program for producing 
climate predictions and weather forecasts. It is an integral component in at least 
two of the three use cases of this project and is also used worldwide, making 
the contributions within EVEREST impactful beyond the project itself. The model 
code has a modular structure, allowing different components to be enabled and 
used as necessary. Each module concerns itself with a different aspect of a 
weather simulation, like cloud generation and movement, microphysics 
phenomena, or radiation calculations. These kernels are then called in regular 
intervals during the simulation, allowing them to update their respective model 
parameters. Depending on the complexity of the numerical computations done 
within the kernel, the execution times for the modules vary. 
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As a result, modules that take especially long to execute, most prominently the 
cloud movement, radiation and microphysics modules, are updated less often to 
improve latency. This has the side-effect of yielding less accurate data, as certain 
variables in the model are only accurate with respect to long-term trends. In 
practice, this leads to a simulation missing to capture weather phenomena 
associated to highly spatio-temporal processes, such as convection resulting in 
thunderstorms. Accelerating these complex modules is a key goal within 
EVEREST, partly because it opens up new possibilities for the project’s use cases.  
 

5.2 Requirements 
In order to improve the execution time of computational kernels, the numerical 
computations they encompass could be described at a higher abstraction level. 
Similar work has been done for Computational Fluid Dynamics calculations in the 
past by members of the project [8], [9]. By using a high-level DSL, the compiler 
has more semantic information about the kernel, enabling data layout 
transformations and loop schedules that are no longer evident coming from 
lower-level languages like C or Fortran. In the context of this project, existing 
DSL abstractions have to be extended to cater for the stencils in the WRF model 
and the compiler must be retargeted to generate code for the EVEREST platform. 
Most notably, the compiler must generate code both for multi-core CPUs and 
FPGAs. 
 
We divide the requirements for the language into two. First, we discuss how the 
domain-specific abstractions can be embedded into the use case code 
(embedding, cf. Figure 3). We then discuss requirements on the abstraction itself 
(mapping, cf. Figure 3). 
 
5.2.1 Contextual Requirements 
Standalone DSLs can provide great performance improvements. In reality, DSLs 
have to seamlessly integrate with the development environment and respect 
constraints imposed by the surrounding code. This includes code surrounding 
the kernel itself (e.g., in Fortran) and other components of the programming 
stack, such as the language runtime, the operating system and the virtualization 
layer (from WP5). More concretely:  
 

• The language must be aware of the immediate surrounding context, such 
as data types, data layout and functional conventions. The DSL and its 
compiler must encode just enough information to enable integration 
without cluttering the design.  
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• The user, or preferably the toolchain, must augment the existing codebase 
with a customization point that allows invoking the DSL implementation. 
In other words, both the tooling and the language must accommodate 
their respective parts of a (foreign) calling mechanism. 

• In heterogeneous implementations, memory transfers are often needed, 
most commonly at the point where execution forks to a different device. 
The language should use abstractions that allow the compiler to 
automatically insert such transfers. This should to a large extent be 
transparent to the programmer.  

 
It is of high importance that these requirements leave the toolchain with as 
much freedom to implement a kernel as possible, opening up more opportunities 
for optimization. This includes mapping decisions of computations to cores, 
threads and FPGA overlays as well as data to memories. Consequently, a 
contextual requirement for the DSL language is to be platform agnostic. It should 
avoid asserting particular target devices or programming language that it is 
embedded in. Retargeting within the compiler should account for platform 
specific optimizations. 
 
5.2.2 Application Requirements 
Defining and implementing a DSL is always a choice made based on the 
observation that there exists a divide between the way requirements and goals 
are laid out in the application domain as opposed to the actual implementation 
in some more general programming language. What should and should not be 
part of a DSL depends on how much of the whole application is deemed relevant. 
Given the use case, this yields the following application-specific requirements: 
 

• The DSL must have first-class support for expressing the mathematical 
expressions that make up our target application domain. For numerical 
simulations of differential equations, the language should support linear 
and tensor algebra. Support for stencil operations is also required, i.e. it 
must provide a full linear algebra abstraction. 

• The DSL must map to an intermediate representation that makes it 
amenable to optimizations within the abstract target domain, which should 
include mathematical transformations along with more hardware-specific 
ones at a lower abstraction level. 

• The chosen representation must either build on or enable the use of 
existing or standardized infrastructure so that the toolchain can target as 
many platforms as possible and interoperate with other tools in the 
EVEREST project. 

 
In essence, the chosen mapping of domain- to language elements should provide 
a considerable benefit to the user over an implementation in a non-specialized 
language. This can be achieved through adopting more concise notations, 
reducing the amount of boilerplate code and ambiguity. To improve performance 
and other execution metrics, the compiler must be made aware of application 
specific and expert knowledge through the language.  
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Figure 3: Requirement factors for the Kernel DSL 

5.3 Challenges 
One of the key challenges in transforming kernels of numerical simulations will 
be the stability of the result. In the past, there were attempts to employ 
Advanced Vector Extensions 2 in WRF computations to improve the execution 
time. This, however, led to highly unstable results and possibly also in numerical 
code crashes at seemingly random times, with errors not reproducible at the 
same times, which were attributed to the accumulation of floating point 
inaccuracy. Hence, special care must be taken when optimizing floating point 
operations in kernels, e.g. by comparing the results produced against 
unoptimized execution results or another form of gold standard. Other forms of 
validation that warrant a physical interpretation could also be aided by a DSL 
compiler, though most responsibility is left with the user. Methods for symbolic 
analysis of error propagation should be also considered.  

