
1

Energy-Efficient Instruction Delivery in
Embedded Systems with Domain Wall Memory

Joonas Multanen, Kari Hepola, Asif Ali Khan, Jeronimo Castrillon, Pekka Jääskeläinen

F

Abstract—As performance and energy-efficiency improvements from
technology scaling are slowing down, new technologies are being re-
searched in hopes of disrupting results. Domain wall memory (DWM) is
an emerging non-volatile technology that promises extreme data density,
fast access times and low power consumption. However, DWM access
time depends on the memory location distance from access ports,
requiring expensive shifting. This causes overheads on performance
and energy consumption. In this article, we implement our previously
proposed shift-reducing instruction memory placement (SHRIMP) on a
RISC-V core in RTL, provide the first thorough evaluation of the control
logic required for DWM and SHRIMP and evaluate the effects on system
energy and energy-efficiency. SHRIMP reduces the number of shifts
by 36% on average compared to a linear placement in CHStone and
Coremark benchmark suites when evaluated on the RISC-V processor
system. The reduced shift amount leads to an average reduction of 14%
in cycle counts compared to the linear placement. When compared to
an SRAM-based system, although increasing memory usage by 26%,
DWM with SHRIMP allows a 73% reduction in memory energy and 42%
relative energy delay product. We estimate overall energy reductions of
14%, 15% and 19% in three example embedded systems.

1 INTRODUCTION

While application complexity and requirements for process-
ing performance keep increasing, it is becoming increasingly
difficult to respond to those requirements [1]. While technol-
ogy advances have long relied on improving performance,
silicon area utilization and energy consumption by scaling
down technology nodes, this is getting more difficult due to
phenomena such as the electron tunneling effect. Although
increasing the amount of resources for parallel computation
can improve performance in some applications, it does not
help in applications where parallelism cannot be exploited.
To enable improvements for future processor systems, re-
searchers are looking into emerging technologies. These
utilize fundamentally different technologies or materials
when compared to the “traditionally” used ones.

While processing performance has increased, memory
systems have advanced at a slower rate. This has resulted in
systems being limited by memory latency and bandwidth.
As the amounts of data required to be processed grow,

• J. Multanen, K. Hepola and P. Jääskeläinen are with the Faculty
of Information Technology and Communication Sciences, Tampere
University.

• A. A. Khan and J. Castrillon are with the Chair for Compiler Construction,
TU Dresden, Germany

the severity of this memory wall [2] increases. Similar to
the research in compute elements, recent years have seen
efforts in various emerging memory technologies. The most
notable candidates for next-generation memory systems
include Phase-Change Memory (PCM), Spin-Transfer Torque
RAM (STT-RAM) and Resistive RAM (ReRAM). As each of
these technologies has its own limitations such as limited
writing endurance, there is currently no single technology
that could be deemed superior to others. A comparison of
the most prominent emerging technologies is presented in
Table 1.

Research in PCM, STT-RAM and ReRAM technologies
has reached a stage of maturity, where large-scale demon-
strator devices and commercial products for each have been
introduced in the last years [3], [4], [5]. Domain wall mem-
ory (DWM) [6], [7] is a relatively less researched emerging
memory technology that has recently received wide research
interest due to its extreme density increase and power
reduction promises. The key idea in DWM is its struc-
ture, where costly access ports can be shared by multiple
memory cells instead of having separate access transistors
for each memory location. This is achieved by using thin
nanotapes to store data in magnetic domains. The electron
spin-polarization in each domain can be shifted to the next
domain by passing a current along the tape. The shifting
attribute in DWM is similar to bubble memory technology
introduced in the 1970’s [8].Bubble memory used magnetic
domains to represent bit values. These were stored in minor
loops of thin magnetic films, where the domains could be
shifted. Bit values from the minor loops could be directed
onto a major loop, which in turn was shifted to align domains
with access ports [8]. However, DWM differs from previous
magnetic memory technologies, such as bubble memory, as
it utilizes spin-polarized current to shift domains [9].

The expected data density of DWM comes from the
tapes being relatively small compared to the access ports. In
addition, the nanotapes can possibly be 3D-fabricated [6] on
top of them for a high area-efficiency, although this is still far
from realization. While the accessing of multiple domains
per access port allows for a high storage density, shifting
the domains requires time and energy that are dependent
on distance from the access port.

Previous work has shown that using scratchpad memo-
ries (SPMs) in place of caches results in reductions in area
and energy consumption [15]. This is an efficient option if
the targeted programs are small enough to fit into the SPM

2

TABLE 1: Comparison of emerging memory technologies [10], [11], [12], [13], [14]. †Includes shifting latency.

SRAM DRAM 3D STT-RAM RRAM PCM V-NAND DWM HDD
cell area (F 2) 120-200 4-8 6-50 4-10 4-12 1-5 ≥ 2 0.5
write endurance ≥ 1016 ≥ 1016 4 x 1012 1011 109 103 − 105 ≥ 1016 ≥ 1016

read time 1-100 30 3-15 5-20 3-20 25 x 1013 3-250† 2 x 106

write time 1-100 50 3-15 20 > 30 105 x 106 3-250† 2 x 106

read energy low medium low low medium medium low medium
write energy low medium high high high high low medium
leakage power high medium low low low low low low
non-volatile no no yes yes yes yes yes yes

completely. In this paper, we consider DWM as a replace-
ment for SRAM instruction SPMs in embedded systems.
This is due to recent results indicating that DWM could offer
similar access times, lower energy consumption and better
data density when compared to SRAM.

Different memory access patterns result in a different
number of shifts required. Consecutive access patterns, such
as the execution of code basic blocks (BBs), require a single
shift between accesses when a single access port is used
for the reading. On the other hand, sporadic access patterns
such as accessing scarce data can result in excessive shifting.
To address this, previous work [16], [17], [18], [19], [20],
[21] has proposed modifying the memory architecture and
utilizing data placement strategies for different data access
patterns. To our knowledge, there are no methods explicitly
targeting instruction streams before our work, even though
instruction streams constitute up to 27% of energy consump-
tion in embedded processor systems [22], [23], [24], [25].
Compared to data, program code has a structure that can
largely be analyzed at compile-time. This allows reducing
the expensive shift operations by using smart placement
strategies.

In our previous work [26], we proposed a memory
structure and a compiler instruction placement algorithm
to reduce the number of shifts in DWM. This paper extends
that work with the following contributions:

• A proof-of-concept implementation using an open-
source RISC-V processor core.

• Evaluation of energy consumption and energy-
efficiency compared to an SRAM-based memory ar-
chitecture.

• Evaluation of the supporting hardware overhead,
overlooked by previous research.

• An additional benchmark to evaluate behaviour in
control-oriented code.

We evaluate our proposed approach with 12 CH-
Stone [27] benchmarks and EEMBC Coremark [28]. As
a proof-of-concept, our proposed method is implemented
in a processor system and verified with register-transfer
level (RTL) simulations. Compared to a baseline linear place-
ment, our approach reduces the number of shifts on average
by 36% in the best case, with a worst-case average overhead
in memory usage of 33%. The total cycle count averaged
over the benchmarks is reduced by 12%. Energy consump-
tion of three embedded processor systems is estimated to be
reduced by 14%, 15% and 19 %.

Ish

Domain wall
Access port

Ish

Horizontal racetrack

V
ertical racetrack

IshIsh

Fig. 1: Horizontal and vertical configurations of DWM.

