
mAPN: Modeling, Analysis, and Exploration of Algorithmic
and Parallelism Adaptivity

HASNA BOURAOUI, Technische Universität Dresden, Germany

CHADLIA JERAD, University of Manouba, Tunisia

OMAR ROMDHANI, University of Manouba, Tunisia

JERONIMO CASTRILLON, Technische Universität Dresden, Germany

Using parallel embedded systems these days is increasing. They are getting more complex due to integrating

multiple functionalities in one application or running numerous ones concurrently. This concerns a wide

range of applications, including streaming applications, commonly used in embedded systems. These applica-

tions must implement adaptable and reliable algorithms to deliver the required performance under varying

circumstances (e.g., running applications on the platform, input data, platform variety, etc.).

Given the complexity of streaming applications, target systems, and adaptivity requirements, designing

such systems with traditional programming models is daunting. This is why model-based strategies with

appropriate Model of Computation (MoC) have long been studied for embedded system design. Dataflow

models, in particular, are a good fit for streaming applications that execute in parallel on embedded devices.

Most of today’s models, however, are based on static dataflow models with adaptivity extensions to describe

data parallelism. Some dynamic dataflows capture dynamic behavior but offer only limited support for

algorithmic adaptivity. This work provides algorithmic adaptivity on top of parallelism for dynamic dataflow

to express larger sets of variants and trade-offs. We present a multi-Alternative Process Network (mAPN), a

high-level abstract representation in which several variants of the same application coexist in the same graph

expressing different implementations. We introduce multi-Alternative Process Network (mAPN) properties

and its formalism to describe various local implementation alternatives. Furthermore, mAPNs are enriched

with metadata to provide the alternatives with quantitative annotations in terms of a specific metric. To help

the user analyze the rich space of variants, we propose a methodology to extract feasible variants under user

and hardware constraints. At the core of the methodology is an algorithm for computing global metrics of an

execution (e.g., execution time) of different alternatives from a compact mAPN specification. We validate our

approach by exploring several possible variants created for the Automatic Subtitling Application (ASA) on two

hardware platforms and analyzing the trade-off space. A comparison to the well-known analysis tool 𝑆𝐷𝐹 3 is

also performed, where we showed that we are more than 500 times faster for a large number of variants.

CCS Concepts: • Computer systems organization→ Embedded systems; Redundancy; Robotics; • Net-
works→ Network reliability.

Additional Key Words and Phrases: Model of Computations, automatic subtitling, parallel adaptivity, algorith-

mic adaptivity

1 INTRODUCTION
The complexity of applications aiming to solve nowadays problems is naturally increasing across

domains. Many sectors are concerned: from automotive applications, through medical and health

systems, to wireless communication (e.g., 5G and beyond), and ending with applications requiring

biometric authentication (e.g., speaker recognition, iris recognition, automatic subtitling).

For instance, highly automated systems are installed in today’s vehicles in the automotive sector.

These systems, commonly referred to as ADAS (Advanced Driving Assistance Systems) [8, 20, 48].

The complexity of applications increases even further in Autonomous Driving (AD) scenarios.

Authors’ addresses: Hasna Bouraoui, hasna.bouraoui@tu-dresden.de, Technische Universität Dresden, Germany; Chadlia

Jerad, chadlia.jerad@ensi-uma.tn, University of Manouba, ENSI, Campus Universitaire de la Manouba, Tunisia; Omar

Romdhani, omar.romdhani@ensi-uma.tn, University of Manouba, ENSI, Campus Universitaire de la Manouba, Tunisia,

omar.romdhani@ensi-uma.tn; Jeronimo Castrillon, jeronimo.castrillon@tu-dresden.de, Technische Universität Dresden,

Germany.

ar
X

iv
:2

20
7.

07
59

1v
1

 [
cs

.D
C

]
 1

5
Ju

l 2
02

2

2 Bouraoui and Jerad, et al.

Several functionalities are needed in such applications, including capturing a scene, detecting, and

object tracking (e.g., traffic signs, pedestrians). To serve this purpose, different technologies are

used: from advanced sensing (e.g., Radars, LiDARs, cameras), to advanced algorithms (e.g., computer

vision techniques with hard time constraints, machine learning techniques), and advanced actuation

executing commands on time and precisely [60].

Another example of a growing class of applications are those based on the biometric recognition.

In automatic subtitling for video, for instance, functionalities like speaker recognition, speaker

diarization, and speech recognition are important biometric algorithms. In the case of a live

broadcast, automatic subtitling has to execute under real time constraints. In the aforementioned

examples, a complex application is composed of several algorithms, each exposing different trade-

offs, making the application graph large in size and with complex architectures. This gain in

complexity makes it hard from a developer’s point of view to choose the proper implementation for

her application beforehand. This becomes even harder considering the diversity of possible target

hardware architectures, as the achieved implementation performance may significantly differ from

one target to the other. The well known Algorithm Selection Problem (ASP) [45] addressed this

issue by combining the solution from existing algorithms rather than developing a new specific

implementation for some problems. The idea is to identify the most adequate algorithm for a given

problem under changing circumstances. However, the solution space is ample and makes depicting

the suitable algorithm task daunting. It is challenging to manually select an adequate algorithm

under user and hardware constraints in any given situation characterized by available hardware

resources and energy budget. To design such complex applications, embedded programmers need to

understand algorithmic variants implementing the same functionality (i.e. algorithmic adaptivity)

and how can they be deployed in parallel into possibly different manycore platforms (i.e. parallelism

adaptivity). These applications benefit from enabled pipelining and task parallelism to execute on

embedded manycore platforms (homogeneous or heterogeneous) using appropriate MoC [44].

Dataflow is a Model of Computation (MoC) that inherently describes exploitable, yet explicit

software parallelism at a high level of abstraction. Together with the pervasiveness of multicore

hardware platforms, these features make dataflow models well suited for the description and

analysis of a wide variety of applications, notably signal processing and streaming applications.

Different variants of this model have been developed and studied, enabling thus their use in various

frameworks and tools, such as LabVIEW, Scade, and Simulink. Dataflowmodels such as Synchronous

Dataflow (SDF [34]) and Cyclo-static dataflow (CSDF [11]) are called static and enjoy predictability,

solid formal properties, and amenability to powerful optimization techniques. Dynamic dataflow

graphs (e.g. Parameterized dataflow Graphs [10], SADF [53], Parametrized Interfaced DF [17, 38]),

however, allow for the variation of the consumption and production rates of actors at runtime.

Consequently, they are not entirely predictable at compile time. Kahn Process Networks are a

prominent example of dataflow MoC that is more expressive than the aforementioned MoCs [53]

while being deterministic [26]. Works such as in [29] and [49] target dynamic behavior of KPN in

the sense of implicit support of data level parallelism. In [5], adaptivity is taken into account at the

compiler level, but their dynamic MoC suffers from a lack of intuitiveness and usability.

This paper presents a novel model, mAPN multi-Alternative Process Networks (mAPN [12]).

mAPN is a dynamic MoC that supports algorithmic and parallelism adaptivity. It captures multiple

algorithmic implementation variants, beyond what existing models allow, in a compact single-

source specification. Thus allowing to express more than one possible implementation of steaming

applications in the same graph. Such a model helps the user to study the performance of potential

implementations at a high level of abstraction. This paper aims to show how can mAPN help the

user exploring such complex design space, while expressing algorithmic and parallelism adaptivity,

mAPN: Modeling, Analysis, and Exploration of Algorithmic and Parallelism Adaptivity 3

to achieve desired performance and meet hardware constraints. We also position mAPN and its

tooling against state-of-the-art works on the topic of adaptivity. Concretely, our contributions are:

• We give a thorough analysis of 2 complex real world applications (c.f. section 2), which are the

Automatic Subtitling Application (ASA) and Advanced driving-assistance systems (ADAS).

• We provide a revised mAPN formalism (c.f. section 3). The extended formalism enables faster

exploration, and includes support for a compact and implicit representation of data level

parallelism. The model is enriched with annotations that represent quantitative metrics of

interest to the designer (e.g., execution time), in addition to annotations to control the amount

of Data Level Parallelism (DLP).

• We present a methodology for automatic exploration of algorithmic variants based on mAPN

annotations and the constraints introduced by the designer (c.f. section 4). We present

mAPN
𝑇𝑆

(mAPN tool suite), a tool that allows researchers and designers to explore a given

mAPN graph and select the number of appropriate variants.

• We demonstrate the methodology for the ASA (c.f. section 5) by evaluating 224 alternatives

represented in one graph. The selection of suited variants is based on annotations and

respecting constraints. In addition, we analyze the fidelity of our model-based approach for

the ASA use case. The assessment of the performance of mAPN
𝑇𝑆

against 𝑆𝐷𝐹 3 tool and

SADF formalism is presented as well. For a large number of variants, we show that we reach

more than 500 speedup in exploring the graph using mAPN
𝑇𝑆

compared to 𝑆𝐷𝐹 3.

• Finally, we compare mAPN against other MoC and state similarities and differences between

them (c.f. section 6).

2 MOTIVATIONAL EXAMPLES
Adapting to changing execution contexts and hardware constraints requires reasoning about differ-

ent possible implementations of an application. Whenever a new algorithm has to be implemented

for a specific hardware target, there is a general tendency nowadays to compose the solution from

existing implementations rather than developing new algorithms. This is known as the ASP [45]

and shifts the burden from finding the right solution to identifying the appropriate existing al-

gorithms. Defining the appropriate algorithm, however, is challenging since the solution space

is exponentially ample. It depends on several changing circumstances, such as the user’s desired

performance and the available resources on the target platform. This is referred to as the no-free

lunch theorem [57], which states that no single algorithm has the best overall performance. Today,

a common practice is to apply methods that automatically determine which strategy to employ in

these adaptive applications scenarios. Many works in the literature addressed this problem using

traditional algorithm selection method [27, 41] or Machine Learning (ML) based ones [31]. Authors

in [24], for example, addressed an adaptive vehicle perception problem in environmental influences.

Performance models are generated based on trained neural networks to predict the suitability of an

algorithm to given environmental conditions. Their goal is to select the best-suited data processing

algorithm on-board of an Unmanned Aerial Vehicle (UAV) under variable circumstances. For a

detailed survey on algorithm selection, readers may refer to [28]. Which algorithms to use is decided

on a case-by-case basis and requires domain knowledge. Selecting such a suitable implementation

is a challenging task from the developer’s perspective. Added to that, complexity increases if we

consider several target hardware architectures. Depending on the given situation characterized by

available hardware resources and user constraints, the developer has to consider several possible

algorithms implementing the same functionality (algorithmic adaptivity) and expanding data level

parallelism degree across different platforms (parallelism adaptivity).

4 Bouraoui and Jerad, et al.

In the next subsections, we showcase this needed of adaptivity through two examples of nowa-

days applications. We illustrate in an abstract way their complexity to demonstrate the need for

parallelism and algorithmic adaptivity and how our approach accounts for this. The first application

is the Autonomous Valet Parking (AVP)
1
from the domain of autonomous driving. This application

shows how large and complex an application graph may get. The second application is the ASA. We

motivate the use of mAPN by presenting its dataflow graph in a concise manner. This application

is presented in more details, and will be considered in the experimental results in section 5.

2.1 Analysis of AVP Application
A generic autonomous vehicle system is composed of different modules and subsystems implement-

ing several phases that connect the sensors’ input used to sense and understand the environment

to the actuators executing the driving commands and decision actions (i.e., steering, accelerating,

etc.) generated by the system. Many functionalities are still needed for each module, and various

technologies and algorithms are used where no algorithm performs better in all scenarios. The

required expertise to develop such complex systems covers several domains such as computer

vision, robotics, and vehicle dynamics. A typical AVP system is composed of three main phases: the

perception phase, the planning phase, and the control or decision making phase. For each of these

phases more than one possible implementation could be applied and thus be based on different user

requirements as well as available hardware. This expands the range of possible implementations

for the entire application. Some of these algorithms are stated in Fig 1.

