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ABSTRACT

Bulk bitwise operations are commonplace in application domains
such as databases, web search, cryptography, and image process-
ing. The ever-growing volume of data and processing demands of
these domains often result in high energy consumption and latency
in conventional system architectures, mainly due to data move-
ment between the processing and memory subsystems. Non-volatile
memories (NVMs), such as RRAM, PCM and STT-MRAM, facili-
tate conducting bulk-bitwise logic operations in-memory (CIM).
Efficient mapping of complex applications to these CIM-capable
NVMs is non-trivial and can even lead to slowdowns. This paper
presents Sherlock, a novel mapping and scheduling method for ef-
ficient execution of bulk bitwise operations in NVMs. Sherlock
collaboratively optimizes for performance and energy consumption
and outperforms the state-of-the-art by 10X and 4.6, respectively.
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1 INTRODUCTION

Bulk bitwise operations are critical in databases, web search, DNA
alignment, encryption, graph processing, networking, and machine
learning. Innovative methods like WideTable and BitFunnel har-
ness these operations to accelerate data scans and search engine
indexing, as well as many real-world databases support bitmap
indices [1]. However, on conventional von Neumann systems, these
operations demand substantial data transfer over the memory bus,
resulting in high latency and energy consumption.

Recent studies have shown that substantial performance and
energy improvements in memory-intensive applications can be
achieved by minimizing data movement [2]. One approach for re-
ducing data movement is to exploit the physical characteristics of
memory devices, including both conventional SRAM/DRAM and
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emerging nonvolatile memory (NVM) technologies, and perform
logic operations in-memory (CIM). This reduces the data move-
ment and allows for unprecedented parallelism in which a bit-
wise operation on multiple large vectors can be performed in one
shot. Numerous recent proposals have leveraged CIM to acceler-
ate memory-intensive applications across various domains either
entirely within the main memory [1] or within the storage [3].

Memristive memories emerge as a promising alternative to tra-
ditional DRAM and NAND Flash, offering read latency comparable
to DRAM but with smaller cell sizes, denser array layouts, and
significantly higher energy efficiency [4]. Memristive devices also
support multi-operand bitwise operations, unlike DRAM, which is
limited to three inputs [1]. Moreover, memristor-based bit-serial
architectures offer unique advantages, with previous studies demon-
strating superior energy efficiency and performance compared to
their DRAM counterparts [5].

Many existing CIM-logic solutions struggle to handle complex
applications wherein different application regions require different
logic operations at different granularities. This is primarily due to
the fact that efficient mapping of multiple application regions to
the memory array, dealing with finer granularities, and managing
partial results pose significant challenges and often result in sub-
stantial intra and inter-subarray data movement. In the context
of NVM-CIM, this becomes even more challenging as it requires
careful consideration of write operations and the impact on relia-
bility. Performing a reliable NVM-CIM is challenging. Firstly, the
NVM fabrication is not mature enough and susceptible to process
variation. Secondly, NVM-CIM has an analog nature, which makes
it more sensitive to the impact of process variation. Therefore, there
is a probability that the output of the NVM-CIM can be generated
incorrectly. This reliability challenge is known as decision failure.

Additionally, there is a tradeoff between the performance and
decision failure probability of the NVM-CIM. In NVM-CIM real-
ization using the concept of scouting logic, the generation of the
output is based on the comparison of the resistance from the NVM-
CIM array and a reference resistance [6]. Therefore, increasing the
number of operands decreases the sense margin and consequently
exacerbates the decision failure. However, increasing the number
of operands improves the performance. So, balancing performance
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and reliability is a direct tradeoff in NVM-CIM, which is highly
technology-dependent [7]. Mapping strategies are hence crucial to
effectively exploit these systems and fine-tune them for efficient
execution with a proper tradeoff between performance, energy
efficiency, and reliability.

To this end, we introduce Sherlock, a framework for Scheduling
efficient and reliable logical bulk bitwise operations in NVMs, as
illustrated in Fig. 1. Sherlock is end-to-end automated, takes a high-
level target-agnostic application and a device model as input, and
generates optimized code for NVM-CIM accelerators. Internally,
Sherlock extracts the data flow graph (DFG) of the input application
and implements a novel mapping algorithm optimized for finer-
granularities for in-NVM computing. Based on the device model,
the scheduler in Sherlock produces optimized code executable on
the target CIM system. We evaluate Sherlock on scouting-based
CIM systems with different array sizes, different technologies, and
different granularities, including the capability to support selective
reading and writing. Our results show that Sherlock outperforms
the state-of-the-art by 10x and 4.6X in terms of performance and
energy consumption while being the first one to consider reliability
in terms of decision failure and co-optimize for it.

