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ABSTRACT
Custom data types and arbitrary-precision arithmetic are often key
for efficient hardware designs on Field Programmable Gate Array
(FPGA) platforms. Current end-to-end flows incorporating quanti-
zation are not only domain-specific, but also tightly integrated and
not repurposable. Abstractions for arbitrary-precision arithmetic
are generally vendor-specific, and results are hardly portable across
platforms. In this work, we present a new Intermediate Representa-
tion (IR), base2, to address the programmability issues of custom
data types in reconfigurable hardware. We contextualize our pro-
posal in the greater LLVM ecosystem, where we show how existing
abstractions can be simplified and unified. We implement base2 in
Multi-Level Intermediate Representation (MLIR), which allows it
to be used in a variety of existing and future target-agnostic front-
ends. We demonstrate the power of our model by applying it to
sample kernels and evaluating the accuracy of the result. For these
samples, we achieve interoperability with an existing end-to-end
High-Level Synthesis (HLS) flow.
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1 INTRODUCTION
In continuous efforts to improve latency, throughput and energy-
efficiency of processing pipelines, specialized accelerators have be-
come essential in computing. Typically in the form of fixed-function
accelerators, such devices execute predefined dataflow programs
with high efficiency. Compared to general-purpose hardware, they
may offer vastly reduced area and energy footprint, as well as hard
real-time performance.

Systems for general-purpose computing can incorporate such
accelerators through FPGAs devices, which are examples of re-
configurable hardware. FPGAs can achieve very high energy effi-
ciency [16] and meet hard real-time requirements [15], making
them attractive also for edge systems. This comes at a cost to pro-
grammability, as usually a specialized hardware designer is needed
to exploit the FPGA’s flexibility profitably.
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Good hardware designs rely on pipelining and custom mem-
ory hierarchies, but also on specialized data types. For data types,
the flexibility of the FPGA allows the designer to implement arbi-
trary precision arithmetic, which provides a fine-grained trade off
compared to traditional Instruction Set Architecture (ISA)-based
code generation. The basis for this type substitution is quantization,
which is usually constrained by domain-specific considerations. For
example, in deep learning, 4-bit quantizations can produce smaller
and faster FPGA designs at negligible accuracy losses [5].

Most FPGA designs are generated using specialized compiler
tools, with HLS playing the most important role for general ap-
plications. These tools limit the hardware designer in their design
choices. In general, quantizing a kernel requires to (1) find the
quantization function that maps the original variables to quantized
values that are representable on the target device, (2) substitute
the storage type to the chosen target data type for all occurrences
of the original variable type, (3) replace arithmetic on substituted
values with quantization-aware implementations (e.g., re-quantize
where necessary), and (4) generate target code. If the designer re-
lies on HLS for code generation (4), they are limited by the HLS
front-end in terms of usable storage types. Any external tooling
capable of (1) must rely on a semantic model of (2) and (3), and
may therefore be incompatible, or at least not interoperable, with
HLS. Performing (2) and (3) by hand is often a large refactoring
task which is severely error prone due to language semantics, for
example in C/C++, which is common for HLS.

Currently available end-to-end solutions for quantization are
domain-specific. For example, a deep-learning neural network can
be trained for quantization by a tool such as Brevitas [2] with
little user interaction. This tool performs steps (1) to (3) completely
within the neural network abstraction. A specialized synthesis tool
called FINN [22] can then be used to generate an FPGA design
based on the output. Neither Brevitas nor FINN generalize to non-
ML applications, and the IP cores generated in this way cannot be
fine-tuned by the user.

Motivation & Contributions
Reconfigurable devices offer new opportunities in mapping algo-
rithms at the cost of increasing the programmability effort. With a
focus on custom data type support, designers face challenges with
respect to productivity, since it is harder to implement and main-
tain their hardware/software solution, flexibility, since it is hard
to freely choose and combine arbitrary-precision storage types,
and portability, since it is hard to move to another device and/or
toolchain while still achieving a comparable Quality of Result (QoR).

Productivity requires the toolchain to offer an accessible API.
Xilinx Vitis ships a C++ library that provides an ap_fixed type
which allows users to easily express type-safe fixed-point com-
putations. Bambu [6] on the other hand ships and recognizes
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libsoftfloat [18] functions to synthesize efficient floating-point
IP cores. Both (natively) lack the other’s abstraction respectively.
We define a specification for generalized binary arbitrary-precision
arithmetic with a straightforward interface.

