
Evaluating the Impact of Racetrack Memory
Misalignment Faults on BNNs Performance

Leonard David Bereholschi1, Mikail Yayla1, Jian-Jia Chen1, Kuan-Hsun
Chen2, and Asif Ali Khan3

1 TU Dortmund University, Germany
{leonard.bereholschi, mikail.yayla, jian-jia.chen}@tu-dortmund.de

2 University of Twente, the Netherlands
k.h.chen@utwente.nl

3 Technical University of Dresden, Germany
{asif ali.khan}@tu-dresden.de

Abstract. Racetrack memory (RTM) is a promising non-volatile mem-
ory (NVM) technology that offers exceptional density, power and perfor-
mance benefits over other NVM and conventional memory technologies.
RTM cells have the unique capability of storing hundreds of data bits
per cell and are equipped with one or more access ports. However, ac-
cessing data in an RTM cell requires the data to be shifted and aligned
to an access port, introducing performance and energy overheads and
potentially leading to misalignment faults. A misalignment fault occurs
when after the shift operation, the desired data is not properly aligned
to an access port and incorrect data is read from the RTM cell. Coun-
termeasures have been proposed to mitigate the effects of these faults on
applications’ accuracy, albeit at the cost of increased overhead. There is
potential to balance the trade-offs between acceptable drops in accuracy
and enhancements in performance, especially in error-resilient applica-
tions such as Binarized Neural Networks (BNNs). However, there exists
no tool that enables effective exploration of this design space and assess
the potential trade-offs.

This paper introduces NetDrift, a framework which facilitates investiga-
tion into the impact of RTM misalignment faults on BNNs accuracy
at finer granularities. It enables controlled error injection in selected
BNN layers with varying fault rates and simulates the impact of accumu-
lated errors in weight tensors of several BNN models (FashionMNIST,
CIFAR10, ResNet18) stored in RTM. The framework allows for tuning
reliability for performance and vice versa, providing an estimate of the
number of inference iterations required for a BNN model to drop below
a certain lower threshold, with no protection, limited protection, and full
protection, along with the associated impact on performance. The tool
is openly available on Github4.

Keywords: Binarized neural networks (BNNs) · Racetrack memory ·
Reliability · Accuracy · Misalignment Faults.

4 https://github.com/LeonardDavid/NetDrift

2 L.D. Bereholschi et al.

1 Introduction

In recent years, machine learning has experienced remarkable progress, especially
with the advancements in generative AI and large language models (LLM), rev-
olutionizing numerous aspects of our lives. However, the complexity of these
models demands extensive computational and memory resources, exposing the
limitations of traditional technologies and computing paradigms. On the com-
puting front, innovative system designs such as Google’s tensor processing units
(TPUs) [12], domain-specific accelerators [1, 2], near-memory, and in-memory
computing systems [14], and chiplets [19] have been proposed to meet the com-
pute demands. However, the memory subsystem unfortunately continues to rely
on conventional SRAM and DRAM technologies, which face significant techno-
logical limitations. These technologies not only suffer from larger feature size
but also exhibit substantial energy consumption [5]. To overcome these chal-
lenges, a multitude of novel nonvolatile memory (NVM) technologies including
spin-transfer-torque memory (STT-RAM), phase-change memory (PCM), resis-
tive RAM (ReRAM), magnetic RAM (MRAM), Ferroelectric FETs (FeFETs),
and racetrack memory (RTM) have emerged [5]. Notably, RTMs stand out as
particularly interesting, offering unprecedented densities and boasting latencies
comparable to SRAM [4]. Since their inception in 2008 [21], RTMs have achieved
substantial breakthroughs and have been deployed at various levels in the mem-
ory hierarchy [4].

Unlike conventional memory technologies, a single cell in RTM is a magnetic
nanowire that can store hundreds of data bits, as illustrated in Fig. 2. Each RTM
cell has one or more access ports (AP) that enable the read/write operations.
During an RTM access, the desired data must be shifted and aligned to an
AP position before it can be accessed. The shift operations not only impose
performance and energy overhead but can also lead to potential misalignment
faults, also referred to as position errors. Common position errors in RTM, such
as stop-in-the-middle and out-of-step scenarios [26], occur when the adjacent
domain, rather than the desired one, aligns with the AP position, resulting in
the erroneous reading or writing of data.

RTM errors have been extensively studied and countermeasures like position
error correction codes (PECCs) have been proposed to detect and correct mis-
alignment faults [15, 26]. However, these schemes incur significant latency and
energy overhead of up to 2× [26]. For applications where a slight drop in accuracy
is acceptable, this overhead can be significantly reduced by selectively applying
PECCs to only critical application regions. For instance, in image and video pro-
cessing, edge pixels hold more significance compared to areas where surrounding
pixel values are uniform. Even if a pixel in these regions is erroneously read, the
overall impact on the image remains minimal. Similarly, certain machine learning
models like Binarized Neural Networks (BNNs) [11], where weights and activa-
tions are represented in 1-bit, exhibit outstanding tolerance to bit errors [6, 8].
In such cases, the overhead of PECC schemes can be reduced by selectively
protecting sensitive regions (e.g. BNN layers). To achieve this, new simulation
tools are needed that are capable of identifying such important regions through

BNN Robustness on RTM 3

detailed analysis and characterization of BNNs at a finer granularity, and allow
conducting design space exploration to strike a balance between accuracy and
performance overhead.