2 BACKGROUND AND MOTIVATION

This section explains the fundamentals of CIM and outlines our
assumptions about the CIM-logic class and overall architecture.

2.1 CIM fundamentals and target system

Memristive devices store data using resistance states: a high re-
sistance state (HRS) representing ’1’ and a low resistance state
(LRS) representing ’0’. Similar to conventional memory technolo-
gies, NVM devices are organized into arrays of size m X n, i.e., m
rows and n columns. All memristive arrays allow for simultaneous
activation of multiple wordlines (rows), and the sense amplification
process can be adapted to facilitate column-wise logical operations,
such as (N)OR, (N)AND, and X(N)OR through a method known
as scouting logic [6] that operates based on the comparison of the
operand’s resistance and a reference resistance as shown in Fig .2(a).
Additionally, operations like row copy, rotation of contents in the
row buffer, and NOT can be implemented in-place using additional
CMOS circuitry in the row buffers. The copy operation is usually
implemented via row cloning [8]. Nevertheless, the core of our
mapping and scheduling solution is independent of the specific
hardware approach and applicable to other CIM flavors as well.

The CIM operation(s) implemented by the n columns in a CIM
array can be of the same type as in [9] or can be of different types
that provide more fine-grained control over operations. The latter
is achieved through the utilization of multiplexers connected to
both sense amplifiers and reference resistance, driven by configura-
tion bits in the CIM instruction. This column-wise control enables
computation on arbitrary data patterns by selectively activating
and computing on a few columns of a subarray. It also facilitates the
exploitation of instruction parallelism within the same subarray,
enabling different operations on distinct sets of columns as long as
the operations share the same rows.

2.2 Reliability challenges of CIM in NVMs

Due to their intrinsic process variations, the LRS and HRS values
of memristive devices are not fixed values and follow statistical
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Figure 2: (a) Performing the scouting logic in the NVM cross-
bar, (b) exacerbation of decision failure during the scouting
logic (using STT-MRAM technology), 2 and 4 rows are acti-
vated in the top and bottom figures, respectively.

distribution. On top of that, the employed comparator and the refer-
ence resistance required by the scouting logic can also be prone to
imperfections, leading to the incorrect generation of the NVM-CIM
output known as decision failure. The probability of decision failure
(PpF) can be estimated by the overlap region depicted in Fig.2(b),
and is mainly influenced by two factors. First, the device technol-
ogy, as a higher gap between LRS and HRS results in a lower Ppp.
Compared to STT-MRAM, the PCM and ReRAM devices have a
wider gap and hence smaller Ppr. Second, the number of simul-
taneously activated rows directly impacts Ppr. Increasing the
number of activated rows enhances performance but also reduces
the sensing margin and significantly increases PpF.

The mapping problem: Most prior works assume that all work-
loads can use a constant number of rows to buffer intermediate
results and all input/intermediate data fit within the rows of a sin-
gle array. This is unrealistic in NVM technologies as array sizes
can not be arbitrarily large [10]. With smaller array sizes, mapping
complex applications (larger DFGs) onto CIM arrays is non-trivial.
Existing methods traverse the DFG in a breadth-first order and
store the operand nodes in the array in the column-major order.
This leads to substantial data movement and data duplication. To
address this, one must consider the dependencies within the DFG
and map operands to a CIM array in a way that prevents operands
from one column from depending on operands from other columns,
substantially reducing data movement and leading to decreased
execution time and energy consumption.

3 SHERLOCK: MAPPING AND SCHEDULING

As illustrated in Fig. 1, Sherlock takes a high-level representation
of the input application and generates a DFG. It employs our novel
mapping and scheduling algorithm to find an efficient mapping of
the operands onto the NVM array and generates efficient code.

