
High-Performance Deterministic Concurrency using Lingua Franca

CHRISTIAN MENARD, TU Dresden, Germany

MARTEN LOHSTROH, UC Berkeley, USA

SOROUSH BATENI, UC Berkely, USA

MATTHEW CHORLIAN, UC Berkeley, USA

ARTHUR DENG, UC Berkeley, USA

PETER DONOVAN, UC Berkeley, USA

CLÉMENT FOURNIER, TU Dresden, Germany

SHAOKAI LIN, UC Berkeley, USA

FELIX SUCHERT, TU Dresden, Germany

TASSILO TANNEBERGER, TU Dresden, Germany

HOKEUN KIM, Arizona State University, USA

JERONIMO CASTRILLON, TU Dresden, Germany

EDWARD A. LEE, UC Berkeley, USA

Actor frameworks and similar reactive programming techniques are widely used for building concurrent systems. They promise to
be efficient and scale well to a large number of cores or nodes in a distributed system. However, they also expose programmers to
nondeterminism, which often makes implementations hard to understand, debug, and test. The recently proposed reactor model is a
promising alternative that enables deterministic concurrency. In this paper, we present an efficient, parallel implementation of reactors
and demonstrate that the determinacy of reactors does not imply a loss in performance. To show this, we evaluate Lingua Franca
(LF), a reactor-oriented coordination language. LF equips mainstream programming languages with a deterministic concurrency
model that automatically takes advantage of opportunities to exploit parallelism. Our implementation of the Savina benchmark suite
demonstrates that, in terms of execution time, the runtime performance of LF programs even exceeds popular and highly optimized
actor frameworks. We compare against Akka and CAF, which LF outperforms by 1.86𝑥 and 1.42𝑥 , respectively.

Additional Key Words and Phrases: coordination, concurrency, determinism, performance

1 INTRODUCTION

Theoreticians working on programming language semantics have long understood the value of determinism as well as
the expressive power of nondeterminism in programming languages. In practice, however, today, nondeterminism creeps
into programming languages and frameworks not to benefit from its expressiveness, but rather because of a widespread
perception that it is needed to get good performance on parallel hardware. In this paper, we show experimentally that a
wide range of reactive applications can be implemented deterministically without sacrificing performance. We do this

Authors’ addresses: Christian Menard, christian.menard@tu-dresden.de, TU Dresden, Germany; Marten Lohstroh, marten@berkeley.edu, UC Berkeley,
USA; Soroush Bateni, soroush@berkely.edu, UC Berkely, USA; Matthew Chorlian, mattchorlian@berkeley.edu, UC Berkeley, USA; Arthur Deng,
langxing.deng@berkeley.edu, UC Berkeley, USA; Peter Donovan, peterdonovan@berkeley.edu, UC Berkeley, USA; Clément Fournier, clement.fournier@tu-
dresden.de, TU Dresden, Germany; Shaokai Lin, shaokai@berkeley.edu, UC Berkeley, USA; Felix Suchert, felix.suchert@tu-dresden.de, TU Dresden,
Germany; Tassilo Tanneberger, tassilo.tanneberger@tu-dresden.de, TU Dresden, Germany; Hokeun Kim, hokeun@asu.edu, Arizona State University,
USA; Jeronimo Castrillon, jeronimo.castrillon@tu-dresden.de, TU Dresden, Germany; Edward A. Lee, eal@berkeley.edu, UC Berkeley, USA.

2023. Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-7134-8384
HTTPS://ORCID.ORG/0000-0001-8833-4117
HTTPS://ORCID.ORG/0000-0002-5448-3664
HTTPS://ORCID.ORG/0000-0003-4102-7181
HTTPS://ORCID.ORG/0009-0003-3293-3606
HTTPS://ORCID.ORG/0000-0003-3374-0753
HTTPS://ORCID.ORG/0000-0002-5661-3004
HTTPS://ORCID.ORG/0000-0001-6885-5572
HTTPS://ORCID.ORG/0000-0001-7011-9945
HTTPS://ORCID.ORG/0000-0002-3196-7869
HTTPS://ORCID.ORG/0000-0003-1450-5248
HTTPS://ORCID.ORG/0000-0002-5007-445X
HTTPS://ORCID.ORG/0000-0002-5663-0584
https://orcid.org/0000-0002-7134-8384
https://orcid.org/0000-0001-8833-4117
https://orcid.org/0000-0002-5448-3664
https://orcid.org/0000-0003-4102-7181
https://orcid.org/0009-0003-3293-3606
https://orcid.org/0000-0003-3374-0753
https://orcid.org/0000-0002-5661-3004
https://orcid.org/0000-0001-6885-5572
https://orcid.org/0000-0001-7011-9945
https://orcid.org/0000-0002-3196-7869
https://orcid.org/0000-0003-1450-5248
https://orcid.org/0000-0002-5007-445X
https://orcid.org/0000-0002-5663-0584

2 Menard & Lohstroh et al.

by focusing on actor frameworks, which have proved popular and successful in many very demanding applications, but
admit nondeterminism that is often not actually needed by their applications.

Exploiting parallel hardware such as multicore machines to improve performance is only possible when programs
expose concurrency. Common abstractions for concurrency include threads [24], remote procedure calls [72], publish-
subscribe [34], service-oriented architectures [75], and actors [1, 40]. Each of these models has its own merits, but
they all introduce nondeterminism: situations where, for a given state and input, the behavior of a program is not
uniquely defined. While nondeterminism can be useful in some applications, most programming tasks benefit from
more repeatable behavior. Deterministic programs are easier to understand, debug, and test (for each test vector, there is
one known-good response). For nondeterministic programs, problematic behaviors might be harder to discover because
they may only occupy a small fraction of the state space [44]. And reproducing failures can be extremely hard [50, 56,
70] because they might occur only when the system is under a specific amount of load [82].

Determinism is a subtle concept [49]. Here, we focus on a particular form of determinism for programs, where a
program is deterministic if, given the same inputs, it always produces the same outputs. This definition does not require
that operations be performed in a particular order, and therefore is not at odds with concurrency and parallel execution.
It is possible, but often not easy, to achieve this form of determinism even when using nondeterministic abstractions
such as threads, actors, and asynchronous remote procedure calls. For simple enough programs, such as a chain of
actors, if communication is reliable, then execution will be deterministic. Some of the benchmarks we compare against
in this paper are deterministic in this way. As we will show, however, even slightly more complex communication
structures result in nondeterminism that can be difficult to correct.

In this paper, we evaluate a language-based coordination that preserves determinism by default and only admits
nondeterminism when explicitly introduced by the programmer. The coordination language Lingua Franca (LF) [61],
which is based on a concurrent model of computation called reactors [60, 58], achieves this by analyzing program
structure and ensuring that data dependencies are observed correctly at runtime. An LF program defines reactive
software components called “reactors” and provides operators to compose them hierarchically (through containment)
and bilaterally (via connections). Because the language supports both deterministic and nondeterministic concurrency,
it provides a fertile ground for exploring the impact of determinism on performance.

The semantics of the deterministic subset of LF can be thought of as a deterministic variant of actors [1, 40, 59].
We show in this paper that it delivers performance comparable to popular nondeterministic realizations of actors on
parallel hardware, like Akka [79] and CAF [21]. Similar to Akka and CAF, LF orchestrates the execution of code written
in conventional programming languages. However, unlike those frameworks, LF is polyglot. It currently supports C,
C++, Python, TypeScript, and Rust. This paper focuses on the runtime performance of the C++ target, which, as a core
contribution of this paper, has been optimized to efficiently exploit concurrency on parallel hardware. Earlier work [61]
has only reported preliminary performance indications of LF based on its C target, which is predominantly aimed at
running on embedded systems.

At the core of LF’s concurrency model is a logical model of time that gives a clear notion of simultaneity and
avoids deadlocks using dependency analysis based on causality interfaces [53]. It is this timed semantics that enables
efficient deterministic concurrency in LF. However, the benchmarks we compare against were created to evaluate actor
frameworks, which have no temporal semantics. None of the benchmarks take advantage of the time-related features of
LF; the temporal semantics is only used to deliver determinism.

Since the execution of LF programs requires a dependency analysis, the precise structure of the program needs
to be known at startup. Modifying the program structure during execution is currently not possible. Therefore, the
Manuscript submitted to ACM

High-Performance Deterministic Concurrency using Lingua Franca 3

User A

User B

Account

Deposit

Withdrawal

(a) Deposit and Withdrawal sent by dif-
ferent users.

User Account

Deposit

Withdrawal

(b) Deposit and Withdrawal sent by
same user.

User

Proxy

Account

Deposit

Withdrawal Withdrawal

(c) Withdrawal sent via a proxy.

Fig. 1. Example actor programs that may expose nondeterministic behavior.

performance comparison in this paper is limited to actor programs that can be expressed statically. We argue that this
is true for most applications, especially those that benefit from LF’s semantics. For instance, out of the 32 programs in
the Savina benchmark suite [41], only 8 require dynamic actor creation. While the underlying reactor model defines
so-called mutations for runtime adaptations, LF does not implement them yet. A full discussion of mutations in LF
including a performance comparison with dynamic actor creation remains for future work.

Contributions. We show that the reactor-oriented paradigm as implemented in Lingua Franca enables efficient
exploitation of parallel hardware without relinquishing determinism. For this, we explain the mechanisms through
which LF programs expose concurrency; we present a language extension that allows for the definition of scalable
programs; and we introduce an optimized C++ runtime for LF that enables efficient parallel execution. We further
present an extensive evaluation based on the Savina benchmark suite [41], showing that our LF runtime outperforms
Akka and CAF by 1.86𝑥 and 1.42𝑥 , respectively.

Outline. We first motivate our work (Section 2) and then introduce LF (Section 3). We go into detail about the
concurrency in LF, discuss a syntax extension for scalable connection patterns and introduce our optimized C++ runtime
(Section 4). Next, we report benchmark results (Section 5), discuss related work (Section 6), and conclude (Section 7).

2 MOTIVATION

The actor model is widely accepted and deployed in production for its promise to allow programmers to easily express
concurrency, provide high execution performance, and scale well to large datasets and complex applications. Moreover,
in contrast to thread-based programs, actor semantics prevents low-level data races. However, like most message-passing
paradigms, actors expose the programmer to nondeterminism in the form of high-level data races [92], a problem that
becomes considerably challenging to manage as the complexity of a program grows.

Consider the simple example in Fig. 1a. The Account actor manages the balance of a bank account that two users
interact with. User A sends a deposit message increasing the account’s balance and User B sends a withdrawal message
decreasing the account’s balance. If we assume that the balance is initialized to 0 and the account only grants a
withdrawal if the resulting balance is not negative, then there are two possible behaviors. If A’s message is processed
first, the withdrawal is granted to B. If B’s message is processed first, the withdrawal is denied. The actor model assigns
no meaning to the ordering of messages. Therefore, there is no well-defined correct behavior for this example.

The reader may object that for an application like that of Fig. 1a, the order of transactions is intrinsically nondeter-
ministic, and any additional nondeterminism introduced by the software framework is inconsequential. However, if we
focus on testability, we see that even identical inputs can yield different results, making testing more difficult. If we
focus on consistency, the problem that different observers of the same events may see different behaviors becomes

Manuscript submitted to ACM

4 Menard & Lohstroh et al.

problematic. In databases, it is common to assign time stamps to external inputs and to then treat those timestamps as a
semantic property of the inputs and define the behavior of the database relative to those time stamps. We adopt this
perspective in this paper, and rely on the definition of determinism given by Lee [49]: “determinism is a property of
models, not of physical realizations,” and “A model is deterministic if given all the inputs that are provided to the model,
the model defines exactly one possible behavior.” If we define “inputs” in Fig. 1a to be time-stamped user queries and
“behavior” to be the sequence of actions taken by the Account, then it is reasonable to demand determinism.

Consider Fig. 1b, which has only one user. Even if this one user first sends a deposit and then a withdrawal message,
the actor model does not guarantee that the receiving actor sees and processes the incoming messages in this order.
While some actor frameworks, e.g., Akka and Erlang, guarantee in-order message delivery, others, e.g., AmbientTalk [93],
expressly do not. Yet, even if the framework guarantees point-to-point in-order message delivery, this property is not
transitive. If we add a Proxy, as shown in Fig. 1c, then we cannot make any assumptions about the order in which
Account receives messages. This example further illustrates that composing actors can have unexpected side effects.

