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Abstract
Classifying programs based on their tasks is essential in fields
such as plagiarism detection, malware analysis, and software
auditing. Traditionally, two classification approaches exist:
static classifiers analyze program syntax, while dynamic clas-
sifiers observe their execution. Although dynamic analysis is
regarded as more precise, it is often considered impractical
due to high overhead, leading the research community to
largely dismiss it. In this paper, we revisit this perception by
comparing static and dynamic analyses using the same clas-
sification representation: opcode histograms. We show that
dynamic histograms—generated from instructions actually
executed—are only marginally (4-5%) more accurate than
static histograms in non-adversarial settings. However, if an
adversary is allowed to obfuscate programs, the accuracy
of the dynamic classifier is twice higher than the static one,
due to its ability to avoid observing dead-code. Obtaining
dynamic histograms with a state-of-the-art Valgrind-based
tool incurs an 85x slowdown; however, once we account for
the time to produce the representations for static analysis
of executables, the overall slowdown reduces to 4x: a result
significantly lower than previously reported in the literature.

CCS Concepts: • Software and its engineering → Com-
pilers.
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1 Introduction
Task classification is a well-known computer science prob-
lem: given a set of different candidate tasks, and a program
that solves one of these tasks, a classifier must determine the
correct task that the program implements. This problem is
important because it is a core component in malware identi-
fication and plagiarism detection [30]. An exact solution to
task classification is undecidable, for it amounts to proving
equivalence between programs [8, 34]. Thus, prevailing so-
lutions to this challenge are heuristic in nature: a classifier
typically uses static program features (sequences of tokens,
shape of the abstract syntax tree, histograms of opcodes and
such) to categorize programs.

Given the importance of task classification as a central el-
ement in the implementation of code diffing systems, many
different techniques have been proposed to deal with as-
pects of this problem. Most of these techniques are purely
static: they rely on program features to determine the al-
gorithm that a program implements. These features can be
extracted either from the program’s source code or from its
binary representation. However, the literature also describes
task classifiers that use dynamic information; that is, data
extracted from the observation of a program’s running be-
havior. For instance, Pewny et al. [31] run the program, and
use pairs of inputs and outputs (at the basic block level) to
match program points. While accurate, techniques such as
Pewny’s are considered impractical. Quoting Eschweiler et
al [17]: “While the use of semantic similarity delivers precise

results, it is too slow to be applicable to large code bases”. Simi-
larly, Feng et al. [19] would say that: “The approach by Pewny
et al. can take up to one CPU month to prepare and conduct a

search in a stock Android image with 1.4 million basic blocks.”

Revisiting Dynamic Analyses. This paper evaluates the
viability of employing dynamic analyses as the foundational
technique for developing practical tools to classify programs,
utilizing readily available open-source technology. To this
end, it compares such analyses with their static counterparts,
reporting on the accuracy of both techniques. From this
analysis, we report two main results:
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1. Dynamic classification can be engineered to be prac-
tical: instead of tracking program state (with a re-
ported overhead of thousands of times [15]), it can
track only instructions fetched during execution (with
an observed overhead of 100x instead of 1000x [15]).

2. A dynamic classifier, even though it has no access to
a program source code, can be more accurate than
a static classifier, when they use similar representa-
tions: the instructions that run vs the instructions that
constitute the executable file.

This paper analyzes static and dynamic classifiers that utilize
a program’s control-flow graph (CFG)—whether in a static
form or a dynamic slice from actual execution—to answer
the following research question:

What is the relative precision and speed of

task classifiers that access a static versus a

dynamic view of the same program repre-

sentation?

While static control-flow graphs can be generated by a
variety of tools, constructing dynamic CFGs is considerably
more complex. To achieve this, we use CFGGrind [35], a Val-
grind plugin. Regarding the embedding technique, various
methods exist in the literature for extracting program fea-
tures from CFGs to enable classification. This paper focuses
on opcode histograms; however, in Section 2.2, we demon-
strate that histograms are not worse (and often are better)
in classification accuracy to previously studied embeddings,
such as IR2Vec[36], Inst2Vec[4], and PrograML [10].

Summary of Contributions. This paper introduces a
number of findings, which we enumerate below:

• Methodology: the core contribution of this paper is a
methodology to apply dynamic analyses to classify pro-
grams according to the task they solve. Said methodol-
ogy requires executing a program, but does not require
its source code. Execution is instrumented via CFG-
Grind [35], a Valgrind [28] plugin.

• Analyses: By comparing the accuracy of a purely
static and purely dynamic approaches, we observe
that the latter outperforms the former marginally in
symmetric settings, and largely in asymmetric settings.
The asymmetric setup involves an adversary capable of
transforming a program before challenging the classi-
fier. Increasing the optimization level used to produce
executables enhances the accuracy of dynamic clas-
sifiers, although it has only marginal effect on static
ones.

• OpenJudge Dataset: as a consequence of this study,
we have released a public repositorywith a large dataset
of executable programs 1. Currently, it contains 700
classes of tasks, each with at least 500 programs. This
repository is a contribution in itself, for a major part of

1https://github.com/ComputerSystemsLaboratory/Rouxinol

the authors’ time was dedicated to curating the dataset.
These programs were extracted from CodeNet [32],
filtering out programs that either cause compilation
crashes, lack inputs, crash at running time, or do not
terminate.