3.1 Front-end

For illustration throughout this section, let us consider bitweav-
ing as a running example. Fig. 3a shows the pseudo-code for the
bitweaving method to evaluate the predicate BETWEEN C1 AND C2
(column scan in databases). The kernel primarily comprises bulk-
bitwise operations, making it well-suited for CIM. The DFG for a
single iteration of this application is depicted in Fig. 3b. Note that
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for (i = 0 to K):
t1 = NOT(C1[il);

T2 = AND(T1, datalil); ¢

T3 = AND(T2, meql);

m_gt = OR(T3, mgt); o Q

T4 = NOT(datalil); 4 4

T5 = AND(T4, C2[i]);

T6 = AND(T5, m_eq2); ‘'O 2 p
m_1t= OR(T6, mlt); . e "
T7 = XOR(datal[il, C1[il); ;o °\

T8 = NOT(T7); ‘o o‘
meql = AND(meql, T8); A Y

T9 = XOR(datalil, C2[il); S (

T10 = NOT(T9); o ’o

meq2 = AND(meq2, T10);

(a) Bitweaving code from [11] . (b) Data flow graph

Figure 3: Bitweaving implementation of BETWEEN C1 AND C2
predicate, and its DFG for one loop iteration.

our DFG is always a directed acyclic graph (DAG), where nodes
represent operands or intermediate results (orange nodes) and op-
erations (blue nodes), with arrows indicating the dependencies
between operations. In this work, we start from a C program and
employ pycparser to produce the abstract syntax tree (AST), which
serves as the basis for generating the DAG of the application. All
operation nodes are unit-weighted, whereas operand nodes and
edges have zero weights. For each operation node in DAG, we com-
pute the b-level [12] (shown in the red circles in Fig. 3b), which
represent the priorities of the nodes and are used by the mapping
and scheduling algorithm as discussed below.

3.2 Naive mapping algorithm

Algorithm 1 illustrates a naive mapping algorithm to map a DAG to
a given hardware target. Unless stated otherwise, our assumptions
regarding the hardware target align with those detailed in Sec. 2.1.
This algorithm takes the DAG and target specifications as input and
produces both a memory layout, indicating how operands (orange
nodes) in the application are mapped to the memory array and a
generated set of instructions that define the schedule (order) in
which operations in the DAG are executed.

Algorithm 1: Naive mapping of a DAG onto a CIM array

Input: target, DAG
Output: layout, inst

*)

1 /* nq = Queue of op nodes, i = col number, index = curr index of the col

2 nq < [], inst « [], i« 1, index « 1;

3 layout = new layout(target);

4 nq < b-level-sort(DAG); // sort op nodes by b-level

5 for node in nq do

6 size «— GetUnmappedOpns(node, layout) ; // no. of operands to be map
7 if index + size < m then

8 /* All operands of the op node can fit in this col. n = col size */
9 layout.update(col;, node, DAG[node];—size);

10 index « index + size ;

11 else

12 * Store as many operands as can fit in the current col. */
13 layout.update(col;, node, DAG[node]; , (m—index) );

1 /* Move to next (i+1) col., update index based on remain. elements */
15 index « size - (m-index), i < i+1; // m: col size
16 layout.update(col;, node, DAG[node]; index);

17 end if
18 inst «— inst.append(generate_instructions(node, layout));
19 end for

20 return layout, inst;

In this naive algorithm, operands are mapped to the array based
on the priorities of their corresponding operations, starting from
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op address[arrayID][columns][rows] [cim-op]
write [0][4,8,12,16]1[932]

Read [0][1,5,9, 131[5]

Shift [0] R[3]

Read [0][4,8,12,161[933,934] [XOR,AND,OR,XOR]

Figure 4: Example of the generated instructions.

the first column and proceeding to subsequent columns (from 1
to n, where n is the number of columns in the target array). If
an application has a limited number of operands and operations
that, along with intermediate results, can fit in a single column of
size m, this mapping already delivers the best performance as no
data movement is required. However, for real-world applications, a
single column is often insufficient, and the naive mapping requires
significant data duplication and/or movement.