Consequently, implementing solutions to practical concurrency problems with actors can be challenging. Even
seemingly simple concurrency problems like the one discussed above require high programming discipline, and
solutions are typically difficult to maintain and tend to lack modularity. In addition, the inherent nondeterminism
of actor frameworks makes it hard to verify such solutions. Erroneous behavior might only occur in a fraction of
executions, and thus integration tests cannot reliably detect such “Heisenbugs” [70].

In a recent study, Bagherzadeh et al. [4] analyzed bugs in Akka programs that were discussed on StackOverflow or
GitHub and determined that 14.6% of the bugs are caused by races. This makes high-level races the second most common
cause of bugs in Akka programs after errors in the program logic. In a similar study of 12 actor-based production
systems, Hedden and Zhao [39] determined that 3.2% of the reported bugs were caused by bad message ordering, 4.8%
of bugs were caused by incorrect coordination mechanisms, 4.8% were caused by erroneous coordination at shutdown,
and 2.4% of bugs were caused by erroneous coordination at startup. Note that these numbers only cover known bugs in
their studied projects and, as noted by the authors, the majority of the reported message ordering bugs belonged to the
Gatling project because it already incorporated a debugging tool called Bita [86] that is designed to detect such bugs.
We suspect that there are more undetected bugs in projects that do not use specialized debugging tools.

The actor community has addressed the inherent nondeterminism of actors and the resulting bugs by introducing
better tools for analyzing and debugging actor programs. This includes TransPDOR [87], Bita [86], Actoverse [84],
iDeA [63], CauDEr [46], andMultiverse debugging [91]. While these are valuable solutions, we argue that a programming
model for expressing concurrent programs should provide deterministic semantics by default and allow the programmer
to introduce nondeterminism only where it is desired and understood to do no harm. In such cases, the aforementioned
tools for nondeterministic behavior can still be utilized to debug the implementation.

There are a number of ways to achieve deterministic concurrency, including Kahn process networks [42, 43], many
flavors of dataflow models [27, 71, 51], physically asynchronous, logically synchronous models [83], synchronous-
reactive languages [8, 31], and discrete-event systems [96, 18, 52, 30]. Lohstroh et al. [61] compare the reactor model to
each of these, showing that it has many of their best features and fewer of their pitfalls. Lingua Franca builds on this
reactor model because it is more expressive than some of the alternatives (e.g., Kahn networks) and is stylistically close
to actors, which have proven effective in practice. In this paper, we show that the resulting determinism does not incur
a performance penalty, but on the contrary, helps to achieve improved performance in most cases.

Manuscript submitted to ACM

High-Performance Deterministic Concurrency using Lingua Franca 5

1 target Cpp

2 reactor User(offset: time (0), val: float (0)) {

3 timer t(offset)

4 output req: float

5 reaction (t) -> req {= req.set(val); =}

6 }

7 reactor Account {

8 state balance: float (0.0)

9 input reqA: float

10 input reqB: float

11 reaction (reqA) {= apply(*reqA.get()); =}

12 reaction (reqB) {= apply(*reqB.get()); =}

13 method apply(val: float) {=

14 if (balance + val > 0) {

15 balance += val; std::cout << "Accepted\n";

16 } else { std::cout << "Denied\n"; }

17 =}

18 }

20 main reactor {

21 account = new Account ()

22 userA = new User(offset =1 sec , val =20)

23 userB = new User(offset =2 sec , val=-10)

24 userA.req -> account.reqA

25 userB.req -> account.reqB

26 }

account : Account

balance: float(0.0)

1

2

userA : User

offset: time(1 sec)

value: float(20.0)

(1 sec)

userB : User

offset: time(2 sec)

value: float(-10.0)

(2 sec)

Fig. 2. LF implementation of the actor program shown in Fig. 1a. The diagram on the right is automatically generated by the LF IDE.

3 INTRODUCTION TO LINGUA FRANCA

Lingua Franca (LF) builds on the relatively new reactor-oriented programming paradigm. Intuitively, we can describe
reactors as deterministic actors with a discrete event execution semantics and explicitly declared ports and connections.
A logical timeline is used to order events and ensure a deterministic execution. As a polyglot language, LF incorporates
code in a target programming language to implement the logic of each component. LF itself is only concerned with
the coordination aspect of a program. In this section, we introduce the core concepts of reactors and LF. For a more
detailed introduction to LF’s concepts and syntax, the interested reader may refer to Lohstroh et al. [61].

3.1 LF by Example

Fig. 2 shows an LF implementation of the deposit/withdrawal example in Fig. 1a. The diagram shown on the right
uses a graphical syntax to visualize the LF program. It is automatically synthesized from the source code by the LF
IDEs [94]. The first line of the program is a target declaration, which specifies the target language (C++ in this case).
The program further specifies three reactor classes: Account, User, and an anonymousmain reactor. The main reactor
serves as an entry point for LF programs and is instantiated automatically at runtime. Reactor classes in LF are in many
ways analogous to classes in object-oriented languages. In particular, reactor classes encapsulate state, methods and
other components, offer a form of inheritance, can be generic, and are parameterized at instantiation.

The User reactor class (lines 2 to 6) is parameterized by an offset and a value of types time and float. time is
the only built-in type of LF and represents a time value. All other types are given in the target language. The timer
declared on line 3 will trigger once after the given offset. Note that timers may additionally specify a period to trigger
the timer repeatedly. The output port req declared on line 4 is used to send events with an associated float value to
other reactors, indicating a deposit or withdrawal request.

In LF, all computation is performed in reactive code segments called reactions that are implemented in the target
language. In the diagram, reactions are represented by dark gray chevrons. All reactions must explicitly declare their
triggers, other dependencies and potential effects.In line 5, the User reactor declares a reaction that is triggered by the
timer t and that may produce an event on the output port req. The reaction body is given in C++ code and sets the req
output based on the value that the class is parameterized with at instantiation.

The Account reactor is defined on line 7. It has a state variable balance of type float, two input ports reqA and
reqB, one reaction for each input, and amethod named apply. State variables and methods in LF are equivalent to

Manuscript submitted to ACM

6 Menard & Lohstroh et al.

protected member variables and methods in object-oriented languages. Methods are useful for sharing code within a
reactor, but they cannot be invoked by other reactors. Triggering functionality in other reactors is only possible by
emitting events via ports on connections, which can subsequently trigger a reaction. In addition to methods, LF also
provides preambles which can be used to define shared functions and types, and to insert target language imports.
Preambles live in a global scope and cannot access reactor members.

The reactions on lines 11 and 12 are triggered by the reqA or reqB ports and attempt to apply the requested change
to the balance. Reactions can access any methods, parameters, or state variables declared by the local reactor. Both
reactions retrieve the value associated with the triggering event on the respective port and call the method apply.
In the C++ target, the additional dereference operator (*) is required as all values are wrapped by a smart pointer
for fine-grained access control and safe memory management. The apply method defined on lines 13-17 implements
the account’s business logic. If the resulting balance is non-negative, it modifies the balance accordingly and prints
“Accepted”. Otherwise, it prints “Denied”.1

Note that we implemented account using two separate ports and reactions for the sake of simplicity. The reader
might notice that the separated reactions duplicate logic and are not a practical solution, in particular if there are many
users. We choose this representation to keep our exposition simple. In Sec. 4.2, we will introduce a syntax that enables
a more compact implementation of Account.

The main reactor assembles the program. It creates a single instance of Account (line 21), two instances of User
(lines 22, 23), and connects the outputs of the user instances to the inputs of the account instance (lines 24, 25) using
the -> operator. The userA is parameterized with an offset of 1 second and a value of 20 and userB is parameterized
with an offset of 2 seconds and a value of -10. When executed, the program will wait for 1 second before triggering the
timer of the userA reactor and invoking the reaction on line 5. The event produced by this reaction will trigger the
reaction on line 11 which is invoked immediately after the first reaction completes. Two seconds after program startup,
userB will react and subsequently trigger the reaction on line 12.

In this example, the deposit event (+20.0) occurs earlier than the withdrawal event (-10.0), and hence our execution
semantics ensures that the account processes the deposit event before the withdrawal event, meaning the balance will
not become negative. In a more realistic implementation, the two users would generate events sporadically and have
their reactions triggered not by a timer but a physical action (see Section 3.3). However, using a timer greatly simplifies
our exposition as we only have to consider a single logical timeline along which events are ordered. Moreover, such
timers can be used to create regression tests that validate program execution with specific input timings.

Note that even when the two events occur logically simultaneously, meaning that both reactions in the account
reactor are triggered at the same logical time, the resulting program will be deterministic. All reactions at the same
logical time are executed according to a well-defined precedence relation. In particular, any reactions within the same
reactor are mutually exclusive and executed following the lexical declaration order of the reactions in LF code. This
order is also reflected by the numbers displayed on the reactions in the diagram in Fig. 2. More details on the precedence
relation of reactions are given in Section 4.1. Since reactions and connections are logically instantaneous, the execution
order is also preserved if any proxies are inserted, as is shown in Fig. 3a.

To deliberately change the order in which events occur, a logical delay can be introduced in the program using
a logical action, as shown in Fig. 3b and the corresponding code in Fig. 3c. In the diagram, actions are denoted by
small white triangles. In contrast to ports, which allow relaying events logically instantaneously from one reactor to

1This implementation of account is oversimplified to keep our exposition concise. A more realistic implementation of account would interact with a
database reactor and send feedback to the users to indicate it the transaction was successful.

Manuscript submitted to ACM

High-Performance Deterministic Concurrency using Lingua Franca 7

Proxy Account

2

1

userB : User

(2 sec)

userA : User

(1 sec)

(a) Adding a proxy reactor.

ProxyDelay

2 1L

Account

2

1

userB : User

(2 sec)

userA : User

(1 sec)

(b) Adding a proxy introducing a logical delay.

1 target Cpp

2 import User , Account from "Example.lf"

3
4 reactor ProxyDelay <T>(delay: time (0)) {

5 input in: T

6 output out: T

7 logical action a: T

8 reaction(a) -> out {= out.set(a.get()); =}

9 reaction(in) -> a {= a.schedule(in.get(), delay); =}

10 }

11 main reactor {

12 account = new Account ()

13 userA = new User(offset =1 sec , val =20)

14 userB = new User(offset =2 sec , val=-10)

15 delay = new ProxyDelay <float >(delay=2 sec)

16 userA.req -> delay.in

17 delay.out -> account.reqA

18 userB.req -> account.reqB

19 }

(c) LF code of the program shown in (b).

Fig. 3. Modifications of the example shown in Fig. 3a

another, logical actions provide a mechanism for scheduling new events at a later (logical) time. Upon receiving an
input, reaction 2 of the ProxyDelay reactor is triggered, which schedules its logical action with a configurable delay.
This creates a new event which, when processed, triggers reaction 1 of the ProxyDelay reactor, which retrieves the
original value and forwards it to its output port.

The reactor class ProxyDelay (line 4) has a type parameter T that denotes the type of the values of its input, output,
and logical action. Using a runtime API function called schedule, the reaction on line 9 schedules a future event (on
logical action a) with the value of the triggering input event and a given delay.2 The reaction on line 8 is triggered by a

and simply forwards the value of the triggering event to the output port.
On line 15, the delay reactor is instantiated with a delay of 2 seconds and using the type float. The other reactors

are instantiated from the definitions given in Fig. 2, which are imported on line 2. Due to the additional delay of 2
seconds, the deposit message from userA will only be processed after the withdrawal message from userB, causing B’s
request to be denied. Since delaying messages is a common problem, LF provides a dedicated syntax for it. Instead of
manually inserting a delay reactor, we can use an after delay. For this, we remove line 15 and replace lines 16 and 17
with userA.req -> account.reqA after 2 sec.

It is important to note that all of the discussed examples are deterministic, regardless of the physical execution times
of reactions, as all events are unambiguously ordered along a single logical timeline. The physical timing of the events,
on the other hand, will be approximate. The contribution of this paper is to show that such determinism does not
necessarily reduce performance and is also useful for applications that have no need for explicit timing.

3.2 Logical and physical time

All events have an associated tag. Tags are ordered along a logical timeline and can be thought of as a timestamp.
Timers automatically schedule events at regular intervals relative to a start tag that is determined at startup. Reactions
may use logical actions to schedule future events with a given delay relative to the current tag.

