
Compression-Aware and Performance-Efficient
Insertion Policies for Long-Lasting Hybrid LLCs
Carlos Escuin∗, Asif Ali Khan†, Pablo Ibáñez∗, Teresa Monreal‡, Jeronimo Castrillon† and Vı́ctor Viñals∗

∗Dept. Informática e Ingenierı́a de Sistemas - I3A, Universidad de Zaragoza, Zaragoza, Spain
†Chair for Compiler Construction, TU Dresden, Dresden, Germany

‡Universitat Politècnica de Catalunya · BarcelonaTech, Barcelona, Spain

Abstract—Emerging non-volatile memory (NVM) technologies
can potentially replace large SRAM memories such as the last-
level cache (LLC). However, despite recent advances, NVMs suffer
from higher write latency and limited write endurance. Recently,
NVM-SRAM hybrid LLCs are proposed to combine the best
of both worlds. Several policies have been proposed to improve
the performance and lifetime of hybrid LLCs by intelligently
steering the incoming LLC blocks into either the SRAM or NVM
part, regarding the cache behavior of the LLC blocks and the
SRAM/NVM device properties. However, these policies neither
consider compressing the contents of the cache block nor using
partially worn-out NVM cache blocks.

This paper proposes new insertion policies for byte-level fault-
tolerant hybrid LLCs that collaboratively optimize for lifetime
and performance. Specifically, we leverage data compression to
utilize partially defective NVM cache entries, thereby improving
the LLC hit rate. The key to our approach is to guide the insertion
policy by both the reuse properties of the block and the size
resulting from its compression. A block is inserted in NVM only
if it is a read-reuse block or its compressed size is lower than
a threshold. It will be inserted in SRAM if the block is a write-
reuse or its compressed size is greater than the threshold. We use
set-dueling to tune the compression threshold at runtime. This
compression threshold provides a knob to control the NVM write
rate and, together with a rule-based mechanism, allows balancing
performance and lifetime.

Overall, our evaluation shows that, with affordable hardware
overheads, the proposed schemes can nearly reach the perfor-
mance of an SRAM cache with the same associativity while
improving lifetime by 17× compared to a hybrid NVM-unaware
LLC. Our proposed scheme outperforms the state-of-the-art
insertion policies by 9% while achieving a comparative lifetime.
The rule-based mechanism shows that by compromising, for
instance, 1.1% and 1.9% performance, the NVM lifetime can be
further increased by 28% and 44%, respectively.

I. INTRODUCTION

The ever-growing working set sizes of emerging application
domains such as machine learning and artificial intelligence
require larger on-chip last-level caches (LLCs). Increasing the
LLC capacity is also imperative as the number of cores sharing
it grows, because it is the last line of defense of the processor
against costly off-chip memory accesses. However, with the
deceleration of Moore’s law, the increase in the LLC capacity
has stagnated [22]. The scaling of conventional SRAM-based
LLCs significantly increases the leakage power consumption
and is becoming prohibitive in terms of both capacity and
area [29]. Therefore, recent research advocates employing
emerging non-volatile memory (NVM) technologies to increase
the LLC capacity.

Emerging NVM technologies such as spin-transfer and spin-
orbit torque (STT and SOT) magnetic RAM (MRAM), phase
change memory, resistive memory, and racetrack memory have
shown great promise to replace or augment conventional SRAM
and DRAM technologies. In the last decade, some NVM
technologies have matured greatly and have made their way into
the memory hierarchy [23], [39]. Compared to conventional
SRAM technologies, NVMs, particularly MRAMs are attractive
alternatives for large size LLCs because they are extremely
energy efficient, offer larger densities, and SRAM-competitive
read latencies [4], [9], [27], [29]. However, without proper
buffering the slow write operation on NVMs can degrade
performance by throttling subsequent critical reads, potentially
leading to core stalls. In addition to the read/write asymmetry,
most NVMs also have a limited endurance, i.e., the number
of writes that each bitcell supports, until it deteriorates and
loses its retention capacity is limited and can be approximated
by a normal distribution with a mean that can vary between
106 and 1012 [10], [17], [42]–[44]. Many device, circuit, and
architectural optimizations have been proposed to mitigate the
impact of the write operations on the NVM-LLC performance
and lifetime [20], [29], [33]. However, these solutions increase
the overall power consumption and reduce the NVM capacity,
thereby offsetting the NVMs benefits.

Recent proposals combine the best of both worlds, i.e.,
performance and endurance of SRAM/DRAM with the energy
efficiency and density of STT-MRAM to implement hybrid
LLCs [4], [19], [27], [32]. MRAMs, compared to other NVM
technologies, offer better endurance and SRAM comparable
read latencies with higher density. However, it still suffers
from higher write latencies and limited endurance compared
to conventional SRAM/DRAM technologies. Therefore, the
performance, energy, and lifetime improvements of these hybrid
proposals are associated with the reduction in number of write
requests to the NVM1. Thus, various techniques have been
proposed to identify and steer write-intensive blocks towards
the SRAM part and read-intensive blocks towards the NVM
part [9], [32]. The identification of read- and write-intensive
blocks is either performed with address-based predictors that
sample LLC accesses [4] or with predictors using counters and
threshold values for LLC block accesses [28].

The asymmetric read-write operations in NVMs have also

1Unless otherwise mentioned, NVM hereafter refers to STT-MRAM.

1

motivated novel insertion policies. For instance, Luo et al.
propose TAP which classifies LLC write requests into demand-
writes, prefetch-writes, and clean/dirty thrashing-writes [32].
Thrashing requests are routed to the SRAM part to reduce the
LLC energy consumption and improve lifetime. Compared to
the least recently used (LRU) replacement policy, their proposal
reduces the energy consumption by 25%. Similarly, Cheng et
al. propose LHybrid [9], a loop-block aware policy to insert
only clean blocks that are frequently reused (loop-blocks) in
the NVM part, protecting them from non-loop-blocks when
a victim is selected for replacement. LHybrid significantly
reduces write traffic and improves LLC lifetime. However, in
these previous proposals, the LLC lifetime improvement is only
achieved by conservative insertion in the NVM part, which
limits LLC performance.

In addition to specific insertion and replacement policies, a
different class of optimization techniques improves the NVM
lifetime and performance by decreasing the average number of
bits written in each write request [11], [34], [35]. In particular,
compression can increase effective main memory capacity and
reduce bandwidth utilization by 2 − 4× [1]. Unfortunately,
compression has received only little attention in the context of
hybrid LLCs. In particular, the behavior of the state-of-the-art
insertion policies for hybrid-LLCs enhanced with compression
are yet to be investigated.

Figure 1 shows a forecast of the performance evolution
of a hybrid LLC over time, until the capacity of the NVM
drops to 50%. Twelve and four ways have been devoted to
NVM and SRAM storage, respectively. Further details on the
methodology and workload are discussed in Section V-A. The
baseline hybrid LLC configuration (BH) manages a single
LRU list for all ways in a cache set. The insertion policy does
not distinguish between NVM and SRAM parts and incoming
blocks are written to the LRU way, regardless of its technology.
BH initial performance is excellent, but the write wear on the
NVM part leads to 50% of its capacity being exhausted in less
than three months.

Compared to BH, LHybrid [9], thanks to its selective
insertion policy, improves LLC lifetime by more than 19×, but
at the cost of significant performance degradation (> 11%).
TAP [32] sacrifices even more performance in exchange for a
lifetime improvement of 39×.

This paper bridges the performance and lifetime disparities
between BH and LHybrid approaches by proposing CP SD,
a hybrid insertion policy that combines data compression and
block reuse information. Besides, the NVM part tolerates
byte-level faults and is provided with a block rearrangement
circuitry. As can be seen in Figure 1, CP SD maintains for
almost two years 97% BH performance, reaching 50% capacity
exhaustion in about three years and nine months. Our solution
strikes a good balance in the performance vs. lifetime trade-off,
prioritizing performance without neglecting lifetime. Moreover,
this paper also proposes a rule-based mechanism to further
tune this trade-off: CP SD Th4 and CP SD Th8 in Figure 1
trade 1.1% and 1.9% performance in exchange for 28% and
44% NVM lifetime improvement, respectively.

0 1 2 3 4 5 6 7 8 9

Time(years)

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

IP
C

16w SRAM
BH

CP SD
LHybrid

CP SD Th4
CP SD Th8

TAP
4w SRAM

Fig. 1: Performance vs. time for various hybrid LLCs until
the NVM part loses 50% capacity. The write endurance of
NVM bitcells follows a normal distribution of µ = 1010 and
cv = 0.2. Bounds of SRAM-only LLCs are also plotted.

Specifically, this work makes the following contributions to
shared hybrid NVM-SRAM LLCs whose NVM part tolerates
byte-level faults and leverages data compression:

• A novel insertion scheme that places cache blocks into
either the SRAM or NVM part of the LLC, considering
the read-reuse, write-reuse and compression features of
cache blocks. In the NVM part, the replacement algorithm
considers an NVM fault-map and the compressed size of
the incoming LLC block, replacing the LRU block from
the frames the incoming block can fit in.

• A threshold-based mechanism tunes the write-traffic to
the NVM part, thereby allowing to explore the trade-off
between performance and lifetime. We propose to use
Set Dueling [37] to capture the runtime behaviour of the
workload and allow more (or less) compressed blocks to
be inserted in the NVM part. The sample cache sets collect
the number of writes and the number of hits. Based on
these counters, a rule-based decision mechanism balances
lifetime and performance.