2 DOMAIN WALL MEMORY

Racetrack memory (RTM) was first introduced in 2002 [29],
and a demonstrator device was presented in 2008 [6]. The
early works were based on domain wall memory (DWM)
technology, which utilizes thin nanotapes as storage ele-
ments. More recently, skyrmions [30] have gained research
interest as they have shown potential for reducing power
consumption. Current studies indicate that the maximum
effective length for a tape would be around 100 domains.
In DWM, small notches are used to separate domains, where
the local magnetic orientation is used to represent bit values.
By injecting a current into the nanotape, the values in the
domains can be shifted back and forth in the nanotape. The
structure of a nanotape and an access port in two configura-
tions are shown in Fig. 1. For practical reasons of sharing
electronic circuitry, a number of nanotapes are typically
grouped together to form DWM block clusters (DBCs) [16].
All of the nanotapes in a DBC are shifted, written or read
simultaneously.

The domains are shifted by applying a current between
the two ends of a nanotape. Here the direction of the current
dictates the direction of shifting. Shifting domains over the
tape end is destructive, so overhead domains in one or
both ends of the tape have been previously proposed. In
this paper, the amount of accessible domains in a tape are
referred to as effective number of domains.

If density is the most important requirement, one access
port attached to a long tape can be used. The maximum
practical length, however, is determined by the delays and
resulting execution latencies incurred from shifting. Previ-
ous work proposes multiple access ports per tape so that
the number of domains accessed through each access port is
relatively low [31]. This keeps the average number of shifts
low while still sharing shifting circuitry for the entire tape.
However, this decreases the data density, as the access port
transistors are relatively large compared to the nanotapes.
Read-only ports are smaller than write or read-write ports,
as more current is required to write a value to a domain,
requiring a larger transistor.

3

B

A

D

… #A0

… #A1

cmp x, y #A2

blt C #A3

… #B0

… #B1

… #B2

jump D #B3

… #C0

… #C1

… #C2

… #C3

… # D0

… # D1

… # D2

if

then else

C

… #A0

… #A1

cmp x,y #A2

blt C0 #A3

… #B0

… #B1

… #B2

jump D0 #B3

… #C0

… #C1

… #C2

… #C3

… #D0

… #D1

... #D2

(a)

… #A0

… #A1

jmp A2

jmp B0

blt C0 #A3

cmp x,y #A2

… #B0

… #B1

jmp B2

jmp D0

... #B2

… #C0

… #C1

jmp C2

jmp D0

... #C3

... #C2

… #D0

… #D1

jmp D2

jmp X
... #D2

(b)

Fig. 2: Comparison of two placement methods for an if-then-
else structure. (a) CFG and corresponding linear placement.
(b) The proposed SHRIMP placement. Inserted branches
highlighted.

Although DWM could allow fast, highly dense and
energy-efficient memories in the future, the technology still
has unsolved problems before it can be used to manufacture
large-scale memories. Currently the main obstacles lie in 3D
fabrication of the nanotapes and accurate control of domain
shifting [32]. Another issue under research is the large
threshold current density required for domain wall motion.
Research in ferrimagnetic materials [33] seems promising
for reducing it.

Alongside domain walls, skyrmions are concurrently re-
searched. They have been shown to require significantly
smaller current density and to be insensitive to the nanotape
edge imperfections [30]. Although it is not clear which exact
technologies will be used in future RTMs, current research
assumes that reducing the amount of shifts is crucial for
reducing the energy consumption.

Although shifting accuracy is an unsolved problem, pre-
vious work has proposed error correction code (ECC) methods
to deal with shifting errors. By using extra nanotapes, access
ports and domains [34] to store ECC data, shift errors can
be detected and corrected. Simultaneously “traditional” bit
errors are handled. For the evaluations in this paper, we
assume a scenario where the shifting can be accurately
controlled.

3 THE SHRIMP APPROACH FOR INSTRUCTION
STREAMS

The reasoning behind our proposed shift-reducing instruction
memory placement (SHRIMP) is that since program code
and data access patterns are inherently different, designing
DWM structure for each separately results in better effi-
ciency. Since program code can be described as BBs where
DWM accesses would happen in sequential addresses, and
loops are typically program hot spots, a DWM should be

BB & CFG analysis

source code

compilation

BB placement
 groups creation

head status array +
shift control

PC

+-4

+4 branch
address

instruction fetch unit

. . .

...

...

target platform

DWM

overhead
area

...

Ta
pe

 0
Ta

pe
 1

Ta
pe

 m
-1

effective
area

0

n-1

read portread-write port

...

executable

split jump insertion,
fallthrough jump insertion

SHRIMP-modified
executable

identification of
multi-executed BBs

DBCs

branch target fixing

lower half reversal

Fig. 3: Overall flow, supporting hardware and DWM struc-
ture associated with SHRIMP. Contributions of this work
highlighted.

designed to favour these aspects when used as an instruc-
tion memory. Executing a BB once is ideal in terms of shifts:
accessing the next instruction always requires only one shift
per nanotape.

However, if that BB is executed multiple times during
program execution, the next iteration requires shifting from
the last instruction in the BB to its first, causing unwanted
latency. To this end, we propose to split BBs into two halves
and reverse the instructions in the latter half. Each half
is read sequentially using an access port dedicated to it,
but shifting happens in opposite directions for the halves.
By doing this, the DBC containing the BB is returned to
the initial position after reading all the BB instructions. This
allows the first instruction to be immediately read out again.
The proposed placement is compared to an unmodified
linear placement in the case of a simple if-then-else structure
in Fig. 2.

The overall flow, DWM structure and hardware changes
required for instruction addressing are illustrated in Fig. 3.
SHRIMP uses static control flow graph (CFG) analysis to
create an instruction placement, which in conjunction with
dedicated hardware reduces the amount of shifts required
when executing a program. In our proposed approach, a
DBC has m tapes, n effective domains per tape and n/2-1
overhead domains in one end of each tape. Each tape has
one read-write port located at the first effective domain and
one read port at the midpoint of the effective domains. We
adopt the static lazy strategy proposed by Venkatesan et al.
[16]. This means, that each domain has an assigned access
port which is always used to access it. Moreover, the DBC
position is always left as is after reading or writing.

The SHRIMP algorithm starts by analyzing the target
program code. Program BBs and CFGs are constructed for
each program function. Then BBs that have a possibility

4

to be executed multiple times are identified. In this work,
we refer to these as multi-executed. Single-executed BBs are
placed into the DWM as they are, using the linear placement.
Multi-executed BBs are individually placed into DBCs by
splitting them and reversing the latter half. Each half is
mapped to start at its corresponding access port. As the
DBCs have a fixed amount of effective domains, they may
not be fully utilized depending on the number of BB in-
structions. In this case, unconditional branches are inserted
to jump from the first half to the second and to replace
fallthroughs from the second half to the next BB. Unused
memory locations in the DBCs are padded with no operations
(NOPs).