In time-sensitive applications, tags are not purely used for logical ordering but also relate to physical time. By default,
the runtime only processes the events associated with a certain tag once the current physical time 𝑇 is greater than the
2The smart pointer obtained with get on lines 8 and 9 is not dereferenced to obtain the actual value. Multiple overloads exist for set and schedule and
they accept both references to values as well as smart pointers. Thus the smart pointer obtained with get can be passed directly to set or schedule.

Manuscript submitted to ACM

8 Menard & Lohstroh et al.

Account

1

2

PhysicalUser

P

PhysicalUser

P

Proxy

(a) Asynchronous input with physical actions.

Account

1

2

PhysicalUser

P

PhysicalUser

P

Proxy

(b) Nondeterministic implementation using physical connections.

1 target Cpp

2 import Account , Proxy from "Example.lf"

3
4 reactor PhysicalUser {

5 physical action a: float

6 output req: float

7 reaction (a) -> req {= req.set(a.get()); =}

8 }

9
10 main reactor {

11 account = new Account ()

12 userA = new PhysicalUser ()

13 userB = new PhysicalUser ()

14 proxy = new Proxy()

15 userA.req -> proxy.in

16 proxy.out -> account.reqA

17 userB.req -> account.reqB

18 }

(c) LF code of the program shown in (a).

Fig. 4. Implementation of the account example with asynchronous input via physical actions (a and c) and a fully nondeterminisitc
variation that uses physical connections (b).

time value of the tag 𝑡 (𝑇 > 𝑡). We say that logical time “chases” physical time. The relationship between physical and
logical time in the reactor model gives logical delays a useful semantics and also permits the formulation of deadlines.
This timed semantics is particularly useful for software that operates in cyber-physical systems. For a more in-depth
discussion of LF’s timed semantics, the interested reader may refer to [61].

If an application has no need for any physical time properties, the concurrence of physical and logical time can be
turned off; in this case, the tags are used only to preserve determinism, not to control timing. Moreover, LF programmers
are not required to explicitly control the timing aspects of their programs. Delays can simply be omitted, for instance
when scheduling an action, in which case the runtime will use the next available tag. In consequence, also untimed
general-purpose programs can benefit from the deterministic concurrency enabled by LF’s timed semantics.

3.3 Asynchrony and deliberate nondeterminism

In the examples discussed above in Section 3.1, we have hard-coded the order in which the users send requests by
using timers and, thus, assigned fixed tags to the request events. While using a predefined order is useful for testing
and for demonstration, reactor programs that are deployed in practice need to be able to handle sporadic asynchronous
inputs in order to be useful. Concretely, in our account example we do need to handle asynchronous events that are
created when users initiate withdrawal or deposit requests.

The reactor model distinguishes logical actions and physical ones. While a logical action is always scheduled
synchronously with a delay relative to the current tag, a physical actionmay be scheduled from asynchronous contexts.
Its event is assigned a tag based on the current reading of physical time. Physical actions are the key mechanism for
handling sporadic inputs originating from physical processes and for introducing deliberate nondeterminism.

The assignment of tags to physical actions is nondeterministic in the sense that it is not defined by the program.
However, once those tags are assigned, for example, to deposit or withdrawal requests by a user, the processing of the
events is deterministic and occurs in tag order. Hence, the tags assigned to externally initiated events are considered as
part of the input, and given this input, the program remains deterministic. This approach draws a clear perimeter around
the deterministic and therefore testable program logic while allowing it to interact with sporadic external inputs.

Fig. 4a and 4c show an implementation of our account example that uses physical actions to handle sporadic user
requests. The physical action on line 5 may be scheduled from asynchronous processes outside of the LF program. It has
Manuscript submitted to ACM

High-Performance Deterministic Concurrency using Lingua Franca 9

type float which allows it to carry the value of the deposit or withdrawal request initiated by the user. The reaction
on line 5 is triggered by the physical action and it forwards the value of the action to the output port. The Account and
Proxy reactors remain unchanged. Consequently, they implement the same testable behavior as in our earlier examples.
We only exchanged the event sources from predefined timers to physical actions to allow sporadic input. Concretely,
if userA sends a deposit message at tag 𝑔𝐴 and userB sends a withdrawal message at tag 𝑔𝐵 with 𝑔𝐵 > 𝑔𝐴 , then the
semantics of LF guarantees that the response of the account is identical to the response in a test case that uses the same
tag ordering (i.e. the behavior is identical to the program in Fig. 3a).

Physical actions can also be used within the program itself, for example, to nondeterministically assign a new tag to
a message received from another reactor. In this usage, physical actions provide a means for deliberately introducing
actor-like nondeterminism into a program. For example, the program shown in Fig. 4b reproduces the nondeterministic
behavior of the actor program shown in Fig. 1c. It is created by replacing the logical connection operator -> with the
physical connection operator ∼> on lines 15 to 17. Physical connections behave similar to after delays, but instead of
inserting a delay, they insert a physical action to create events with tags based on the current physical time. Thus, in
Fig. 4b the deposit and withdrawal messages are tagged nondeterministically in the order in which they arrive at the
account. Consequently, the account processes the messages in the order of arrival.

3.4 The scope of Lingua Franca

LF was originally designed for modeling applications in the context of cyber-physical systems. The deterministic
concurrency delivered by LF in combination with its timed semantics makes it particular attractive for time-sensitive
and safety-critical applications [65, 61].

However, as we demonstrate in this paper, reactors and LF are not limited to cyber-physical systems. Lingua Franca
is very expressive and can model a wide range of concurrent applications. Applications like the simple account example
from Fig. 4a do not require explicit modeling of time, but they benefit from deterministic concurrency nonetheless. The
interaction of multiple components within the system becomes testable and reproducible, as the system delivers the
same response when provided with the same inputs, no matter if it is deployed in production or in a test environment.

Similar to the actor model, Lingua Franca is not limited to a particular domain, but is a general-purpose coordination
language. We demonstrate this in our evaluation by porting a wide range of actor programs to LF. In fact, LF can express
any actor program that does not require dynamic actor creation. In future work, we plan to introduce mutations in LF to
also support the dynamic creation of reactors so that LF becomes as expressive as the actor model. However, even with
this limitation, LF is strictly more general than other known solutions for deterministic concurrency. Most prominently,
Kahn process networks [42, 43] and various dataflow models [27, 11, 47] are known to deliver high performance for
streaming applications, but they have limited expressivity as they cannot easily model reactions to sporadic events.
In this paper, we demonstrate that LF can express the reactive behavior of actors while guaranteeing a deterministic
execution and delivering high performance that even exceeds actors in some benchmarks.

4 EFFICIENT DETERMINISTIC CONCURRENCY

LF programs are deterministic by default. This property is inherited from the reactor model that LF implements. Lohstroh
et al. [61] explain why reactors behave deterministically. Their argument can be adapted to the concrete context of the
Lingua Franca language, but this is beyond the scope of this paper. Reactors are also concurrent, and, as we show in
this paper, the exposed concurrency is sufficient for the runtime system to effectively exploit multi-core hardware to
where it matches or exceeds the performance of fundamentally asynchronous and nondeterministic actor frameworks.

Manuscript submitted to ACM

10 Menard & Lohstroh et al.

userA ProxyDelay
2

ProxyDelay
1

Account
1

Account
2

userB

Fig. 5. Reaction graph for the program in Fig. 3b.

In this section, we show how LF exposes concurrency, introduce a syntax extension for writing scalable LF programs,
and describe in more depth how our C++ runtime is implemented and how it efficiently utilizes parallel hardware.

4.1 Parallelism

The use of statically declared ports and connections as well as the declarations of reaction dependencies, distinguish
reactors from more dynamic models like actors or other asynchronous message-passing frameworks where communi-
cation is purely based on addresses. While the fixed topology of reactor programs is less flexible and limits runtime
adaptation, it also provides two key advantages. First, it achieves a separation of concerns between the functionality of
components and their composition. Second, it makes explicit at the interface level which dependencies exist between
components. As a consequence, a dependency graph can be derived for any composition of reactors.

The dependency graph is an acyclic precedence graph (APG) that organizes all reactions into a partial order that
captures all scheduling constraints that must be observed to ensure that the execution of a reactor program yields
deterministic results. Because this graph is valid irrespective of the contents of the code that executes when reactions
are triggered, reactions can be treated as a black box. It is this property that enables the polyglot nature of LF and
exposes the concurrency in the application.

Fig. 5 shows the dependency graph for the program given in Fig. 3b. The solid arrows represent dependencies that
arise because one reaction (possibly) sends data to the other via ports and connections. The dashed arrows represent
dependencies that arise because the two reactions belong to the same reactor. Analogous to the behaviors of actors,
reactions of the same reactor are mutually exclusive. The execution order is well-defined and given by the lexical
declaration order of the reactions in LF code. This order is also indicated by the numbers in the reaction labels in Fig. 3b.
Note that actions do not create dependencies and are thus not represented in the APG. This is because actions are always
scheduled in the future with a tag greater than the current tag. Since the runtime ensures that events are processed in
tag order (cf. Section 4.3), the dependency between scheduling an event and reacting to it is not represented in the APG.

The dependency graph precisely defines in which order reactions need to be executed. Independent reactions may be
executed in parallel without breaking determinism. For instance, the APG in Fig. 5 tells us that reaction 1 of ProxyDelay
and the reactions of userA and userB can all execute in parallel. Note that the dependency graph is required to be
acyclic as any cycle would violate causality. The LF compiler ensures that a valid program has an acyclic dependency
graph. Any dependency cycles in LF programs can be resolved by introducing a logical action, and thus a logical delay,
to break one of the dependencies and moving part of the computation to a later tag.

4.2 Scalable Connection Patterns

Explicitly listing all individual reactor instances, ports and connections in LF code may become tedious for larger
programs. For example, consider again the program from Fig. 2. To scale it to four users, we would need to explicitly
list two more ports in the account reactor, and add two more named user instances and connections to the main reactor.
Manuscript submitted to ACM

High-Performance Deterministic Concurrency using Lingua Franca 11

⟨input⟩ ::= ‘input’ ⟨width⟩? ID (‘:’ ⟨type⟩)?
⟨output⟩ ::= ‘output’ ⟨width⟩? ID (‘:’ ⟨type⟩)?
⟨instance⟩ ::= ID ‘=’ ‘new’ ⟨width⟩? ID ‘(’ ⟨arg-list⟩? ‘)’
⟨width⟩ ::= ‘[’ (INT | ID | ⟨code⟩) ‘]’

⟨connection⟩ ::= ⟨port-refs⟩ ‘->’ ⟨port-refs⟩
| ‘(’ ⟨port-refs⟩ ‘)+’ ‘->’ ⟨port-refs⟩

⟨port-refs⟩ ::= ⟨port-ref ⟩ (‘,’ ⟨port-ref ⟩)*
⟨port-ref ⟩ ::= (ID ‘.’)? ID | ‘interleaved(’ (ID ‘.’)? ID ‘)’

Fig. 6. Lingua Franca syntax extension for expressing banks, multiports, and connections over multiple port references.

1 target Cpp

2 reactor Account(num_users: size_t (4)) {

3 state balance: float (0.0)

4 input[num_users] req: float

5 reaction (req) {=

6 for (size_t i{0}; i < num_users; i++) {

7 if (req[i]. is_present ()) { apply(i, *req[i].get()); }

8 }

9 =}

10 method apply(idx: size_t , val: float) {=

11 std::cout << "Process request " << val << "...";

12 if (balance + val >= 0) {

13 balance += val;

14 std::cout << " Accepted \n";

15 } else { std::cout << " Denied \n"; }

16 =}

17 }

22 reactor User(bank_index: size_t (0)) {

23 output req : float

24 reaction (startup) -> req {=

25 req.set (15.0 - bank_index * 10.0);

26 =}

27 }

28 main reactor(num_users: size_t (4)) {

29 account = new Account (num_users=num_users)

30 users = new[num_users] User()

31 users.req -> account.req

32 }

AccountUser

4

Fig. 7. Modified version of the LF program in Fig. 2 using banks and multiports.

This explicit listing of all ports, connections and instances is not only cumbersome for the programmer, it also means
that the LF code needs to be adjusted and recompiled whenever the problem size changes.