Flexibility is limited by the API, sometimes ISA, that imple-
ments the storage types. Although parametric, ap_fixed requires a
“word-internal” decimal point, i.e., it imposes an arbitrary exponent
limit. In addition, it affixes overflow and rounding behavior to the
type, making it harder to mix them. Similarly, while libsoftfloat
can represent all binary IEEE-754 [9] derivatives, it cannot handle
emerging floating-point types such as 8E5M3FN. Our specification
generalizes towards fixed-point and floating-point computations
with arbitrary parametrizations.

Portability is limited by the IR used. Although generated Hard-
ware Description Language (HDL) is generally portable between
devices, higher-level artefacts are generally not. In the world of FP-
GAs, there is a substantial amount of vendor lock-in that prevents
code portability and other interoperation. In our above examples,
this is especially evident for the arbitrary-precision compute part of
the design.We implement a set of extensible and reusable MLIR [11]
dialects that can integrate into end-to-end flows.

We propose a new intermediate abstraction called base2 which
provides a target-agnostic way to use arbitrary-precision arithmetic.
It is based on a rigorous specification that eliminates architecture-
dependent behavior from the concerns of the front-end, while pro-
viding as much flexibility in type parameterization as possible. We
design base2 as a unification of compiler-level arithmetic models
that integrates with end-to-end compilation and synthesis flows.

MLIR End-to-end flows have already been demonstrated [21]
through the use of Bambu’s [6] or Xilinx Vitis’s LLVM IR front-ends.
In the future, the CIRCT [3] project is poised to bring HLS to MLIR
entirely, with some facilities already operable. We demonstrate
the value of retargetability by using it to perform design space
exploration on the CPU.

2 BACKGROUND
The design of base2 rests on four assumptions that are true for the
vast majority of current and emerging compute hardware, recon-
figurable or not. First and foremost, data is predominantly encoded
in binary formats. Second, cyclic integers are the the most fun-
damental data types. Third, the most common representation of
signed integers is two’s complement. Finally, arithmetic is either
fixed-point or floating-point. This section provides fundamentals
of number representations and rounding.

2.1 Binary numbers
Binary numbers are representations of numbers in binary encoding.
A binary encoding represents a value as an ordered sequence of bits.
These encodings are not necessarily consistent across architectures
(e.g., different endianness). However, themajority of platforms share
certain encoding properties that make bit manipulations relative to
a canonical order (e.g., MSB to LSB) meaningful.

2.1.1 Cyclic binary integers. Virtually all modern systems support
cyclic binary integers as their most fundamental data type. These
model the cyclic group ⟨Z2𝑛 , +, ·⟩, where 𝑛 is their bit width. En-
coded as positional binary numerals, they are the unsigned integers.

The two’s complement representation is an isomorphism for
the negative integers onto the cyclic group. This encoding allows
negative values to be encoded without a sign symbol, and is the
the de-facto standard onon virtually all platforms [10]. Interpreting
bits as an integer value thus requires knowing its signedness. How-
ever, the operations of addition, subtraction and multiplication are
implemented using the same circuit, regardless of signedness.

2.1.2 Fixed-point and floating-point arithmetic. All other types of
numbers considered by base2, and most in practical use, model the
rational numbers (and some irrational points). For efficiency, this
is achieved using a pair integers 𝑧, 𝐸 such that

Q =
{
𝑧 · 2𝐸 : 𝑧, 𝐸 ∈ N

}
where 𝑧 is the significand and 𝐸 is the binary exponent.

If the exponent 𝐸 is implied, i.e., the number is represented solely
by 𝑧, it is called a fixed-point number. If the exponent is explicit,
it is a floating-point number. These two formats do not differ in
their mathematical properties, only in the points they can represent.
Since machine representations use finite integers to represent them,
different limitations apply.

2.1.3 IEEE-754 binary floating-point. The IEEE-754 [9] standard
defines a family of interoperable and ubiquitous floating-point en-
codings and semantics. The binary family models rational numbers
as defined above, with the additional non-finite values of ±∞ and
Not-a-Number (NaN). Both are encoded using reserved exponent
values.