• The forecasting procedure introduced in [15] is adapted
to the hybrid LLC scenario. This procedure tracks NVM
aging, providing the temporal evolution of performance
and capacity. It allows to analyze all dimensions of the
hybrid LLC design.

• For a fair comparison, it is necessary to test existing
insertion policies on NVM caches that lose capacity
due to aging. Therefore, the state-of-the-art LHybrid and
TAP policies [9], [32] are implemented in a fault-aware
environment, extended with frame-disabling to tolerate
hard-errors [7], [46].

• For evaluation, we consider multi-programmed workloads
of memory-intensive applications from the SPEC 2006 and
SPEC 2017 suites. The evaluation environment combines
three elements: a fast architectural simulator [16], a
detailed cycle-level simulator [31] and the forecast proce-
dure mentioned above [15]. We present a comprehensive

2

analysis and evaluation of our novel schemes and their
comparison to the state-of-the-art. We show that our
proposals consistently and significantly outperform the
state-of-the-art in all performance metrics.

The rest of the paper is organized as follows. Section II
discusses the background and motivation of this study. Sec-
tion III describes the microarchitecture of the hybrid LLC.
Section IV describes the proposed insertion policies together
with the Set Dueling mechanism. Section V presents the results
of our insertion policies against the state-of-the-art. Finally,
Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

This section introduces the NVM endurance problem, pro-
vides background on data compression, explains state-of-the-art
insertion policies, and makes a quantitative analysis of these
insertion policies.

A. NVM endurance

Most NVM technologies have limited write endurance, i.e.,
NVM bitcells can only be written a maximum of 10n times
where n varies significantly depending on the technology,
optimizations, and target market from 106 - 1012 [10], [17],
[42]–[44]. The endurance is usually approximated by a normal
distribution of mean µ = 10n and coefficient of variation
cv = σ

µ , usually between 0.2 and 0.3. The cv reflects the
variability in the manufacturing process [12], [17].

In the context of NVM-based LLCs, lifetime is strictly
determined by the LLC write traffic and the write distribution
across cache lines. Streaming or thrashing workloads, for
instance, can reduce the NVM lifetime from a few years to a
few months. NVM structures should be provided with wear-
leveling mechanisms able to evenly distribute the write wear
throughout all the cache dimensions: sets, frames within sets,
and bytes within frames; we call frame to the physical arrays
of bitcells storing a cache block. Wear-leveling mechanisms
have been thoroughly studied in the literature to prevent early
wear-out of memory regions [2], [17], [25], [42]. Our proposal
is independent of the wear-leveling mechanism used. In our
case, an intra-frame wear-leveling is used by means of a global
counter, like in [24]; but any other mechanism could be used.

B. Data compression

The lifetime of an NVM can increase if the information it
contains has been previously compressed, because the average
number of bitcells written decreases. In the case of NVM
caches, if a byte-level fault-aware mechanism is also available,
see Section III-B, compression will allow frames with faulty
bytes to hold compressed blocks [15], [18].

Since compression directly influences access latency and
write bandwidth, the compression mechanism adopted on
the cache hierarchy must satisfy some properties. First, the
decompression latency must be as low as possible because it is
on the critical path of block service. Second, the compression
ratio should be as high as possible as it determines the
amount of bytes written to the NVM. Besides, the compression

mechanism must have a wide coverage and low hardware
complexity to maximize utilization of partially disabled cache
frames with with little overhead.

Our proposed policies are orthogonal to the compression
mechanism and can be used with any compression scheme
that satisfies the above properties. For this work we use a
slightly modified version of the Base-Delta Immediate (BDI)
compression mechanism that provides fast decompression
latency (1 cycle), wide coverage, little hardware overhead,
and an acceptable compression ratio [36]. The algorithm is
based on value locality; it assumes that a 64-byte block can
be split into either thirty-two 2-byte, sixteen 4-byte, or eight
8-byte values and can be compacted using a Base value and
a series of differences with respect to the Base (Deltas). A
particular combination of Base and Delta is called Compression
Encoding (CE), see Table I. They are known a priori and are
computed in parallel.

TABLE I: BDI compression encodings and their sizes in bytes.

CE Base Delta Size CE Base Delta Size
Zeros 0 0 0 B2∆1 2 1 37
RV(8) 8 0 8 B8∆4 8 4 37
B8∆1 8 1 16 B8∆5* 8 5 44
B4∆1 4 1 21 B4∆3* 4 3 51
B8∆2 8 2 23 B8∆6* 8 6 51
B8∆3 8 3 30 B8∆7* 8 7 58
B4∆2 4 2 36 Unc. - - 64

The compression encodings that do not achieve a significant
compression ratio are typically discarded in the original BDI
proposal in order to increase the average compression ratio of
the mechanism. These blocks correspond in our design to the
ones whose compressed size is greater than 37, we refer to
them as low-compression ratio (LCR) blocks, marked with a
star in Table I. Similarly, we refer as high-compression ratio
(HCR) blocks to the ones having compressed sizes lower than
or equal to 37 bytes. For our design, LCR blocks are equally
important as HCR ones since they allow frames with only a
few faulty bytes to allocate blocks that cannot be compressed
as much as HCR ones.

Figure 2 shows the compression ratios of the most mem-
ory demanding applications of SPEC 2006 and SPEC 2017
benchmark suites. On average, 78% of the total cache blocks
are compressible, either HCR blocks (49%) or LCR blocks
(29%). In an NVM cache, since not all bitcells wear out
simultaneously, frames gradually become partially defective, so
the remaining functional bitcells can still be utilized. Together
with compression, these defective (partially disabled) frames
can be used to preserve the effective capacity unimpaired.

C. State-of-the-art hybrid LLC insertion policies

This section outlines LHybrid [9] and TAP [32], two state-
of-the-art insertion policies for hybrid LLCs.

LHybrid [9] classifies LLC blocks into loop-blocks and non-
loop-blocks. Cache blocks that are not modified during their
round trips between L1/L2 and LLC, i.e., read-only blocks that
show reuse in the LLC are referred to as loop-blocks. They are

3

w
rf

bw
av

es
17

de
al

II
ca

ct
uB

SS
N

17
lib

qu
an

tu
m

om
ne

tp
p

ro
m

s1
7

G
em

sF
D

T
D

xa
la

nc
bm

k
bz

ip
2

hm
m

er
xz

17
as

ta
r

le
sl

ie
3d

go
bm

k
ze

us
m

p
m

cf
17

m
ilc

lb
m

17
so

pl
ex

A
ve

ra
ge

0

50

100

%
of

bl
oc

ks
HCR LCR Unc

Fig. 2: Block classification regarding its compression ratio for
the selected SPEC CPU 2006 and 2017 applications.

of utmost importance in the context of hybrid LLCs because
they are ideal residents of the NVM part. LHybrid strives to
keep as many loop-blocks (LBs) in the NVM part as possible
and steers non-loop-blocks (NLBs) into the SRAM part.

The LHybrid insertion scheme works as follows. All blocks
in LLC and L2 are tagged as LB or NLB and this tag is
supplied along with the block in both directions. Initially, all
blocks entering L2 from the main memory are marked as NLB.
A block evicted from L2, marked as NLB and not present in
the LLC, is inserted into the SRAM part. Conversely, a block
evicted from L2 and tagged as LB, if not in the LLC, is inserted
into the NVM part. A read request from L2 that hits LLC
implies a previous eviction from L2, and thus a reuse. This
read request will tag the block as LB if, and only if, the block
is clean. In the LHybrid replacement scheme, for the NVM
part, the LRU block is simply evicted (local replacement). In
SRAM, the replacement policy first searches for LB blocks,
and if found, the most recent LB, in LRU order, is migrated
to the NVM part; otherwise, the LRU block is evicted.

Similar to LHybrid, TAP [32] defines thrashing-blocks as
blocks that have hit in the LLC more than THthrash times. TAP
only inserts clean thrashing-blocks to the NVM part because
they are expected to stay longer in the LLC, preventing energy-
hungry NVM write operations from other blocks. In terms of
NVM insertions, TAP is more conservative than LHybrid, see
Figure 1, because a block needs to show reuse more than once
(unlike the LHybrid loop-block) to be inserted in the NVM part.
We thus use LHybrid as the state-of-the-art reference policy
so that results are more comparable in terms of performance.

D. Motivation: quantitative analysis of hybrid LLC insertion
policies

As described in the previous section, state-of-the-art insertion
policies conservatively target the NVM part, which extends
lifetime but sacrifices performance. To demonstrate this, we
evaluate ten multi-programmed workloads from the SPEC 2006
and SPEC 2017 benchmarks on a hybrid LLC having 12 NVM-
ways and 4 SRAM-ways (see Section V-A and Table III for
more details) and show the impact of different configurations on

the LLC performance and lifetime in Figure 1. For comparison,
we use SRAM-only LLC configurations with 16-ways (best-
case) and 4-ways (worst-case, as if the 12-NVM ways were
faulty), to determine the upper and lower bounds on the
hybrid LLC performance. Both configurations employ the LRU
replacement scheme and are compared to the following.
BH, that is NVM-unaware and naively fills data into NVM and
SRAM ways implementing a global LRU replacement policy
and frame-disabling, achieves performance similar to that of
a 16-way SRAM cache, the expected upper limit. The small
performance loss compared to an SRAM cache is exclusively
due to the increased latency in the STT-RAM ways, since the
contents of both caches are exactly the same. However, for a
mean endurance of 1010, it takes less than three months for
the NVM part to lose 50% of its effective capacity.
LHybrid, which conservatively inserts into the NVM by
steering only the loop-blocks into it and employs a local loop-
block-aware replacement scheme. As a result, it improves the
NVM lifetime by 19.7× compared to BH but at the cost of a
significant 11% performance decrease.
TAP is more conservative than LHybrid. Blocks must show
higher level of reuse (clean thrashing-blocks) to be inserted
in the NVM. It improves the hybrid cache lifetime by 39×
compared to BH in exchange for 15% performance drop.

