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Racetrack Last-Level-Cache Architecture
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Abstract—Racetrack memory (RTM) is a promising non-
volatile memory that provides multi-bit storage cells achieving a
higher area and leakage energy efficiency compared to contem-
porary volatile and non-volatile memories. These features make
RTM a potential candidate to be used as a Last-Level-Cache
(LLC). One drawback of the multi-bit RTM cell is the serialized
access to the stored data, resulting in a shift penalty to access a
particular bit within the cell. This overhead is particularly critical
for LLC tags, for which prior RTM designs place tags either in
SRAM or in single-bit RTM cells. While this avoids shifting, these
designs require large number of leaky cells incurring high energy
consumption. To address this problem, this paper proposes an
energy efficient RTM design called BlendCache that efficiently
stores the tags in the leakage optimized multi-bit RTM cells.
To reduce the RTM shift penalty of these cells, BlendCache
exploits the spatial locality of programs by maximizing accesses
to nearby locations in RTM. Employing 32-bit RTM cells for
a single-core, BlendCache reduces the energy consumption by
20.8% and area by 15.2% compared to the state-of-the-art while
its impact on performance is negligible. For a 4-core system, the
energy improvement translates to 35.9% with 3% performance
degradation.

Index Terms—Architecture, cache, embedded systems, mem-
ory, racetrack, shift.

I. INTRODUCTION

THE demand for larger Last-Level-Caches (LLC) has
grown significantly due to widening processor-memory

latency gap and large memory footprints of emerging appli-
cations. Prior research has adopted RTM as LLC due to its
high area and energy efficiency compared to SRAM and Spin
Transfer Torque (STT) memories [1]–[6]. These proposals split
the LLC into separate tag and data arrays. The performance-
critical tag array is implemented using latency optimized cells
(i.e., SRAM [1], [2], [4], [5], STT [6] or single-bit RTM
cells [3]). The data array, in turn, uses leakage-optimized
multi-bit RTM cells. Although these designs significantly
reduce the energy consumption compared to an iso-capacity
SRAM cache, the leakage energy is dominated by the energy
dissipated in the leaky storage cells dedicated for the tags. For
instance, a small SRAM tag array of size 592KiB is respon-
sible for at least one-third of the overall energy consumption
of an 8MB RTM LLC (cf. Section IV-B and Fig. 10).

The multi-bit RTM cell achieves energy efficiency because
the leaky access port (responsible for a read or a write
operation) is shared by multiple locations (i.e., bits). These
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RTM cells require a shift operation to align the target bit
location with the access port which introduces additional
latency and energy penalties. Therefore, a common approach
to reduce leakage is to employ single-port multi-bit RTM cells.
The shift cost of the multi-bit cell can be alleviated by using
more access ports. However, the area and leakage energy of the
design grow with the number of ports, practically independent
of the number of bits in the cell [1]–[3], [7]. Multi-port RTM
cells are thus impractical not only due to leakage energy, as
mentioned before, but also because they considerably reduce
the memory density.

Several architectural solutions have been proposed to mit-
igate the negative impact of shift penalty in RTM caches.
While these studies report a noticeable improvement in the
shift energy, the leakage energy of the tag array has been
neglected so far. For larger LLCs, this issue cannot be ignored
anymore. Therefore, a natural approach to address the leakage
energy problem is to use multi-bit cells for the tag array. Doing
so requires to first shift the tags to determine whether an access
will lead to an LLC hit or a miss. Additional shifts are then
required in the RTM data array to access the data following
an LLC hit. This double shift penalty would severely increase
the overall LLC access latency.

In this paper, we propose a novel RTM LLC design that
efficiently stores the tags in the multi-bit RTM cells. To reduce
the shifting overhead of these multi-bit cells, our proposed
RTM design exploits the program spatial locality by mapping
spatial adjacent memory blocks to adjacent locations in the
RTM which ensures that most of the cache accesses requires
a small shift cost. Concretely, our contributions are:

1) An RTM tag store design that combines the tag and the
cache line into the same index in multi-bit RTM cells.
This reduces the leakage energy and allows the tags and
the cache line to be accessed at the same time, thereby
reducing the RTM access latency.

2) A direct-mapped organization in which the target RTM
location is determined by the address bits directly. In con-
trast, state-of-the-art associative designs for RTM requires
a tag lookup to determine the target RTM location.

3) A novel data mapping policy that assigns spatial adja-
cent memory blocks to consecutive RTM locations and
exploits the program’s spatial locality to reduce the RTM
shift cost.

4) A detailed design space exploration of the impact of
different RTM cell sizes on performance, area, and energy
consumption.

The rest of the paper is organized as follows. First, we pro-
vide the background on RTM in Section II. The proposed RTM
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tag store design, data mapping policy, the control flow, and
the overhead analysis is discussed in Section III. Afterwards,
the evaluation of the proposed RTM LLC with state-of-the-art
designs is presented in Section IV. A summary of the related
work is provided in Section V followed by the conclusion in
Section VI.