The infinities satisfy ∀𝑞 ∈ Q. − ∞ < 𝑞 < ∞, meaning they
are ordered. Additionally, it holds that |±∞| = |±∞|, meaning
that they have a defined magnitude greater than that of any finite
number. This makes them a useful extension of the value range that
integrates well into rounding schemes and operational semantics.

NaN values have platform-dependent semantics. They are in-
tended to propagate errors, i.e., poison values, where the result of
an operation is undefined. IEEE-754 defines both signalling and
quiet NaNs, with the intent being a difference in how the hardware
reports these as errors. Different implementations of the standard
have diverged incompatibly in this regard, leading to the latest
standard [9] dropping some wording.

2.1.4 IEEE-754 derivatives. Types such as bfloat16, 8E5M2 and
8E4M3FN [12] are derivatives of the IEEE-754 standard. They adopt
a similar encoding, notion of special values, and operational seman-
tics.

At first glance, the bfloat16 format for Tensor Processing Units
(TPUs) is a 16-bit binary floating-point type as per IEEE-754. It
is an application-specific compromise. It has the same number of
exponent bits as binary32, but less significand bits than binary16.
The manufacturers explicitly do not grant IEEE-754 compliance,
possibly due to minute differences in operational semantics.

The 8E5M2 and 8E4M3FN [12] formats are cousins that have the
exact same exponent range. However, 8E4M3FN has an additional
bit of significand precision. This is accomplished by removing the
infinities from the encoding, thus having two more finite exponent
values. As a result, 8E4M3FN is not IEEE-754 compliant.
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2.1.5 Other floating-point formats. Other non-derivative floating-
point formats are under serious consideration. An important exam-
ple are Posits [8], which achieve accuracy comparable to IEEE-754
using fewer bits and less silicon area. They feature a run-length en-
coding using regime bits to provide tapered accuracy that improves
near a magnitude of 1.

Posits do not fundamentally violate the assumptions of base2:
they are binary, and decomposable into a significand and a binary
exponent. However, while accomodated by the specification, our
implementation does not include parameterizations for them. It is
yet unclear whether the common floating-point environment of
base2 can fit them.

2.2 Rounding
Rounding is an important aspect of operational semantics. It de-
termines how an exact (mathematical) result is represented by a
number type which only has a limited set of points. Rounding is
only applied if the result is not exactly representable. The policy
applied is usually called a rounding mode, as are illustrated in fig. 1.

Name Constraint

none —
exact 𝑥 ′ = 𝑥

min|𝑥 ′ − 𝑥 |, such that
nearest —
down 𝑥 ′ ≯ 𝑥
up 𝑥 ′ ≮ 𝑥
towards zero |𝑥 ′ | ≯ |𝑥 |
away from zero |𝑥 ′ | ≮ |𝑥 |
converge

∑
∞
(𝑥 ′𝑖 − 𝑥𝑖 ) = 0

(a) Rounding modes defined by constraints on the result 𝑥 ′ in
relation to input 𝑥 .

A B

1 ulp

A B†exact = 0 ulp
A Bnone –

impl.-def.

A Bnearest ≤ 0.5 ulp
A Bdown < 1 ulp
BAup < 1 ulp

ResultMode Error

(b) Point-based rounding with 𝐴 < 𝐵 and �𝐶.𝐴 < 𝐶 < 𝐵.

Figure 1: Illustration of common rounding modes.

2.2.1 Poison and implementation-defined rounding. In fig. 1, † is
used to represent the poison value, which indicates an undefined
result. It occurs when a constraint as shown in fig. 1a cannot be
satisfied. This is different from impl.-def. behavior, which is defined

elsewhere, observable, and may be relied on by the user. It is im-
portant that a target-agnostic front-end has access to well-defined
rounding contracts to meet accuracy goals for its computations.

2.2.2 Unit in the Last Place (ulp) calculus. In fig. 1b, point-based
rounding is shown. Here, the discrete points (number-like values)
representable by the result type are given on an ordered number
line, and rounding ranges are shown. The resulting point is chosen
by determining into which range the exact input falls. For the zero-
relative rounding modes, either up or down is chosen based on the
relation to 0. Note that 0 is not necessarily a representable point.

The diagram also shows the definition of the Unit in the Last
Place (ulp). This unit is commonly used to bound the rounding
error, such as in MPFR [7], which defines correct floating-point
operations. For any implementation of an operation, a proof is
constructed that bounds the ulp error of the result, also called ulp
calculus. A result is said to be “correctly rounded” if the rounding
error is less than or equal to 0.5 ulp.

