
1

Hyperdimensional Computing Quantization with
Thermometer Codes

Caio Vieira∗, Jeronimo Castrillon†‡, Antonio Carlos Schneider Beck∗
∗Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

†Center for Advancing Electronics Dresden, TU Dresden, Dresden, Germany
‡Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden, Germany

∗{cravieira, caco}@inf.ufrgs.br, †‡jeronimo.castrillon@tu-dresden.de

Abstract—Hyperdimensional computing (HDC) is an emerging
brain-inspired machine learning framework that allows robust
and low power computing by exploiting properties of high
dimensional vectors. The framework defines a small set of
abstract operations, with implementations that vary according to
the concrete HDC model used. The Multiply Add Permute (MAP)
model, for instance, provides higher accuracy when compared to
the Binary Spatter Code (BSC) at the cost of more complex
operations. On the other hand, BSC is the preferred model
when deploying to embedded devices since it relies on simple
bitwise operations. Previous works have proposed quantization
methods to convert MAP models into BSC models to provide
good performance with minimum accuracy loss. In this work, we
introduce TQHD, a novel quantization technique which encodes
MAP vectors into thermometer encoded binary vectors. We
observe that values in MAP vectors have a regular normal
distribution regarding a vector’s standard deviation. We split
this value range into multiple intervals and map each of them to
a thermometer encoded binary word. The quantized vector can
be computed using bitwise operations and provide low accuracy
loss when compared to the unquantized model.

Index Terms—Brain-inspired computing, hyperdimensional
computing (HDC), quantization.

I. INTRODUCTION

Hyperdimensional Computing (HDC) has emerged as a
promising solution to allow machine learning in simple hard-
ware due to its cheap computation requirements [1], [2]. Its
application as a lightweight classifier has been investigated
in several different fields, such as voice [3] and handwritten
digit [4] recognition, graphs classification [5], [6], face
detection [7], epilepsy detection [8], and robotics [9], [10].
HDC is a neuroinspired computing paradigm that mimics the
human brain by computing on hyperdimensional vectors (HV).
Each HV represents a piece of information in the application
domain. In language recognition, for instance, a HV can rep-
resent a single letter, a word, or an entire text. The information
contained in HVs is retrieved by similarity measurement. The
more similar two vectors are, the higher is the probability they
represent the same piece of information. This enables the core
idea behind HDC classification, which relies on training HVs
to represent a whole class of the modelled problem. For each
prediction, the input data is encoded into a HV and used to
perform the similarity search on a associative memory (AM).
The AM is a special structure in HDC applications that stores
all trained class vectors, and similarity search is the act of
retrieving the most similar vector for a given input [11].

To compute on HVs, HDC defines a set of operations,
whose implementation vary accordingly to the underlying
HDC model implemented [12]. The Binary Spatter Code
(BSC) [13] implements HDC in binary presenting values in
the set {0, 1}, which occur with equal probability in a HV,
and is the preferred model when deploying HDC applications
onto resource-constrained hardware. The model compute using
cheap bitwise operations and is capable of providing a satis-
fiable accuracy. Other models, such as Multiply Add Permute
(MAP) [14] use integer or floating point vectors initialized
with a random and uniform distribution in the set {−1, 1}. This
model is capable of providing better accuracy and requires
smaller vectors than BSC. Although the two models can be
used for the same application, the simpler operations in BSC
have made them attractive for implementations in emerging
hardware, e.g., in in-memory accelerators [15], [16].

To bridge the accuracy gap, previous works have investi-
gated model quantization as an alternative to provide lower
computation costs with minimal accuracy loss [17]–[19]. The
naive sign quantization method to turn a MAP model into
a BSC one maps positive values to 1 and negative values
to 0. However, this approach incurs in high accuracy loss
since each dimension in a vector can quickly become distant
from its initial {−1, 1} values after some operations, i.e.,
additions and multiplications. Therefore, this approach can
erase valuable information from the trained vectors. More
elaborate quantization approaches have been proposed that
expose different trade-offs. QuantHD [17] and ReHD [19]
use sign quantization and cope with the accuracy loss by
several rounds of retraining. The main advantage of this
type of quantization is that the quantized vector maintain the
same number of dimensions as the original model. On the
other hand, PQ-HDC [18] eliminates the retraining step by
expanding each dimension of a MAP vector into multiple
dimensions in its BSC counterpart.