To address this problem, this section introduces a syntax extension that allows to create multiple ports or reactor
instances at once. Further, we introduce an overloading of LF’s connection operator to create multiple connections
at once. This mechanism allows realizing various complex connection patterns in a single line of code and in a
parameterizable way, allowing LF programs to transparently scale to a given problem size without recompilation. This
is a key enabler for implementing the programs of the Savina benchmark suite which we use in our evaluation.

4.2.1 Syntax extension. Concretely, we extend the input, output, and the new keyword to accept an optional width
specification in brackets. This creates an array of ports or an array of reactor instances. We call such an array of ports a
multiport and an array of reactor instances a bank. We further extend the connection operator, such that multiple
ports may be listed on either side of the operator in a comma-separated list. Finally, we introduce a broadcast modifier
(...)+ and the interleaved modifier which provide more control over how the listed ports are connected. Fig. 6 lists
all the modified syntax rules. We explain the newly introduced concepts by example in the following.

First, let us consider the program in Fig. 7, which is a scalable modification of our initial example in Fig. 2. The
account reactor defines a multiport input (line 4) with a width that is given by the num_users parameter. The reaction
on line 5 triggers if any of the individual ports in the multiport carry an event. If multiple ports carry an event at the
same tag, then the reaction is only triggered and executed once at this tag. Since we do not know which port actually
carries an event, the reaction body iterates over all ports, checks if a value is present, and then calls apply for each
present request. This small modification allows the account reactor to interact with an arbitrary number of users and
truly separates the business logic as implemented in the account’s reaction from its usage in the system.

Instead of creating individual users, the main reactor instantiates a bank of user reactors on line 30. The width of the
bank is again given by the parameter num_users. By default, this will create four instances of User. The bank_index
parameter (line 30) is set automatically to the index of the instance within the bank. This allows for the state or the

Manuscript submitted to ACM

12 Menard & Lohstroh et al.

1 target Cpp

2 reactor Src(w: int (3)) {

3 output[w] out: int

4 }

5 reactor Worker {

6 input in: int

7 output out: int

8 }

12 reactor Sink(w: int (3)) {

13 input[w] in: int

14 }

15 main reactor(w: int (3)) {

16 src = new Src(w = w)

17 dst = new Sink(w = w)

18 wrk = new[w] Worker ()

19 src.out -> wrk.in

20 wrk.out -> dst.in }

(a) LF code for implementing a fork-join pattern

Fork-Join

dstsrc

wrk[2]

wrk[1]

wrk[0]

out[1]

out[3]

out[0] in[0]

in[1]

in[2]

in out

in out

in out

(b) Diagram of the program in (a)

Fork-Join-Broadcast

wrk[2]

wrk[1]

wrk[0]

dstsrc
out

in[0]

in[1]

in[2]

in out

in out

in out

(c) Variant with broadcast

Fig. 8. A simple fork-join program in LF.

behavior of a reactor to depend on its position within a bank. Here, each user sends a request at startup with a value
that is calculated from the bank_index.

The connection operator on line 31 connects the request outputs of all the users to the multiport input of the account.
Thereby, it connects the output of the 𝑛th user to the 𝑛th port in the input multiport of the account. This pattern
implements a many-to-one communication. Note that the number of users can be adjusted arbitrarily. Since num_users
is a parameter to the main reactor, the LF code generator will also add it to the program’s command line parameters,
which allows overwriting the default parameter without recompilation.

In case the number of ports on the left-hand and right-hand side of the connection operator do not match, some
ports remain unconnected. Let 𝑛 and𝑚 denote the number of ports on the left and right side, resepectively, then only
the first𝑚𝑖𝑛(𝑛,𝑚) ports are connected on either side. In this case, we also issue a warning message.

4.2.2 Connection Patterns. The syntax extension introduced in this section is relatively simple, but powerful enough to
cover many communication patterns. In the following, we show how a selection of common patterns can be conveniently
expressed in LF. Note that we omit all reactions and other implementation details for brevity and solely focus on the
connection patterns. The presented patterns are used extensively in our benchmark implementations in Section 5.

Fork-Join. Fig. 8a gives an example program implementing a fork-join pattern, which combines one-to-many and
many-to-one communication. The program defines a Src, a Worker, and a Sink reactor. Src and Sink both define a multiport
output or input of width w. Worker only uses each a single input and output port, but is instantiated in a bank of width W

on line 18. The two connection statements in the main reactor (line 19, 20) establish w connections each, one for each
pair of multiport and bank instance. The resulting connection pattern is illustrated in Fig. 8b for w=3.

In this example, the source reactor produces three separate values to be sent to the worker. We provide a modifier
(...)+ which allows to instead broadcast a single value to all workers. Configuring the source reactor to use a single
output (by setting w=1 in line 16) and changing line 19 to (src.out)+ -> wrk.in creates the pattern shown in Fig. 8c.

In either variant, the reactions of each worker may execute in parallel to the reactions of all other workers.

Cascade Composition. Our proposed syntax can also conveniently express cascade composition, as illustrated by the
program in Fig. 9a. The connection operator sequences all ports listed on the left- and right-hand side, and connects the
𝑛th port on the left-hand side to the 𝑛th port on the right-hand side. By offsetting the left-hand side of the connection
statement in line 5 with a single source port and appending the sink port to the right-hand side, we can effectively
arrange the connections to form the cascade shown in Fig. 9b.

Fully Connected. The connection operator also connects multiports within banks. In this case, the operator will
implicitly unfold all port instances on both sides of the connection to form a flat list of ports. The unfolding happens
Manuscript submitted to ACM

High-Performance Deterministic Concurrency using Lingua Franca 13

1 main reactor(n: int(2)) {

2 src = new Src(w = 1)

3 dst = new Sink(w = 1)

4 wrk = new[n] Worker ()

5 src.out , wrk.out -> wrk.in, dst.in

6 }
(a) LF code for implementing a cascade

Cascade

wrk[1]
in out

wrk[0]
in out

dst
in

src
out

(b) Diagram of the program in (a)

Fig. 9. A simple cascade in LF.

1 reactor Node(w: int(3)) {

2 input[w] in: int

3 output[w] out: int

4 }

5 main reactor(w: int(3)) {

6 node = new[w] Node(w=w)

7 node.out -> node.in

8 }

(a) Connecting multiports within a bank

Non-Interleaved

node[2]

in[2]

in[1]

in[0] out[0]

out[1]

out[2]

node[1]

in[2]

in[1]

in[0] out[0]

out[1]

out[2]

node[0]

in[2]

in[1]

in[0] out[0]

out[1]

out[2]

(b) Diagram for the program in (a)

1 main reactor(w: int (3)) {

2 node = new[w] Node(w=w)

3 node.out -> interleaved(node.in)

4 }

(c) Using interleaved for fully connected nodes

Interleaved

node[2]

in[2]

in[1]

in[0] out[0]

out[1]

out[2] node[1]

in[2]

in[1]

in[0] out[0]

out[1]

out[2]

node[0]

in[2]

in[1]

in[0] out[0]

out[1]

out[2]

(d) Diagram for the program in (c)

Fig. 10. Connecting multiports within banks to create fully connected networks.

such that we first list all ports of the first bank instance, then all ports of the second instance, and so on. Consider
the program in Fig. 10a. This will create the pattern shown in Fig. 10b which is not very useful. Using the interleaved

modifier on either side of the connection, we can modify the unfolding strategy to first list all first port instances within
all bank instances, then the second port instances within all bank instances, and so on. The program in Fig. 10c creates
the fully connected pattern shown in Fig. 10d. This allows each node to send and receive messages to or from all other
nodes. Thereby, the 𝑛-th output or input port corresponds to the 𝑛-th instance of the node.

4.3 Runtime Implementation

In the previous subsections, we have discussed how Lingua Franca exposes parallelism and how we can express
various connection patterns in a scalable way. In this subsection we discuss how this parallelism can be exploited
efficiently during execution. The execution of each LF program is governed by a runtime. Most importantly, the runtime
includes a scheduler which keeps track of all scheduled future events, controls the advancement of logical time, and
invokes any triggered reactions in the order specified by the dependency graph while aiming to exploit as much
parallelism as possible. Lohstroh et al. have already sketched a simple scheduling algorithm for reactor programs [60].
In this section, we present a C++ implementation of this scheduling algorithm that aims at exploiting parallelism while
keeping synchronization overhead to a minimum and avoiding contention on shared resources.

Fig. 11 gives a high-level overview of the scheduling mechanism as defined in [60] and as used in our runtime. The
scheduler keeps track of future events in the event queue and processes them strictly in tag order. When processing an
event, the scheduler first determines all reactions that are triggered by the event and stores them in the reaction queue.
Any reactions in the reaction queue for which all dependencies are met (as indicated by the APG) are forwarded to

Manuscript submitted to ACM

14 Menard & Lohstroh et al.

Initial
Events

EventQueue

ReactionQueue

ReadyQueue

Workers
set()

schedule()

Fig. 11. Scheduling mechanism in the LF runtime.

the ready queue and then picked up for execution by the worker threads. If the executed reactions trigger any further
reactions by setting ports, those reactions are inserted in the reaction queue. If a reaction schedules future events via an
action, these new events are inserted into the event queue. Note that the scheduler always waits until all reactions at
the current tag are processed before advancing to the next tag and triggering new reactions.

The most important task of the scheduler is to decide when any given reaction should be moved from the reaction
queue to the ready queue. As the APG precisely defines the ordering constraints of reactions, reaction scheduling is
closely related to DAG-based scheduling strategies [45, 2]. However, the APG is not equivalent to a task graph as it may
contain reactions that do not need to be executed. Most often only a fraction of the reactions is triggered at a particular
tag. Moreover, we do not know in advance precisely which reactions will be triggered for a given tag, as reactions may
or may not send messages via their declared ports. In consequence an optimal schedule cannot be computed in advance.

To decide whether a given triggered reaction is ready for execution, we need to check if it has a dependency on any
other reaction that is triggered or currently executing. To avoid traversing the APG at runtime, we utilize a simple
heuristic. Concretely, we assign a level (top level as defined in [45]) to each reaction. Any reactions with the same
level do not depend on each other and hence can be executed in parallel. Our scheduler then processes reactions going
from one level to the next. Once all reactions within a level are processed, all triggered reactions in the next level
are moved to the ready queue. This approach avoids the need for analyzing the APG during execution, but also falls
short on exploiting all opportunities for parallel execution. For instance, this approach does not execute reaction 2 of
ProxyDelay in parallel with reaction 2 of Account. Nonetheless, our evaluation shows that this strategy is sufficient to
efficiently exploit parallelism in most cases. Given the extensive research on DAG-scheduling, we are confident that we
future work can apply more complex strategies to account for the missed opportunities for exploiting parallelism.

Another limitation of our scheduling approach is that the scheduler only considers reactions that are triggered at the
same tag. In particular, this may hinder exploiting pipeline parallelism in programs that do not use logical delays to
create pipeline stages. However, this limitation can be overcome by using a federated execution strategy [61, 7].

The scheduling mechanism described above is fundamentally different from typical actor implementations. Since
actor programs are nondeterministic and thus the workload cannot be predicted, the runtime needs to make ad-hoc
decisions to distribute the workload. The predominant solution is work stealing [16, 95], which is also the default
scheduling mechanism of Akka and CAF. The main advantage of work stealing is that it avoids a centralized scheduler
and minimizes the synchronization points between workers. As long as they have sufficient work, workers can operate
independently. The work stealing approach, however, does not work for a reactor runtime, as deciding which reactions
are ready to process requires more knowledge about the system’s state. While we require a central scheduler, we can
leverage knowledge about the program to optimize the execution.

Since the reactor model is based on discrete events, our scheduling algorithm is closely related to the mechanisms
used in discrete event simulators such as SystemC [73, 13] or gem5 [12, 62]. However, parallelizing the execution in
such simulators is commonly hard as the dependencies and the precise interactions of components are not known in
advance. While multiple works exist that allow a multithreaded execution of discrete event simulations [81, 22, 80],
Manuscript submitted to ACM

High-Performance Deterministic Concurrency using Lingua Franca 15

they often require manual partitioning and it remains challenging to deliver high performance for general applications.
Therefore, both SystemC and gem5 simulations are single threaded by default. By leveraging the properties of the
reactor model, we created a novel discrete event scheduler that precisely understands which reactions can be executed
in parallel and delivers an efficient execution.

4.4 Optimizations

While the scheduling algorithm sketched in [60] and discussed in the previous subsection is relatively straightforward
to implement, further optimizations where needed to achieve competitive performance. In the following, we detail the
most important optimizations that we use in our C++ runtime.