To this end, this paper presents NetDrift, a framework that enables inves-
tigating the impact of RTM misalignment faults on the BNNs accuracy. The
framework allows for different mappings of BNN weights to the RTM arrays,
controlled error injection across various BNN layers with adjustable error rates,
varying the RTM nanowire size, and simulating the accumulated error impact on
the overall accuracy. Additionally, it evaluates the combined effects on accuracy
and performance overhead incurred by a given PECC scheme, e.g., P-ECC, P-
ECC-O [26], and GROGU [15], across three BNN protection levels – unprotected
(no layers protected), partially protected (sensitive layers protected), and fully
protected. We showcase the versatility of our framework by conducting thorough
evaluations of RTM reliability and BNN performance across different RTM sizes,
fault rates, datasets, and models.

The rest of the paper is structured as follows: Section 2 presents a back-
ground on RTMs, BNNs, and the state-of-the-art PECC schemes. In Section 3,
we elaborate on our framework, including detailed descriptions of its individ-
ual modules. Section 4 presents our evaluation results and discussions, while
Section 5 concludes the paper.

2 Background

This section provides background on BNNs, RTMs, misalignment faults and
PECC schemes. Additionally, it presents a summary of the relevant state-of-the-
arts and a motivational example to emphasize the finer granularity analysis.

2.1 Binarized Neural Networks

Binarized neural networks (BNNs) [11] are a resource-efficient variant of NNs,
in which the weights and the activations are binarized into 1-bit representa-
tions. Unlike the full-precision NNs, where one matrix multiplication must be
performed for computing the output of each neuron, BNNs apply bitwise oper-
ators for computing the outputs of neurons. Notably, BNNs achieve comparable
accuracy to full-precision NNs and requires considerably less resources, e.g. [11]
achieves in practice 23× inference time improvement, compared to baseline NNs.

We assume for a certain layer a weight matrix W with dimensions (α × β),
where α is the number of neurons and β the number of weights of a neuron. The
input matrix X has dimensions (γ×δ), where β = γ and δ is the number of con-
volution windows in the input. We leave out any layer indices for brevity. Every
convolution of a conventional NN can be mapped to this matrix notation. Un-
like the full-precision NNs, where one matrix multiplication must be performed
for computing the output of each neuron, we can simply apply XNOR on the
operands to compute the outputs.

2 · popcount(XNOR(W,X))−#bits > T, (1)

4 L.D. Bereholschi et al.

ℎ

Input
Image

Convolutional
Layer

Convoluted
Image

Maxpool
Layer

Step
Layer

𝑤 𝑤

ℎ

𝑛

Fig. 1: Structure of a Convolutional BNN model demonstrating three major layer
types: Convolution, Maxpool, and Step layer.

where XNOR(W,X) computes the XNOR of the rows in W with the columns
in X (analogue to matrix multiplication), popcount counts the number of set
bits in the XNOR result, #bits is the number of bits in the XNOR operands,
and T is a vector of learnable threshold parameters, with one entry for each
neuron. The thresholds are computed with the batch normalization parameters,
i.e. T = µ − σ

ψη, where each neuron has a mean µ and a standard deviation σ

over the result of the left side of Eq. (1), and ψ and η are learnable parameters
(details about the batch normalization parameters can be found in [11, 22]).
Finally, the comparisons against the thresholds produce binary values.

Target BNN models: In this paper, we consider convolutional BNNs and a
binarized version of a Residual Network (ResNet18). In a standard convolutional
BNN, there are four fundamental types of layers: convolutional, maxpool, step,
and fully-connected. The convolutional layer (Cχ) conducts a 2D convolution
of the input with 3 × 3 filters, with χ representing the number of neurons in
the layer. The maxpool layer (MPχ) downsamples inputs by selecting the max-
imum in a 2 × 2 window, with χ indicating its output size. A step layer (S)
incorporates batch normalization [22] followed by a binary activation function.
We use signed integers for the threshold values in the batch normalization, and
apply Hard-Tanh as our binary activation function. The fully-connected layer
(FCχ), connects all neurons in the current layer with those in the next layer
and also uses binary weights. Additionally, a flattening layer (FLAT) reshapes
high-dimensional matrices into lower-dimensional matrices (3D into 1D in our
models).

We also use a Residual network (ResNet18) adapted for the binarized ver-
sion of NNs. In addition to the aforementioned layers, it also contains shortcut
connections that allow parameters to skip multiple layers inside Skip-connection
blocks (SCBs), in order to reach deeper into the network. The main advantage of
this structure is that it mitigates the effects of the vanishing gradient problem,
enabling the model to be applied to more complex datasets [7, 9].

BNN Robustness on RTM 5

2.2 Racetrack Memory

RTM is one of the many emerging NVM technologies that promises unprece-
dented density and energy benefits. A cell in RTM is a magnetic nanowire (also
called track) that is composed of multiple tiny magnetic regions referred to as
domains, which are separated by domain walls, and one or more access ports that
are used to access data domains in the track, as shown in Fig. 2. Each domain
in an RTM track represents a data bit and has its own magnetization direction.
In order to access a domain in a track, a shift current is sent from one end of
the track to shift the domains and align the corresponding data bit with a port
position. To avoid data loss, each track has reserved domains at both ends of the
nanowire that store data bits during the shift operation. The number of reserved
domains in a track is dependent upon the number and position of access ports
per track. In the case of evenly distributed access ports, the number of reserved
domains is equal to the maximum shift distance. In this work, we assume one
AP per track.

1 ...0 1 10 0 0 0

1 ... 0

0 ...1 1 01 0 0 1
..
.DBC 0

DBC 1

0 ...1 1 00 0 0 1

0

..
. AP2

AP1

RTM Chip

Subarray
Data Word

DBC
BankBank

Bank

Bank

Bank

Bank

Bank

Bank

BankBank

Bank

Bank

Bank

Bank

Bank

Bank

Chip I/O

Bank Bank

Row Buffer

DBC 0

DBC n-1

...