Another challenge will be the integration of the DSL into the existing Fortran 
compilation flow to ensure that the code produced will link seamlessly to the rest 
of the WRF model. This includes integration with the runtime system, mapping 
data and synchronizing data transfers. The latter questions will be dealt with in 
a future report, once the hardware platform, the virtualization environment and 
the interfaces are more precisely described. 

In addition to being reconfigurable, some drivers in the WRF model greatly vary 
with the evolution of runtime variables. The EVEREST framework should include 
provisions to adapt to the application workload. The compiler, in particular, 
should at least be able to produce different variants of the code to enable 
runtime selection. Should this be insufficient, code generation at runtime in a 
“Just in Time” manner will be considered. In this case, the overhead of just-in-
time compilation and synthesis should be constrained so as not to considerably 
impact the overall application execution time. 
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6 Hardware Design Considerations  

6.1 HLS problem description 
Field Programmable Gate Arrays (FPGAs) are increasingly becoming an 
attractive alternative target, providing valuable efficiency tradeoffs. One key 
opportunity afforded by reconfigurable devices is the possibility to continuously 
adapt the accelerator architectures to new algorithms, models, and iteratively 
provide optimizations without the need to change the device, coping with the 
exponential growth of algorithmic research in the area. However, a significant 
limitation in using FPGA devices is the requirement to develop the architectures 
in low-level hardware design languages (such as Verilog or VHDL), which is 
complicated and time-consuming. Traditional software languages allow the 
description of sequential instructions that do not depend on the low-level 
hardware implementation, while languages such as VHDL or Verilog require a 
good knowledge about digital design and circuits to produce efficient results. 
Expecting use case developers to follow the design of an application from the 
algorithm definition down to the FPGA programming is not realistic. 
 
For these reasons, the common approach in using FPGAs to accelerate complex 
applications relies on High-Level Synthesis (HLS). HLS is a process that 
automatically translates high-level descriptions into hardware description 
language. The use of HLS tools raises the level of abstraction and makes the 
most time-consuming step in the development flow automatic. Instead of 
manually writing VHDL/Verilog code, the user only needs to provide a program 
written in a standard programming language such as C/C++. The Register 
Transfer Level generated by HLS usually comes with standard interfaces making 
possible the integration of the accelerators in more complex system-on-chip 
architectures. In EVEREST, the interfaces between the accelerators and the rest 
of the platform (see 6.3) will be based on the Advanced eXtensible Interface 
(AXI), part of the ARM Advanced Microcontroller Bus Architecture specifications. 

6.2 HLS challenges 
Current HLS tools effectively generate serial or parallel (e.g., through OpenCL 
annotations) accelerators for regular, easily partitionable, arithmetic-intensive 
workloads typical of digital signal processing. They mainly target extraction of 
instruction-level parallelism and consider simple memory subsystems. 
Additionally, they typically do not consider the need to operate with large 
datasets that cannot fit into on-chip memories or cannot be localized. Thus, they 
consider known, fixed memory access latencies and perform optimizations that 
reduce such latencies. In general, they do not consider massive but fine-grained 
memory parallelism due to datasets that can barely fit in the external accelerator 
memory, the data-dependent operations, the highly unbalanced parallel 
activities, the synchronization through atomic memory operations, and the 
creation of custom memory architectures around the computational logic.  
 
HLS-based solutions for optimizing the memory accesses through the 
exploitation of coarse-grained parallelism will make the EVEREST approach 
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amenable to the power efficient execution of workload with large datasets. In 
addition, accelerators will become more efficient with the proper optimization of 
memory accesses and data transfers by using intelligent memory managers, 
automatically generated with a combination of compiler information and 
hardware generators. 
 
On the same front, EVEREST will extend the support for floating-point 
computation with variable precision to further improve energy and latency 
savings. For example, in Machine Learning/AI-based tasks, such variable 
precision operations will reflect different quantization used in deep learning 
algorithms. 

6.3 FPGA-based target platform 
In the EVEREST project two different major workload types are observed in the 
use cases, i.e., single-location heavy computational workloads and distributed 
workloads in loosely coupled systems. Throughout the project we are going to 
selectively decide which processing parts of those workflows can benefit the 
most from the specialized language as well as the heterogeneous EVEREST 
platforms.  
 
Those platforms may feature one or more FPGA devices for hardware 
acceleration and one or more physical memories (either local or external to the 
FPGA), as shown in Figure 6. Such systems will run Linux as Operating System 
(OS) and a hypervisor to manage the hardware resources. Note that the 
EVEREST approach is not limited to these architectures. In fact, specifying the 
workflow pipelines at a higher level of abstraction allows us to easily port the 
applications to architectures with heterogeneous GPU-based nodes and end-user 
embedded devices.  
 
To examine the potential of programmable heterogeneity in EVEREST workflows, 
we propose the employment and extension of two state-of-art research 
platforms that leverage FPGAs in different architecture configurations. The first 
is a CPU-managed system that rely on tightly-coupled, bus-attached FPGAs. The 
second is an FPGA-disaggregated system that relies on loosely-coupled, 
network-attached FPGAs. 
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Figure 4: EVEREST experimental heterogeneous platforms 

Both those systems abstract the way that the FPGA accelerators are being 
developed and integrated and offer high flexibility to the EVEREST consortium 
to account for interoperability and retargetability of the developed accelerated 
solutions to different platforms (even out of EVEREST’s platforms).  
 
This abstraction is enabled by a predefined set of interface requirements. There 
are mainly two considerations tied to those requirements, a) the interface of the 
accelerators to the host through a software API and b) the interface of the 
accelerators inside the FPGA at the RTL-level. Both interfaces are offered by the 
Integrated Development Environments (IDEs) of the two platforms, i.e., the OC-
Accel framework of the POWER9 with the OpenCAPI-attached FPGAs and the 
cFDK of the cloudFPGA research platform.  
 