2.3 LLVM IR and MLIR
LLVM IR is a widespread and successful Single Static Assignment
(SSA) IR, supported also by HLS tools like Xilinx Vitis. Its instruc-
tions define a contract that all targets are expected to implement.
MLIR is an extensible IR, in which dialects collect attributes, types
and operations that form an —ideally self-contained— abstraction.
The llvm dialect is an incomplete embedding of LLVM IR in MLIR.

Typically, MLIR dialects define lowerings, i.e., conversions to
more concrete dialects. In that sense, to an MLIR front-end, op-
erations and dialects are contracts as well. MLIR is unstable, and
contracts continue to be refined. Usually, this means a dialect is
broken apart into separate responsibilities, resulting in less overall
assumptions. One such dialect under current scrutiny is the arith
dialect. We designed base2 to be a drop-in replacement that solves
the underlying issues (e.g., poison semantics) by stronger specifi-
cation. For now, the MLIR community has already extracted the
index dialect from arith for similar reasons.

2.3.1 Arithmetic in LLVM IR. In LLVM IR, there are parametric
signless integer types and a fixed set of pre-defined IEEE-754 deriva-
tive floating-point types. The instruction set is designed with cyclic
integers in mind, with signedness becoming part of the operation
(e.g., udiv & sdiv). LLVM IR has a built-in poison value system,
which operations can opt into for certain overflow scenarios (e.g.,
udiv exact).

Having only signless integers leads to a simplification in code
selection and aggressive instruction combination. This is partly due
to the absence of (no-op) type cast instructions in typical integer
code. A close mapping onto common ISAs is achieved. Additionally,
poison values allow for more aggressive compile-time optimiza-
tions.

LLVM IR is not extensible, and support for additional types
is severely limited. While there are fixed-point intrinsics, such
types cannot become first-class citizens, living among separate
instructions. Conversely, LLVM IR is forced to mix domain-specific
integer arithmetic with pointer and index calculations, which could
live under different, more favorable assumptions.
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2.3.2 The MLIR arith dialect. MLIR supports all LLVM IR types as
built-ins, which includes signless integers and IEEE-754 derivatives.
Additionally, MLIR integers may have a signedness, and new types
can be added.While the llvm dialect is virtually equivalent to LLVM
IR, the arith dialect is a model of an arithmetic instruction subset
of LLVM IR.

MLIR’s arith shares the same advantages and disadvantages
(except for index computations) as LLVM IR, by design. However,
it does not support poison semantics, and does not offer such opt-
in behavior. In addition, it does not guarantee a contract for its
operations. Although they exist, signed and unsigned integers are
not usable in the arith dialect.

2.3.3 TheMLIR index dialect. Index computations inMLIR are del-
egated to a platform-specific integer type called index of platform-
specific bit width (i.e., a machine address word). It is used widely
in the core dialects. The index dialect provides constant, casting,
comparison and arithmetic operations for this type.

While still implementing a lowering onto llvm, the advantage
of the index dialect is the relaxation of the contracts. Users cannot
expect a consistent representation between targets. This is similar
to the difference between std::int64_t and std::intptr_t in
C++. Also, any kind of overflow in the index dialect can be defined
to constitute undefined behavior.

3 BASE2: AN IR FOR BINARY NUMERALS
We designed an SSA IR called base2 to address the programmability
challenges for arbitrary-precision arithmetic. We implemented this
IR as a set of MLIR dialects. The base2 dialect is a new medium-
level abstraction layer for target-agnostic IR producers, such as
linear algebra front-ends. One of our explicit design goals is to
replace arith in all contexts, thus avoiding signless integers and
unwanted Undefined Behavior (UB) above the code-selection level.

3.1 Type hierarchy
base2 is designed to be minimal but complete with respect to the
most common binary number formats. To simplify implementation
and extensibility, the requirements placed on its member types are
layered. To that extent, base2 defines an internal hierarchy of types,
as depicted in fig. 2. In summary:

• Bit sequence types are represented by bit sequences of a
fixed length 𝜔B.

• Interpretable types are bit sequence types with an associ-
ated interpretation function ΓP, i.e., a (reversible) function
that maps bit sequences to points.

• Number types are interpretable types with an associated
rounding function ΩN𝑅 i.e., a function that maps rational
numbers to points under a given rounding mode 𝑅.

