
   
 

   
 

 
 

http://www.everest-h2020.eu 
 
 
 

dEsign enVironmEnt foR Extreme-Scale big data 
analyTics on heterogeneous platforms 

 

 
 

 
 
 
 

D4.1 – Definition of the compilation 
framework  

 
 

 
 
 
 

   

The EVEREST project has received funding from the European Union’s 
Horizon 2020 Research & Innovation programme under grant agreement 
No 957269 

Ref. Ares(2022)5178726 - 15/07/2022



http://www.everest-h2020.eu 

D4.1 – Definition of the compilation framework 2 

Project Summary Information 
Project Title dEsign enVironmEnt foR Extreme-Scale big data analyTics on 

heterogeneous platforms 
Project Acronym EVEREST 
Project No. 957269 
Start Date 01/10/2020 
Project Duration 36 months 
Project website http://www.everest-h2020.eu 

Copyright 
© Copyright by the EVEREST consortium, 2020. 

This document contains material that is copyright of EVEREST consortium members and the 
European Commission, and may not be reproduced or copied without permission. 

Num. Partner Name Short Name Country 
1 (Coord.) IBM RESEARCH GMBH IBM CH 

2 POLITECNICO DI MILANO PDM IT 
3 UNIVERSITÀ DELLA SVIZZERA ITALIANA USI CH 
4 TECHNISCHE UNIVERSITAET DRESDEN TUD DE 
5 Centro Internazionale in Monitoraggio Ambientale - 

Fondazione CIMA 
CIMA IT 

6 IT4Innovations, VSB – Technical University of Ostrava IT4I CZ 
7 VIRTUAL OPEN SYSTEMS SAS VOS FR 
8 DUFERCO ENERGIA SPA DUF IT 
9 NUMTECH NUM FR 
10 SYGIC AS SYG SK 

Project Coordinator: Christoph Hagleitner – IBM Research – Zurich Research Laboratory 
Scientific Coordinator: Christian Pilato – Politecnico di Milano 
The technology disclosed herein may be protected by one or more patents, copyrights, trademarks 
and/or trade secrets owned by or licensed to EVEREST partners. The partners reserve all rights with 
respect to such technology and related materials. Any use of the protected technology and related 
material beyond the terms of the License without the prior written consent of EVEREST is prohibited. 

Disclaimer 
The content of the publication herein is the sole responsibility of the publishers and it does not 
necessarily represent the views expressed by the European Commission or its services. Except as 
otherwise expressly provided, the information in this document is provided by EVEREST members 
"as is" without warranty of any kind, expressed, implied or statutory, including but not limited to any 
implied warranties of merchantability, fitness for a particular purpose and no infringement of third 
party’s rights. EVEREST shall not be liable for any direct, indirect, incidental, special or 
consequential damages of any kind or nature whatsoever (including, without limitation, any damages 
arising from loss of use or lost business, revenue, profits, data or goodwill) arising in connection with 
any infringement claims by third parties or the specification, whether in an action in contract, tort, 
strict liability, negligence, or any other theory, even if advised of the possibility of such damages.  



http://www.everest-h2020.eu 

D4.1 – Definition of the compilation framework 3 

Deliverable Information 
Work-package WP4 
Deliverable No. D4.1 
Deliverable Title Definition of the compilation framework 
Lead Beneficiary TUD 
Type of Deliverable Report 
Dissemination Level Public 
Due date 30/06/2021 

Document Information 
Delivery date July 23, 2021 
No. pages 49 
Version | Status 0.4.2 | Final 
Responsible Person Jeronimo Castrillon (TUD) 
Authors Jeronimo Castrillon (TUD), Felix Wittwer (TUD), Karl Friebel (TUD), 

Gerald Hempel (TUD), Burkhard Ringlein (IBM), Stephanie Soldavini 
(PDM), Christian Pilato (PDM), Mattia Tibaldi (PDM), Fabrizio Ferrandi 
(PDM), Stanislav Bohm (IT4I), Francesco Regazzoni (USI), Kartik 
Nayak (USI) 

Internal Reviewer Gianluca Palermo (PDM) 

The list of authors reflects the major contributors to the activity described in the document. All 
EVEREST partners have agreed to the full publication of this document. The list of authors does not 
imply any claim of ownership on the Intellectual Properties described in this document.  

Revision History 
Date Ver. Author(s) Summary of main changes 

02.06.2021 0.0 Jeronimo Castrillon (TUD) Initial draft 

08.07.2021 0.2 Jeronimo Castrillon (TUD) 
Integration security, HLS, wrote high-level 
overview in Section 3. Minor modifications to 
DSL and Orchestration flows.  

14.07.2021 0.3 Jeronimo Castrillon (TUD) 
First completed draft including contributions 
by PDM, IT4I, IBM and TUD. Added 
executive summary and conclusions.  

21.07.2021 0.4 Christian Pilato (PDM) Updates after first internal revision. 

21.07.2021 0.4.1 Jeronimo Castrillon (TUD) Fixing security section and connections to 
the rest. Ready for full revision.  

22.07.2021 0.4.2 Jeronimo Castrillon (TUD) Clean up, review after full revision.  

27.06.2022 0.4.4 Jeronimo Castrillon (TUD) 

Revision according to project review. Added 
table describing existing technologies, 
extensions to them, and envisioned new 
tools along with a comparison to commercial 
offerings.  



http://www.everest-h2020.eu 

D4.1 – Definition of the compilation framework 4 

Quality Control 
Approved by internal reviewer July 22, 2021 
Approved by WP leader July 22, 2021 
Approved by Scientific Coordinator July 23, 2021 
Revision approved by Sc. Coordinator July 12, 2022 
Revision approved by Project Coordinator July 12, 2022 

 

  



http://www.everest-h2020.eu 

D4.1 – Definition of the compilation framework 5 

Table of Contents 

1 EXECUTIVE SUMMARY __________________________________________________________ 6 

1.1 STRUCTURE OF THIS DOCUMENT ___________________________________________________________ 6 
1.2 RELATED DOCUMENTS ___________________________________________________________________ 7 

2 OVERALL DATA-DRIVEN COMPILATION FRAMEWORK: SPECIFICATION _______ 8 

2.1 ORCHESTRATION/DATAFLOW PROGRAMMING ________________________________________________ 9 
2.2 HPC KERNELS _______________________________________________________________________ 10 
2.3 ML PROGRAMMING SUPPORT ___________________________________________________________ 11 
2.4 RUN-TIME ENVIRONMENT AUTO-TUNING __________________________________________________ 12 
2.5 DATA POLICIES AND SECURITY CONSIDERATIONS ___________________________________________ 12 

3 DOMAIN-SPECIFIC ABSTRACTIONS AND INTERMEDIATE REPRESENTATIONS 15 

3.1 DSLS FOR WORKFLOW ORCHESTRATION ___________________________________________________ 15 
3.1.1 Abstractions and tools for orchestration and batch processing in HyperTools ____________________ 15 
3.1.2 A dataflow abstraction for streaming-enabled workflows ___________________________________ 16 

3.2 DSL FOR NUMERICAL APPLICATIONS ____________________________________________________ 20 
3.2.1 Frontend __________________________________________________________________________ 21 
3.2.2 Intermediate representation __________________________________________________________ 23 
3.2.3 Middle-end ________________________________________________________________________ 24 
3.2.4 Analysis and transformations for HLS ___________________________________________________ 26 
3.2.5 Exploiting variance at runtime _________________________________________________________ 27 

3.3 MACHINE LEARNING WORKLOAD INTEGRATION ___________________________________________ 28 

4 HIGH-LEVEL SYNTHESIS AND MEMORY DESIGN FLOW ________________________ 31 

4.1 BAMBU HLS FLOW DESCRIPTION _______________________________________________________ 32 
4.1.1 Bambu Input specification ____________________________________________________________ 35 

4.2 VITIS HIGH-LEVEL SYNTHESIS FLOW _____________________________________________________ 38 
4.3 MEMORY GENERATION FLOW __________________________________________________________ 39 

5 TARGET PLATFORM AND SYSTEM INTEGRATION ______________________________ 43 

5.1 FPGA-BASED TARGET PLATFORM _________________________________________________________ 43 
5.2 SYSTEM INTEGRATION ________________________________________________________________ 45 

5.2.1 Hardware integration ________________________________________________________________ 45 
5.2.2 Hardware-software interfacing ________________________________________________________ 46 
5.2.3 Hardware-software security flow _______________________________________________________ 46 

6 COMPILATION TECHNOLOGIES: ADVANCING THE STATE OF THE ART _______ 49 

6.1 TECHNOLOGIES OVERVIEW ______________________________________________________________ 49 
6.2 ADDED VALUE TO COMMERCIAL TOOLS __________________________________________________ 51 

7 CONCLUSIONS ________________________________________________________________ 53 

8 REFERENCES __________________________________________________________________ 54 

 
  



http://www.everest-h2020.eu 

D4.1 – Definition of the compilation framework 6 

1 Executive summary 
The EVEREST project proposes a platform for implementing big data applications 
with both high performance and edge workloads following a data-driven model.  
This document defines the compilation framework, which plays a key role in 
providing high-level programming support for productivity alongside a 
methodology for optimization. The latter includes software and hardware-
oriented transformations as well as autotuning support for runtime adaptivity. 
The design presented here is derived from the use case analysis, as reported in 
Deliverables D2.1, D2.2, and D2.3.  
 
Based on the requirement analysis, the compilation framework follows three 
main programming flows, for orchestration/dataflow, for HPC kernels and for ML 
workloads. These three flows help provide dedicated support for the EVEREST 
use cases. We provide early insights and an earlier specification of how data 
policies (from WP3), e.g., for security, and how runtime adaptation (WP5) can 
be accounted for by the compilation framework.  On the concrete programming 
flows, this deliverable specifies the language and framework support, the 
compiler frameworks and intermediate languages, and the hardware generation 
approach for the three main programming flows. We detailed extensions to 
existing solutions, like (1) dataflow language and runtime extension for 
deterministic execution of workflows, (2) big-data framework extension to 
manage FPGA resources, (3) stencils and MLIR-based middle end for numerical 
computation in weather models, (4) EVEREST-specific extension to TVM for 
partitioning of machine learning models, (5) new high-level system analysis to 
support irregular applications, (6) novel decoupled design of memory subsystem 
for data-intensive applications. We also specify how these different tool 
components exchange information, for instance, by means of source-to-source 
compilation or by direct interfacing via intermediate languages (e.g., via MLIR). 
Finally, this deliverable describes the main FPGA target platform including 
hardware and software interfaces, and how we will perform system integration 
based on the individual inputs provided by the different tool flow components.   
 

1.1 Structure of this document 
Section 2 provides an overview of the three main programming flows and an 
early account of interfaces to WP3 and WP5. The section provides an overview 
of the required (1) language and framework support, (2) source-to-source 
compilation flows for orchestration/dataflow, HPC kernels and ML workload, and 
(3) high-level synthesis and memory design flow. Section 3 provides further 
details on the flows, with focus on the frontend and the source-to-source 
compilation, while Section 4 specifies the high-level synthesis flows (commercial 
and open source) and the memory design flow. Section 5 describes the EVEREST 
platform, providing details to access FPGA resources over the cloud. The section 
also describes how the software and hardware components of applications are 
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integrated in such a system. A summary of the technologies, their status and a 
brief positioning with respect to existing commercial tools is provided in Section 
6. The deliverable closes with a summary in Section 7.  

1.2 Related documents 
This report is closely related to: 
D2.1 - Definition of the Application Uses Cases 
D2.2 - Language Requirements 
D4.2 - Intermediate report of the compilation framework (M18) 
D4.3 - Alpha version of the software compilation tool flow (M18) 
D4.4 - Alpha version of the hardware compilation tool flow (M18) 
D4.5 - Final report of the compilation framework (M33) 
D4.6 - Beta version of the integrated compilation tool flow (M33) 
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2 Overall data-driven compilation framework: 
Specification 

 
The definition of application use cases in Deliverable D2.1 revealed a highly 
heterogeneous application landscape (cf. Table 2 in Deliverable D2.2), leading 
to a set of challenging requirements, as detailed in Deliverable D2.2. To cope 
with these challenges, we foresee a data-driven compilation framework, as 
depicted in Figure 1, with three main thrusts:  
 

• Orchestration/dataflow programming flow, providing a high-level 
imperative syntax to describe algorithms that operate distributed over 
data streams. This is for instance important for the traffic use case (cf. 
Section 5 in Deliverable D2.1). 