In this work, we introduce a novel quantization technique
named TQHD. We propose to quantize MAP vectors to ther-
mometer encoded binary vectors. The idea is to expand each
dimension of the original vector into multiple thermometer
encoded binary bits. Thus, the binarized vectors do not belong
to the BSC class since they do not feature the same probability
of 0s and 1s. This approach can be considered as relaxation
to the criteria followed by previous works since they quantize
to BSC. Still, the binarized vector can be computed as any

2

BSC vector when performing similarity search. Our approach
is based on the insight that normalized MAP vectors are in a
known range [−1, 1] and symmetrically distributed around 0.
This observation allows us to divide the interval into segments
and map each segment to a thermometer encoded binary word.
The transformation can be applied to a trained MAP model
and does not require training after quantization. We evaluate
our method in several HDC applications.

II. RELATED WORK

Quantizing machine learning models has became an im-
portant alternative to lower the high computational costs of
complex neural networks [20]. The methods used in quan-
tization can be split into two main categories: Post-Training
Quantization (PTQ) and Quantization-Aware-Training (QAT).
In PTQ, the model is quantized after training without further
retraining steps, which usually reduces the accuracy. QAT
achieves higher accuracy than PQT but requires much more
computational effort in the training.

Quantization in HDC has a broader perspective since it
includes techniques that maintain the same model class, only
simplifying the data types used in computation and model-to-
model transformations. In the latter, the technique quantizes
the original MAP values to bits, allowing the designer to use
BSC operations instead of their original MAP counterpart.

QAT: QuantHD [17] claims to be the first to investigate
quantization in HDC. The goal is to transform a MAP AM
into a BSC AM. The authors’ approach can be divided in
three steps. 1) The model is trained as any other MAP model.
2) The quantization occurs after training, and two different
quantization targets are evaluated: Binary and Ternary. Binary
uses the sign function to map originally positive values to 1
and negative values to 0, whereas ternary quantization maps
the values to three possibilities {−1, 0, 1}. 3) To ameliorate
the accuracy penalty, the authors do a training after quanti-
zation step that can take several rounds. The idea is to run
predictions using the quantized AM and updated the original
MAP AM when a misprediction occurs. In the next round,
the updated MAP AM is quantized again and the procedure
repeats. In ReHD [19], the authors use BRIC [21] to optimize
the encoding of multiple HDC applications and show that
AM search becomes the most resource consuming step in a
HDC application. The authors tackle this problem by using a
similar retraining technique as proposed in QuantHD, but now
exploring a n-bit quantization instead. Moreover, the authors
also show how it is possible to prune insignificant dimensions
at execution time based on the variance of the values in a
vectors. The main advantage of both works is not increasing
the dimension of the quantized models.

PTQ: PQ-HDC [18] introduces a novel quantization method
that eliminates retraining by quantizing each vector in the
MAP AM to multiple BSC vectors. The idea is to shrink the
quantization loss progressively by approximating the original
AM vector with multiple BSC vectors created by sign quanti-
zation. The similarity is measured using the pseudo-hamming
distance, which still uses the regular hamming distance, but
now the distance to each BSC vector is multiplied by the

weight of that vector regarding how it approximates the
original MAP vector.

Our work: We introduce TQHD, a novel way to quantize
MAP models. Our work can be classified as PTQ, since it
eliminates retraining at the cost of increasing the number
of dimensions of the quantized model. The final product of
our quantization is a binary vector encoded with thermometer
words. We stress that this vector is not strictly BSC since it
does not have an equal amount of 0s and 1s. Still, hamming
distance can be used to perform similarity search.

III. BACKGROUND

Typical HDC applications work in a pipeline fashion and
can be divided in three steps: Map, encode, and search. The
first step is to map the input features from the dataset to HVs.
These vector are known as seed vectors since they are the
first vectors used in the model. There are multiple embedding
techniques to perform the data mapping to seed vectors and the
model implementer must choose the best suitable to the data
features depending on the problem being modelled [1]. After
mapping the input features and retrieving the appropriate seed
vectors, these are used as input to the encoding stage. This
stage is responsible for the symbolic reasoning of the model
and employs three different operations: Bundle, Binding, and
Permute. Each operation has its own semantic, which does
not vary depending on the underlying HDC model being used.
Bundle receives multiple vectors as input and compute a new
vector similar to its operands. On the other hand, binding also
takes multiple operands, but computes a new vector dissimilar
to them. Permute receives just one operand and computes
a new vector dissimilar to the original. The operations can
be implemented differently depending on the HDC model.
Bundle, Binding, and Permute are implemented using bitwise
majority, exclusive or, and bitshift in BSC, but use element
wise addition, element wise multiplication and rotation in
MAP.