To reduce these wide disparities between performance and
lifetime of different configurations, this work investigates
hybrid LLC designs that achieve near-BH performance and
near-LHybrid lifetime by jointly optimizing for both metrics.

III. HYBRID LLC ARCHITECTURE

Hybrid LLC designs require intelligent insertion policies
supported by the underlying microarchitecutre. This section
presents our microarchitectural design decisions carefully
adopted to get the most out of the insertion policies.

A. NVM-friendly non-inclusive LLCs

Non-inclusive LLC designs increase caching capacity by only
partially duplicating data between the private and shared levels.
The non-inclusive relationship allows replacing a block in LLC
without having to invalidate copies in the private levels [49]. In
an NVM-LLC friendly implementation of this model, a miss in
all cache levels involves a main memory access that takes the
block directly to the private L1/L2 levels. In turn, the victim
block replaced in L2, clean or dirty, is sent to LLC and written
if it was not there [13]. Most NVM and hybrid LLCs follow
this mostly-exclusive implementation because it reduces the
write traffic in the LLC [8], [9], [32], [38].

Figure 3 shows a high-level overview of the proposed hybrid
LLC design. Similar to [9], we use a non-inclusive hierarchy
and complement it with a fault map, a compression mechanism
and an insertion mechanism. The blocks movement in the cache
hierarchy follows the above rules, with the exception of block
requests with write permission (GetX) coming from L2 that hit
in LLC. In this case, LLC returns the block to the private levels
and invalidates it in the LLC. This immediate invalidation
improves LLC performance because it leaves room for the

4

replacement algorithm to reuse it as needed. The obsolete copy
of the invalidated block in LLC will be written anyway when
the dirty block is evicted from L1/L2. These coherency features
are already implemented in the MOESI CMP directory Ruby
protocol in gem5 [31].

Main Memory

...

...C1

Hybrid LLC

Read ReuseWrite Reuse

NVM

M ways

...

M+N ways

...

Data Array

Insertion Engine
Compression
 Threshold

BDI Compression/Decompression

64B

...

C2 Cn

M ways

Tag Array Fault Map

...

...

...

L2 L2 L2

L1 L1 L1

SRAM SRAM

N ways

...

NVM

Compressed
Block

Uncompressed
Block

Fig. 3: High-level overview of the hybrid LLC organization.

B. Fault-tolerant microarchitecture

NVM bitcells become defective due to repeated write
operations. From the architectural perspective, these memory
structures must be provided with error correcting codes (ECCs)
to detect and correct hard faults. We assume Hamming
SECDED protection in all arrays. In particular, we use code
(527, 516) for the NVM data array: it can correct one fault
and detect up to two faults. Besides, the SECDED can trigger
an OS exception that confirms the NVM hard-fault, notifying
the identity of the faulty cell so that the corresponding region
can be disabled [48], preventing the occurrence of a second
uncorrectable error in the same region. Note that this ECC
protection does not bring any additional overhead as they
already exists in SRAM LLCs to cope with soft and transient
faults [3], [5], [17], [26], [40], [47]; for instance, AMD Zen’s
SRAM LLC employs DECTED protection [40].

Different disabling granularities in the LLC have different
performance implications. For example, disabling at frame
granularity incurs little overhead but severe degradation of
capacity and, thus, performance. Conversely, disabling at a
finer granularity, such as at byte level, requires more metadata
(overhead) but allows live bytes within a frame to be used [15],
[18], [41], [45]. By leveraging compression, these partially
disabled frames can be used as functional frames, and the

Tag Array Data Array

Way 0

Way 1

Way 2

Way 3

Tag + LRU + Valid +
 Dirty + Coherency Block + ECC

(Compressed Block + CE) + ECC

(Compressed Block + CE) + ECC

(Compressed Block + CE) + ECC

Fault
Map

NVM

SRAM

34b 528b 66b

Tag + LRU + Valid +
 Dirty + Coherency

Tag + LRU + Valid +
 Dirty + Coherency

Tag + LRU + Valid +
 Dirty + Coherency

Fault
Map

Fault
Map

Fig. 4: Example of a four-way cache set split into three NVM
ways and one SRAM way, showing fields and their sizes.

impact of bitcell failures on performance can be effectively
mitigated. For instance, if a byte in an NVM cache frame (64B)
is disabled, it can still be used to store all cache blocks of
compression encodings B8∆7 and above (≤ 58B), see Table I.

Our hybrid LLC employs data compression together with
byte-disabling and an intra-frame wear-leveling mechanism
to mitigate the effective capacity drop due to bitcell failures.
Similar to [15], we maintain a fault map of the NVM frames,
storing the faultiness information of each byte. Every fault map
entry consisting of 66 bits, see Figure 4, is updated every time
a byte becomes faulty, i.e., at most 66 times (until the frame is
completely dead). This low amount of write accesses leads to
no wear problems, and thus the fault map can be implemented
in NVM technology. Unlike the fault map, the tag array is
written more often as it needs to keep the coherence and
replacement information up to date. A hard fault on a tag array
bitcell means disabling the whole cache frame. Therefore, we
assume that the tag array is realized using SRAM technology
that is not subject to wear. The data array, see Figure 4, is
split in NVM ways and SRAM ways, typically, with a factor
of three NVM ways for every SRAM way [9], [32].

1) Block writing: Figure 5a shows the block writing flow
in the LLC. For every incoming LLC block, the compressed
block (CB, 0-64 bytes) and the chosen compression encoding
(CE, 4-bit) information are obtained from the compressor. The
extended compressed block (ECB) is then formed by combining
the CB with the 4-bit CE and the 11-bit SECDED code The
SECDED code is calculated from 516-bit, i.e., the combined CE
(4-bit) and 512-bit vector (the CB bit vector plus the required
number of zeros to make 512-bit). In parallel to SECDED
generation, the insertion engine decides whether to insert it
either in an NVM or in an SRAM frame according to our
proposed insertion policy, see Section IV; and the replacement
algorithm (LRU) selects the target frame. In the case of NVM,
the replacement algorithm will look for the target frame among
those with an effective capacity greater than or equal to the
incoming compressed block (Fit-LRU) [18]. In the case of
SRAM, a conventional LRU is employed for replacement, and
the block is stored uncompressed.

The NVM part of the hybrid LLC is also provided with
a block rearrangement circuitry, adopted from the proposal
in [15], that scatters the ECBs among the non-faulty bytes of the
target frame, generating the sparse block (RECB) and a write

5

+

-

B8�1

B4�1

B8�2

B8�7

CE 4bits

NVM Frames
capacities

LRU
information

Insertion
Engine

Replacement
Engine

1 BDI Compression

2.2 Insertion/Replacement

2.1 ECC

Wear-leveling
Counter

Write Mask

CrossbarECB 66B

RECB 66B

Victim

Fault map

3 Block rearrangement

Index

SECDED
generation

Index
generation

CB 0-64B

(a) Block writing flow.

Crossbar
RECB 66B

ECB 66B CB 0-64B

CE

Fault map Index

generation

SECDED

checking

B8�1

B4�1

B8�2

B8�7

OS exception

1 Block rearrangement

Wear-leveling
Counter

Index

2 ECC 3 BDI Decompression

(b) Block reading flow.

8 B

CB
SEC
DED

ECB

RECB

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1

1

0

1

1

0

1

1

I[0] = 4
I[1] = x
I[2] = x
I[3] = 0
I[4] = 1
I[5] = x
I[6] = 2
I[7] = 3

Fault Map (0 = Faulty)

Index
Vector

Counter = 3

Wear-leveling

CE

1 1 0 1 1 0 0 1
Write
mask

4

5

6

0

1

2

2

3

0

1

2

3

4

5

6

7

Start: I[3] = 0

Index generation

Output-controlled

crossbar

(c) Example of a 5-byte block rearrangement for writing. (d) Example of a 5-byte block rearrangement for reading.

Fig. 5: Block writing (a) and reading (b). Example of a 5-byte block rearrangement for writing (c) and reading (d).

mask for selective writing. This block reordering synergistically
works with an intra-frame wear-leveling mechanism to evenly
distribute write operations’ wear among all non-faulty bytes in
the target frame. To do this, the block rearrangement circuitry
maintains a counter that indicates the byte at which the write
operation is performed. This counter is global, shared among
all sets, and increments after long periods of time (a few hours
or even days) so that the writing region of the frames gets
shifted over time [24].