Fig. 4 contains an example illustrating the execution of a
SHRIMP-placed BB. A multi-executed BB with four instruc-
tions is mapped into a single DBC, where the individual
nanotapes are not drawn for clarity. Due to the BB not
filling the DBC completely, two unconditional jumps J0
and J1 are inserted. The columns represent the DBC at
consecutive clock cycles. Overhead domains are coloured in
dark, effective domains in light colour and the instruction
currently being read is highlighted in blue. Instructions a0
and a1 are first read sequentially from the top access port,
shifting the DBC “up” between each read. No shifts are
required to read a0 as it is initially aligned to the upper
access port. The jump J0 targets the instruction a2. As a2 is
now aligned with the access port, no shifting is required to
read it. Execution continues by reading a3 followed by J1
by shifting the DBC “down”. After reading the BB, the DBC
is left in its original state and if required, the next iteration
of the BB can begin immediately.

The inserted unconditional jumps would cause a sig-
nificant shift amount and delay overhead in short BBs, if
they are frequently executed. Moreover, memory usage can
increase drastically, when the nanotapes in a DBC have
relatively many effective domains: a multi-executed short
BB occupies the full DBC, leaving many memory locations
unused. Thus, we introduce an optional splitting threshold for
the minimum length of multi-executed BBs. When a multi-
executed BB has less instructions than the threshold, it is
treated as a single-executed BB.

The instruction placement pass and the associated hard-
ware are described in more detail in the following subsec-
tions.

3.1 Instruction Placement

Algorithm 1 describes the overall process of SHRIMP. First,
program BBs and CFGs for each function are identified on
Line 1. Here function calls are treated as instructions not
affecting the control flow. In other words, they do not end
a BB. This allows continuing from the location following
the caller and only requiring a single shift, once execution
returns from the function. Next, each BB is categorized as
single-executed, or multi-executed on Line 2. Loops, functions
called from inside loops, and functions called from multiple
locations in the code are placed into the latter category.

Placement groups are constructed on Line 3. These are
groups of BBs, that are placed contiguously into one or
more consecutive DBS. This step is described in detail in
Algorithm 2 and is discussed after the main algorithm.

a0

a1

J0

J1

a3

a2

a0

a1

J0

J1

a3

a2

a0

a1

J0

J1

a3

a2

a0

a1

J0

J1

a3

a2

a0

a1

J0

J1

a3

a2

a0
a1

J0

J1

a3

a2

clock
cycle 0 1 2 3 4 5

...

...

...

...

...

...

Fig. 4: Execution example with SHRIMP.

Algorithm 1 SHRIMP algorithm.

1: identifyCFGs()
2: identifyMultiExecutedBBs()
3: createPlacementGroups()
4: insertSplitJumps()
5: insertFallthroughJumps()
6: insertNOPs()
7: reverseDBCLowerHalves()
8: fixBranchTargets()

After the placement groups have been constructed, the
unconditional split jumps between DBC halves are inserted
on Line 4. As a group can occupy multiple DBCs, only
numInstructionsInGroup%numDomainsInDBC from
the group are examined to find the jump position. To con-
sider even or odd amount of instructions, the first bk/2c are
placed into the first DBC half and the remaining dk/2e into
the second half. Groups with an odd number of instructions
leave the shifting position one off from the initial position
after reading out the group.

For the DBCs that are fully filled by multi-executed BBs,
we do not insert the split jumps to reduce the amount of
incurred overhead shifts. Instead, we implicitly perform a
branch with hardware when the next consecutive instruc-
tion to be fetched is located in another DBC than the current
one. This can be done by examining a single address bit, as
we assume that the DBC sizes are fixed to a power of two. As
SHRIMP may leave unused memory locations between con-
secutive BBs and break CFG fallthrough edges, fallthrough
jumps are inserted on Line 5. Another solution would be to
insert NOPs after BBs and allow processor execute them to
reach the next BB. However, this would increase execution
time especially with larger amounts of effective domains per
nanotape. Although branching delay depends on the (mi-
cro)architecture, we replace these fallthroughs with jumps
in our proof-of-concept implementation.

To pad the placement groups to DBC limits, NOPs are
inserted on Line 6. This is done in order to simplify fixing
the program instruction addresses later. On Line 7, the
instruction order in DBC lower halves is reversed. This is
done for single-executed and multi-executed BBs. Finally,
on Line 8, branch target addresses are fixed as these may
not be valid due to the inserted instructions and reversed
DBC halves.

5

Algorithm 2 Placement group creation algorithm.

1: placementGroups = []
2: candidateGroup = []
3: for firstBB in programBBs do
4: if not firstBB.assigned and firstBB.multiExecuted and

firstBB.length >= splitThreshold then
5: candidateGroup = [firstBB]
6: placementGroups.append(candidateGroup)
7: firstBB.assigned = True
8: continue
9: end if

10: for secondBB in programBBs do
11: if firstBB == secondBB or secondBB.assigned then
12: continue
13: end if
14: if secondBB.multiExecuted and

secondBB.length >= splitThreshold then
15: placementGroups.append(candidateGroup)
16: candidateGroup = [secondBB]
17: placementGroups.append(candidateGroup)
18: break
19: else
20: secondBB.assigned = True
21: candidateGroup.append(secondBB)
22: end if
23: end for
24: if candidateGroup then
25: placementGroups.append(candidateGroup)
26: end if
27: end for

The placement group creation is illustrated in detail
in Algorithm 2. Overall, the algorithm iterates through all
program BBs organized by their original address. On Lines
3–8, the potential group’s first candidate BB is inspected.
If it is a multi-executed BB that has more instructions than
the defined split threshold, and it is not assigned yet, it is
defined as a placement group. If it is a single-executed BB
or a multi-executed BB with less instructions than the split
threshold, the algorithm continues to Lines 10–23. Here,
more BBs are added to the placement group candidate as
long as a multi-executed BB meeting the split threshold is
encountered. If this loop iterates through all of the BBs,
Lines 24–26 finish the candidate group.

3.2 DWM Architecture and Supporting Hardware

SHRIMP requires hardware support and an appropriate
DWM architecture due to the “back-and-forth” opera-
tion. These are illustrated in Fig. 3. As introduced with
TapeCache [16], we utilize a head status array to track the
shifting position of each DBC relative to the initial position.
In our approach, the memory peripheral circuits perform
address decoding into DBC and domain, and calculating
the number of shifts required using the head status array.

The following sections describe the decisions behind
the DWM design and the required modifications to the
instruction fetch logic in further detail.

SHRIMP requires at least two access ports per nanotape
due to the reversed BBs and the “back-and-forth” shifting

required to execute them. Because access ports contribute
to total DBC area more than the nanotapes, and read-write
ports are larger than read ports, we use the minimum
amount of access ports required in order to maximize bit
density: one read-write port and one read port, as shown in
Fig. 3. Because we always shift the domains in a ”back-and-
forth” manner, n/2 − 1 overhead domains are required at
one end of each tape.

In contrast to traditional memory technologies where
one access port corresponds to one memory cell, in DWM
the correct positioning of tapes to the access ports must
be ensured. Policies for selecting the access port to use
for an operation and for managing the shift position were
proposed by Venkatesan et al. [16]. In static access policy,
each domain has a dedicated access port which is always
used to access it. In dynamic policy, the access port closest to
the domain to be accessed is decided on the fly by hardware.
Because program code typically translates to sequential
accesses to BB instructions, we adopt the static policy for
SHRIMP.

In addition to the access port selection policy, managing
the shifting positions in DWM is required. Venkatesan et
al. [16] studied eager and lazy policies, where nanotapes are
always shifted back to their initial position or left where
they are after an operation. The lazy policy requires book-
keeping of the DBC shift positions, to which Venkatesan et
al. propose to use a hardware structure called head status
array. We utilize the lazy policy in SHRIMP because exe-
cuting program BBs can be done by accessing sequential
addresses. The lazy policy requires only one shift between
each consecutive instruction inside a BB, whereas the eager
policy would result in excessive, unnecessary shifting.