• HPC kernel acceleration, providing domain-specific languages with high-
level semantics that enable powerful optimizations. This is important for 
several use cases that require weather simulation (cf. Sections 5-7 in 
Deliverable D2.1). 

• ML programming support, enabling EVEREST application partners to use 
established ML frameworks to transparently target the EVEREST platform 
(cf. energy modeling in Section 5 in Deliverable D2.1).  

 
As shown in Figure 1, the different flows shall include (i) programming support 
(GREQ1 in Deliverable D2.2) via high-level syntax and frameworks, and (ii) 
optimizations via compilation and hardware generation for performance and 
energy-efficient execution (GREQ 4 and GREQ5 in Deliverable D2.2). As 
identified in Deliverable D2.2, interoperability (GREQ2) is particularly important 
for ML tasks within the use cases. This shall be provided by adhering to the 
established TVM framework and corresponding exchange formats. Finally, all 
different flows shall transparently generate code for the EVEREST Platform, 
accounting for FPGA acceleration if available, and thus enabling high code 
portability (GREQ 3 in Deliverable D2.2). This also requires automatic vendor-
specific changes to the device code, based on the offloading target. 
 
In the following we provide an overview of the different flows. Detailed 
specifications are provided in Sections 3-4 along with system integration in 
Section 5 of this Deliverable. This section also briefly touches upon interfaces 
with the runtime environment developed in Work Package 5 (Section 2.4), and 
in particular, data policies from Work Package 3, with emphasis on security 
(Section 2.5).  
 
No need for language-level integration nor tight compiler-level integration has 
been identified so far. Use cases have clear boundaries, communicating over 
standard interfaces. For this reason, we do not foresee a tight integration 



http://www.everest-h2020.eu 

D4.1 – Definition of the compilation framework 9 

between the flows. At tighter integration is however required at the backend for 
seamless execution on the EVEREST platform (cf. Section 5).  
 

 
Figure 1 - Compilation framework: Overview of programming flows 

 

2.1 Orchestration/dataflow programming 
The use case analysis (cf. Deliverable D2.2) revealed highly compute-intensive 
workflows. Within the project, HyperLoom [1] shall be used to orchestrate these 
large application flows. HyperLoom/HyperTools is a platform used to define and 
execute workflow pipelines in large-scale distributed environments. The existing 
Python interface is to be extended to improve programmability (cf. Section 
3.1.2). This shall include a simple imperative specification, where parallelism is 
automatically handled by the compiler/framework for finer-grained dataflow. 
The framework itself shall support batched processing to efficiently distribute 
shared data between simulated iterations or reuse it across workflows (cf. 
Section 3.1.1). 
 
The compilation framework shall include a dataflow IR, amenable for semantic-
preserving transformations for parallelism and I/O optimization (cf. Section 
3.1.2.2). It should be possible to reason about determinism when producing 
parallel schedules of the dataflow graph.  
 
Within dataflow use cases, irregular access patterns in control-dominated 
portions of the workflow were identified which can profit from FPGA acceleration. 
This is the case, for instance, in routing algorithms based on the probabilistic 

Multi-location 
use cases

Orchestration

- Sequential syntax
- Implicit dataflow 

parallelism
- Deterministic execution 
- Possible support for 

shared state

Low-level compilation, bitstream generation, and system integration

HPC ML

HPC kernels (weather 
simulation)

Orchestration (routing 
algorithms)

ML (predictive models 
and decision making)

Language/framework support

- DSLs for numerical 
kernels

- Accelerate WRF model
- Integration in HPC 

distributed 
infrastructure

- Interoperability with ML 
frameworks (pytorch, 
TF, TVM)

- Support for exchange 
formats (ONNX)

- Dataflow IR: I/O, 
Batching, pipelining

High-level source-to-source compilation

- MLIR dialect and 
polyhedral analysis

- Model partitioning
based on TVM/RelayIR

- HLS support for irregu-
lar accesses (Bambu)

High-level synthesis and memory design flow

- Generation of memory 
controllers

- Re-use existing HLS
tools and libraries

Secure 
connections

WP5: Virtualized runtime environment

W
P3

: 
D

at
a 

m
an

ag
em

en
t 

te
ch

ni
qu

es



http://www.everest-h2020.eu 

D4.1 – Definition of the compilation framework 10 

time-dependent routing (PTDR, cf. C9-C10 in Table 2 of Deliverable D2.2). To 
enable ease of programming, the HLS flow shall provide support for sparse 
matrices, lists, dynamic memory allocation, and pointer arithmetic (cf. Section 
4.1). These programming constructs are common, for example, in the routing 
algorithms since they allow software designers to create efficient 
implementations. However, commercial HLS tools do not support dynamic 
pointer resolution or circumvent the issue by performing transformations that 
remove the unsupported memory access pattern. We will extend the existing 
support in the Bambu HLS tool to cater for these types of use cases, without 
requiring source code modification.  

2.2 HPC kernels 
Prior experiences have shown the power of simple DSLs to analyze and 
accelerate complex mathematical expressions, as those appearing in numerical 
kernels (CFDLang  (Rink, et al., 2018), TeML [2], and TeIL [3]). The compilation 
framework should include support for high-level specifications of mathematical 
expressions appearing in the WRF model (cf. Section 3.2). Given the sheer size 
of the model, at least the costly Radiation Module should be accelerated. Apart 
from providing a standalone language, the compilation framework should be 
integrated within the complex WRF build infrastructure. This requires modifying 
the WRF codes and the build scripts. Additionally, in order to disseminate our 
DSL and obtain feedback, we have considered building library targets that could 
also be integrated with existing projects right away. 
 
For source-to-source compilation the compiler will rely on the MLIR compiler 
infrastructure [4] (cf. Section 3.2.2). This will allow to re-use existing 
abstractions and make our compiler middle-end interoperable with other middle 
and backends (including hardware description projects like CIRCT1). MLIR shall 
enable a modular compilation pipeline, leveraging the design effort of the open-
source community. By designing EVEREST dialects that the DSL abstractions 
map to, we can profit from the existing lower-level dialects for linear algebra.  
 
The types of computational kernels appearing in numerical simulation are 
amenable to HLS, even though, FPGAs are not yet widespread in HPC. We will 
investigate interfacing to two different HLS tools, namely, Bambu (cf. Section 
4.1) and Xilinx Vitis HLS (cf. Section 4.2). Supporting two different HLS tools 
shows the interoperability of our solutions. For Bambu, in particular, the source-
to-source compiler shall generate either C/C++ with OpenMP annotations or 
directly interface at the MLIR level (see Sections 3.2.2 and 4.1.1). Since data 
movement is particularly relevant in HPC, this programming flow will focus on 
automatically customizing the memory subsystem around the accelerators (cf. 
Section 4.3). To this end, the Mnemosyne tool shall be extended with support 

 
1 https://github.com/llvm/circt 
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for more memory-related components for the creation of “intelligent memory 
managers” that are optimized based on the information extracted during the 
compilation flow. 

2.3 ML programming support 
To support a wide range of state-of-the-art ML frameworks (pytorch, 
TensorFlow) and exchange formats (ONNX), as required by GREQ 2 & 4, D2.2, 
the Apache TVM framework [5], [6] will be used by the EVEREST tool chain. TVM 
can import a variety of used ML models and represent them in its unified Relay 
intermediate representation (cf. Section 3.3). Using this IR, further application 
or device specific optimizations can be applied before the ML training or inference 
task is packed into a binary executable that dynamically executes the 
application’s graph.  
 
However, the existing TVM flow is limited to a few target devices (CPUs, GPUs, 
and some domain specific accelerators), is optimized for single-device 
environments, and does not support distributed execution of ML workloads, let 
alone heterogeneous platforms. To support the heterogeneous EVEREST 
platform (REQ 5 & 9, D2.1), two key functionalities should be added to the TVM 
flow: (1) partitioning of the inference tasks of deep neuronal network models 
(DNNs) and (2) FPGA support for selected DNN inference operations. Both shall 
increase the overall throughput of the system. FPGA support shall increase the 
energy efficiency and could decrease the latency of the required inference tasks. 
The widely used DNN operations 2d-convolutions, rectifications, pooling, and 
dense layer shall be supported by both new functionalities.  
 
Classical ML tasks (i.e. without DNNs) shall be supported by the TVM flow as 
well and could be optimized towards CPU environments or other compilation 
flows within EVEREST. 
 
In order to increase performance or to be able to use larger models, DNN tasks 
must be partitioned to be calculated in parallel on multiple nodes. This 
partitioning shall leverage the unified RelayIR and existing TVM optimization 
APIs and should include the automatic creation of the required communication 
and synchronization between the then distributed ML tasks. This partitioning 
phase shall take the EVEREST heterogeneous platforms into account and 
schedule different parts of the models on the best fitting available type of node. 
The compiler backend to support FPGAs shall be compatible to the cFDK/OC-
Accel environments (cf. Section 5.1) and should optimize the generated FPGA 
designs towards different target constraints, like e.g. low-latency, high-
throughput, or low-energy.  
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2.4 Run-time environment auto-tuning 
As identified in Deliverable D2.2., the execution characteristics of several kernels 
greatly vary with the input data and on the status of the execution environment 
To this end, the compiler shall interface with the mARGOt dynamic autotuning 
framework [7]by generating and exposing kernel variants that can be selected 
at run-time. The mARGOt autotuning framework will then have in charge the 
selection of the alternatives by relying on static or profiling gathered information. 
A specification of the interfaces will be provided in Deliverables D5.1 and D5.3. 
For the DSL compiler’s perspective on runtime tuning, see Section 3.2.5 of this 
document. 

2.5 Data policies and security considerations 
From the analysis carried out in WP2 and reflected in Deliverables D2.1, D2.2, 
and D2.3, we identified as the most relevant security requirements that the 
EVEREST environment should provide are (1) confidentiality (only the authorized 
parties can access the information), (2) integrity (the information communicated 
between the two parties is not tampered with) and (3) authentication  
(assurance that a message was sent by the purported party) of the data 
processed and transferred to and within the environment, and the possibility of 
tracking the flow of information in the systems. These requirements are provided 
by means of security primitives, including encryption/decryption and 
authentication (often coupled together in authenticated encryption), and by 
library and extensions to support the so-called information flow tracking. The 
goal of information flow tracking is to follow a program’s flow and data 
progression. When applied to security, information flow tracking helps to keep 
track of potential security hazards and to avoid that they could affect the security 
of the overall system. 
 
Given the complexity of the EVEREST platform, the compilation framework 
should provide automation to help user define and deploy security policies. To 
do so, we look at the most elementary element we see in our system, the node, 
and we address the problem by providing security at two levels: inter-node 
(which deals with the communication between different nodes) and intra-node 
(which deals with communication within the node).  
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Figure 2 - Internode security considerations 

 
Inter-node means that the node is considered as an atomic (intended as a 
computational unit that cannot be divided) and secure entity, and all security 
functionalities should be provided only till the boundary of the node. As an 
example, in Figure 2, we depict a simple communication model between several 
nodes in the EVEREST setup. Some communications must be just encrypted, 
others require authentication in addition to encryption, and, for some 
interactions, the flow of information must be followed. These types of 
interactions happen at a course granularity and must be supported by 
orchestration (cf. Figure 1 and Section 3.1). High-level annotations should allow 
the programmer to define the desired security functionalities. The system 
integration should instantiate the required SW and HW components to account 
for this (cf. 5.2). Exact policies and components will be further defined in WP3. 
 