In the algorithm, Line 3 initializes the layout data structure,
which stores data and its arrival cycle in memory. Line 4 computes
a list of nodes nq from the DAG, sorted according to the priorities
(b-level) of op nodes. The loop from Line 5 to Line 19 iterates over
nq for all nodes. For each node, the algorithm first extracts the
in-degree and out-degree, representing operands and outputs that
need to be mapped to memory, and then checks the layout struc-
ture to determine if some operands are already mapped (in case
operands are shared by ops). Based on this information, the algo-
rithm computes size (Line 6), indicating the number of operands
that must be mapped to the array. If the current column (col;)
has sufficient free locations to accommodate size operands, they
are mapped to the memory, and the layout and index values are
updated (Lines 9, 10). Otherwise, m — size elements are stored in
the current column, and the remaining elements are mapped to the

next column (Lines 11-17).
3.2.1 Code generation. After mapping all operands of an op in

the DAG, the algorithm proceeds to generate instructions for it
(Line 18). Fig.4 presents a snippet of the resulting instructions for an
application. The format of these generated instructions is designed
to be compatible with our simulation infrastructure. The first field
in the instruction indicates the operation type, which can be either
read, write, or shift (see Sec.2.1). The second field represents the
address, comprising the array ID, columns, and rows. For standard
read and write operations, only these two fields are needed. In the
case of CIM operations, the third field specifies the logic operation
for individual columns. The shift operation is a special operation
used for the logical shifting of the row buffer contents for alignment,
requiring array ID, shift direction, and shift distance as arguments.
3.3 Optimized mapping

For larger DAGs, the naive mapping leads to substantial data move-
ment. This section explains our novel mapping algorithm, designed
to efficiently map DAG operands onto a specified set of columns
while taking into account considerations such as data reuse, and
effective utilization of the CIM array.

Algorithm 2 presents our mapping approach. It calculates k, the
number of columns needed for mapping the operand nodes in the
DAG, by dividing the number of operands on the column size (m)
(Line 3). Subsequently, it identifies k clusters of op nodes in the
DAG, each to be mapped to one of the k columns (Line 5). The size
of the clusters (measured as set cardinality |C|) is constrained by
both Cpaxsize Which is computed from the column size (m) and
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Figure 5: Scenarios of adding a node to a cluster.

the in-/out-degrees of the nodes within the cluster. The algorithm
strategically minimizes dependencies between nodes across clusters
to reduce data movement between columns.

3.3.1 Clustering DAG op nodes. Similar to the naive mapping, Al-
gorithm 2 also computes the b-level (priority) of the op nodes in the
DAG and stores it in nq (Line 18). Starting with the highest priority
nodes, the algorithm iterates over the node queue. For each node,
if it does not have a predecessor, a new cluster is created, and the
node is assigned to it (Line 23). In cases where a node already has
predecessors, these predecessors have already been assigned to one
or more clusters. The assignment of the node to a cluster can follow
any of the subsequent scenarios.

Case 1: If there is exactly one predecessor, and the size of the
predecessor’s cluster is less than Cp,4xsize, the node is assigned to
this cluster. Otherwise, the node is assigned to a new cluster.
Case 2: If a node has multiple predecessors, and the clusters of
the predecessors exhibit similar properties, i.e., same size |C| and
identical predecessors priorities (as illustrated in Fig. 5a), the algo-
rithm merges the clusters of the predecessors, provided that the new
size does not exceed C,,qxsize- Otherwise, the node is randomly
assigned to one of the predecessor’s clusters.

If the parent nodes’ clusters have different properties, then the
algorithm makes the assignment based on the priority difference to
the parent node, the dependence of the node on different clusters,
and the size of the clusters.

Case 3: When the size and dependencies are identical (see Fig. 5b),
the assignment is determined by comparing the smaller priority
difference between the current node and its predecessors. In the
given example, the priority difference of the node (yellow) with the
right parent (blue) cluster is smaller than that with the left cluster,
the node is assigned to the right cluster. This is because that node
potentially lies in the critical path of the right cluster.

Case 4: In situations like the one depicted in Fig.5¢c, where the node
exhibits greater dependence on one cluster (right in this case), it is
assigned to that cluster.

Case 5: In scenarios shown in Fig. 5d, where the node has equal
dependency on both clusters and equally influences the critical
path, the algorithm assigns it to the cluster with a smaller size to
strive at balancing the load across clusters.

In complex situations, such as the one exemplified in Fig.5e, the
algorithm calculates an assignment score for all clusters using Eq.1
and assigns the node to the highest scoring cluster. The score of a
node d relative to a cluster C is computed as:

score(d,C) =f-|C|l+a - Z

gepred(d)NnC

p(d.q) 1

Farzaneh et al.

