Problem Solving Environment and Compiler
Optimizations for High Performance Particle-Mesh
Numerical Simulations

Nesrine Khouzami
TU Dresden
Chair for Compiler Construction
Dresden, Germany
nesrine.khouzami @tu-dresden.de

Abstract—We present OpenPME (Open Particle-Mesh Envi-
ronment), a Problem Solving Environment (PSE) which provides
a Domain Specific Language (DSL) built atop a domain model
general enough to write numerical simulations in scientific
computing using particle-mesh abstractions. This helps to close
the productivity gap in HPC applications and effectively lowers
the programming barrier to enable the smooth implementation of
scalable simulations. We also introduce a model-based autotuning
approach of discretization methods for OpenPME compiler. We
evaluate the autotuner in two diffusion test cases and the results
show that we consistently find configurations that outperform
those found by state-of-the-art general-purpose autotuners.

Index Terms—Numerical simulations, Particle-mesh methods,
Domain specific compilers, Performance models, Autotuning

I. INTRODUCTION

Computer simulations become today an essential tool to
predict the behavior of real-world and physical systems too
complex to estimate with analytical solutions. These simu-
lations are usually large-scale programs performed in High-
performance computing (HPC) systems. However, the com-
plexity of HPC environments and their programming models
increasingly limit the implementation efficiency for computa-
tional scientists. Mitigating the entry barrier to HPC field to
make the most of its resources has become a main research
focus. Problem Solving Environments (PSE) [1], consisted
of a Domain Specific Language (DSL) and an Integrated
Development Environments (IDE), are typical examples that
help to alleviate the programming challenges by providing
higher-level domain-specific abstractions close to scientists
jargon.

In the field of numerical simulations, particle methods are
universal enough to enable the simulation of different types
of models ranging from discrete, where particles represent
entities in the model, to continuous where a fluid is discretized
into particles, either stochastically or deterministically. Many
libraries and DSLs offering simulations facilities are proposed
in literature [2]][3]. In this extended abstract, we briefly present
the Open Particle-Mesh Environment (OpenPME) [4], a DSL
and its IDE for particle, mesh, and hybrid particle-mesh sim-
ulations on parallel HPC systems. OpenPME is based on the

Jeronimo Castrillon
TU Dresden
Chair for Compiler Construction
Dresden, Germany
jeronimo.castrillon @tu-dresden.de

Open Framework for Particles and Meshes (OpenFPM) [3]], an
open-source C++ template library for implementing scalable
parallel particle-mesh simulations on multi-CPU and multi-
GPU computer hardware. OpenFPM implements specific data
structures to provide different layers of abstractions guarantee-
ing transparent memory-layouting and run-time dynamic load-
balancing.

To improve the overall performance of the simulations, we
leverage the high level abstractions present at OpenPME DSL
to propose a compile-time autotuning optimization approach.
Continuous fields in time and space are represented in the
DSL through Partial Differential Equations (PDEs) which can
be discretized and numerically solved by numerical methods
expressed at the language level such as Smoothed Particle
Hydrodynamics (SPH), Particle Strength Exchange (PSE), etc.
These discretization methods are configured by parameters like
the resolution time and time step size that can be autotuned to
collectively reach the target accuracy and improve the runtime
of the simulation. We describe briefly how our performance-
model-based compiler autotuning approach works and we
show how efficient it was comparing to generic autotuning
algorithms.

II. OPENPME PROBLEM SOLVING ENVIRONMENT

A. Motivation

OpenFPM relies heavily on C++ templates to achieve flex-
ibility and high performance. This renders its use sometimes
complex for novice programmers who had to deal with cryptic
error messages emitted by the C++ compiler. Fig. [T] shows a
typical example of an error-prone OpenFPM code to simulate
the 3D Navier-Stokes equation of fluid mechanics. Such code
makes it beyond the compiler abilities to detect semantic errors
caused by frequent misplacing of operators in the formula.