The size of the head status array is determined by the
amount of effective domains in the tapes of a DBC. For
SHRIMP, the maximum number of shifts is d/2 − 1, when
there are d effective domains in a tape. To store this offset
amount, each DBC adds dlog2(d/2)e bits to the head status
array. Here each DBC’s shifting position is independent
of others. As the ”back-and-forth” execution of BBs in
SHRIMP leaves the tapes either in their initial position or
one off, the head status array could be optimized by only
using one bit per DBC. However, the linear placement of
single-execution BBs and those with less instructions than
the splitting threshold still require log2(d/2) bits. To avoid
excessive unutilized memory locations, only multi-executed
BBs are placed in their own DBCs.

3.3 Instruction Fetch Logic

In SHRIMP, the underlying hardware handles changing the
shifting direction depending on the DBC half that is being
accessed. In a typical instruction fetch, the next instruction
is expected to be fetched from the next incremental address.
In SHRIMP, the next fetch address is decided based on
which DBC half the current address is in. Depending on
the required shift direction, the current address is either
incremented or decremented. In our approach, if DBCs
have a tape length of d effective domains, only address
bit log2(d) − 1 is required to decide the direction. The bit
value zero corresponds to the range of the ”upper” access
port and bit value one to the ”lower” access port. This bit

6

instruction
scratchpad

SRAM

zero-riscy

instruction fetch

(a)

instruction
scratchpad

DWM

zero-riscy

instruction fetch
head status

array

shift control

(b)

instruction
scratchpad

DWM

zero-riscy

instruction fetch
head status

array

shift control

SHRIMP
address logic

(c)

Fig. 5: System setup for evaluations. (a) Baseline (b) Linear
placement + DWM (c) SHRIMP placement + DWM.

simply controls a multiplexer to select the value to add to
the current program counter as shown in Fig. 3.

4 EVALUATION

For a thorough evaluation, our SHRIMP method is imple-
mented and evaluated on a zero-riscy [35], an open-source
RISC-V processor core intended for embedded systems.
The evaluation setup is depicted in Fig. 5. The baseline in
Fig. 5a features a 64 KiB SRAM as the instruction scratchpad
memory, which is directly accessed from the instruction
fetch unit of the zero-riscy. To evaluate the effect of DWM
without SHRIMP, the baseline SRAM is replaced with a
64 KiB DWM in Fig. 5b, and linear placement is used in
this setup. To control the DWM, a shift control unit and
a head status array are implemented outside the core. To
evaluate SHRIMP, the setup from Fig. 5b is replicated with
the addition of address logic required due to the back-and-
forth operation in SHRIMP. This setup uses the SHRIMP
placement algorithm. For a fair comparison of the two DWM
setups, both had one read-write port and one read port as
required by SHRIMP. DBCs with 8, 16, 32 and 64 effective
domains were evaluated. As results behaved quite linearly
between different number of effective domains, only 8 and
64 are reported in this section.

The head status array is implemented as flip-flops or-
ganized into banks for energy-efficiency. As the size of
the head status array is determined by the maximum shift
amount for each DBC, these are listed for different DBC and
total memory sizes in Table 2. The controller model reads the
head status array and calculates the required shift amount.

TABLE 2: head status array size (B)

effective domains in DBC
8 16 32 64

DWM size 64kB 4096 3072 2048 1280

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm jpeg mips motion sha coremark geom.
 mean

0

10

20

30

40

50

60

70

nu
m

be
r o

f s
hi

fts
 (%

)

4 8 16 32 64 ideal

Fig. 6: Number of shifts with SHRIMP across split thresh-
olds from 4 to 64 compared to linear placement, tape length
8.

We evaluated SHRIMP with 12 benchmarks from CH-
Stone suite [27] and EEMBC Coremark [28]. To produce
executables for the zero-riscy, we used a RISC-V GCC com-
piler version 5.2.0. In order not to overly emphasize the
initialization code, identical in each application, only the
actual application code is used for the results presented
here. We evaluate splitting thresholds 4, 8, 16, 32 and 64,
as the benchmarks show different behaviour when placed
using the same threshold, depending on the number, length
and execution amounts of BBs.

As we implement SHRIMP as a post-pass after com-
pilation, we use the -fno-jump-tables option to avoid in-
direct branches in the code. Moreover, as the zero-riscy
implementation assumes function call return addresses as
caller address + 4 bytes as defined in the RISC-V specifi-
cation, we place calls only into ”upper” DBC halves, where
return addresses are calculated correctly.

Execution cycles for each benchmark are obtained using
the ModelSim simulator. These RTL simulations are also
used to verify the correct functionality for each evaluation
setup. The RTL-simulated total number of shifts is verified
using RTSim [36], a cycle-accurate simulation framework
that can model the DWM shifting and access port status. For
the verification, instruction memory access traces obtained
from RTL simulations are used as input for RTSim. Shifting
latency of one cycle per shift is assumed.

In order to evaluate energy consumption of the baseline
SRAM and DWM used in the two other setups, Destiny [37]
simulator is used. The parameters for DWM are obtained
from results published by Zhang et al. [31]. As previous
research has overlooked the timing and energy overhead
from adding the head status array and shift control logic, we
create to our knowledge the first RTL implementation of the
control logic required in DWM and synthesize them along
with zero-riscy. ASIC synthesis is performed with Synop-
sys Design Compiler using a 28 nm fully depleted silicon-
on-insulator (FDSOI) process node. For power estimation,
switching activity data from ModelSim simulations is used.
Each system is evaluated with a target clock frequency of
3 ns as this is estimated as sufficient for the DWM read
operation.

4.1 Shift Amounts
Figs. 6 and 7 illustrate the total shift amounts per bench-
mark. The results are relative to the linear placement shift
amounts in each benchmark. To estimate the shift reduc-
tion potential, an ideal shift amount for each benchmark
is calculated by assuming a perfect instruction placement

7

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm jpeg mips motion sha coremark geom.
 mean

0

20

40

60

80

nu
m

be
r o

f s
hi

fts
 (%

)
4 8 16 32 64 ideal

Fig. 7: Number of shifts with SHRIMP across split thresh-
olds from 4 to 64 compared to linear placement, tape length
64.

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm jpeg mips motion sha coremark geom.
 mean

0

20

40

60

80

100

cy
cle

co
un

t i
nc

re
as

e
(%

)

linear 4 8 16 32 64

Fig. 8: Increase in execution cycles of linear and SHRIMP
placements across split thresholds from 4 to 64 compared to
SRAM baseline, tape length 8.

with one shift between each instruction and two instructions
requiring no shift due to initial alignment to access ports.
Note that this does not result in the lowest shift amount
possible, but rather the lowest shift amount while having
perfect utilization of the memory. Although it is practically
not reasonable, the shifting could be eliminated by placing
single instructions at the access ports. However, this would
lead to extremely poor memory utilization or require only
a single effective domain per access port, leading to low
memory density.