Where p(d, q) corresponds to the difference of the priorities of
nodes d and g, and the constants & and f3 control the effect of cluster
size, dependency, and priority on the assignment.

Eq. 1 covers all the scenarios mentioned above. It maximizes
dependent nodes’ grouping, as clusters with more connected nodes
and lower priority differences yield a higher score. Once a target
cluster is determined, the node is added to it (Line 26).

After all clusters in the DAG are computed, and if the number
of clusters exceeds k, the algorithm greedily merges them to ulti-
mately have k clusters (Line 30). The merging of clusters follows the
same intuition as in the node assignment. The algorithm identifies
clusters with maximum dependencies, those that directly influence
each other’s critical paths, and ensures that the size of the resulting
cluster is less than C,,4xsize before merging them.

3.3.2  Mapping clusters to the CIM array. The k clusters identified in
Line 5 are assigned to k columns in the CIM array (Lines 7-14). Since
clusters are ensured to be small enough to fit in one column, this
assignment is straightforward. However, to maximize parallelism
and minimize the number of instructions in the generated code,
the algorithm exploits optimization opportunities across clusters
by merging operations.

Algorithm 2: Sherlock’s optimizing mapping

Input: target, DAG
Output: layout, inst

1 nq < [], inst < [], clusters « [], i« 1;

2 layout = new layout(target);

3 k « operands(DAG) / m; // No. of cols required for DAG operands
4 /* Find the list of clusters where each cluster is a list of nodes. */
5 clusters = FindClusters(DAG, k);

6 /* Map Operands of each cluster’s nodes to a CIM array column. */
7 for C € clusters do

8 for node € C do

9 layout.update(col;, node, DAG[node]);

10 iei+1;

1 inst « inst.append(merge(genInst(clusters, layout)));

12 end for

13 ie—1;
14 end for

-
=3

return layout, inst;

16 /* Function to find k op nodes clusters in the DAG. */
17 FindClusters DAG, k:

18 pNodes « [] nq « b-level(DAG);

19 clusters « []; // List of clusters where each cluster is a list of nodes
20 for node in nq do

21 pNodes = pred(node);

22 if pNodes = () then

23 ‘ clusters = clusters U {node} ;

24 else

25 tc = GetTargetCluster(node); / Find target using Eq. 1
26 tc = tc U node

27 end if

28 end for

29 /* Merge smaller clusters to end up having k in total */
30 clusters «— MergeClusters(clusters, k, Crnaxsize);

31 return clusters;

3.3.3 Optimizations. If two op nodes, each with x and y operands,
respectively, have the same operation type, and the output of one
node is solely used once in the other node, a node substitution is
performed. This replaces two nodes with a one equivalent node of
the same type and x + y operands. This optimization should takes
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Table 1: Simulation setup and tools

Technology-level parameters

STT-MRAM model - Radius = 20 nm
[14] - Barrier Material = MgO
-RA = 7.5Qum?
- Nominal TMR = 150%
ReRAM model: - Radius of the filament = 45 nm

JART VCM v1b Read variability - Length of the disc region = 0.6 nm

[15, 16] - Initial oxygen vacancies concentration:

LRS = 3, HRS = 0.009 [10%0 /m3]

Circuit-level parameters on Cadence virtuoso

CMOS technology Global foundry 22FDX

Standard VDD / Temperature 800mV/27°C
Array-level parameters on NVSim [13]

Squared array dim. {Data width (bit)} [ 128 {512}, 256 {1024}, 512 {2048}, 1024 {4096}
System-level parameters on gem5 [17]

CPU, ISA, Clock [ In-Order CPU, X86, 1IGHz

L1I/L1D/L2: size, latency | 16/64/256 KiB, 2/2/20 Clock Cycle

into account the characteristics of the target model, such as the
simultaneous enabling of rows and their impact on reliability.
Instructions merging across clusters: During instruction gen-
eration after the clusters mapping onto the CIM array, our algo-
rithm identifies and merges instructions across clusters. Recall
the instruction format from Fig. 4. Suppose the first instruction
in cluster1 is Read [0][1,5,9,13]1[5] (from array 0, row 5, read
columns 1, 5, 9, and 13), and the first instruction in cluster 2 is Read
[0]1[6,81[5] (from array 0, row 5, read columns 6 and 8). The algo-
rithm merges these instructions and issues a single instruction Read
[e][1,5,6,8,9,13][5]. Before any merging, a dependency check
is always performed to ensure that dependencies are not violated.
This merging significantly reduces the number of instructions in
the generated code.