As a result of this work, Section 4 describes Rouxinol,
a tool able to classify executable codes by observing traces
of instructions. When classifying programming marathon
codes compiled with clang -O3, given 100 possible candi-
dates, Rouxinol achieves an accuracy of 98%. This accu-
racy drops to 30% once it is given programs obfuscated with
o-llvm [24]. Although low, this precision is still more than
twice that from a histogram-based classifier that uses static
features instead of dynamic observations. Furthermore, we
show that the dynamic classifiers either match or outper-
form tools recently designed to solve code similarity tasks,
which require source code, such as IR2Vec or ProGraML.
Notice that the dynamic classifier does not need access to a
program’s source code, nor does it require debugging infor-
mation in the binary that it analyzes. Although it requires
the ability to run programs, it does not observe either the
inputs or the outputs of them. Rouxinol and its companion
dataset are publicly available under the GPL 3.0 license.

2 Static, Dynamic and Hybrid Classifiers
As mentioned in Section 1, the Task Classification problem
asks for the task that a program implements, given a set of
possible candidates. In this paper, we define “tasks” as prob-
lem specifications consisting of pairs of inputs and outputs,
following typical online programming judges. Definition 2.1
formalizes this concept.

Definition 2.1 (Task). A “Task” is a 4-element tuple ⟨𝐷, 𝐼,𝑂,
𝐶⟩, where 𝐷 is a brief description of the problem that must
be solved; 𝐼 is an ordered list of 𝑛, 𝑛 > 0 inputs and 𝑂 is an
ordered list of outputs, such that the output 𝑂 [𝑖], 1 ≤ 𝑖 ≤ 𝑛

corresponds to the input 𝐼 [𝑖]; and 𝐶 is a list of constraints
that applies to the inputs.

Definition 2.1 is adopted in a large number of previous
works that deal with task classification. To illustrate this
problem, we reuse Example 2.2, which was taken from the
work of Nogueira and Medeiros [29].

Example 2.2. (Nogueira and Medeiros [29]) The follow-
ing task specification was taken from the Code Submission
Evaluation System (CSES):

Description: Given an array of 𝑛 integers, find two val-
ues at distinct positions, whose sum is 𝑥 .

Input: Integer 𝑛, integer 𝑥 , and array of integers [𝑎0, 𝑎1,
. . . , 𝑎𝑛−1].

Output: Integers 0 ≤ 𝑖 < 𝑗 < 𝑛, such that 𝑎𝑖 + 𝑎 𝑗 = 𝑥 .
Constraints: 1 ≤ 𝑛 ≤ 2 × 105; 1 ≤ 𝑥 ≤ 2 × 109; and

1 ≤ 𝑎𝑖 ≤ 2 × 109, 0 ≤ 𝑖 < 𝑛.
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2.1 Binary Program Diffing
Task classification is a form of Program Diffing, a very broad
computer science challenge whose goal is to determine how
similar two programs are. Establishing the equivalence of
two programs presents an undecidable challenge, evenwithin
the constraints of basic formal language classes [23]. Conse-
quently, the majority of algorithms designed to assess pro-
gram similarities rely on heuristics. The evolution of these
algorithms has a rich history, with early discussions center-
ing around similarity at the source code level. Notably, Hunt
et al.[22] suggested, as early as 1977, that their sequence
alignment algorithm could be applied to ascertain program
similarity.
In this paper, we use task classification techniques to

solve a variation of code diffing called Binary Diffing: thus,
the input of our task classifiers are programs written in bi-
nary format. Binary diffing began gaining recognition in the
nineties. The algorithms proposed during this period were
often based on dynamic programming techniques, such as
sequence alignment [3, 9], or on hash functions to match
code blocks [38]. However, more recent approaches have
drifted towards stochastic techniques, typically relying on
machine-learning models to indicate a probability that two
programs implement the same task. In this regard, the num-
ber of different techniques to solve binary diffing is vast. As
a testimony to this variety, the “Awesome Binary Similarity”
website [25] listed 213 publications related to the topic in No-
vember of 2024. Nevertheless, all these stochastic techniques
follow a very specific pattern, which Figure 1 describes.

Source code

Assembly

LLVM IR

ELF Binary

...

Control-flow
graph

Abstract
syntax tree

Set of
instructions

Multiset of
instructions

INST2VEC

HISTOGRAM

PROGRAML

ASM2VEC

Neural network

K-nearest
neighbors

Random forest

Logistic
classification

Input Data Structure Vector Model

Embedding Function

... ... ...
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D

Figure 1. Overview of different approaches to solve algo-
rithm classification. The techniques studied in this paper
appear in gray boxes.

2.2 Static/Hybrid/Dynamic Classifiers
Most of the over 200 implementations of code classifiers
listed by Song Liu [25] implement embedding functions: func-
tions that map programs onto a vector space. These vectors
are then compared—e.g., via their Euclidean Distance—to

determine if they represent similar programs. One of the
most common types of vectors are histograms. As an exam-
ple, at least three algorithm classifiers [12, 13, 20] released
in 2023 compare histogram of instructions extracted from
the LLVM intermediate representation of programs. Because
this setup is so common in the recent code-diffing literature,
we use it as a baseline in this paper. Henceforth, we call
such approaches Purely Static Techniques, because obtain-
ing histograms of instructions does not require running the
program. Figure 1 indicate purely static strategies with an S.
In this paper, our focus is on dynamic classifiers, which

are granted the ability to observe program execution. Such
classifiers prove beneficial in various scenarios, such as iden-
tifying plagiarism in online grading systems or detecting
binary programs that improperly utilize third-party code. In
this regard, we further define two types of classifiers: Hybrid
and Purely Dynamic, which we define as follows:

Definition 2.3 (Hybrid/Dynamic Classifiers). The execu-
tion of a program, for a given input, consists of a trace of
instructions. This trace is a sequence of pairs 𝑆 = ((𝑎𝑛, 𝑜𝑛)),
where each element is formed by an instruction address (𝑎)
and an opcode (𝑜). A hybrid classifier observes this trace
as a set; that is, without duplicate elements. It then builds
a histogram for the opcodes, with the value for opcode 𝑜 ′
defined as ℎhybrid (𝑜 ′) = |{(𝑎, 𝑜) ∈ 𝑆 ;𝑜 = 𝑜 ′}|.