II. BACKGROUND

This section provides a brief overview of RTM, discussing
its cell structure, organization and the underlying cache archi-
tecture.

K = 8

Domain 

wall
Access portDomain storing 

Logical-0Logical-1

Fig. 1. A basic RTM cell (i.e., track) storing K = 8 domain walls (i.e., bits)

A. Basic RTM Cell

A single cell in the Racetrack memory (RTM) is referred
to as a track which stores K data bits in the form of magnetic
domains as shown in Fig. 1 [8], [9]. The value of a domain is
determined by its magnetic orientation indicated by direction
of the arrow in Fig. 1. Each track is provided with an access
port that enables read/write operation. Accessing a particular
magnetic domain within a track requires to first align the target
domain to the access port (referred to as shift operation) before
performing a read or write operation. The shift cost to access
a bit within a track vary from 0 (i.e., best case when access
port is already aligned with the target bit) to K-1 (i.e., worst
case).

The multi-bit RTM cell (i.e., K > 1) provides area and
leakage energy efficiency compared to single-bit RTM cell
(i.e., K = 1) but introduces daunting challenges in terms of
latency/energy overheads, controller complexity and reliability.
The leakage energy and area of RTM is primarily dominated
by the access port (associated with the track) consisting of
CMOS transistors. For a given capacity and fixed number of
access ports per track, a higher K reduces the total number of
access ports compared to a smaller K. As a result, increasing
K provides better leakage and area efficiency but incurs high
energy and latency per shift. Since increasing the number of
access port per track negatively impacts the leakage energy,
this work assumes a single access port per track. The access
latency for a higher K results in non-uniform access latency
complicating RTM controller design. Furthermore, fluctuations
in the shift current density may lead to position errors, thereby
introducing reliability challenges [10], [11].

B. Basic RTM Organization

A typical RTM organization (cf. Fig. 2) is divided into B
banks, where each bank is further subdivided into S subarrays.
Each subarray consists of D domain block clusters (DBCs) [1],
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Fig. 2. A typical RTM organization. DBC stands for Domain Block Cluster

[3]. Each DBC is a group of T tracks each storing K domains.
A T-bit data in a DBC is distributed in a bit-interleaved
fashion across T tracks which are accessed in parallel. Fig. 2
demonstrates how K = 32 T-bit data are stored in T= 512
tracks. Each DBC maintains a track register to keep track of
the current access port position (pointing to Lr in Fig. 2)
which points to one of the K locations of the DBC. To access
a particular data within a DBC, domains of all the T tracks
are shifted together in a lockstep fashion such that all the
domains (or bits) of that data are aligned to their respective
access port position. After that, all the bits of the relevant data
are accessed simultaneously.
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C. RTM Cache Architecture

Traditional RTM cache designs implement the data array
using RTM and the tag array using SRAM [1], [2], [4], [5]
(cf. baseline architecture in Fig. 3). The RTM data array is
hierarchically decomposed into banks, subarrays, DBCs, tracks
and domains as described before. As shown in Fig. 3, the
cache consists of B × S ×D logical sets. Each logical Seti
(i ∈ {0, 1, .., B × S × D − 1}) consists of Tagsi (i.e., tags
of Seti stored in the SRAM tag array) and DBCi. The K
cache ways of Seti are stored in the RTM data array where
each location Lj (j ∈ {0, 1, ..,K − 1}) of DBCi represents
a way Wayj of Seti. Each track register (TRi) of log2(K)
bits points to one of the K ways in Seti.

For illustration, we consider B equals to 4, S equals to 16,
D equals to 64, K equals to 32, and T equals to 512. In this
setting, the RTM cache stores 4096 logical sets with 32-way
associativity each way storing a 512-bit cache line. The data
mapping in the cache is shown on the top of Fig. 3. Excluding
the byte offset bits of the address line, the lower 12 bits of the
memory block address identify one of the DBCs (or logical
sets) denoted by DBCi. The exact location of the cache line
Lj within Seti is determined by a tag match (in case of a
cache hit) or the least recently used cache line (in case of a
cache miss). In this scenario, the shift cost depends on the
absolute difference of the target cache line way number (i.e.,
j) and the current port position (denoted by r in Fig. 3) stored
in TRi.

III. BLENDCACHE LLC ARCHITECTURE

This section provides the details of our novel RTM LLC
architecture referred to as BlendCache. For energy efficiency,
BlendCache stores the tags in the leakage optimized multi-
bit RTM cells. Naively storing the tags in these cells may
exacerbate the performance since an LLC hit would require
two costly RTM accesses, one for the tag and other for the
data. To address this problem, BlendCache stores the tag and
the data into the same index. This allows the tag and data to
be accessed at the same time in a single unified RTM access
instead of two separate ones (cf. Section III-A). To provide
fast LLC miss detection (cf. Section III-B) for critical read
requests, BlendCache relies on an existing memory access
predictor that quickly forwards the request to main memory.
To improve the performance, we propose a novel data mapping
policy that reduces the overall RTM shift cost compared to the
traditional RTM LLC designs (cf. Section III-C).