The result of the encoding stage is a vector also known
as query vector. In classification, the final step is to use
the query as search key in the AM. The AM is a structure
that holds all trained vectors for the application. The final
classification of the input data sample corresponds to the most
similar class found in the AM. As occurs with the underlying
implementation of operations, the implementation of similarity
measurement also varies with the HDC model used. MAP uses
the cosine as similarity function. Given two vectors A and B,
the result of cos(A,B) tends to 1 if the vectors are similar, 0 if
they are orthogonal, and −1 for opposite vectors, or strongly
dissimilar. On the other hand, BSC vectors use the hamming
distance to compute the similarity between vectors. In this
case, the hamming distance of two vectors H(A,B) tends to
0 if the vectors are similar, D/2 for orthogonality, and D for
strongly dissimilarity.

Training in HDC occurs similarly to prediction and reuses
the first two stages, mapping and encode. The objective of
training is to produce the class vectors used in prediction. To
accomplish that, all query vectors belonging to the same class
are accumulated using the bundle operation since it produces

3

Map Encode Search

f1

fN

1 1 -1 -1

7 -6 0 3

c1 c2 c3 cD

c1 c2 c3 cD-1 1 1 1

Query 0.8

-0.1

Class Sim

Seed
Vectors

En
co
din

g

AM

Fig. 1. Typical workflow in an HDC application.

a new vector that is similar to its operands. This is the most
common learning technique used in HDC and is known as
Centroid. Other learning techniques can include solutions to
deal with problems such as imbalanced datasets [22] and
unsupervised learning [23].

IV. TRANSFORMATION

A. Basics

Since we propose to perform the vector search in binary,
our main challenge is to maintain the similarities between
transformed MAP vectors in the binary space. To accomplish
this, it is necessary to translate the cosine of vectors to the
Hamming distance. Since the two functions are different, a
first step is to establish a common ground to compare both
metrics. We introduce the sim(A,B) function as a general
similarity measure of two random vectors. The function tends
to 1 if both vectors are similar and to 0 if not. To write the
MAP similarity in terms of the new proposed function, the
output range of cosine has to be mapped from [−1, 1] to [0, 1]:

sim(A,B) =
cos(A,B) + 1

2

If vectors A and B are normalized, then it is possible to
measure the similarity by only computing the dot product of
vectors. In this case, sim(A,B) can be written as:

sim(A,B) =
dot(A,B) + 1

2
(1)

On the other hand, binary similarity can be written as:

sim(A,B) =
D −H(A,B)

D
(2)

We seek a transformation that takes two MAP vectors A
and C and transform them to binary vectors AB and CB such
that sim(A,C) ∼ sim(AB , CB). A simple approach is to
take advantage of the normalized vectors’ values being in the
interval [−1, 1] and use a sign function to map all negative
values to 0 and positive values to 1. This approach is capable
of maintaining the sign similarity contribution between MAP
values also in its binarized form. For instance, consider the
ith element in A and C. If Ai and Ci have equal sign, then
their contribution in dot product is positive, increasing the final
similarity. On the other hand, if they present different signs,
then the contribution in the dot product result is negative,
decreasing the final similarity. However, this approach ignores
completely the magnitude of each element, which plays an
import role in the final dot product value, and thus, similarity
computation. This leads to high accuracy losses after model
conversion.

To solve this problem, it is necessary to keep the magnitude
information after model conversion. However, binary models
are only capable of storing one piece of information per
dimension. We propose to increase the vector dimension D of
the transformed vector, so that extra dimensions can encode
the magnitude information. Despite the increased number of
dimensions, binary vectors still offer cheaper computation
compared to the MAP model. This approach introduces the
three main problems: 1) The number of bits B that each
dimension of the MAP vector expands to, 2) the number of
intervals I that the range of values of normalized vectors
are quantized to, and 3) how to properly encode sign and
magnitude information in a binary vector.

The main advantage of normalized vectors is that their
values are in a known range of [−1, 1]. Thus, it is possible
to split this interval in I equally distanced points we name as
quantization poles. We can define the poles as a sorted array
P = [P1, P2, . . . , PI], where I is the number of intervals,
P1 is the first pole and PI is the last such that P1 and PI

are the smallest and the biggest values, respectively. Each
value in the normalized input vector is assigned to the closest
quantization pole. One important requirement is to choose the
quantization poles’ values in a way that do not allow a value
in the original MAP vector to change its sign. To illustrate this
problem, consider the value −0.02 and two poles Pi = −0.1
and Pi+1 = 0.04. In this case, the value is quantized to Pi+1

instead of Pi, changing its sign. This problem would be solved
if Pi+1 = −Pi. In that case, −0.02 would be correctly mapped
to Pi, i.e., −0.1. Thus, we find that the values in P must be
symmetric around 0 to avoid sign flipping after quantization.
As a direct consequence of this decision, P1 = −PI . Another
important observation is that if I is an odd value, then the
median of P is at 0.