Coordinating worker threads. In Fig 11 we conceptually distinguished the scheduler from the workers. In an actual
implementation, however, using a central scheduler and separate worker threads introduces several synchronization
points. The scheduler needs to send work to the workers, and the workers need to notify the scheduler when they
finished. Instead, in our implementation, a thread that runs out of work tries to become the scheduler and moves ready
reactions to the ready queue or advance logical time to the next tag if all reactions have been processed. Only one
worker thread can become the scheduler and all other workers that run out of work will go to sleep until they are
woken up again by the scheduler. This is guarded by an atomic flag.

At any time we know we know the precise number of reactions that may execute in parallel. Thus we can use a
counting semaphore to wake up precisely as many workers as needed. By limiting the number of active workers, we
avoid unnecessary contention on the ready queue in situations where there are more workers than ready reactions.

Lock-free data structures. The three queues and other data structures that are required for bookkeeping (e.g., a list
of all set ports) are shared across workers. Using mutexes for synchronization proved to be inefficient due to high
contention on the shared resources, especially when many parallel reactions set ports or schedule actions. Instead, we
utilize lock-free data structures where possible. For instance, the ready queue is implemented as a fixed-size buffer paired
with an atomic counter. Since we know precisely how many reactions can at most run in parallel (i.e. the maximum
number of reactions in the APG that have the same level), we can fix the size of the queue. Every time new reactions are
moved to the reaction queue, the atomic counter is set to the number of reactions in the queue. Each time a worker tries
to execute a reaction it atomically decrements the counter. If the result is negative, then the queue is empty. Otherwise,
the result provides the index within the buffer to read from. We further exploit knowledge about the execution of
reactor programs. For instance, the scheduler advances logical time only once all reactions have been processed. This
operation is safe without additional synchronization, as all of the workers are waiting for new reactions.

Sparse multiports. Reactors that use a multiport input to interact with multiple other reactors that may send messages
individually (such as in the example from Fig. 7), need to identify which ports actually have a present value. Let 𝑛
denote the width of the multiport and 𝑝 the number of present ports. If the multiport width is large and communication
is sparse (𝑝 ≪ 𝑛), then iterating over all ports and checking for presence individually is inefficient (O(𝑛)). Therefore,
our C++ runtime internally uses a lock-free buffer to keep track of the ports that are actually set and exposes an API
function called present_indices_unsorted that obtains the indices of only set ports. Using this function, iterating
over all present ports has complexity O(𝑝). Note, however, that the port indices can have an arbitrary order if the ports
are written by parallel reactions. If a fixed order is required, present_indices_sorted can be used to obtain a sorted
list of indices. The sorting has complexity O(𝑝 · log(𝑝)).

Manuscript submitted to ACM

16 Menard & Lohstroh et al.

5 PERFORMANCE EVALUATION

The actor model is widely accepted for programming large concurrent applications, and implementations such as the
C++ Actor Framework (CAF) [21] and Akka [79] are known to be fast and efficient in utilizing a larger number of
threads. Compared to actors, LF imposes various restrictions that amount to a model of computation in which fewer
behaviors are allowed. In this section, we show that these restrictions do not necessarily introduce overhead or higher
execution times. In fact, LF is considerably faster for many benchmarks.

5.1 Methodology

Our evaluation is based on the Savina benchmark suite [41] for actor languages and frameworks. While this suite has
several issues, as Blessing et al. discuss in [14], Savina covers a wide range of patterns and, to the best of our knowledge,
is the most comprehensive benchmark suite for actor frameworks that has been published. The Savina suite includes
Akka implementations of all benchmarks. CAF implementations of most Savina benchmarks are also available.3

We ported 22 of the 30 Savina benchmarks to the C++ target of LF. Due to the fundamental differences between
the actor and reactor model, the process of porting benchmarks is not always straightforward. We aimed at closely
resembling the original workloads and considered the intention behind the individual benchmarks. We will present
more details about our implementations of selected benchmarks in the next section.

We did not implement the benchmarks Fork Join (actor creation), Fibonacci, Quicksort, Bitonic Sort, Sieve of
Eratosthenes, Unbalanced Cobwebbed Tree, Online Facility Location, and Successive Over-Relaxation as they require
the capability to dynamically create actors. In the reactor model, this can be achieved with mutations that may modify
the reactor topology [60, 58]. However, mutations are not yet fully implemented in LF, and a discussion of language-level
constructs for supporting mutations is beyond the scope of this paper. Although the precise cost of performing mutations
is currently unknown to us, this cost will mostly depend on how efficiently the APG can be modified. Since the APG
remains static in between mutations, we expect no difference in performance for the execution of reactions, and hence
the results discussed her yield measurements that will be useful even when mutations are eventually supported.

We further omit the A*-Search and Logistic Map Series benchmarks from our presentation. The A*-Search imple-
mentation in the Savina suite suffers from a severe race condition that results in wildly varying execution times [14].
Logistic Map Series is omitted as the Akka implementation violates actor semantics and requires explicit synchroniza-
tion [14]. For this reason, the CAF implementation needs to use a blocking call, which makes it slower than the other
implementations by at least two orders of magnitude. Since this is not a problem of CAF, but rather a problem in the
benchmark design, we omit Logistic Map Series to avoid skewing the analysis.

All measurements were performed on a workstation with an Intel Core i9-10900K processor (10 cores, 20 hardware
threads) with 32 GiB DDR4-2933 RAM running Ubuntu 22.04 and using CAF version 17.6 and Akka version 2.6.17.
Following the methodology of Savina, measurements exclude initialization and cleanup. Each measurement comprises
32 iterations. The first two iterations are excluded from our analysis and are used to warm up.

5.2 Benchmark implementation in LF

Table 1 provides an overview of all the Savina benchmarks that we have ported and included in our discussion. The
table also lists various key characteristics of our implementations. The middle section displays characteristics about the
size of each program such as the total number of reactors, reactions, actions, ports, and connections. The right section

3https://github.com/woelke/savina

Manuscript submitted to ACM

https://github.com/woelke/savina

High-Performance Deterministic Concurrency using Lingua Franca 17

Table 1. Characteristics of the Savina benchmarks implemented in LF. The middle part denotes static information about the size of
the program and the right part denotes runtime information about the execution of the program.

ID cat. benchmark reactors reactions actions ports connections processed processed set ports scheduled time per
tags reactions actions reaction [ns]

1

m
ic
ro

Ping Pong 4 8 3 8 4 1,000,004 3,000,005 2,000,002 1,000,010 74
2 Thread Ring 103 109 3 406 203 1,004 101,008 100,004 1,208 71
3 Counting Actor 4 11 3 12 6 1,000,005 2,000,010 1,000,005 1,000,011 77
4 Fork Join (throughput) 63 67 3 65 62 10,004 610,006 10,002 10,128 26
7 Chameneos 103 208 3 20,404 10,202 4,005 408,209 800,402 4,209 169
8 Big 123 487 122 57,964 29,042 20,004 6,472,034 4,800,122 2,400,248 221

9

co
nc
ur
re
nc
y Concurrent Dictionary 24 30 3 146 83 10,004 220,028 400,023 10,050 217

10 Concurrent Sorted Linked List 24 31 4 145 83 8,005 176,029 320,022 8,051 43,323
12 Dining Philosophers 23 71 3 224 122 20,004 460,019 1,000,002 20,048 123
13 Sleeping Barber 2,005 8,017 5 24,014 12,008 4,004 18,008 14,002 8,012 1,265
14 Cigarette Smokers 203 208 4 404 202 1,005 2,007 1,002 1,409 2,692
16 Bank Transaction 1,003 3,007 3 2,004,004 1,002,002 79 78,905 101,002 2,083 464

11 Producer Consumer (bounded) 83 209 42 484 282 1,005 122,128 160,082 40,208 12,325
17

pa
ra
lle
lis
m

All-Pairs Shortest Path 45 115 38 873 798 304 21,643 10,839 10,892 45,270
19 N Queens First K Solutions 23 30 4 124 62 256 5,472 9,130 300 46,150
20 Recursive Matrix Multiplication 23 50 4 105 62 37 651 661 81 1,268,569
22 Radix Sort 64 248 63 186 123 899,962 7,000,100 6,100,002 900,104 86
23 Filter Bank 54 141 3 254 150 34,821 1,073,278 809,063 34,927 2,075
28 Trapezoidal Approximation 103 108 3 404 202 5 108 202 209 6,050,557
29 Precise Pi Computation 23 30 4 84 42 213 4,584 8,322 257 22,172

shows details about the benchmark execution such as the number of tags (or events) that were processed, the number of
executed reactions, and how often ports were set and actions scheduled. Finally, the average time per executed reaction
gives an estimate of the size of the workload implemented in each reaction.

As indicated in Table 1, the Savina benchmarks are divided in three categories: micro, concurrency and parallelism.4.
The micro benchmarks focus on stressing various mechanisms in the runtime scheduler to expose overheads in the
runtime. The concurrency benchmarks have a similar goal, but they put more focus on the concurrent operation of
(re)actors and also require synchronization mechanisms to solve the particular problem. Since the micro and concurrency
benchmarks are designed to mostly stress the runtime, the workload implemented in each (re)actor is relatively small
(with the exception of Concurrent Sorted Linked List). The benchmarks in the parallelism category are mostly designed
to test the capability to exploit parallel hardware efficiently and hence the workload implemented by each (re)actor is
more significant (with the exception of Radix Sort).

The interested reader may find the full LF implementation of all our benchmarks on GitHub.5 In the remainder of
this section, we discuss implementation details for selected benchmarks that we consider representative.

The execution of all benchmarks in the original Savina suite is governed by an actor called BenchmarkRunner. The
benchmark runner is responsible for initiating a benchmark run and for measuring the time until each benchmark run
completes. This enables performing measurements in repeated iterations while keeping caches (and the JVM in case of
Akka) warm. We adopt this mechanism in our LF implementations and created the BenchmarkRunner reactor shown in
Fig. 12a. The runner has two ports which are used to initiate a benchmark run (start) and for receiving feedback from
the actual benchmark when it completed its computation (finished).

In our LF benchmarks, we created a reactor for each actor in the original implementation and a connection for each
message that can be send between actors. For instance, Fig. 12b shows our implementation of the Ping Pong benchmark.
The benchmark consists of two (re)actors Ping and Pong that send each other messages back and forth. When the Ping
reactor in our implementation receives a message on the inStart port, it schedules a new event using its internal
action. The reaction triggered by this action then sends the first ping message. Pong reacts to this message by sending a
4The original Savina suite lists Producer Consumer as a concurrency benchmark, but we find it fits better to the group of parallelism benchmarks.
5https://github.com/lf-lang/benchmarks-lingua-franca

Manuscript submitted to ACM

https://github.com/lf-lang/benchmarks-lingua-franca

18 Menard & Lohstroh et al.

BenchmarkRunner

1

init

2

startIteration

3

completeIteration

4

printResults

L

L

finished

start

(a) Benchmark Runner

PingPong

Ping

1
2

3
L

inStart

inPong outFinished

outPing

BenchmarkRunner
finished start

Pong
inPing outPong

(b) Ping Pong

ConcurrentDictionary

Manager

1

2

start

workerFinished finished

doWork

BenchmarkRunner
finished start

DictionaryImpl

1

23 L
request

reset_state

response
Worker

20

doWork

dictResponse finished

dictRequest

(c) Concurrent Dictionary

DiningPhilosophers

Arbitrator

1

2

3

4

5

L

start

hungry

done

finished allFinished

eat

denied

Philosopher

1

2

3
20

start

eat

denied

hungry

done

finished

BenchmarkRunner
finished start

(d) Dining Philosophers

Fig. 12. Lingua Franca implementations of the benchmark runner and selected benchmarks.

pong message back to Ping, which in turn reacts by scheduling a new event on the internal action to repeat the process.
Once all 1,000,000 ping and pong messages have been sent, the Ping reactor does not schedule a new event, but instead
notifies the benchmark runner to indicate that the benchmark execution is completed.

Note the use of the logical action to break the dependency cycle between Ping and Pong. If we would merge reactions
2 and 3 of Ping to send another ping message right when receiving a pong message, there would be a causality loop. We
break the loop by scheduling a new event and sending the ping message at the next tag. All of the Savina benchmarks
have a direct feedback loop and, thus, we carefully inserted logical actions where needed to break dependency cycles.