Perception: Data is collected from the sensors to sense and perceive the environment. This data

helps the car understand where obstacles are located, determine their positions, and find itself

within the whole scene. For this purpose, technologies like cameras, LiDARs, radars, etc., are used.

These sensors provide input data to computer vision algorithms to extract useful information.

Planning: It involves planning the route to navigate from the current position towards a specific

target position, bypassing obstacles. It merges the data from the sensors with the knowledge on the

road itself (different obstacles, stop signs, etc.) accumulated during the previous phase to enable

the car to plan the path/way to reach the target destination efficiently and safely.

Control/decision making: It aims at translating the plan from the previous phase into exe-

cutable actions (steering, braking, accelerating, etc.) controlling the vehicle. These actions are sent

as commands to the hardware/actuators.

To better understand the complexity of these different phases and the way they are put together

to perform the driving task, we will consider the example of the AVP. Even though restricted to a

specific environment, this driving task still covers many complex scenarios like going to an available

parking spot, driving to a pick-up area, stopping for obstacles, etc. Fig.1 in [1] presents one possible

implementation of the AVP. It details how the phases described above apply to the AVP example.

For each phase of this application, however, many possible algorithms and implementations might

be used depending on the use cases (e.g., parking restricted to AVPs, parking used by both AVPs

and normal drivers), the used architecture, and the user constraints. To better grasp the amount of

possible implementations, we explore the example of the localization process within the perception

phase, which consists of estimating the vehicle’s position relative to a reference frame in the

environment (global or local map). Mainly, there are three types of localization with different

characteristics: absolute localization, relative localization, and odometry [40]. Used algorithms

depends on the desired scenario. For example odemetry is used under certain conditions such as

mapless driving or insufficient map quality for decent relative localization (e.g., tunnel). Generally,

the used inputs and outputs for these localization types are implementation-specific. Depending

1
https://www.autoware.org/post/autonomous-valet-parking-2020

mAPN: Modeling, Analysis, and Exploration of Algorithmic and Parallelism Adaptivity 5

on the target use-case, the available sensors, their configuration, accuracy, and limitation, these

localization techniques are more or less useful. For example, in a system where GPS/IMU (Inertial

Motion Unit) and cameras are available as input sensing devices, combining these input data

helps achieving a localization accuracy of 73 cm [32], which might be enough/acceptable for a

specific scenario/application, but not enough for others. Table I in [32] shows 13 possible techniques

and implementations for sensor-based localization. Similarly, the localization output serves many

functionalities in this application (e.g., behavioral planning, motion control, motion planning, etc.).

As such, the need for specific localization algorithms or a combination of algorithms is also dictated

by the architecture of the AVP system and its intended functionalities. For a more detailed survey

on used algorithms in the localization process, the reader may refer to [32].

Fig. 1. Generic autonomous vehicle system

To summarize, we show that the autonomous driving system is divided into several phases and

sub-phases that are meant to interact with each other to realize the driving/parking task. Each of

these phases hasmore than one possible implementation using different techniques.We illustrate the

scale at which the number of possible implementations can grow. The application graph grows even

more complex if we consider reflecting parallelism by expanding some nodes to express DLP. The

choice of the best variant/implementation should depend on the fixed user/application constraints,

the application relevant use-cases (dictating the architecture), and the target hardware platform to

host the application. Depending on the desired context, the implementation of the application or

the expressed parallelism might change. Here comes the need for a compact representation that can

express all these variants and reflect the possible algorithmic and parallelism variability. This reduces

the effort of building the application to explore all available alternatives to retain those respecting

specific constraints and target goals. We insist here that the compatibility of used algorithms

through the different phases with each other is beyond this paper’s scope. Nevertheless, it shall

definitely be investigated and considered when building such a multi-alternative representation.

2.2 Analysis of Automatic Subtitling Application
Another motivational example where more than one implementation serves the same application

is the Automatic Subtitling Application (ASA). This example will be detailed, compared to the

previous one, as it will serve as a case study later in this paper. ASA is a complex application

that combines three functionalities: Speaker Recognition (SpkR), Speaker Diarization (SD), and

Speech Recognition (SpR). These functionalities aim at recognizing who are speaking, when are

they speaking, and what are they saying, respectively.

Automatic subtitling can be found in different scenarios: an offline scenario where a video or

audio clip is fed as input and subtitles are generated as an output; or an online scenario (e.g., live

TV broadcast) where subtitles are generated in real-time. The second scenario is characterized

by harder time constraints, where successfully confirming a person’s identity or recognizing the

6 Bouraoui and Jerad, et al.

spoken text is as important as getting the answer within a bounded time. If we have to select an

adequate implementation, it would not be enough to consider just the accuracy; rather, depending

on the user needs, other metrics such as execution time or memory footprint are also important.

Whenever a new ASA has to be implemented for a specific target, there is a general tendency

nowadays to compose the solution from existing implementations rather than developing new algo-

rithms. This is related to the ASP [45] stated in the previous section. Depicting the right algorithms

to use is decided on a case-by-case basis and depends on variable circumstances (user/hardware

constraints, desired scenario, etc.). In the literature, a rich set of algorithms available today to

implement the ASA and its different application scenarios [3, 4, 19]. This subsection reviews the

most prominent ones for its different functionalities: SpkR, SD, and SpR. Afterward, we show in

section 5 how they can be combined to create different ASA variants.

2.2.1 Speaker Recognition. SpkR functionality refers to the automated method of identifying or

confirming an individual’s identity based on their voice. The generic process is described in the

upper part of Fig. 2. At a coarse-grained level, all speaker recognition systems are composed of two

main phases: The first phase is Feature Extraction (FE). The features of the speakers are extracted

from the voice utterance to create a speaker model. The second phase is pattern matching (PM).

It compares the constructed speaker model to all existing models in the database to identify the

closest match. Several approaches and algorithms for each phase can be found in the literature.

Readers may refer to [13] for a detailed survey. Some of them are presented in Fig. 2.

Fig. 2. Speaker Recognition, Speech Recognition and Speaker Diarization functionality graph with possible
implementation variants: FE: Mel Frequency Cepstral Coef. (MFCC), Linear Predictive Coef. (LPC), Fourier
Bessel Cepstral Ceof. (FBCC). PM: Euclidean Distance (ED), Cosine Similarity (CS), Dynamic Time Wrap-
ing(DTW). classification:HMM, DTW, GMM. VAD: Viterbi alg., Gaussian Mixture Models (GMM), Support
Vector Machine (SVM). SCD: BIC, ED, CS. Clustering: K-means, AHC, Spectral Clustering.

2.2.2 Speaker Diarization. The goal of SD is to reveal who speaks when. It aims to partition an

input audio-stream utterance into segments and annotate each segment with its corresponding

label. At a coarse-grained level, most of the SD systems are described as the combination of five

mAPN: Modeling, Analysis, and Exploration of Algorithmic and Parallelism Adaptivity 7

Fig. 3. Coarse grained representation of the automatic subtitling application

phases, as shown in the lower part of Fig. 2. The ordering of these phases often varies from one

system to another [58]. The first phase, FE, transforms the audio into acoustic feature vectors (i.e.,

extracting speaker-specific characteristics). The second phase aims at removing the non-speech

regions (e.g., noise or music) by using Voice Activity Detection (VAD) [22]. The next phase, Speaker

Change Detection (SCD), looks for speaker change points within each speech segment. Then,

segments of the same speaker are clustered together [2]. Finally, speech segments are labeled in

the Re-segmentation phase. Its goal is to determine more precisely when each speaker spoke.

2.2.3 Speech Recognition. SpR aims at recognizing what is spoken by a speaker. After extracting

features from an input utterance, a matching process is applied to identify the corresponding

word/sentences being said by comparing the input to a set of words and phonemes models saved in

a database (middle part of Fig. 2). It involves two main steps. The first phase is FE, where the speech

signal is transformed into a sequence of pre-phonetic symbols with no linguistic meaning but

containing features values. The second step is a classification that includes the acoustic, lexical, and

language modeling, which compares the symbols with specific phonetic waveform. To implement

these two phases, several well-known algorithms can be found in the literature [59].

2.2.4 ASA. From the above description, we can observe that each of the functionalities within

ASA (SpkR, SD, SpR) has several implementations using different algorithms. Additionally, they

share common phases (e.g., FE) and common algorithms serving different phases (i.e., Classification,

PM, and SCD). Fig. 3 illustrates a coarse-grained representation of the ASA. Depending on the

user/hardware constraints, one may have to specialize the phases for each functionality. Phase

reuse and algorithmic choices create a large space of possible variants for ASA as a whole.

We detail the FE phase of the SpkR functionality and observe the increasing number of possible

variants. Speaker characteristics can be categorized based on different features. They are divided

into short-term and dynamic features. The first type of features covers those where the length of

the frame varies between 20 and 40 ms. The most used algorithms that extract such features are

MFCC, FBCC, PLP, or LPC [54, 55]. On the other hand, dynamic features describe the time-varying

information of utterances (i.e., change of energy). The most used dynamic features are the first

derivative and the second derivative of MFCC and LPCC algorithms [42]. Fig. 4 presents five

possible implementations of the FE phase (i.e. compact MFCC, expanded MFCC, FBCC, PLP, and

LPC). For SpkR, the next phase is the PM, for which we only consider two possible implementations,

namely, Euclidean Distance (ED) and Cosine Similarity (CS).

Using KPNs where computational elements are processes (nodes in the graph) communicating

through FIFO channels (edges in the graph), Fig. 4 shows a total of 10 different implementations

for SpkR are possible (i.e. MFCC(Compact)+ED/CS, MFCC(Expanded)+ED/CS, PLP+ED/CS, etc.).

For ASA as a whole, many more options are possible. By mixing and matching alternatives from

different phases, a big number of variants can be generated. In absolute terms, no variant is better

8 Bouraoui and Jerad, et al.

Fig. 4. Different feature extraction algorithms

than all others. This depends on the fixed user constraints and the available target hardware. As

mentioned earlier, this application will serve as a case study for our approach. Details of the whole

graph and the number of generated variants are presented in section 5.

3 MAPN FORMALISM
In this section, we introduce a more elaborated version of the mAPN formalism than the one

presented in [12], and give the different definitions of its key components. We introduce the graph

formalism at first, and then discuss how the graph is annotated to allow for fast exploration of

application metrics. The section closes by comparing our model to the well-known SADF model.

3.1 Graph Formalism
Before diving into the graph formalism, we set the terminology to be used and define the mAPN

model. Let 𝐾 be a KPN model of an application. Considering a subgraph 𝐾 ′ of 𝐾 , such that it is itself

a KPN with a unique source process and a unique sink process, the designer can plug into 𝐾 an

alternative KPN, noted 𝐾 ′′, for 𝐾 ′ that starts at the same source process and ends at the same sink

process. 𝐾 ′′ is, therefore, a possible algorithmic substitution of the subgraph 𝐾 ′. This replacement

process for algorithmic adaptivity can of course be nested. In this paper, we use colors to graphically

distinguish such alternatives. Additionally, parallel processes within any subgraph are marked in

the model to explore parallelism adaptivity. During exploration, they are unfolded into different

alternatives based on the possibilities entered by the designer. By mixing and matching the different

alternatives, one can generate different variants (KPNs of the whole target application).

