

Architecture Optimization and Design Tools for CAM-based Accelerators João Paulo C. de Lima (joao.lima@tu-dresden.de), Jeronimo Castrillon and Luigi Carro

Content-Addressable Memories

 \Box CAM offers cross-memory lookup and pattern-matching acceleration in constant time O(1)

- In computing-in-memory, CAMs operate in various ways based on their cell precision, periphery circuitry, match type and external merging circuits
- Boolean function, Hamming distance, branch-split operation, automata, associative memory, ...

Cross-layer Stack Design

- An omnidirectional co-design approach is needed as aspects of one the components influence others directly
- □ Focus on three general-purpose computing models

CAMs as Configurable Logic Blocks

- □ A reconfigurable fabric using TCAMs and RRAM-based interconnect
- Enables large input functions, often achieving higher density than LUTs
- Leverages reuse of reconfiguration data for endurance-aware flow

Scalable NFA-based Pattern Matching

- □ STAP: a memristive Scalable TCAM-based Automata Processor for NFA processing without exponential memory space
- Requires less memory to represent state matching and state transition compared to traditional Micron's AP model

In-memory general-purpose SIMD processing

Associative Processors iteratively evaluate LUTs and update data in place

- □ Same search/write pattern is applied simultaneously to all CAM rows
- RTM-CAMs offer multi-level capability needed for bitwise processing

2) Incompatible states are converted to allow only one active state at a time

1) An automaton is divided into **Connected Components**

3) CCs are greedly assigned to PEs to increase resource utilization

non-filamentary RRAM

Designs	Throughput (Gbps)	Power (W)	Area (mm²)	State density (cell/state)	Endurance cycles
Grapefruit (FPGA)	6.9	5.3	n/a	n/a	10 ¹⁶
eAP (DRAM)	20.0	29.6	5.4	2346	10 ¹⁶
RRAM-AP	24.0	0.6	3.1	2346	~50
16-bit STAP	35.2	6.9	19.6	1694	104

Lima, J.P.C., et al. "STAP: An architecture and design tool for automata processing on memristor TCAMs", JETC'21.

Programmability and Tool Suite

Tools for spatial CAM-based architectures are built upon existing tools designed for FPGAs and Micron's AP

Comparison with XBar-based accelerators:

Data movement for partial sums

- RTM-based CAM: 3% total energy
- RRAM Xbar-based accelerators: 40%

□ C4CAM¹ advances mapping of some code patterns onto CAM primitives

- Hybrid approach can combine all CAM computing models to implement multiple kernels in more complex applications
- Making strides on matching technology, circuits, architecture, algorithms and optimizations for efficient CAM-based accelerator design

¹ Farzaneh, H., Lima, J.P.C., et al. "C4CAM: A Compiler for CAM-based In-memory Accelerators", ASPLOS'24.