• Fixed-point types are number types represented by canon-
ical integers with an associated fixed exponent.

• Floating-point types are number types decomposable into
an integer significand and exponent of base 2.

These requirements are sufficient to generalize the common
operations to all number types. This allows for type- and thus
target-independent contracts to be established by the specification.
From these requirements, we derive additional tools such as the

Bit sequence type B

Interpretable type P

Number type N

Fixed-point type F Floating-point type R

Integer type I

𝜔B

ΓP

ΩN
𝑅

𝑧, 𝐸

Figure 2: The base2 type hierarchy.

subtype relation and the type promotion operator (least common
supertype).

The scope of base2 is limited to fixed-point and floating-point
binary rationals. While the canonical cyclic integer representation
fully defines every allowed fixed-point format, the same is not
true for floating-point encodings. Fixed-point and integer types
are totally specified by base2, whereas floating-point formats may
exhibit impl.-def. behavior.

3.2 Operation definitions
base2 provides the common, closed arithmetic operations of ad-
dition, subtraction, multiplication, division and remainder. These
operations rely on an inherent rounding mode, which constrains
the result. We define all of them by applying the type-specific round-
ing function to the exact mathematical result, which is obtained
through interpretation, e.g.

add(𝑎, 𝑏, 𝑅) = ΩN𝑅 (ΓN (𝑎) + ΓN (𝑏))
As another example, the remainder operation disambiguates the

“modulo” operator using a rounding mode 𝑅 via

rem(𝑎, 𝑏, 𝑅) = ΓN (𝑎) − ΓN (𝑏)div(𝑎, 𝑏, 𝑅)
To remain independent of the encoding, base2 does not allow

bit manipulation. Some common bit-centric operations can still be
expressed in a compatible and portable manner. For example, the
(arithmetic) bit shifting operations with 𝑧 ∈ Z and 𝑘, 𝑛 ∈ N are
given by

shl(𝑧, 𝑘) ≡ 𝑧 · 2𝑘 mod 2𝑛

shr(𝑧, 𝑘) = ⌊𝑧 · 2−𝑘 ⌋
Overflow and underflow in base2 are covered by the rounding

modes. Depending on the requested rounding, the constraints from
fig. 1a force a certain saturation behavior as shown in fig. 3a.

Another aspect of base2 is the ability to bootstrap rounding, i.e.,
implement the rounding modes using exact base2 operations. This
is important as not every platform will implement every rounding
mode. For integer saturation, this is trivial. For fractional rounding,
we can make use of previous results. Let 𝑧 ∈ Z and 𝑛 ∈ N, it follows
that

ΩT𝑅

(
𝑧 · 2−𝑛 ) = div

(
𝑧′, 2𝑛, down

)
= shr (add (𝑧, 𝜖𝑅 (𝑧, 𝑛), 𝑅) , 𝑛)

where 𝜖𝑅 is the rounding bias function (cf. fig. 3b).
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Mode Underflow Overflow

none impl.-def.
exact † †

nearest min𝑌 max𝑌
down impl.-def. max𝑌

up min𝑌 impl.-def.
towards zero min𝑌 max𝑌

away from zero impl.-def.
converge impl.-def.

(a) Saturation on overflow and underflow.

Mode 𝜖𝑅 (𝑧, 𝑛)
none impl.-def.
exact —

nearest 2−𝑛−1 −
{
1 𝑧 < 0
0 𝑧 ≥ 0

down 0
up 2−𝑛 − 1

towards zero 𝑧 ≥ 0 : 𝜖down (𝑧, 𝑛), 𝑧 < 0 : 𝜖up (𝑧, 𝑛)
away from zero 𝑧 ≥ 0 : 𝜖up (𝑧, 𝑛), 𝑧 < 0 : 𝜖down (𝑧, 𝑛)

converge impl.-def.

(b) Rounding bias for fractional rounding.

Figure 3: Implementation of the rounding modes.

3.3 MLIR implementation
Our MLIR implementation base2-mlir1 is the reference imple-
mentation of the base2 specification2. It provides target-agnostic
front-ends with contracts for fixed-point and floating-point arith-
metic on parametric types. While fixed-point types are covered in
their entirety, the MLIR implementation is extensible via interfaces
to add further formats, especially for floating-point. The current
implementation is incomplete with respect to our unification goals
for a common floating-point environment.