A KPN is a directed graph composed of concurrent processes (nodes), communicating through

unbounded First In First Out (FIFO) channels (edges) having blocking reads and non blocking writes

semantics. Formally, a KPN is a tuple 𝐺 = (𝑃,𝐶ℎ), where 𝑃 is a set of processes, and 𝐶ℎ ⊆ 𝑃 × 𝑃 a

set of channels. An mAPN is a graph that concisely represents many different KPNs. We use colors

to label and then generate all possible variants. Let Ξ = {𝜉1, 𝜉2, ..., 𝜉𝑛} be the set of colors. Similar

to KPN, an mAPN is a directed graph composed of processes and channels. Unlike KPNs, channels

are annotated with colors indicating the alternative that the channel belongs to. As mentioned

before, we graphically distinguish parallel processes with the q tag. Formally,

mAPN: Modeling, Analysis, and Exploration of Algorithmic and Parallelism Adaptivity 9

Fig. 5. mAPN graph of a synthetic example.

Definition 3.1. An mAPN graph is a tuple 𝐺 = (𝑃,𝐶ℎ, 𝑃 q), where:
• 𝑃 is a finite set of processes,
• 𝐶ℎ is a finite set of channels, such that 𝐶ℎ ⊆ 𝑃 × 𝑃 × Ξ,
• and 𝑃 q ⊂ 𝑃 , is the subset of parallel processes.

Let𝑤𝑟, 𝑟𝑑 : 𝐶ℎ → 𝑃 be two functions that map each channel to the process that writes into it

and read from it respectively. Let𝑤𝑟, 𝑟𝑑 : 𝑃 → P(𝐶ℎ) be two functions that map each process into

a subset of 𝐶ℎ it writes to and reads from respectively (i.e., 𝑤𝑟 (𝑝) = {𝑐ℎ ∈ 𝐶ℎ,𝑤𝑟 (𝑐ℎ) = 𝑝}). We

denote by 𝑐𝑜𝑙 the function that returns the color of a channel, that is 𝑐𝑜𝑙 : 𝐶ℎ → Ξ. The function

𝑐𝑜𝑙𝑟𝑑 returns the colors of the channels a process reads from (i.e., 𝑐𝑜𝑙𝑟𝑑 (𝑝) = ∪𝑐ℎ∈𝑟𝑑 (𝑝)𝑐𝑜𝑙 (𝑐ℎ)).
Analogously, 𝑐𝑜𝑙𝑤𝑟 returns the colors of the channels a process writes to. In the synthetic mAPN

graph example of Fig. 5, two channels of two different colors (and) connect process 𝑣 to 𝑥 ,

and 𝑐𝑜𝑙𝑤𝑟 (𝑝) = { , , }. Process 𝑡 is parallel, since it is tagged with q, and thus 𝑡 ∈ 𝑃 q. Unfolding
such a process will be detailed in the upcoming section. Let 𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑠𝑖𝑛𝑘 be two functions that

return the source and sink processes of a graph. Formally, 𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺) = {𝑝 ∈ 𝑃, 𝑟𝑑 (𝑝) = ∅}, and
𝑠𝑖𝑛𝑘 (𝐺) = {𝑝 ∈ 𝑃,𝑤𝑟 (𝑝) = ∅}. In the mAPN example of Fig. 5, 𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺) = {𝑎}, and 𝑠𝑖𝑛𝑘 (𝐺) = {𝑢}.

An alternative models how to substitute a piece of the graph with another connected sub-graph

implementing the same functionality. The channels of the substituting sub-graph have the same

color, and the source and sink processes are unique. For the substitution to be semantically correct,

an alternative cannot fork or join within one subgraph (c.f. formalization as Property 6). Formally,

Definition 3.2. A subraph 𝛼 (𝐺, 𝜉) = (𝑃𝛼 (𝐺,𝜉) ,𝐶ℎ𝛼 (𝐺,𝜉)) is an alternative in the mAPN graph
𝐺 = (𝑃,𝐶ℎ, 𝑃 q), only if:
• 𝛼 (𝐺, 𝜉) is a connected graph, such that:
– All channels of 𝐶ℎ of color 𝜉 are in 𝐶ℎ𝛼 (𝐺,𝜉) . Formally, ∀𝑐ℎ ∈ 𝐶ℎ𝛼 (𝐺,𝜉) , 𝑐𝑜𝑙 (𝑐ℎ) = 𝜉 and
∀𝑐ℎ ∈ 𝐶ℎ \𝐶ℎ𝛼 (𝐺,𝜉) , 𝑐𝑜𝑙 (𝑐ℎ) ≠ 𝜉 .

– Only processes that are connected to channels of 𝐶ℎ𝛼 (𝐺,𝜉) are in 𝑃𝛼 (𝐺,𝜉) . Formally, 𝑃𝛼 (𝐺,𝜉) =⋃
𝑐ℎ∈𝐶ℎ𝛼 (𝐺,𝜉) {𝑤𝑟 (𝑐ℎ), 𝑟𝑑 (𝑐ℎ)}.

• Uniqueness of the source and the sink processes of 𝛼 (𝐺, 𝜉). Formally, |𝑠𝑜𝑢𝑟𝑐𝑒 (𝛼 (𝐺, 𝜉) | = 1 and
|𝑠𝑖𝑛𝑘 (𝛼 (𝐺, 𝜉) | = 1.

For an alternative 𝛼 (𝐺, 𝜉) to be a potential substitute of subgraph 𝛼 , both should have the same

source and sink processes. Consequently, the source process will write channels with at least

two different colors, while the sink process will read from channels with at least two different

colors. For example, the purple () subgraph connecting 𝑐 and 𝑓 is an alternative to the black ()

subgraph, replacing the functionality of 𝑑 and 𝑒 with𝑤 . The source process 𝑐 writes to channels

with two different colors (and), and the sink 𝑓 also reads from both colors. When considering

the black sub-graph that goes through process 𝑐 , the alternatives that starts from node 𝑏 will not

10 Bouraoui and Jerad, et al.

be depicted, and this will avoid any inconsistency with the process 𝑑 (green and blue alternatives

are not considered in this case).

Alternatives can be nested, as is the case of the blue or green (,). Hence, the flow from 𝑏 to

𝑑 can go through 𝑐 (black ()), through 𝑝 and 𝑞 (green alternative ()), or through 𝑝 and 𝑟 (nested

alternative composed of green () and blue ()). They are defined as follow:

Definition 3.3. A subraph 𝛼 (𝐺) = (𝑃𝛼 (𝐺) ,𝐶ℎ𝛼 (𝐺)) is a nested alternative in an mAPN graph
𝐺 = (𝑃,𝐶ℎ, 𝑃 q), only if:
• 𝛼 (𝐺) is a connected graph.
• 𝛼 (𝐺) contains more than one color. Formally, |⋃𝑐ℎ∈𝐶ℎ𝛼 (𝐺) 𝑐𝑜𝑙 (𝑐ℎ) | > 1.

End-to-end alternatives and/or nested alternatives that include 𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺) and 𝑠𝑖𝑛𝑘 (𝐺) are called
variants. Formally:

Definition 3.4. A subgraph 𝑉 = (𝑃𝑉 (𝐺) ,𝐶ℎ𝑉 (𝐺)) of an mAPN graph 𝐺 = (𝑃,𝐶ℎ, 𝑃 q) is a variant
only if: (i)𝑉 is an alternative or a nested alternative, such that 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑉) = 𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺) and 𝑠𝑖𝑛𝑘 (𝑉) =
𝑠𝑖𝑛𝑘 (𝐺), and (ii) 𝑉 is a KPN.

We distinguish processes from/at which alternatives fork/join. These processes are important

since they identify anchors for mixing and matching alternatives and generating variants. We

classify them into the following subsets:

• F : subset of processes of 𝑃 that writes different channels with different colors. Formally,

F = {𝑝 ∈ 𝑃, ∃𝑐ℎ𝑖 , 𝑐ℎ 𝑗 ∈ 𝑤𝑟 (𝑝), 𝑖 ≠ 𝑗, 𝑐𝑜𝑙 (𝑐ℎ𝑖) ≠ 𝑐𝑜𝑙 (𝑐ℎ 𝑗)}. A process in F is a fork process.

• J is the subset of processes of 𝑃 that read different channels with different colors. Formally,

J = {𝑝 ∈ 𝑃, ∃𝑐ℎ𝑖 , 𝑐ℎ 𝑗 ∈ 𝑟𝑑 (𝑝), 𝑖 ≠ 𝑗, 𝑐𝑜𝑙 (𝑐ℎ𝑖) ≠ 𝑐𝑜𝑙 (𝑐ℎ 𝑗)}. A process in J is a join process.

In the mAPN of Fig. 5, F = {𝑏, 𝑐, 𝑝, 𝑣, 𝑔} and J = {𝑑, 𝑒, 𝑓 , 𝑗, 𝑢}. Based on the collection of

alternatives forming the mAPN, one can generate possible variants. The generation is based on a

set of assumptions that the mAPN is well-formed. Formally,

Definition 3.5 (Well-formed mAPN). A well-formed mAPN 𝐺 = (𝑃,𝐶ℎ) has these properties:
(1) Colors cannot be re-used in disjoint subgraphs.
(2) Cycles can only be specified within one same colored subgraph only, that is no alternative can

start or end within a cycle.
(3) Singularity of the source and sink processes, that is |𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺) | = |𝑠𝑖𝑛𝑘 (𝐺) | = 1.
(4) Preserving KPN semantics: For a process with more than one outgoing color, the number of

write channels per color must be the same. Formally, ∀𝑝 ∈ F ,∀𝜉𝑖 , 𝜉 𝑗 ∈ Ξ, 𝑖 ≠ 𝑗 ⇒ |{𝑐ℎ ∈
𝑤𝑟 (𝑝), 𝜉𝑖 ∈ 𝑐𝑜𝑙 (𝑐ℎ)}| = |{𝑐ℎ ∈ 𝑤𝑟 (𝑝), 𝜉 𝑗 ∈ 𝑐𝑜𝑙 (𝑐ℎ)}|. Similarly, for a process with more than
one incoming color, the number of reading channels per color must be the same. Formally,
∀𝑝 ∈ J ,∀𝜉𝑖 , 𝜉 𝑗 ∈ Ξ, 𝑖 ≠ 𝑗 ⇒ |{𝑐ℎ ∈ 𝑟𝑑 (𝑝), 𝜉𝑖 ∈ 𝑐𝑜𝑙 (𝑐ℎ)}| = |{𝑐ℎ ∈ 𝑟𝑑 (𝑝), 𝜉 𝑗 ∈ 𝑐𝑜𝑙 (𝑐ℎ)}|.

(5) ∀𝑝 ∈ 𝑃 q, 𝑝 ∉ F ∧ 𝑝 ∉ J .
(6) An alternative and its substituted subgraph form a structured block: a block with a single point of

entry and one point of exit. Let 𝛼 (𝐺) = (𝑃𝛼 (𝐺) ,𝐶ℎ𝛼 (𝐺)) be an (nested) alternative of a subraph
𝛼 ′(𝐺, 𝜉) = (𝑃𝛼′ (𝐺,𝜉) ,𝐶ℎ𝛼′ (𝐺,𝜉)). The formed block is structured iff none of the processes of 𝑃𝛼′ (𝐺,𝜉)
reads or writes channels out of 𝐶ℎ𝛼′ (𝐺,𝜉) . We denote 𝑃𝛼′ (𝐺,𝜉) \ {𝑠𝑜𝑢𝑐𝑒 (𝑃𝛼′ (𝐺,𝜉)), 𝑠𝑖𝑛𝑘 (𝑃𝛼′ (𝐺,𝜉))}
by 𝑃♦. Formally,∑

𝑝∈𝑃♦ |{𝑐ℎ, 𝑐ℎ ∈ 𝑤𝑟 (𝑝), 𝑐𝑜𝑙 (𝑐ℎ) = 𝜉}| =
∑

𝑝∈𝑃♦ |{𝑐ℎ, 𝑐ℎ ∈ 𝑟𝑑 (𝑝), 𝑐𝑜𝑙 (𝑐ℎ) = 𝜉}|.