A dynamic classifier, in turn, counts every appearance of
an opcode in the trace and computes a value for an opcode
𝑜 ′ in the histogram as ℎdyn (𝑜 ′) =

∑
(𝑎,𝑜 ) ∈𝑆,𝑜=𝑜 ′ 1.

Example 2.4. Figure 2 shows histograms extracted from
different program representations. The LLVM intermediate
representation of programs, illustrated in Figure 2 (b), yield
the histograms seen in Figure 2 (e) that power the fully static
classifiers of Definition 2.3. Fully dynamic classifiers, as seen
in Figure 2 (d), obtain their information from traces of fetched
instructions. The trace in Figure 2 (d) was produced by the
command line ./a.out a a, where a.out is the executable
compiled from Figure 2 (a). A histogram derived from such
a trace—seen in Figure 2 (g)—is called fully dynamic. Finally,
hybrid classifiers can observe the portion of a program that
is covered by the flow of execution. Figure 2 (c) shows the
instructions covered by the execution of ./a.out a a, and
Figure 2 (f) shows the ensuring histogram.

Embedding functions used by hybrid and dynamic classi-
fiers depend on the program’s code and inputs. As seen in
Example 2.4, a dynamic classifier counts how many times
each instruction address has been visited by the program
counter. Thus, instructions within loops might contribute
more to the histogram than instructions outside loops. A hy-
brid classifier tracks which instructions where covered by the
execution flow, without counting how often each instruction
was fetched. Example 2.5 clarifies this difference.

15



CC ’25, March 1–2, 2025, Las Vegas, NV, USA Anderson Faustino da Silva, Jeronimo Castrillon, and Fernando MagnoQuintão Pereira

int main(int a, char** v)  {
    int f = 1;
    while (a > 1) {
        f *= a;
        --a;
    }
    return f;
}

define @main(%a, %v) {
bb:
  br label %bb5
bb5:
  %i2 = phi [%a:%bb], [%i13:%bb8]
  %i4 = phi [1:%bb], [%i11:%bb8]
  %i7 = icmp sgt %i2, 1
  br i1 %i7, %bb8, %bb14
bb8:
  %i11 = mul %i4, %i2
  %i13 = add %i2, -1
  br %bb5
bb14:
  ret %i4
}

0000000000401110 <main>:
401110: mov $0x1,%eax
401115: cmp $0x2,%edi
401118: jl 40112d <main+0x1d>
40111a: mov $0x1,%eax
40111f: nop
401120: imul %edi,%eax
401123: lea -0x1(%rdi),%ecx
401126: cmp $0x2,%edi
401129: mov %ecx,%edi
40112b: jg 401120 <main+0x10>
40112d: retq   
40112e: xchg %ax,%ax

401110: mov $0x1,%eax
401115: cmp $0x2,%edi
401118: jl 40112d <main+0x1d>
40111a: mov $0x1,%eax
40111f: nop
401120: imul %edi,%eax
401123: lea -0x1(%rdi),%ecx
401126: cmp $0x2,%edi
401129: mov %ecx,%edi
40112b: jg 401120 <main+0x10>
401120: imul %edi,%eax
401123: lea -0x1(%rdi),%ecx
401126: cmp $0x2,%edi
401129: mov %ecx,%edi
40112b: jg 401120 <main+0x10>
40112d: retq   
40112e: xchg %ax,%ax
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Figure 2. (a) Program written in C. (b) LLVM intermediate
representation. (c) x86 Assembly. (d) Trace of instructions
fetched during execution. (e) Histogram of LLVM instruc-
tions (static). (f,h) Histogram of set of visited instructions
(hybrid). (g,i) Histogram of instruction executions (dynamic).

Example 2.5. Figures 2 (f) and (h) show two hybrid his-
tograms. They differ because they were produced by differ-
ent inputs. The former was generated by the command line
./a.out a a; the latter, by ./a.out without any argument.
If the target program is invoked without arguments, then
the instructions between addresses 40111a and 40112b are
not visited by the execution flow. Thus, none of these in-
structions will contribute to the histogram. Fully dynamic
histograms also vary, depending on program inputs, as Fig-
ures 2 (g) and (i) demonstrate.

Hybrid and dynamic histograms can be reconstructed by
observing program executions, and there are several publicly
available tools that facilitate such observations, including
PIN [26], DynamoRIO [7], or Valgrind [28]. In this paper, we
employ CFGGrind [35], a Valgrind plugin that reconstructs
control-flow graphs (CFGs) of executable programs. Only in-
structions covered by the execution flow contribute to these
CFGs. The opcodes in the CFGs provide us with the hybrid
histograms. The graphs produced by CFGGrind include exe-
cution counts on the edges, which we use to reconstruct the
dynamic histograms.