3.3.1 Contracts. The new base2 dialect is the highest level of ab-
straction provided by our implementation, and is intended to com-
pletely replace arith. It depends on cyclic integers, which are
modeled by the new cyclic dialect. Bitwise operations are pro-
vided by the new bit dialect. Undefined behavior is modeled using
the new ub dialect, which we hope will be provided by the MLIR
core in the future. All new dialects together with index combine to
form a lowering path to llvm (see fig. 4c). The IR elements offered
by the new dialects are listed in fig. 4b. The contract each dialect
offers in that scenario is summarized in fig. 4a.

3.3.2 Interfaces. base2-mlir is designed for extensibility and
reusability. The implementation relies heavily on MLIR interfaces
and type & attribute specializations. This greatly reduces the ef-
fort required to add compliant types, even when they are out-
side the user’s control. For example, the FixedPointSemantics

1https://github.com/KFAFSP/base2-mlir
2https://github.com/KFAFSP/base2-spec

Existing dialects
arith Signless integer types of arbitrary bit width. Some binary

floating-point types. Arithmetic with underdefined over-
flow and rounding.

index An integer type suitable for address computation. Its
values are ordered and support arithmetic. Overflow is
explicitly undefined.

base2-mlir dialects
bit Manipulation of ordered bit sequences.
cyclic Parametric unsigned and signed cyclic integers.
base2 Parametric fixed-point and floating-point arithmetic.

(a) Dialect contracts.
ub. #poison, poison, freeze

bit. #bits, #dense_bits, constant, cast, cmp, select
and, or, xor, shl, shr, count, clz, ctz

cyclic. constant, trunc, ext, cmp, min, max, shl, shr
add, sub, mul, div, rem

cyclic.checked. trunc, shl, add, sub, mul, div

base2. !fixed, !ieee754, cast, cmp, min, max, add
sub, mul, div, rem

base2.fixed. add, sub, mul, div, rem
base2.float. ilogbn, scalbn

(b) Attributes, types and operations in base2-mlir. Incomplete
features are in gray.

front-end

arith base2

cyclic

bit

ub

index

llvm

(c) Dialect lowerings in base2-mlir. MLIR core features in gray.

Figure 4: Breakdown of the base2-mlir MLIR project.

and IEEE754Semantics interfaces seamlessly integrate the built-
in types into base2-mlir. Support for handling scalar and
container constants of bit sequence types is provided by our
BitSequenceAttr and DenseBitSequencesAttr of the bit dialect.
This trivializes the implementation of constant folding that would
otherwise be hard to implement for new binary encodings.

3.3.3 End-to-end usage. For CPU targets, base2-mlir is directed
at typical users which expect a reasonably efficient and functional
lowering pipeline to llvm. For reconfigurable targets, base2-mlir
is directed at advanced users that are in posession of either vendor
target dialects or pluggable HLS. An end-to-end flow requires exit-
ing the base2 lowering flow at an interoperable level, for example
via LLVM IR or CIRCT HLS.

As users of Bambu HLS [6], we exit at the llvm level, lower-
ing fixed-point entirely, and implementing !base2.ieee754 via
libsoftfloat calls.We achieve this using a trivial, new softfloat

https://github.com/KFAFSP/base2-mlir
https://github.com/KFAFSP/base2-spec
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dialect, mapping library operations 1 : 1, which base2 can be triv-
ially lowered to, and is in turn trivially lowered to func and thus
llvm.

4 EVALUATION
To test our base2-mlir implementation, we performed two exper-
iments. In section 4.1, we use a simple test kernel to show how
arbitrary-precision types in base2 can be used. In section 4.2, we
look at an excerpt of a more complex real-world application, which
exhibits promising opportunities for fixed-point arithmetic.

4.1 Interpolation operator
In our first experiment, we use a simple MLIR kernel from the linear
algebra domain. We use the tensorial isotropic interpolation kernel
from [19], which is given by

𝑣 = (𝑆 ⊗ 𝑆 ⊗ 𝑆 ⊗ 𝑢)𝑎𝑥𝑏𝑦𝑐𝑧𝑥𝑦𝑧
We replace the scalar type with base2.ieee754 and base2.fixed,
and change all uses of arith operations to the base2 dialect. We
compile the kernel in both a standard f64 (11 exponent bits, 52
significand bits) and themodified version (cf. fig. 5). Using a C++ test
adapter, we invoke these kernels for randomized data and compare
the relative errors.