As shown in Figure 5, the accelerators in both platforms are interfaced through 
AXI channels. Both OC-Accel and cFDK provide a Memory Mapped I/O register 
access over an AXILite bus, as well as a full AXI master bus. cFDK also enables 
AXI-stream based access. Same AXI master buses are used to connect the 
accelerators to the FPGA DRAM channels (also HBM for OC-Accel).  
 
The OC-Accel logic and the cFDK logic implement all the necessary low-level 
processing of the OpenCAPI and TCP/IP respectively, in order to provide those 
AXI interfaces. This way the developers can generate the accelerators with only 
this interface requirement. Such interfaces are standardized and commonly used 
in the FPGA design ecosystem, while they can be generated by High-Level-
Synthesis (HLS) tools with #pragma directives at the function definition level.  
 
On the host software side, the two platforms offer different APIs. OC-Accel relies 
on the libcxl user-space and the ocxl kernel-space libraries. On top of them a 
C/C++ interface is provided and based on that, different language porting can 
be done, e.g., Python through a C-to-Python tool (e.g., SWIG, Pybind11 etc.). 
On the other side, cFDK offers the seamless connection to any TCP/UDP socket 
and thus any programming language or library compatible with sockets can be 
interfaced directly. 
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Figure 5: Interface requirements for FPGA accelerators a) at the host software side and b) at 

the FPGA side for both OC-Accel (top) and cFDK (bottom) 

 

  



http://www.everest-h2020.eu 

D2.2 – Definition of Language Requirements 22 

7 Extra-Functional Information 
While language and compiler design is mainly focused on meeting functional 
requirements, it also has to ensure that extra-functional requirements are met. 
This requires additional information to be passed on from the input code to the 
final program. Extra-functional information could be provided in the form of 
compiler flags, annotations within the code or using an additional markup 
language. 

This section briefly discusses extra-functional requirements identified during the 
use case analysis. 

7.1 Timing Constraints 
Some applications need to analyze large and varying amounts of data and still 
have to deliver results within a specific timeframe or else the data loses its value. 
This is especially true for the weather simulation use cases, where weather 
predictions have to be produced so that the entity requesting the information 
has time to act based on the results. The traffic simulation use case is even more 
time critical as the simulation of the current traffic situation has to keep up with 
real-world developments to deliver accurate navigation information. 
 
These timing constraints have to be considered by the EVEREST tool flow and 
hence must be representable in the language abstractions and the compiler. 
End-users must be able to annotate timing constraints to certain computations 
that are then enforced by the EVEREST platform. This enforcement could for 
instance be realized either by aborting computations that would cause the 
overall execution to miss the deadline, allocating more computing resources if 
possible or by reducing the accuracy of certain computations in favor of meeting 
the deadline. 

7.2 Energy Efficiency 
HPC clusters need non-negligible amounts of energy to operate. Apart from high-
performance and respecting timing constraints, the EVEREST platform seeks to 
also reduce the energy footprint of the applications. Heavy and efficient use of 
FPGA acceleration will help making systems more energy efficient. The compiler 
and the HLS flows will use energy as additional metric to drive optimization. This 
metric is however more difficult to estimate and not trivial to measure 
accurately. We expect to be able to rely on advanced measuring setups (for 
instance at TU Dresden’s super computer) to shed light on energy-aware 
optimizations for the kinds of large scale application dealt with in EVEREST. 

7.3 Data Security 
Some of the data that is processed as part of the different application use cases 
may be considered confidential and must therefore be specifically protected from 
unauthorized access. Measures must be available to ensure the integrity and 
availability of the data. The EVEREST tool flow will have to account for these 
requirements. A detailed analysis of the requirements on data security is 
provided in Deliverable D2.3.  
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8 Use case and Framework Requirements 
This section summarizes important observations extracted from the use cases 
that are important from the point of the view of the programming framework. 
From these observations we derive general requirements for the components of 
the use cases in terms of programmability and interoperability, among other 
properties. To account for these properties, we distill requirements for the 
components of the programming framework and their interfaces, including 
language abstractions and annotations, compiler support, runtime support, and 
platform support.  
 

8.1 Summary: Properties of the Use Cases for Programming Support  
Table 1 High-level properties of EVEREST use cases describes high-level properties of the 
use cases as a whole. As can be seen, the use cases represent a challenging 
combination of HPDA, HPC and ML components, stressing today and future 
programming frameworks. At the higher-level, use cases are distributed across 
different geographical locations, while requiring efficient coordination for 
distributed computing within a site (e.g., via HyperLoom). The use cases are 
implemented in multiple languages, making language integration an important 
requirement. As discussed above, all use cases have components that require 
batched processing, with traffic modelling requiring both streaming and batched 
processing. Similarly, all use cases are time critical, in the sense that results 
delivered too late are either irrelevant (e.g., a prediction of something in the 
past) or can potentially lead to economic costs (e.g., in the case of prediction 
for renewable energies). All three use cases use ML techniques for decision 
making, with inference possibly offloaded to the edge.  
 
 

Table 1 High-level properties of EVEREST use cases 
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Renewable-
energy  
prediction 

X X X  X X X  

Air-quality 
monitoring X X X  X X X X 

Traffic  
modeling X X X X X X X X 

 
At a finer granularity, use cases have to profit from the novel computing nodes 
proposed in EVEREST. This requires a detailed analysis of individual components 
within the larger workflows. Properties of selected components are shown in 
Table 2. These components are selected for being critical for the execution of 
the use cases. Components not included in the table will receive standard 
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support by the high-level platform, meaning no special language or framework 
support to improve execution metrics or programmability. Table 2 depicts a 
heterogeneous landscape for tool support, which imposes requirements on use 
case providers, language and framework design, and tool interfaces, as will be 
discussed in the following. Some of the components are being developed at the 
time of writing. In this case, we report on what is planned whenever possible.  
 