3 Classification Methodology
This paper has two goals. First, to show how the extra infor-
mation accessible to a dynamic algorithm classifier improves
its accuracy when compared to a fully static technique. Sec-
ond, to show that collecting this information can be done
within reasonable time. To this end, this section introduces
the methodology that we have employed to perform task
classification. This methodology uses a dataset of executable
programs discussed in Section 3.1 as inputs to the different
comparison games explained in Section 3.2.
As explained in Section 2, this paper recognizes three

different ways to obtain the histogram of instructions of a
program: static, hybrid and dynamic. Figure 3 shows how we
obtain each of these kinds of histograms. Notice that three of
the histograms in Figure 3 count x86 instructions, whereas
one of them counts LLVM instructions. The x86 format is
the most common source of information among the more
than 200 works listed by [25]. In this paper, we also analyze
the LLVM because it has been used in recent works on task
classification [6, 13, 20].

Executable
code
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Input

Execute
(with CFGGrind)

Dynamic 
Control-Flow 

Graph

Edge frequency 
counters

Hybrid x86 Histogram
(each execution of the 

same instruction counts 
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Dynamic x86 Histogram
(each execution of the 

same instruction counts)

Static x86 Histogram
(each instruction in the 
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Program
(C)

Static LLVM Histogram
(each instruction in the 
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Intermediate 
Representation

(LLVM IR)

Figure 3. The process of generating different histograms of
opcodes. The accuracy of classifiers based on these different
histograms shall be compared in Figure 5 (Page 7).

3.1 Dataset
In this paper, we evaluate different techniques to solve algo-
rithm classification using C programs taken from the Open-
Judge repository [32]. Our experiments require executable
programs; however, programs in OpenJudge are not dis-
tributed in a way that facilitates execution: the repository
contains code that does not compile with the compilers we
used; some programs lack inputs; others run with errors.
Thus, we have filtered programs that satisfies the following
requirements:

1. Each program can be compiled with clang 10.0.0 and
transformed with o-llvm [24].

2. Each program runs without errors (exit code 0) with
all the available inputs on an Intel i7.
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Out of this subset of OpenJudge, we built a collection of
700 classes of programs, each class containing at least 500
programs. All programs of a class solve the same instance
of a programming marathon problem. From this notion, we
can define the Algorithm Classification problem as follows:

Definition 3.1 (Alg. Classif.). Let F = {𝐹1, 𝐹2, . . . , 𝐹𝑛} be
a collection of sets of known programs, such that any 𝑝 ∈
𝐹𝑖 solves the same task 𝑖 . Given a set of known program
classes F and a candidate program 𝑝 , algorithm classification
consists in determining the task 𝑗, 𝐹 𝑗 ∈ F that 𝑝 implements.

Each class of problem in the OpenJudge suite comes with
exactly one input and its corresponding expected output. We
ensure that all programs in the same class produce equal
outputs for that input. However, these programs are not
guaranteed to be equivalent. Thus, it is possible that they
might differ for other inputs not present in our problem
description, either producing different outputs, crashing or
looping indefinitely. Therefore, in the experiments reported
in Section 4, we use one input per benchmark to build that
benchmark’s histogram. Notice that this methodology is
sound, as the same class of problems is either used as part of
a training set, or as part of a test set, but never in both.

3.2 Adversarial Games
This paper compares algorithm classifiers using the Game

Framework proposed by Damásio et al [13]. A game pitches
a classifier against an evader on an algorithm classification
problem, following a three-stage protocol, defined as follows:

Definition 3.2 (Classification Game). A game is formed by
a classifier 𝐶 , an evader 𝐸, a collection of program classes
F = {𝐹1, 𝐹2, . . . , 𝐹𝑛} plus their inputs I = {𝐼1, 𝐼2, . . . , 𝐼𝑛},
where each 𝐼𝑖 is a collection of inputs2 for programs in 𝐹𝑖 . A
game happens in three phases.

• Training: The classifier𝐶 observes the set of program
classes F and their inputs I to build a classification
model trained with data from F and I.

• Challenge: The evader 𝐸 draws a new program 𝑝

from the same distribution used to generate the train-
ing set for the classifier. The classifier has not seen 𝑝

in the training phase. 𝐸 is allowed to apply onto 𝑝 a
semantics-preserving transformation 𝑓𝑒 ; thus, obtain-
ing an equivalent program 𝑝′ = 𝑓𝑒 (𝑝).

• Response:The classifier receives 𝑝′, andmight further
modify it using a semantics-preserving transformation
𝑓𝑐 ; thus, obtaining a program 𝑝′′ = 𝑓𝑐 (𝑝′). 𝐶 might
observe the execution of 𝑝′′ on 𝐼 𝑗 , 1 ≤ 𝑗 ≤ 𝑛. It must
guess the class 𝐹𝑖 , 1 ≤ 𝑖 ≤ 𝑛, to which 𝑝′′ belongs.

Depending on which transformation functions (𝑓𝑒 and 𝑓𝑐 )
are available for evaders and classifiers, games can either be

2Definition 3.2 assumes that data inputs exist for each task; however, it does
not assume that reference outputs are available, nor that inputs are distinct.

symmetric or asymmetric. Symmetric games give classifiers
and evaders the same function; asymmetric games give them
different transformations:

• Game-0 is a symmetric game where 𝑓𝑐 = 𝑓𝑒 = identity
• Game-1 is an asymmetric game where 𝑓𝑐 = identity
and 𝑓𝑒 ≠ identity.