#contr1_trait = {
indexing_maps = [

affine_map<(a,b,c,x,y,z) -> (a,x)>,
affine_map<(a,b,c,x,y,z) -> (b,y)>,
affine_map<(a,b,c,x,y,z) -> (c,z)>,
affine_map<(a,b,c,x,y,z) -> (x,y,z)>,
affine_map<(a,b,c,x,y,z) -> (x,y,z)>

],
iterator_types = [

"reduction", "reduction", "reduction",
"parallel", "parallel", "parallel"

]
}
!scalar = !binary.ieee754<53, 11>
!S_type = tensor<11x11x!scalar>
!u_type = tensor<11x11x11x!scalar>

%t = linalg.generic #contr1_trait
ins(%S, %S, %S, %u : !S_type, !S_type, !S_type, !u_type)
outs(%zeros : !u_type) {

^bb0(%Sax : !scalar, %Sby : !scalar, %Scz : !scalar, %uxyz : !scalar, %accu : !scalar):
%1 = binary.mul %Sax, %Sby : !scalar
%2 = binary.mul %1, %Scz : !scalar
%3 = binary.mul %2, %uxyz : !scalar
%4 = binary.add %accu, %3 : !scalar
linalg.yield %4 : !scalar

} -> !u_type

Figure 5: The interpolation kernel in linalg with base2.

In both the floating-point and the fixed-point version, the ker-
nel is fed data from a seeded random number generator. Using
uniform integer distributions, this generator produces IEEE-754
binary64 floating-point values using at most 𝑝 significand bits and
ld𝐸 exponent bits. This parameterization allows us to mock differ-
ent example datasets and compare the implementation accuracy.
In the floating-point version, our design space is two-dimensional:
we can control both the number of significand and exponent bits.
In the fixed-point version, we assume a total of 64 bits and control
the number of fractional bits (negative exponent) only.

Figure 6 shows the results of this test. The top row shows the
floating-point results, the bottom row the fixed-point results. The
leftmost plots clearly show how the error shrinks with increased

significand precision, reaching 0 for sufficiently large values. In the-
ory, we would expect a diagonal boundary where frac_bits = 𝑝 .
Because the kernel is heavy on multiplications, the error is domi-
nated by a rightward gradient. The center plot subtracts the mean
gradient to reveal the expected top-left to bottom-right diagonal
gradient. The fixed-point version is shifted right compared to the
floating-point version, as negative exponents consume additional
significand bits.

The rightmost plots show the impact of dataset exponent range
on the results. For the floating-point case, a critical diagonal exists,
beyond which out-of-range exponents are rounded to ±∞, leading
to infinite errors. This plot only compares finite errors to show
the fine gradient between the regions. For the fixed-point case, a
roughly triangular shape centered at 𝑝 is visible. This is due to an
increase in exponent range requiring more significand bits whilst
decreasing the resolution compared to the floating-point case.

4.1.1 End-to-end flow integration. This kernel has previously been
evaluated in [21] as part of an end-to-end flow for FPGA accelera-
tion. In that work, quantization using integer data types was also
considered. However, custom floating-point implementations were
not part of the evaluation.

The flow presented in [21] also permits Bambu [6] HLS for ker-
nel synthesis. This open-source HLS tool provides a custom IP core
generator for arbitrary-precision floating-point arithmetic. It ac-
complishes this by substituting calls to the libsoftfloat library.
For this experiment, we added a base2 to softfloat lowering in
MLIR, which implements !ieee754 arithmetic using this library,
allowing us to plug our kernels directly into the existing end-to-end
flow.

4.2 RRTMGP
For our second experiment, we are looking at part of the RTE-
RRTMGP [13] kernels. The Rapid Radiative Transfer Model for
GCM solvers (Parallelized), is a modernized implementation of the
successful RRTM [14]. Its ancestor is widely used in Global Climate
Models (GCMs), such as WRF [20]. Its main function is to compute
radiative fluxes.

In this experiment, we consider only the major absorbers optical
depth integral. This is broken down into a normalization step and a
numerical integration. Normalization adjusts the provided pressure,
temperature and gas mixing profiles for a reference atmosphere.
The resulting integer part is used for lookups into tabulated absorp-
tion coefficients. The optical depth integral is then computed at
quadrature points by multi-linear interpolation of the table entries
using the fractional part. We test the kernel using a real-world
example profile and the most up-to-date constant dataset3.