...

 Ishift

 Ishift

Bank
Nanowire

Fig. 2: RTM architectural overview

RTM, like other memory technologies, is organized into multiple banks, each
containing one or more subarrays (see Fig. 2). Each subarray consists of one or
more tiles, with each tile having multiple domain wall clusters (DBC). A DBC
is a group of T nanowires, each containing K data domains (i.e., bits), and are
equipped with one or more access ports for performing read/write operations.
Typically, data is stored in a bit-interleaved manner across DBC tracks so that
all T bits of a memory object can be accessed in parallel. To access a memory
object, bits are shifted in a lock-step manner until they are properly aligned with
the access port positions. Unlike domain wall RTMs, where data is stored in
domains, the Skymiron-based RTM stores data in magnetic skyrmions and have
been proposed as a more dense and more stable alternative [13]. However, due to
the lack of its fault model, this work only focuses on domain walls. Nevertheless,
the proposed framework is easily extendable to accommodate other fault models.

6 L.D. Bereholschi et al.

Shift right by 1
(correct shift)

Under-shift by 1
(misalignment)

Over-shift by 1
(misalignment)

Initial state

Fig. 3: Misalignment after a right shift by one position (a) Initial state before
shifting (b) No error (c) Misalignment by one position (under-shift) (c) Mis-
alignment by one position (over-shift). Adopted from [26].

2.3 Misalignment Faults

Misalignment faults (also known as position errors) may occur due to the fluctu-
ation in the shifting current originated from variation in the operating conditions
of the system or the non-linearities of the device itself [4]. The most common
types of faults that can occur in an RTM are stop-in-the-middle and out-of-step
misalignments. During an RTM access, the domain walls are shifted along the
track until the desired location is reached. However, due to the aforementioned
reasons, there exists certain probabilities that domains will be misaligned to the
access ports. In the case of a stop-in-the-middle fault, which rarely occurs, the
access port is aligned with a domain wall that separates two adjacent domains.
The value read out is uncertain, it can either be random, or one of the values
from the neighbouring domains. In the more common out-of-step misalignment,
the domain is either under- or over-shifting by n positions, as illustrated in
Fig. 3 for n = 1. Zhang et al. [26] characterized the misalignment probabilities
as P1 = 4 .55 · 10−5 and P2 = 1 .37 · 10−21 for n = 1 and n = 2, respectively.

Conventional error correction codes are unfortunately not applicable to RTM
misalignments because: (1) despite being correctable, misalignment faults may
not always produce an immediate detectable error, (2) the misalignment fault
changes the state of the entire nanowire, instead of a single bit. Many RTM-
specific position error correction schemes are proposed of late. Zhang et al. [26]
proposed P-ECC and P-ECC-O with various protection capabilities and over-
head trade-offs. Ollivier et al. [20] proposed DECC to minimize the overhead of
P-ECC and P-ECC-O by leveraging the transverse read access mode of RTM to
quickly determine any potential misalignment. GreenFlag and Foosball make a
correlation of the misalignment faults with the repeated and dropped bits in a
communication channel and use VT codes to detect and correct RTM misalign-
ment faults [3,17]. The most recent reliability technique, GROGU [15], proposed
a novel scheme that is capable of handling misalignment by more positions with
the least performance, area and energy overheads.

BNN Robustness on RTM 7

2.4 Motivation

To motivate the need for our framework, let us consider the example of bina-
rized VGG7 and ResNet18 structures, where all weight tensors are stored in
RTM. Figure 4 shows the accuracy of the two networks without employing any
PECC scheme (unprotected) compared to when all layers in the networks are
protected (fully-protected). As shown, the overall accuracy experiences a signif-
icant drop to an unacceptable level within just a few tens of iterations without
protection. Conversely, with full protection, the networks maintain their base-
line accuracy, albeit with an increase of, in some cases, over 100% performance
overhead. The vast design space between these extremes offers opportunities to
explore trade-offs in accuracy and performance. Our tool, as demonstrated in
Section 4.4, reveals that selective protection of specific layers, identifiable using
our framework through sensitivity analysis, can sustain accuracy for a longer du-
ration with a 5− 96% performance overhead (for ResNet18), depending on the
nanowire size and the employed protection scheme (GROGU [15] in this case).

0 10 20 30 40 50 60 70 80 90 100

10

30

50

70

90

Inference iteration

A
cc

ur
ac

y
(%

)

ResNet Unprotected
VGG7 Unprotected

ResNet Fully Protected
VGG Fully Protected

Fig. 4: Accuracy drop of ResNet and VGG7 models over time across inference
iterations. The baseline accuracy is the same as in fully-protected configurations.

3 NetDrift Overview

This section presents our framework (NetDrift) which enables profiling BNNs on
unreliable RTMs. Our framework is based on the SPICE-Torch error injection
tool [25] that models injecting conventional memory faults, such as like bit-flips in
BNN weights during inference and assessing their resilience. Contrary to existing
frameworks for conventional permanent and transient faults, NetDrift specifically
focuses on the RTM misalignment faults, comprising a mapping module, a fault
injector, and accounting for parameters such as RTM track size and misalignment
fault rate. Figure 5 illustrates a high-level overview of the operational steps of
NetDrift.

8 L.D. Bereholschi et al.

Mapper Results
(Accuracy)

Fault Injector

Fault Rate

Inference IterationTrained model

Nanowire size

protection = on

protection = off

x100

Fig. 5: A high-level overview of our NetDrift simulation framework.