A. Tag Store Design

The baseline RTM LLC requires an SRAM tag lookup
before accessing the cache line in the RTM data array as shown
in Fig. 4-(a). To reduce the tag serialization latency caused by
the SRAM tag access, BlendCache stores the tags and the
cache line in the same location within a DBC as depicted
in Fig. 5. A DBCi in the BlendCache is partitioned into K
locations where K refers to the number of domains in a track
(cf. Fig. 2). Each location Lj (j ∈ {0, 1, ..,K− 1}) of DBCi

stores Line+MetaData bits where Line (512 bits in Fig. 5)
and MetaData (27 bits in Fig. 5) are the cache line and tag
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Fig. 4. Read latency breakdown for (a) LLC hit in the baseline LLC (b)
LLC hit in BlendCache when MAP-I correctly predicts an LLC hit (c) LLC
hit in BlendCache in case of wrong LLC hit prediction by MAP-I (d) LLC
miss in the baseline LLC (e) LLC miss in BlendCache when MAP-I correctly
predicts an LLC miss (f) LLC miss in BlendCache in case of wrong LLC
miss prediction by MAP-I. Shift latency is assumed to be 3 cycles

entry size in bits, respectively. Each location Lj of DBCi

represents one set of the direct-mapped cache. An access to
the BlendCache requires retrieving the relevant cache line at
location Lj which is identified by log2(K) of the memory
block address bits (highlighted by red arrow in Fig. 5). An
LLC hit occurs when the tag at location Lj matches with the
tag field of the memory block address. In this scenario, the
corresponding cache line is returned to the core and the lower
level caches.

B. Fast LLC Miss Detection for Reads

Since BlendCache stores the tags in the RTM, the main
challenge is to provide a fast and efficient LLC miss detection
for critical reads to avoid waiting for the tag access. Ideally,
an LLC read miss needs to be sent to main memory as
soon as possible. However, detecting an LLC read miss in
BlendCache requires a costly tag check in the RTM array
which increases the LLC read miss latency. To address this
problem, BlendCache relies on a low-overhead instruction-
based memory access (MAP-I) predictor (MAP-I) [12] with a
single-cycle latency. The MAP-I requires a storage overhead
of 96 bytes and is implemented in SRAM which is employed
to predict the outcome of an LLC read request (i.e., a hit or a
miss). The LLC read miss latency in BlendCache is reduced
by sending a request to memory before performing the costly
tag check in RTM if the MAP-I predicts an LLC miss (cf.
Fig. 4-e).

The control flow of the BlendCache is depicted in Fig. 6.
Upon each LLC read request, BlendCache uses the MAP-I to
predict an LLC hit or a miss. If the MAP-I predicts an LLC
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read hit, the tag and the cache line at location Lj (highlighted
by red arrow in Fig. 5) is accessed simultaneously. If the
stored tag field matches with the requested memory block
address (i.e., MAP-I correctly predicts an LLC hit), the data is
forwarded to the core and the lower level caches. Otherwise, in
case of a wrong LLC read hit prediction by MAP-I, the request
is sent to the memory to service the LLC miss. The latency
breakdown of BlendCache for correct and wrong LLC read hit
prediction is shown in Fig. 4-(b) and Fig. 4-(c) respectively.
For a correct LLC read prediction, BlendCache (cf. Fig. 4-b)
reduces the LLC hit latency compared to the baseline LLC
(cf. Fig. 4-a) due to simultaneous access of the tags and the
data which are stored in the same RTM index.

If the MAP-I predicts an LLC read miss, BlendCache probes
the RTM LLC (i.e., verification of an LLC miss requires a
tag lookup in RTM) and memory in parallel (cf. Fig. 4-e)
without accessing the cache line of location Lj . In this case,
BlendCache quickly forwards the request to memory, thereby
removing the high miss detection latency of RTM from the
critical path. In case of a correct LLC read miss prediction by

the MAP-I, the data returned from the memory is placed in
RTM at location Lj and the tag field is updated. At this point,
the access port is likely to be aligned with location Lj because
the corresponding tag field was already accessed during the tag
lookup phase. In case of a correct LLC read miss prediction,
BlendCache reduces the LLC miss latency (Fig. 4-e) compared
to the baseline LLC (Fig. 4-c). If the MAP-I makes a wrong
LLC read miss prediction, only the data field of the relevant
DBC row needs to be accessed. In this case, the data returned
from the memory is ignored (cf. Fig. 4-f). We do not use MAP-
I for non-critical prefetch and write requests. In this scenarios,
tag and data are accessed serially as shown in Fig. 6.