Table 2 Properties of key components in EVEREST use cases 

ID Name Languages Target 
resource 

Compute 
class 

Data 
class 

Frameworks 

C1 WRF 
Assimilation 

Fortran CPU, 
GPU, 
FPGA 

HPC, I/O 
bound 

Regular 
data 

WRF 

C2 WRF data 
preparation 

Fortran CPU, 
FPGA 

HPC, I/O 
& 
Memory 
bound? 

Regular 
data 

WRF 

C3 WRF radiation Fortran CPU, 
GPU, 
FPGA 

HPC, 
compute 
bound 

Regular 
data 

WRF 

C4 WRF cloud 
movement 
and 
microphysics 

Fortran CPU, 
GPU, 
FPGA 

HPC, 
compute 
bound 

Regular 
data 

WRF 

C5 Energy 
modeling 

Python, 
C++ 

  Irregular 
data 

TF, Keras 

C6 Big data 
collection 

Rust/Python CPU, 
FPGA 

I/O and 
storage 
bound 

Irregular 
data 

Expected: 
Sqlite, HDF5, 
InfluxDB, 
Apache Flink 

C7 Traffic: AI 
Training 

Python CPU, 
GPU, 
FPGA 

HPC, 
Compute 
intensive 

Regular 
data 

TF, Keras 

C8 Traffic: AI 
inference 

Python CPU, 
GPU, 
FPGA 

Cloud, 
Edge 

Regular  
data 

TF, Keras 

C9 Traffic 
simulation: 
Benchmarking 
& AI training 

Python, 
Rust, C++ 

CPU, 
GPU, 
FPGA 

HPC, 
Compute 
intensive 

Irregular 
data 

HyperLoom 

C10 Traffic 
simulation: 
daily use 

Python, 
Rust, C++ 

CPU, 
GPU, 
FPGA 

HPC, 
Cloud 
Edge 

Irregular 
data 

HyperLoom 

C11 Intelligent 
routing 

C++, Rust CPU, 
GPU, 
FPGA 

HPC, 
Cloud 

Irregular 
data 

Unknown 
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8.2 Requirements 
EVEREST as a whole contributes to different aspects of system design and 
programming. Global requirements and a detailed representation of the degree 
to which the requirements should be met for the different components are 
presented in Table 3 Global requirements on key use case components (the darker, the more 
important the requirement is). The table includes the following requirements:  
 

GREQ1. Programmability: End users of the platform should profit from the 
EVEREST platform in a transparent way. This means that with minor effort, 
programmers can have functionality executing on, for instance, an FPGA 
without having to write a single line of code in an HDL. Code modifications 
include annotations or inserting DSL expressions in exiting code. As an 
example, as discussed in Section 5, the main numerical components of the 
WRF model (C3 and C4) will profit from expression DSLs to automatically 
create FPGA accelerators for stencils and other linear algebra operations. 
Machine learning components (e.g., C5) do not require that much 
programming support, since this is already accounted for in machine 
learning frameworks.  

GREQ2. Interoperability: End programmers use different frameworks (cf. 
Table 2) and languages. A learned model, for instance, has to be exported 
from the framework to be deployed on the platform. This requires support 
for standard formats and for clearly defined interfaces within the EVEREST 
programming framework.  

GREQ3. Retargetability: The EVEREST computing platform scales from the 
edge all the way to the data center. Different instantiations of the platform 
as well as alternative technological options (e.g., Xilinx FPGAs and HLS 
tool flows) have to be supported by the EVEREST programming 
framework.  

GREQ4. Performance: The EVEREST programming frameworks shall help 
improve the performance of applications. Naturally, the development will 
focus on the more performance critical components of the use cases from 
Table 2.  

GREQ5. Energy efficiency:  Apart from performance, an increasingly 
important property of systems is the energy efficiency. By clever use of 
programmable and reconfigurable resources, the EVEREST programming 
environment must have energy efficiency as second objective. 

 
Table 3 Global requirements on key use case components (the darker, the more 

important the requirement is) 

ID Global 
requirement 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

GREQ1 Programmability             
GREQ2 Interoperability            
GREQ3 Retargetability            
GREQ4 Performance            
GREQ5 Energy efficiency            
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From these global requirements and the information in Table 1 High-level properties 
of EVEREST use cases and Table 2,  we distil requirements for different flows to be 
implemented in the EVEREST software development kit. The flows and the 
requirements are described hereafter.  
 
8.2.1 Overall Envisioned Flow 
 

 

Figure 6. Envisioned overall flow 

Figure 6 provides an overview of the envisioned EVEREST programming 
environment. We first discuss the role of the different components before listing 
their requirements in Sections 8.2.2 through 8.2.6.  
 
8.2.1.1 Workflow Orchestration 
The preliminary use case analysis in Section 3 showed that some use cases 
include highly computing intensive workflows. Within the project, HyperLoom 
[1] shall be used to orchestrate these large application flows. HyperLoom is a 
platform used to define and execute workflow pipelines in large-scale distributed 
environments. Using a simple Python interface, end-users can define their 
application flows, which are then executed on a HyperLoom server that 
distributes the work onto several workers.  
 
As discussed in Section 4.2, a batch-enabled pipeline framework in EVEREST 
needs to efficiently distribute shared data between consequent simulated 
iterations or reuse it across workflows. 
 