Besides, OpenFPM relies on users to manually place
ghost_get operation which communicates needed data be-
tween processors in a distributed environment. These calls are
often forgotten or misplaced which effect the simulation results
as well as the whole performance.

g_dwp.template get<rhs>(key)[z]=
faci*(g_vort.Template get<vorticity>(key.move(x,1))[z]+
g_dwp.template get<rhs>(key)[yl=

facix(g_vort.template get<vorticity>(key.move(x,1))[yl+
g_dwp.template get<rhs>(kex)[x =

facl*(g_vort.template get<vorticity>(key.move(x,1))[x]+
g_vort.template get<vorticity>(key.move(x,-1))[x])+
fac2*(g_vort.template get<vorticity>(key.move(y,1))[x]1+
g_vort.template get<vorticity>(key.move(y,-1))[x])+
fac3*(g_vort.template get<vorticity>(key.move(z,1))[x]1+
g_vort.template get<vorticity>(key.move(z,-1))[x])-
2.0f*(facl+fac2+fac3)*
g_vort.template get<vorticity>(key)[x]+
fac4*g_vort.template get<vorticity>(key)[x]*
(g_vel.template get<velocity>(key.move(x,1))[x]-
g_vel.template get<velocity>(key.move(x,-1))[x]1)+
fac5*g_vort.template get<vorticity>(key)[yl*
(g_vel.template get<velocity>(key.move(y,1))[x]-
g_vel.template get<velocity>(key.move(y,-1))[x]1)+
fac6*g_vort.template get<vorticity>(key)[z]*
(g_vel.template get<velocity>(key.move(z,1))[x]-
g_vel.template get<velocity>(key.move(z,-1))[x]);

N

Fig. 1. OpenFPM C++ code snippet to calculate the xyz components of the
three-dimensional Navier-Stokes equation.

B. OpenPME Design and Implementation

OpenPME has as goal to provide domain-specific abstrac-
tions closer to computational scientists language so that they
can write efficient simulation code with less likelihood to
deal with hard to debug error messages. As shown in Fig.
[2l OpenPME serves as an intermediate layer between user’s
simulation applications and OpenFPM library.

User Applications

%ﬁs" "
T]

Language stack

[openpme.modules

{ openpme.core

o
°
@
=}
°
3
®
o
o
°

{ OpenFPM }

[HPC environment }

Fig. 2. OpenPME represents an intermediate layer between HPC application
domains interfacing OpenFPM for HPC architecture environments.

OpenPME DSL internal modular architecture is designed
based on two metamodels representing particle-mesh simu-
lations and the C++ code using OpenFPM. Model-to-model
transformations are performed to identify syntactic elements
and semantic relations to enable expression rewriting and au-
tomatic insertion of communication statements ghost_get.

OpenPME is evaluated using three representative use-cases
of particle-only (molecular dynamics of Lennard-Jones gas),
mesh-ony (Gray-Scott reaction diffusion) and hybrid simu-
lations (incompressible fluid dynamics by solving Navier-
Stokdes equations). The results show that the code size written
in OpenPME is reduced up to a factor of 7 comparing to C++
OpenFPM code. The generated code performs in general like
the hand-written OpenFPM code.

III. MODEL-BASED AUTOTUNING OF DISCRETIZATION
METHODS FOR OPENPME

We develop an autotuner [6]] to be integrated in OpenPME
DSL compiler for optimization of numerical discretization
methods. Our autotuning approach is based on data-driven re-
gression of performance models which are utilized at compile
time to automatically determine the parameters of numerical
simulations of continuous spatio-temporal models. The goal
is to optimize the trade-off between simulation accuracy and
runtime. Fig. [3] shows an excerpt of OpenPME code for the
Gray-Scott simulation. The discretization parameters are not
defined here and left for autotuning.

time

loop
start: 0 stop: 5000
temporal method: explicit_euler
spatial method: DC-PSE
%=Du*vzu—u*v2+F* (1 = u)
%:Dv*Vzu+u*v2—v* (F + k)

Fig. 3. Excerpt from OpenPME code for the Gray-Scott simulation.