3.1 Mapping of BNN Weights to RTM

We train different BNN models without any misalignments and map the weight
tensors to RTM nanowires. The binary weight tensors (one per network layer)
are split into blocks of size K, where K is the number of bits in the nanowire
(typically K ≤ 64). Hence, multiple nanowires are used to store a single weight
tensor. The framework currently allows mapping the weight matrices to RTM
in both row-major and column-major orders, but an arbitrary mapping can
also be implemented. We assume a single access port per track, which requires
resetting the AP to the beginning of the nanowire after every inference iteration.
Nevertheless, the framework can also be used with the zig-zagged RTM accesses
using two APs to avoid the long jumps after every iteration [18].

3.2 Fault Injection

We presume that all BNN weights are stored in RTM, and that an inference
does not require any weight updates (i.e. write operations). In the course of
an inference, the weights are fetched (i.e. read) from the memory, and each
access mandates shifting the nanowire to the desired port position. The shift
direction and distance depend upon the requested data and the current position
of the AP. As input, the fault injector takes a fault rate and the BNN layers
that need to be protected, along with the chosen PECC scheme. By default,
the framework inserts faults in all layers and does not employ any protection.
For each shift operation, the fault injector inserts a misalignment fault by one
position, according to the provided fault rate. Note that while the fault injection
rate governs the rate of fault injection, the control of under-shift and over-shift
rates is not explicitly determined, following a uniform distribution.

Please note that, once a fault is injected, the values in the shifted nanowires
remain misaligned so that the impact of faults is accumulated across multiple
inference iterations. For example, if a nanowire in iteration i over-shifts by one
position to the right, and the same nanowire in iteration i+ 1 over-shifts to the
right again, the overall misalignment accumulates to over-shift by two positions
to the right. Conversely, subsequent misalignments, such as an over-shift followed

BNN Robustness on RTM 9

by an under-shift (or vice versa), counteract each other, potentially bringing the
nanowire back to the correct position.

3.3 Error Detection and Correction

NetDrift monitors the injected faults by the fault injector, along with the total
shifts count, to estimate the performance overhead of the given PECC scheme.
When protection is activated on a layer, the framework simulates the process as
follows: The fault injector triggers as if it would inject a fault in the nanowire,
tallying the fault count for the protection overhead estimation. However, no error
is injected into the nanowire, thus necessitating no correction. For all correctable
faults by the selected PECC, this yields similar outcomes to implementing the
PECC scheme directly within the simulator.

3.4 Applicability to High-precision Networks

This work is also applicable to high-precision neural networks. Here, we briefly
explain how to modify the framework to implement and test such neural net-
works. First, the mapping module takes the weight matrices of the custom
(trained) NN model along with the nanowire size, bit-slices them, and stores
them in the RTM nanowires. The fault injector treats every nanowire indepen-
dent and can be used out of the box without requiring any modifications. If
needed, it can also be extended or used as a reference. In the provided GitHub
repository (see link in the abstract), we explain how certain modules of the frame-
work can be modified to achieve this. Finally, the accuracy of the framework in
the presence of the misalignment faults is evaluated.

4 Evaluation

This section presents our experimental setup, including our datasets and BNN
architectures. Additionally, it presents our evaluation results for conducting sen-
sitivity analysis on various BNN models and our design space exploration to
balance the accuracy and performance tradeoffs.

4.1 Experimental setup

We use a Linux server with two GTX1080 cards, each having 8GB of VRAM,
to run our experiments. The server can handle four concurrent and independent
runs. A run means executing a BNN model in our NetDrift framework for 100
consecutive inference iterations.

As explained in Section 3.2, the errors also accumulate over multiple infer-
ence iterations. In our evaluations, misalignment faults are accumulated over
the course of 100 consecutive inference iterations. We focus only on the impact
faults have on the accuracy of the models described in Section 4.2. The evaluated
misalignment fault rates p ∈ {10−4, 4.55 × 10−5, 10−5} are taken from [15, 26].
The simulator generates results including details about each inference iteration,
such as accuracy after each iteration and the total (accumulated) misalignment
faults in each layer. Since the models have different sizes (as outlined in the

10 L.D. Bereholschi et al.

following Section 4.2), one inference iteration takes on average 17 seconds for
VGG3 (FMNIST), 39 seconds for VGG7 (CIFAR), and around 7 minutes for
ResNet18 (ImageNette).

For error detection and correction, various PECC schemes are available, as
discussed in Section 2.3, which can be used with NetDrift to estimate perfor-
mance overhead. We use the state-of-the-art GROGU scheme [15] that operates
by conducting a transverse read and a standard read operation to detect a mis-
alignment by ±w positions, where w is the window size for the transverse read
operation [15]. Assuming each of these read operations takes one cycle, fault de-
tection requires two cycles and occurs after every shift operation in the protected
layers. Upon detecting an error, GROGU proceeds with correction, involving
shift and write operations. On average, GROGU typically requires around four
cycles to correct a fault. While other schemes like P-ECC and P-ECC-O [26]
exist, with varying detection and correction overhead cycle counts generally ex-
ceeding those of GROGU, in this section we focus exclusively on GROGU for
the sake of brevity.

4.2 Datasets and BNN Models

We evaluate our framework on several commonly used datasets, for which we
used BNN models based on VGG-type architectures [23] (in the case of CIFAR10
and Fashion-MNIST datasets) and ResNet18 for ImageNette.

Fashion-MNIST: The Fashion-MNIST [24] dataset consists of 70, 000 gray-
scale images and labels from 10 classes, representing different clothing articles.
The size of each image is 28 × 28 pixels in 1 channel, with 0 representing the
brightest and 255 the darkest values. We use 60, 000 images for training and the
remaining 10, 000 for testing. Table 1.1 defines the BNN structure of the VGG3
model used for this dataset, using the notations from Section 2.1. The baseline
accuracy for this model is 91.08%.