8.2.1.2 Embedded DSLs 
Embedded DSLs offer great potential to simplify coding while opening up more 
possibilities for optimization. Given the preliminary analysis discussed in Section 
5, we will extend prior DSLs for computational fluid dynamics and tensor-based 
computation, e.g., CFDLang [2], TeML [9], and TeIL [10]. The latter works by 
constructing an AST in-place in the code. This level of control is particularly 
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important to control memory access patterns. We aim for a clear-cut call-like 
embedding that leaves us with the freedom to rearrange and possibly 
precompile. Additionally, in order to disseminate our DSL and obtain feedback, 
we have considered building library targets that could also be integrated with 
existing projects right away. 
 
8.2.1.3 Multi-level Intermediate Representation with MLIR 
One of the explicitly stated goals of the project is to achieve an interoperable 
tool flow. To that extent, we will build on the steadily maturing MLIR framework 
[11]. MLIR is working towards compatibility with a wide variety of existing back-
ends, hinting at possible vendor support in the future. In addition to this, MLIR 
is also being used for hardware specification within the EVEREST consortium and 
outside (e.g., CIRCT1). With MLIR, we envision a modular compilation pipeline, 
leveraging the design effort of the open-source community. By designing 
EVEREST dialects that the DSL abstractions map to, we can profit from the 
existing lower-level dialects for linear algebra.  
 
8.2.1.4 High-level Synthesis and Memory Design 
High-level synthesis (HLS) allows application designers to accelerate specific 
kernels on FPGA without having much hardware/software. Moreover, since HLS 
uses high-level input languages (e.g., C/C++), the system-level integration is 
simplified. In addition to the acceleration of the kernels, as stated in Section 6.2, 
HLS flow allows for the optimization of the energy consumed by the EVEREST 
applications. EVEREST will consider two alternative HLS tools: Xilinx Vitis HLS 
and Bambu [12]. Supporting two different HLS tools shows the interoperability 
of our solutions. Xilinx Vitis HLS is one of most common HLS tools. It offers an 
open-source frontend based on the LLVM compiler. It also supports a wide range 
of optimization directives and accelerator interfaces. Bambu accepts as input 
standard C/C++ specifications, OpenMP parallel annotations, and compiler 
intermediate representations (IRs) coming from the well-known Clang/LLVM and 
GCC compilers. The broad spectrum and flexibility of input formats allow the 
seamless integration of several source-to-source compilers (like MLIR) and 
design space exploration frameworks. Bambu HLS tool already includes many 
hardware-oriented optimizations and interfaces with synthesis and verification 
backends, either commercial or open-source. So, it is also a good platform to 
evaluate targets different from Xilinx devices. 
 
Since the EVEREST applications have a strong focus on data management, 
EVEREST includes a specific flow to customize the memory infrastructure around 
the accelerators. For doing this, we aim at extending Mnemosyne [13], an open-
source CAD prototype for the customization of memory architectures. 
Mnemosyne currently supports the creation of multi-port, multi-bank private 
local memories that can interfaced with HLS-generated accelerators. It will be 
extended with the support for more memory-related components for the 
creation of “intelligent memory managers” that are optimized based on the 
information extracted during the compilation flow. 

 
1 https://github.com/llvm/circt 
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8.2.1.5 Run-time Auto-Tuning 
As outlined in Section 7.1 , the timely execution of parts of the use case 
application is of utmost importance. However, computation times in several use 
cases can fluctuate, based on the input data, while optimal kernel configuration 
or their versions can heavily depend on the target architecture and the available 
resources. To adapt to these changes, the toolchain includes the mARGOt 
dynamic autotuning framework [6]. This will help to ensure that the application 
meets its timing constraints. 
 
mARGOt allows the programmer of an application to expose software-knobs, 
which can be used to influence the execution of the program. Using a pre-defined 
set of objectives (e.g., “Achieve a specific throughput with as high accuracy as 
possible”), the auto-tuner will use the exposed software knobs to meet the 
objectives as best as it can. In the context of kernel computations like 
Computational Fluid Dynamics, mARGOt could be used to regulate the execution 
frequency of computationally intensive kernels or to trade accuracy in the results 
for higher throughputs, e.g., by reducing the polynomial degree of interpolation 
operations if necessary. 
 
8.2.2 Requirements: Orchestration Large Application Flows (DAGs) 
 

Table 4 Requirements for EVEREST HyperLoom extensions 

ID Name Description Nature Priority Comments Relation 
to 
global 

REQ2.1 Front-end for 
EVEREST 
Applications 

Framework on top of 
HyperLoom for easy 
use-cases driven 
development  

Tool Must 
have 
 

Specific front-end 
design by use-cases 
requirements 

GREQ1 

REQ2.2 Dynamic data 
sharing 
between DAG 
tasks 

Extend framework to 
support spawning a 
dynamic service-like 
tasks that may serve 
data independently 
on fixed 
dependencies defined 
in a task graph 

Methodology/ 
API 
 

Should 
have 

In some frameworks 
it is known as actor 
model (e.g. in Ray). 

GREQ4 

REQ2.3 API for 
communication 
with 
virtualization 
environment 

The goal is to 
establish a way of 
communication 
between the 
scheduler and the 
environment to 
exchange all 
important properties 
and constraints. 

API 
 

Must 
have 
 

If a dynamic 
reconfiguration of 
the environment is 
possible, the 
protocol have to be 
able to notify the 
scheduler about the 
changes 

GREQ3 
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8.2.3 Requirements: Language and Compiler  

Table 5 Requirements for language and compiler support 

ID Name Description Nature Priority Comments Relation 
to 
global 

REQ3.1 WRF 
Expression 
abstraction 

Language support 
for expressions in 
numerics 
(tensors, linear 
algebra) 

Methodology Must 
have 

Kernel support for WRF 
simulations.  