The block rearrangement circuitry consists of two modules:
index generator and crossbar. Figure 5c shows an example
of rearranging a 5-byte ECB for scattering into an 8-byte
frame with faulty bytes (2 and 5). On the left side of the
figure, the index generator computes an index vector I[i] from
the fault map and the wear-leveling counter. The optimized
implementation of this circuit uses a parallel tree adder [15].
Each index indicates which byte of the ECB is to be placed in
each RECB byte (x stands for don’t care). For example, I[6]=2
indicates that byte 2 of the ECB is placed in RECB byte 6.
Thus, this index vector controls the output ports of the crossbar
used to obtain the RECB. In the example, crossbar output 6
selects input 2. For the write mask, the first n positions starting
from the wear-leveling counter value, and corresponding to
non-faulty bytes, are set to 1s; n being the ECB size.

2) Block reading: A data block access to the NVM data
array is depicted in Figure 5b. First, the RECB is read. In
parallel, the index vector I[i] is computed again as in block
writing. This index vector is now used to obtain the ECB from
the RECB. Figure 5d shows a rearrangement example of the
same 5-byte RECB of Figure 5c, for delivery to L2. In this

case, each index indicates the target output crossbar for each
input, e.g., I[6]=2 means that input 6 is forwarded to output 2.
Within the already aligned block (ECB), the CE field indicates
the length of the compressed block. This value is employed to
fill the bytes not used to store the compressed block (CB) with
zeros in order to match the SECDED previously generated
during the writing. Besides, it selects the corresponding BDI
decompressor.

3) Latency overhead: Using VLSI synthesis for 16 nm, the
block rearrangement circuitry has proven to be feasible in terms
of latency (incurring 0.33 and 0.38 ns for writing and reading,
respectively) as well as area and power consumption [15]. The
BDI decompressor, that is a SIMD-style vector adder [30], [36],
incurs a 2-cycle latency overhead. Note that all the competing
mechanisms need SECDED for hard-fault detection. For this
reason, the latency incurred by SECDED is not accounted for
in the overheads.

IV. COMPRESSION-AWARE INSERTION POLICIES

Data compression reduces the size of the incoming blocks
to the LLC and thereby reduces the number of bytes written to
cache frames. Together with byte-disabling, compression can be
used to allocate reduced size blocks to partially defective NVM
frames, always taking care to level the write wear among the
remaining non-faulty bitcells. This section describes how block
features such as compressed size, read-reuse and write-reuse
information can be leveraged to develop performance-efficient
and lifetime-aware content management policies.

6

30 36 37 44 51 58 64
0.8

0.9

1 CP SD

CPth

N
or

m
al

iz
ed

H
it

R
at

e CA CA RWR

Fig. 6: Hybrid LLC hit rate with different CPth normalized
to BH.

A. Naive compression-aware insertion

We denote blocks whose compressed size is lower than or
equal to a given compression threshold (CPth) as small blocks
and blocks that are either incompressible or whose compressed
size is greater than the threshold as big blocks. Intuitively, the
greater the compression ratio a block achieves, the less harmful
it is to write it on the NVM part. A naive compression-aware
insertion policy (CA), therefore, directs small blocks to NVM
ways and big blocks to SRAM ways. Both NVM and SRAM
ways follow a local LRU replacement policy.

CA may lead to performance degradation. The performance
loss occurs when there is an imbalance between the number
of references to blocks allocated in NVM and SRAM ways.

For instance, 100% of the cache blocks are incompressible
in the benchmarks xz17 and milc, see Figure 2, and as a
result CA will direct all blocks to the SRAM ways. On the
contrary, in benchmarks such as GemsFDTD and zeusmp,
where almost all cache blocks are highly compressible (HCR),
the CA policy will only insert blocks into NVM ways. In both
cases, one part of the LLC is over-referenced, experiencing
many misses and leading to performance degradation.

CA evaluation. The light green bars (CA) in Figure 6
show the LLC hit rate for different CPth values, normalized
to BH hit rate. Unless otherwise mentioned, all results in
this and the following sections are averaged across ten
multiprogrammed mixes of four randomly selected applications
from the employed subset of SPEC 2006 and SPEC 2017, see
Table V. The normalized hit rate varies between 0.89 and 0.99,
with the highest figure being obtained for a CPth of 58. With
this CPth value, only uncompressed blocks are inserted into
SRAM and the rest into NVM. The attained hit rate is very
close to BH, which indicates that this CPth value achieves a
block distribution with only little conflict misses compared to
BH and, therefore, is well balanced.

The light green bars (CA) in Figure 7 show the number
of bytes written to the NVM part for different CPth values
normalized to the values obtained in BH. As can be seen, the
CPth has a considerable impact on the number of bytes written
in the NVM part, varying between 5% and 80% of the writes
for BH. With a CPth of 58, the best in terms of hit rate from
Figure 6, the number of bytes written is still 40% lower than
the BH cache.

30 36 37 44 51 58 64
0

0.5

1

CP SD

CPth

N
or

m
al

iz
ed

B
W

CA CA RWR

Fig. 7: Normalized BW: average number of bytes written per
frame in the NVM part, normalized to BH, varying CPth.

B. Read and write reuse aware insertion

As discussed in Section II-C, several works have shown
that content management based on block reuse properties can
reduce the number of writes in NVM caches [9], [32]. We now
discuss how to incorporate read and write reuse into together
with the compression-aware insertion policy (CA RWR).

We classify blocks into three categories based on their reuse
properties: blocks that have not yet demonstrated any reuse,
blocks with read reuse, and blocks with write reuse. Initially, all
blocks are classified as non-reused when copied from the main
memory to the cache hierarchy. A hit in the LLC classifies a
block into either a read-reused block if it has not been modified
or a write-reused block if it has been written at least once.
Notice that our read-reuse class corresponds to the loop-blocks
in LHybrid while write-reuse and non-reuse blocks correspond
to non-loop-blocks.

Table II summarizes CA RWR, our proposed insertion policy
that places blocks in either SRAM or NVM depending on the
size of the compressed block and its reuse type:

• Blocks that show read reuse are candidates to stay longer
in the LLC. Inserting them in the NVM part is beneficial,
regardless of the compressed size, because they will stay
longer in the LLC, preventing other writes in the frame.

• Blocks that show write reuse are candidates to stay for
a short time in the LLC due to the invalidate-on-hit
coherence policy of LLC requests with write permission
(GetX), see Section III-A. Such dirty blocks will be
inserted back into LLC when they are evicted from L2.
Therefore, they should be placed in SRAM since they are
candidates for multiple LLC writes.

• Blocks without reuse are inserted either into SRAM or
NVM, depending on their compressed size, i.e., small
blocks are inserted in NVM and big blocks in SRAM.

Note that NVM frames render partially defective due to write
operations. Therefore, a block directed to NVM that does not
fit in any NVM frame, because its compressed size is bigger
than any of their effective capacities, will be placed in SRAM.

As mentioned above, blocks are initially inserted into SRAM
or NVM depending only on their compressed size, since they
have not yet shown any reuse. In fact, many of them will be
evicted from the LLC without being reused. But for those that
do show reuse, the final destination will depend on the type

7

TABLE II: CA RWR insertion policy
Compressed size
Small Big

Reuse
no NVM SRAM
R NVM NVM
W SRAM SRAM

of reuse, read or write. Therefore, it is sometimes necessary
to migrate blocks between SRAM and NVM arrays: i) blocks
initially stored in NVM that show reuse on write, and ii) blocks
initially stored in SRAM that show reuse on read. On the one
hand, reuse on write is detected when a GetX request hits in
LLC and the block is invalidated. Later, when the block is
evicted from L2, it will be inserted into SRAM as a write-
reused block (regardless of its compressed size). On the other
hand, a block initially stored in SRAM that is reused on read
remains in SRAM until it is evicted (due to a replacement).
At that time, the block is migrated to NVM.

CA RWR evaluation. The dark green bars (CA RWR)
in Figures 6 and 7 show the normalized LLC hit rate and
BW on a CA RWR cache, varying CPth. Compared to the
cache with CA policy, the reuse information in the block
insertion policy has a relatively small impact on the hit rate
but a noticeable impact on BW, especially for high CPth

values. The hit rate is better than the CA cache for small
values of CPth and marginally worse for high values of CPth;
specifically, the CA RWR hit rate only increases by 1.9% for
CPth values between 30 and 51 and increasing to 5.4% for
CPth 58. Compared to the CA, the relative decrease in BW
for CA RWR is significant, reaching 73% for CPth 51. Even
though BW varies between 4.4% and 28.6% as CPth varies
between 30 and 64.

C. CP SD insertion: Set Dueling for performance

Figures 6 and 7 illustrate in simplified form the influence of
CPth on the normalized hit rates and BW, averaging the results
for the entire workload and assuming full capacity in the NVM
part. However, for the best CPth selection, one must delve
deeper into the impact of two key factors. First, applications
may exhibit different behaviors throughout their execution, and
second, as the NVM part ages, its capacity decreases.

To analyze the impact of workload time variability and
NVM capacity loss we will divide the workload execution
time into epochs of fixed duration and calculate the hit rate
achieved in each epoch with each CPth value. The different
bar colors in Figure 8 show the percentage of epochs for which
each CPth value achieves the highest number of cache hits.
Specifically, Figure 8a presents the distributions of optimal
CPth varying the NVM part capacity from 100 to 50%, and
Figure 8b presents the distributions of optimal CPth for each
workload in an LLC with 100% capacity in the NVM part.