Next, the values in P need to be encoded in a meaningful bi-
nary word for Hamming distance. Since the array P is sorted,
the binary encoding of value Pi must be similar to value
Pi+1. Another consideration is that values Pi and PI must
be as dissimilar as possible. Both requirements are satisfied
by the thermometer encoding [24]. Starting from an initial
binary vector with B bits named as T1, the encoding of the
following values occurs by flipping one bit at each iteration.
Therefore, the number of possible encodings is B + 1. For
instance, if we choose B = 4 and start with a binary number
of 4 0s, then it is possible to build 5 different combinations:
T1 = 0000, T2 = 1000, ..., T5 = 1111.

It is necessary to map the quantization poles, array P , to
binary encodings. Each pole must be mapped to a single
thermometer word, thus, I ≤ B + 1. If I = B + 1, the
mapping is straightforward, since it is possible to create a map
M = {(P1, T1), (P2, T2), ..., (PI , TB+1)}. If I < B + 1, then
there are more binary words available than quantization poles.
In this case, we choose to amplify the distance for values with
different signs, as is the case in dot product. To achieve this,
we map the first half of values in P to the first encodings T
available and the second half of P to the last words in T . This
mapping maximizes the distance between values with different
signs while still considering the magnitude difference between
values with the same signs.

4

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

-3 -2 -1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

Value ()

Pr
ob

ab
ilit

y
De

ns
ity

Query D1000 Class D1000 Query D10000 Class D10000 PDF

Fig. 2. Probability density of query and trained class vectors of an HDC model
scaled to vectors standard deviation (σ) for different values of dimensions (D).

B. Choosing Quantization Values

So far, we have only discussed what are quantization poles
and how they should behave. However, we did not discuss how
to choose the values of quantization poles P . Since the values
must be equally spaced between P1 and PI and P1 = −PI , the
main challenge is to choose the initial value P1. Even though
the input vector is normalized, its values can be anywhere in
the range [−1, 1]. Thus, it is necessary to understand how the
values present in normalized vectors are distributed in HDC
models.

Figure 2 shows histograms of the values in normalized
query and class vectors scaled to their standard deviation (σ)
for vectors of different dimensions D. All histograms can
be approximated by a Gaussian Probability Density Function
(PDF). This distribution is insightful and allows some obser-
vations. 1) Although a normalized vector can present values in
[−1, 1], usually the values are in a much narrower range that
can be related to its standard deviation. In the case depicted,
all values fit in the range [−3σ, 3σ]. Thus, the quantization
poles can be chosen according to the standard deviation. 2)
Class vectors approximate more to the normal distribution than
query vectors. The reason behind this is that class vectors
are formed by the bundle of multiple query vectors, which in
turn are created by operations upon seed vectors. Seed vectors
are created with 50% probability of −1 and 1, i.e., its mean
is 0 and its values are {−σ, σ}. Thus, seed vectors value
distribution does not resemble a normal function. However,
we observe that as more hypervectors are computed, the more
the normalized result values resemble a normal distribution.
3) Even though all operations available in the MAP model
(multiplication, addition, and permutation) preserve the mean
but change the standard deviation, after normalization, all
hypervectors tend to present the same σ. Thus, normalized
query and class vectors of a model tend to present values in
the same range related to σ, and σ only changes when varying
the number of dimensions D in a model. Since D is fixed in
a HDC model and the values of normalized query and class

vectors are in a similar value range, we can safely quantize
both vectors using the same quantization poles P and then
measure their similarity in binary.

Finally, we choose the initial quantization pole P1 based on
a value of σ. As σ only varies with D, and this is fixed in
a model, the quantization poles can be created at startup and
remain the same throughout execution. In Section V-B, we
perform experiments to show how the accuracy loss inflicted
by the technique vary compared to the unquantized model.

C. Quantization Pipeline

TQHD can be applied to the backend of any MAP model
by swapping the similarity search stage to TQHD similarity
search. Figure 3 depicts the integration of TQHD pipeline
to the frontend of a MAP model in a inference scenario.
First, TQHD normalizes the query vector. Next, it searches the
closest quantization pole for each dimension in the normalized
vector. Then, each dimension is expanded to a binary word.
Finally, the binarized vector is used as query vector to the
Thermometer Quantized AM (TQAM) created in the training
phase. Our technique does not change the training phase, hence
the model can be trained as any other MAP model. After the
training is complete, each vector in the AM is quantized with
the same method used to quantize query vectors in inference
to create the TQAM.