GREQ1 

REQ3.2 WRF Fortran 
integration 

Expression 
abstractions 
should be callable 
from within 
Fortran code 

Methodology Must 
have 

Either by annotations or 
inline code 
modifications, user can 
write expressions within 
Fortran code for WRF 

GREQ2 

REQ3.3 ML integration Framework 
integration with 
machine learning 
frameworks 

Methodology/ 
API 

Should 
have 

Allow importing models 
to hook into the code 
generation process for 
EVEREST specific 
transformations 

GREQ2, 
GREQ4 

REQ3.4 Streaming 
support 

Language support 
for streaming 
workflows with 
highly dynamic 
loads 

Methodology Could 
have 

Enable compiler 
reasoning for 
reconfiguring streaming 
oriented computations. 
Expected to support 
traffic use case. Will be 
revisited as the 
implementation fort 
progresses. 

GREQ1, 
GREQ4, 
GREQ5 

REQ3.5 Integration 
with compiler 
frameworks 

For stability, 
reusability and 
extensibility, 
compiler work 
should build on 
top of established 
frameworks (e.g., 
LLVM and MLIR 
for numerics, 
Haskell or alike 
for dataflow) 

Methodology/ 
tool 

Should 
have 

By contributing to open 
sources frameworks, 
the results from 
EVEREST can be used 
by the community at 
large. By integrating 
with these frameworks, 
EVEREST can reuse and 
extend existing 
methods. 

GREQ2, 
GREQ3 

REQ3.6 Compiler 
transformations 
for kernels 

At the middle-
end, the compiler 
must include a 
framework for 
transformations to 
manipulate code 
and optimize for 
the EVEREST 
platform  

Methodology Must 
have 

For numerics, this 
should include affine 
transformations 
(polyhedral) with 
support for stencils and 
other linear algebra 
primitives  

GREQ4, 
GREQ5 

REQ3.7 Compiler 
transformations 
for dataflows 

For dataflow 
programs, the 
compiler should 
include semantic 
preserving 
rewrites for 
performance and 
energy 
optimizations, 
while retaining 
determinism 

Methodology/ 
tool 

Could 
have 

This should extend on 
previous work on 
optimization for 
dataflow programs 
(including mapping, 
graph rewrites and I/O 
batching) 

GREQ4, 
GREQ5 

REQ3.8 Multi-target 
code 
generation 

The source to 
source compiler 
should generate 
code for different 
targets 

Methodology/ 
tool 

Must 
have 

Code written in high-
level expression 
abstractions should 
translate to pure 
software (C/C++ code), 
or software with 
offloading to 
accelerators (e.g., 
FPGA) 

GREQ3 
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REQ3.9 Generation of 
tunable 
parameters 

To enable 
autotuning,  the 
compiler must 
produce 
descriptors of 
solutions to 
interface with 
mARGOt. 

Methodology/ 
tool 

Must 
have (for 
adaptable 
kernels) 

From high-level 
abstractions, the 
compiler should extract 
knobs and parameters 
that are key to 
modifying performance 
and/or energy efficiency  

GREQ4, 
GREQ5 

REQ3.10 Interface to 
HLS 

The compiler 
should enable a 
downstream HLS 
flow 

Methodology Must 
have 

The compiler must 
export code (or an 
intermediate 
representation thereof) 
to the HLS flow, 
including behavioral 
descriptions of the 
kernels alongside 
configuration 
information for 
generation/configuration 
of the memory modules 

GREQ4, 
GREQ5 

REQ3.11 cFDK/OC-Accel 
software 
integration and 
language 
compatibility 

The software 
should be 
compatible with 
the cFDK/OC-
Accel API 

Methodology/ 
API 
 

Must 
have 
 

The software part of the 
kernels that are being 
mapped to the FPGA 
should be built in a way 
that allows the seamless 
integration with the API 
specifications of cFDK 
(e.g. C/C++/Python 
sockets) and/or OC-
Accel frameworks (e.g. 
C/C++/libocxl) 

GREQ2, 
GREQ3 
 
 

 
 
8.2.4 Requirements: High-level Synthesis and Memory Design 

Table 6 Requirements for high-level synthesis and memory design 

ID Name Description Nature Priority Comments Relation 
to 
global 

REQ4.1 C/C++ support C/C++ 
Language 
support for HLS 
of descriptions 
coming from 
DSL compiler 

Methodology/tool Must have The language 
supported 
should covered 
the original 
code in case it 
is written in 
C/C++ or the 
one generated 
by the DSL 
compiler 

GREQ1, 
GREQ2  

REQ4.2 Bambu LLVM 
bytecode support 

Low level 
integration with 
DSL compiler 

Methodology/Tool Must have The version of 
the LLVM 
bytecode 
should be 
consistent with 
used by the 
DSL compiler. 

GREQ2, 
GREQ4 

REQ4.3 Bambu MLIR 
dialect support 

Direct synthesis 
from MLIR 
dialects  

Methodology/tool Can have It may improve 
the final 
performance 
raising the 
abstraction 
level. At least, 
it should 
support the 
affine dialect. 