MB0, MB4096, MB8192, MB12288, ... DBC0

…

Memory Blocks
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MB4095, MB8191, MB12287, MB16383, ... DBC4095 Set4095

… …

Fig. 7. Data mapping used in the baseline LLC

C. Proposed Data Mapping

For a given LLC capacity and a single access port per
track, increasing the number of domains per track (i.e., K)
reduces the total number of access ports (or DBCs) which,
in turn, leads to a lower leakage energy. However, the larger
the value of K, the worse the overall LLC latency becomes
due to the shift overhead (cf. Fig. 11 in Section IV-B). The
baseline LLC incurs high shift overhead because the shifting
pattern that results from the LRU policy is random in nature.
The random shifting occurs because the main memory blocks
that are mapped to the same DBC are spatially distant. This
is depicted in Fig. 7 where spatially far main memory blocks
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(e.g., MB0, MB4096, MB8196, ...) are mapped to the same
DBC (e.g., DBC0). Therefore, it is unlikely that subsequent
accesses occur to the nearby locations within a particular DBC.

Since spatial adjacent memory blocks are likely to be
accessed consecutively, our design maps them to adjacent
locations within a DBC (i.e., adjacent domains within a track).
This considerably reduces the RTM shifts. Fig. 8 shows how
BlendCache maps main memory blocks to a DBC and a
location within a DBC. For instance, main memory blocks
MB0, MB1, MB2, and MB3 are mapped to locations L0,
L1, L2, and L3 of DBC0 respectively. Thus, the probability of
temporally close accesses going to the nearby locations within
a DBC is high.

D. Overhead
The MAP-I [12] employed by BlendCache is used to keep

track if the outcome of the an LLC access is a hit or a miss.
The MAP-I in our implementation uses a table of 256 3-
bit saturating Memory Access Counters (MACs). To get the
desired MAC, the program counter (i.e., PC) that generated
an LLC request is used to index the table using folded-xor
hashing [13]. MAP-I does not require the PC to be stored in
the LLC and requires the partial PC address to be propagated
to MAP-I. The storage overhead of this MAP-I implementation
accounts to 96 bytes (256 × 3 = 768 bits = 96 bytes) for a
single-core system.

For a multi-core system, the MAC table counters are main-
tained on a per-core basis to avoid inter-core interference. For
an n-core system, the total storage overhead of MAP-I is n×
96 bytes. This MAP-I is implemented in SRAM and requires
around 0.0065mm2 additional area, which is an overhead
of (0.14%, 0.56%) for a (1,4) core system compared to the
area of the BlendCache realized using multi-bit RTM cells
(4.46mm2). The latency overhead to access MAP-I is 1-cycle
with a dynamic energy of 3.2 pJ/access and 1.5mW leakage
power. These overheads are estimated using CACTI6 [14]
that includes the energy consumption of the SRAM and the
interconnect (i.e., energy incurred to transfer the partial PC
address bits to MAP-I). Since MAP-I is maintained on a per-
core basis, we assume that it is located near private L2 cache

to reduce interconnect energy. Note that MAP-I is accessed
after a read miss in L2 cache.

IV. EVALUATION

This section presents the experimental setup used to perform
iso-capacity comparison of BlendCache with the state-of-
the-art. This section also analyzes the results of different
experiments conducted on a simulation framework.

TABLE I
CONFIGURATION AND BENCHMARK DETAILS USED IN THE EXPERIMENTS

Core 3.2 GHz, out-of-order, 4-issue

Private L1 32 KiB, 8-way associativity, 2-cycles latency
Private L2 256 KiB, 8-way associativity, 4-cycles latency
Shared RTM LLC 8 MB, associativity and latency based on configu-

ration

Main Memory
(DRAM)

2 channels, 16 KB row buffer, 64-bit channel
width, tRAS-tRCD-tRP-tCAS-tWR = 35-11.25-
11.25-11.25-11.25 (nsec)

SPEC2006 Bench-
mark (LLC APKI)

sjeng (1.17), astar.t (9.1), leslie3d.r (18),
leslie3d.t (18.8), milc(23.8), libquantum
(25.7), soplex.r (28.1),omnetpp (29.6), astar.b
(49), mcf (66.9)

A. Experimental Methodology

The architectural simulations are carried out using a cycle-
accurate multi-core simulator namely sim-zesto [15] employ-
ing the system configurations given in Table I. The workloads
consists of 10 SPEC2006 benchmarks [16]. These applications
vary in terms of LLC access per thousand instructions (LLC
APKI) as listed in Table I. For instance, mcf (LLC APKI
is 66.9) has high LLC access rate, while the least intensive
is sjeng (1.17). Since this paper deals with the RTM LLC,
the simulator has been modified to faithfully model shift
operations. The modified simulator models separate tag/data
array (to model the baseline LLC), a unified tag/data array with
MAP-I predictor to model BlendCache. All the evaluated con-
figurations employs SPEC2006 applications in single-core (cf.
Table I) and multi-core mode (cf. Table V and Section IV-G).
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TABLE II
DEVICE AND ELECTRICAL PARAMETERS OF THE RTM CELL AND THE
MOS TRANSISTOR BASED ON THE MODEL IN [5] FOR 45 nm . F IS THE

TECHNOLOGY FEATURE SIZE

Parameter Value

Width of the racetrack 1F
Gap distance between two racetracks 2F
Length of the domain in a racetrack 2F