Let us consider the bar that represents the NVM cache with
100% capacity in Figure 8a. This is the same cache that was
used in Figure 6, where we observed that the maximum hit
rate is achieved with CPth values 58 or 64. However, Figure 8
reveals that these CPth values are not optimal throughout the
entire workload execution. In 30% of the epochs, the optimal hit

%
 o

f
ep

o
ch

s

(a) % of NVM effective capacity (b) By workload

Fig. 8: CA RWR insertion policy: distribution of CPth

achieving the best hit rates across execution epochs, vs. NVM
part capacity (a). Uniquely for 100% NVM capacity, the same
distribution, but for each of the 10 workloads (b).

rate is attained with CPth values less than 58. Furthermore, this
percentage varies greatly depending on the workload, reaching
96% in mix 5, see Figure 8b. In Figure 7, we demonstrated that
these smaller CPth values are beneficial as they reduce the
number of bytes written to the NVM. This implies that a fixed
CPth value may easily lead to both sub-optimal overall system
performance and sub-optimal NVM lifetime. The impact of
varying optimal CPth values becomes even more prominent
as the cache loses effective capacity, see Figure 8a, because
frames with higher capacities become more scarce.

For an adaptive CPth value selection mechanism, we
propose CP SD, a new insertion policy using Set Dueling [37]
that reacts to both the changing workload behavior and the
decreasing capacity of the NVM part. We propose to specialize
some sets to use a fixed value of CPth, from 30 to 64. Every
value is tested on a group of N/32 sets, where N is the number
of sets in the LLC. The rest of the sets follow the group of
sets whose CPth brings optimal performance, the group of
sets with the maximum number of hits in the previous epoch.

CP SD evaluation. The red horizontal lines in Figures 6
and 7 indicate hit rate and BW of CP SD, respectively. CP SD
achieves a hit rate equivalent to the best-case CA RWR (with
values of CPth 58 and 64), which is also comparable to the
hit rate of the reference system BH. However, in terms of
bytes written, CP SD reduces the number of writes by a
significant 83.4% compared to the BH cache and by 22.9% and
42% compared to CA RWR for CPth 58 and 64, respectively.
Besides, we perform these experiments varying the epoch size
and our evaluation shows that 2M cycles achieves the best Set
Dueling performance. This value is used for the all evaluations
in the following sections.

D. CP SD Th: CP SD for both performance and lifetime

By using the CP SD insertion policy it may happen that a
very small difference in performance in an epoch determines
the selection of a CPth value that produces a much larger
number of bytes written to the NVM part. We thereby introduce
CP SD Th: a variation that seeks a better tradeoff between
performance and lifetime. It is based on selecting CPth

considering not only the number of hits in LLC but also the
number of bytes written to the NVM part.

8

We have not found a simple arithmetic function that
combines both metrics to compute the Set Dueling winner,
largely because their ranges of variability are very different
and highly dependent on workload and NVM cache capacity.
Alternatively, we will make a rule-based decision with two
thresholds: i) Th, the maximum percentage of cache hits we
are willing to sacrifice, and ii) Tw, the minimum percentage
of NVM bytes written decrement we require to admit a
performance loss. As usual, the rule for choosing CPth is
applied at the beginning of each epoch by first looking for the
value i of CPth that achieved the maximum number of hits in
the previous epoch. Then, the smallest value j of CPth that
satisfies the following inequalities is selected:

H(j) > H(i) ∗ (1− Th

100
) & W (j) < W (i) ∗ (1− Tw

100
) (1)

Where H(x) and W (x) are the number of hits and bytes
written to NVM, respectively, in the sampler sets whose CPth

was x in the previous epoch.
CP SD evaluation by varying Th and Tw. Our evaluation

of Set Dueling with different values for the parameters Th
and Tw shows that the sensitivity of the number of hits and
the number of bytes written to NVM to the parameter Tw is
very low; therefore, Figure 9 only shows data for values of Th
0, 2, 4, 6, and 8% (different colors) keeping Tw = 5%. The
different shapes represent different NVM capacities: the circles,
triangles and squares correspond to NVM part capacities of
100, 90 and 80%, respectively. Both the number of hits and
number of bytes written to NVM are normalized to BH with
100% NVM capacity.

0.05 0.10 0.15

Normalized bytes written to NVM

0.92

0.94

0.96

0.98

N
or

m
al

iz
ed

hi
t

ra
te

Th0 Th2 Th4 Th6 Th8

Fig. 9: Hit rate and number of bytes written to NVM normalized
to BH, for different Th [0-8%] and different NVM capacities:
100-90-80% (circles, triangles, and squares). Tw set at 5%.

The observed trend is similar for the three NVM capacities
analyzed. Increasing the value of Th always produces a decrease
in both the number of hits and number of bytes written to
NVM. However, the relative decrease is much larger in the
number of bytes written, especially when the cache capacity
decreases. For example, going from Th = 0 to Th = 8% for

80% NVM capacity, the number of cache hits decreases from
0.925 to 0.916 (1.0% reduction) while the number of writes
decreases from 0.059 to 0.035 (40.7% reduction). However,
the same Th variation for a 100% NVM capacity results in a
18.7% relative decrease in the bytes written to NVM.

Note that the 8% limit on Th only produces a real loss of
1% in hits, since a) in many epochs no change in CPth is
applied to decrease hits because in return there is not enough
reduction in bytes written, and b) when the change is applied
the decrease in hits will be between 0 and 8%. In addition, by
construction, the decrease in bytes written can be much greater
than the decrease in hits because the CPth is only changed in
those epochs in which the decrease in bytes written is large
and the decrease in hits is small.

V. RESULTS AND ANALYSIS

This section evaluates the impact of compression-aware
insertion policies on the lifetime and performance of a hybrid
LLC, comparing them to the state-of-the-art proposals described
in section II-C, see Table III: CP SD and CP SD Th refer
to insertion policies introduced in Sections IV-C and IV-D,
respectively.

TABLE III: Summary of tested insertion policies.

Name Disabling Data NVM
granularity Comp. aware

BH Frame No No
BH CP Byte Yes No
LHybrid Frame No Yes
CP SD Byte Yes Yes

CP SD Th Byte Yes Yes

Section V-A introduces the experimental setup, including
system specification, simulation infrastructure, and benchmark
suites. Section V-B compares CP SD insertion policies with
state-of-the-art in terms of performance and NVM lifetime,
showing how the rule-based mechanism effectively trades
performance in exchange for lifetime by tuning CP SD Th.
Sections V-C, V-D, V-E, and V-F present sensitivity studies
concerning to the ratio of NVM size vs. SRAM size, the impact
of the coefficient of variation on system performance and NVM
lifetime, the size of L2 (x2), and the increase in NVM access
latency (x1.5); respectively. Finally, in Section V-G the cost
of fine-grain disabling, i.e. the overhead of the byte fault map,
is discussed, evaluating its impact by reducing the number
of ways in the NVM part by an amount equivalent to such
overhead.

A. Experimental setup

We use a 4-core system with private L1 (instructions and
data) and L2 caches and a shared hybrid LLC, as detailed in
Table IV. The hybrid LLC is non-inclusive and partitioned
into four banks. The system uses a directory-based MOESI
coherence protocol, and a crossbar that connects the private
levels (L2) with the LLC banks and the directory.

As for the simulation, we use two different infrastructures:
a trace-driven simulator called HyCSim [16] for design space

9

TABLE IV: System specification.

Cores 4, ARMv8, out-of-order (up to 8 inst/cycle), 3.5 GHz
Coherence MOESI, directory distributed among LLC banks
Protocol 64 B data block in all levels

L1 Private, 32 KB D, 32 KB I, 4 ways, LRU
3-cycles load-use delay. Fetch on write miss

L2 Private, 128 KB D, 128 KB I, 16 ways, LRU
11-cycle load-use delay. Fetch on write miss

Hybrid
LLC

Shared, non-inclusive, 4 banks, 4MB/bank
4 SRAM ways, 28-cycle load-use delay (4-cycle D-array)
12 NVM ways, 32-cycle load-use delay (8-cycle D-array)
+2 cycles for decompression and block rearrangement
20-cycle data array write latency
Endurance: mean = 1010 writes, cv = 0.2

Main 1 memory controller, DDR4
Memory 1 channel, 8GB/channel (1200 MHz)

NoC Crossbar between NV-LLC banks and L2s. 32 B flits

exploration and for figures in Section IV, and gem5 [31] for the
detailed cycle-accurate full-system simulation presented in this
Section. To estimate hybrid LLC latencies we use NVSim [14].

We adapted the forecasting procedure introduced in [15]
to the hybrid LLC scenario. It allows to accurately measure
the impact of different insertion policies on the evolution
over time of performance and capacity of the NVM part,
taking into account the disabling of frames or bytes and
the use of compression. BH and LHybrid are provided with
frame-disabling to tolerate hard faults while BH CP and
CP SD employ byte-disabling together with data compression.
The forecasting procedure alternates between simulation and
prediction phases. The simulation phase starts reading the NVM
LLC state; for instance, in BH CP and CP SD such state is
the fault map of every NVM frame, then it performs a full
system simulation reporting several indexes of interest, e.g., the
write rate on NVM frames, system IPC, and LLC hit rate. The
prediction phase receives such write rates, computes the next
k NVM bitcells to become faulty, and update the fault map
for the next simulation. In this work, the forecasting procedure
advances in time until the NVM part loses 50% of its capacity,
but there is no problem in reaching full depletion. The IPC
evolution depicted in Section V figures is obtained at each
simulation phase, computing the arithmetic mean of the IPCs
of the mixes conforming the workload.