GREQ2, 
GREQ4 

REQ4.4 HLS Verilog output HLS generates 
RTL Verilog code 
as output 

Methodology/tool Must have The Verilog 
code must be 
synthesizable 
with respect 
the EVEREST 
backend flow 

GREQ2 
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REQ4.5 HLS VHDL output HLS generates 
RTL VHDL code 
as output 

Methodology/tool Should have The VHDL code 
must be 
synthesizable 
with respect 
the EVEREST 
backend flow 

GREQ2 

REQ4.6 Top function 
specification 

The code to be 
synthesized 
must be in a 
stand-along 
function and 
needs to be 
specified 

Methodology/tool Must have The top 
function could 
be specified as 
annotation to 
the code, 
command line 
parameter or 
option files 

GREQ2 

REQ4.7 Block level/Top 
component 
interfaces 

The protocol to 
interface with 
the top module 
has to be 
specified 

Methodology/tool Must have The start, 
done, etc. 
protocol of the 
top component 
has to be 
defined and 
compatible with 
the EVEREST 
platform. 

GREQ2 

REQ4.8 Port-Level 
interfaces 

IO interface 
protocols added 
to the individual 
function 
arguments 

Methodology/tool Must have The definition 
of protocol 
should be 
defined through 
code 
annotations 

GREQ1, 
GREQ2 

REQ4.9 Bambu Vivado HLS 
IO interface 
interoperability 

Annotations 
specifying the IO 
protocols 
interface 
compatibility 

Methodology/tool Can Have Block/port level 
interfaces 
should use the 
same 
annotations 
used by Vivado 
HLS 

GREQ2 

REQ4.10 Technology 
options 
specification 

The HLS tool 
accepts inputs 
for optimization, 
clock constraint 
and resource 
constraints. 

Methodology/tool Must have These 
technology 
constraints will 
passed as input 
options. 

GREQ2 

REQ4.11 Bambu Data flow 
annotations 

HLS Data flow 
support 

Methodology/tool Should/have Dataflow style 
applications 
could be 
specified by 
code 
annotations 

GREQ1 

REQ4.12 Bambu OpenMP 
support 

OpenMP for 
pragma 
synthesis 
support 

Methodology/tool Must have The body of 
OpenMP 
parallel loop 
need to be in a 
separate 
function.  
Example of 
supported code 
could be found 
at OpenMP for2 
and OpenMP 
simd3 

GREQ1 

REQ4.13 Bambu floating 
point precision 

Floating point 
variables may 
use a custom 
floating precision 
data type. 

Methodology/tool Can have Allow 
optimizations of 
scientific and 
machine 
learning 
kernels. 

GREQ1 

 
2 https://github.com/ferrandi/PandA-bambu/blob/main/examples/parallel_queries/trinityq1/lubm_trinityq1.c 
3https://github.com/ferrandi/PandA-bambu/blob/main/examples/omp_simd/add/modified/add.c 
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REQ4.14 cFDK/OC-Accel top 
component 
interface 

Interface 
definition of the 
top component 
being 
intergraded with 
cFDK/OC-Accel 
frameworks. 

Methodology/tool 
 

Must have The top-level 
component of 
the 
functionality 
that will be 
mapped to the 
FPGA must be 
compatible with 
cFDK ROLE 
interface 
(AXIlite AXIs, 
AXIm) and/or 
OC-Accel Action 
interface 
(AXIlite, AXIm) 

GREQ2 
GREQ3 

REQ4.15 Memory interfaces Standard 
interfaces for 
memory access 

Methodology/tool Must have The HLS-
generated 
kernels and the 
memory 
modules should 
have a 
common 
interface 
format 

GREQ2 

REQ4.16 Software-level 
support 

Software code to 
interface with 
the accelerators. 

Methodology/tool Must have The 
accelerators 
should be 
invoked with 
custom OS 
drivers 

GREQ1 

REQ4.17 Hardware/software 
data sharing  

Data allocation 
must be 
compatible with 
hardware 
memory 
interfaces 

Methodology/tool Must have The software-
level data 
allocation 
should be 
performed in a 
way that 
hardware can 
access the data 

GREQ2 

 
 
8.2.5 Requirements: Autotuning and Virtualized Environment 
 

Table 7 Requirements for the Virtualized Environment and in particular Dynamic 
Autotuning 

ID Requirement Description Nature Priority Comments Relation 
to 
global 

REQ5.1 Application 
knobs 

The autotuning 
framework should 
have access to the 
application knobs 

Methodology/ 
tool 

Must 
have 

The access should 
be provided by 
means of the DSL 
or by the 
application itself. 
The dynamic 
autotuning 
framework is only a 
decision engine. 

GREQ4, 
GREQ5 

REQ5.2 Adaptive 
autotuning 

The dynamic 
autotuning 
framework should 
be able to adapt 
depending on 
decisions taken on 
the virtualized 
environment 

Methodology/ 
tool 

Must 
have 

The application 
adaptation should 
be triggered by 
changes in the 
available resources 

GREQ2, 
GREQ4, 
GREQ5 

REQ5.3 Integration 
with runtime 

The dynamic 
autotuning 
framework should 
be able to interact 

Methodology/ 
tool 

Could 
have 

Given the 
knowledge of the 
application, the 
dynamic adaptation 
framework can 

GREQ2 
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with the virtualized 
environment 

provide hints to the 
virtual manager to 
steer decisions 

REQ5.4 Autotuning and 
optimization 

The dynamic 
autotuning 
framework should 
manage the 
software knobs 
exposed by the 
application by 
autonomously 
selecting a near-
optimal 
configuration 

Methodology/ 
tool 

Must 
have 

The adaptation 
should be triggered 
automatically and 
not by hand 

GREQ4, 
GREQ5 

REQ5.5 Variant 
selection 

The dynamic 
autotuning 
framework should 
be able to manage 
code variants 
selection 