Concretely, properties (1) and (2) prevent the designer from adding a subgraph that leads to

an inconsistent behavior. In addition, property (2) guarantees the semantic independence of the

alternatives among each other. Moreover, we simplify the representation of cycles by one process

mAPN: Modeling, Analysis, and Exploration of Algorithmic and Parallelism Adaptivity 11

Fig. 6. Example of a structured block constraint violation.

that encompasses the cycle. The simplification, however, is an orthogonal problem. Property (3)

adds a constraint over the uniqueness of the graph source and sink processes. This property

is mandatory for the graph exploration (c.f. subsection 4.5). In the case of more than one of

each, that is |𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺) | > 1 (respectively |𝑠𝑖𝑛𝑘 (𝐺) | > 1), a unique fictive source (respectively

sink) process can be added, making thus the property hold. As for preserving KPN semantics

(property (4)), all fork/join, processes have to write/read, the same number of channels per color.

Parallel processes cannot be a fork or join process (property (5)). The reason relates to how

automatic alternatives unfolding of such processes is performed. Finally, property (6) prevents

from constructing alternatives that forms an inconsistent graph, by observing the structured block

constraint. Fig 6 illustrates such a violation. Let’s consider the dark orange alternative (formed by

the processes {𝑓 1, 𝑓 2, 𝑓 3}), which is meant to substitute the subgraph formed by {𝑓 , 𝑔, 𝑜}. In this

case, the substitution is inconsistent, since channel (𝑔,𝑚) will be removed, and therefore process𝑚

will fail reading. Furthermore, 𝑗 will wait to read from both channels (𝑜, 𝑗) and (𝑛, 𝑗), while it is
not possible to read from (𝑛, 𝑗). Similarly, the light orange alternative, formed by the processes

{𝑛1, 𝑛2} is not allowed either. The reason is that if the substitution occurs, the channel (𝑜, 𝑗) will
be removed, and process 𝑜 will fail writing. In this illustrated case, we created an inconsistency

of the structured black block formed by the processes {𝑔,𝑚, 𝑜, 𝑛, 𝑗}, either with the dark-orange

alternative that substitutes the subgraph formed by the processes {𝑓 , 𝑔, 𝑜}, or the light orange one
that substitutes the subgraph formed by the processes {𝑛, 𝑗, 𝑣} .

3.2 Annotation of mAPN with Metadata
An mAPN is enriched with annotations that endow processes with metadata. This gives insights

that serve to evaluate a variant and check whether it is feasible or not. Annotations may indicate

how a process performs or how robust it is to a distorted input data. The developer of the application

can define customized metrics to use as well as the way metrics are aggregated during exploration.

In case of parallel processes, annotations additionally include an enumeration of the parallelism

degrees to consider, as well as information on how to derive evaluations for the expanded processes.

3.2.1 Evaluation in terms of Specific Metric. Let 𝑀 be an ordered set of metrics. The values for

𝑚 ∈ 𝑀 are taken from the set of real numbers. The reason behind the set𝑀 being ordered is to set

priorities while choosing among variants (c.f. subsection 4.4). We define a function 𝜈 (𝑝,𝑚) that
maps each process 𝑝 ∈ 𝑃 to its evaluation in a given metric𝑚. If a metric is hardware dependent,

𝜈 returns a vector of values. So far, annotations concern only processes, and do not give any

information about an alternative. For this, we define operators for aggregating values, to generalize

the evaluation described by annotations to a process network. These operators are metric specific,

and are higher order operators. We identify two general patterns for aggregating metric values.

The first pattern merges the evaluations coming from input processes. Formally, if we consider the

set of processes {𝑝} ∪ {𝑝 ′, (𝑝 ′, 𝑝, 𝜉) ∈ 𝐶ℎ} and a metric𝑚, then we will apply the merge operator

12 Bouraoui and Jerad, et al.

𝑜𝑝𝑚𝑔 (𝑚) for aggregating the evaluations of processes in {𝑝 ′, (𝑝 ′, 𝑝, 𝜉) ∈ 𝐶ℎ} with regard to𝑚. The

compose pattern, in turn, aggregates the result of 𝑜𝑝𝑚𝑔 (𝑚) with the evaluation of 𝑝 with regard to

𝑚. We denote this operator 𝑜𝑝𝑐 (𝑚). Consequently, 𝑜𝑝𝑚𝑔 is an n-ary higher order operator, while

𝑜𝑝𝑐 (𝑚) is a binary higher order one. Arithmetic operators (e.g., +, −, ∗, /,𝑚𝑎𝑥 ,𝑚𝑖𝑛 and 𝑎𝑣𝑟) are

examples of quantitative metrics operators. More elaborated ones can be introduced by the designer

and expressed as higher-order functions.

3.2.2 Annotating Parallel Processes. As for parallel processes, we define three additional operators:
𝜌 , 𝑜𝑝q, and 𝑐𝑜𝑠𝑡 q. 𝜌 defines the number of alternatives to drive as well as the DLP degree in each one

of them. 𝑜𝑝q, and 𝑐𝑜𝑠𝑡 q operators (c.f. subsection 4.2), however, define how the metrics evaluations

are derived after unfolding parallel processes.

For every element of 𝑃 q, 𝜌 returns a set in the power set of N (formally, 𝜌 : 𝑃 q → P(N)). |𝜌 (𝑝q) |
defines the number of alternatives to derive, while each element in 𝜌 (𝑝q) defines the DLP degree.

Let’s consider process 𝑡 from the synthetic example of Fig. 5 and assume that it has 𝜌 (𝑡) = {1, 2, 4}.
Unfolding such annotation leads to 3 alternatives, as |{1, 2, 4}| = 3. Each alternative has one DLP

degrees given in the set. Process 𝑡 is therefore duplicated 1 time, 2 times, and 4 times, respectively.

With a few alternatives, it is possible to manually identify and evaluate variants to choose

among those that satisfy the constraints. For complex applications, however, the number of possible

variants can grow high (c.f. ASA case study in section 5, where the number of variants reaches

768). As such, generating variants and evaluating them manually is not practical and prohibitively

time consuming for which propose an exploration methodology and tooling (c.f. Section 4).

4 MAPN METHODOLOGY
As continuity of what established in the previous work [12], we present in this paper a new method-

ology in order to explore the graph and extract adequate implementations Our methodological

approach aims to provide designers and developers with a quick way to find an adequate imple-

mentation without exhaustively exploring all possible variants of an application. In this section we

detail the main components of this methodology, and what they aim for. We present the mAPN

tool suite (mAPN
𝑇𝑆
) and the used algorithms for the automatic exploration of the mAPN graph,

while respecting the constraints introduced by the user.

4.1 Overview of mAPN Methodology and the mAPN𝑇𝑆

The mAPN model, its metadata and the design constraints together with the graph exploration are

the central components of the methodology (c.f. Fig. 7).

Given an mAPN graph, the individual processes and channels are specified using CPN (C for

process network) supported by the SLX tool suite
2
. Themetadata (c.f. subsection 3.2) can be collected,

for every single process of the mAPN, either manually, based on the designer domain-knowledge;

or using available tools. For performance estimation, for instance, one can use the estimator of the

SLX tool suite, target profiling tools (e.g., the Linux GNU gprof
3
, Score-P

4
), or leverage techniques

for Worst-Case Execution Time (WCET) estimation [37]. Moreover, for energy measurements, user

can refer to techniques covered by previous research such as PowerPack framework [15, 21]. Or by

connecting a power measurement devices (i.e., ZES ZIMMER) between the power supply of the

inspected system and the target hardware. For annotations related to memory usage or memory

bandwidth Arm MAP
5
tool can be used.

2
https://www.silexica.com/

3
https://sourceware.org/binutils/docs/gprof/

4
https://www.vi-hps.org/projects/score-p/

5
https://developer.arm.com/documentation/102732/1910/

mAPN: Modeling, Analysis, and Exploration of Algorithmic and Parallelism Adaptivity 13

Fig. 7. mAPN methodology

In this paper we use actual measurements on the target system for annotating the processes. This

way we prevent estimation errors to skew the analysis in Section 5. Constraints set the limiting

conditions of an acceptable execution, including resource limitations (e.g., memory size and energy

consumption) under which the system should execute to meet its requirements (e.g., deadlines),

with the desired level of quality of service (e.g., accuracy).

Since the number of possible variants grows fast, the methodology helps the designer explore

the compact mAPN graph and extract feasible variants for the given hardware/user constraints.

mAPN
𝑇𝑆

was implemented to this end. After unfolding the alternatives of the parallel processes

and deriving their individual annotations (c.f. subsection 3.2), the tool automatically evaluates

variants. This evaluation includes default aggregation rules. The tool suite also allows the user to

define customized metrics and corresponding aggregation rules (c.f. subsection 4.3).

In the exploration phase (c.f. subsection 4.5), the tool prunes all possible options specified in

the compact mAPN graph based on the constraints and outputs a set of possible variants. Each of

these variants can be further optimized with the rich set of methods for mapping KPN graphs onto

multi/many-core platforms [16, 51]. In [16], the proposed framework provides the possibility to

estimate performance modulo the design constraints and offers a set of mapping heuristics. In case

of an empty set, it is up to the designer to find out how to update the mAPN or engineer solutions

to relax the constraints.

4.2 Graph Unfolding
As stated before, the compact graph contains some parallel processes that can be duplicated to

express DLP. The duplication of such nodes leads to additional alternatives expressing parallelism.

Fig. 8 illustrates this in an example (i.e node 𝑡). The unfolded node 𝑡 remains with its same color,

while the new unfolded nodes are graphically captured by other colors. Unfolding requires adding

the intermediary processes that will distribute the workload among the processes and then gather

the result. In Fig 8, processes 𝑖1, 𝑖2, and 𝑖4 are added as distributing processes, while 𝑜1, 𝑜2, and 𝑜4

are added as gathering processes.

After unfolding parallel processes, metric evaluations for each of the duplicated processes is

needed. To this end, the designer has to define an operator (𝑜𝑝q (𝑚, 𝑝, 𝑎𝑖)) per metric𝑚 for computing

the evaluations of the duplicated processes (𝑎𝑖 ∈ 𝜌 (𝑝)) from the original process (𝑝). Additionally,

14 Bouraoui and Jerad, et al.

Fig. 8. Unfolding parallel process 𝑡 .

the overhead due to data distribution and gathering are entered by the designer and specified by a

function 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑q (𝑚, 𝑝, 𝑎𝑖).
We recall the example of process 𝑡 in Fig. 8 and consider the execution time 𝑒 as a metric.

Assuming that there is load balancing in processing the data, 𝑜𝑝q (𝑒, 𝑡, 𝑎𝑖) = 𝜈 (𝑒, 𝑡)/𝑎𝑖 , that is
the execution time is divided among the duplicated processes. Consequently, 𝜈 (𝑒, 𝑡11) = 𝜈 (𝑒, 𝑡),
𝜈 (𝑒, 𝑡21) = 𝜈 (𝑒, 𝑡22) = 𝜈 (𝑒, 𝑡)/2, and 𝜈 (𝑒, 𝑡41) = 𝜈 (𝑒, 𝑡42) = 𝜈 (𝑒, 𝑡43) = 𝜈 (𝑒, 𝑡44) = 𝜈 (𝑒, 𝑡)/4.

4.3 Rules of Aggregation
Using merge and compose operators, a rule aggregates the evaluations from any given metric.

Formally, the evaluation of a metric 𝑚 on a variant 𝑉 = (𝑃,𝐶ℎ), at a process 𝑝 (with 𝑝 ′
1..𝑛 ∈

{𝑝 ′, (𝑝 ′, 𝑝) ∈ 𝐶ℎ}) is as follows:

𝜈 (𝑉 ,𝑚, 𝑝) =
{
𝜈 (𝑝,𝑚), if 𝑝 ∈ 𝑠𝑜𝑢𝑟𝑐𝑒 (𝑉)
𝑜𝑝𝑐 (𝜈 (𝑝,𝑚), 𝑜𝑝𝑚𝑔 (𝜈 (𝑉 ,𝑚, 𝑝 ′1), ..., 𝜈 (𝑉 ,𝑚, 𝑝 ′𝑛))), otherwise

Recursively, we use the rules above to derive evaluations (with regard to a specific metric) for a

larger process network.