V. RESULTS

A. Experimental Setup

Our custom HDC model is implemented in Python using
TorchHD [25], an HDC library built upon Pytorch [26].
We evaluate our proposoal on four HDC applications: Voice
recognition using the ISOLET dataset (VoiceHD) [3], digit
recognition with MNIST [4], language recognition based on
[27], and a hand gesture recognition based on electromyogra-
phy (EMG) signals [28]. Table I summarizes the datasets used
for each model. The dataset used to evaluate the language
model consists of text samples of 21 european languages.
Since each sample can have a different size, we ensure that
all strings have 128 characters by trimming longer strings
and repeating smaller strings. The dataset used in EMG is
based on data collected from 5 different subjects. In our
EMG evaluations, we always consider the entire dataset by
averaging the accuracy obtained in all 5 subjects. Since our
main goal is to quantize a model with the minimum accuracy
loss, our results mainly show how good the quantization can
be. Thus, we choose the accuracy loss in percentage points
as our main comparison metric. We execute all experiments
using 20 different seeds to evaluate how randomness affects
the models. We consider each trained model with a seed s as
the baseline of the same quantized model when measuring the
accuracy loss of quantization.

B. Quantization Parameters

This section presents experiments to allow for a better
understanding on how the quantization parameters (intervals I ,
bits B, and choice of quantization poles P) affect the accuracy
of quantized models.

5

Frontend

Map
&

Encode

TQHD
7 -6 0 3 P5 P1 P3 P2

Query

TQAM

Norm

Normalized Query

Quantization

Thermometer 0000 100011001111

0000

1000

1100

1110

1111

P1

P2

P3

P4

P5

1000110010001110

10001000 11101111

0.8

-0.1

SimClass

Fig. 3. TQHD pipeline attached to the frontend of a MAP pipeline considering I = 5 and B = 4.

TABLE I
SUMMARY OF DATASETS FOR EACH MODEL (n: FEATURE SIZE, K :

NUMBER OF CLASSES).

Model n K Data Size Train Size Test Size

voicehd [3] 617 26 39MB 6,238 1,559
mnist [4] 784 10 53MB 60K 10K

language [27] 128 21 26MB 210K 21K
emg [28] 4 5 48MB 1,619 695

1) Intervals and Bits: In the first experiment, we fix the
value of the first quantization pole P1 to σ1 and variate
the parameters I and B. Our goal is to assess how many
bits and intervals are necessary to approximate the original
accuracy of a MAP model trained with floating point and
D = 1000. Figure 4 shows the accuracy loss for each
evaluated application for different values of I and B. The
models evaluated are arranged in ascending order of B and I ,
respectively. We evaluate all cases where I = B+1. However,
due to the symmetry requirements of the quantization poles
and thermometer words discussed in Section IV-A, it is not
possible to evaluate all possible values of I for a given B.
For instance, it is not possible to evaluate the system I3B3
because the number of entries in the thermometer table is 4,
which must be mapped to 3 intervals, resulting in a asymmetric
mapping. As expected, increasing the number of bits tends to
improve the accuracy of all models since it allows for better
quantization resolution. However, values of I < B+1 always
lead to worse results. It is important to notice that changing
I while fixing B does not affect the quantization cost since
each MAP dimension is going to still be expanded to the same
amount of bits. Thus, we conclude that it is better to choose
the maximum value of I to a given value of B for minor
accuracy loss.

Some of the models evaluated present negative accuracy
loss, as is noticeable for EMG application. This means that for
a given model trained with one seed s, its quantized version
was capable of providing a better classification accuracy. This
happens because our technique tries to mimic the dot product
behavior using Hamming distance. Thus, this can lead to
errors that increase the accuracy of the quantized models. Our
approach is substantially different, for instance, from QAT
techniques that first quantize the AM and then try to recover

1In Section IV we defined P as a sorted and symmetric array. Thus P1

must be a negative value and could never be σ. We relax the definition when
discussing results for the sake of simplicity.