The experimental evaluation is made on the ten multi-
programmed workloads shown in Table V. Mixes are formed
by randomly selecting applications from the SPEC CPU 2006
and 2017 suites, leaving out applications that do not show
substantial memory activity [6], [21]. Fast forward is performed
for 2 billion instructions, warm-up for 60 million cycles, and
then 200 million cycles are simulated to collect statistics.

B. Performance vs. Lifetime

The solid lines in Figure 10a show the performance evolution
over time of the proposed insertion policies for hybrid LLCs
(CP SD, CP SD Th), comparing them with BH, BH CP and
LHybrid. Dashed lines mark the upper and lower performance
bounds. The upper bound corresponds to a a 16-way SRAM
LLC, while the lower bound corresponds to a hybrid LLC
whose NVM part is fully impaired (4w SRAM). Finally, we

TABLE V: SPEC CPU 2006 and 2017 mixes.

mix 1 zeusmp06 gobmk06 dealII06 bzip206
mix 2 hmmer06 bzip206 wrf06 roms17
mix 3 zeusmp06 cactuBSSN17 hmmer06 soplex06
mix 4 omnetpp06 astar06 milc06 libquantum06
mix 5 xalancbmk06 leslie3d06 bwaves17 mcf17
mix 6 lbm17 xz17 GemsFDTD06 wrf06
mix 7 cactuBSSN17 dealII06 libquantum06 xalancbmk06
mix 8 gobmk06 milc06 mcf17 lbm17
mix 9 xz17 astar06 bwaves17 soplex06
mix 10 GemsFDTD06 omnetpp06 roms17 leslie3d06

also show performance of a base hybrid LLC with compression
(BH CP). BH CP uses compression and byte-disabling, but it
is oblivious to the NVM wear due to writing and uses a global
fit-LRU replacement policy. In BH CP, the victim frame is the
one containing the LRU block from among those occupying
frames with a size greater than or equal to the size of the block
to be inserted, either in the SRAM or NVM.

Initially, in the first few months, the performance of BH CP
is similar to that of BH because both use a global, uncon-
strained LRU replacement algorithm. However, compression
and byte disabling, even without compression-aware insertion
and replacement policies, reduce the number of writes in the
NVM part and manage to extend the lifetime of BH CP by
4.8× with respect to BH. Still, the effective capacity of 50%
is reached in 13 months, far short of the LHybrid 53 months.

CP SD, the performance-optimized configuration, manages
to delay the 50% capacity loss to 45 months, multiplying BH
lifetime by 16.8×. This increase in lifetime is achieved at
the cost of a performance loss of only 3.3% at the beginning
of the cache lifetime. This performance level remains almost
unchanged beyond two years. From this point on, the NVM
part starts to gradually lose capacity, which translates into a
gradual drop in performance. Compared to LHybrid, CP SD
reaches the 50% capacity 8 months earlier but always maintains
a significant difference in performance, especially in the long
initial stage where it reduces the performance loss compared
to the upper limit (dotted green line) from 11.2% of LHybrid
to only 3.3%.

As introduced in Section IV-D, CP SD can be further tuned
to trade performance in exchange for lifetime and vice versa.
Figure 10a shows the results for Th 4 and 8%, keeping Tw = 5.
CP SD Th4 and CP SD Th8 achieve 28% and 44% increase
in lifetime compared to CP SD, in exchange for 1.1% and 1.9%
performance degradation, respectively. Compared to LHybrid,
CP SD Th4 and CP SD Th8 achieve 9% and 22% more
lifetime while keeping 7.6% and 6.8% higher performance,
respectively.

C. SRAM-NVM proportion variation

We analyze the behavior of the hybrid LLC by increasing
asymmetry between the sizes of the SRAM and NVM.
Specifically, Figure 10b shows hybrid LLCs with a 3-way
SRAM and a 13-way NVM part. The decrease in the number of
SRAM ways has little impact on BH and BH CP because block
insertion and replacement do not depend on this parameter. The
original 12-way NVM wears similarly in this new 3/13-way

10

0 1 2 3 4 5 6

Time(years)

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

IP
C

16w SRAM
BH

BH CP
CP SD

CP SD Th4
CP SD Th8

LHybrid
4w SRAM

(a) Performance evaluation

0 1 2 3 4 5 6

Time(years)

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

IP
C

16w SRAM
BH

BH CP
CP SD

CP SD Th4
CP SD Th8

LHybrid
4w SRAM

(b) NVM-SRAM proportion variation

0 1 2 3 4 5 6

Time(years)

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

IP
C

16w SRAM
BH

BH CP
CP SD

CP SD Th4
CP SD Th8

LHybrid
4w SRAM

(c) cv = 0.25

Fig. 10: Performance evolution until the NVM part reaches 50% effective capacity for default parameters and different CP SD
Th (a), NVM-SRAM proportion (b), and coefficient of variation of the NVM endurance distribution, cv = 0.25 (c).

configuration. The only additional performance degradation
occurs due to the loss of capacity of the new NVM way.

In LHybrid, the SRAM part acts as a read-reuse detector
for the NVM part. By decreasing the number of SRAM
ways, less read reuse is detected, thereby resulting in fewer
block insertions to the NVM part. This translates into a 14%
longer lifetime and a 2.2% lower performance compared to
the 4/12 configuration. For CP SD-based policies, increasing
the SRAM/NVM asymmetry also means a slight increase
in lifetime (5.5%, 3.4%, and 7.4%) and a slight drop in
performance (2.2%, 2.1%, and 2.6%), for CP SD, CP SD Th4,
and CP SD Th8, respectively.

D. Impact of cv on performance and lifetime
We model the endurance of NVM memory bitcells using a

normal distribution, see Section II-A. The coefficient of varia-
tion cv of this distribution reflects the memory manufacturing
variability. This parameter has a significant impact on the
evolution of the LLC capacity. A higher coefficient of variation
implies a larger dispersion in the number of writes supported
by each cell. Consequently, the first faults occur earlier, thereby
impacting frame- and byte-disabling techniques.

In Figure 10c we have repeated the experimentation assuming
a higher manufacturing variability, changing the coefficient of
variation cv from 0.20 to 0.25 and keeping the mean µ = 1010

constant. The lifetime of frame-disabling caches is drastically
reduced as the coefficient of variation increases. The time to
reach 50% capacity goes from 2.7 months to 1.6 months for BH
and from 53 to 30 months for LHybrid. However, the impact
on the lifetime of the models with byte-disabling is much
smaller: for BH CP, it remains the same, for CP SD it drops
from 45 to 42 months, for CP SD Th4, it drops from 58 to 53
months, and for CP SD Th8 it drops from 65 to 60 months.
Consequently, CP SD-based policies manage to significantly
improve both performance and lifetime over LHybrid as cv
grows: CP SD, CP SD Th4, and CP SD Th8 achieve 1.4×,
1.8×, and 2× greater lifetime while maintaining 8.9%, 7.6%,
and 6.8% greater performance, respectively.

E. L2 size sensitivity
Figure 11a shows performance evolution when L2 size is

increased from 128 to 256 KB. Increasing the L2 size means

increasing the overall system performance. Besides, it also
means that the L2 can filter more write operations from the
hybrid LLC, which translates into a slight increase in lifetime.
Compared to the systems in Figure 10a, lifetime increases 19%,
18%, 14%, 8%, and 10% for BH, BH CP, CP SD, CP SD Th4,
and CP SD Th8, respectively. On the contrary, the lifetime of
LHybrid decreases by 11%. As already mentioned, in LHybrid,
a block must experience a hit in the SRAM ways before being
inserted in the NVM ones. When the L2 capacity is increased,
the SRAM activity and the number of block-fills decrease, so
the blocks spend more time in the SRAM ways. The more
time a block is present in the LLC, the higher the probability
of it being hit and detected as a loop-block. Detecting more
loop-blocks results in an overall increase in the write rate to
the NVM part and, thereby, a lifetime reduction.

F. NVM latency sensitivity

NVM technology and system integration may have various
optimization targets. As a result, the NVM latency might vary
significantly. Figure 11b shows results for an NVM latency
equal to 1.5× the original one, i.e. the NVM data array read
latency is increased from 8 to 12 cycles. As expected, policies
that insert more aggressively on the NVM part are more affected
by increased latency than those that insert more conservatively.
For instance, compared to Figure 10a, the performance at the
beginning of CP SD, CP SD Th4, CP SD Th8, and LHybrid
decreases by 0.7, 0.3, 0.4, and 0.4%, respectively. This small
drop in performance translates into a slight reduction in the
NVM write rate, and these configurations experience a slight
increase in lifetime. However, overall, there is no drastic change
in the hybrid LLC performance and lifetime.

G. Overhead analysis & Equalizing costs

In the previous sections it has been shown that insertion
policies tailored to compression and byte disabling improve the
state of the art in both performance and lifetime, and achieve
this even with a higher read latency due to rearrangement and
decompression, see Section III-B3. But of course, this is at
the cost of a non-negligible storage overhead. It is therefore
necessary to re-evaluate the comparison, using the same total
storage in the systems without and with compression.