We illustrate this calculation through the abstract example of Fig. 5 where we define one metric:

the execution time 𝑒 . We focus on the red subgraph, referred as𝑉𝑟 . For 𝑒 , we assume that 𝑜𝑝𝑚𝑔 (𝑒) =
𝑚𝑎𝑥 and 𝑜𝑝𝑐 (𝑒) = + (which boils down to the max-plus algebra traditionally used for timing

analysis of dataflow graphs [6]). For clarity reasons, we omit 𝑒 , and we obtain:

𝜈 (𝑉𝑟 , 𝑗) = 𝜈 (𝑗) + 𝜈 (𝑔) +𝑚𝑎𝑥 ((𝜈 (𝑘) + 𝜈 (ℎ)), (𝜈 (ℎ) + 𝜈 (𝑖)), (𝜈 (𝑖) + 𝜈 (𝑙))) Based on the annotations of

processes in terms of specified metric (e.g. execution time), we apply the corresponding aggregation

rules (e.gm max-plus algebra) and measure the estimated performance of the whole alternative in

terms of this metric. Starting from the source node of an mAPN, mAPN
𝑇𝑆

iteratively aggregates

the metrics evaluations at every process of the different variants and for every defined metric. The

evaluation of a metric at the sink process of a variant is denoted by 𝜈 (𝑉 ,𝑚).

4.4 Constraints Checking and Pruning
Let C be a function that maps each metric 𝑚 ∈ 𝑀 to a boolean expression. C(𝑚) defines the
constraint that the variant evaluation should meet with regard to𝑚. We formally define feasible

variants as follows:

Definition 4.1. A variant 𝑉 is called feasible if and only if all constraints are met, that is:
∀𝑚 ∈ 𝑀,𝜈 (𝑉 ,𝑚) |= C(𝑀).

mAPN: Modeling, Analysis, and Exploration of Algorithmic and Parallelism Adaptivity 15

The number of feasible variants may be large. Our methodology allows the designer to choose

the number 𝑏 ≥ 0 of the best ones to keep. Since𝑀 is an ordered set, we use prioritization over the

metrics to identify the best ones, based on their order. We call this pruning. If 𝑏 is set to 0, the tool

returns the set of all feasible ones.

4.5 Exploring Feasible Variants
A previous version of the exploration algorithm was presented in [12]. That version, besides being

recursive, it expands all the alternatives first, and then applies the pruning to extract the feasible

alternatives. In this paper, we enhance that exploration method in terms of performance. And in

contrast to the exhaustive enumeration of variants from [12] , we propose an incremental algorithm

for graph exploration and pruning. It explores the different combinations of alternatives in the

compact graph itself rather than enumerating all possible variants and then aggregate metric

values one by one. For the exploration process, all the upcoming algorithms access the following

parameters: (i) 𝐺 , an unfolded, well-formed mAPN graph, (ii) 𝑀 , the set of metrics, (iii) 𝜈 , the

annotations, (iv) C, the constraints, (v) and 𝑏, the maximum number of (feasible) variants to return.

ExploreGraph, shown in Algorithm 1 is the top level exploration function, which returns a set of

feasible variants.The algorithm starts at the source process of the mAPN graph (Line 4) and stops at

its sink process, after all processes and channels were explored. To each process 𝑝𝑟 in the graph, a

data structure, called 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 , is associated, where we keep track of all discovered alternatives

(nested or not) that go from the 𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺) towards process 𝑝𝑟 . As such, when the algorithm finishes

executing, all discovered (feasible) variants are found in 𝑠𝑖𝑛𝑘.𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 (Line 27).

The exploration queue 𝑄 is used to keep track of the processes and colors of their writing

channels to explore later. The set Ξ and the vector 𝑛𝑒𝑥𝑡𝐿𝑎𝑏𝑒𝑙 [] are used to keep track of the

colors to encounter, respectively, the labeling of the number of times a color has been encountered.

ExploreGraph() starts by initializing the aforementioned variables (Lines 5-9), after which the

algorithm iterates through the graph (outermost while loop, Lines 10-26) until 𝑄 becomes empty.

One color 𝜉 is explored at a time. We start by initializing another queue 𝑞 with the channels of

color 𝜉 that 𝑝𝑟 writes (Lines 13-15). We keep track in 𝑞 of the channels of the subgraph of the

considered color starting from 𝑝𝑟 . The inner while loop (Lines 16-25) iterates over the elements in 𝑞,

while updating the exploration queue 𝑄 (call to function UpdateExplorationQueue() in line 19).

If we recall the node 𝑗 in Fig. 5, and consider the black color, alternatives will not propagate until 𝑗

receives from all the the previous nodes (i.e. 𝑜 and 𝑛). Once the process has received from all its

predecessors, we propagate the alternative using the function PropagateAlternatives in line 20.

Finally we augment 𝑞 with the upcoming channels of the considered color (i.e. (𝑗 , 𝑣 , 𝑏𝑙𝑎𝑐𝑘 in Fig. 5).

Algorithm 2 (UpdateExplorationQueue()) details when and how the update of the exploration

queue 𝑄 is performed. For this, we associate to each channel the number of times it was visited. If

at least one of the channels in 𝑟𝑑 (𝑝𝑟𝑟𝑑) have not been visited (lines 3-6 derive such information),

the queue 𝑄 is not updated. Otherwise, we iterate over the colors of the channels in𝑤𝑟 (𝑝𝑟𝑟𝑑) (for
loop between lines 8-21) in order to update 𝑄 . The update is performed in two cases. First, when

the alternative is newly encountredwe need to propagate it again through the color 𝜉 ′ (Lines 11-14).
We recall here Fig 5. If we explore the red color, assuming that we already finished the black color,

and we reach the node 𝑗 , newly learned alternatives from the red path need to be propagated

further to the upcoming black. Second, whenever we encounter a source process of new alternatives

(i.e. 𝑝𝑟𝑟𝑑 ∈ F), we need to explore it later (line 15). Back to Fig 5, assuming we are exploring the

green color and we reach the process 𝑝 (i.e. fork of new colors), this latter is added to 𝑄 for later

exploration. After the exploration queue 𝑄 is updated, the alternatives are propagated from the

write process 𝑝𝑟𝑤𝑟 to the read process 𝑝𝑟𝑟𝑑 (recall line 20 in Algorithm 1).

16 Bouraoui and Jerad, et al.

Algorithm 1: ExploreGraph()
1 begin
2 Queue 𝑄 ; int 𝑛𝑒𝑥𝑡𝐿𝑎𝑏𝑒𝑙 []
3 Ξ← ∅ /* Set of colors, initially empty */

4 𝑝𝑟 ← 𝑠𝑜𝑢𝑟𝑐𝑒 (𝐺) /* Start at source process */

5 for each 𝜉 ∈ 𝑐𝑜𝑙𝑤𝑟 (𝑝𝑟) do
6 𝑝𝑢𝑠ℎ(𝑄, {(𝑝𝑟, 𝜉)}) /* Initialize Q with pr and its outgoing colors */

7 Ξ← Ξ ∪ {𝜉} /* Add the outgoing colors of pr to the set of colors */

8 𝑝𝑢𝑠ℎ(𝑛𝑒𝑥𝑡𝐿𝑎𝑏𝑒𝑙 [], {(𝜉, 0)}
9 end

10 while !𝑄.𝑒𝑚𝑝𝑡𝑦 () do
11 𝑝𝑜𝑝 ({(𝑝𝑟, 𝜉)}, 𝑄)
12 Queue 𝑞

13 for each 𝑐ℎ ∈ 𝑤𝑟 (𝑝𝑟) | 𝑐𝑜𝑙 (𝑐ℎ) = 𝜉 do
14 𝑝𝑢𝑠ℎ(𝑞, 𝑐ℎ) /* Push to q all the channels with the current color */

15 end
16 while !𝑞.𝑒𝑚𝑝𝑡𝑦 () do
17 𝑝𝑜𝑝 (𝑐ℎ, 𝑞)
18 𝑝𝑟𝑟𝑑 ← 𝑟𝑑 (𝑐ℎ)
19 UpdateExplorationQueue(𝑄, 𝑝𝑟𝑟𝑑 , 𝜉,Ξ) /* Update Q while iterating over q */

20 bool 𝑟𝑒𝑎𝑑𝑦𝑇𝑜𝑃𝑢𝑠ℎ ← PropagateAlternatives(𝑐ℎ, 𝑛𝑒𝑥𝑡𝐿𝑎𝑏𝑒𝑙 [])
21 if 𝑟𝑒𝑎𝑑𝑦𝑇𝑜𝑃𝑢𝑠ℎ = 𝑇𝑟𝑢𝑒 then
22 for 𝑐ℎ′ ∈ 𝑤𝑟 (𝑝𝑟) | 𝑐𝑜𝑙 (𝑐ℎ′) = 𝜉 do
23 𝑝𝑢𝑠ℎ(𝑞, 𝑐ℎ′) /* continue with upcoming channels of the current color */

24 end
25 end
26 end
27 return 𝑠𝑖𝑛𝑘 (𝐺).𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 /* Return all feasible variants */

28 end

Algorithm 3 details PropagateAlternatives() function. It returns a boolean value, 𝑟𝑒𝑎𝑑𝑦𝑇𝑜𝑃𝑢𝑠ℎ,
to indicate whether 𝑝𝑟𝑟𝑑 is ready to propagate what it has received from its predecessors (after

being visited from all of them).

The algorithm starts by checking if 𝑝𝑟𝑟𝑑 is the sink for an alternative of input color 𝜉 (Line 3). From

every alternative in 𝑝𝑟𝑤𝑟 .𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 , we create 𝑎𝑙𝑡𝑠𝑇𝑜𝑃𝑟𝑜𝑝 , where we put the alternatives of 𝑝𝑟𝑤𝑟 .

We prepare the alternatives to propagate by assigning corresponding labels and colors, that help

later to merge and combine the graphs in process 𝑝𝑟𝑟𝑑 (line 5). Each alternative to propagate later via

the channel 𝑐ℎ is augmented by this new channel and the corresponding process 𝑝𝑟𝑟𝑑 (loop between

Lines 6 and 9). Afterwards, alternatives in 𝑎𝑙𝑡𝑠𝑇𝑜𝑃𝑟𝑜𝑝 are propagated and updated (Line 10). This

operation starts by creating new alternatives, merging branches into one alternative, or updating

some of the existing ones. The𝑈𝑝𝑑𝑎𝑡𝑒𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 function, gets the propagated alternatives (i.e.,

𝑎𝑙𝑡𝑠𝑇𝑜𝑃𝑟𝑜𝑝) and constructs the new encountered alternatives and updates the existing ones as well

as their corresponding costs. Thus it applies the aggregation rules (c.f. subsection 4.3) to derive

the evaluations of the built alternatives. Then comes the pruning function (i.e., 𝑃𝑟𝑢𝑛𝑒). Pruning

mAPN: Modeling, Analysis, and Exploration of Algorithmic and Parallelism Adaptivity 17

Algorithm 2: UpdateExplorationQueue(𝑄, 𝑝𝑟𝑟𝑑 , 𝜉,Ξ)
1 begin
2 bool 𝑛𝑜𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒

3 for 𝑐ℎ ∈ 𝑟𝑑 (𝑝𝑟𝑟𝑑) do
4 if 𝑐ℎ.𝑛𝑏𝑉𝑖𝑠𝑖𝑡𝑠 = 0 then /* if 𝑝𝑟𝑟𝑑 did not receive from 𝑐ℎ */

5 𝑛𝑜𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 ← 𝑇𝑟𝑢𝑒

6 end
7 if 𝑛𝑜𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 then
8 for 𝜉 ′ ∈ 𝑐𝑜𝑙𝑤𝑟 (𝑝𝑟𝑟𝑑) do
9 if 𝜉 ′ = 𝜉 then /* simple intermediate node for this color */

10 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

11 else if 𝜉 ′ ∈ Ξ then
12 if HasAlternativeOfColor(𝑝𝑟𝑟𝑑 , 𝜉 ′) then
13 𝑝𝑢𝑠ℎ(𝑄, {𝑝𝑟𝑟𝑑 , 𝜉 ′}) /* propagate newly learned alts in treated branches */

14 end
15 else if 𝜉 ′ ∉ 𝑐𝑜𝑙𝑟𝑑 (𝑝𝑟𝑟𝑑) then
16 𝑝𝑢𝑠ℎ(𝑄, {𝑝𝑟𝑟𝑑 , 𝜉 ′})
17 Ξ← Ξ ∪ {𝜉 ′}
18 else
19 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

20 end
21 end
22 end

(Line 11) is performed by applying constraints on the propagated alternative (𝑎𝑙𝑡𝑠𝑇𝑜𝑃𝑟𝑜𝑝) and

keeping the 𝑏 feasible ones (recall that 𝑏 is the number of alternatives to keep, c.f. Section 4.4).