The concurrency benchmarks are particularly interesting as we can utilize LF’s semantics to implement them
efficiently. The Concurrent Dictionary benchmark, for instance, consists of a Dictionary (re)actor that receives read or
write requests from 20 Worker (re)actors. The dictionary processes each request and sends a reply back to the workers.
Fig. 12c shows our LF implementation. It instantiates a bank of workers that communicate with the dictionary via
multiports. The workers operate concurrently, and each invocation of the worker reaction is logically simultaneous
to the other workers. In consequence, the dictionary will receive multiple logically simultaneous requests from the
workers. This notion of logical simultaneity allows us to effectively batch-process all the requests received at a single tag
in a single reaction. The dictionary reaction iterates over all present request and processes the requests sequentially.

In an actor implementation of the Concurrent Dictionary benchmark, however, the dictionary could only process
individual requests as there is no notion of simultaneity. Thus the runtime needs to invoke the actor behavior re-
peatedly, which adds additional overhead. Moreover, the particular order in which requests are processed in an actor
Manuscript submitted to ACM

High-Performance Deterministic Concurrency using Lingua Franca 19

CombineIntegrator

Delay SampleFirFilter Delay FirFilter

...

Delay SampleFirFilter Delay FirFilter

Tagger

...

Tagger

Source

(a) Actor implementation

FilterBank

Source

L

Bank

Delay FirFilter Sample Delay FirFilter

8

Combine

(b) Reactor implementation in LF

Fig. 13. Comparison between the reactor and the actor implementation of the Filter Bank benchmark.

implementation is nondeterministic. Since the workers send interleaving read and write requests, they may observe
different responses depending on the order in which requests are processed. LF’s notion of logical time establishes a
deterministic ordering between messages, and allows to observe all the present inputs at a given tag at once.

We can make a similar observation for the Dining Philosophers benchmark. Our implementation in Fig. 12d uses an
arbitrator reactor and a bank of 20 philosopher reactors. The philosophers think and eat concurrently. In order to start
eating, philosophers send a hungry message to the arbitrator which replies with eat or denied. When a philosopher
finishes eating, they indicate this with a done message. When the request to eat was denied, the philosopher will send a
new hungry message. While the philosophers operate concurrently, the arbitrator can process all logical simultaneous
hungry requests in one batch. In this concrete benchmark, this has the additional advantage that the arbitrator always
knows which philosophers are hungry at a particular tag and can therefore find a fair strategy to grant the resources
to the philosophers. In an actor implementation, the arbitrator can only decide on the basis of individual messages,
which makes it much harder to find a fair solution. The original Savina implementation “solves” this simply by having
each philosopher send another hungry message immediately after receiving denied. This increases the chance of each
philosopher to eat eventually, but it also adds a significant amount of unnecessary messages. In our measurements, the
philosophers sent about 10 million hungry messages in the Akka implementation, whereas our LF implementation
used about 200,000 hungry messages. Of course it would be possible to implement other, more elaborate, arbitration
strategies with actors, but compared to the Lingua Franca solution, this would always come with additional cost in
terms of code size and also overhead for additional messages.

The LF implementation of Dining Philosophers could even be further simplified. Since there is no delay between
sending an eat message in reaction 2 of the arbitrator, eating in reaction 2 of the philosopher, and processing the done
message in reaction 3 of the arbitrator, all three steps are logical simultaneous. Since our scheduler first completes
processing all reactions at the current tag before moving to the next tag (cf. Section 4.3), the done message is redundant.
When the arbitrator is invoked to make a decision at a particular tag, we know that all philosophers must have completed
eating at the previous tag. However, we decided to keep the donemessage to avoid deviating too much from the original
benchmark implementation. This also allows for alternative implementations of the philosopher reactor, which might
use a delay internally and send done messages at a later tag.

The advantage of LF’s synchronous semantics also becomes evident in the Filter Bank benchmark shown in Fig. 13.
It applies a cascade of filters to 8 parallel channels in a data stream. The output of each filter bank is then combined into
a single stream. The combine operation is applied on the 𝑛th output message of each bank. This is trivial in LF, as the
output messages are logically synchronous. The actor implementation, however, requires an additional protocol to

Manuscript submitted to ACM

20 Menard & Lohstroh et al.

Recursive Matrix Multiplication #20 Radix Sort #22 Filter Bank #23 Trapezoidal Approximation #28 Precise Pi Computation #29

Cigarette Smokers #14 Bank Transaction #16 Producer Consumer (bounded) #11 All−Pairs Shortest Path #17 N Queens First K Solutions #19

Big #8 Concurrent Dictionary #9 Concurrent Sorted Linked−List #10 Dining Philosophers #12 Sleeping Barber #13

Ping Pong #1 Thread Ring #2 Counting Actor #3 Fork Join (throughput) #4 Chameneos #7

1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20 1 2 4 8 12 16 20

0

100

200

300

0

50

100

0

100

200

300

400

500

0

100

200

300

0

50

100

150

200

0

100

200

300

400

500

0

300

600

900

0

200

400

600

800

0

50

100

150

200

0

5000

10000

15000

0

500

1000

1500

2000

0

500

1000

1500

2000

0

200

400

600

0

50

100

150

200

0

20

40

60

80

0

200

400

600

800

0

500

1000

1500

0

500

1000

1500

0

30

60

90

120

0

250

500

750

1000

Number of Threads

M
ea

n
E

xe
cu

tio
n

T
im

e
in

 m
s

Akka CAF LF C++ Target

Fig. 14. Mean execution times and 99% confidence intervals for various Savina benchmarks implemented in LF, CAF, and Akka,
measured for a varying number of worker threads. The numbers prefixed with # are benchmark IDs as listed in [41].

explicitly synchronize the outputs of the asynchronously operating banks. The original Savina implementation utilizes
an additional Tagger actor that annotates the output messages of each bank with a tag indicating the ID of the bank. A
so-called Integrator actor buffers the tagged messages from all banks. Once it receives a complete set of messages
from all banks, it forwards them as one message to the Combine actor. As this synchronization mechanism is fully
redundant in LF, we have removed it from our implementation of the benchmark.

5.3 Measurement results and discussion

Fig. 14 reports measured results for all supported benchmarks obtained with Akka, CAF, and the C++ target of LF. The
plots show the mean execution times (including 99% confidence intervals) for a varying number of worker threads for
each of the benchmarks. Not all benchmarks are implemented in CAF and hence it is missing in some plots.

The first six plots in Fig. 14 belong to the group of micro benchmarks in the Savina suite. Overall, our C++ runtime
shows comparable performance to Akka and CAF. In Ping Pong and Thread Ring, our implementation is considerably
faster than Akka but is still outperformed by CAF. For Counting Actor and Big, Akka performs better and the LF
performance is slightly behind CAF. In Fork Join and Chameneos, the LF implementation outperforms both Akka and
CAF, especially when using a larger number of worker threads.

The next six plots (Concurrent Dictionary to Bank Transaction) belong to the group of concurrency benchmarks. LF
significantly outperforms CAF and Akka in all the concurrency benchmarks (especially for a high number of worker
threads). This highlights how concurrent behavior is expressed naturally in LF and can be executed efficiently. As
Manuscript submitted to ACM

High-Performance Deterministic Concurrency using Lingua Franca 21

discussed in the previous subsection, we can exploit the well-defined notion of logical simultaneity in LF to execute
independent reactions in parallel, and batch-process simultaneous messages from multiple reactors in a single reaction.
Moreover, no explicit synchronization is needed. In the actor benchmarks, explicit synchronization (e.g., by sending
acknowledge messages), or through blocking calls add additional overhead.

The remaining plots belong to the group of parallelism benchmarks in the Savina suite. Radix Sort and Filter Bank
are affected by inefficiency in our scheduler, as discussed in Section 4.3. In these particular benchmarks, our simple
algorithm leads to a non-optimal execution as some reactions are executed later than they could. We will revise this
algorithm in future work. However, the remaining parallelism benchmarks highlight that LF can efficiently implement
parallel algorithms. Our LF implementations are on par with Akka and CAF and scale well with more threads.

On average, LF outperforms both Akka and CAF. For 20 threads, the C++ runtime achieves a speedup of 1.85𝑥 over
Akka and a 1.42𝑥 speedup over CAF. These speedups were calculated using the geometric mean over the speedups of
individual benchmarks. We conclude that LF can compete with and even outperform modern and highly optimized
actor frameworks such as Akka and CAF. Particularly with workloads that require synchronization, LF significantly
outperforms actor implementations. LF is as efficient as the actor frameworks in exploiting parallelism and scales well
to a larger thread count. In summary, the deterministic concurrency provided by LF does not hinder performance but
enables more efficient implementations. This is possible in part because the scheduler has insights into the program
structure, and explicit synchronization can be avoided in LF, as opposed to many of Savina actor benchmarks.

The performance comparison between C++ and Scala (Akka) needs to be taken with care, as other factors such as
different library implementations and the behavior of the JVM may influence performance. For instance, the large
discrepancy between Akka and our implementation in the Pi Precision benchmark is explained by a less efficient
representation of large numbers in Scala/Java. However, the other benchmarks of the Savina suite do not depend on
external libraries and are designed to be more portable between languages. Also note that over all benchmarks CAF
only achieves an average speedup of 1.09𝑥 over Akka for 20 threads and is outperformed in 9 out of 16 benchmarks.
For single-threaded execution, Akka outperforms CAF in 10 benchmarks and achieves an average speedup of 1.33x.
This indicates that the implemented Scala workloads are comparable to the C++ implementations. Even considering a
potential skew due to the JVM, our results clearly show that LF can compete with state-of-the-art actor frameworks.

To better understand the impact of the optimizations discussed in Section 4.3, Fig. 15 also shows the speedup of our
runtime for 20 worker threads compared to a less optimized runtime. This baseline is an older version of our runtime
that is optimized in the sense that we used code profiling to identify obvious bottlenecks and eliminated them using
common code optimization techniques, but that does not include the optimizations discussed in this paper. The average
overall speedup (geometric mean) achieved by our optimizations is 2.18𝑥 . In particular, Big and Bank Transaction
significantly benefit from our optimization for sparse communication patterns. The concurrency benchmarks (e.g.,
Concurrent Dictionary and Dining Philosophers), are mostly improved by reducing the contention on shared resources.
However, not all benchmarks benefit from our optimizations. The reduced performance in Ping Pong and Counting
Actor shows that optimizing for efficient parallel execution also comes at a cost for simple sequential programs.

6 RELATEDWORK

LF is closely related to the languages and frameworks evolved around Hewitt’s actor model [1, 40], including Akka [79],
CAF [21], Ray [69], Erlang [3], Rebeca [85], P [28] and Pony [23]. Also reactive programming techniques [5], as used in
frameworks like ReactiveX [64] and Reactors.IO [77] but also in language-level constructs like event loops [90], are
closely related to LF. While actors and reactive programming provide good resiliency and scalability, this comes at

Manuscript submitted to ACM

22 Menard & Lohstroh et al.

1.0
0

5

10

15

20

Ping
 P

on
g

Thr
ea

d
Ring

Cou
nt

ing
 A

cto
r

Fo
rk

 Jo
in

(th
ro

ug
hp

ut
)

Cha
m

en
eo

s
Big

Con
cu

rre
nt

 D
ict

ion
ar

y

Con
cu

rre
nt

 S
or

te
d

Lin
ke

d−
Lis

t

Dini
ng

 P
hil

os
op

he
rs

Slee
pin

g
Bar

be
r

Ciga
re

tte
 S

m
ok

er
s

Ban
k T

ra
ns

ac
tio

n

Pro
du

ce
r C

on
su

m
er

 (b
ou

nd
ed

)

All−
Pair

s S
ho

rte
st

Pat
h

N Q
ue

en
s F

irs
t K

 S
olu

tio
ns

Rec
ur

siv
e

M
at

rix
 M

ult
ipl

ica
tio

n

Rad
ix

Sor
t

Filte
r B

an
k

Tra
pe

zo
ida

l A
pp

ro
xim

at
ion

Pre
cis

e
Pi C

om
pu

ta
tio

n

S
pe

ed
up

Fig. 15. Speedup achieved by our optimized C++ runtime for 20 worker threads compared to an unoptimized version.

the cost of nondeterminism, which makes programs notoriously hard to test and debug [6, 91]. Even more problems
arise if languages, frameworks, and libraries do not enforce the underlying model and invite the programmer to break
its semantics [88]. Pony addresses the later problem by leveraging a strong type system similar to Rust to prevent
data races at compile time. Rebeca provides a formalism and model checking techniques for analyzing and verifying
actor networks. While this can improve confidence in a correct implementation, the programmer is still responsible for
finding this correct implementation. P goes a step further in that it also has an efficient runtime system and a compiler
that generates correct-by-construction code with reasonable performance.