11

0 1 2 3 4 5 6

Time(years)

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

IP
C

16w SRAM
BH

BH CP
CP SD

CP SD Th4
CP SD Th8

LHybrid
4w SRAM

(a) L2 size = 256KB

0 1 2 3 4 5 6

Time(years)

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

IP
C

16w SRAM
BH

BH CP
CP SD

CP SD Th4
CP SD Th8

LHybrid
4w SRAM

(b) 1.5× NVM latency

0 1 2 3 4 5 6

Time(years)

0.80

0.85

0.90

0.95

1.00

N
or

m
al

iz
ed

IP
C

16w SRAM
CP SD

CP SD Th4
CP SD Th8

LHybrid
4w SRAM

(c) Equalizing costs

Fig. 11: Performance evolution until the NVM part reaches 50% of effective capacity, increasing L2 size to 256 KB (a),
increasing 50% the NVM data array latency (b), and equalizing costs of CP SD systems with LHybrid (c).

All evaluated configurations employ SECDED protection,
able to point out the faulty bitcell and disable the corresponding
region, see Section III-B. Regarding the metadata overhead, the
baseline configuration (BH) and the state-of-the-art (LHybrid,
TAP) are provided with frame-disabling and hence require one
bit per NVM frame. BH CP and CP SD, similar to [15], need
a fault map to disable at byte granularity: one bit per NVM
byte. Compared to LHybrid, CP SD incurs a storage overhead
of 8.6%, i.e., 12.3% of the NVM data array.

Hence, we now analyze the performance and lifetime of
CP SD, CP SD Th4 and CP SD Th8 with a similar storage
cost to LHybrid. We thereby reduce the number of NVM ways
of these caches from 12 to 11 and 10, which results in 1.8%
higher and 5.2% lower storage cost than LHybrid, respectively.

The solid, dashed, and dotted pattern lines in Figure 11c
show the data from caches with 12, 11, and 10 NVM
ways, respectively. All CP SD configurations decrease their
performance and lifetime when the number of ways is reduced.
Nonetheless, the normalized IPC in the initial phase of the
cache lifetime is in all configurations significantly higher than
that of LHybrid. The CP SD Th8 cache with 10 NVM ways,
with a 5.2% lower storage cost than LHybrid, manages to
increase the normalized IPC of LHybrid by 6.4% during the
first two years and maintains a higher IPC throughout the
whole life of the cache.

VI. CONCLUSIONS

Hybrid LLCs bridge the performance and capacity gap
between the high-performance SRAM and high-capacity NVM
LLC designs. Existing hybrid LLC proposals particularly
optimize for LLC lifetime by only conservatively inserting
cache blocks into the NVM ways. These lifetime-focused
optimizations significantly reduce the LLC performance.

In this paper, we leverage that 78% of the total LLC blocks
are compressible to some extent and thus propose fault-aware
policies to smartly steer cache blocks into the NVM or SRAM
ways by analyzing both the cache block read-/write-reuse
behavior and its compressed size. We use Set Dueling to
identify the best-performing compression threshold, CPth,
depending on the workload behavior and the NVM capacity.
Our proposed insertion policy can be further tuned to trade

performance in exchange for NVM lifetime by adjusting the
NVM write rate with a rule-based mechanism.

Our evaluations show that our insertion policies with Set
Dueling nearly achieve the performance of a SRAM cache
with the same associativity while improving lifetime by 17×
compared to a hybrid NVM-unaware LLC. For a fair compari-
son, we adapt state-of-the-art hybrid LLC insertion policies to
a fault-aware environment. Our design outperforms the state-of-
the-art by 9% while attaining a comparable lifetime. Besides,
the rule-based mechanism can achieve, for instance, 9% and
22% more lifetime than LHybrid while still outperforming it
by 7.6% and 6.8%, respectively.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their constructive
feedback. This work was partially funded by the HiPEAC
collaboration grant 2020, the Center for Advancing Electronics
Dresden (cfaed), the German Research Council (DFG) through
the HetCIM project (502388442) under the Priority Program
on ‘Disruptive Memory Technologies’ (SPP 2377), and from
grants (1) PID2019-105660RB-C21 and PID2019-107255GB-
C22/AEI/10.13039/501100011033 from Agencia Estatal de
Investigación (AEI), and (2) gaZ: T5820R research group
from Dept. of Science, University and Knowledge Society,
Government of Aragon.

REFERENCES

[1] B. Abali, B. Blaner, J. Reilly, M. Klein, A. Mishra, C. B. Agricola,
B. Sendir, A. Buyuktosunoglu, C. Jacobi, W. J. Starke, H. Myneni,
and C. Wang, “Data compression accelerator on ibm power9 and
z15 processors : Industrial product,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), 2020, pp.
1–14.

[2] S. Agarwal, “Linovo: Longevity enhancement of non-volatile caches by
placement, write-restriction & victim caching in chip multi-processors,”
Ph.D. dissertation, 2020.

[3] J. Ahn, S. Yoo, and K. Choi, “Selectively protecting error-correcting
code for area-efficient and reliable stt-ram caches,” in 2013 18th Asia
and South Pacific Design Automation Conference (ASP-DAC). IEEE,
2013, pp. 285–290.

[4] J. Ahn, S. Yoo, and K. Choi, “Prediction hybrid cache: An energy-
efficient stt-ram cache architecture,” IEEE Transactions on Computers,
vol. 65, no. 3, pp. 940–951, 2015.

12

[5] K. Bhattacharya, N. Ranganathan, and S. Kim, “A framework for
correction of multi-bit soft errors in l2 caches based on redundancy,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 17, no. 2, pp. 194–206, 2008.

[6] J. Bucek, K.-D. Lange, and J. v. Kistowski, “Spec cpu2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
41–42. [Online]. Available: https://doi.org/10.1145/3185768.3185771

[7] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen, W. Chen,
S. Chiu, R. Ganesan, G. Leong, V. Lukka, S. Rusu, and D. Srivastava,
“The 65-nm 16-mb shared on-die l3 cache for the dual-core intel xeon
processor 7100 series,” IEEE Journal of Solid-State Circuits, vol. 42,
no. 4, pp. 846–852, 2007.

[8] M.-T. Chang, S.-L. Lu, and B. Jacob, “Impact of cache coherence
protocols on the power consumption of stt-ram-based llc,” in The Memory
Forum Workshop, 2014.

[9] H.-Y. Cheng, J. Zhao, J. Sampson, M. J. Irwin, A. Jaleel, Y. Lu,
and Y. Xie, “Lap: Loop-block aware inclusion properties for energy-
efficient asymmetric last level caches,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), 2016, pp.
103–114.

[10] Y.-D. Chih, Y.-C. Shih, C.-F. Lee, Y.-A. Chang, P.-H. Lee, H.-J. Lin,
Y.-L. Chen, C.-P. Lo, M.-C. Shih, K.-H. Shen, H. Chuang, and T.-Y. J.
Chang, “13.3 a 22nm 32mb embedded stt-mram with 10ns read speed,
1m cycle write endurance, 10 years retention at 150° c and high immunity
to magnetic field interference,” in 2020 IEEE International Solid-State
Circuits Conference-(ISSCC). IEEE, 2020, pp. 222–224.

[11] S. Cho and H. Lee, “Flip-n-write: A simple deterministic technique
to improve pram write performance, energy and endurance,” in 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2009, pp. 347–357.

[12] M. Cintra and N. Linkewitsch, “Characterizing the impact of process
variation on write endurance enhancing techniques for non-volatile
memory systems,” in Proceedings of the ACM SIGMETRICS/international
conference on Measurement and modeling of computer systems, 2013,
pp. 217–228.

[13] J. Cook, J. Cook, and W. Alkohlani, “A statistical performance
model of the opteron processor,” SIGMETRICS Perform. Eval.
Rev., vol. 38, no. 4, p. 75–80, mar 2011. [Online]. Available:
https://doi.org/10.1145/1964218.1964231

[14] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[15] C. Escuin, P. Ibañez, D. Navarro, T. Monreal, J. M. Llaberia, and V. Viñals,
“L2c2: Last-level compressed-cache nvm and a procedure to forecast
performance and lifetime,” PLOS ONE, 2023.

[16] C. Escuin, A. A. Khan, P. Ibañez, T. Monreal, V. Viñals, and J. Castrillon,
“Hycsim: A rapid design space exploration tool for emerging hybrid last-
level caches,” in System Engineering for constrained embedded systems
(DroneSE and RAPIDO ’22). New York, NY, USA: ACM, 2022, pp.
1–6.

[17] H. Farbeh, H. Kim, S. G. Miremadi, and S. Kim, “Floating-ecc: Dynamic
repositioning of error correcting code bits for extending the lifetime of
stt-ram caches,” IEEE Transactions on Computers, vol. 65, no. 12, pp.
3661–3675, 2016.

[18] A. Ferreron, D. Suarez-Gracia, J. Alastruey-Benede, T. Monreal-Arnal,
and P. Ibanez, “Concertina: Squeezing in cache content to operate at
near-threshold voltage,” IEEE Transactions on Computers, vol. 65, no. 3,
pp. 755–769, 2015.

[19] F. Hameed and J. Castrillon, “A novel hybrid dram/stt-ram last-level-
cache architecture for performance, energy, and endurance enhancement,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 27, no. 10, pp. 2375–2386, 2019.