Thickness of the racetrack 6 nm
Gate width of the MOS transistor 9F

Length of the MOS transistor 3F
Gap distance between two MOS transistors 1F

PMA racetrack nanowire resistivity 4.8× 10−7Ωm
Critical current density for shift 6.2× 107A/m2

Resistance-area product 10Ωµm2

Cell turn-on resistance 3000Ω
Cell turn-off resistance 6000Ω

Current sense amplifier read voltage 0.25 V
Minimum sense voltage 0.025 V
Read power per bitline 20 µW
Cell set/reset current 80 µA
Cell set/reset pulse 0.5 ns

Since SPEC2006 applications are single-threaded, one in-
stance of each application is run per core. For each core, we
employ a reservation station with 32 entries, load queue with
32 entries, store queue with 24 entries and reorder buffer with
80 entries. Each core can fetch, decode and commit maximum
of four x86 instructions in a single cycle. We fast-forward
each application to region of interest using Simpoint tool [17]
and warm up all the caches for 500 million instructions.
We simulate one billion instructions in a single-core and a
total of five billion instructions in a multi-core mode. In
the multi-core mode, shorter workloads are relaunched whey
they finish early by completing their instructions to keep the
overall system loaded. The statistics gathered from sim-zesto
including total accesses, total shifts and overall runtime are
used to estimate the overall LLC energy consumption. We
employ a per core stream prefetcher similar to [18] for all
evaluated configurations. We use 8, 8, and 32 miss status
handling registers (MSHRs) for L1, L2, and LLC respectively.
Therefore, the maximum number of in-flight misses that can
be handled by L1, L2, and LLC are 8, 8, and 32 respectively.
We employed non-inclusive policy for the multi-level caches
because it performs better compared to inclusive policy [19].
We make the following assumptions for all evaluated config-
urations including BlendCache:

1) The evaluation is performed for an 8MB RTM LLC.
2) We assume 4 banks (i.e., B = 4), 16 subarrays per bank

(i.e., S = 16), and a 64-byte cache line.
3) We vary the number of domains within a track (i.e., K is

the track length) and the number of DBCs per subarray
(i.e., D) such that the LLC capacity remains 8MB (i.e.,
K × D = 2048). We evaluate three RTM organizations
with K = 8 (i.e., D = 256), K = 16 (i.e., D = 128), and
K = 32 (i.e., D = 64).

We compare BlendCache (i.e., BLEND-K) with the baseline
LLC (i.e., BASE-K). We have estimated the energy and area
numbers of the SRAM tag array in the baseline LLC using
CACTI6 [14] assuming a uniform cache access model with

4 banks while the optimization target is set to leakage. The
energy and area numbers of BlendCache and the RTM data
array in the baseline LLC are estimated using a modified
version of destiny [20] with read latency optimization target.
The device and electrical parameters of the RTM cell and the
access transistor (i.e., MOS) are provided in Table II based on
the model described in [5].

The area, energy and the latency numbers of different
evaluated configurations are are listed in Table III. A higher
K requires less number of access ports (or DBCs). As shown
in Table III, the RTM design with K = 8 is optimized for
shift energy because it employs less number of domains per
track. In contrast, the RTM design with K = 32 is optimized for
leakage power and area as it employs less number of leaky and
area-hungry access ports. We also evaluate an idealistic RTM
configuration (referred to as RTMIdeal) which is optimized
both for latency (i.e., single-cycle tag access latency and zero
shift penalty) and LLC miss rate (i.e., 32-way associativity).
The baseline BASE-K has an SRAM tag access latency of
5 cycles (cf. Table III) with K-way associativity while the
direct-mapped BLEND-K requires a single-cycle latency (i.e.,
to access MAP-I) before accessing the RTM array.
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Fig. 9. LLC area results

B. Result Overview

Before delving into details, we first discuss the overall
impact of different LLC configurations on various performance
metrics when K is varied from 8 to 32. Fig. 9 shows the
area benefits of BlendCache compared to the baseline LLC.
As shown, BLEND-8, BLEND-16, and BLEND-32 improves
the overall area by 24%, 37%, and 45% compared to BASE-
8. This area improvement is due to the fact that BlendCache
stores the tags along with the data in the denser RTM array,
while the baseline LLC stores them in a separate SRAM array.
The area of the SRAM tag array accounts for a significant
portion of the total area in the baseline LLC because the area
efficiency of SRAM is significantly lower than RTM. Since
the cell density of RTM increases with K, so does the area
efficiency of BlendCache.