Methodology/ 
tool 

Must 
have 

Code variants 
should be managed 
as for the 
parameters of the 
application 

GREQ4, 
GREQ5 

REQ5.6 Design and 
deploy-time 
information 

The dynamic 
autotuning 
framework should 
be able to take a 
decision based on 
knowledge collected 
at design time or at 
deploy time   

Methodology/ 
tool 

Must 
have 

The knowledge for 
taking the decision 
can be directly 
injected by some 
analysis of the 
compilation flow or 
extracted by an on-
line profiling of the 
kernel 

GREQ4, 
GREQ5 

REQ5.7 Language 
support 

The dynamic 
autotuner requires 
C++ applications 

Methodology/ 
tool 

Must 
have 

mARGOt is a C++ 
library to be linked 
with the application 

GREQ2 

REQ5.8 HW Knobs The dynamic 
autotuning 
framework should 
have access to HW 
knobs 

Methodology/ 
tool 
 

Could 
have 

In case of a 
configurable 
accellerator that 
can be dynamically 
configured, the 
knobs have to be 
exposed to the SW 
layer.  

GREQ4, 
GREQ5 
 

REQ5.9  HW monitors HW accelerators 
should expose a 
monitor interface to 
the run-time to 
trigger dynamic 
decisions 

Methodology/ 
tool 
 
 

Could 
have 

Monitoring 
information should 
be exposed to the 
SW and will be 
used by the run-
time environment 
(dynamic 
autotuning and 
virtualize 
environment) to 
take dynamic 
decisions. 

GREQ4, 
GREQ5 
 

REQ5.10 Execution The run-time 
environment 
requires a CPU 
where to execute 

Methodology/ 
tool 
 

Must 
have 

The runitme 
environment is 
composed by 
software modules 
that requires a core 
where to execute. 
Pure HW 
environments are 
not considered. 

 

REQ5.11 Virtual 
Environment 

Virtualization 
environment has to 
enable execution of 
applications on 
different hardware in 
terms of processor 
and accelerators 

Methodology 
/ tool 

Must 
have 

The EVEREST 
virtualization 
environment 
targets different 
hardware 
accelerators and 
CPU architectures 

GREQ2,  
GREQ4,  
GREQ5 
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8.2.6 Requirements: Use Case Providers 

As mentioned in Section 5, one of the most important factors for pursuing 
specialized language support is enabling the encoding of expert knowledge. Our 
investigation into WRF and experience with past projects already show a variety 
of ways how expert knowledge can be leveraged for high-level optimizations. 
This implies that a close cooperation with domain experts is key for a successful 
language design. While we can make solid assumptions for many language 
features based on the observations we made for the kernels, such as the focus 
on linear algebra, much falls outside the scope of language and compiler 
development. Mappings and identities pertaining to the physical or application-
specific interpretation are fundamentally the responsibility of the use case 
providers. It is them who have the authority over these tacit requirements 
placed on the compiler development.  
 
At the same time, the success of the language design relies on the ability to 
encode and exploit them, which means that our development processes are tied 
together. While we have started this during the creation of this document, both 
the language design and the use cases are a moving target. We believe the 
requirements specified here are a great starting point for continuous 
collaborative development, as all sides continue to probe their design space. 
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9 Conclusions 
In this deliverable we have discussed elements in the use cases that can benefit 
from language support within the EVERET SDK. Together with the appropriate 
tooling it will help programmers to transparently leverage the efficiency of the 
EVEREST heterogeneous platform. After reviewing the use cases, we discussed 
considerations for the hardware design of the EVEREST platform and listed 
extra-functional information from the use cases that has to be accounted for in 
the EVEREST SDK. This deliverable closed with a detailed analysis of the 
requirements of the use cases, and derived specific requirements for the 
individual components of the EVEREST SDK, i.e., orchestration of workflows, 
domain-specific languages and compiler, high-level synthesis and memory 
design, and autotuning and virtualized environment.  
 
The analysis presented here reflects a highly heterogeneous use case landscape, 
combining different computational patterns, input languages and build systems. 
On top of this, the use cases are not fully specified but are meant to evolve 
throughout the course of the project. Provided our current understanding of the 
use cases, these are the main findings that will drive the development of the 
compilation framework in the EVEREST SDK:  

• A need for interoperability for machine learning algorithms and 
optimization for distributed execution of large models on FPGAs.  

• A need for high-level abstractions in HPC simulations to transparently 
optimize hardware, with focus on memory subsystems and data 
movement.  

• A need to implicitly describe task graphs in a syntax close to application 
developers (e.g., Rust or Python).  

 
Machine learning algorithms, exploited by traffic management, energy, and air 
quality pilots, are well defined and can be readily supported by existing 
frameworks. Important in the SDK will be the support of interoperability (reading 
in and processing models exported from different machine learning 
frameworks), interoperability with other application phases, and support for 
distributed execution on FPGA-based systems. Apart from machine learning, we 
observed two different major workload types, namely HPC (e.g., weather 
simulations) and coordination of loosely coupled tasks (e.g., data acquisition and 
data assimilation tasks). A special focus will be set in heavy computational 
workloads, to provide language and compiler support, so as to transparently 
accelerate portions of HPC applications. This will be enabled by tailor-made 
domain-specific abstractions coupled with runtime components which enable us 
to achieve high interoperability and retargetability at a low cost to users of 
existing code bases. For task coordination, we consider language support for 
implicit definition of task or dataflow graphs. This will be driven by the routing 
use case which is well understood at the time this deliverable was written.  
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Apart from these requirements, the availability of a powerful HPC facility, 
including FPGA resources, is strictly necessary for the execution of the weather 
simulations in support of energy and air quality machine learning algorithms. 
 
This document will serve as guide for the work in work packages WP4 and WP5.  
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