[20] A. Hankin, T. Shapira, K. Sangaiah, M. Lui, and M. Hempstead,
“Evaluation of non-volatile memory based last level cache given modern
use case behavior,” in 2019 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2019, pp. 143–154.

[21] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[22] S. Hong, B. Abali, A. Buyuktosunoglu, M. B. Healy, and P. J. Nair,
“Touché: Towards ideal and efficient cache compression by mitigating

tag area overheads,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 453–465.

[23] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour,
Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic performance
measurements of the intel optane dc persistent memory module,” arXiv
preprint arXiv:1903.05714, 2019.

[24] A. Jadidi, M. Arjomand, M. K. Tavana, D. R. Kaeli, M. T. Kandemir, and
C. R. Das, “Exploring the potential for collaborative data compression and
hard-error tolerance in pcm memories,” in 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2017, pp. 85–96.

[25] M. R. Jokar, M. Arjomand, and H. Sarbazi-Azad, “Sequoia: A high-
endurance nvm-based cache architecture,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 24, no. 3, pp. 954–967,
2016.

[26] W. Kang, W. Zhao, Z. Wang, Y. Zhang, J.-O. Klein, Y. Zhang,
C. Chappert, and D. Ravelosona, “A low-cost built-in error correction
circuit design for stt-mram reliability improvement,” Microelectronics
Reliability, vol. 53, no. 9-11, pp. 1224–1229, 2013.

[27] B. Kim, P. J. Nair, and S. Hong, “Adam: Adaptive block placement with
metadata embedding for hybrid caches,” in 2020 IEEE 38th International
Conference on Computer Design (ICCD). IEEE, 2020, pp. 421–424.

[28] N. Kim, J. Ahn, W. Seo, and K. Choi, “Energy-efficient exclusive last-
level hybrid caches consisting of sram and stt-ram,” in 2015 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC).
IEEE, 2015, pp. 183–188.

[29] K. Korgaonkar, I. Bhati, H. Liu, J. Gaur, S. Manipatruni, S. Subramoney,
T. Karnik, S. Swanson, I. Young, and H. Wang, “Density tradeoffs of
non-volatile memory as a replacement for sram based last level cache,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), 2018, pp. 315–327.

[30] A. S. Kozhin and A. V. Surchenko, “Evaluation of cache compression
for elbrus processors,” in 2018 Engineering and Telecommunication
(EnT-MIPT), 2018, pp. 135–139.

[31] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj,
G. Black, G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, C. Escuin, M. Fariborz,
A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope,
T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris,
T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh,
Y. Kodama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli, M. Moreto,
T. Mück, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris, L. E. Olson,
M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke, M. Samani, A. Sandberg,
J. Setoain, B. Shingarov, M. D. Sinclair, T. Ta, R. Thakur, G. Travaglini,
M. Upton, N. Vaish, I. Vougioukas, W. Wang, Z. Wang, N. Wehn, C. Weis,
D. A. Wood, H. Yoon, and Éder F. Zulian, “The gem5 simulator: Version
20.0+,” arXiv preprint arXiv:2007.03152, 2020.

[32] J.-Y. Luo, H.-Y. Cheng, I.-C. Lin, and D.-W. Chang, “Tap: Reducing
the energy of asymmetric hybrid last-level cache via thrashing aware
placement and migration,” IEEE Transactions on Computers, vol. 68,
no. 12, pp. 1704–1719, 2019.

[33] H. Noguchi, K. Ikegami, S. Takaya, E. Arima, K. Kushida, A. Kawasumi,
H. Hara, K. Abe, N. Shimomura, J. Ito, S. Fujita, T. Nakada, and
H. Nakamura, “7.2 4mb stt-mram-based cache with memory-access-
aware power optimization and write-verify-write / read-modify-write
scheme,” in 2016 IEEE International Solid-State Circuits Conference
(ISSCC), 2016, pp. 132–133.

[34] P. M. Palangappa and K. Mohanram, “Compex: Compression-expansion
coding for energy, latency, and lifetime improvements in mlc/tlc nvm,”
in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2016, pp. 90–101.

[35] P. M. Palangappa and K. Mohanram, “Castle: Compression architecture
for secure low latency, low energy, high endurance nvms,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), 2018, pp. 1–6.

[36] G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gibbons,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in 2012 21st International Conference
on Parallel Architectures and Compilation Techniques (PACT). IEEE,
2012, pp. 377–388.

[37] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Set-
dueling-controlled adaptive insertion for high-performance caching,”
IEEE micro, vol. 28, no. 1, pp. 91–98, 2008.

13

https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/1964218.1964231

[38] R. Rodrı́guez-Rodrı́guez, J. Dı́az, F. Castro, P. Ibáñez, D. Chaver,
V. Viñals, J. C. Saez, M. Prieto-Matias, L. Piñuel, T. Monreal, and J. M.
Llaberı́a, “Reuse Detector: Improving the Management of STT-RAM
SLLCs,” The Computer Journal, vol. 61, no. 6, pp. 856–880, 10 2017.
[Online]. Available: https://doi.org/10.1093/comjnl/bxx099

[39] Y. J. Song, J. H. Lee, S. H. Han, H. C. Shin, K. H. Lee, K. Suh, D. E.
Jeong, G. H. Koh, S. C. Oh, J. H. Park, S. O. Park, B. J. Bae, O. I.
Kwon, K. H. Hwang, B. Seo, Y. Lee, S. H. Hwang, D. S. Lee, Y. Ji,
K. Park, G. T. Jeong, H. S. Hong, K. P. Lee, H. K. Kang, and E. S. Jung,
“Demonstration of highly manufacturable stt-mram embedded in 28nm
logic,” in 2018 IEEE International Electron Devices Meeting (IEDM),
2018, pp. 18.2.1–18.2.4.

[40] D. Suggs, M. Subramony, and D. Bouvier, “The amd “zen 2” processor,”
IEEE Micro, vol. 40, no. 2, pp. 45–52, 2020.

[41] J. Wang, X. Dong, and Y. Xie, “Point and discard: a hard-error-tolerant
architecture for non-volatile last level caches,” in Proceedings of the
49th Annual Design Automation Conference, 2012, pp. 253–258.

[42] J. Wang, X. Dong, Y. Xie, and N. P. Jouppi, “i 2 wap: Improving non-
volatile cache lifetime by reducing inter-and intra-set write variations,” in
2013 IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2013, pp. 234–245.

[43] Z. Wang, D. A. Jiménez, C. Xu, G. Sun, and Y. Xie, “Adaptive placement
and migration policy for an stt-ram-based hybrid cache,” in 2014
IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2014, pp. 13–24.

[44] L. Wei, J. G. Alzate, U. Arslan, J. Brockman, N. Das, K. Fischer, T. Ghani,

O. Golonzka, P. Hentges, R. Jahan, P. Jain, B. Lin, M. Meterelliyoz,
J. O’Donnell, C. Puls, P. Quintero, T. Sahu, M. Sekhar, A. Vangapaty,
C. Wiegand, and F. Hamzaoglu, “13.3 a 7mb stt-mram in 22ffl finfet
technology with 4ns read sensing time at 0.9 v using write-verify-
write scheme and offset-cancellation sensing technique,” in 2019 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE, 2019, pp.
214–216.

[45] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and
S.-L. Lu, “Trading off cache capacity for reliability to enable low voltage
operation,” ACM SIGARCH computer architecture news, vol. 36, no. 3,
pp. 203–214, 2008.

[46] J. Wuu, D. Weiss, C. Morganti, and M. Dreesen, “The asynchronous
24mb on-chip level-3 cache for a dual-core itanium/sup /spl reg//-family
processor,” in ISSCC. 2005 IEEE Int. Digest of Technical Papers. Solid-
State Circuits Conf., 2005., 2005, pp. 488–612 Vol. 1.

[47] D. H. Yoon and M. Erez, “Memory mapped ecc: Low-cost error protection
for last level caches,” in Proceedings of the 36th annual international
symposium on Computer architecture, 2009, pp. 116–127.

[48] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P. Jouppi,
and M. Erez, “Free-p: Protecting non-volatile memory against both hard
and soft errors,” in 2011 IEEE 17th International Symposium on High
Performance Computer Architecture. IEEE, 2011, pp. 466–477.

[49] M. Zahran, K. Albayraktaroglu, and M. Franklin, “Non-inclusion property
in multi-level caches revisited,” International Journal of Computers and
Their Applications, vol. 14, no. 2, p. 99, 2007.

14

https://doi.org/10.1093/comjnl/bxx099

	Introduction
	Background and motivation
	NVM endurance
	Data compression
	State-of-the-art hybrid LLC insertion policies
	Motivation: quantitative analysis of hybrid LLC insertion policies

	Hybrid LLC architecture
	NVM-friendly non-inclusive LLCs
	Fault-tolerant microarchitecture
	Block writing
	Block reading
	Latency overhead

	Compression-aware insertion policies
	Naive compression-aware insertion
	Read and write reuse aware insertion
	CP_SD insertion: Set Dueling for performance
	CP_SD_Th: CP_SD for both performance and lifetime

	Results and analysis
	Experimental setup
	Performance vs. Lifetime
	SRAM-NVM proportion variation
	Impact of cv on performance and lifetime
	L2 size sensitivity
	NVM latency sensitivity
	Overhead analysis & Equalizing costs

	Conclusions
	References