• Game-2 is a symmetric game where 𝑓𝑐 = 𝑓𝑒 ≠ identity.

Early discussions of algorithm classification would eval-
uate instances of Game0 [1, 4, 27]. Research that focuses
on building evaders tend to adopt methodologies centered
aroundGame1. Such is the case of the work of Ren et al. [33],
which created the well-known BinTuner code modifier. In
the case of BinTuner, 𝑓𝑒 is a sequence of code optimizations.
The literature usually does not focus on Game2 on its own,
as it is considered a direct variation of Game0. However,
Damásio et al. report that some obfuscation techniquesmight
reduce the precision of an algorithm classifier. Results in Sec-
tion 4 corroborate this observation when 𝑓𝑒 = 𝑓𝑐 = o-llvm,
where o-llvm is Junod et al.’s LLVM-based obfuscator [24].
In this regard, the experimental methodology used in this
paper adopts different code transformation techniques to
evaluate instances of Game1 and Game2:

• fla: Control-Flow Flattening, which replaces the CFG
of the program with a switch within a loop. Each case
of the switch is a basic block in the original program.

• bcf: Bogus Control Flow, which inserts new execu-
tion paths into a program’s control-flow graph. These
new paths are unreachable, for they are guarded by
conditions that are always false. These conditions are
engineered in a way to remain in place in spite of
compiler optimizations.

• sub: Instruction Substitution, which replaces sequences
of instructions with code of similar semantics.

Classification Models. Although the four different his-
tograms in Figure 3 come from different program representa-
tions, they can be used in tandemwith the same classification
model adjusted for different vector lengths. In other words,
the different histograms are all 𝑛 × 1 vectors, where 𝑛 is the
number of opcodes in the given representation: 66 for LLVM
and more than 1,000 for x86 (however, in our experiments,
only a few of these opcodes are observed: approximately 300).
In this paper, we perform classification via random forests.

4 Evaluation
Our evaluation breaks down the main research question
introduced in Section 1 into:

RQ1: What is the accuracy of the classifiers evaluated in
this paper compared to either trivial classifiers or to
state-of-the-art techniques discussed in the literature?

RQ2: What is the relative accuracy of purely static, hy-
brid and purely dynamic task classifiers?
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RQ3: How does the optimization level used in compila-
tion influence the accuracy of the different classifiers?

RQ4: How does code obfuscation influence the classi-
fiers, when the classifier is aware and unaware of the
obfuscation technique used?

RQ5: How much time is necessary to carry out classifi-
cation using the techniques evaluated in this paper?

We evaluate RQ1 to provide perspective on the results that
this paper reports: by comparing the different classifiers
from Section 2 with well-known baselines, we show that the
experimental setup discussed in this paper is competitive
with state-of-the-art algorithm classifiers.

Experimental Setup. Results discussed in this paper were
produced on an AMD Ryzen Threadripper 3960X 24-Core
Processor 2.2 GHz, with 64 GB of RAM, running Linux
Ubuntu v20.04. Every code in the dataset of 500 × 100 pro-
grams was compiled with clang v10.0. The dynamic and
hybrid classifiers use CFGGrind, commit d3fcdd3, which
runs on Valgrind v3.22.0. In every game, the classifier was
trained with 80% of the dataset and tested with the remain-
ing 20%. Obfuscation techniques come from o-llvm [24]
(commit 8bd80ea, LLVM 10.x). The dynamic and the hybrid
histograms of a benchmark are constructed after observing
one execution of that benchmark, i.e., with one input. Classi-
fication via the embedding functions discussed in Section 2
use a standard implementation of random forest taken from
SciKit-Learn. This model is also used in Section 4.1, when
evaluating IR2Vec—in our setting, we have obtained better
results with the random forest than using IR2Vec’s original
neural network [36]. We evaluate ProGraML using Brauck-
mann et al. [5] implementation of a graph neural network
available in ComPy-Learn.

4.1 RQ1: Comparison with Previous Work
The classifiers assessed in Sections 4.3 ßnd 4.4 have not
undergone testing in prior studies. Consequently, to offer
the reader comparison points, this section contrasts these
classifiers with two sets of baselines: trivial and state-of-the-
art. The latter group features the following previous work:

• ProGraML: a graph-based embedding function that
maps elements of the program’s control-flow graph to
a 32 × 64-bit vector [10].

• IR2Vec: a flow-sensitive embedding that maps pro-
gram instructions to a 300 × 64-bit vector [36].

Additionally, we consider three trivial classifiers, based on
the size of histograms of opcodes. By evaluating trivial clas-
sifiers we demonstrate that the effectiveness of the embed-
ding functions discussed in Section 2 does not come from
counting the instructions that make up programs. Thus, each
trivial classifier is extracted from one of the embeddings seen
in Section 2: The S-Trivial classifier uses the LLVM Static
representation; the H-Trivial classifier uses the CFGGrind
Hybrid representation; and the D-Trivial classifier uses the

CFGGrind Dynamic representation. We call the size of a his-
togram the sum of all the opcodes that it contains. As an
example, the size of the histogram in Figure 2 (e) is 9, and the
size of the histogram in Figure 2 (f) is 12. Each trivial clas-
sifier averages the sizes of histograms per class of problem.
When given an unknown problem, that classifier matches
the size of its histogram with the class of closest average.