4 EXPERIMENTAL SETUP AND EVALUATION

We used an extended version of the gem5 simulator for our evalua-
tion. Table 1 summarises our system configuration and parameters.
For array-level latency and energy metrics, accounting for hierarchi-
cal organization and interconnects, we use NVSim [13]. We conduct
SPICE simulations on each NVM cell to determine the resistive lev-
els in LRS and HRS. Then, we use these parameters to calculate the
probability of decision failure, represented by the overlap region in
Fig.2b), using statistical modeling of the distributions.

We evaluated Sherlock on: Database: To utilize the SIMD ca-
pabilities of CPUs, BitWeaving [11] proposes two representations:
BitWeaving-H and BitWeaving-V. We focus on BitWeaving-V, which
we denote as BitWeaving. Image processing: Sobel Edge detection
is a widely used method that computes the first-order derivative
of an image and subsequently determines the disparity in pixel
intensities at the edges. We used the bit-sliced implementation pro-
posed in [18]. Encryption: AES is a widely used symmetric key
encryption algorithm with substitution-permutation operations
across multiple rounds to ensure secure encryption. We used the
bit-sliced version of AES generated by the Usuba compiler [19].

4.1 Performance and energy comparison

Table 2 illustrates a comparative analysis of applications executed
on arrays of varying sizes (512, 1024), utilizing two different tech-
nologies (ReRAM and STT-MRAM), and exploiting multi-row acti-
vations (MRA) to have operations with exactly 2 operands (slower
but reliable) and operations with > 2 operands (faster but less reli-
able). For MRA of 2, we use the original DAG while for > 2 case, we
use the output DAG after applying the transformation explained in
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Section 3.3.3. The DAG is then mapped onto the hardware via the
naive and optimized (opt) algorithms.

Using the optimized method for mapping the Bitweaving kernel
on array sizes of 512 X 512 and 1024 X 1024 leads to a performance
enhancement of 3.49x and 3.1%, for ReRAM and 2.74X and 4.76X
for the STT-MRAM, respectively. Having fewer rows in the array
requires more columns for executing an application, and achieving
an effective mapping is crucial for performance enhancement. In
the case of the Sobel application, utilizing the optimized mapping
yields a significant improvement of 13.5x and 6.94x in the ReRAM
technology over the naive mapping for the 512x512 and 1024 array
sizes, respectively. This improvement is because the DAG of the
Sobel application is large, which utilizes more columns than the
Bitweaving application. AES exhibits similar characteristics as the
Sobel and shows similar trends.

In terms of energy consumption, the reduced write and read
operations in the optimized mapping lead to an overall average en-
ergy improvement of 5.4X. By using the transformation explained
in Section 3.3.3, there is an overall reduction in memory operations,
directly influencing the naive mapping by consistently lowering
latency across all configurations by an average of 1.28%. For opt,
the MRA > 2 trend is slightly different. The node substitution opti-
mization reduces the overall operations in the DAG but makes it
challenging for the mapper to merge instructions. Consequently,
for smaller array sizes, there are instances where the energy con-
sumption and latency slightly increase.

4.2 Effect of MRA on application reliability

To examine the impact of operation type and MRA on the applica-
tion reliability, we compute the probability of at least one failure
in an application using the following Pgpp = 1 - Hﬁil (1= PpFi),
where N is the total number of operations and Ppp; is the prob-
ability of error in operation i. When the application allows for
merging boolean operations with >2 operands, the total number
of operations is reduced, which could also reduce Papp. However,
these operations, having higher PpF, contribute to increasing the
probability of a single failure in the application.

Fig. 6 shows the effect of increasing the number of operations
with more than two operands. The trend shows that when allowing
more operations with more than 2 activated rows, which is given
by the percentage on top of the data points, latency is improved,
with a little sacrifice on reliability. How much the single failure
probability reflects on applications’ reliability also depends on the
memory technology. A Pgpp < 107 can be considered highly
reliable, which is the case for ReRAM (Fig. 6a). In the STT-MRAM,
due to the smaller HRS/LRS ration, the operations XOR and OR
become much more unreliable. For that reason, we consider the
NAND-based implementation of XOR and OR (shown in Fig. 6b).
Nevertheless, a Popp = 102 with STT-MRAM could be suitable
only for applications that tolerate some error.