The RTM LLC energy consumption highly depends on
the total shift cost, which impacts the shift energy, and
the total number of access ports/DBCs, which impacts the
leakage energy. Fig. 10 shows the impact of the track length
on the energy consumption of different RTM configurations.
The energy results shows that BLEND-8, BLEND-16, and
BLEND-32 improves the overall energy consumption by 28%,
44%, and 48% compared to BASE-8. We make the following
observations from the energy results. First, the energy reduc-
tion of BlendCache is due to energy saving in both the leakage
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TABLE III
ENERGY AND AREA OF VARIOUS RTM CONFIGURATIONS

RTM Array (8 MB LLC, 45 nm, 512 bytes / cache line)

Configuration BLEND-8 BLEND-16 BLEND-32 BASE-8 BASE-16 BASE-32

Leakage power [mW] 241 181 155 224 167 142
Read latency [ns/cycles] 2.17/7 2.10/7 2.03/7 2.01/7 1.95/7 1.88/7
Write latency [ns/cycles] 3.70/12 3.59/12 3.50/12 3.62/12 3.51/12 3.43/11

Read energy [pJ] 290 283 274 271 263 254
Write energy [pJ] 437 421 405 412 397 380
Shift energy [pJ] 178 189 206 164 173 187

Area [mm2] 5.71 4.68 4.11 6.15 5.07 4.46

Tag Array (SRAM for the baseline LLC)

Configuration BLEND-8 BLEND-16 BLEND-32 BASE-8 BASE-16 BASE-32

Leakage power [mW] NA NA NA 120.5 126.3 131.6
Tag energy [pJ] NA NA NA 46.76 49.51 51.63

Tag latency [ns/cycles] NA NA NA 1.31/5 1.42/5 1.50/5
Area [mm2] NA NA NA 2.40 2.58 2.89
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Fig. 10. LLC Energy breakdown

and the shift energy. The improvement in the leakage energy
is provided by storing the tags in the less leaky RTM cells
(cf. Section III-A and Fig. 5) while the shift energy gain
is delivered by reduction in the total number of shifts (cf.
Fig. 11 and Section IV-C). Second, the leakage energy of
the SRAM tag array accounts for a significant portion of the
total energy in the baseline LLC. Third, the energy saving
for BlendCache is more pronounced for leakage-optimized
RTM configurations (e.g., BLEND-32) as they have less access
ports. Employing BLEND-32, the increase in the shift energy
(via a higher shift cost) compared to BLEND-8 is offset by
significant reduction in the leakage energy. Fourth, the extra
energy overhead of the MAP-I used by BlendCache is less
than 1% for all variants of K.

The instruction per cycle (IPC) results can be observed in
Fig. 12 which shows that the harmonic mean IPC degradation
of BlendCache compared to RTMIdeal is 1.6%, 1.9% and
2.2% for a track of length 8, 16, and 32, respectively. The
IPC results indicate that the worst case IPC degradation of
BlendCache is 5.7% (for omnetpp employing BLEND-32).
The performance of the baseline LLC compared to RTMIdeal
is 0.9%, 1.2%, and 1.8% for K = 8, 16, and 32, respectively.
Thus, the baseline K-way LLC slightly outperforms the direct-
mapped BlendCache due to lower LLC MPKI (cf. Fig. 14).

However, BlendCache provides a significant improvement in
the LLC area (Fig. 9) and the LLC energy consumption
(Fig. 10).

C. Total Shift Cost

The RTM shift cost primarily depends on how well the
spatial locality of applications is exploited. BlendCache ex-
ploits the spatial locality by mapping adjacent memory blocks
to consecutive locations in RTM (cf. Fig. 8). This ensures
that the shift distance in subsequent memory accesses is
minimized. On the contrary, the baseline LLC maps spatially
far memory blocks to the same cache set (cf. Fig. 7 and
Section III-C). Due to this reason, the probability of temporally
close accesses going to nearby locations is very high in
BlendCache compared to the baseline LLC. In addition, the
random shifting nature of the LRU policy used by the baseline
LLC further exacerbates the total shift cost. As a result of
mostly sequential access pattern in BlendCache, the overall
shift cost is reduced compared to the baseline LLC. As shown
in Fig. 11, BlendCache reduces the total shift cost by 6.2%,
19.3%, and 31.5% compared to the baseline LLC for K = 8,
16, and 32, respectively. The shift reduction of BlendCache
is more pronounced for longer track length (i.e., higher K)
compared to the shorter one.
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Fig. 13. Average LLC read access latency

D. LLC Read Access Latency

As discussed in Section III and shown in Fig. 4, a correct
prediction made by MAP-I reduces LLC hit/miss latency
compared to the baseline LLC. On average, the prediction
accuracy of MAP-I is around 94%. BlendCache also reduces
the shift cost per read access via exploiting spatial locality.
This results in improved average read latency compared to
the baseline LLC as depicted in Fig. 13. As shown, the
read latency degradation of the baseline LLC with respect to
RTMIdeal is 53%, 75%, and 129% for an 8-bit, 16-bit, and 32-
bit track respectively. BlendCache cuts this latency degradation
by 27%, 36%, and 54% for K = 8, 16, and 32 respectively.

E. Application Characteristics

The performance of a particular application depends on its
sensitivity to read access latency and miss rate. Based on these
metrics, the applications can be categorized into two types
namely latency-critical and miss-critical. The performance of
latency-critical applications (e.g., astar.b) is highly influenced
by read access latency and less affected by miss rate. These
application have high APKI (cf. Table I) and low MPKI
(cf. Fig 14). For instance, the APKI of the latency-critical
astar.b is 49 its MPKI is less than 2. Since BlendCache is
optimized for read access latency, it outperforms the baseline
LLC for latency-critical astar.b. In contrast, performance of
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miss-critical applications (e.g., omnetpp and soplex.r) is highly
sensitive to miss rate and less sensitive to read access latency.
The MPKI of these applications is negatively impacted by
reducing associativity. Since the direct-mapped BlendCache
increases the MPKI of miss-critical applications compared to
K-way associative baseline LLC (cf. Fig 14), it performs worse
compared to the baseline LLC for these applications.