At the intra-node level, we maintain the property of a node of being an atomic 
entity, but only at the logic level. This means that different components of the 
node can be physically separated. The situation is depicted in Figure 3, which 
depicts a logic node composed of a CPU and an FPGA, each of them residing in 
physically separated nodes. To maintain the atomicity property of such nodes, 
we need to ensure that the elements belonging to a node form an enclave, where 
all the communications between the components of the node are secured and 
not accessible by elements not belonging to the node, even if physically located 
close to them. Once the logical node is created, it will be treated exactly like a 
physical node, where intra-node security properties can be specified. Of course, 
to ensure logical isolation of the nodes, we also need to be sure that all the 
elements of the node are extended with the needed security features, which 
includes, among others, the extension of memory controllers to support such an 
isolation (Section 4.3). Furthermore, this will require runtime support, in WP5.  



http://www.everest-h2020.eu 

D4.1 – Definition of the compilation framework 14 

 
Figure 3 - Single logical node distributed across physical nodes 
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3 Domain-specific abstractions and intermediate 
representations  

 
This section provides detailed specifications of the language support and the 
source-to-source compilation frameworks for the three main flows introduced in 
Section 2 (cf. Figure 1), namely support for orchestration/dataflow (Section 3.1), 
for HPC kernels (Section 3.2) and for ML use cases (Section 3.3). 

3.1 DSLs for Workflow Orchestration 
In this section, we focus on mechanisms for workflow orchestration and efficient 
dataflow execution. In general, we differentiate between two types of workflows 
within the project: Batch-enabled workflows intended to be executed on HPC 
clusters and potentially streaming-enabled workflows deployed on a cloud 
infrastructure. 
 
For the workflow type, which is primarily featured in the Traffic Simulation Use 
case as detailed in Deliverable D2.2, HyperTools (which includes HyperLoom [1]) 
is to be used to orchestrate workflow execution. As efficient resource usage is 
one of the key goals of the EVEREST project, the framework has to allow for the 
intuitive specification of node- and system-level resource requirements. 
  
The orchestration of streaming-enabled workflows is currently less well-defined. 
A suitable abstraction for this task should allow deterministic execution of 
workflows to easy debuggability and enable result reproducibility. Additionally, 
insights into the dataflow of the application could be leveraged for improved 
resource usage and performance. A DSL for this purpose should abstract from 
the dataflow graph it will use internally and expose a specification language that 
is ideally sequential, not including any parallelism paradigms. The compilation 
flow will have to contain a middle-end featuring an intermediate representation 
that supports transformations to rewrite the dataflow graph in order to introduce 
parallelism and reorder nodes. The backend of the proposed flow will then 
generate code in a high-level programming language compatible to the language 
used elsewhere in the project. 
 
3.1.1  Abstractions and tools for orchestration and batch processing in HyperTools 
We are introducing HyperTools as a set of tools that also includes HyperLoom. 
Other tools in this set are HyperQueue2, Quake3, and RSDS4. All these tools are 
based (or will be rewritten) to the same infrastructure core called Tako5 that 
includes a basic scheduler, communication with workers, security, and resiliency 

 
2 https://github.com/It4innovations/hyperqueue 
3 https://github.com/It4innovations/quake/  
4 https://github.com/It4innovations/rsds  
5 https://github.com/spirali/tako/  
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features. The core may be wrapped in various tools and that expose different 
interfaces or task types. For example, it may serve for orchestration of 
standalone applications or Python programs through a Python API. This allows 
us to decouple the development of the orchestration infrastructure and 
capabilities from the EVEREST API (REQ2.1, D2.2). The main work in Tako will 
be focused on the resource management to fulfil REQ2.2 and REQ2.3 in 
Deliverable 2.2. The tool must be extended to express resources for long-
running service-like tasks (REQ2.2) and to express FPGA resources (REQ2.3). 
 
To better cater for the EVEREST Platform, the HyperTools task manager will be 
extended with better support for FPGAs. The current version allows to specify 
resource requirements mainly with respect to CPUs and allocation of strategies 
of cores on NUMA systems. We will extend these capabilities to define FPGA 
resource requirements also considering the IBM cloudFPGA architecture. To 
support the inter-node security mechanisms (cf. 2.5), we will leverage the 
cryptographical layer in Tako, which is based on XChaCha20Poly1305 
implemented in Orion crate6. It uses a symmetrical encryption. It is expected 
that key is exchanged outside of the system, e.g. in case of HyperQueue via a 
shared file system and protected by the file permissions. 
 

 
Figure 4 - Tako architecture  

3.1.2 A dataflow abstraction for streaming-enabled workflows 
For streaming, we plan to extend the Ohua framework [8] a compilation 
framework for implicit parallelism based on dataflow graph rewrites. Ohua 
represents a well-tested base for the workflow optimizations envisioned in 
EVEREST.  
 

 
6 https://github.com/orion-rs/orion 
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Figure 5 - Overview of the envisioned compilation flow for a language that allows dataflow 

optimizations and streaming workflows 

 
The compilation flow as shown in Figure 5 outlines the intended source-to-source 
compilation flow. The frontend, which exposes different language dialects 
resembling other high-level languages, maps the input to an Intermediate 
Representation that helps understanding state dependencies. This can be 
optimized as seen fit before lowering to a dataflow IR, amenable for graph 
transformations. Both IRs are strongly related to the lambda calculus, which 
eases reasoning about the transformations. The backend then generates target 
code that can be compiled down for use on CPUs or FPGAs. The framework is 
flexible, allowing dataflow nodes to represent complex functions, including HPC 
kernels like those described in Section 3.2). This flow should be able to handle 
kernels as black-boxes, optimizing around them, e.g., via simple reordering 
operations. 
 
3.1.2.1 Frontend 
The frontend is defined by the language that is exposed to the application 
developer and used to define the workflow. In order to fulfill the Global 
Requirement of Programmability (GREQ1 as defined in D2.2), the frontend is 
designed according to the following core principles: 
 

• Familiar high-level language 
The DSL grammar is modeled after a subset of high-level programming 
languages like Rust, Python or Go. This is done to avoid forcing the 
developer to learn a new programming language and, by extension, in the 
interest of maintainability. This way, the dataflow program is easily 
comprehensible for end-users, lowering the barrier to entry. Using a high-
level language also allows to hide the dataflow aspect of the framework 
from the user, freeing them of the burden to reason explicitly about 
graphs.  

• No parallelism primitives 
The frontend does not expose any explicit parallelism paradigms like 
threads or synchronization primitives. This makes the program appear 
sequential to the user but allows the compilation flow in fact to freely 
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optimize the created workflows for an arbitrary number of workers without 
side effects. 

• Seamless integration of library functions 
All modern widespread high-level languages feature mechanisms for 
importing libraries into projects. The frontend also exposes this 
mechanism to enable the re-use of code. With these mechanisms, library 
functions can be used, just as if developing a normal program in the 
chosen high-level language. 

• Multi-language support 
The frontend has a modular design, allowing for the definition of different 
frontend languages to cover a wide range of use cases written in different 
languages, which is relatively easy to achieve as the Dataflow Graph is 
synthesized from the input and not written directly. This also helps to fulfill 
the requirement for Multi-Target Code Generation (REQ3.8, D2.2) by 
lowering the abstraction level to the host language to begin with to avoid 
complex lowering operations later on. 

  
To provide streaming support (REQ3.4, D2.2), the language features a primitive 
for representing streamed data processing. The normal loop syntax of the host 
language could be used for modelling this, transforming the loop into a dataflow 
operator that continuously streams data through its body. To support extra-
functional requirements for the dataflow, e.g., for security (cf. Section 2.5),  we 
plan to use type annotations. By annotating the types of variables that flow 
between coarse-grained dataflow nodes, we can pass inter-node security 
requirements down the compilation flow. This will influence the hardware and 
software components that are instantiated during system integration (cf. Section 
5.2.3). This will be specified in more detail as the implementation of the use 
cases advances.  
 
3.1.2.2 Intermediate Representation 
A suitable intermediate representation for the DSL compilation flow 
accommodates the fact that the main focus in the flow lies on dataflow 
optimizations. Hence, a close resemblance to a dataflow graph is desirable. 
  
As Figure 5 shows, the compilation flow will feature multiple Intermediate 
Representations which are all loosely based on the lambda calculus. While the 
language allows the definitions of function-like looking algorithms, most calls are 
made to functions in the host language, which are modeled as operators in the 
IR. Data dependencies between operators are represented as channels through 
which the data will be sent. 
  
The compiler internally differentiates between stateful functions, which can hold 
internal state associated with them and pure dataflow functions which have no 
side effects but merely process the input data to produce an output. This 
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differentiation is important when reasoning about possible performance 
optimizations, as stateful loops (e.g., the continuous updating of an internal 
value in a loop) cannot be parallelized easily while loops containing pure 
functions may be executed in parallel without restrictions. Special kernels, like 
HPC kernels, can be accommodated as a new function type in the IR, which will 
remain untouched and unoptimized by the Ohua flow. Other options include just 
mapping the kernel functions to the existing function types although the 
compiler would have to ensure that no conflicting optimizations are performed. 
  
The State Thread IR is close to the input language and retains higher-order 
functions such as for or if. It also has a concept of state threads [9], which are 
functions that can access their privately owned state. This IR is lowered to the 
Dataflow IR, which no longer has explicit control flow or higher-order functions, 
as shown in Figure 6. Both IRs differentiate between stateful and pure functions 
to ensure sane transformations. But apart from that they allow for different 
optimizations as they expose different aspects of the workflow. Possible 
transformations are discussed in the following subsection. 
 
 

 
Figure 6 - Example outlining the translation of stateful sequential programs written in the frontend 

language (middle, here resembling Rust) into dataflow programs. The frontend language uses 
functions written in the host language 

 
 
3.1.2.3 Middle-end 
All optimizations like the parallelization of operators are part of the middle-end 
of the compilation flow. Here, transformations are applied to the Intermediate 
Representation of the program in the form of graph rewrites. Special attention 
is paid on retaining the deterministic nature of the program throughout all 
transformations and be transparent about the guarantees that are given by the 
individual transformations. 
  
Compiler Transformations for Dataflow programs (REQ3.7, D2.2) implemented 
here could include, but are not limited to: 
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• Parallelization of loops 
The Intermediate Language has a notion of stateful and pure functions. 
This allows the compiler to recognize loops or parts of loops that are state-
free and therefore easily parallelizable. 

• I/O batching 
I/O operations are by nature very time-consuming and can impact 
program performance when done frequently. Hence, it makes sense to 
collect and batch such operations [10] to reduce the latency impact of the 
operations and make performance more predictable. 

• Batching of State accesses 
Stateful operations are usually a bottleneck in parallel programs as they 
either form a bottleneck or require complex synchronization primitives not 
available in this DSL. As a result, other solutions to improve performance 
of stateful parallel programs need to be found. One solution that comes to 
mind is the batching of state accesses to reduce the frequency of accesses, 
allowing the program to run for longer periods of time in parallel. Of 
course, such an optimization will have to be discussed from the perspective 
of determinism of the program. 

 
3.1.2.4 Backend code generation 
The backend is tasked with generating code for the target platform from the 
given optimized Intermediate Representation. In this case, the compiler 
produces code for the workflow in the host language of the environment, the 
same language the frontend was modeled after. This allows a seamless 
integration into the standard compilation process of the workflow and thus helps 
fulfilling the requirement for multi-target code generation (REQ3.8, D2.2). A new 
target can be easily added by providing an implementation of the relevant 
frontend and backend functions. 

3.2 DSL for numerical applications 
In this section, we focus on the proposed domain-specific language (DSL) and 
custom compiler toolchain for the numerical workloads. This specification targets 
the language itself and its corresponding DSL compiler infrastructure. 
The custom compiler toolchain is designed to automate the process of deploying 
efficient computational kernels on the EVEREST platform. Figure 7 shows how 
the DSL compiler augments a typical WRF compilation flow, allowing the DSL to 
be mixed with the large existing code base. 
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Figure 7 - Building the WRF model with the DSL compiler toolchain  

In the weather simulation use case, the DSL compiler will be used to offload the 
time-consuming radiative-convective processes. Dividing the domain into 
discrete columns, the radiation driver simulates the scattering of photons and 
the subsequent transfer of energy. As a result, vertical movement of air and 
thus the formation of clouds is triggered. Both processes have governing 
equations with differential formulations that we can implement in the DSL. To 
improve performance, we plan to move even more operations to DSL, such as 
stencils and random sampling. 
 
The proposed flow includes a middle-end with an intermediate representation 
(IR) that can represent high-level transformations. To achieve satisfactory 
results, some restrictions must be placed on the input kernels for this middle-
end, and some domain knowledge is required. Both are to be realized with the 
kernel DSL, which shall also reduce the burden on the user added by this new 
indirection. To some extent, DSL and IR are independent in their design to allow 
for fluid language development as per Deliverable D2.2 Section 8.2.6. 
 