The autotuner works as follows: it starts by defining an infi-
nite 4D continuous space (depending from 4 parameters of the
simulation) which needs to be bounded and discretized. Then,
configurations inside the search space are ranked according to
an objective by fixing the error and finding the configuration
with minimal runtime. The measurements to evaluate a given
configuration are taken with regard to a reference best solution.
Eventually, we apply a search algorithm that finds high-
ranking configurations by measuring only a small subset of
all configurations from the search space and avoid measuring
slow configurations. This is achieved by leveraging predictive
data-driven performance models of the numerical methods.

We conducted experiments on an HPC system of Intel
Haswell 24-core nodes connected via an Infiniband network
with 40 Gb/s bandwidth. The results show that our autotuner
is able to find valid configurations in a very large search space
which were orders of magnitude faster (up to 4.2x) than those
found by general-purpose autotuners.

IV. CONCLUSION AND FUTURE WORK

We presented the overall idea and motivation behind im-
plementing OpenPME, a PSE for particle, mesh and hybrid
particle-mesh simulations on parallel and high-performance
computers. OpenPME programs are developed at a high-level
of abstractions close to the underlying mathematical model.
These programs are lowered to OpenFPM C++ through a se-
quence of compiler model-to-model transformations between
two designed models with an automatic injection of com-
munication and synchronization operations. The OpenPME
compiler is extended by a performant model-based autotuner
capable of determining the best configurations of numerical

discretization schemes when simulating PDEs within a short
exploration time meeting the accuracy threshold.

In the future, we consider extending our particle-mesh
metamodel by focusing on the communication side at the ghost
area to reason about possible compiler optimizations that could
be conducted through data-flow model analysis. Also, we plan
to create an MLIR [7] dialect to leverage existing tool flows,
like for instance towards FPGA acceleration [8]].

REFERENCES

[1] E. Gallopoulos, E. Houstis, and J. R. Rice, “Computer as thinker/doer:
problem-solving environments for computational science,” IEEE Comput.
Sci. Engrg., vol. 1, no. 2, pp. 11-23, 1994.

[2] S. Karol, T. Nett, J. Castrillon, and I. F. Sbalzarini, “A domain-specific
language and editor for parallel particle methods,” ACM Trans. Math.
Softw., vol. 44, no. 3, pp. 34:1-34:32, 2018.

[3] O. Awile, M. Mitrovic, S. Reboux, and I. F. Sbalzarini, “A domain-specific
programming language for particle simulations on distributed-memory
parallel computers,” in Proc. IIl Intl. Conf. Particle-Based Methods
(PARTICLES), Stuttgart, Germany, 2013.

[4] N. Khouzami, L. Schiitze, P. Incardona, L. Kraatz, T. Subic, J. Castrillon,
and I. F. Sbalzarini, “The openpme problem solving environment for
numerical simulations,” in Computational Science — ICCS 2021: 21st In-
ternational Conference, Krakow, Poland, June 16-18, 2021, Proceedings,
Part 1. Berlin, Heidelberg: Springer-Verlag, 2021, p. 614-627.

[5] P. Incardona, A. Leo, Y. Zaluzhnyi, R. Ramaswamy, and I. F. Sbalzarini,
“OpenFPM: A scalable open framework for particle and particle-mesh
codes on parallel computers,” Comput. Phys. Commun., vol. 241, pp.
155-177, 2019.

[6] N. Khouzami, F. Michel, P. Incardona, J. Castrillon, and I. F
Sbalzarini, “Model-based autotuning of discretization methods in
numerical simulations of partial differential equations,” Journal of
Computational Science, vol. 57, p. 101489, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877750321001563

[7] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pien-
aar, R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR:
Scaling compiler infrastructure for domain specific computation,” in
2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2021, pp. 2-14.

[8] S. Soldavini, K. F. A. Friebel, M. Tibaldi, G. Hempel, J. Castrillon, and
C. Pilato, “Automatic creation of high-bandwidth memory architectures
from domain-specific languages: The case of computational fluid
dynamics,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), Sep. 2022. [Online]. Available: https://doi.org/10.1145/3563553

https://www.sciencedirect.com/science/article/pii/S1877750321001563
https://doi.org/10.1145/3563553

	Introduction
	OpenPME Problem Solving Environment
	Motivation
	OpenPME Design and Implementation

	Model-based Autotuning of Discretization Methods for OpenPME
	Conclusion and Future Work
	References