The energy of a particular application depends on its LLC
intensity. For instance, for the applications with low LLC
intensity (e.g., sjeng requires fewer LLC accesses with LLC
APKI of 1.17), the contribution of leakage energy to the
overall energy is large while the shift energy contribution
is small. On the contrary, the contribution of RTM shift
energy is more pronounced for applications with high LLC
intensity (e.g., mcf, astar.b, and omnetpp). For these applica-
tions, BLEND-16 outperforms BLEND-32 in terms of overall
energy consumption because the leakage energy advantage of
BLEND-32 is negatively offset by an increase in the shift
energy. For the remaining applications with relatively low LLC
intensity, BLEND-32 provides more energy saving compared
to BLEND-8 and BLEND-16 because the contribution of the
shift energy in these application is less prominent compared
to the leakage energy.

TABLE IV
PARAMETERS FOR THE TAG ARRAY REALIZED USING SINGLE-BIT RTM

CELLS IN TAPECACHE

Configuration TAPE-8 TAPE-16 TAPE-32 TAPE-DM

Tag storage [KiB] 528 560 592 432
Leakage [mW] 51.5 54.6 57.3 43.8
Tag energy [pJ] 33.4 35.6 36.9 29.2
Tag latency [ns] 1.07 1.14 1.21 0.98

Tag latency [cycles] 4 4 4 4
Area [mm2] 0.95 1.04 1.15 0.79

F. Comparison with TapeCache

TapeCache [3] stores the data in multi-bit RTM cells and
addresses the leakage problem by storing the tags in a separate
RTM array comprised of single-bit RTM cells incurring zero
shift cost [3]. The single-bit RTM tag array has reduced
leakage power compared to an SRAM tag array (cf. Table III
and Table IV). Fig. 15 and Fig. 16 compares the energy
consumption and the performance of BlendCache with two
variants of TapeCache (i.e., TAPE-K with K-way associativ-
ity and TAPE-DM with direct-mapped design). As shown,
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Fig. 14. LLC misses per thousand instructions (LLC MPKI) for various LLC
associativity

TAPE-K achieves noticeable energy reduction compared to
the baseline LLC which is mainly achieved via reduction
in the leakage energy. This is because the leakage of the
SRAM tag array employed in the baseline LLC is significantly
higher compared to the single-bit RTM tag array employed
in TAPE-K. To further mitigate the leakage energy problem,
BlendCache stores the tags along with the data in the leakage
optimized RTM cells. As a result, BlendCache reduces the
overall energy consumption by 10.8%, 16.2%, and 20.8%
compared to TAPE-K for a track of length 8, 16, and 32
bits respectively. In addition, the area improvement compared
to TAPE-K is 7.6%, 11.4%, and 15.2%. The performance
results in Fig. 16 shows that BlendCache provides comparable
performance to TapeCache due to the latency optimizations
discussed in Section III.
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Fig. 15. Energy comparison with TapeCache [3]. The energy is averaged over
all applications

Similar to BlendCache, TAPE-DM employs the same data
mapping in Fig. 8 and exploits the spatial locality of ap-
plications. As a result, TAPE-DM reduces the shift energy
compared to TAPE-K and the baseline LLC. Since the tag
storage requirement for direct-mapped TAPE-DM is smaller
compared to K-way associative TAPE-K, TAPE-DM reduces
the leakage energy dissipated in the tag array. As shown in
Fig. 15, BlendCache reduces the energy consumption by 9.2%
(K = 8), 12.4% (K = 16), and 13.5% (K = 32) compared to
TAPE-DM. Another advantage of BlendCache over TAPE-DM
is that it serves LLC hits and misses faster for the majority
of the LLC requests (i.e., when MAP-I makes correct LLC
hit/miss prediction), thereby slightly outperforming TAPE-DM
for all track lengths.
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Fig. 16. Performance comparison with TapeCache [3]. The normalized
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G. Multi-core Results

For the evaluation of multi-core systems, we constiute five
benchmark mixes by combining four different applications
which are listed in Table V. The harmonic mean instruction per
cycle (HMIPC) results in Fig. 17 shows that the performance
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TABLE V
SPEC2006 BENCHMARK MIXES

Name Benchmark mix

Mix1 leslie3d.r, omnetpp, mcf , libquantum
Mix2 astar.b, milc, soplex.r, astar.t
Mix3 astar.t, leslie3d.t, sjeng, libquantum
Mix4 astar.b, leslie3d.r, omnetpp, leslie3d.t
Mix5 mcf , milc, sjeng, soplex.r