Using a relatively short tape length of 8, all benchmarks
show similar reductions of 37% on average in shifts when
compared to the linear placement. Results between split
thresholds produce negligible differences in other bench-
marks except for dfmul and mips, where the differences are
small. Overall, the placement groups identified by SHRIMP
contain relatively few BBs and instructions, partly due to
function calls forcing them to be split. In dfmul, forcing
a large split threshold results in increased shifts, as short
multi-executed BBs are forced into the same DBCs. As
the BBs can not be accessed individually via the back-
and-forth operation, excessive shifts are incurred at each
iteration of the BBs. The same behaviour is observed at a
relatively large tape length of 64. However, opposite to this
behaviour, in mips at tape length 8 the amount of shifts
is reduced, when the split threshold was increased. Even
though multi-executed BBs are forced into the same DBCs
due to the large split threshold, shifts are reduced because
the program execution pattern happens to be favourable to
the instruction placement and less jumps are inserted and
executed between DBC halves. As SHRIMP does not per-
form dynamic trace profiling when creating the instruction
placement, applying a split threshold can either increase or
decrease the amount of shifts. On average, reductions in
shift amounts are 25% with tape length 64.

Adpcm, aes and motion achieve a reduction with less

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm jpeg mips motion sha coremark geom.
 mean

0

25

50

75

100

125

150

175

cy
cle

co
un

t i
nc

re
as

e
(%

)

linear 4 8 16 32 64

Fig. 9: Increase in execution cycles of linear and SHRIMP
placements across split thresholds from 4 to 64 compared to
SRAM baseline, tape length 64.

than 10% difference to the ideal shift amount, when using
a tape length of 8. In these benchmarks, BBs are aligned
nicely inside DBC borders, without requiring many inserted
jumps. However, with a tape length of 64, the difference to
ideal grows or remains the same in all of the benchmarks.
This is due to more memory being left unutilized, as the rel-
atively short BBs and placement groups cannot fill the DBCs
completely. This in turn requires additional inserted jumps
between DBC halves and DBCs, resulting in increased shift
amounts.

4.2 Cycle Counts
The amount of clock cycles relative to the baseline setup
are presented in Figs. 8 and 9. At tape length 8, the linear
placement results on average 80% overhead compared to
the SRAM baseline. With SHRIMP the average overhead is
56%. As the tape length is increased, the difference between
SHRIMP and linear placement increases. As expected, the
linear placement shift amounts increase relatively more
when compared to SHRIMP. At tape length 64, the lin-
ear placement results on average 137% overhead in cycle
counts, while SHRIMP overhead on average is 98%. Here,
the small amount of access ports and relatively long tape
lengths emphasize the amount of shifts required to reach BB
first instructions.

SHRIMP results in a clear difference in execution cycles
in all benchmarks except motion a tape length 64. This is due
to two reasons. First, SHRIMP placement is not effective due
to function calls and many small multi-executed BBs that are
treated as single-executed BBs due to the split threshold.
Second, as SHRIMP leaves unused memory locations in
the DBCs while it places multi-executed BBs, branch target
addresses are moved. If the 13-bit branch immediate for
conditional branches defined in RISC-V specification is not
large enough for the PC-relative conditional branch target
after SHRIMP, it has to be replaced with a conditional
branch + unconditional jump pair. The inserted jumps result
in an overhead over the linear placement, where these jumps
are not required.

4.3 Memory Utilization
As SHRIMP leaves some memory addresses unused to
achieve the back-and-forth operation for multi-executed
BBs, we evaluate the effective memory utilization, presented
in Figs. 10 and 11. At tape length 8, memory utilization over-
heads are relatively low, between 2.5% to 10.0% in the worst
cases, sha and coremark. In these benchmarks, the compiler

8

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm jpeg mips motion sha coremark geom.
 mean

0.0

2.5

5.0

7.5

10.0
pr

og
ra

m
 si

ze
 in

cr
ea

se
 (%

)
4 8 16 32 64

Fig. 10: Increase in memory usage with basic block splitting
thresholds from 4 to 64, tape effective length 8 domains.

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm jpeg mips motion sha coremark geom.
 mean

0

20

40

60

80

pr
og

ra
m

 si
ze

 in
cr

ea
se

 (%
)

4 8 16 32 64

Fig. 11: Increase in memory usage with basic block splitting
thresholds from 4 to 64, tape effective length 64 domains.

creates many small BBs that are also multi-executed. These
incur a significant overhead as they are placed into their
own DBCs, which are then padded with NOPs. In adpcm,
aes, dfsin and gsm the number of inserted instructions is very
low, around 1%. However, these benchmarks still achieve a
relatively high shift amount reduction. Here SHRIMP places
the few most critical BBs as multi-executed, resulting in
a low overhead but a relatively high dynamic reduction
in shifts. At tape length 64, the overall memory footprint
of all benchmarks is increased compared to tape length
8. On average, the overhead is 26%. This is again due to
SHRIMP splitting BBs into individual DBCs, resulting in
many unused memory locations. The overhead is relatively
worse in benchmarks with many short, multi-executed BBs.
As the split threshold is increased, aes, blowfish, dfadd, dfmul,
motion and sha results improve significantly, as less BBs are
split, resulting in fewer unused memory locations.

4.4 Energy Consumption
The breakdown of average energy consumption over the
benchmarks between SRAM and DWM with different num-
ber of effective domains obtained is presented in Fig. 12.
Leakage energy consumption is the largest component for
both memory technologies, although relatively smaller in
DWM. As the number of effective domains per tape is in-
creased, the proportional amount of shifting energy grows,
while that of leakage energy reduces. This is expected, as

0 20 40 60 80 100

SRAM
linear, 8

linear, 16
linear, 32
linear, 64

SHRIMP, 8
SHRIMP, 16
SHRIMP, 32
SHRIMP, 64

read leakage shift

Fig. 12: Energy consumption breakdowns of SRAM and
DWM with 8, 16, 32 and 64 effective domains.

now there are less leaky access port transistors for an iso-
capacity DWM, while shifting the longer individual tapes
consumes more energy.

Energy consumption comparison of SRAM, linear place-
ment on DWM and SHRIMP on DWM is presented in
Figs. 13 and 14. At tape length 8, the linear placement
results on average 70% reduction in system energy, whereas
SHRIMP results in 73% reduction on average. While
SHRIMP results in reduced cycle counts and therefore,
shorter runtimes which result in less leakage energy con-
sumed, it requires more memory reads due to the inserted
jumps. At tape length 64, the corresponding reductions are
66% for linear placement and 71% for SHRIMP. The end
result is a relatively small energy saving over linear place-
ment. The system energy compared to linear placement
reduction is mainly due to less energy consumed by the
DWM and head status array. The largest contributor to
the energy reduction is the smaller leakage energy due to
shorter runtimes, which in turn stem from less shifts. The
head status array consumes relatively less energy at tape
length 64 than at 8 because it is smaller, as listed in Table 2.

As a measure of energy-efficiency, energy delay product
(EDP) relative to the baseline SRAM system is presented in
Figs. 15 and 16. Here, a lower number is better. The EDP
results behave similarly to the energy consumption results,
although emphasizing the difference between linear and
SHRIMP placement due to SHRIMP resulting in shorter run-
times. At 8 effective domains per tape, the linear placement
achieves on average 55% relative EDP, whereas SHRIMP
reaches 42%. For 64 effective domains, the corresponding
results are 80% for linear placement and 60% for SHRIMP.
Similar to energy consumption, the results are better with
less effective domains.