Finally, if 𝑝𝑟𝑟𝑑 have received from all its predecessors (including 𝑝𝑟𝑤𝑟 during the present call), it

is ready to propagate in its turn (Lines 18-13).

5 CASE STUDY OF AUTOMATIC SUBTITLING APPLICATION: MAPN MODEL
In this paper, we demonstrate our approach on an ASA. Based on the analysis from Section 2.2 (re-

calling the graph of Fig. 3), we conduct a review of existing implementations, commonalities across

them and characterize the large design space of algorithmic variants for this particular application.

We analyze the fidelity of our model for this use case and evaluate the tooling performance against

the state of the art 𝑆𝐷𝐹 3 tool.

5.1 mAPN model for multi-alternative ASA
To illustrate the mAPN model, we consider the compact representation for ASA shown in Fig. 9.

This graph maps to the coarse-grained representation in Fig. 3. Each phase in the coarse-grained

representation is replaced by one or more possible implementations using different colors. For

instance, VAD has two different variants, and FE has 8. These two phases alone, give rise to 16

possible variants implementing the part ending at node 13 of the graph.

So far, we have excluded some of the adaptive parallelism in the variants. To exploit Task Level

Parallelism (TLP), expanded/compacted versions of a PN can be added as an additional algorithmic

variant. The algorithm that implements the MFCC FE can be executed by one PN (i.e., Node 30) or

18 Bouraoui and Jerad, et al.

Algorithm 3: PropagateAlternatives(𝑐ℎ, 𝑛𝑒𝑥𝑡𝐿𝑎𝑏𝑒𝑙 [])
1 begin
2 𝑝𝑟𝑟𝑑 ← 𝑟𝑑 (𝑐ℎ) ; 𝑝𝑟𝑤𝑟 ← 𝑤𝑟 (𝑐ℎ) ; 𝜉 ← 𝑐𝑜𝑙 (𝑐ℎ)
3 bool 𝑖𝑠𝑆𝑖𝑛𝑘 ← (𝑝𝑟𝑟𝑑 = 𝑠𝑖𝑛𝑘 (𝛼 (𝐺, 𝜉)))
4 𝑐ℎ.𝑛𝑏𝑉𝑖𝑠𝑖𝑡𝑠 ← 𝑐ℎ.𝑛𝑏𝑉𝑖𝑠𝑖𝑡𝑠 + 1
5 alternative 𝑎𝑙𝑡𝑠𝑇𝑜𝑃𝑟𝑜𝑝 [] ← PrepareAltAux(𝑝𝑟𝑤𝑟 .𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠, 𝜉, 𝑛𝑒𝑥𝑡𝐿𝑎𝑏𝑒𝑙 [.])
6 for 𝑎𝑙𝑡 ∈ 𝑎𝑙𝑡𝑠𝑇𝑜𝑃𝑟𝑜𝑝 [] do
7 𝑎𝑙𝑡 .𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝐺𝑟𝑎𝑝ℎ(𝑐ℎ, 𝑝𝑟𝑤𝑟) /* Add the channel and the read process to the graph */

8 𝑎𝑙𝑡 .𝑖𝑠𝑆𝑖𝑛𝑘 ← 𝑖𝑠𝑆𝑖𝑛𝑘

9 end
10 UpdateAlternatives(𝑐ℎ, 𝑎𝑙𝑡𝑠𝑇𝑜𝑃𝑟𝑜𝑝 []) /* Update: add new alt, merge branches into

new alts, update existing alts, compute/update costs */

11 Prune(𝑎𝑙𝑡𝑠𝑇𝑜𝑃𝑟𝑜𝑝 [], 𝑀, C, 𝑏)
12 bool 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒𝑇𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 ← 𝑇𝑟𝑢𝑒

13 for 𝑐ℎ′ ∈ 𝑟𝑑 (𝑝𝑟𝑟𝑑) | 𝑐𝑜𝑙 (𝑐ℎ′) = 𝜉 do
14 if 𝑐ℎ′.𝑛𝑏𝑉𝑖𝑠𝑖𝑡𝑠 = 0 then
15 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒𝑇𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 ← 𝐹𝑎𝑙𝑠𝑒

16 𝑏𝑟𝑒𝑎𝑘

17 end
18 end
19 return 𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒𝑇𝑜𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒
20 end

expanded over several PNs (4 PNs:8-13). The same is true also for the FE phase’s local variants,

leading to additional algorithmic variants just for this phase. Similarly, DLP versions of some phases

can be deployed to balance the load across application phases, as seen in [29] or [49]. For example,

in the PM phase (node 21), a new alternative can be created where multiple Euclidean Distance (ED)
nodes run in parallel and then send the results to the merge node (recalling the example presented

in Fig 8). Every added possibility of implementing a local phase in the compact graph enriches the

space of implementation variants. After adding some of the discussed TLP/DLP alternatives, the

number of possible variants grows to 768. In fact, the available algorithms in the literature as well as

changing circumstances makes this design space ample. Each used algorithm has its own advantages

and disadvantages. For few hardware resources available for example, user might extract short-term

features to ensure the recognition. However, this might lead to lacking of information. Authors in [9]

presented a comparative analysis of some used algorithms for classification and feature extraction.

Moreover, pre-processing steps for instance might be used during some circumstances such as

noisy environment, where it leads the application to better results such as in [25]. In a non-noisy

environment, however, users might refer to the alternative that uses a good VAD algorithm to

decrease the error rate. If we take the example of the well known problem DIHARD [47] for speaker

diarization, authors in [56] proposed a scenario-dependent framework for recognizing who spoke

when. They presented how the performance of different implementations varies among changing

circumstances (i.e. audio-books, meetings, etc). Navigating these rich sets of alternatives requires

domain knowledge. Based on existing evidence in the literature, the following insights are relevant

to help steer the search depending on the desired performance to achieve:

• Using too much/too few extracted features leads to overfitting problems/poor accuracy,

mAPN: Modeling, Analysis, and Exploration of Algorithmic and Parallelism Adaptivity 19

Fig. 9. Multi-Alternative Process Network for subtitling

• short-term features are faster to process but might lead to lacking information,

• an ASA yields better results when it works on phone conversations rather than broadcasts,

• a weak VAD output increases the error rate [58],

• using a pre-processing step for noise cancellation leads to better results

• dealing with different audio inputs makes the data different in the recording quality, type of

noise, and style of the speech.

Even with the domain knowledge, finding an adequate implementation while respecting user/HW

constraints is nontrivial. Alternatives perform differently depending on the target hardware. Even

for specific hardware, it depends on how many other applications are running simultaneously

or the mapping of the tasks to the CPU cores (i.e., communication overhead between cores).

And for a specific scenario, depending on the changing environment conditions, the achieved

performance changes. Thus the need for the mAPN model to ease the process of analyzing different

implementations and combine a large number of variants in one compact graph.

5.2 Model Fidelity Analysis
In contrast to the previous work [12], where only 12 alternatives were evaluated, we enlarge

this number in this paper in order to present more concrete results of the fidelity analysis of our

approach. To demonstrate the mAPN methodology (Fig. 7), we evaluate the presented alternatives

20 Bouraoui and Jerad, et al.

4 6 8
G

P
P

O
droid

20 40 60 80 20 40 60 80 20 40 60 80

8 10 12 14 8 10 12 14 8 10 12 14
4

6

8

10

12

10

20

30

40

50

Estimated execution time (ms)

R
ea

l e
xe

cu
tio

n
tim

e
(m

s)

Architecture
GPP
Odroid

Fig. 10. Fidelity analysis of the mAPN methodology for a varying number of cores on GPP/Odroid platforms

of ASA in Fig. 9. All given nodes are processed at least once, while the DLP nodes (21 and 45) are

expended to 4 nodes to express parallelism.

We implemented two alternatives for the VAD phase: the decision based on the zero-crossing

rate and energy [7] (i.e., P 1, 2, 25-29, 5, 6) and the one based on statistical measures [39] (i.e., PN

1-6). In the FE phase, we explore parallelism adaptivity by applying TLP to the MFCC and FBCC

algorithms (compact versions in nodes 30 and 32, vs. expanded version, 8-13, and 8, 9, 33, 34, 35, 13

respectively), and algorithmic adaptivity by adding other implementations (i.e., LPC, LPCC, FBCC,

etc.).

The SCD phase presents algorithmic adaptivity using four different implementations (i.e., ED,

CS, Gaussian divergence, and BIC (Bayesian Information Criteria);. In contrast, the k-means and

the agglomerative hierarchical clustering algorithms (18 and 44) are used for the clustering phase.

Finally, DLP is applied to the PM phase by varying the number of ED-Compact CS-compact (21 and

45) to be expanded to 4. Other degrees of parallelism was unnecessary for this specific application,

and we ended up having 224 possible alternatives in total (combinations of 46 different process id).

We explore the space of alternatives to select feasible ones and compare it to a brute force

approach, where all implementations are generated and executed. As an evaluation metric, we use

the execution time and the aggregation rules described in Section 4.3. For the node-level annotation,

we execute all the processes in the target systems and use actual measurements. In a heterogeneous

platform, we consider the average of the estimated execution time of processes on different cores.

Experiments are performed on a speech of 5 minutes length and considering two platforms: Odroid

XU4 (Exynos 5422 big. LITTLE, which has 4 Cortex-A15 and 4 Cortex-A7 cores) and a workstation

(GPP) (3.40GHz quad-core Intel(R) Core(TM) i7-6700 CPU). We run the experiments on 4,6, and 8

cores on each platform.

The exploration of the space of possibilities, applying the rule of aggregation (c.f. Sec.4.3) on the

evaluation of the node in terms of execution time, gives us an assessment of the 224 considered

alternatives. To show the fidelity of our estimation using the mAPN methodology, we plot the

correlation between the estimated cost of a variant and the actual execution time of the real

implementation. We notice that the estimations are generally slower than the real results, which

mAPN: Modeling, Analysis, and Exploration of Algorithmic and Parallelism Adaptivity 21

can be explained by the fact that we are not considering the pipelining parallelism hidden in the

dataflow graph. To measure the degree of similarity between the estimation and the real execution

time on the platform, we compute the correlation rank. The results are 0.92 and 0.97 using the

pearson’s 𝜌 and Spearman’s 𝜏 methods respectively. For both methods, very high agreement levels

are achieved, proving that our aggregation rules, applied within the context of the mAPN, ensure

an acceptable ordering of the alternatives in terms of the considered metric. Even with the deviation

between the estimations and the measures, we can still say which alternative is better than the

other without a time-consuming evaluation of all alternatives on the target hardware. This helps

the user decide on the feasible and adequate ones in a large space of variants.