0

2

4

6

8

voicehd

0

2

4

6

m
nist

0

1

2

3

4

5

language

in
ts

2-
bi

ts
2

in
ts

3-
bi

ts
2

in
ts

4-
bi

ts
3

in
ts

4-
bi

ts
4

in
ts

5-
bi

ts
4

in
ts

4-
bi

ts
5

in
ts

6-
bi

ts
5

in
ts

4-
bi

ts
6

in
ts

6-
bi

ts
6

in
ts

7-
bi

ts
6

in
ts

4-
bi

ts
7

in
ts

6-
bi

ts
7

in
ts

8-
bi

ts
7

in
ts

2-
bi

ts
2

in
ts

3-
bi

ts
2

in
ts

4-
bi

ts
3

in
ts

4-
bi

ts
4

in
ts

5-
bi

ts
4

in
ts

4-
bi

ts
5

in
ts

6-
bi

ts
5

in
ts

4-
bi

ts
6

in
ts

6-
bi

ts
6

in
ts

7-
bi

ts
6

in
ts

4-
bi

ts
7

in
ts

6-
bi

ts
7

in
ts

8-
bi

ts
7

in
ts

2-
bi

ts
2

in
ts

3-
bi

ts
2

in
ts

4-
bi

ts
3

in
ts

4-
bi

ts
4

in
ts

5-
bi

ts
4

in
ts

4-
bi

ts
5

in
ts

6-
bi

ts
5

in
ts

4-
bi

ts
6

in
ts

6-
bi

ts
6

in
ts

7-
bi

ts
6

in
ts

4-
bi

ts
7

in
ts

6-
bi

ts
7

in
ts

8-
bi

ts
7

in
ts

2-
bi

ts
2

in
ts

3-
bi

ts
2

in
ts

4-
bi

ts
3

in
ts

4-
bi

ts
4

in
ts

5-
bi

ts
4

in
ts

4-
bi

ts
5

in
ts

6-
bi

ts
5

in
ts

4-
bi

ts
6

in
ts

6-
bi

ts
6

in
ts

7-
bi

ts
6

in
ts

4-
bi

ts
7

in
ts

6-
bi

ts
7

in
ts

8-
bi

ts
7

2.5

0.0

2.5

5.0

7.5

10.0

em
g

Ac
cu

ra
cy

 L
os

s i
n

p.
p.

Fig. 4. Accuracy difference to the unquantized model in percentage points
for each evaluated application using different intervals (I) and bits (B)
quantization parameters.

the accuracy loss by successive rounds of retraining, and also
from PQ-HDC since it attempts to approximate the original
MAP vector by using multiple weighted quantized vectors. In
the case of EMG, configurations that have more resources, i.e.,
higher B and I , tend to be more stable towards 0 accuracy
loss.

2) Quantization Poles: In Section IV-B, we discussed how
the quantization poles must be related to σ. The following
experiment sheds light into how varying the hyperparameter
P1 affects the accuracy loss. To realize this, we train the
applications using D = 1000 and compare the accuracy loss
when quantizing using different values of B from 2 to 8, and
I = B+1 since it provides the best accuracy. Figure 5 shows

6

the mean accuracy loss when varying P1 in the range [0.1, 2]
in steps of 0.1. We also include the mean accuracy loss of
sign quantization (SQ) in the plots to allow the comparison
with TQHD. In general, all TQHD plots present a hammock
curve since there are high accuracy losses towards the end of
the intervals evaluated and lower accuracy losses towards the
middle. As the choice of P1 gets closer to 0, the accuracy loss
of TQHD tends to be the same as the sign quantization. This
is expected because the more the quantization poles P1 and
PI are close to 0, the more values in the quantized vectors
are mapped to the extremes of the quantization table, i.e.,
positive values tend to be mapped to only 1s while negative
values are mapped to all 0s. As the value of P1 tends to
larger multiples of σ, the accuracy loss tends to increase. This
is because TQHD loses its capacity to better distinguish the
majority of the samples, since they occur at lower values of σ.
Even though the choice of the optimal hyperparameter P1 may
require to sweep several values of σ, we observe that the best
accuracy loss lies generally around 1 · σ for all applications
evaluated, with minimal accuracy loss variation between the
best accuracy loss achievable and P1 = σ.

Another important conclusion we draw from this experiment
is that higher values of B not only provide better accuracy
results, but also diminishes the accuracy loss variation of
caused by P1.

C. Scalability

Finally, we evaluate TQHD regarding scalability with dif-
ferent values of D to assess how the quantization affects larger
models. Figure 6 shows the accuracy loss for TQHD and SQ
when varying D in the range [1K, 10K] in steps of 1K. Based
on the results discussed so far, we choose the max value
of I possible and P1 = σ. For all applications and values
of D, TQHD features a low accuracy loss. SQ display low
accuracy loss for voicehd, mnist and language, but only for
high values of D. SQ does not perform well in emg. Based
on this results, TQHD seems to cover more applications than
the sign quantization.

Another advantage of TQHD is its capacity to provide good
accuracy also for low values of D as occurs in voicehd, mnist,
and language. One can progressively improve the accuracy by
increasing the quantization resolution, i.e., the number of bits
B. For all scenarios evaluated, TQHD can almost flawlessly
mimic the accuracy of a MAP model if provided with enough
resources.