CIFAR10: The CIFAR10 [16] dataset contains 60, 000 colour images (3 chan-
nels), each with a size of 32× 32. It is split into 50, 000 training and 10, 000 test
images, which are classified in 10 different classes representing means of trans-
portation (i.e. airplane, ship, truck, automobile) and animals (i.e. bird, cat, dog,
deer, frog, horse). For this dataset we used a bigger VGG7 model, with its BNN
structure illustrated in Table 1.2. It achieves a baseline accuracy of 85.82%.

ImageNette: ImageNette [10] is the subset of the larger ImageNet dataset. It
classifies 10 various classes of 1000 images each, at a resolution of 64× 64. Com-
pared to the larger original dataset, ImageNette is more manageable and time
efficient for running multiple inference iterations, necessary for our evaluations.
The BNN model used for the ImageNette dataset is a ResNet18 structure with a
baseline accuracy of 77.50%, following the schematics of Table 1.3. It consists of
convolutional layers, divided into multiple Skip-connection blocks (SCBs), which
contain a shortcut connection that skips some of the layers inside the block. The
blocks are made up of 4 convolutional layers, with the number χ after SCBχ
denoting the amount of neurons in both of the convolutional layers.

BNN Robustness on RTM 11

Table 1: Structure of the BNN Models.
1. VGG3

In → C64 → MP14 → S → C64 → MP7 → S → FLAT → FC2048 → S → FC2048

2. VGG7

In → C64 → S → C64 → MP16 → S → C256 → S → C256 → MP8 → S → C512
→ S → C512 → MP4 → S → FLAT → FC1024 → S → FC1024 → 10

3. ResNet18

In → C64 → SCB64 → SCB128 → SCB256 → MP2 → SCB512 → MP4 → FC10

4.3 Layer-wise Sensitivity Analysis

To give an overview on the individual impact of each layer, we present the
accuracy drops in a heatmap as Figure 6, where darker reddish spots mean a
bigger accuracy drop from the baseline. The rows represent the ordered layers
of the evaluated model, while the columns denote different RTM nanowire sizes
(varied from 2 to 64). The heatmap is generated as follows: For a given RTM
nanowire size and a given fault rate, we inject faults in merely one layer (i.e.,
keeping all other layers protected) and observe the accuracy over 100 inference
iterations. Each cell in the heatmap shows the accuracy after these 100 iterations.
We repeat this experiment for each network layer (different rows), with different
RTM nanowire sizes (columns) and different fault rates (different blocks in the
heat map). This allows us to evaluate the sensitivity of each layer individually.
Due to space constraints, we chose to only show the heatmaps for the VGG7 and
ResNet18 models, with the realistic fault rates of p ∈ {10−4, 4.55× 10−5, 10−5}.

Firstly, we can observe that, for smaller nanowire sizes, the probability of
faults is smaller due to fewer shifts. For instance, when the nanowire has a
size of 2 bits, the average accuracy drop across all layers is only around −1%.
In most cases, this drop is deemed acceptable, thus obviating the need for error
correction. However, common nanowire sizes tend to be 32 and 64, and using only
two locations per nanowire significantly underutilizes the RTM. The accuracy
drop increases, along with the increase of the nanowire sizes. For a nanowire
size of 64, the accuracy drop can be as high as -75% (in VGG7) and -57% (in
ResNet18) in selected layers, necessitating protection of RTM accesses.

Additionally, we also observe that certain network layers exhibit higher sus-
ceptibility to misalignment faults compared to others. The sensitivity of these
layers varies across network models, yet the relative accuracy drop remains con-
sistent for different block sizes, as illustrated in Figure 6.

4.4 Design Space Exploration

Applying a PECC scheme can mitigate or even entirely prevent accuracy drops
resulting from misalignment faults. However, this comes at the cost of perfor-
mance overhead, namely an increase in inference execution time, as the employed

12 L.D. Bereholschi et al.

64 32 16 8 4 2
-0.42 -0.32 -0.13 0.00 -0.11 0.00
-62.1 -50.1 -30.2 -18.9 -5.87 -2.36
-65.7 -40.6 -28.9 -8.38 -2.38 -0.74
-75.8 -74.0 -37.3 -14.0 -2.35 -0.79
-59.9 -49.8 -29.3 -13.9 -2.94 -0.72
-75.7 -65.7 -31.5 -6.96 -2.42 -0.80
-75.8 -63.0 -19.4 -3.91 -0.77 -0.14
-20.3 -16.1 -7.96 -1.47 -0.84 -0.82

64 32 16 8 4 2
-0.13 -0.23 0.00 0.00 0.00 0.00
-19.8 -17.1 -4.00 -2.64 -0.53 -0.50
-16.2 -11.4 -2.91 -0.89 -0.90 -0.68
-44.4 -18.1 -5.45 -3.23 -0.50 -0.14
-22.9 -8.07 -2.75 -2.52 -0.46 -0.36
-24.7 -7.58 -3.87 -1.57 -0.57 -0.26
-18.4 -3.21 -1.01 -0.31 -0.15 -0.06
-6.52 -1.56 -0.54 0.69 -0.70 -0.41

10-4 4.55×10-5 10-5

64 32 16 8 4 2
1 -0.53 0.02 -0.23 -0.60 0.00 0.11
2 -10.4 -9.68 -8.26 -6.50 -3.62 -1.73
3 -12.0 -11.7 -11.3 -7.80 -2.63 -1.86
4 -30.5 -23.0 -22.5 -22.6 -5.07 -3.49
5 -12.9 -16.6 -13.4 -5.86 -5.07 -0.97
6 -57.0 -48.1 -47.7 -46.5 -16.9 -3.31
7 -52.1 -49.3 -45.2 -40.7 -13.7 -3.11
8 -19.1 -18.0 -16.3 -8.69 -3.47 -0.97
9 -18.1 -17.1 -11.5 -6.78 -2.50 -1.07