3.2.1 Frontend 
The frontend, which is the interface exposed to the user, is designed to meet 
the following goals: 
 

• Brevity  
In the interest of maintainability, and to reduce barrier to entry, the 
language should adopt a terse and generic notation. 

• Familiarity  
To avoid users having to learn a new language, syntax and notation 
should be self-evident, and preferably close to the notation typical in the 
domain. 

• Convenience (REQ 3.2, D2.2)  
As kernels are integrated into larger, mostly legacy, systems, the 
language must allow for easy connection with surrounding code. 

• Completeness (REQ 3.1, D2.2)  
The language must allow the user to encode as much of the problem as 
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required for the target optimizations, providing at least a complete linear 
algebra abstraction. 
 

All these goals fall under the scope of the DSL language design. As the proposed 
implementation allows us to adjust the design during development within 
reason, this specification highlights some of the fixed aspects. 
 
As outlined in Deliverable D2.2, the DSL must provide an abstraction of linear 
algebra, specifically in terms of tensor operations. Completeness is achieved 
by providing an index-based notation that allows users to formulate almost 
arbitrary expressions via their individual elements. This is done with the 
following syntax, which must still be extended to support stencil operators. 
 

A_ij = B_i * C_j + D_ij 
 
Additionally, the type system and kernel interface must have clearly defined 
overlap with the supported host languages, i.e. the programs the kernels are 
embedded in. Convenience is achieved through type concepts that map directly 
to Fortran and C/C++ multidimensional arrays, as well as capturing memory 
layouts. A candidate syntax is given by the following expression, which leans 
more towards Fortran for better readability in context. 
 

var A(11 11 11) layout(k*121 + i*11 + j) 
 
We target the more subjective goals of Brevity and Familiarity by deriving the 
DSL grammar from existing languages. The following list names candidates that 
set the user expectations for languages in the linear algebra domain, and the 
features they contribute to our implementation: 
 

• TACO [11] is a compiler focused on exploiting sparsity of tensors for 
efficient kernel implementations. It features a terse syntax that adopts the 
implicit Einsteinian summation convention. 
 
A_ijk += B_ui * C_vj * D_wk * U_uvw 

 
Here, the axes over which reduction is performed are implicitly given by 
the indices u, v and w, which only appear on the right hand side. 

 
• TVM [5] is a large compiler framework for implementing machine learning 

workloads. It can consume a subset of Python code that represents tensor 
operations in an explicit and imperative manner. It features dynamically-
sized tensors. 
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var A : (M N N) 
This declaration encodes the constraint that the last two ranks of A have 
identical but arbitrary dimensionality. 

 
• TensorComprehensions (TC) [12] is a language focused on writing pure 

functions exclusively defined over tensor values. It features functional 
tensors-as-values semantics and embeds into MLIR. We extend this by 
making indices optional in more places, such as per-element operations. 
 
A = B + C 

 
• CFDlang [13] is a language initially created to model specific formulations 

of fluid dynamics problems. It features CFD-specific short-hands and 
explicit temporary variables. 
 
A = (S#S#S#u)^uivjwk_uvw 
 
The above statement shows a possible evolution of the contraction syntax 
that is both terser and closer to the mathematical notation. 

 
Given the fine granularity of numerical kernels, we do not foresee a need to 
annotate security information for inter or intra-node mechanisms at this level.  
 
3.2.2 Intermediate representation 
To balance abstraction and target-specific optimizations, the IR shall be layered. 
In a layered IR, different levels of abstraction are used based on the compiler 
strategy, and may exist simultaneously within a translation unit. 
  
The only such framework that is close enough to maturity to be usable for our 
purposes is MLIR. Different abstractions are encoded in dialects, which may 
declare custom types and operators. MLIR excels at rapid development of DSLs, 
as custom dialects with subsequent lowerings to existing ones can quickly create 
a functioning pipeline. Originally developed for machine learning, and with 
existing frontends for TensorFlow and TC, it aims to unify all methods and 
targets for machine-learning applications. Growing support and incubator 
projects in the realm of HLS make it a very promising development target, also 
for ongoing standardization efforts. 
 
An amenable encoding of our DSL in MLIR, however, requires a dialect that 
allows for more flexible transforms on tensor expression trees. TeIL is an IR for 
tensor expressions that was created to unify the different tensor frontends. It 
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reduces all tensor programs to primitives, featuring more abstract value 
semantics than MLIR’s usual treatment of tensors. 
  

 
Figure 8 - Teil dialect interactions 

 
 
Therefore, our IR will be a value-based tensor expressions dialect “teil” based 
on TeIL that is integrated using the MLIR framework. The language constructs 
of our DSL will map directly to this dialect, or may bypass (parts of) our middle-
end explicitly via the standard dialects. Additionally, the optimizations identified 
in TeIL and CFDlang can be expressed directly as transformations on this 
dialect. Figure 8 shows the hierarchy of existing dialects below teil, with red 
arrows indicating new components. The gray arrows show future extensions that 
may extend the scope of optimizations. 
 
Current MLIR development is heading into a direction of value-based semantics 
for tensor expressions, which indicates a readiness for further standardization. 
If successful, this would amplify the reach of the EVEREST project. Support for 
a variety of additional use cases may be achieved in this way.  
 
3.2.3 Middle-end 
The middle-end, which operates on the IR and thus MLIR, requires a more rigid 
design than the other components. Its architecture and implementation is 
largely dictated by MLIR guidelines. It must achieve the following goals: 
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• Completeness (REQ 3.1 3.2, D2.2) 
All kernels falling under the desired abstraction level must be supported, 
and require embedding into potentially arbitrary code. 

• Performance (REQ 3.6 3.7, D2.2) 
The middle-end must produce outputs that achieve notable improvements 
in terms of energy and/or performance metrics. 

• Heterogeneity (REQ 3.8 3.10 3.11, D2.2)  
The different execution targets of the EVEREST platform must be 
supported transparently. 

• Extensibility (REQ 3.5, D2.2)  
Apart from future host compilers and languages, additional targets, such 
as GPUs, are among likely extensions. The toolchain should support an 
exchange format for these purposes. 

• Tunability (REQ 3.9 3.11, D2.2) 
The compiler shall be able to export parameters for auto-tuning. 

 
The middle-end is roughly a collection of functions that serve the following 
purposes within the MLIR-based pipeline. 
 

• Canonicalization of the teil dialect. 
• Optimization passes on the teil dialect. 
• Verification and diagnostic visitors for kernels. 
• Lowering of the teil dialect onto the linalg and affine dialects. (cf. 

Figure 8) 
• Code injection passes for runtime (tuning). 
• Code generation passes for HLS artifact output. 
• In-MLIR HLS and/or hardware toolchain specific translation. (Optional, cf. 

Section 4.1) 
• Raising from linalg to teil constructs. (Optional) 

 
By opting for MLIR and providing lowerings, we achieve Completeness and 
also a reasonable level of Performance by falling back onto the extensive 
existing compiler infrastructure. Similarly, the design of MLIR provides inherent 
Extensibility, especially with respect to GPU targets.  
 
The following are possible paths to interface with the HLS flow. At least one of 
these paths must be supported by the DSL compilation toolchain:  
 

• Interfacing via source code to HLS tools.  
• Extend HLS tools to accept (a subset of) MLIR directly, allowing for more 

precise control from the middle-end. The Bambu HLS flow, for instance, 
will be extended with such support (cf. Section 4.1). Also, Xilinx’s Vitis HLS 
now accepts LLVM-IR, which MLIR can be lowered to. 
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• MLIR dialects such as the CIRCT project aim to move the HLS task 
entirely into the IR, eliminating the need for external HLS altogether. 
These flows would end in an export to a vendor-specific place-and-route 
tool. 

 
All of the above methods can be used to create a more vendor-independent HLS 
flow as discussed in Deliverable D2.2.  
 
It shall be noted that the previously mentioned TVM also uses its own unique IR 
to implement code generation for a variety of devices (cf. Section 4.3). 
Extensibility is achieved by allowing compiler developers to hook into this 
process, with more elaborate methods being enabled through the “Bring Your 
Own Codegen” (BYOC) API. This does, however, provide far less opportunity for 
applying domain-specific transformations. 
 
3.2.4 Analysis and transformations for HLS 
Existing vendor HLS flows already allow for the user to guide the synthesis 
process using additional attributes. These are indispensable for achieving high 
performance, but do not mix very well with the input code. They often rely on a 
declarative (#pragma) extension or force the user to adopt specific patterns in 
their code. 
 
The DSL compiler shall automate this task by generating code that conforms to 
these requirements. The most basic solution would use the exact same 
mechanisms exposed to an HLS user, but with more extensive and automated 
code transformations.  
 
By abstracting the problem of embedding kernels into larger systems, the 
interactions between them become more implicit. This opens up opportunities 
for optimization, in particular with respect to the memory subsystem. In this 
context, the compiler will provide support for:  
 

• Memory Allocation, which refers to the process of committing physical 
memory resources to store values of variables in a program. A common 
goal is to reduce the amount of committed resources while trading with 
contention on them. 

• Data layout and representation, meaning the way values are stored in 
memory. Inherently structured values, such as tensors, can be mapped to 
linear address spaces in different ways. Additionally, a compiler may 
reason about different data representations for individual elements based 
on precision and other constraints. 

• Data transfer schedules, which correspond to decisions of when to move 
data between memories of one or multiple systems. In a heterogeneous 
system, this becomes an increasingly important problem. 
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Section 5.3 shows how these optimizations can be implemented. The required 
information is inferred by the compiler, which produces the machine-readable 
interchange format described there. The analysis processes required are rooted 
deep within the kernel compiler reasoning and often cannot be decoupled from 
other tasks. That also means it is largely referential to a particular kernel 
representation in the compiler's IR. As a result, we consider tying this 
information to the IR in a more standardized way such that it can be consumed 
easily, as part of a more composable flow. 
 
3.2.5 Exploiting variance at runtime 
According to REQ 3.9, D2.2, a runtime tuning mechanism is to be implemented, 
which adapts implementation parameters according to on-line data (see also 
Section 2.4) and execution environment. There are two consequences for the 
proposed system that are common to all methods of implementing this feature: 
 

• A runtime system is required to implement policy and mechanism for 
this behavior. Roughly, this means it must make decisions on the runtime 
tunable parameter's values (see mARGOt) and then apply them. 

• At compile time, explicit variance must be made available in the 
produced artifact. In other words, the compiler must identify and expose 
runtime tunable parameters in its implementation and provide a tie-in for 
the runtime. 

 

Figure 9 - Kernel runtime 

 
Figure 9 shows the view the runtime has over the running system. In order to 
make a beneficial decision, it must monitor the runtime performance of the 
depicted components. Using that data, it enacts at least the following decisions: 
 

• Parameter tuning 
The runtime adjusts the values of statically-known tuning variables, 
such as accuracy thresholds and discretization constants. In general, 
these must be exposed manually. 
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• Retasking 
The runtime uses the cloudFPGA API to (re-)assign (parallel) tasks to 
execution nodes to balance latency, utilization, and efficiency. A 
minimal strategy is always required for the deployment of any 
application. 

3.3 Machine Learning workload integration  
To additionally enable the execution of machine learning (ML) workloads by the 
EVEREST toolchain, domain-specific abstractions popular for ML models -- like 
ONNX, pytorch, or TensorFlow -- will be supported. These interchange formats 
for ML applications evolve rapidly and to reduce the risk of incompatibilities or 
uncontrollable dependencies, the TVM framework is used to import, optimize 
and represent these workloads in a unified way.  
 
Apache TVM [5], [6] is a compiler framework maintained by the Apache Software 
Foundation (cf. Figure 10). Its goals are to compile ML models to deployable 
modules while providing a large compiler infrastructure to automatically optimize 
the models to achieve better performance.  TVM’s high-level IR, called “RelayIR”, 
can be created from the popular ONNX format. The industry-driven standard 
NNEF is not directly supported, but it can be easily converted to ONNX.  
 