VI. CONCLUSION

In this paper, we proposed TQHD, a novel method to
quantize MAP models to binary that can provide negligible
accuracy loss. Our technique attempts to mimic the dot product
in binary by using thermometer encoding. Thus, we relax
the criteria of previous works since we do not quantize to
BSC. TQHD is only possible due to distribution of values in
normalized HVs, which we showed empirically to follow a
zero-mean normal distribution. Based on this, we divide the
range of possible values in segments related to the standard
deviation, and map the values close to each segment to a

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

2

4

6

8

voicehd

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

1

2

3

4

5

m
nist

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

2

4

6

8

language

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0

2

4

6

em
g

Ac
cu

ra
cy

 L
os

s i
n

p.
p.

P1 Scaled to

B2 B3 B4 B5 B6 B7 B8 SQ

Fig. 5. Accuracy loss in percentage points when varying the choice of P1

for different number of bits B. SQ depicts the mean accuracy loss of sign
quantization.

2000 4000 6000 8000 10000

0

2

4

6

8

voicehd

2000 4000 6000 8000 10000
0

1

2

3

4

5

m
nist

2000 4000 6000 8000 10000
0

1

2

3

4

5

language

2000 4000 6000 8000 10000

0

1

2

3

4

5

6

7

em
g

Ac
cu

ra
cy

 L
os

s i
n

p.
p.

Dimensions

B2 B3 B4 B5 B6 B7 B8 SQ

Fig. 6. Accuracy loss in percentage points when varying D in the original
MAP model.

7

thermometer binary word. In our evaluation, we show how the
quantization parameters I , B, and P affect the quantization
accuracy and provide guidance to choose these parameters.
Finally, we show how our technique performs for HDC in
general by quantizing MAP models post-training with different
sizes of D. We show that our technique can perform better than
the naive sign quantization in all cases.

ACKNOWLEDGMENT

This study was financed in part by the CAPES - Finance
Code 001, FAPERGS and CNPq.

REFERENCES

[1] D. Kleyko, M. Davies, E. P. Frady, P. Kanerva, S. J. Kent, B. A.
Olshausen, E. Osipov, J. M. Rabaey, D. A. Rachkovskij, A. Rahimi,
and F. T. Sommer, “Vector Symbolic Architectures as a Computing
Framework for Emerging Hardware,” Proceedings of the IEEE, vol. 110,
pp. 1538–1571, Oct. 2022.

[2] C.-Y. Chang, Y.-C. Chuang, C.-T. Huang, and A.-Y. Wu, “Recent
Progress and Development of Hyperdimensional Computing (HDC) for
Edge Intelligence,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 13, pp. 119–136, Mar. 2023.

[3] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “VoiceHD: Hyperdi-
mensional Computing for Efficient Speech Recognition,” in 2017 IEEE
International Conference on Rebooting Computing (ICRC), pp. 1–8,
Nov. 2017.

[4] E. Hassan, Y. Halawani, B. Mohammad, and H. Saleh, “Hyper-
Dimensional Computing Challenges and Opportunities for AI Appli-
cations,” IEEE Access, pp. 1–1, 2021.

[5] I. Nunes, M. Heddes, T. Givargis, A. Nicolau, and A. Veidenbaum,
“GraphHD: Efficient graph classification using hyperdimensional com-
puting,” in 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1485–1490, Mar. 2022.

[6] P. Poduval, H. Alimohamadi, A. Zakeri, F. Imani, M. H. Najafi,
T. Givargis, and M. Imani, “GrapHD: Graph-Based Hyperdimensional
Memorization for Brain-Like Cognitive Learning,” Frontiers in Neuro-
science, vol. 16, 2022.

[7] M. Imani, A. Zakeri, H. Chen, T. Kim, P. Poduval, H. Lee, Y. Kim,
E. Sadredini, and F. Imani, “Neural computation for robust and holo-
graphic face detection,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, DAC ’22, (New York, NY, USA), pp. 31–36,
Association for Computing Machinery, Aug. 2022.

[8] U. Pale, T. Teijeiro, and D. Atienza, “Combining General and Personal-
ized Models for Epilepsy Detection with Hyperdimensional Computing,”
Mar. 2023.

[9] A. Mitrokhin, P. Sutor, C. Fermüller, and Y. Aloimonos, “Learning sen-
sorimotor control with neuromorphic sensors: Toward hyperdimensional
active perception,” Science Robotics, vol. 4, p. eaaw6736, May 2019.

[10] P. Neubert, S. Schubert, and P. Protzel, “An Introduction to Hyperdi-
mensional Computing for Robotics,” KI - Künstliche Intelligenz, vol. 33,
pp. 319–330, Dec. 2019.