Blessing et al. propose a strategy that maps actor communication to a tree topology in order to guarantee a causal
ordering of messages [15]. In a similar approach, Sang et al. utilize a DAG topology to achieve serializability in the
processing of events. Orleans [17] is also based on an actor-like model and provides guarantees on atomicity on
transactions. Finally, Reactors as defined by Field et al. [35] is a model that is closely related to actors but that supports
both synchronous and asynchronous communication and also provides atomicity guarantees. All these strategies are
most useful in distributed scenarios, in particular in presence of network failures. In this paper, however, we focus on
the execution of a single host. Moreover, the determinism guarantees that LF makes are stronger. Nonetheless, such
techniques are highly relevant to LF and could be deployed for ensuring fault-tolerant execution in distributed LF
programs.We believe that LF can provides amore general solution, as the programmer can explicitly trade consistency for
availability in distributed contexts [54], and hence the solution can be adjusted to the concrete application requirements.

Dataflow models [27, 11, 47] and process networks [42, 48] provide deterministic concurrency by creating statically
connected networks of actors with deterministic semantics. Many tools and languages for modeling, analyzing and
compiling dataflow models have evolved over time [20] including StreamIt [89], Sesame [76], OmpSs [29], PREESM [74]
and MAPS [55, 19]. Similarly to LF, dataflow models enable improved static analysis and optimization [37], but in
contrast to LF they also limit the application’s flexibility and capability to react to sporadic events. For this reason
dataflow is typically used for long running streaming applications, but not in scenarios where an application needs to
react to sporadic input from the environment.

Since dataflow-based languages and tools also rely on statically declared connections, solutions comparable to the LF
syntax extension that we propose in this paper have been created. StreamIt is particularly close to LF in spirit, due to its
philosophy of using hierarchy for assembling larger programs out of smaller components. However, in connections
cannot be drawn freely and programmers need to rely on pre-defined library nodes to implement certain patterns. The
concept of multiports is also found in Ptolemy II [78], but it only defines a graphical syntax. Some tools use a more
implicit approach. For instance, PREESM analysis the production and consumption rates of nodes and automatically
Manuscript submitted to ACM

High-Performance Deterministic Concurrency using Lingua Franca 23

decides to use multiple data-parallel instances of the same node. Ohua [33] has taken this to the extreme by generating
a complete optimized dataflow graph implicitly from a sequential description of the program. Such implicit solutions,
however, are challenging for LF as it pairs the dependency information defined in the graph with a clear timed semantics.

Deterministic concurrency is also found in synchronous languages such as Esterel [10], Lustre [38], and SIGNAL [9]
as well as in Functional Reactive Programming (FRP) languages, like Fran [32], FrTime [25], and Elm [26]. However,
these languages are challenging to use for general-purpose programming as they require pure functions and there is a
lack of widely-applicable libraries. Only recently, side effects have been considered in a formal semantics for Esterel [36]
and distributed dataflow [68]. In Lingua Franca, arbitrary code can be embedded in reactions and we can benefit from
the available libraries for popular general-purpose languages.

Another interesting approach is taken by deterministic multithreading libraries such as DThreads [57] or Conse-
quence [66], which enforce a total order for concurrent store operations. Recent work has made considerable progress
in avoiding the bottlenecks of conventional DTM techniques [67]. However, we argue that threads are not a convenient
concurrency model for the reasons outlined in [50]. Moreover, threads do not allow for transparent distributed execution
as is possible with (re)actors.

The work presented in this paper is also closely related to research on efficient execution of programs on parallel
hardware in general. However, due to the unique semantics of reactors, existing techniques cannot be easily applied to
LF. In future work, we will aim at relaxing some of the constraints currently imposed in the runtime to allow sections
of the program to execute more independently, which will likely give room to apply well known techniques such as
work stealing [16] to efficiently balance the workload.

7 CONCLUSION

Unlike actors and related models for asynchronous concurrency, LF enforces determinism by default, and features
asynchronous behavior only when introduced deliberately. Our evaluation, based on LF’s C++ target, shows that this
deterministic model does not impede performance. On the contrary, we achieve an average speedup of 1.85𝑥 over Akka
and 1.42𝑥 over CAF. With LF, we manage to combine reproducible (and testable) behavior with good performance. Yet,
our relatively simple scheduling strategy likely still leaves room for significant improvement. We leave it as future
work to explore more advanced scheduling algorithms capable of exploiting more parallelism at runtime. We also aim
to furnish full runtime support for mutations and implement the remaining Savina benchmarks that require them to
evaluate the performance impact of mutations. Finally, we note that our implementation of the Savina benchmark suite
is not only useful for comparing LF to actor-oriented frameworks; it also demonstrates that LF, which is still in its
infancy, is already suitable for solving practical problems.

ACKNOWLEDGMENTS

We thank the anonymous reviewers of ACM TACO, PLDI, CGO and CC for the valuable feedback and suggestions they
provided on earlier versions of the manuscript.

The work in this paper was supported in part by the German Federal Ministry of Education and Research (BMBF)
as part of the Software Campus (01IS12051) and the program “Souverän. Digital. Vernetzt.”, joint project 6G-life
(16KISK001K). This work was also supported in part by the National Science Foundation (NSF), award #CNS-1836601
(Reconciling Safety with the Internet), the iCyPhy Research Center (Industrial Cyber-Physical Systems), supported by
Denso, Ford, Siemens, and Toyota, and the National Research Foundation (NRF) of Korea (No. NRF-2022R1F1A1065201).

Manuscript submitted to ACM

24 Menard & Lohstroh et al.

REFERENCES

[1] Gul A. Agha et al. 1997. A foundation for actor computation. Journal of Functional Programming, 7, 1, 1–72.
[2] 2018. A review of dynamic scheduling algorithms for homogeneous and heterogeneous systems. (2018), 73–83. isbn: 978-981-10-8533-8.
[3] Joe Armstrong et al. 1996. Concurrent programming in Erlang. (Second ed.). Prentice Hall. isbn: ISBN 0-13-508301-X.
[4] Mehdi Bagherzadeh et al. 2020. Actor concurrency bugs: a comprehensive study on symptoms, root causes, api usages, and differences. In Proc. ACM Program. Lang.
[5] Engineer Bainomugisha et al. 2013. A survey on reactive programming. ACM Comput. Surv., 45, 4, (2013), 52:1–52:34.
[6] Herman Banken et al. 2018. Debugging data flows in reactive programs. In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE, 752–763.
[7] Soroush Bateni et al. 2022. Xronos: predictable coordination for safety-critical distributed embedded systems. (2022).
[8] Albert Benveniste and Gérard Berry. 1991. The synchronous approach to reactive and real-time systems. Proceedings of the IEEE, 79, 9, 1270–1282.
[9] Albert Benveniste and Paul Le Guernic. 1990. Hybrid dynamical systems theory and the SIGNAL language. IEEE Tr. on Automatic Control, 35, 5, 525–546.
[10] Gérard Berry and Georges Gonthier. 1992. The Esterel synchronous programming language: design, semantics, implementation. Science of Computer Programming, 19, 2.
[11] G. Bilsen et al. 1994. Static scheduling of multi-rate and cyclo-static dsp applications. InWorkshop on VLSI Signal Processing. IEEE Press.
[12] Nathan Binkert et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture news, 39, 2, 1–7.
[13] David C. Black et al. 2010. SystemC: From the ground up, Second Edition. Springer. isbn: 978-0-387-69957-8.
[14] Sebastian Blessing et al. 2019. Run, actor, run: towards cross-actor language benchmarking. In Proceedings of the 9th ACM SIGPLAN International Workshop on Programming

Based on Actors, Agents, and Decentralized Control (AGERE 2019). Association for Computing Machinery, Athens, Greece, 41–50. isbn: 9781450369824.
[15] Sebastian Blessing et al. 2017. Tree topologies for causal message delivery. In Proceedings of the 7th ACM SIGPLAN International Workshop on Programming Based on Actors,

Agents, and Decentralized Control (AGERE 2017). Association for Computing Machinery, Vancouver, BC, Canada, 1–10. isbn: 9781450355162.
[16] R.D. Blumofe and C.E. Leiserson. 1994. Scheduling multithreaded computations by work stealing. In 35th Annual Symposium on Foundations of Computer Science.
[17] Sergey Bykov et al. 2011. Orleans: cloud computing for everyone. In Proceedings of the 2nd ACM Symposium on Cloud Computing (SOCC ’11). Association for Computing

Machinery, Cascais, Portugal. isbn: 9781450309769.
[18] C. G. Cassandras. 1993. Discrete Event Systems, Modeling and Performance Analysis. Irwin.
[19] Jeronimo Castrillon and Rainer Leupers. 2014. Programming Heterogeneous MPSoCs: Tool Flows to Close the Software Productivity Gap. Springer, 258. isbn: 978-3-319-00675-8.
[20] Anupam Chattopadhyay et al., (Ed.) 2022. Dataflow models of computation for programming heterogeneous multicores. Handbook of Computer Architecture. Springer Nature

Singapore, (2022), 1–40. isbn: 978-981-15-6401-7.
[21] Dominik Charousset et al. 2016. Revisiting Actor Programming in C++. Computer Languages, Systems & Structures, 45, (2016), 105–131.
[22] Moo-Kyoung Chung et al. 2014. Simparallel: a high performance parallel systemc simulator using hierarchical multi-threading. In 2014 IEEE International Symposium on

Circuits and Systems (ISCAS), 1472–1475.
[23] Sylvan Clebsch et al. 2017. Orca: gc and type system co-design for actor languages. Proc. ACM Program. Lang., 1, OOPSLA, (2017).
[24] Eric C Cooper and Richard P Draves. 1988. C threads. Tech. rep. CMU-CS-88-154.
[25] Gregory H Cooper and Shriram Krishnamurthi. 2006. Embedding dynamic dataflow in a call-by-value language. In European Symposium on Programming. Springer.
[26] Evan Czaplicki and Stephen N Chong. 2013. Asynchronous functional reactive programming for GUIs. In Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation-PLDI’13. ACM Press.
[27] Jack B. Dennis. 1974. First Version Data Flow Procedure Language. Report MAC TM61. MIT Laboratory for Computer Science.
[28] Ankush Desai et al. 2012. P: Safe Asynchronous Event-Driven Programming. Report. Microsoft Research, (2012).
[29] Alejandro Duran et al. 2011. Ompss: a proposal for programming heterogeneous multi-core architectures. Parallel processing letters, 21, 02, 173–193.
[30] Stephen Edwards and John Hui. 2020. The sparse synchronous model. In Forum for Specification and Design Languages (FDL), Kiel, Germany, Sep. 15–17. IEEE, 1–8.
[31] Stephen A. Edwards and Edward A. Lee. 2003. The semantics and execution of a synchronous block-diagram language. Science of Computer Programming, 48, 1, 21–42.
[32] Conal Elliott and Paul Hudak. 1997. Functional reactive animation. In ACM SIGPLAN Notices number 8. Vol. 32. ACM, 263–273.
[33] Sebastian Ertel et al. 2018. Supporting fine-grained dataflow parallelism in big data systems. In Proceedings of the 9th International Workshop on Programming Models and

Applications for Multicores and Manycores, 41–50.
[34] Patrick Th. Eugster et al. 2003. The many faces of publish/subscribe. ACM Computing Surveys, 35, 2, 114–131.
[35] John Field et al. 2009. Reactors: a data-oriented synchronous/asynchronous programming model for distributed applications. Theoretical Computer Science, 410, 2, 168–201.
[36] Spencer P Florence et al. 2019. A calculus for esterel: if can, can. if no can, no can. Proceedings of the ACM on Programming Languages, 3, POPL, 1–29.
[37] Marc Geilen et al. 2005. Minimising buffer requirements of synchronous dataflow graphs with model checking. In Design Automation Conference (DAC). ACM, 819–824.
[38] Nicholas Halbwachs et al. 1991. The synchronous data flow programming language lustre. Proceedings of the IEEE, 79, 9, 1305–1320.
[39] Brandon Hedden and Xinghui Zhao. 2018. A comprehensive study on bugs in actor systems. In Proceedings of the 47th International Conference on Parallel Processing (ICPP

2018). Association for Computing Machinery, Eugene, OR, USA. isbn: 9781450365109.
[40] Carl Hewitt. 2010. Actor model of computation: scalable robust information systems. arXiv preprint arXiv:1008.1459.
[41] Shams M. Imam and Vivek Sarkar. 2014. Savina - an actor benchmark suite: enabling empirical evaluation of actor libraries. In Proceedings of the 4th International Workshop

on Programming Based on Actors Agents & Decentralized Control (AGERE! ’14). Association for Computing Machinery, Portland, Oregon, USA, 67–80. isbn: 9781450321891.
[42] Gilles Kahn. 1974. The semantics of a simple language for parallel programming. In Proc. of the IFIP Congress 74. North-Holland Publishing Co., 471–475.
[43] Gilles Kahn and D. B. MacQueen. 1977. Coroutines and networks of parallel processes. In Information Processing. B. Gilchrist, (Ed.) North-Holland Publishing Co., 993–998.
[44] Dieter Kranzlmüller and Martin Schulz. 2002. Notes on nondeterminism in message passing programs. In Recent Advances in Parallel Virtual Machine and Message Passing

Interface. Dieter Kranzlmüller et al., (Eds.) Springer Berlin Heidelberg, Berlin, Heidelberg, 357–367. isbn: 978-3-540-45825-8.
[45] Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput. Surv., 31, 4, (1999), 406–471.
[46] Ivan Lanese et al. 2018. Cauder: a causal-consistent reversible debugger for erlang. In Functional and Logic Programming. John P. Gallagher and Martin Sulzmann, (Eds.)