5.3 Tooling Performance Evaluation
The literature counts several MoCs allowing for graph topology changes, as detailed in Section 6.

SADF is a prominent example of such MoC, where the application topology can be updated by

changing the consumption/production rates of tokens. In order to put the mAPN methodology into

perspective, we evaluate how fast is the decision about the variant to use, compared to SADF.

To this end, we perform a systematic transformation of mAPN graphs into SADF graphs, where

the variants in an mAPN are mimicked with scenarios in an SADF. And since mAPN processes do

not have consumption and production rates like SADF actors, we solve this mismatch by setting

the default value to “1” as consumption and production rate in the mapped actors. An SADF

must contain one or more detectors that define the scenarios. An easy way to build an equivalent

SADF graph from an mAPN graph is to have one detector that includes all the scenarios (all the

alternatives of the mAPN graph). Since it is necessary to have an FSM (or a markov chain), a

solution is to iterate between these scenarios concurrently. In each scenario, the detector will

change the consumption/production rates of nodes (0 or 1), and will end up activating one scenario

each time. The generated SADF graph cannot be used to analyze each variant separately since

it represents an application that iterates through each alternative. We consider several synthetic

mAPN graphs while varying the graphs topologies and the number of variants. For each of these

graphs, we create the equivalent SADF that we feed to 𝑆𝐷𝐹 3 tool [52] (analysis tool of SADF). This

enables the comparison of the analysis results of each tool and the time needed to provide them.

Fig. 11 compares the execution time for both mAPN
𝑇𝑆

functionalities and response time analysis

using 𝑆𝐷𝐹 3. We compared both tools using random numbers of variants (from 15 to 1024). For a

large number of variants (1024), it takes more than 7 minutes with 𝑆𝐷𝐹 3 to analyze all the variants,

while mAPN
𝑇𝑆

takes less than one second. And since it is necessary to generate possible variants

before analyzing them, the sum of these two steps is represented with the red curve in Fig. 11.

Besides the fact that the mAPN tool suite performs better in analyzing these variants, it is also

possible to prune the graph and get the N best-needed variants in terms of the specified metric (i.e,

execution time). Our methodology also allows the exploration of the graph using more than one

metric (i.e., execution time, energy). We conducted experiments on these variants and compared

the time needed for the mAPN tool suite to analyze the graph, considering more than one metric.

The pruning phase using two metrics takes slightly more time (approximativly 34 ms if we prune

and select 5 best variants). The exploration and the analysis remain almost the same. Considering

the ASA example of 768 variants, analyzing and pruning the graph based on one metric (execution

time) takes 2673 ms and 7 ms, respectively, while it takes 2688 ms and 84 ms while considering two

metrics (i.e. execution time and energy). For the aggregation rules of these metrics, we used the

max-plus algebra for timing analysis and a simple addition for the total energy estimations. These

additional results proved that the mAPN tool suite is more efficient than the 𝑆𝐷𝐹 3 in response time.

22 Bouraoui and Jerad, et al.

1e+01

1e+02

1e+03

1e+04

1e+05

0 250 500 750 1000
Number of variants

E
xe

cu
tio

n
tim

e
(m

s)

Results exploration and pruning with mAPN exploration with mAPN generate and analyze with SDF3

Fig. 11. Execution time mAPN tool versus 𝑆𝐷𝐹 3

6 RELATEDWORK: COMPARISONWITH OTHER MODELS OF COMPUTATION
The literature counts several static and dynamic dataflow models of computation.

On the one hand, static MoC, such as Synchronous Dataflow [33, 35] enable static scheduling

during compile-time analysis. To keep enjoying a number of its formal properties, SDF was extended

in different ways. Cyclo-Static dataflow (CSDF) [11], for example, adds the ability to change the

data path in a graph by adding a sequence of possible rates for each port. Bui and Lee introduced

StreaMorph in [14], an interesting concept of adaptive programs, where the graph structure can

morph to adapt to environmental and demand changes. The approach was developed with memory

usage, energy-saving, and computing resources in mind. StreaMorph tackles adaptivity only from

the data level parallelism perspective. PiMM (Parameterized and Interfaced Meta-Model) [18] is

a meta-model that extends dataflow MoC by adding dynamic reconfigurability and hierarchical

capability to the model. Applied to SDF, 𝜋SDF [10] is therefore the configurable dynamic MoC.

It allows parameters to change between iterations, which means that the scenarios are entirely

isolated and there is only one active scenario at a time. This limits pipeline parallelism capabilities

between scenarios. Similarly, SADF [53] exhibits the same limitation in its dynamic behavior. Being

derived from Synchronous Dataflow (SDF), these MoC are bound to rate manipulation and inherit

restrictions. It is not possible to use SADFmodel to support analyzing all scenarios at once. However,

it is possible with mAPN since we distinguish between alternatives at a local node (using colors

and labels). For the SADF model we cannot identify different scenarios with local actors since a

scenario is defined when the detectors send the control tokens, and each actor has its fixed rates.

On the other hand, KPNs [26] are more expressive. They are, however, more challenging to

analyze. Schor et al. introduced Expandable Process Networks (EPN) in [49], an extension of

Process Networks for streaming programming models. EPN was designed to address the challenge

of efficiently exploring task, data, and pipeline parallelism in streaming applications. For this, they

combine several possible granularities in a single specification. The transformation techniques are

replication and unfolding, preventing EPN models from tackling adaptivity from the algorithmic

perspective. Based on state-of-the-art review, the established investigation, and in accordance

with [18, 46, 53], we summarize the MoC comparative results in Table 1, in terms of: (i) the

expressiveness of algorithmic adaptivity, where the value Yes
∗
means that it is possible to express,

mAPN: Modeling, Analysis, and Exploration of Algorithmic and Parallelism Adaptivity 23

but in a non-intuitive way, and the value No
∗
means that the formalism does not prevent such a

representation, and to the best of our knowledge, no state-of-the art work highlighted the point.

(ii) the expressiveness of DLP adaptivity, (iii) supported annotation metrics (the value - means

that it does not apply), (iv) variable rate expression, (v) the analysis of the variants, (vi) and the

tool support (the prominent ones). All of the models listed above allow for the representation of

several algorithms for the same application in a single graph at various levels of complexity. When

it comes to the analyzability of these applications, however, only mAPN can support analyzing all

the variants simultaneously with the possibility of pruning based on user/hardware constraints. In

the case of the mentioned models, each variant should be extracted and analyzed aside. In addition,

mAPN enables the support of several metrics simultaneously.

Table 1. Characteristics of different MoCs

Algorithmic

Adaptivity

DLP

Adaptivity

Annotations

Variable

Rates

Variants

Analysis

Tool

Support

SDF No No

Execution

Time

No -

𝑆𝐷𝐹 3 [52]/

Ptolemy II [36]

CSDF No
∗

No
∗ Execution

Time

Yes/No

Each one

apart

𝑆𝐷𝐹 3 [52]

Strea-

Morph

No Yes - Yes

Each one

apart

-

PiMM Yes
∗

No
∗ Execution

Time

Yes

Each one

apart

Preesm/

Spider [43]

SADF Yes
∗

No
∗ Execution

Time

Yes

Each one

apart

𝑆𝐷𝐹 3 [52]

KPN No No - -

Each one

apart

Ptolemy II

[36]

EPN No Yes - - AdaPNet [50]

mAPN Yes Yes Multiple -

Compact

graph

mAPN
𝑇𝑆

7 CONCLUSION AND FUTUREWORK
In this paper, we presented mAPN, a new high-level model, where multiple variants exists in the

same graph. In particular, we showed how the number of variants grows fast and how complex

the dataflow graph could be. The presented methodology allowed us to concisely express these

several algorithmic variants in a single compact graph while supporting algorithmic and paral-

lelism adaptivity. We presented how mAPN is enriched with additional meta-data (i.e., rules of

aggregations, annotations in terms of specific metric), which enlarges the variant space and eases

the process of extracting feasible variants while meeting user and hardware constraints. Our model

also allows for customized aggregation rules of user-defined metrics. We motivated the mAPN

approach with 224 variants of the ASA example. We used aggregation methods to analyze the

end-to-end paths of the co-existing algorithmic variants in this compact graph. We analyzed these

evaluations in terms of the defined execution time metric. We also showed that we performs better

than the well-known tool 𝑆𝐷𝐹 3 in terms of analysis assessment. The mAPN tool is implemented

using Python3 as a proof of concept. An implementation in C++ (like 𝑆𝐷𝐹 3) would perform surely

even faster. The presented mAPN model allowed us to reason about these metrics and algorithmic

adaptivity concisely while achieving the most suitable implementations in terms of the addressed

user and hardware constraints.

24 Bouraoui and Jerad, et al.

In future work, we will address questions of supporting additional analysis capabilities of an

mAPN graph while considering the methods for mapping graphs onto heterogeneous multicores.

We are interested in adding algorithmic variants to the design space exploration for application

adaptivity in hybrid mapping methodologies as proposed in [23, 30]. We will also investigate

other aggregation rules over more abstract domain-specific metrics such as safety. And finally,

additional future work would be carried out to let mAPN methodology support a suitable switching

mechanism and adaptability at run-time.

REFERENCES
[1] [n.d.]. Autonomous Valet Parking 2020. https://www.autoware.org/post/autonomous-valet-parking-2020. Accessed:

2022-02-21.

[2] Jitendra Ajmera and Chuck Wooters. 2003. A robust speaker clustering algorithm. In 2003 IEEE Workshop on Automatic
Speech Recognition and Understanding (IEEE Cat. No. 03EX721). IEEE, 411–416.

[3] C. Aliprandi, C. Scudellari, I. Gallucci, N. Piccinini, M. Raffaelli, A. del Pozo, A. Alvarez, Ha. Arzelus, R. Cassaca, T.

Luis, et al. 2014. Automatic Live Subtitling: state of the art, expectations and current trends. In Proceedings of NAB
Broadcast Engineering Conference: Papers on Advanced Media Technologies, Las Vegas. 23.

[4] Aitor Álvarez, Carlos Mendes, Matteo Raffaelli, Tiago Luís, Sérgio Paulo, Nicola Piccinini, Haritz Arzelus, João Neto,

Carlo Aliprandi, and Arantza Del Pozo. 2016. Automating live and batch subtitling of multimedia contents for several

European languages. Multimedia Tools and Applications 75, 18 (2016), 10823–10853.
[5] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and Saman Amarasinghe. 2009.

PetaBricks: a language and compiler for algorithmic choice. ACM Sigplan Notices 44, 6 (2009), 38–49.
[6] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat. 1992. Synchronization and linearity: an

algebra for discrete event systems. (1992).

[7] RG Bachu, S Kopparthi, B Adapa, and BD Barkana. 2008. Separation of voiced and unvoiced using zero crossing rate

and energy of the speech signal. In American Society for Engineering Education (ASEE) zone conference proceedings.
American Society for Engineering Education, 1–7.

[8] Carl Bergenhem, Steven Shladover, Erik Coelingh, Christoffer Englund, and Sadayuki Tsugawa. 2012. Overview of

platooning systems. In Proceedings of the 19th ITS World Congress, Oct 22-26, Vienna, Austria (2012).
[9] Shobha Bhatt, Anurag Jain, and Amita Dev. 2021. Continuous speech recognition technologies—A review. Recent

developments in acoustics (2021), 85–94.
[10] Bishnupriya Bhattacharya and Shuvra S Bhattacharyya. 2001. Parameterized dataflow modeling for DSP systems. IEEE

Transactions on Signal Processing 49, 10 (2001), 2408–2421.

[11] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. 1996. Cycle-static dataflow. IEEE Transactions on Signal
Processing 44, 2 (1996), 397–408.

[12] Hasna Bouraoui, Chadlia Jerad, and Jeronimo Castrillon. 2021. Towards Adaptive Multi-Alternative Process Network.