Within EVEREST, all three use cases specified in Deliverable D2.1 will use ML for 
some steps. As example, the general weather forecast will be adapted for each 
individual industrial site using sequential aggregation (cf. Section 4.1, D2.1). 
Similarly, a ridge regression using Gaussian kernels will be used to adapt the 
weather forecast to local measurements to better predict reusable energy 
production (cf. Section 3.1, D2.1). Lastly, the traffic prediction use case will train 
deep neural networks (DNNs) on daily traffic data (cf. Section 5.1, D2.1). Those 
ML workloads should also be able to leverage heterogeneous hardware, 
especially in the case DNNs are used (REQ5, D2.1, REQ3.3, D2.2).  
 
The flow presented in Figure 10 fulfills this requirement and support the 
inference of DNN models on distributed heterogeneous hardware. In case of the 
traffic prediction model, this will be DNNs that consists of compute intensive 
convolutional and fully-connected layers. 
 
As depicted in Figure 10, this proposed EVEREST flow to support the execution 
of ML workloads on multiple FPGA or CPUs consists of multiple steps: After the 
modules are imported as RelayIR module, the ML application is optimized using 
TVM build-in optimization passes. Using the unified community-supported 
RelayIR has the advantage that subsequent optimizations can be applied 
irrespective of the original ML framework.  
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To support the requirement of distributed DNN execution (REQ8, D2.1), 
algorithms will be developed that analyze the optimized RelayIR module and 
derive a portioning scheme for each specific DNN. This partitioning step will take 
detailed characteristics of the ML operations and the user-given target 
constraints into account. During this step, the original single module of the DNN 
workload will be split into one module per node. The type (FPGA or CPU) and 
number of nodes will be automatically derived and optimized within the 
constraint ranges given by the user. Please note, that these nodes can be 
scheduled to run on heterogeneous hardware independent of each other, based 
on performance and efficiency predictions of the newly developed algorithms. 
For example, the DNN could be split across 2 CPUs and 5 FPGAs, if this would 
have the best predicted performance and is within the user-given resource 
budget. 
 
After the partitioning of the workload is decided, the proposed tool continues to 
determine the communication configuration among the nodes. This step ensures 
that operations that can be executed in parallel will be executed in parallel and 
that each node knows where and when to get and to send data. Hence, besides 
the data communication, also the execution synchronization will be ensured by 
the inserted communication modules. This communication modules can re-use 
existing heterogeneous communication frameworks, e.g. MPI. At this step, also 
use case specific pre- or post-processing can be considered and the data streams 
linked (REQ8, D2.1).  
 
Individual modules will be optimized for their specific target (CPU or FPGA) and 
lowered further so that either synthesis tools can synthesize the HLS or HDL 
descriptions or, using the TVM infrastructure, emitting the binary for the 
targeted CPU. Please note that this step is individual for each type of CPU or 
FPGA in order to adapt the workload as much as possible to the chosen target 
devices (REQ 9, D2.1). In case FPGA-target nodes, HLS code will be emitted and 
EVEREST HLS design flow will be used (cf. Section 4).  
 
As last step, depicted at the bottom of Figure 10, after the target specific binaries 
or bitstreams are synthesized, an automatic deployment framework will be 
developed, so that the ML workload can be distributed to the target devices and 
launched, automatically.  
 
The TVM community is also working on adding the option of exporting RelayIR 
to MLIR. Depending on the availability, this feature may serve as a additional 
bridge to the EVEREST MLIR toolflow described above, as depicted on the left-
hand side of Figure 10.  
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Figure 10 - EVEREST machine learning to distributed FPGA/CPU flow 
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4 High-level synthesis and memory design flow 
EVEREST has a strong focus on FPGA acceleration and the compilation 
framework is thus requested to generate efficient hardware architecture to 
coordinate computation and data movements. The computational part of the 
FPGA system is generated with high-level synthesis, while the data movements 
are optimized with the customization of the memory architecture. The 
integration of the two parts is based on standardized interfaces. Also, the project 
has a strong focus on modularity and interoperability (REQ 4.9, D2.2), allowing 
the use of different HLS tools, namely for example Bambu [14] and Xilinx 
Vivado/Vitis HLS [15]. 
 
To combine these two aspects (separation of computation and data movements, 
and interoperability), we rely on the following: 
 

• We export the internal memory modules from the accelerators generated 
either with Bambu or Vivado/Vitis HLS to enable further optimizations. For 
example, in case of C functions, when data structures are moved from 
local variables to function parameters, the HLS tools will add local-memory 
interfaces to the top module. This will enable memory optimizations (cf. 
Section 4.3) and ease system integration (cf. Section 5.2) 

• Based on the HLS tool to be used, the compiler may need to slightly adapt 
the output format of the code to be synthesized. For example, it can 
introduce pragma annotations for code optimization with Xilinx 
Vivado/Vitis HLS. However, Bambu does not support the same pragmas, 
and, in some cases, it can enable further optimizations with command-line 
options or by writing the code in a slightly different way. The compiler may 
thus need to adapt the intermediate artifacts and metadata with a 
customization of the specific backend. 

• Bambu is also going to support a direct interfacing with MLIR dialects. So, 
the compiler and the HLS tool will need to define the subset of information 
that can be exchanged between the two parts. 

• We assume fixed-latency accesses to the private local memories, currently 
using the Xilinx Vivado/Vitis naming convention for the signals (cf. 4.3). 
Accesses with variable latency (e.g., to external data) will require a 
latency-insensitive protocol (ready/valid/stop). We will then create a 
proper wrapper to access the external memory controllers or interfaces 
(cf. Section 5.2). 

• Additional compiler information (e.g., security annotations) can be passed 
through code annotations (and directly synthesized with HLS) or 
represented in XML annotations to be used by HLS extensions, memory 
generation flow, or system integration. 
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Figure 11 summarizes the hardware generation flow, showing how the compiler 
can pass information to the other parts. 
 

 
Figure 11 - Integration of compilation and hardware generation flow 

 

4.1  Bambu HLS flow description 
Bambu is a command-line tool aimed at assisting the designer during the HLS 
of complex applications. It supports most of the C/C++ constructs, including 
function calls and sharing of the modules, pointer arithmetic and dynamic 
resolution of memory accesses, accesses to arrays and structs, parameters 
passed by reference or copy, and many more. 
 
Like in a standard software compilation flow, Bambu has three phases (see 
Figure 12: frontend, middle-end, and backend. 
 
Bambu frontend. Bambu interfaces with existing compilers, such as GCC and 
Clang. With GCC, a plugin extracts the call graph and the control data flow graph 
of the functions under analysis from GCC's internal IR. Similarly, a Clang plugin 
extracts the same information and serializes them into a textual format easy to 
parse. Bambu then parses back all the compiler serialized information plus all 
the annotations to build a Static Single Assignment in-memory IR. 
 
This approach decouples the compiler frontend code from the rest of the HLS 
process. Localizing all the changes in a GCC or LLVM/Clang plugin allows rapid 
and easy integration of many different versions of the compilers. 
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Figure 12 - Bambu HLS flow 
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Bambu supports GCC versions ranging from 4.5 to 8, and LLVM/CLANG versions 
ranging from 4.0 to 11. The Bambu frontend needs some information from the 
upstream compiler, such as the top function (REQ 4.6, D2.2) on which the high-
level synthesis is performed and the specification of the Block-level/Top 
component and Port-level interfaces (REQ 4.7 4.8, D2.2). This information will 
be passed through command-line options or source code annotations. 
 
Bambu middle-end. Starting from the intermediate representation extracted 
from GCC/Clang, Bambu rebuilds data structures, such as the Call Graph and 
the Control Data Flow Graphs, and builds additional data structures such as the 
Program Dependence Graphs. Next, it applies a set of device-independent 
analyses and transformations. Some of these steps are commonly used in a 
software compilation flow (e.g., data flow analysis, loop recognition, dead code 
elimination, constant propagation, LUT expression insertion, etc.). 
 
Multiplications and divisions by constant values are transformed into expressions 
that use only shifts and adders to reduce area utilization and improve timing. 
The resulting expression structure depends on the target device and technology, 
since adders and multipliers may have different performances on different 
devices. Bambu, for these purposes, accepts XML file and command-line options 
to constrain the number of resources used, the type of FPGA used, and the clock 
constraint at which the application must meet (REQ 4.10 D2.2). 
 
Differently from general-purpose software compilers, designed to target a 
processor with a fixed-sized data-path (usually 32 or 64 bits), a HLS compiler 
can exploit custom-size operators (e.g., a multiplier with the minimum number 
of I/O bits) and registers. 
 
Consequently, we can select the minimal number of bits required for the specific 
algorithm's operations and value storage, which leads to less area, less power, 
and shorter critical paths. At this stage, Bambu also performs Bitwidth and 
Range Analysis, aiming at reducing the number of bits required by data-path 
operators. Floating-point computation is usually demanding in terms of 
computing resources, but it is even more demanding when the target technology 
is based on FPGAs. In Bambu, Bit-Value analysis and Range Analysis are done 
to reduce as much as possible this impact. In addition to these analyses, Bambu 
accepts annotations to the top function parameters and command-line options 
that trade accuracy with resource reductions (REQ 4.13 D2.2). This will impact 
all the applications where double-precision accuracy is not really required, but 
the EVEREST users sometimes use it during the application specification (e.g., 
PTDR or machine learning applications). 
 



http://www.everest-h2020.eu 

D4.1 – Definition of the compilation framework 35 

This analysis is crucial during the optimization process because it impacts all 
non-functional requirements (e.g., performance, area, power) of a design 
without affecting its behavior. 
 
Another important part relevant for the EVEREST project is the Memory 
Allocation. It defines the memories used to store aggregate variables (arrays 
and structures), global variables, and how the dynamic memory allocation is 
implemented. Bambu adopts an architecture for memory accesses that support 
a wide range of cases. Statically analyzing the memory accesses, Bambu builds 
a hierarchical data-path where memories can be classified as read-only, local, 
with aligned or unaligned memory accesses, or which require dynamic 
resolutions of the addresses to identify the physical location. Accesses to dual-
port BRAMs or memory controllers with complex parallel channels are supported 
by replicating such memory interconnections as needed. The same memory 
infrastructure can also connect to external components (e.g., scratchpads, 
caches, and DRAMs) or directly to the bus to access off-chip memories. 
Supporting protocol-based accesses (e.g., FIFO or stream-based access) is 
obtained by generating specific components that replace the load/store 
instructions. Interfacing with the actual memory banks and physical controllers 
will be optimized by sharing information with the memory generation flow (cf. 
Section 4.3). 
 
Bambu backend. In this phase, Bambu performs the actual architectural 
synthesis of the specification. The synthesis process acts on each function 
separately. The resulting architecture reflects the structure of the call graph. 
Each function includes at least two sub-modules: the control logic and the data-
path. Control logic modeled as a Finite State Machine handles the routing of the 
data values and the temporal execution of the operations. The data-path is a 
custom mux-based architecture with optimized data types to reduce the number 
of flip-flops and bit-level multiplexers. It implements all the operations and 
memories required during the function execution. 
 
Bambu currently generates Verilog/VHDL compatible with many different target 
technology AMD/Xilinx ISE, AMD/Xilinx Vivado, Yosis-Vivado, Intel/Altera 
Quartus, Lattice Diamond, NanoXplore, and OpenRoad 4.5. Extension and 
customization for the EVEREST platform will be considered, but they should be 
limited since the target FPGAs are very similar to those already supported (REQ 
4.4 4.5, D2.2). 
  
4.1.1 Bambu Input specification 
The default input specification supported by Bambu is a behavioral description 
of the specification, written in C/C++ language (REQ 4.1, D2.2). The C/C++ 
language supported is in line with the ones supported by many other commercial 
tools, such as Vitis HLS or Intel HLS. Bambu supports additional patterns such 
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as the synthesis of pointer functions and of double de-referenced pointers 
accesses that are usually not supported by commercial tools. These patterns are 
used especially when the application has irregular memory access to the 
memory, like in the EVEREST Probabilistic Time-Dependent Routing (PTDR). 
Indeed, this algorithm works on sparse graphs using such pattern. 
  