The optimization technique significantly impacts reliability. On
average, opt improves Pgpp by 1.5X and 1.3x for ReRAM and STT-
MRAM, respectively, while optimizing for execution time and en-
ergy consumption In the naive optimization, the probability vs.
latency curve is linear because the choice of which operations to
merge does not change with the mapping and scheduling decisions,
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Table 2: Energy consumption and latency comparison across memory sizes and optimizations

naive opt
array size (N X N) 1024 512 1024 512
Tech Benchmark  # rows in MRA 2 > 2 2 >2 2 >2 2 >2
Bitweavi Latency (us) 036 0.28 144 113 016 016 041 046
IWEAVINE  Brergy (my) 0.18 0.14 0.73 057 008 008 021 023
Latency (us) 0.65 051 2.61 204 018 019 047 048
ReRAM Sobel Energy (m]) 033 0.26 1.32 103 009 009 024 024
AES Latency (us) 114715 90229 711140 56825 2978 2532 1526 1559
Energy (1J) 2590 2037 15532 13661 208 177 131 109
Bitweavi Latency (us) 036 0.28 144 113 016 016 041 046
TWEAVINE  Bhergy (m]) 018 0.14 0.72 057 008 008 021 023
5 Latency (uis) 0.65 0.51 2.61 204 018 019 047 048
STT-MRAM  Sobel Energy (m]) 033 0.26 131 102 009 009 024 024
AES Latency (us) 12469 9807 78554 63745 1125 1055 7325 7557
Energy (1J) 4.60 5.40 30.7 2332 145 136 816 87
1073 ) 1072 ) operands on the final reliability and performance. Our evaluation
® opt @ naive ©® opt @ naive . P .
- on multiple benchmarks shows that Sherlock significantly improves
2 o 10 ® o0 . S
= 6 ® o7 o 0:337. performance (~10X), energy consumption(~4.6x), and reliability
< @ 100% ® 75% 100% 75%
3 ® 4 %o (~1.5%) compared to the state-of-the-art.
& 4 @ 87% ® 50% L] s ®
= . ® 37% O g5 2: ..25'7.
E o770 . $ o', ACKNOWLEDGMENTS
50% o . . .
° 2 %ﬁ{{ o, ® This work was partially funded by the Center for Advancing Elec-
& o o ReRAM ® o MRAM tronics Dresden (cfaed) and the German Research Council (DFG)
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0 40 60 80 2 4 s s m through the HetC.IM and CIMWARE projects (502388442, 502196634),
Latency (us) Latency (ps) ROBCOMM project (441857533), and the AI competence center

Figure 6: Reliability of Bitweaving output varying the al-
lowed percentage of MRA (> 2 operands)

while in opt the choice of the best operations to merge highly de-
pends on these decisions and results in a rather irregular curve.
Lastly, from Fig. 6 one can also address the performance-reliability
trade-off between ReRAM and STT-MRAM, demonstrating that
STT-MRAM is a good memory candidate for accelerating applica-
tions that tolerate some deviation in result accuracy.

4.3 Comparison with CPU

Fig. 7 compares the energy-delay-product (EDP) of our optimized
configurations compared to the CPU. On average, compared to the
CPU, the gains are up to three orders of magnitude. STT-MRAM pro-
vides an order magnitude gain in comparison to ReRAM. Bitweav-
ing, sobel, and AES exhibit distinct profiles, showcasing the impact
of memory size variations on their energy-delay products.

reram-1024 reram-512 stt-mram-1024
I 0 stt-mram-512

5 107!
RO
15w

£ 8107
g5

Z 1074

"bitweaving "sobel laes

Figure 7: EDP optimizations on performance.

5 CONCLUSION

We present Sherlock, an innovative mapping and scheduling ap-
proach tailored for the efficient mapping of bulk bitwise operations
in NVMs. For a given DAG and system model, our algorithm intel-
ligently finds operands’ mapping onto CIM array columns, with
the objective of minimizing data movement and maximizing data
reuse and array utilization. We also explore the impact of employ-
ing transformations for executing operations with more than two

ScaDS.AI Dresden/Leipzig (011S18026A-D).
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