10 -10.9 -7.19 -5.27 -4.87 -1.53 -0.13
11 -46.5 -42.7 -33.5 -19.6 -9.45 -1.15
12 -12.5 -11.6 -9.27 -5.27 -1.53 -0.61
13 -8.53 -5.35 -4.77 -3.64 -1.38 -0.56
14 -9.56 -5.89 -3.80 -2.70 -0.33 0.08
15 -7.82 -5.40 -5.00 -3.62 -1.28 -0.23
16 -52.8 -46.0 -36.2 -7.84 -5.73 -1.61
17 -45.2 -35.4 -25.6 -12.2 -3.82 -0.48
18 -3.21 -2.06 -2.29 -1.38 -0.33 -0.41
19 -51.6 -40.3 -22.8 -9.30 -2.27 -0.46
20 -56.8 -51.3 -30.2 -7.31 -0.46 -0.20
21 -61.4 -62.1 -43.2 -25.0 -21.4 -2.93

64 32 16 8 4 2
-0.51 -0.46 -0.79 -0.63 -0.63 0.00
-9.47 -9.17 -6.75 -3.67 -1.78 -0.12
-9.73 -6.29 -4.20 -4.28 -1.60 -1.27
-29.7 -24.9 -4.74 -9.60 -1.50 -0.96
-20.7 -13.1 -6.32 -7.13 -5.12 -0.96
-48.6 -41.3 -33.6 -14.4 -5.27 -0.91
-51.4 -46.8 -29.8 -20.5 -4.94 -0.89
-11.9 -10.0 -7.59 -2.34 -0.99 -0.28
-20.4 -9.83 -9.37 -1.98 -0.89 -0.30
-7.61 -7.00 -6.14 -1.93 -0.84 -0.23
-35.0 -28.3 -18.6 -6.82 -2.90 -0.51
-12.4 -8.79 -5.30 -1.98 -0.74 -0.05
-6.04 -4.86 -2.42 -1.63 -0.71 -0.40
-6.49 -5.88 -2.72 -0.61 -0.18 -0.48
-5.78 -5.37 -2.95 -2.37 -0.96 -0.33
-44.7 -31.0 -17.6 -7.26 -2.72 -0.66
-34.9 -24.7 -13.7 -4.63 -1.63 -0.58
-1.98 -1.75 -1.09 -0.48 -0.25 -0.23
-31.1 -21.5 -8.71 -2.06 -0.99 -0.18
-45.0 -31.8 -7.31 -0.18 -0.07 -0.02
-59.5 -55.5 -32.5 -14.2 -3.74 -1.07

64 32 16 8 4 2
-0.71 -0.46 -0.63 -0.58 0.00 0.00
-5.60 -3.08 -2.29 -1.07 -1.04 -0.35
-6.26 -2.82 -0.61 -0.86 -0.96 -0.58
-11.9 -9.78 -2.65 -1.68 -0.58 -0.61
-3.28 -1.88 -1.30 -0.99 -0.74 -0.23
-40.5 -20.8 -7.13 -2.09 -0.71 -0.61
-32.2 -27.7 -6.70 -2.06 -1.47 -0.81
-8.68 -2.95 -1.45 -1.45 -0.33 0.00
-6.29 -2.29 -1.02 -0.12 -0.48 -0.18
-3.23 -2.60 -0.99 -0.89 -0.81 -0.38
-17.9 -7.33 -4.30 -1.35 0.05 -0.07
-5.17 -2.19 -1.30 -0.91 -0.35 -0.10
-2.88 -1.58 -0.28 -0.58 -0.33 -0.76
-2.29 -1.07 -0.20 0.13 -0.43 -0.46
-1.81 -0.63 -0.56 -0.66 -0.74 -0.10
-18.8 -5.88 -2.67 -0.79 -0.79 -0.46
-11.6 -4.25 -1.42 -1.27 0.05 -0.33
-0.84 -0.18 -0.05 -0.53 -0.28 -0.07
-7.54 -2.77 -1.37 -0.02 -0.05 -0.10
-6.70 -0.48 0.00 0.05 -0.07 -0.15
-38.8 -3.95 -4.15 -2.04 -0.89 -0.76

10-4 4.55×10-5 10-5

64 32 16 8 4 2
1 -0.40 -0.40 -0.51 -0.16 -0.45 -0.31
2 -69.8 -63.3 -45.9 -33.2 -11.1 -5.61
3 -67.4 -64.1 -53.3 -20.8 -7.07 -2.5
4 -75.8 -75.8 -74.4 -43.9 -15.5 -1.56
5 -65.2 -65.2 -58.7 -43.6 -12.3 -1.93
6 -75.8 -75.4 -62.0 -27.7 -5.37 -1.56
7 -75.8 -75.8 -67.7 -20.7 -2.93 -0.45
8 -34.7 -23.7 -20.3 -7.64 -1.58 -0.97

a. VGG7 (CIFAR10)

b. ResNet18 (ImageNette)

Layer

Layer

Fig. 6: Heatmaps representing the accuracy drop each layer causes individually,
for different block sizes and error rates. The baseline accuracy for VGG7 is
85.82% and for ResNet18 is 77.50%.

PECC scheme requires a certain number of cycles to detect and correct mis-
alignment faults. This subsection explores this design space by evaluating the
following configurations and presenting results analysis.