The tool has a partial support for standard libraries such as libc and libm and a 
complete support for single and double precision basic arithmetic functions.  An 
experimental port of the ac_types Mentor Graphics library allowing C++ 
specifications with arbitrary integer/fixed-point precision arithmetic has been 
integrated into Bambu. The tool supports both the types used by Mentor 
Graphics (ac_types) and the ones supported by Vitis HLS (ap_types). These 
types can be used to explore custom representations of the data and reduce the 
resource requirements of the accelerators. 
  
If the frontend compiler is based on Clang/LLVM, Bambu can perform high-level 
synthesis starting directly from LLVM Bitcode File Format (REQ 4.2, D2.2 
  
MLIR interfacing 
Bambu will be extended by interfacing directly via the affine MLIR dialect (REQ 
4.3, D2.2). This will allow for a tighter integration with the DSL compilation flow 
(cf Figure 8), enabling rich information passing between the tools. The affine 
dialect represents loops as polyhedral-friendly structures and offers loop and 
memory operations. The affine dialect classifies values as symbols, dimensions, 
and non-affine values. The type of symbols and dimensions must be index. 
Symbols represent an unknown quantity that can be treated as a constant for a 
region of interest - loop body; symbols are, thus, loop invariant variables. 
Dimensions correspond to the dimensions of the underlying structure being 
represented. Dimensions have the same constraints as symbols, except they can 
also accept induction variables of the affine loops. Affine dialect offers several 
operations, of which affine.for is the most important one. It represents a loop 
nest with one region with one block as its body. The block usually has one 
argument: the induction variable of the loop. Index bounds have the same 
restrictions as dimensions and symbols. These constructs are widely used in HPC 
and ML kernels and their optimization can bring significant benefits. Other 
dialects can be lowered to the affine dialect, so interfacing with this dialect is not 
too restrictive. The following textual description shows an example of affine MLIR 
description. 
  
func @example(%arg0: memref<1000xi32>) { 
    affine.for %arg1 = 0 to 1000 { 
      affine.load %arg0[%arg1] 
      %1 = mul %0, %0 
      affine.store %1, %arg0[%arg1]  



http://www.everest-h2020.eu 

D4.1 – Definition of the compilation framework 37 

    } 
    return 
} 
 
MLIR provides the concept of passes to expose entry points for IR analyses and 
transformations; they are implemented as program traversers to either collect 
useful information or apply transformations. MLIR passes are often used to 
convert one dialect to another, as well. This use case is helpful for moving to 
another abstraction level. For example, affine dialect can be lowered to standard 
dialect, which can then be lowered to the LLVM dialect - the middle step between 
MLIR and LLVM IR. This is the approach we will follow to interface affine MLIR 
descriptions with the high-level synthesis tool Bambu. This is particularly 
important to directly interface with the dialects defined for HPC kernels (cf. 
Section 3.2 and Figure 8) and for the ML compilation flow (cf. Section 3.3). The 
.ll file generated with these lowering steps can be passed to Bambu HLS as is. 
  
OpenMP support 
Bambu supports the efficient generation of accelerators for graph kernels. The 
methodology enables the programmer to naturally write shared memory graph 
algorithms annotated with OpenMP-like pragmas and using atomic memory 
operations while generating related architecture templates that maximize 
external memory utilization through latency tolerance (see Figure 13 for the 
architectural template used by Bambu).  
 

 
Figure 13 - Architectural template associated with the OpenMP oriented synthesis [16] 

 
In EVEREST, the Probabilistic Time-Dependent Routing (PTDR) application 
contains irregular memory accesses that can be parallelized with OpenMP for 
pragmas. Bambu supports the synthesis of OpenMP parallel applications with a 
pattern similar to the following one: 
  
  void atomic_update(...) { 
    #pragma omp atomic 
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    update_results(...); 
  } 
  
  void loop_iteration(size_t i, ...) { 
  {...} // loop body X 
  atomic_update(...); 
  {...} // loop body Y 
  } 
  
  void parallel_loop(...)  
  { 
    #pragma omp parallel for 
    for (size_t i = 0; i < N; ++i) 
      loop_iteration(i, ...); 
  } 
  void top_function(...) { 
    {...} // code block A 
    parallel_loop(); 
    {...} // code block B 
  } 
The current implementation requires that the parallel loop body and the parallel 
functions are wrapped in standard C functions (REQ 4.12, D2.2). Pragma omp 
for support will be extended by adding dynamic/static scheduling attributes 
management. Another thing added to the current high-level synthesis of 
OpenMP for is the support of OpenMP for reductions. Support to data-sharing 
attributes will be improved as well. 

4.2 Vitis high-level synthesis flow 
Xilinx Vitis/Vivado HLS is a commercial high-level synthesis tool based on LLVM. 
It includes a complete design environment with several important features to 
fine-tune the generation of hardware accelerators. C, C++ (REQ 4.1, D2.2) and 
SystemC are accepted as input, and hardware modules are generated in VHDL 
(REQ 4.5, D2.2), Verilog (REQ 4.4, D2.2) and SystemC. During the compilation 
process, it is possible to apply different optimizations, such as operation 
chaining, loop pipelining, and loop unrolling. Furthermore, different parameter 
mappings to memory can be specified. Streaming or shared memory type 
interfaces are both supported to simplify accelerator integration. In EVEREST, 
Vitis HLS will be used as alternative high-level synthesis flow, and the upstream 
compiler should use VITIS pragmas to steer optimizations. In addition to this, 
the compiler should insert the appropriate pragmas and annotations for: 

• the top function specification (REQ 4.6, D2.2); 
• the Block level/Top component interfaces (REQ 4.7, D2.2); 
• the port-level interfaces (REQ 4.8, D2.2); 
• the constraints for the clock and the resources (REQ 4.10, D2.2) 
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4.3 Memory generation flow 
Our memory generation flow is based on Mnemosyne [17]. Mnemosyne is an 
open-source CAD tool for the generation of local memory architectures. These 
memory architectures are targeted for loosely-coupled hardware accelerators 
where each accelerator is composed of computation logic and private local 
memories (PLMs). This separation between computational logic and memory 
simplifies the integration with HLS that can be executed in parallel. 
  
The computation logic performs the functionality of the accelerator and is 
assumed to have a standard interface for the memory ports. This is a valid 
assumption for most of the HLS tools (e.g., Xilinx Vivado HLS or Bambu) that 
can be used to generate such logic. Figure 14 shows an example of accelerator 
interface before HLS and the corresponding hardware module. Mnemosyne 
decouples the optimization of the computational logic and, more in general, the 
memory subsystem. This is an important aspect in EVEREST to separate the 
optimization of data communication and storage, and the optimization of the 
computational aspects. The accelerator logic will interface only with the 
Mnemosyne-generated memory infrastructure, while the coordination of data 
transfers will be transparently executed. 
  
The memory ports of the accelerator can be then connected to one of the PLM 
elements. Mnemosyne assumes the following ports and behaviour (where x in 
an identifier of the interface): 

• CEx (chip enable): this signal must be active every time there is a valid 
operation on the memory 

• Ax (address): this signal carries the address of the request. 
• WEx (write enable – only for write ports): this signal must be activated 

when the write request is active 
• Dx (data in – only for write ports): this signal carries the value to be written 

into the memory 
• Qx (data out – only for read ports): this signal carries the value read from 

the memory 
 
All command signals (i.e., CE and WE) are active high. This definition addresses 
requirement REQ 4.15, D2.2. In case of different interfaces of the accelerator 
logic or the other system component, the system integration logic will introduce 
proper adapters). 
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Figure 14 - Example of accelerator interface and connection to the PLM elements 

The PLMs store the data structures needed for the computation. Mnemosyne-
generated PLMs guarantees that the accesses have fixed latency (one clock 
cycle) by using multiple memory banks implemented with Intellectual Property 
(IP) blocks to offer multiple ports for concurrent accesses (e.g., FPGA BRAMs). 
Each physical bank is generally expressed as a vendor macro and requires a 
wrapper with the same interface and semantics described above. These 
wrappers must be generated only once for every new technology.  
  
Mnemosyne optimizes the PLM architecture by analysing certain characteristics 
of the system.  Mnemosyne takes as input information on the data structures to 
be stored in the PLMs, the compatibilities between these data structures, and 
details on the memory interfaces for each accelerator. The accelerator memory 
interfaces are used to automatically determine port direction and simplify 
integration. By using this information, Mnemosyne shares the physical memory 
banks whenever possible and generates RTL for this optimized memory 
architecture. The produced RTL is generated in Verilog (REQ4.4, D2.2). 
Currently, VHDL backend is not planned but this limitation does affect the 
integration with other components. 
  
To identify sharing opportunities, Mnemosyne looks for data structure 
compatibilities. In many cases, data structures are not used throughout the 
entire duration of execution. While a data structure is unused, the memory IP it 
resides in is wasted space and could be used for storing a different data 
structure. To determine which data structures can share the same physical 
memory banks, their lifetimes must be known. The lifetime of a data structure 
is the interval between the first write and last read of the data structure. If two 
data structures have disjoint lifetimes, that means only one of them is active 
and valid at a time. This means they can fully share the same physical memory 
IPs and use the same address space. These data structures are considered 
address-space compatible. In some technologies, the area of one IP is smaller 
than the area of smaller individual IPs combined to store the same amount of 
data. Also, if a data structure is much smaller than the smallest available 
memory IP, the remaining memory space is wasted. In either case, storing two 
smaller data structures in one larger physical memory IP, if there are no port 
conflicts, would save this extra overhead area. If it can be confirmed that these 
two data structures are never read from at the same time or written to at the 
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same time, then they are memory-interface compatible and can be allocated 
within the same memory IP. 
 
The metadata required as input to Mnemosyne are formatted as YAML files. This 
format affects the metadata produced by the compiler to pass memory-related 
information (REQ3.10, D2.2). The information about the data structures to be 
stored in the PLM are formatted as follows: 
arrays: 
   - name       : A0 
     width      : 2048  
    height     : 16  
    interfaces : [w, r, r]  
  - name       : [...]  
    [...]  
 
“name” is the name of the data structure, “width” is the bitwidth of each element, 
“height” is the number of elements to be stored, and “interfaces” is a list of 
all interfaces required by the accelerator to access the data structure (write must 
be listed first, then read/write, and lastly read). The compatibilities between the 
data structures (the memory compatibility graph) are formatted as follows: 
nodes: [A0, B0, C0] 
 edges: 
   - compatibility : [A0, B0] 
     type          : a 
   - compatibility : [A0, C0] 
     type          : b     
  - compatibility : [...] 
   [...]  
 
“nodes” is the list of all data structures to be stored in the PLM (and must match 
the data structures described in the previous file) and “edges” describes each 
compatibility between a pair of compatible nodes. “compatibility” is a list of 
the two compatible nodes and “type” is the type of compatibility between them 
where “a” is an address-space compatibility and “b” is a memory-interface 
compatibility. If a pair of nodes is not listed, they are conservatively assumed to 
have no compatibility. 
  
During EVEREST, Mnemosyne will be extended to include more memory 
components based on the information coming from the compilation flow. For 
example, it will automatically include a DMA engine for making the accelerator 
able to perform autonomous data transfers and prefetchers to hide the 
communication latency by anticipating data transfers. All components will then 
interact with the physical memory or ethernet controllers made available by the 
target platform. This integration will rely on standard interfaces, like AXI 
(REQ4.14, D2.2) and will be managed during system integration. Also, the 
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Mnemosyne-generated memory architectures will include variants that can 
perform data transfers in different ways (e.g., variable lengths of data bursts, 
format, or source-destination). The memory architecture will expose an 
additional set of input ports that will represent the configuration to be activated. 
These ports will be interfaced with the autotuning part for dynamic management 
(REQ5.8, D2.2). 
 
Finally, security extensions will be added during the generation of the memory 
architecture, like automatic encryption/decryption of the memory data. The use 
of intelligent data management will allow for an automatic management of such 
operations that minimize the performance overhead. 
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5 Target platform and system integration  

5.1 FPGA-based target platform 
Using energy-efficient and heterogeneous platforms containing FPGAs are a 
main focus of EVEREST (among others REQ9, D2.1, GREQ2, D2.2). EVEREST 
targets two state-of-the-art research platforms that leverage the FPGAs with 
different design paradigms, both will be described in the following. 
 