The normalization step is particularly interesting because its
results have a constrained range and significantly lower precision
than binary64 permits. However, the reference implementation
uses IEEE-754 binary64 everywhere. Specifically, the interpolation
fractions are an attractive target for a fixed-point replacement. In
addition, a re-quantization of the lookup tables could potentially

3Code and data can be obtained at https://github.com/earth-system-radiation/rte-
rrtmgp/tree/main/rrtmgp

https://github.com/earth-system-radiation/rte-rrtmgp/tree/main/rrtmgp
https://github.com/earth-system-radiation/rte-rrtmgp/tree/main/rrtmgp
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Floating-point version:
!ieee754<frac_bits, exp_bits>

Fixed-point version:
!fixed<signed 64, -frac_bits>
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Figure 6: Error in the interpolation kernel for varying test parameters.
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Figure 7: Error in the RRTMGP kernel for varying fixed-point types.

yield huge benefits for an FPGA implementation due to area reduc-
tion. In this experiment, we look at how custom fixed-point types
impact the interpolation accuracy.

We have tested a variety of 16, 32 and 64 bit fixed-point formats.
Figure 7 shows the results of our tests, plotting relative errors
against the fixed exponent (i.e., number of fractional bits). The
top diagrams show that the linearly interpolated temperature and
pressure converge quickly to low errors. The outlier for 𝑛 = 16, 𝐸 =
−10 stems from the fact that the remaining integer bits can no
longer represent the pressure range. This confirms our hypothesis
that these fractions can be faithfully represented using narrow
fixed-point types.

Unfortunately, the same cannot be said for the variables that
incorporate gas concentrations. The lower diagrams show the un-
acceptable performance of our chosen fixed-point formats for these
computations. However, this is likely due to scaling issues, with
the gas concentrations being in the range of 1012–1022molec./cm2.
In a proof of concept, for the 64 bit case, we have pre-scaled the
values and tables by 261 ≈ 1018 to show the impact.

In practice, absolute values can be replaced by mixing ratios in
the normalizaton, and different type parameterizations can be used
for different variables. In our experiment, we have mixed the 16
and 32 bit formats for interpolation fractions with binary64 for
gas concentrations. The tau (mixed) plot shows their impact on the
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error of the overall result. In the 64 bit case, we have used the pre-
scaled values to compute tau (mixed) entirely within fixed-point.
Clearly, other quantizations or a tightly-consrtained floating-point
representation would be more advantageous in this case.

5 CONCLUSION AND OUTLOOK
We presented base2, a new target agnostic IR that extends the MLIR
framework with (1) portable parametric custom types and gener-
alizable operational semantics, and (2) built-in Poison semantics.
We believe base2 to be an important generalization within MLIR,
especially for hardware design and HLS flows. We demonstrated
how base2 could be used to generate code from kernels without
code modifications to both CPU and FPGA implementations. This
enables steering hardware/software co-design with deterministic,
simulated execution. We also showed how base2 integrates into
third-party pipelines to increase the flexibility of existing HLS flows.

base2 does not perform quantization, i.e., reason about quantiza-
tion functions. However, it provides a storage type implementation
which was badly needed, in particular by machine learning com-
piler developers in MLIR.We have begun refactoring theMLIR tosa
ISA [1] for deep learning by extracting a StorageTypeInterface.
We plan to demonstrate a drop-in integration of base2 into an
existing machine learning front-end this way.

In the long run, we believe base2 and related efforts can ex-
tend to full math support for arbitrary-precision expressions. This
would allow for the generation of correct, target-independent math
libraries along the vision of [7]. A base2-enabled compiler could be
the first step to resolve existing accuracy issues, such as in libc [4].

In terms of backend integration, we plan to further demonstrate
the interoperability base2, with other downstream flows. Future
perspectives on integration with HLS tend towards pulling as many
design decision into the MLIR dialect stack. The CIRCT project is
already mature enough that simple kernels, such as our interpo-
lation use case, can be synthesized entirely within MLIR. Aside
from CIRCT, we will demonstrate the boostrapping capabilities of
base2’s existing LLVM IR lowering for porting kernels between
Vitis and Bambu HLS within the EVEREST project [17].
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