Discussion. Figure 4 compares the different embedding
functions with respect to Game-0. For each embedding, this
experiment uses either programs compiled without optimiza-
tions (clang -O0) or programs compiled with the maximum
optimization level of clang: -O3. This section uses a reduced
number of classes of algorithmic problems: 32 classes with
500 samples each. Notice that in the next sections we use 100
classes with 500 samples each. The reduction in the number
of classes was necessary because IR2Vec is very memory-
intensive: we could not set it up in our environment using
more problems, or with more samples per problem.
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Figure 4. A comparison of different embedding functions
on Game-0.

Figure 4 makes it clear that using the trivial classifiers is
only marginally better than matching programs randomly.
Accuracy ranges from 4 to 12%, while the expected accuracy
of a random classifier is 3% (1/32). This low performance is
in contrast with the accuracy of the other classifiers, which
is always above 90%. Thus, the classifiers evaluated in Sec-
tions 4.3 and 4.4 are not simply counting the number of
opcodes observed during the execution of programs—they
are exploring relations between these opcodes. Another no-
table finding from Figure 4 is that the embeddings assessed
in this paper demonstrate comparable performance to es-
tablished program representations commonly employed for
binary diffing. Specifically, the embedding functions from
Section 2 either surpass or achieve similar results to IR2Vec
and ProGraML. This performance suggests that the observa-
tions to be discussed in the next sections come from a robust
experimental setup, aligning with current state-of-the-art
approaches for addressing code similarity challenges.

18



A Comparative Study on the Accuracy and the Speed of Static and Dynamic Program Classifiers CC ’25, March 1–2, 2025, Las Vegas, NV, USA

0.98

0.97

0.96

0.95

0.94

0.93

-O0 -O1 -O2 -O3 -O0 -O1 -O2 -O3 -O0 -O1 -O2 -O3 -O0 -O1 -O2 -O3

S-LLVM S-x86 H-x86 D-x86

.93 .95 .95 .95 .96 .96 .96 .97 .97 .98 .98 .98.94 .94 .94 .94

Ac
cu

ra
cy

Number of classes: 100
Samples per class: 500
Random classifier: 0.01

Figure 5. The impact of code optimizations on the accuracy of classifiers.

4.2 RQ2: Static, Hybrid and Dynamic Classifiers
Most previous work on task classification are purely static:
they do not run the target programs. Static information can
be extracted at the source or at the binary level. Source-code
embeddings can be extracted from the sequence of tokens [6],
the abstract syntax tree [2] or even the compiler’s interme-
diate representation of a program [12]. The literature on
binary diffing focus, evidently, on binary level data. In this
case, the information necessary to classify programs is ex-
tracted from the object representation of those programs.
In this section, we compare the relative accuracy of these
pure static techniques with the dynamic approaches that
we advocate in this paper. To this end, we consider two
static classifiers, which have been recently discussed in pre-
vious work. One of them, evaluated in the work of da Silva
et al. [12] compares histograms extracted from the LLVM
representation of programs. The second classifier, recently
presented by VenkataKeerthy et al. [37], extract histograms
from the x86 binary representation of programs, produced
via the Capstone Disassembler v5.0 [18].

Discussion. Figure 5 compares the accuracy of the differ-
ent classifiers. The figure lets us draw a few conclusions:

1. The dynamic classifiers are strictly better than the
static ones. This result is statistically significant: a t-
test performed on a population drawn from a static
technique and another drawn from a hybrid/dynamic
technique always yields a p-value close to zero.

2. At higher optimization levels, the LLVM IR yields more
accurate data than the x86 binary. Without optimiza-
tions, the LLVM variables are mapped onto memory,
and the excess of loads and stores pollutes the his-
tograms. At -O1, the mem2reg pass maps variables
to virtual registers, eliminating most of the memory-
access operations.

3. Optimizations have a positive effect on hybrid and
dynamic classifiers, but not on the static approaches.
Section 4.3 further discusses this observation.

All the classifiers analyzed in Figure 5 produce non-trivial
results. The expected accuracy of a random classifier is 1%.
In contrast, any of the histogram-based approaches yields ac-
curacies superior to 90%. However, there is a clear advantage
on hybrid/dynamic classification over static techniques. The
Valgrind-based approaches capture the instructions that are
actually executed during a run of the program. Since they fo-
cus on runtime behavior, they can filter out dead code. This
results in higher accuracy because only instructions that
truly run are actually compared—something that correlates
well with how similar programs behave during execution.

We observe a slight advantage of the dynamic classifier
over the hybrid technique. Counting the number of times
each opcode was visited allows the dynamic classifier to
capture dynamic behavior with even more granularity, par-
ticularly in terms of loop structures and frequently executed
paths. This methodology is more effective for detecting sim-
ilarity because it reflects not just the static instructions, but
also the actual workload and runtime behavior of the pro-
gram. Therefore, programs with similar structures but dif-
ferent runtime behaviors (e.g., different loop bounds) might
stand out more clearly in this setup.