Those platforms will feature one or more FPGAs and one or more physical 
memories (either local or external to the FPGA), as shown in Figure 15. For both 
types of platform, at least one CPU host is required that run Linux as Operating 
System and the software (SW) part of the application. The application can 
communicate with the accelerated hardware (HW) kernels either via tightly-
coupled OpenCAPI connection or via a loosely-coupled network (UDP/TCP/IP) 
connection, depending on the platform. In the latter case, the application may 
consist of multiple network-attached FPGAs. The first platform will be referred 
to as “OC-Accel”, the latter as “cloudFPGA (cF)”.  
 
Both systems abstract the development of deployment of FPGA applications and 
therefore offer a high flexibility to the EVEREST consortium to account for 
interoperability and portability of the developed accelerated solutions to different 
platforms (even out of EVEREST’s platforms). This abstraction is enabled by a 
predefined set of interfaces. To achieve portability for EVEREST workflows, the 
interfaces between the SW part of the application (left hand side of Figure 15) 
and the HW kernel (right hand side of Figure 15) will be based on a unified set 
of interfaces.  
 
In the FPGA, the accelerated kernels in both platforms are interfaced solely via 
AXI channels. Both OC-Accel and cF provide a Memory Mapped I/O register 
access over an AXILite bus to pass runtime parameters, as well as a full AXI 
master bus to access the memory. CF also enables AXI-stream based access. 
Differences exists in the number of AXI master buses to connect the accelerators 
to the FPGA DRAM channels or HBM, depending on the specific FPGA platform. 
Please note, that the EVEREST approach is not limited to these platforms, 
because the specified HW/SW interfaces can be easily ported to other, similar 
FPGA platforms. 
 
The OC-Accel logic and the cF logic will be referred to as platform specific “Shell”. 
Those Shells implement all the necessary low-level processing of the 
communication or memory links respectively, to provide those AXI interfaces 
(cf. REQ4.14, D2.2). This way the compiler is only required to generate the 
accelerators with this higher-level interfaces. AXI interfaces are standardized 
and commonly used in the FPGA design ecosystem and supported by HLS tools. 
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Based on the selected platform, the compiler chooses the subset of necessary 
interface connections (e.g. with or without stream access, or with or without 
HBM). Due to this approach, the application can be generated independently of 
the final platform, to a large extend. Additionally, this also enables high 
reusability of compiler-backend modules developed for these FPGA target 
platforms (REQ3.11, D2.2).  
 
Similarly, a set of unified interfaces will be provided at the SW side. This unified 
interface will be a wrapper to the platform specific APIs. As can be seen in the 
upper left corner of Figure 15, OC-Accel relies on the libcxl user-space and the 
ocxl kernel-space libraries. On top of them a C/C++ interface is provided and 
based on that, different language can bind to those libraries. 
 
On the other side in the lower left corner of Figure 15, cF requires TCP/UDP 
sockets and needs to know the IP addresses and ports of the corresponding 
network-attached FPGA. This library is written in C++ and again it can be used 
by multiple language-binding tools. The cF platform also provides a development 
kit that contains build scripts, test cases and necessary SW/HW abstractions. 
This development library is referred to as “cloudFPGA Development Kit (cFDK)”. 
 

 
Figure 15 - EVEREST FPGA IDE with unified interfaces 
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5.2 System integration 
5.2.1 Hardware integration 
After generating the accelerator kernels and the memory architecture, the 
components must be interfaced with the rest of the system and the subsequent 
logic synthesis tools for bitstream generation. Synthesis options and constrained 
will be specified to the single HLS tools and memory generators (REQ4.10, D2.2) 
via command-line options and meta-data information.  
 
Before logic synthesis and bitstream generation, it is necessary to create the 
complete system description that includes the generated components and 
additional IPs, like soft IPs to interface with the physical memory controller and 
the ethernet controllers, hardware monitors for runtime selection (REQ5.9, 
D2.2) and hardware API for exchange information virtualization environment 
(REQ5.11, D2.2). Such components will be described in a component library with 
standard formats (e.g., IP-XACT). Similarly, HLS-generated components will 
follow a standardized interface (REQ4.7, REQ4.8, and REQ4.9, D2.2) In the case 
of cloudFPGA, the generated system will be placed in the Role module and 
interfaced with the Shell module through standard interfaces (REQ4.14, D2.2).  
 
To do so, EVEREST will develop Olympus, which is an automated system 
integration tool for creating such architecture. It will integrate all components, 
also creating parallel accelerator architectures from a high-level description. This 
is particularly important for the applications of the project that include massively 
parallel computation (e.g., WRF simulations).  
 
Olympus generates a memory system wrapper for parallelization of the RTL 
modules of the Private Local Memory (PLM) architecture. From the total number 
of available resources and the resource estimates of the accelerator and the PLM 
architecture, maximum degrees of parallelism can be determined. Let m be the 
number of PLM architecture instances that can be instantiated on the platform 
(based on the available number of BRAMs and the requirements of the optimized 
Mnemosyne units), and k be the number of accelerators that can be instantiated 
(based on the available logic resources and the ones required after HLS). 
Olympus will generate an architecture with the following assumptions: 

• k must be less than or equal to m, since an accelerator can only execute 
if it has a corresponding PLM architecture available.  

• k can be less than m so that one accelerator can execute several iterations 
in sequence using several pre-loaded PLM architectures (in case, for 
example, the DMA engine and the prefetchers will be used to hide 
communication latency.  

Depending on the values of m and k, Olympus will automatically generate an 
RTL wrapper which instantiates all memory modules for the entire system and 
connects them with the necessary control logic so that external memory access 
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is completely transparent. Similarly, Olympus will provide the necessary logic to 
handle streaming interfaces (REQ3.4, REQ4.11, D2.2), if needed. 
 
Olympus will also perform system partitioning to divide the computation 
across multiple FPGA cards in a transparent way with respect to software 
allocation and execution (REQ4.17, D2.2). To do so, it generates the logic to 
interface with the Ethernet controller in case of off-chip data transfers from/to 
other boards and data exchanges with the host. This logic will hide the 
communication details to the accelerators and the local memory architectures. 
 
Finally, Olympus will automatically generate TCL scripts to create the system 
descriptions and interface with the rest of the system (e.g., cloudFPGA Shell) 
and synthesis tools. The flow will generate single descriptions and bitstreams for 
each of the target boards. 
 
5.2.2 Hardware-software interfacing 
Olympus also simplifies and automates hardware/software integration by 
automatically generating the host code that interfaces with the generated 
hardware. Such code will be based on the low-level libraries provided for the 
target platform (e.g., the cloudFPGA Development Kit) where common functions 
(like data bursts and more complex/secure data transfers) will be abstracted in 
software libraries (to be used at the host side during code generation) and 
hardware IP components (to be used at the FPGA side during hardware 
integration). Such integration will be completely transparent to the application 
designers. 
 
5.2.3 Hardware-software security flow 
As discussed in Section 2.5, our goal is to provide security support for inter and 
intra-node mechanisms. Application designers should annotate the 
communication between software components (e.g., in a workflow or dataflow 
graph) to specify the required security functionality at the inter-node level, to 
define the nodes.   
 
The envisioned automation flow to extend the SW-HW system with required 
security capabilities is depicted in Figure 16. The EVEREST platform will be 
extended with a library with security primitives that are needed to ensure the 
required security properties (developed in WP3). The library will include 
primitives implemented in hardware (at RTL level), in software (that can be used 
in the system as software, but they can even be the starting point for generating 
hardware using high level synthesis), and will be connected with the rest of the 
system by means of a standardized interface, such as AXI. Regardless of the 
implementation, security components will be integrated in the system in a 
transparent way for the rest of the application (or, at least, in the most 
transparent way possible). Furthermore, the designer must be able to specify 
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the composition of a logic node, simply instantiating the elements that compose 
it. The first step of the flow is the creation of logical nodes when the logic node 
is defined. To do so, the primitives needed to create the virtual enclave will be 
automatically selected from the ones included in the library and the node 
architecture will be extended with them. Where needed, communication will be 
re-routed to make use of the instantiated primitives.  In the second step, we will 
handle the inter-node security requirements. In this case, the most appropriated 
security primitive will be automatically selected based on the policies defined in 
WP3 from the ones present in the library and the node architecture will be 
extended with the necessary components (either software or hardware). The 
selection of the primitives, in this case, will be based on the inter-node 
requirements specified, for instance, with the dataflow DSL (cf. Section 3.1). 
The flow will then continue with the other steps. 
 
For the EVEREST use cases, the specification of the requirements will be done 
according to the requirements collected in D2.3: all the applications require the 
enforcement of inter-node data confidentiality and authentication and, in some 
cases, also the tracking of the information flow. Intra-node security 
functionalities will be provided to ensure the maximum flexibility in allocation of 
node resources to all the application. 
 

 
Figure 16 - Envisioned flow for providing encryption, authentication, and information flow tracking in 

EVEREST. 
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To exemplify the concept, let’s begin to realize the nodes at the application level. 
For instance, for the traffic prediction model, we need to run specific machine 
learning algorithms on distributed resources including FPGAs and CPUs. Let’s 
imagine that, within that application, we need a logical node that includes FPGAs 
and CPUs, and that they should be completely isolated from the rest of the 
resources. Since the algorithm will be executed on FPGAs and CPUs, our node 
will be formed by a logic enclave containing FPGAs and CPUs. Regardless of their 
physical placement, these computing elements will be logically isolated by the 
appropriated cryptographic primitives from the library. The definition of enclaves 
shall be integrated with the resource definition Hyperloom/HyperTools (cf. 
Section 3.1.1). 
 
Once the nodes are defined, we need to ensure the security of the 
communications, for instance, the confidentiality between the traffic simulator 
and the traffic prediction model. Similar to what is done for defining the nodes, 
we will define a communication channel between the traffic simulator and the 
traffic prediction module. The communication channel definition will include the 
security functionalities that needs to be ensured (in our case confidentiality). 
From this, the hardware modules needed to ensure confidentiality will be 
automatically inferred and instantiated in the architecture. 
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6 Compilation Technologies: Advancing the State of the 
Art 

The previous sections of this deliverable list several technologies, with focus on 
the frameworks, languages, compilers, intermediate representations, high-level 
synthesis and hardware generation tools that will serve as the basis for the 
compilation flow in the EVEREST SDK. To make the contributions to the state of 
the art more explicit, this section provides details on the original status of the 
technologies, the foreseen extensions thereof, and envisioned new technologies 
to be developed within EVEREST. Since the project is ongoing, the list provided 
here is by no means exhaustive. We also discuss how our contributions 
complement and, if applicable, compare to existing commercial tools.  

6.1 Technologies Overview 
Table 1 presents an overview of the different components of the compilation 
framework. For each component (Tool column), the table names the main lead 
and whether the tool originates from a partner of the consortium or if it is 
maintained by an external entity (Source column). The next two columns 
express whether the tool will be completely developed within the EVEREST 
project (New column), or if it already existed and was extended in the project 
(Extended column). In either case, the table describes the major features these 
components will have. The final column of the table lists the major tool flow in 
which the component will be integrated at first. 
 
While the table provides a tool-specific view, it is to be noted, that a major 
contribution of EVEREST lies in building a framework in which these tools can 
seamlessly operate to provide a transparent and efficient use of the EVEREST 
platform. Only by investigating tool interfaces, identifying possible mismatches 
between tool abstractions and finally building an end-to-end tool flow in such a 
collaborative approach can one achieve the holistic approach envisioned by 
EVEREST.  
 
The description of the tools in the table is kept succinct, since they are the matter 
of ongoing research within the project. Details on the tools themselves, the new 
features and how they are implemented will be provided in subsequent 
deliverables, most notably, in Deliverable 4.2.  
 
The first three entries of the table correspond to the languages and intermediate 
languages defined in Section 3. For instance, TeIL-mlir will integrate into the 
MLIR language stack as described in Figure 8. Most likely, other smaller dialects 
will be needed to implement abstract scalars types that can be then mapped to 
custom number representations. DOSA is a framework that shall automatically 
select ML operators provided by existing frameworks so as to improve the 
system efficiency while providing support for distributed execution across FPGAs. 
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As discussed above, we will initially rely on the TVM framework to manipulate 
the ML model.  
 