– UNPROT: This configuration is fully unprotected, where faults are injected
into all network layers, and the accuracy results are reported.

– EVEN: In this configuration, protection is naively applied to all odd layers
while leaving even layers unprotected, i.e., 50% of layers are protected.

– EQUAL: Similar to EVEN, this configuration also protects 50% of the layers.
However, the layers are greedily selected based on their importance, i.e.,
based on the results of the sensitivity analysis in Section 4.3.

– CUSTOM: In this configuration, protection is exclusively applied to all crit-
ical layers — those with the most significant impact on accuracy — while
leaving all other layers unprotected, usually < 25% of all layers.

– FULL: This configuration represents complete protection, maintaining base-
line accuracy by protecting all layers.

BNN Robustness on RTM 13

For the RTM nanowire size of 32, Figure 7 shows the accuracy drop across
inference iterations for different BNN models and configurations. The red and
blue lines are the same as in Figure 4, namely the FULL configuration (main-
taining baseline accuracy) and the UNPROT configuration, respectively. In all
three models, the accuracy of the UNPROT configuration drops below 30% in
less than 10 to 20 iterations. The FULL configuration maintains the baseline
accuracy but at the cost of 87% and 109% performance overhead increase in
ResNet and VGG, respectively.

10

30

50

70

90

A
cc

ur
ac

y
(%

)

(a) FashionMNIST (VGG3)

10

30

50

70

90

A
cc

ur
ac

y
(%

)

(b) CIFAR10 (VGG7)

UNPROT EVEN
EQUAL CUSTOM

0 10 20 30 40 50 60 70 80 90 100

10

30

50

70

90

Inference iteration

A
cc

ur
ac

y
(%

)

(c) ImageNette (ResNet18)

Fig. 7: Accuracy course over 100 inference iterations for different BNN models.
The size of the nanowire tracks are 32 bits and the fault rate is p = 10−4.

To reduce this overhead, EVEN, EQUAL and CUSTOM selectively apply er-
ror protection to the network layers. The EVEN configuration slightly delays the
accuracy drop but, since it is naively protecting network layers without consid-
ering their importance, in general it follows a similar trend as the unprotected
configuration and increases the performance overhead by 51% (ResNet), and
105% (VGG), compared to the baseline UNPROT. The carefully chosen EQUAL
configuration significantly delays the accuracy drop with a 72% increase in the

14 L.D. Bereholschi et al.

Model VGG3 (FMNIST) VGG7 (CIFAR10) ResNet18 (ImageNette)

Size 64 32 16 8 4 2 64 32 16 8 4 2 64 32 16 8 4 2

UNPROT 10.3 16.1 17.3 35.9 79.5 90.2 10.0 10.0 10.0 10.3 13.7 70.1 9.5 10.4 10.1 10.1 10.8 51.2
EVEN 20.7 30.2 67.4 81.8 88.0 89.7 9.9 10.3 10.0 11.8 34.5 76.6 9.3 10.3 10.3 10.2 24.0 51.6
EQUAL 38.3 60.1 54.0 74.0 90.1 90.5 10.0 10.0 10.4 29.4 63.5 79.4 9.8 15.1 18.7 25.5 55.1 73.5
CUSTOM 61.8 62.5 84.3 86.1 90.1 90.9 85.5 85.4 85.4 85.3 79.2 85.4 67.7 69.6 70.1 73.3 75.3 76.3
FULL 91.0 91.0 91.0 91.0 91.0 91.0 85.8 85.8 85.8 85.8 85.8 85.8 77.5 77.5 77.5 77.5 77.5 77.5

Table 2: Accuracies after 100 inference iterations, for different RTM nanowire
sizes and configurations. The fault rate is p = 10−4.

overhead for ResNet, and only 6% for VGG. Note that while both EVEN and
EQUAL protect the same number of layers, the overhead is different because the
weight tensor sizes of the selected layers are varied, requiring different number of
memory accesses, RTM shifts and misalignment. The CUSTOM configuration
further reduces the accuracy drop: after 100 iterations, it is within 10% differ-
ence to the baseline, but at the cost of relatively higher performance overhead
of 87% and 109% for ResNet and VGG respectively.

For RTM nanowire sizes 2 to 64, the accuracy after 100 inference iterations
is reported in Table 2. Notably, for a nanowire size of two, the accuracy drop
after 100 iterations is insignificant, especially in the VGG model. However, with
increasing nanowire sizes, only the carefully protected configurations retain their
accuracy and usability, while the accuracy in other configurations, such as UN-
PROT and EVEN, drops to unacceptable levels.
Analysis summary: NetDrift simulates the impact of RTMmisalignment faults
on BNNs accuracy and enables balancing the tradeoffs between the accuracy
drop due to misalignment faults and the performance overhead associated with
PECC schemes. The framework allows for conducting sensitivity analyses on a
given BNN model to identify crucial layers that have a substantial impact on
accuracy. Leveraging this information, selective application of error protection,
such as in the EQUAL and CUSTOM configurations, becomes possible, enabling
a collaborative reduction in both accuracy drop and performance overhead.

5 Conclusion

In this paper, we present NetDrift, a framework to simulate the effects of RTM
misalignment faults on the accuracy of BNNs across multiple inference iterations.
We evaluate various misalignment probabilities across different BNN models, ex-
ploring scenarios with no protection against misalignment faults, partial protec-
tion, and full protection. We show that NetDrift enables identifying critical net-
work layers and exploring the trade-offs in accuracy and performance overhead.
The framework also supports all necessary parameters to evaluate the impact on
the energy consumption and to optimise for it. We also illustrate that despite the
inherent resilience of BNNs, their accuracy suffers significantly in the absence
of PECC for misalignment fault probabilities exceeding approximately 10−5. In
the future, we plan to extend NetDrift to high-precision networks for more com-
prehensive sensitivity analysis and simulate the fault model of Skymiron-based
RTMs once it is available.