4.3 RQ3: On the Impact of Code Optimizations
Previous work has observed that optimizations improve the
accuracy of code classifiers [13, 14]. As an example, Damasio
et al. [13] have shown that clang -O1 reverses almost every
effect of the obfuscation techniques proposed by Zhang et
al. [39]. Similarly, VenkataKeerthy et al. [37] have recently
shown that optimizations can be employed as a normaliza-
tion technique to simplify tasks of code classification. This
section analyzes if such results remain true for classifiers
that use dynamic execution traces.
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Discussion. Figure 5 analyzes the accuracy of different
code classifiers once they are trained and tested with pro-
grams compiled with different levels of optimization. The
data in Figure 5 refers to symmetric games: the classifier is
trained using programs compiled with the same flags that
the evader uses. Regardless of the program representation
used, or of the optimization level adopted, all the classifiers of
Figure 5 have accuracy above 90%—well above the expected
accuracy of a random classifier, which would be 1%. Thus,
they are able to learn code properties.
The only setting where optimizations have improved al-

gorithmic classification concerns the histogram of LLVM
opcodes. This result is on par with those reported by Dama-
sio et al. [13], or by Gorchako et al. [20]. We notice that in the
LLVM setting, the simple fact of keeping program variables
in virtual registers (instead of mapping them to memory)
already reduces the size of programs by almost half. We spec-
ulate that the part of the program that remains—logical, arith-
metic and control-flow instructions, for instance—contains
more useful semantic information. This behavior does not
occur in the x86 setting: since there are few general purpose
registers, most of the program data is accessed via mov in-
structions, regardless of the optimization level. Nevertheless,
Figure 5 shows a consistent accuracy improvement as we
move from the LLVM purely static representation to x86
hybrid histograms, and then to x86 dynamic histograms.

4.4 RQ4: On the Impact of Code Obfuscation
It is widely acknowledged that code obfuscation techniques
can effectively evade algorithmic classification, as demon-
strated by various studies [13, 21, 33]. Numerous obfuscation
methods exist, with some involving the insertion of dead
code into programs. These seemingly innocuous instructions
are crafted to withstand traditional compiler optimizations.
Yet, dead-code does not run; consequently, dynamic program
representations like H-x86 and D-x86 are expected, in prin-
ciple, to resist this type of obfuscation. This section explores
whether this expectation holds true.

Discussion. Figure 6 compares the classifiers of Section 2
in four different settings. The three first settings use the ob-
fuscation techniques mentioned in Section 3.2. The fourth
setting, all, combines the three obfuscation techniques. In al-
most every scenario, transitioning from LLVM histograms to
hybrid x86 histograms and then to dynamic x86 histograms
enhances classification accuracy. The only exception to this
trend in Figure 6 is observedwhen transitioning from S-LLVM
fla to H-x86 fla, where accuracy drops from 77 to 60%. We
speculate that this decrease in accuracy happens because
LLVM still preserves explicit control flow: a switch is rep-
resented as an actual LLVM instruction, whereas in x86 the
switch becomes an indirect jump whose address is loaded
from an array of addresses. Thus, out of all the different obfus-
cation techniques, control-flow flattening causes the largest

difference between the LLVM and the x86 representations.
Sometimes the improvement in accuracy, when moving from
a purely static to a purely hybrid approach, is substantial.
For example, considering bcf, the accuracy of a purely dy-
namic classifier (D-x86 bcf) is more than twice as high as
the accuracy of a purely static one (S-LLVM bcf).
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Figure 6. The impact of code obfuscations on the accuracy
of the different classifiers on Game-1: an asymmetric game,
where the classifier is not aware of the obfuscator used by
the evader.

These findings supports the intuition that dynamic anal-
yses are expected to be more resilient to obfuscation tech-
niques that insert dead code in programs such as bogus
control flow. Notice that these techniques still bring some
effectiveness, for they create conditionals that are executed.
Furthermore, histogram-based classifiers, as already previ-
ously observed [13], tend to resist transformations such as
flattening, which change control flow, but preserve themix of
instructions. However, code obfuscation remains effective in
concealing the purpose of programs. In the asymmetric game
where the evader uses all the available obfuscations, the accu-
racy of our best classifier—the purely dynamic approach—is
only 30%. While this accuracy is modest, it surpasses the
accuracy of a purely static approach, which stands at 14%.
Figure 6 shows results for an asymmetric game: the clas-

sifier is trained with unmodified programs, and tested with
obfuscated codes. If the classifier is trained with obfuscated
programs, its accuracy improves substantially. Figure 7 sup-
ports this statement with data. In this scenario, the same ob-
fuscation technique is applied to both the training and testing
sets. Consistent with the trends observed in Figures 5 and 6,
accuracy improves across the spectrum from the purely static
to the purely dynamic approach. While obfuscation contin-
ues to impact the accuracy of all classifiers, the most severe
degradation occurs in the purely static scenario. The accu-
racy of the LLVM-based classifier drops from 94% to 69%
when applied to the fully obfuscated dataset.
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Figure 7. The impact of code obfuscations on the accuracy
of the different classifiers on Game-2: a symmetric game,
where the classifier is trained with the obfuscation tech-
niques used by the evader.

4.5 RQ5: Running Time
Since the four techniques analyzed in Figure 6 utilize opcode
histograms, the computational costs of training these models
and classifying new histograms are very similar. However,
the overhead associated with extracting these histograms
varies significantly. Producing histograms of LLVM instruc-
tions (S-LLVM) requires converting C programs into LLVM
IR. Similarly, obtaining histograms of x86 static instructions
(S-x86) involves the costs of assembling and linking ob-
ject files into executables. Finally, both CFG-grind-based
approaches (H-x86 and D-x86) entail the overhead of execut-
ing an instrumented version of each program using Valgrind.
This section compares these different overheads.