Springer International Publishing, Cham, 247–263. isbn: 978-3-319-90686-7.
[47] E. A. Lee and D. G. Messerschmitt. 1987. Synchronous data flow. Proceedings of the IEEE, 75, 9, 1235–1245.
[48] E. A. Lee and T. M. Parks. 1995. Dataflow process networks. Proceedings of the IEEE, 83, 5, 773–801.
[49] Edward A. Lee. 2021. Determinism. ACM Transactions on Embedded Computing Systems (TECS), 20, 5, (2021), 1–34.
[50] Edward A. Lee. 2006. The problem with threads. Computer, 39, 5, 33–42.
[51] Gérard Huet et al., (Eds.) 2009. The semantics of dataflow with firing. From Semantics to Computer Science: Essays in memory of Gilles Kahn. Cambridge University Press.

Manuscript submitted to ACM

High-Performance Deterministic Concurrency using Lingua Franca 25

[52] Edward A. Lee and Haiyang Zheng. 2007. Leveraging synchronous language principles for heterogeneous modeling and design of embedded systems. In EMSOFT. ACM.
[53] Edward A. Lee et al. 2005. Causality interfaces and compositional causality analysis. In Foundations of Interface Technologies (FIT), Satellite to CONCUR.
[54] Edward A. Lee et al. 2021. Quantifying and generalizing the CAP theorem. CoRR, abs/2109.07771. arXiv: 2109.07771.
[55] Rainer Leupers and Jeronimo Castrillon. 2010. MPSoC programming using the MAPS compiler. In Proceedings of the 2010 Asia and South Pacific Design Automation

Conference (ASPDAC ’10). IEEE Press, Taipei, Taiwan, 897–902.
[56] Bozhen Liu et al. 2021. When threads meet events: efficient and precise static race detection with origins. In Proceedings of the 42nd ACM SIGPLAN International Conference

on Programming Language Design and Implementation. Association for Computing Machinery, New York, NY, USA.
[57] Tongping Liu et al. 2011. Dthreads: efficient deterministic multithreading. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (SOSP ’11).

Association for Computing Machinery, Cascais, Portugal, 327–336. isbn: 9781450309776.
[58] Marten Lohstroh. 2020. Reactors: A Deterministic Model of Concurrent Computation for Reactive Systems. Ph.D. Dissertation. EECS Department, UC Berkeley, (2020).
[59] Marten Lohstroh and Edward A. Lee. 2019. Deterministic actors. In Forum on Specification and Design Languages (FDL). (2019).
[60] Marten Lohstroh et al. 2019. Reactors: a deterministic model for composable reactive systems. In 8th International Workshop on Model-Based Design of Cyber Physical

Systems (CyPhy’19). Vol. LNCS 11971. Springer-Verlag, 27.
[61] Marten Lohstroh et al. 2021. Toward a Lingua Franca for deterministic concurrent systems. ACM Transactions on Embedded Computing Systems (TECS), Special Issue on

FDL’19, 20, 4, (2021), Article 36.
[62] Jason Lowe-Power et al. 2020. The gem5 simulator: version 20.0+. CoRR, abs/2007.03152. arXiv: 2007.03152.
[63] Aman Shankar Mathur et al. 2018. Idea: an immersive debugger for actors. In Proceedings of the 17th ACM SIGPLAN International Workshop on Erlang (Erlang 2018).

Association for Computing Machinery, St. Louis, MO, USA, 1–12. isbn: 9781450358248.
[64] Erik Meijer. 2010. Reactive extensions (rx): curing your asynchronous programming blues. In ACM SIGPLAN Commercial Users of Functional Programming (CUFP ’10).

ACM, Baltimore, Maryland, 11:1–11:1. isbn: 978-1-4503-0516-7.
[65] Christian Menard et al. 2020. Achieving determinism in Adaptive AUTOSAR. In Proceedings of the Design, Automation and Test in Europe Conference (DATE).
[66] Timothy Merrifield et al. 2015. High-performance determinism with total store order consistency. In Proceedings of the Tenth European Conference on Computer Systems

(EuroSys ’15). Association for Computing Machinery, Bordeaux, France. isbn: 9781450332385.
[67] Timothy Merrifield et al. 2019. Lazy determinism for faster deterministic multithreading. In Proceedings of the Twenty-Fourth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS ’19). Association for Computing Machinery, Providence, RI, USA, 879–891. isbn: 9781450362405.
[68] Ragnar Mogk et al. 2019. A fault-tolerant programming model for distributed interactive applications. Proceedings of the ACM on Programming Languages, OOPSLA, 1–29.
[69] Philipp Moritz et al. 2017. Ray: A distributed framework for emerging AI applications. CoRR, abs/1712.05889. arXiv: 1712.05889.
[70] Madanlal Musuvathi et al. 2008. Finding and reproducing heisenbugs in concurrent programs. In OSDI number 2008. Vol. 8.
[71] Walid A. Najjar et al. 1999. Advances in the dataflow computational model. Parallel Computing, 25, 13-14, (1999), 1907–1929.
[72] Bruce Jay Nelson. 1981. Remote Procedure Call. Ph.D. Dissertation. USA.
[73] Preeti Ranjan Panda. 2001. Systemc: a modeling platform supporting multiple design abstractions. In Proceedings of the 14th International Symposium on Systems Synthesis

(ISSS ’01). Association for Computing Machinery, Montréal, P.Q., Canada, 75–80. isbn: 1581134185.
[74] Maxime Pelcat et al. 2014. Preesm: a dataflow-based rapid prototyping framework for simplifying multicore dsp programming. In 2014 6th European Embedded Design in

Education and Research Conference (EDERC), 36–40.
[75] R. Perrey and M. Lycett. 2003. Service-oriented architecture. In 2003 Symposium on Applications and the Internet Workshops. IEEE, 116–119.
[76] Andy Pimentel et al. 2006. A systematic approach to exploring embedded system architectures at multiple abstraction levels. IEEE Transactions on Computers, 55, 2, 99–112.
[77] Aleksandar Prokopec. 2018. Pluggable scheduling for the reactor programming model. In Programming with Actors: State-of-the-Art and Research Perspectives. Alessandro

Ricci and Philipp Haller, (Eds.) Springer International Publishing, 125–154. isbn: 978-3-030-00302-9.
[78] Claudius Ptolemaeus. 2012. System Design, Modeling, and Simulation Using Ptolemy II. Ptolemy.org, Berkeley, CA, USA.
[79] Raymond Roestenburg et al. 2016. Akka In Action. Manning Publications Co. isbn: 1617291013.
[80] Tim Schmidt et al. 2017. Exploiting thread and data level parallelism for ultimate parallel systemc simulation. In Proceedings of the 54th Annual Design Automation

Conference 2017 (DAC ’17). Association for Computing Machinery, Austin, TX, USA. isbn: 9781450349277.
[81] Christoph Schumacher et al. 2010. ParSC: synchronous parallel SystemC simulation on multi-core host architectures. In Proceedings of the 8th International Conference on

Hardware/Software Codesign and System Synthesis (CODES/ISSS ’10). ACM, 241–246. isbn: 9781605589053.
[82] Koushik Sen. 2008. Race directed random testing of concurrent programs. SIGPLAN Not., 43, 6, (2008), 11–21.
[83] Lui Sha et al. 2009. PALS: Physically Asynchronous Logically Synchronous Systems. Technical Report. Univ. of Illinois.
[84] Kazuhiro Shibanai and Takuo Watanabe. 2017. Actoverse: a reversible debugger for actors. In Proceedings of the 7th ACM SIGPLAN International Workshop on Programming

Based on Actors, Agents, and Decentralized Control (AGERE 2017). Association for Computing Machinery, Vancouver, BC, Canada, 50–57. isbn: 9781450355162.
[85] Marjan Sirjani et al. 2004. Modeling and verification of reactive systems using rebeca. Fundam. Inform., 63, 4, 385–410.
[86] Samira Tasharofi et al. 2013. Bita: coverage-guided, automatic testing of actor programs. In 28th International Conference on Automated Software Engineering (ASE), 114–124.
[87] Samira Tasharofi et al. 2012. Transdpor: a novel dynamic partial-order reduction technique for testing actor programs. In Formal Techniques for Distributed Systems.

Holger Giese and Grigore Rosu, (Eds.) Springer Berlin Heidelberg, Berlin, Heidelberg, 219–234. isbn: 978-3-642-30793-5.
[88] Samira Tasharofi et al. 2013. Why do scala developers mix the actor model with other concurrency models? In European Conference on Object-Oriented Programming.
[89] William Thies et al. 2002. Streamit: a language for streaming applications. In vol. 2304. (2002). isbn: 978-3-540-43369-9.
[90] Stefan Tilkov and Steve Vinoski. 2010. Node. js: using javascript to build high-performance network programs. IEEE Internet Computing, 14, 6, 80–83.
[91] Carmen Torres Lopez et al. 2019. Multiverse Debugging: Non-Deterministic Debugging for Non-Deterministic Programs (Brave New Idea Paper). In 33rd European

Conference on Object-Oriented Programming (ECOOP 2019), 27:1–27:30.
[92] Alessandro Ricci and Philipp Haller, (Eds.) 2018. Programming with actors: state-of-the-art and research perspectives. Springer International Publishing, Cham. Chap. A

Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs, 155–185.
[93] Tom Van Cutsem et al. 2014. Ambienttalk: programming responsive mobile peer-to-peer applications with actors. Computer Languages, Systems & Structures, 40.
[94] Reinhard von Hanxleden et al. 2022. Pragmatics twelve years later: a report on lingua franca. In 11th International Symposium on Leveraging Applications of Formal Methods.
[95] Jixiang Yang and Qingbi He. 2018. Scheduling parallel computations by work stealing: a survey. Int. J. Parallel Program., 46, 2, (2018), 173–197.
[96] Bernard Zeigler. 1976. Theory of Modeling and Simulation. Wiley Interscience, New York.

Manuscript submitted to ACM

https://arxiv.org/abs/2109.07771
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/1712.05889

	Abstract
	1 Introduction
	2 Motivation
	3 Introduction to Lingua Franca
	3.1 LF by Example
	3.2 Logical and physical time
	3.3 Asynchrony and deliberate nondeterminism
	3.4 The scope of Lingua Franca

	4 Efficient Deterministic Concurrency
	4.1 Parallelism
	4.2 Scalable Connection Patterns
	4.3 Runtime Implementation
	4.4 Optimizations

	5 Performance evaluation
	5.1 Methodology
	5.2 Benchmark implementation in LF
	5.3 Measurement results and discussion

	6 Related Work
	7 Conclusion
	Acknowledgments