BNN Robustness on RTM 15

Acknowledgements

This work is partially funded by the German Research Council (DFG) through
the CO4RTM (450944241), OneMemory (405422836), and ARTS-NVM (502308721).

References

1. Reuther et al., A.: Survey and benchmarking of machine learning accelerators. In:
IEEE high performance extreme computing conference (HPEC). pp. 1–9 (2019)

2. Markidis et al., S.: Nvidia tensor core programmability, performance & precision.
In: IEEE International Parallel and Distributed Processing SymposiumWorkshops.
pp. 522–531 (2018)

3. Archer, S., Mappouras, G., Calderbank, R., Sorin, D.: Foosball coding: Correcting
shift errors and bit flip errors in 3d racetrack memory. In: IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). pp. 331–342 (2020)

4. Bläsing, R., Khan, A.A., Filippou, P.C., Garg, C., Hameed, F., Castrillon, J.,
Parkin, S.S.P.: Magnetic racetrack memory: From physics to the cusp of applica-
tions within a decade. Proceedings of the IEEE 108(8), 1303–1321 (2020)

5. Boukhobza, J., Rubini, S., Chen, R., Shao, Z.: Emerging nvm: A survey on ar-
chitectural integration and research challenges. ACM Transactions on Design Au-
tomation of Electronic Systems (TODAES) 23(2), 1–32 (2017)

6. Buschjäger, S., Chen, J.J., Chen, K.H., Günzel, M., Hakert, C., Morik, K., Novkin,
R., Pfahler, L., Yayla, M.: Margin-maximization in binarized neural networks for
optimizing bit error tolerance. In: Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE). pp. 673–678 (2021)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

8. Hirtzlin, T., Bocquet, M., Klein, J.O., Nowak, E., Vianello, E., Portal, J.M., Quer-
lioz, D.: Outstanding bit error tolerance of resistive ram-based binarized neural
networks. In: IEEE International Conference on Artificial Intelligence Circuits and
Systems (AICAS). pp. 288–292 (2019)

9. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 6(02), 107–116 (1998)

10. Howard, J.: Imagenette. https://github.com/fastai/imagenette/ (2019), [On-
line; accessed 25-April-2023]

11. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. In: Advances in neural information processing systems. pp. 4107–4115
(2016)

12. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates,
S., Bhatia, S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis of
a tensor processing unit. In: International Symposium on Computer Architecture.
pp. 1–12 (2017)

13. Kang, W., Wu, B., Chen, X., Zhu, D., Wang, Z., Zhang, X., Zhou, Y., Zhang, Y.,
Zhao, W.: A comparative cross-layer study on racetrack memories: Domain wall
vs skyrmion. J. Emerg. Technol. Comput. Syst. 16(1) (2019)

14. Khan, A.A., De Lima, J.P.C., Farzaneh, H., Castrillon, J.: The landscape
of compute-near-memory and compute-in-memory: A research and commercial
overview. arXiv preprint arXiv:2401.14428 (2024)

16 L.D. Bereholschi et al.

15. Khan, A.A., Ollivier, S., Hameed, F., Castrillon, J., Jones, A.K.: Downshift: Tun-
ing shift reduction with reliability for racetrack memories. IEEE Transactions on
Computers 72(9), 2585–2599 (2023)

16. Krizhevsky, A.: Learning multiple layers of features from tiny images. Tech. rep.
(2009)

17. Mappouras, G., Vahid, A., Calderbank, R., Sorin, D.J.: Greenflag: Protecting 3d-
racetrack memory from shift errors. In: 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). pp. 1–12 (2019)

18. Multanen, J., Hepola, K., Khan, A.A., Castrillon, J., Jääskeläinen, P.: Energy-
efficient instruction delivery in embedded systems with domain wall memory. IEEE
Transactions on Computers 71(9), 2010–2021 (2022)

19. Naffziger, S., Beck, N., Burd, T., Lepak, K., Loh, G.H., Subramony, M., White,
S.: Pioneering chiplet technology and design for the amd epyc™ and ryzen™ pro-
cessor families : Industrial product. In: ACM/IEEE International Symposium on
Computer Architecture (ISCA). pp. 57–70 (2021)

20. Ollivier, S., Kline, D., Kawsher, R., Melhem, R., Banja, S., Jones, A.K.: Leveraging
transverse reads to correct alignment faults in domain wall memories. In: Interna-
tional Conference on Dependable Systems and Networks. pp. 375–387 (2019)

21. Parkin, S., Hayashi, M., Thomas, L.: Magnetic Domain-Wall Racetrack Memory.
Science 320, 190–194 (2008)

22. Sari, E., Belbahri, M., Nia, V.P.: How does batch normalization help binary train-
ing? arXiv:1909.09139 (2019)

23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale im-
age recognition. In: International Conference on Learning Representations (2015)

24. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms (2017)

25. Yayla, M., Thomann, S., Wei, M.L., Yang, C.L., Chen, J.J., Amrouch, H.: Hw/sw
codesign for robust and efficient binarized snns by capacitor minimization. arXiv
preprint arXiv:2309.02111 (2023)

26. Zhang, C., Sun, G., Zhang, X., Zhang, W., Zhao, W., Wang, T., Liang, Y., Liu,
Y., Wang, Y., Shu, J.: Hi-fi playback: Tolerating position errors in shift operations
of racetrack memory. In: 2015 ACM/IEEE 42nd Annual International Symposium
on Computer Architecture (ISCA). pp. 694–706 (2015)