4.5 System Overhead from DWM
The energy consumption overhead of the head status array
and shift control logic required for DWM can be observed
from Figs. 13 and 14. In all evaluated cases, the energy
consumption of the additional DWM logic is 9-10% of
system energy. The contribution of the shift controller to the
overhead is negligible compared to the head status array.
Although the head status array is relatively small, it has to
be read and written for each memory access.

The effect on the area of adding the DWM-specific logic
to zero-riscy core is presented in Table 3. With 8 effective
domains, the head status array occupies 225% more area
compared to the zero-riscy core. At 64 effective domains,
the overhead decreases to 67%, as there are less access ports
in total in an iso-capacity memory when each DBC has more
effective domains.

4.6 SHRIMP at System-level
In order to provide examples of energy savings of SHRIMP
at the system level, we approximate the effects on three

TABLE 3: Relative zero-riscy core area (%) with DWM-
specific logic.

num. effective domains
8 16 32 64

325 270 221 167

9

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm jpeg mips motion sha coremark geom.
 mean

0

5

10

15

20

25

30

35
en

er
gy

 (%
)

lin
ea

r
4 8 16 32 64

HSA
control
core
imem

Fig. 13: Energy consumption relative to baseline. Basic block splitting thresholds 4 to 64, tape effective length 8 domains.

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm jpeg mips motion sha coremark geom.
 mean

0

5

10

15

20

25

30

35

40

en
er

gy
 (%

)

lin
ea

r
4 8 16 32 64

HSA
control
core
imem

Fig. 14: Energy consumption relative to baseline. Basic block splitting thresholds 4 to 64, tape effective length 64 domains.

recent embedded processor cores. The estimations are listed
in Table 4. It should be noted that these are rough estimates,
as publicly available results of processor cores with detailed
energy breakdowns are scarce. Therefore, we have selected
references from the embedded domain which more often
report energy or power consumption for the instruction
hierarchy separately. Although the instruction memory hi-
erarchies in the reference cores are not exactly as in our
evaluation setup, we believe that these estimates are accu-
rate enough for estimating the future benefits of DWM. The
estimates are calculated by assuming an average reduction
of 70% for the instruction memory hierarchy, based on the
results in Figs 13 and 14. The resulting instruction memory
energy reductions are then subtracted from total system
energy. This results in 14-19% reductions in total system
energy.

4.7 Discussion

As the access patterns for instructions and data are inher-
ently different, structures tailored for each separately seem
optimal. In Harvard architectures this is straightforward, as
they typically implement a cache or a scratchpad memory
for each separately. However, Von Neumann architectures
employ a shared bus for instructions and data, and a shared
memory for both. In this case it is not clear what is the
optimal DWM architecture and placement strategy to store
data and instructions. One solution would be to optimize
some address ranges for instructions and others for data.
Also, the DWM can be designed depending on the intended
workload and energy, area and performance requirements.

Moreover, our approach is designed for an embedded
system, where programs are executed directly from an in-

struction scratchpad DWM. Modern processor systems im-
plement memory hierarchy with multiple levels of caches,
where the operation is based on linear placement of data
and instructions. Further research is required to efficiently
utilize instruction DWMs for systems where caches are
required.

SHRIMP is designed to use the minimal amount of
access ports to implement the back-and-forth operation: one
read-write port and one read port. The amount of access
ports per tape could be increased to reduce the maximum
shifting distance to reach instructions, when multiple BBs
are placed in a tape. However, as the maximum tape length
is limited, and the DWM area is dominated by the access
ports, SHRIMP uses two access ports per tape to maximize
bit density of the memory. As a software programmable
processor typically only fetches and decodes a single in-
struction per clock cycle, additional access ports in CMOS
technology per tape would only contribute to leakage power
consumption.

To increase the energy-efficiency of processor systems,
small L0 filter caches [38] and loop caches [39] have been
proposed to store the most frequently executed instruc-
tion in programs. These components greatly simplify or
remove the tag checking required in associative caches.
In a system incorporating such a component, the latency
improvement of SHRIMP over a naive DWM is reduced
as instructions are not executed directly from it. This is
because SHRIMP improves energy-efficiency by removing
the latency between the iterations of multi-executed BBs.
Although the dynamically controlled filter and loop caches
improve the energy-efficiency over a ”traditional” L1 cache,
small SPMs combined with execution-time reprogramming
have been shown to further improve energy-efficiency [40].

10

TABLE 4: Effect of SHRIMP on example embedded cores.

imem hierarchy, , system energy with imem energy of
year SRAM (% of total) DWM (% of original) total with DWM (%)

Lambrechts et al. [23] 2005 27 81 8
SleepWalker [22] 2013 21 85 6

Gautschi et al. [24] 2017 15 86 4

While our proposed method is targeted at relatively large
SPMs accommodating a full program at a time, it is left as
future work to investigate its applicability to smaller SPMs.

5 RELATED WORK

While the shifting operation in DWM is similar to that of
bubble memory [8],to our knowledge there are no publica-
tions targeting code execution with bubble memory. Bubble
memory was targeted as a high capacity data memory, and
it was suggested optimizing it for specific tasks such as data
sorting.

Previously, scratchpad memories [17], [20], [21], caches
[16], [41], and GPGPU register files [42] using DWM have
been proposed. However, these primarily target data mem-
ories. Gu et al. [19] proposed instruction scheduling in order
to reduce data memory shifts. in their work instructions
were scheduled based on the data access patterns in pro-
grams to minimize shift amounts of data memory. However,
this work did not consider actually reading the instructions
from a DWM.

Recent works [21], [43], [44], [45] have proposed data
placement methods to reduce the amount of shifts in DWM.
However, these target data and not instructions like our
proposed method.

Previous work [31] using DWM as a data memory, uti-
lizes multiple access ports per tape. This is done to minimize
the amount of shifting required between accesses to memory
locations. Simultaneously only one shifting circuitry is used
for the entire tape as opposed to using multiple shorter tapes
with fewer access ports. Although our proposed method
requires multiple access ports, to minimize the overheads,
the minimum amount of two access ports are used.

6 CONCLUSIONS

Although DWM still has unsolved technical questions be-
fore it can be applied in large scale, it shows potential for
extremely dense and energy-efficient memories in compute
devices of the future. In this paper we extended the eval-
uation of our previously proposed SHRIMP method, the
first instruction placement strategy specifically designed for
DWM technology. Although domain wall based RTM is
used for evaluations, the method is applicable to skyrmion
based RTMs, as it reduces the amount of shifts required.
The core idea of the method is that using a static control
flow graph analysis, program BBs with possibility to execute
multiple times are split into two halves, where the latter
half is placed in reverse order to DWM. This allows the
reduction of energy and time consuming shifts specific to
DWM technology.

In an evaluated embedded system scenario, the pro-
posed method is able to reduce total shift amounts in 12
CHStone and EEMBC Coremark benchmarks by 36% on

average when compared to a linear instruction placement.
Although SHRIMP incurs at worst an average overhead of
26% in memory usage, compared to a 64 KiB instruction
SRAM scratchpad, DWM with SHRIMP consumes on aver-
age 73% less memory energy. SHRIMP reaches a 42% rela-
tive energy delay product compared to the baseline SRAM
system. Compared to the linear placement, total clock cycles
are reduced by 14% on average. In three example embedded
processors found in literature, we estimate that SHRIMP
allows savings of 14% to 19% in total energy consumption.
These results suggest that using SHRIMP in combination
with DWM has significant benefits for energy-efficiency of
software programmable embedded processors.