0.80

0.85

0.90

0.95

1.00

Mix1 Mix2 Mix3 Mix4 Mix5 GeoMean

RTMIdeal TAPE-8 BLEND-8 TAPE-16 BLEND-16 TAPE-32 BLEND-32

N
o

rm
al

iz
ed

 H
M

IP
C

Fig. 17. Normalized Harmonic Mean Instruction per cycle (HMIPC) results
for benchmark mixes listed in Table V

degradation of BlendCache compared to TapeCache is 2.5%,
2.9% and 3% for a track of length 8, 16, and 32, respectively.
Compared to single-core mode, the performance degradation
of BlendCache compared to TapeCache is higher in multi-
core mode which is caused by its direct-mapped nature.
However, this performance degradation is largely compen-
sated by significant energy saving compared to TapeCache
for longer track length. As shown in Fig. 18, BlendCache
reduces the energy consumption by 9.7%, 22.5%, and 35.9%
compared to TapeCache for K = 8, 16, and 32, respectively.
Employing TapeCache, the shift energy dominates the total
energy consumption which is caused by higher shift cost.
Since increasing the number of cores put more pressure on
the LLC, the shift energy in TapeCache is more prominent in
multi-core mode (cf. Fig. 18) compared to single-core mode
(Fig. 10). BlendCache reduces the number of shift operations
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Fig. 19. Total shift cost normalized to TAPE-8 for benchmark mixes listed
in Table V

compared to TapeCache (cf. Fig. 19), in particular, for longer
track length which reduces the shift energy. Compared to
TapeCache, BlendCache also reduces the leakage energy by
storing the tags in the less leaky RTM cells.

V. RELATED WORK

RTM has been employed at different levels in the memory
hierarchy including register file [21]–[23], scratchpads [24]–
[26], caches [1]–[6], [27], [28], network-on-chip [29], off-chip
memory [30], and SSD [31]. Many architectural techniques
have been employed for shift reduction that include preshift-
ing [22], [32], access port management [1], [3], [6] and data
migration [3], [6]. In addition, optimizations at cell-level [6],
circuit-level [27], layout-level [5], [28], and cross-level [7]
have been applied to provide performance, energy and area
improvements.

The architectural solutions for shift cost reduction in RTM
caches primarily reduces the shift component of energy which
makes them suitable for the smaller caches [1], [3], [6], [22],
[32]. Due to the higher cache access intensity in the smaller
caches, their energy consumption is primarily dominated by
the shift energy and least impacted by the leakage energy.
The access intensity of the larger LLC is less compared to the
smaller private caches (i.e., L1 and L2) because the private
caches filter out majority of the cache traffic from the LLC.
Therefore, the energy consumption of larger LLC is highly
impacted by the leakage energy. To the best of our knowledge,
this is the first work which enables efficient usage of the
leakage optimized RTM cells for the tag storage to reduce the
overall LLC energy consumption. It is worth to mention that
the aforementioned architectural approaches for shift reduction
are orthogonal to our work and can be applied on top of
BlendCache.

TapeCache analyzed the impact of shift operations and
proposed an interleaved organization (also adopted in Blend-
Cache) to store the bits of the cache lines [1], [3]. In addition,
to mitigate the negative impact of shifting overhead on perfor-
mance, they propose access port management policy based on
next cache line prediction by preshifting the port position to a
cache line which is likely to be accessed in future. Similarly,
other preshifting methods have been proposed to mitigate
the impact of shift penalty on the performance [22], [32].
However, preshifting increases the overall energy consumption
for a wrong next cache line prediction. Also, the performance
of applications is less impacted by latency at LLC level which
makes the preshifting optimizations less attractive at LLC
level.

Previous studies have employed direct-mapped cache design
on top of SRAM [33] and DRAM caches [12] by showing that
a direct mapped cache design has the capability to outperform
set associative designs in terms of performance. While the
characteristics and constraints of RTM are quite different from
SRAM and DRAM, this works make a case for direct-mapped
RTM LLC and showed that an intelligent direct-mapped design
outperforms complex set associative and naive direct-mapped
designs in terms of energy consumption.
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VI. CONCLUSIONS

The leakage energy problem of an RTM based LLC can
be mitigated by storing the tags in the multi-bit RTM cells.
However, these cells exhibit a high probability of long shift
cost which makes it difficult to use them for the latency critical
tag array. To overcome this limitation, we develop BlendCache
that efficiently enables the tag storage in the multi-bit RTM
cells, providing substantial reduction in the energy consump-
tion. The direct-mapped nature of BlendCache does not require
a tag lookup to determine the target location in RTM which
reduces the LLC hit latency. The negative impact of high tag
lookup latency to service an LLC read miss in BlendCache
is mitigated by sending majority of these requests to memory
before performing the costly tag check in RTM. In addition,
the overall shift cost in RTM is minimized via efficient data
mapping that exploits programs spatial locality by assigning
consecutive blocks from main memory to adjacent locations
in RTM. These latency optimizations make the tag store in
the leakage optimized multi-bit RTM cells practical, thereby
achieving high energy efficiency.
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