WRF is an external framework that we will extend to be able to extract kernels 
that can be then offloaded to reconfigurable accelerators. This includes 
modifications to the build system, to the interfaces of modules and a new testing 
infrastructure. As mentioned in Section 2.2, we will initially focus on the radiation 
module. To expose more parallelism, we plan to extend the default WRF setup 
with a the recently proposed RTE RTMGP module.  
 
As discussed in Section 4, Bambu and Mnemosyne are two tools developed by 
partners of EVEREST that will be used for hardware generation. In contrast to 
many other tools, Bambu is an open-source HLS tool. Within EVEREST, Bambu 
will be extended to receive MLIR, allowing for a tighter interaction between the 
DSL compiler and the HLS flow. To demonstrate interoperability, the compilation 
framework will also support downstream commercial HLS tools, such as 
Vitis/Vivado from Xilinx/AMD. Mnemosyne will be extended to receive high-level 
buffer life-time information from the DSL compiler. Since the DSL generates 
code for kernels, and these kernels can be generated to work on different data 
granularities, a new tool called Olympus will be designed that composes 
accelerators, sets up the HW interfaces and ultimately produces the final design.   
 
Finally, for network-attached FPGAs, we will rely and extend the cloudFPGA SDK 
(cFDK). This will initially focus on providing support for the ML workload of the 
EVEREST use cases. 
 

Table 1. Summary of the technologies in the EVEREST compilation framework 

Tool  Lead  Source  New  Extended  New features  Validated in  
TeIL-mlir  TUD  Internal  Yes  Yes  MLIR implementation of the 

TeIL language specification, 
domain optimizations, 
optimizer driver  

Integration and 
unit tests; 
DSL-to-FPGA 
flow  

CFDlang  TUD  Internal  No  Yes  New compiler infrastructure 
based on MLIR, extended 
primitives, implemented 
new intermediate language, 
new frontend, new 
optimizations, extended 
language support  

DSL-to-FPGA 
flow  

Ohua  TUD  Internal  No  Yes  Improved support for Rust 
and Python, implemented 
dataflow transformations 
for batching, state update 
and roll-back  

PTDR flow  

DOSA  IBM  Internal  Yes  Yes  all (partitioning of ONNX, 
analysis and reuse of 
existing libraries, automatic 
system generation, 
improved heterogeneous 
communication library)  

End-to-end 
analysis of ML 
flow  
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TVM  IBM  External  No  Yes  Minor improvements in 
ONNX parsing  

End-to-end 
analysis of ML 
flow  

WRF  CIMA  External  No  Yes  Isolation of the RRTMG 
radiation driver, Modified 
allocation strategy, testing 
infrastructure  

WRF flows, 
stand-alone 
validation, 
DSL-to-FPGA 
flow  

RTE RTMGP  TUD  External  No  Yes  Interfacing external module 
that exposes more 
parallelism into the WRF 
simulation  

WRF flows  

Bambu  PDM  Internal  No  Yes  Custom floating-point 
support, loop pipelining, 
MLIR interfacing  

DSL-to-FPGA 
flow and ML 
Flow  

Mnemosyne  PDM  Internal  No  Yes  Automatic generation of the 
input metadata  

DSL-to-FPGA 
flow  

Olympus  PDM  Internal  Yes  Yes  Automatic generation of the 
system/memory 
architecture  

DSL-to-FPGA 
flow  

Vitis HLS  Xilinx  External  No  No  None  DSL-to-FPGA 
flow and ML 
Flow  

cFDK  IBM  Internal  No  Yes  Stabilization of platform, 
improvement of 
networking, new build flow, 
new debugging flow, more 
tools to support the user, 
improved documentation  

ML flow  

 

6.2 Added Value to Commercial Tools 
As mentioned multiple times, the main goal of the EVEREST SDK is to integrate 
technologies so as to provide a better end-result than with fragmented tools. 
This includes aspects such as increased productivity, i.e., making reconfigurable 
hardware accessible to application experts, and system efficiency, i.e., making 
it possible for the framework to explore configurations that are not possible with 
existing (commercial) tools.  
 
Concretely in the case of commercial tools, we make explicit how the framework 
can rely on tools like Vitis (cf. Figure 11). For instance, in [18] we show that by 
implementing high-level transformations in the DSL compiler, not available to 
the HLS tools, the accelerator’s throughput increases from around 3 GFLOPs to 
43 GFLOPs.  
 
DOSA builds atop existing ML frameworks such as hls4ml, haddoc2, FINN 
VitisAI/DPU and Vitis AI/custom, by automatically selecting the best operator for 
a given FPGA. With the exception of VitisAI/DPU, DOSA is the only framework 
that supports distributed model execution on FPGAs. In contrast to FINN, DOSA 
does so with a set of scripts, requiring no user intervention. In terms of ease of 
use, DOSA is as easy to use as hls4ml which is limited to a single FPGA.  
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From the tools presented in Table 1, Bambu does have an overlap with 
commercially available tools. Bambu, like many others, supports operator 
chaining, bit-width analysis and optimization, memory space allocation, 
speculation and code motion [19], and if-conversion transformations. It also 
supports spatial parallelism through OpenMP annotations [16]. Moreover, it is 
the only HLS tool that can start both from the intermediate representations 
generated by Clang and GCC. More importantly for this project, Bambu accepts 
MLIR and LLVM as input. While XILINX recently open-sourced their Clang/LLVM 
front-end, it is well-documented by developers that the subset of the accepted 
LLVM IR is restricted. The MLIR entry point of Bambu has been already leveraged 
by the Soda-opt compiler [20]. In terms of quality of results, as shown in [21], 
Bambu is on par or better than a well-known commercial tool, LegUp (later 
commercialized), and to the academic HLS tool Dwarf.  
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7 Conclusions 
In this deliverable we have defined how to architect the complex compilation 
framework to transparently and automatically compute efficient execution 
implementations for the use cases on the EVEREST Platform. We have shown 
how language support, frameworks extensions, novel intermediate languages 
and transformations in source-to-source compilers, and extension to HLS tools 
and memory generators can seamlessly interoperate to produce efficient HW 
and SW implementations. This document described the concrete implementation 
plans in work package WP4 and provided early insights into the interaction with 
work packages WP3 and WP5. Stronger connections to these work packages will 
be made, as the use case implementation advances and the runtime 
environment is brought up.  
  



http://www.everest-h2020.eu 

D4.1 – Definition of the compilation framework 54 

 

8 References 
 
[1] V. Cima et al., “HyperLoom: A Platform for Defining and Executing Scientific 

Pipelines in Distributed Environments,” in Proceedings of the 9th Workshop 
and 7th Workshop on Parallel Programming and RunTime Management 
Techniques for Manycore Architectures and Design Tools and Architectures 
for Multicore Embedded Computing Platforms  - PARMA-DITAM ’18, 
Manchester, United Kingdom, 2018, pp. 1–6. doi: 
10.1145/3183767.3183768. 

[2] A. Susungi, N. A. Rink, A. Cohen, J. Castrillon, and C. Tadonki, “Meta-
programming for cross-domain tensor optimizations,” in Proceedings of the 
17th ACM SIGPLAN International Conference on Generative Programming: 
Concepts and Experiences, Boston MA USA, Nov. 2018, pp. 79–92. doi: 
10.1145/3278122.3278131. 

[3] N. A. Rink and J. Castrillon, “TeIL: a type-safe imperative tensor intermediate 
language,” in Proceedings of the 6th ACM SIGPLAN International Workshop 
on Libraries, Languages and Compilers for Array Programming - ARRAY 2019, 
Phoenix, AZ, USA, 2019, pp. 57–68. doi: 10.1145/3315454.3329959. 

[4] C. Lattner et al., “MLIR: A Compiler Infrastructure for the End of Moore’s 
Law,” ArXiv200211054 Cs, Feb. 2020, Accessed: Mar. 26, 2021. [Online]. 
Available: http://arxiv.org/abs/2002.11054 

[5] T. Chen et al., “TVM: An Automated End-to-End Optimizing Compiler for Deep 
Learning,” in Proceedings of the 13th USENIX Conference on Operating 
Systems Design and Implementation, USA, 2018, pp. 579–594. 

[6] Apache TVM. [Online]. Available: https://tvm.apache.org 
[7] D. Gadioli, E. Vitali, G. Palermo, and C. Silvano, “mARGOt: A Dynamic 

Autotuning Framework for Self-Aware Approximate Computing,” IEEE Trans. 
Comput., vol. 68, no. 5, pp. 713–728, May 2019, doi: 
10.1109/TC.2018.2883597. 

[8] S. Ertel, C. Fetzer, and P. Felber, “Ohua: Implicit Dataflow Programming for 
Concurrent Systems,” in Proceedings of the Principles and Practices of 
Programming on The Java Platform, Melbourne FL USA, Sep. 2015, pp. 51–
64. doi: 10.1145/2807426.2807431. 

[9] J. Launchbury and S. L. Peyton Jones, “Lazy functional state threads,” ACM 
SIGPLAN Not., vol. 29, no. 6, pp. 24–35, Jun. 1994, doi: 
10.1145/773473.178246. 

[10] S. Ertel, A. Goens, J. Adam, and J. Castrillon, “Compiling for concise code 
and efficient I/O,” in Proceedings of the 27th International Conference on 
Compiler Construction, Vienna Austria, Feb. 2018, pp. 104–115. doi: 
10.1145/3178372.3179505. 

[11] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The tensor 
algebra compiler,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, pp. 1–29, 
Oct. 2017, doi: 10.1145/3133901. 

[12] N. Vasilache et al., “Tensor Comprehensions: Framework-Agnostic High-
Performance Machine Learning Abstractions,” ArXiv180204730 Cs, Jun. 



http://www.everest-h2020.eu 

D4.1 – Definition of the compilation framework 55 

2018, Accessed: Jul. 22, 2021. [Online]. Available: 
http://arxiv.org/abs/1802.04730 

[13] N. A. Rink, A. Susungi, J. Castrillon, J. Stiller, and C. Tadonki, “CFDlang: 
High-level code generation for high-order methods in fluid dynamics,” in 
Proceedings of the Real World Domain Specific Languages Workshop 2018 on 
- RWDSL2018, Vienna, Austria, 2018, pp. 1–10. doi: 
10.1145/3183895.3183900. 

[14] PandA/Bambu - A framework for Hardware-Software Co-Design of 
Embedded Systems. [Online]. Available: https://panda.deib.polimi.it/ 

[15] Xilinx Inc., “Vivado Design Suite User Guide: High-Level Synthesis.” 
[Online]. Available: http://xilinx.com 

[16] M. Minutoli et al., “Svelto: High-Level Synthesis of Multi-Threaded 
Accelerators for Graph Analytics,” IEEE Trans. Comput., pp. 1–1, 2021, doi: 
10.1109/TC.2021.3057860. 

[17] Mnemosyne: Multi-Bank Memories for Heterogeneous Architectures. 
Politecnico di Milano and Columbia University. [Online]. Available: 
https://github.com/chrpilat/mnemosyne 

[18] S. Soldavini, K. F. A. Friebel, M. Tibaldi, G. Hempel, J. Castrillon, and C. 
Pilato, “Automatic Creation of High-Bandwidth Memory Architectures from 
Domain-Specific Languages: The Case of Computational Fluid Dynamics.” 
arXiv, Jun. 03, 2022. Accessed: Jun. 28, 2022. [Online]. Available: 
http://arxiv.org/abs/2203.10850 

[19] M. Lattuada and F. Ferrandi, “Code transformations based on speculative 
SDC scheduling,” in 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Austin, TX, USA, Nov. 2015, pp. 71–77. doi: 
10.1109/ICCAD.2015.7372552. 

[20] N. B. Agostini, S. Curzel, D. Kaeli, and A. Tumeo, “SODA-OPT an MLIR 
based flow for co-design and high-level synthesis,” in Proceedings of the 19th 
ACM International Conference on Computing Frontiers, Turin Italy, May 2022, 
pp. 201–202. doi: 10.1145/3528416.3530866. 

[21] R. Nane et al., “A Survey and Evaluation of FPGA High-Level Synthesis 
Tools,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 35, no. 
10, pp. 1591–1604, Oct. 2016, doi: 10.1109/TCAD.2015.2513673. 

 
 