Further research on placing multiple basic blocks into
DWM with a SHRIMP-like memory architecture could im-
prove memory utilization. This could also allow additional
reductions in shift amounts and clock cycle counts.

ACKNOWLEDGMENTS

The work for this publication was funded by ECSEL Joint
Undertaking (JU) under grant agreement No 783162 (FitOp-
tiVis). The JU receives support from the European Union’s
Horizon 2020 research and innovation programme and
Netherlands, Czech Republic, Finland, Spain, Italy. It was
also supported by European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No
871738 (CPSoSaware) and Academy of Finland (decision
#331344). We would also like to thank the German Research
Council (DFG) through the TraceSymm (366764507) and the
CO4RTM (450944241) projects.

REFERENCES

[1] T. N. Theis and H. . P. Wong, “The end of Moore’s law: A
new beginning for information technology,” Computing in Science
Engineering, vol. 19, no. 2, 2017.

[2] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implica-
tions of the obvious,” Computer Architecture News, vol. 23, no. 1,
Mar 1995.

[3] F. T. Hady, A. Foong, B. Veal, and D. Williams, “Platform storage
performance with 3D XPoint technology,” Proceedings of the IEEE,
vol. 105, no. 9, 2017.

[4] N. D. Rizzo, D. Houssameddine, J. Janesky, R. Whig, F. B. Mancoff,
M. L. Schneider, M. DeHerrera, J. J. Sun, K. Nagel, S. Deshpande,
H. . Chia, S. M. Alam, T. Andre, S. Aggarwal, and J. M. Slaughter,
“A fully functional 64 Mb DDR3 ST-MRAM built on 90 nm CMOS
technology,” IEEE Transactions on Magnetics, vol. 49, no. 7, 2013.

[5] T. Liu, T. H. Yan, R. Scheuerlein, Y. Chen, J. K. Lee, G. Balakrishnan,
G. Yee, H. Zhang, A. Yap, J. Ouyang, T. Sasaki, A. Al-Shamma,
C. Chen, M. Gupta, G. Hilton, A. Kathuria, V. Lai, M. Matsumoto,
A. Nigam, A. Pai, J. Pakhale, C. H. Siau, X. Wu, Y. Yin, N. Nagel,
Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla, T. Tsukamoto,
T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, H. Inoue, and
L. Fasoli, “A 130.7-mm2 2-layer 32-Gb ReRAM memory device in
24nm technology,” IEEE Journal of Solid-State Circuits, vol. 49, no. 1,
2014.

[6] S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall
racetrack memory,” Science, vol. 320, 2008.

11

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm jpeg mips motion sha coremark geom.
 mean

0

10

20

30

40

50

60

70

en
er

gy
 d

el
ay

 p
ro

du
ct

 (E
DP

) (
%

)
linear 4 8 16 32 64

Fig. 15: Energy delay product relative to baseline. Basic block splitting thresholds 4 to 64, tape effective length 8 domains.

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm jpeg mips motion sha coremark geom.
 mean

0

20

40

60

80

100

en
er

gy
 d

el
ay

 p
ro

du
ct

 (E
DP

) (
%

)

linear 4 8 16 32 64

Fig. 16: Energy delay product relative to baseline. Basic block splitting thresholds 4 to 64, tape effective length 64 domains.

[7] S. Parkin and S.-H. Yang, “Memory on the racetrack,” Nature
nanotechnology, vol. 10, Mar. 2015.

[8] M. S. Cohen and Hsu Chang, “The frontiers of magnetic bubble
technology,” Proceedings of the IEEE, vol. 63, no. 8, 1975.

[9] L. Thomas, See-Hun Yang, Kwang-Su Ryu, B. Hughes, C. Rettner,
Ding-Shuo Wang, Ching-Hsiang Tsai, Kuei-Hung Shen, and S. S. P.
Parkin, “Racetrack memory: A high-performance, low-cost, non-
volatile memory based on magnetic domain walls,” in proceedings
of the International Electron Devices Meeting, 2011.

[10] S. Mittal, J. S. Vetter, and D. Li, “A survey of architectural ap-
proaches for managing embedded DRAM and non-volatile on-
chip caches,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 6, 2014.

[11] G. Sun, J. Zhao, M. Poremba, C. Xu, and Y. Xie, “Memory that
never forgets: emerging nonvolatile memory and the implication
for architecture design,” National Science Review, vol. 5, no. 4, 2017.

[12] B. K. Kaushik, S. Verma, A. A. Kulkarni, and S. Prajapati, Next
generation spin torque memories. Springer, 2017.

[13] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, “Overview
of emerging nonvolatile memory technologies,” Nanoscale research
letters, vol. 9, no. 1, 2014.

[14] T. Coughlin, “Crossing the chasm to new solid-state storage archi-
tectures [the art of storage],” IEEE Consumer Electronics Magazine,
vol. 5, no. 1, 2015.

[15] R. Banakar, S. Steinke, B.-s. Lee, M. Balakrishnan, and P. Mar-
wedel, “Scratchpad memory: A design alternative for cache on-
chip memory in embedded systems,” in proceedings of the Interna-
tional Symposium on Hardware/software Codesign, 2002.

[16] R. Venkatesan et al, “Tapecache: a high density, energy efficient
cache based on domain wall memory,” in proceedings of the Inter-
national Symposium on Low Power Electronics and Design, 2012.

[17] H. Mao, C. Zhang, G. Sun, and J. Shu, “Exploring data placement
in racetrack memory based scratchpad memory,” in proceedings of
the Non-Volatile Memory System and Applications Symposium, 2015.

[18] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. Li, “Exploration
of GPGPU register file architecture using domain-wall-shift-write

based racetrack memory,” in proceedings of the Design Automation
Conference, 2014.

[19] Shouzhen Gu et al., “Area and performance co-optimization for
domain wall memory in application-specific embedded systems,”
in proceedings of the Design Automation Conference, 2015.

[20] A. A. Khan, N. A. Rink, F. Hameed, and J. Castrillon, “Opti-
mizing tensor contractions for embedded devices with racetrack
and DRAM memories,” ACM Transactions on Embedded Computing
Systems, vol. 19, no. 6, 2020.

[21] A. A. Khan, F. Hameed, R. Bläsing, S. S. P. Parkin, and J. Castrillon,
“ShiftsReduce: Minimizing shifts in racetrack memory 4.0,” ACM
Transactions on Architecture and Code Optimizations, vol. 16, no. 4,
2019.

[22] D. Bol, J. De Vos, C. Hocquet, F. Botman, F. Durvaux, S. Boyd,
D. Flandre, and J. Legat, “SleepWalker: A 25-MHz 0.4-V Sub-mm2

7- µm2 µW/MHz microcontroller in 65-nm LP/GP CMOS for low-
carbon wireless sensor nodes,” IEEE Journal of Solid-State Circuits,
vol. 48, no. 1, 2013.

[23] A. Lambrechts, P. Raghavan, A. Leroy, G. Talavera, T. Vander Aa,
M. Jayapala, F. Catthoor, D. Verkest, G. Deconinck, H. Corporaal,
F. Robert, and J. Carrabina, “Power breakdown analysis for a het-
erogeneous NoC platform running a video application,” in IEEE
International Conference on Application-Specific Systems, Architecture
and Processors, 2005.