In 12th Workshop on Parallel Programming and Run-Time Management Techniques for Many-core Architectures and 10th
Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2021) (Open
Access Series in Informatics (OASIcs)), João Bispo, Stefano Cherubin, and José Flich (Eds.), Vol. 88. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 1:1–1:11. https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.1

[13] Hasna Bouraoui, Chadlia Jerad, Anupam Chattopadhyay, and Nejib Ben Hadj-Alouane. 2017. Hardware architectures

for embedded speaker recognition applications: a survey. ACM Transactions on Embedded Computing Systems (TECS)
16, 3 (2017), 78.

[14] Dai Bui and Edward A Lee. 2013. StreaMorph: a case for synthesizing energy-efficient adaptive programs using

high-level abstractions. In Proceedings of EMSOFT. IEEE Press, 20.

[15] Kirk W Cameron, Rong Ge, and Xizhou Feng. 2005. High-performance, power-aware distributed computing for

scientific applications. Computer 38, 11 (2005), 40–47.
[16] Jeronimo Castrillon, Rainer Leupers, and Gerd Ascheid. 2011. MAPS: Mapping concurrent dataflow applications to

heterogeneous MPSoCs. IEEE Transactions on Industrial Informatics 9, 1 (2011), 527–545.
[17] Karol Desnos and Julien Heulot. 2014. Pisdf: Parameterized & interfaced synchronous dataflow for mpsocs runtime

reconfiguration. In 1st Workshop on MEthods and TOols for Dataflow PrOgramming (METODO).
[18] Karol Desnos, Maxime Pelcat, Jean-François Nezan, Shuvra S Bhattacharyya, and Slaheddine Aridhi. 2013. Pimm:

Parameterized and interfaced dataflowmeta-model for mpsocs runtime reconfiguration. In 2013 International Conference
on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS). IEEE, 41–48.

[19] Brecht Desplanques, Kris Demuynck, and Jean-Pierre Martens. 2017. Adaptive speaker diarization of broadcast news

based on factor analysis. Computer Speech & Language 46 (2017), 72–93.

https://www.autoware.org/post/autonomous-valet-parking-2020
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.1

mAPN: Modeling, Analysis, and Exploration of Algorithmic and Parallelism Adaptivity 25

[20] Azim Eskandarian. 2012. Handbook of intelligent vehicles. Vol. 2. Springer.
[21] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W Cameron. 2009. Powerpack: Energy

profiling and analysis of high-performance systems and applications. IEEE Transactions on Parallel and Distributed
Systems 21, 5 (2009), 658–671.

[22] Omid Ghahabi, Wei Zhou, and Volker Fischer. 2018. A robust voice activity detection for real-time automatic speech

recognition. Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2018 (2018), 85–91.
[23] Andrés Goens, Robert Khasanov, Jeronimo Castrillon, Marcus Hähnel, Till Smejkal, and Hermann Härtig. 2017. Tetris:

A multi-application run-time system for predictable execution of static mappings. In Proceedings of SCOPES. ACM,

11–20.

[24] Christian Hellert, Simon Koch, and Peter Stütz. 2019. Using algorithm selection for adaptive vehicle perception aboard

UAV. In 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 1–8.
[25] Dan Istrate, Corinne Fredouille, Sylvain Meignier, Laurent Besacier, and Jean François Bonastre. 2005. NIST RT’05S

evaluation: pre-processing techniques and speaker diarization on multiple microphone meetings. In International
Workshop on Machine Learning for Multimodal Interaction. Springer, 428–439.

[26] Gilles KAHN. 1974. The semantics of a simple language for parallel programming. In Information Processing 74 (1974),

471–475.

[27] Haniye Kashgarani and Lars Kotthoff. 2021. Is algorithm selection worth it? Comparing selecting single algorithms

and parallel execution. In AAAI Workshop on Meta-Learning and MetaDL Challenge. PMLR, 58–64.

[28] Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. 2019. Automated algorithm selection: Survey

and perspectives. Evolutionary computation 27, 1 (2019), 3–45.

[29] Robert Khasanov, Andrés Goens, and Jeronimo Castrillon. 2018. Implicit data-parallelism in Kahn process networks:

Bridging the MacQueen Gap. In Proceedings of PARMA-DITAM. ACM, 20–25.

[30] Robert Khasanov, Julian Robledo, Christian Menard, Andres Goens, and Jeronimo Castrillon. 2021. Domain-specific

hybrid mapping for energy-efficient baseband processing in wireless networks. ACM Transactions on Embedded
Computing Systems (TECS), special issue of the 2021 International Conference on Compilers, Architecture, and Synthesis of
Embedded Systems (CASES) 20, 5s, Article 60 (Sept. 2021), 26 pages. https://doi.org/10.1145/3476991

[31] Lars Kotthoff, Ian P Gent, and Ian Miguel. 2012. An evaluation of machine learning in algorithm selection for search

problems. Ai Communications 25, 3 (2012), 257–270.
[32] Sampo Kuutti, Saber Fallah, Konstantinos Katsaros, Mehrdad Dianati, Francis Mccullough, and Alexandros Mouzakitis.

2018. A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications.

IEEE Internet of Things Journal 5, 2 (2018), 829–846.
[33] E. A. Lee and D. G. Messerschmitt. 1987. Static Scheduling of Synchronous Data Flow Programs for Digital Signal

Processing. IEEE Trans. Comput. C-36, 1 (1987), 24–35.
[34] Edward A. Lee and David G. Messerschmitt. 1987. Synchronous Data Flow. Proc. IEEE 75, 9 (Sept. 1987), 1235–1245.

[35] E. A. Lee and D. G. Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 75, 9 (Sept. 1987), 1235–1245.

[36] Edward A. Lee and Alberto Sangiovanni-Vincentelli. 1998. A framework for comparing models of computation. IEEE
Transactions on computer-aided design of integrated circuits and systems 17, 12 (1998), 1217–1229.

[37] Mingsong Lv, Nan Guan, Yi Zhang, Qingxu Deng, Ge Yu, and Jianming Zhang. 2009. A survey of WCET analysis of

real-time operating systems. In 2009 International Conference on Embedded Software and Systems. IEEE, 65–72.
[38] Daniel Madronal, Florian Arrestier, Jaime Sancho, Antoine Morvan, Raquel Lazcano, Karol Desnos, Ruben Salvador,

Daniel Menard, Eduardo Juarez, and Cesar Sanz. 2019. Papify: Automatic instrumentation and monitoring of dynamic

dataflow applications based on papi. IEEE Access 7 (2019), 111801–111812.
[39] Seshashyama Sameeraj Meduri and Rufus Ananth. 2012. A survey and evaluation of voice activity detection algorithms.

[40] Sherif AS Mohamed, Mohammad-Hashem Haghbayan, Tomi Westerlund, Jukka Heikkonen, Hannu Tenhunen, and

Juha Plosila. 2019. A survey on odometry for autonomous navigation systems. IEEE Access 7 (2019), 97466–97486.
[41] Mario A Munoz, Michael Kirley, and Saman K Halgamuge. 2013. The algorithm selection problem on the continuous

optimization domain. In Computational intelligence in intelligent data analysis. Springer, 75–89.
[42] Mohaddeseh Nosratighods, Eliathamby Ambikairajah, and Julien Epps. 2006. Speaker verification using a novel set of

dynamic features. In 18th International Conference on Pattern Recognition (ICPR’06), Vol. 4. IEEE, 266–269.
[43] PreesmProject. (last accessed November 11, 2020). Preesm. https://preesm.github.io/

[44] Claudius Ptolemaeus. 2014. System Design, Modeling, and Simulation using Ptolemy II, 2014. Ptolemy.org.

[45] John R. Rice et al. 1976. The algorithm selection problem. Advances in computers 15, 65-118 (1976), 5.
[46] Claudio Rubattu, Francesca Palumbo, Shuvra S Bhattacharyya, and Maxime Pelcat. 2022. PathTracer: Understanding

Response Time of Signal Processing Applications on Heterogeneous MPSoCs. ACM Transactions on Modeling and
Performance Evaluation of Computing Systems (2022).

[47] Neville Ryant, Kenneth Church, Christopher Cieri, Alejandrina Cristia, Jun Du, Sriram Ganapathy, and Mark Liberman.

2018. First DIHARD challenge evaluation plan. 2018, tech. Rep. (2018).

https://doi.org/10.1145/3476991
https://preesm.github.io/
https://preesm.github.io/

26 Bouraoui and Jerad, et al.

[48] Arun Sahayadhas, Kenneth Sundaraj, and Murugappan Murugappan. 2012. Detecting driver drowsiness based on

sensors: a review. Sensors 12, 12 (2012), 16937–16953.
[49] Lars Schor, Iuliana Bacivarov, Hoeseok Yang, and Lothar Thiele. 2014. Adapnet: Adapting process networks in response

to resource variations. In Proceedings of CASES. ACM, 22.

[50] Lars Schor, Iuliana Bacivarov, Hoeseok Yang, and Lothar Thiele. 2014. AdaPNet: Adapting process networks in response

to resource variations. In Proceedings of the 2014 International Conference on Compilers, Architecture and Synthesis for
Embedded Systems. 1–10.

[51] A.K. Singh, M. Shafique, A. Kumar, and J. Henkel. 2013. Mapping on multi/many-core systems:Survey of current and

emerging trends. In Proceedings of 50th ACM/EDAC/IEEE DAC’13. 1–10.
[52] Sander Stuijk, Marc Geilen, and Twan Basten. 2006. Sdf3: SDF for free. In Sixth International Conference on Application

of Concurrency to System Design (ACSD’06). IEEE, 276–278.
[53] Sander Stuijk, Marc Geilen, Bart Theelen, and Twan Basten. 2011. Scenario-aware dataflow: Modeling, analysis and

implementation of dynamic applications. In Proceedings of SAMOS. IEEE, 404–411.
[54] Roberto Togneri and Daniel Pullella. 2011. An overview of speaker identification: Accuracy and robustness issues.

IEEE Circuits and Systems Magazine 11, 2 (2011), 23–61.
[55] OB Tuzun, M Demirekler, and KB Nakiboglu. 1994. Comparison of parametric and non-parametric representations of

speech for recognition. In Electrotechnical Conference, 1994. Proceedings., 7th Mediterranean. IEEE, 65–68.
[56] Yu-Xuan Wang, Jun Du, Maokui He, Shu-Tong Niu, Lei Sun, and Chin-Hui Lee. 2021. Scenario-dependent speaker

diarization for dihard-iii challenge. Accepted to Interspeech (2021).

[57] David H Wolpert and William G Macready. 1997. No free lunch theorems for optimization. IEEE transactions on
evolutionary computation 1, 1 (1997), 67–82.

[58] Ruiqing Yin. 2019. Steps towards end-to-end neural speaker diarization. Ph.D. Dissertation. Paris Saclay.
[59] Dong Yu and Li Deng. 2016. AUTOMATIC SPEECH RECOGNITION. Springer.
[60] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. 2020. A survey of autonomous driving:

Common practices and emerging technologies. IEEE access 8 (2020), 58443–58469.

	Abstract
	1 Introduction
	2 Motivational Examples
	2.1 Analysis of AVP Application
	2.2 Analysis of Automatic Subtitling Application

	3 mAPN Formalism
	3.1 Graph Formalism
	3.2 Annotation of mAPN with Metadata

	4 mAPN Methodology
	4.1 Overview of mAPN Methodology and the mAPNTS
	4.2 Graph Unfolding
	4.3 Rules of Aggregation
	4.4 Constraints Checking and Pruning
	4.5 Exploring Feasible Variants

	5 Case Study of Automatic Subtitling Application: mAPN Model
	5.1 mAPN model for multi-alternative ASA
	5.2 Model Fidelity Analysis
	5.3 Tooling Performance Evaluation

	6 Related Work: Comparison with Other Models of Computation
	7 Conclusion and Future Work
	References