[11] P. Kanerva, “Computing with High-Dimensional Vectors,” IEEE Design
& Test, vol. 36, pp. 7–14, June 2019.

[12] K. Schlegel, P. Neubert, and P. Protzel, “A comparison of vector
symbolic architectures,” Artificial Intelligence Review, vol. 55, pp. 4523–
4555, Aug. 2022.

[13] P. Kanerva, “Hyperdimensional Computing: An Introduction to Com-
puting in Distributed Representation with High-Dimensional Random
Vectors,” Cognitive Computation, vol. 1, pp. 139–159, June 2009.

[14] R. Gayler, “Multiplicative Binding, Representation Operators & Anal-
ogy,” Jan. 1998.

[15] A. Kazemi, M. M. Sharifi, Z. Zou, M. Niemier, X. S. Hu, and M. Imani,
“MIMHD: Accurate and Efficient Hyperdimensional Inference Using
Multi-Bit In-Memory Computing,” in 2021 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pp. 1–
6, July 2021.

[16] A. A. Khan, S. Ollivier, S. Longofono, G. Hempel, J. Castrillon,
and A. K. Jones, “Brain-inspired Cognition in Next-generation Race-
track Memories,” ACM Transactions on Embedded Computing Systems,
vol. 21, pp. 79:1–79:28, Dec. 2022.

[17] M. Imani, S. Bosch, S. Datta, S. Ramakrishna, S. Salamat, J. M.
Rabaey, and T. Rosing, “QuantHD: A Quantization Framework for
Hyperdimensional Computing,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, pp. 2268–2278, Oct.
2020.

[18] C.-T. Huang, C.-Y. Chang, Y.-C. Chuang, and A.-Y. A. Wu, “PQ-
HDC: Projection-Based Quantization Scheme for Flexible and Efficient
Hyperdimensional Computing,” in Artificial Intelligence Applications
and Innovations, IFIP Advances in Information and Communication
Technology, (Cham), pp. 425–435, Springer International Publishing,
2021.

[19] J. Morris, R. Fernando, Y. Hao, M. Imani, B. Aksanli, and T. Rosing,
“Locality-Based Encoder and Model Quantization for Efficient Hyper-
Dimensional Computing,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 41, pp. 897–907, Apr. 2022.

[20] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen,
and T. Blankevoort, “A White Paper on Neural Network Quantization,”
June 2021.

[21] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing,
“BRIC: Locality-based Encoding for Energy-Efficient Brain-Inspired
Hyperdimensional Computing,” in 2019 56th ACM/IEEE Design Au-
tomation Conference (DAC), pp. 1–6, June 2019.

[22] A. Hernández-Cano, N. Matsumoto, E. Ping, and M. Imani, “OnlineHD:
Robust, Efficient, and Single-Pass Online Learning Using Hyperdi-
mensional System,” in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 56–61, Feb. 2021.

[23] E. Osipov, S. Kahawala, D. Haputhanthri, T. Kempitiya, D. D. Silva,
D. Alahakoon, and D. Kleyko, “Hyperseed: Unsupervised Learning With
Vector Symbolic Architectures,” IEEE Transactions on Neural Networks
and Learning Systems, pp. 1–15, 2022.

[24] D. A. Rachkovskiy, S. V. Slipchenko, E. M. Kussul, and T. N. Baidyk,
“Sparse Binary Distributed Encoding of Scalars,” Journal of Automation
and Information Sciences, vol. 37, no. 6, 2005.

[25] M. Heddes, I. Nunes, P. Vergés, D. Kleyko, D. Abraham, T. Givargis,
A. Nicolau, and A. Veidenbaum, “Torchhd: An Open Source Python
Library to Support Research on Hyperdimensional Computing and
Vector Symbolic Architectures,” Journal of Machine Learning Research,
vol. 24, no. 255, pp. 1–10, 2023.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style,
high-performance deep learning library,” in Proceedings of the 33rd
International Conference on Neural Information Processing Systems,
no. 721, pp. 8026–8037, Red Hook, NY, USA: Curran Associates Inc.,
Dec. 2019.

[27] A. Joshi, J. T. Halseth, and P. Kanerva, “Language Geometry Using
Random Indexing,” in Quantum Interaction, Lecture Notes in Computer
Science, (Cham), pp. 265–274, Springer International Publishing, 2017.

[28] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey,
“Hyperdimensional biosignal processing: A case study for EMG-based
hand gesture recognition,” in 2016 IEEE International Conference on
Rebooting Computing (ICRC), pp. 1–8, Oct. 2016.