[24] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Grkaynak, and L. Benini, “Near-threshold RISC-
V core with DSP extensions for scalable IoT endpoint devices,”
IEEE Transactions on Very Large Scale Integration Systems, vol. 25,
no. 10, 2017.

[25] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Grkaynak, A. Bar-
tolini, P. Flatresse, and L. Benini, “A 60 GOPS/W, -1.8V to 0.9V
body bias ULP cluster in 28nm UTBB FD-SOI technology,” Solid-
State Electronics, vol. 117, 2016.

[26] J. Multanen, P. Jääskeläinen, A. A. Khan, F. Hameed, and J. Cas-
trillon, “SHRIMP: Efficient instruction delivery with domain wall
memory,” in proceedings of the IEEE/ACM International Symposium
on Low Power Electronics and Design, 2019.

12

[27] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and
quantitative analysis of the chstone benchmark program suite
for practical C-based high-level synthesis,” journal of information
processing, vol. 17, Oct. 2009.

[28] EEMBC – The Embedded Microprocessor Benchmark Consortium.
Coremark benchmark. Http://www.eembc.org/coremark.

[29] S. S. Parkin, “Shiftable magnetic shift register and method of using
the same,” Dec.21 2004, US Patent 6834005.

[30] R. Tomasello, V. Puliafito, E. Martinez, A. Manchon, M. Ricci,
M. Carpentieri, and G. Finocchio, “Performance of synthetic anti-
ferromagnetic racetrack memory: domain wall versus skyrmion,”
Journal of Physics D: Applied Physics, 2017.

[31] C. Zhang, G. Sun, W. Zhang, F. Mi, H. Li, and W. Zhao, “Quan-
titative modeling of racetrack memory, a tradeoff among area,
performance, and power,” in proceedings of the Asia and South Pacific
Design Automation Conference, 2015.

[32] R. Blsing, A. A. Khan, P. C. Filippou, C. Garg, F. Hameed, J. Cas-
trillon, and S. S. P. Parkin, “Magnetic racetrack memory: From
physics to the cusp of applications within a decade,” Proceedings
of the IEEE, vol. 108, no. 8, 2020.

[33] R. Bläsing, T. Ma, S.-H. Yang, C. Garg, F. K. Dejene, A. T NDiaye,
G. Chen, K. Liu, and S. S. Parkin, “Exchange coupling torque in
ferrimagnetic Co/Gd bilayer maximized near angular momentum
compensation temperature,” Nature communications, vol. 9, no. 1,
pp. 1–8, 2018.

[34] S. Archer, G. Mappouras, R. Calderbank, and D. Sorin, “Foosball
coding: Correcting shift errors and bit flip errors in 3D racetrack
memory,” in IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, 2020.

[35] P. D. Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini,
E. Flamand, and L. Benini, “Slow and steady wins the race? a
comparison of ultra-low-power risc-v cores for internet-of-things
applications,” in proceedings of International Symposium on Power
and Timing Modeling, Optimization and Simulation, 2017.

[36] A. A. Khan, F. Hameed, R. Bläsing, S. Parkin, and J. Castrillon,
“RTSim: A cycle-accurate simulator for racetrack memories,” IEEE
Computer Architecture Letters, vol. 18, no. 1, 2019.

[37] M. Poremba, S. Mittal, D. Li, J. S. Vetter, and Y. Xie, “DESTINY:
A tool for modeling emerging 3D NVM and eDRAM caches,”
in proceedings of the Design, Automation Test in Europe Conference
(DATE), 2015.

[38] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The filter cache:
An energy efficient memory structure,” in Proceedings of the Annual
International Symposium on Microarchitecture, 1997.

[39] L. H. Lee, B. Moyer, and J. Arends, “Instruction fetch energy
reduction using loop caches for embedded applications with small
tight loops,” in Proceedings of the International Symposium on Low
power Electronics and Design, 1999.

[40] J. Park, J. Balfour, and W. J. Dally, “Fine-grain dynamic instruc-
tion placement for l0 scratch-pad memory,” in Proceedings of the
International Conference on Compilers, Architectures and Synthesis for
Embedded Systems, 2010.

[41] H. Aghaei Khouzani and C. Yang, “Tuning track-based NVM
caches for low-power IoT devices,” in Proceedings of the Great Lakes
Symposium on VLSI, 2019.

[42] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. Li, “An energy-
efficient GPGPU register file architecture using racetrack mem-
ory,” IEEE Transactions on Computers, 2017.

[43] R. Xu, E. H.-M. Sha, Q. Zhuge, S. Gu, and L. Shi, “Optimizing data
placement for hybrid SPM with SRAM and racetrack memory,” in
IEEE International Conference on Computer Design, 2020.

[44] S. Gao, S. Gu, R. Xu, E. H.-M. Sha, and Q. Zhuge, “Performance
optimization for parallel systems with shared DWM via retiming,
loop scheduling, and data placement,” Journal of Systems Architec-
ture, 2021.

[45] J. Wang, J. Liu, D. Wang, J. An, and X. Fan, “An automatic-
addressing architecture with fully serialized access in racetrack
memory for energy-efficient CNNs,” IEEE Transactions on Comput-
ers, 2020.

Joonas Multanen Received the M.Sc. degree
in Electrical Engineering from Tampere Univer-
sity of Technology, Tampere, Finland, in 2015.
Where he is currently working towards the D.Sc.
degree. His current research interests include
energy-efficient instruction streams and com-
puter architectures, and emerging memory tech-
nologies.

Kari Hepola Kari Hepola received the B.Sc. de-
gree in Electrical Engineering from Tampere Uni-
versity, Tampere, Finland in 2020, where he is
currently pursuing the M.Sc. degree. His current
research interests include application-specific
processor design and energy-efficiency.

Asif Ali Khan Asif Ali Khan received the Bach-
elors and Masters Degrees in Computer Sys-
tems Engineering from University of Engineering
and Technology, Peshawar, Pakistan in 2012 and
2015 respectively. He is currently pursuing his
Ph.D. at the Chair for Compiler Construction in
the Computer Science Department of the TU
Dresden, Germany. His current research inter-
ests include: Computer architecture, heteroge-
neous memories, and compiler support for mem-
ory system.

Jeronimo Castrillon is a professor in the De-
partment of Computer Science at the TU Dres-
den, where he is also affiliated with the Center
for Advancing Electronics Dresden (CfAED). He
is the head of the Chair for Compiler Construc-
tion, with research focus on methodologies, lan-
guages, tools and algorithms for programming
complex computing systems. He received the
Electronics Engineering degree from the Ponti-
ficia Bolivariana University in Colombia in 2004,
his masters degree from the ALaRI Institute in

Switzerland in 2006 and his Ph.D. degree (Dr.-Ing.) with honors from the
RWTH Aachen University in Germany in 2013. In 2014, Prof. Castrillon
co-founded Silexica GmbH/Inc, a company that provides programming
tools for embedded multicore architectures.

Pekka Jääskeläinen leads the Customized Par-
allel Computing research group and has re-
searched heterogeneous platform customiza-
tion and programming topics since the early
2000s. On top of his academic publication work,
he is an active contributor to various hetero-
geneous parallel platform related open source
projects. His current key research interests in-
clude methods for performance portable pro-
gramming of heterogeneous platforms and tech-
niques that improve energy efficiency of software

programmable devices.