Discussion. Figure 8 illustrates the overhead of various
approaches to obtain opcode histograms. All four approaches
incur the same cost to produce the LLVM intermediate rep-
resentation of programs (dark-gray bars at the bottom). This
cost naturally varies with the optimization level: using -O0 as
a baseline, we observe virtually no time difference with -O1,
but a slowdown of 1.4x at -O2 and 2.1x at -O3. The extraction
of x86 histograms (middle-gray bars) requires generating an
executable3, and this process incurs similar costs across -O1,
-O2, and -O3: approximately 1.3x lower than at -O1, due to the
assembler handling smaller code sizes. Notice that S-LLVM
does not pay this cost. Finally, the cost of histogram extrac-
tion (light-gray bars on top) increases substantially when
program execution is required: in our setup, executing the
programs with CFGGrind is about 70x slower than using
Capstone to parse the program’s assembly and nearly 140x
slower than using LLVM’s opt to process the LLVM IR. This
cost depends directly on the execution time of each program,

3In a realistic use-case scenario, the tester is likely to be given the executable;
hence, in practice, the two lower bars often will not be perceived as costs.

and hence varies with both the program itself and its inputs.
However, once we consider the entire process—from the con-
struction of the program representation to the extraction of
histograms—if H/D-LLVM serves as the baseline, then S-x86
is 8.8x faster, while S-x86 is 4.0x faster.

5 Related Work
The literature on binary diffing recognizes two distinct ap-
proaches to compare programs: dynamic and static. The
former relies on data observed during program execution,
while the latter utilizes the program’s syntax. In recent years,
the static approach has gained more popularity. To support
this claim, we refer the reader to the repository curated by
Song Liu [25], which catalogs over 220 publications on binary
similarity. All ten publications from 2023 in the repository
utilize program instructions (syntax) rather than program
state (semantics) as the basis for solving binary similarity.
Haq and Caballero [21] suggest that while research on static
diffing techniques emphasizes accuracy, research on dynamic
approaches prioritizes coverage and practicality.

Dynamic Analyses for Binary Diffing. As mentioned
in Section 1, some of the initial attempts to address the bi-
nary similarity problem, such as Pewny et al.’s [31], were
dynamic in nature. This category of work deals with Behav-

ioral Equivalence. Essentially, the program state provides the
data for comparing binaries. As a simplification, we refer
to the program state as the load of the Data Cache; encom-
passing the contents of the heap, stack, globals, and string
literals. This characteristic of prior solutions to binary diff-
ing contrasts with the approach taken in this paper, where
we exclusively use the contents of the Instruction Cache to
compare programs.
Examining the program state is computationally expen-

sive. For instance, a recent study by Wesley et al. [16] re-
veals that the time to dump the contents of the program
heap, exclusively at the end of execution, increases running
time by two orders of magnitude for the MiBench bench-
mark suite. Notice that this result regards one dump. In
de Souza Magalhães et al.’s word, “With only 267 LLVM in-

structions, dijkstra is the second smallest benchmark in the

MiBench suite. However, it stores a large quantity of data

in the heap: even printing this data at every static inspection

point is not practical.” de Souza Magalhães et al. additionally
demonstrate that tracking program state is typically impre-
cise, whether due to the challenging nature of languages
like C or C++, or the difficulty in ensuring comprehensive
coverage.

Hence, it is not surprising that recent research on behav-
ioral equivalence of programs mainly focuses on either re-
ducing the overhead of reading program state or increasing
code coverage. For a comprehensive overview of the current
state-of-the-art techniques in this field, we recommend the
recent work of Zhou et al. [40]. The design of Arcturus, the
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tool presented in Zhou et al.’s work, adeptly incorporates key
techniques for managing cost and coverage: to reduce cost,
Arcturus concentrates on specific program paths within a
program; to increase coverage, Arcturus can enforce the
execution of specific program points. Nevertheless, the re-
ported running times by Zhou et al. indicate that using a
tool like Arcturus to analyze the thousands of programs
evaluated in Section 4 would not be feasible.

Static Analyses for Binary Diffing. The literature on
binary diffing predominantly concentrates on static analy-
ses. The burgeoning popularity of machine-learning tech-
niques has sparked new interest in this field, leading to the
release of novel program embeddings every year. For an
overview of popular embeddings, we recommend Section 2
of da Silva et al. [12]’s survey. This work evaluates embed-
dings like histograms of opcodes, which have been used in
recent work [13, 20]. However, our approach involves ex-
tracting these embeddings from the execution of programs
rather than from their static assembly representation. This
perspective distinguishes this paper from the literature on
static binary diffing. Furthermore, since histograms of op-
codes have not been explored in dynamic binary diffing
analyses, this work stands out as an original contribution.

6 Conclusion
This paper has compared static and dynamic classifiers in
terms of precision and speed. Unlike previous dynamic clas-
sifiers that relied on observing the state of programs, specifi-
cally the values stored in the data cache, this work demon-
strates that precise classification can be achieved solely by
observing the stream of instructions fetched during program
execution. This result is significant because monitoring the
instruction stream is a more straightforward task compared

to tracking the program state, which often involves travers-
ing the graph of reachable program data. Furthermore, the
dynamic classifiers discussed in this paper require neither
the availability of source code, nor the presence of debugging
information in the binary programs, nor the ability to check
the program’s output. Beyond its precision, this approach
also exhibits increased resilience, albeit not complete immu-
nity, to code obfuscation. Notably, classification based on
histograms of fetched instructions tends to better withstand
obfuscation based on dead-code insertion. Highlighting a
key result, we observe that the histogram-based dynamic
classifier is twice as accurate as the static classifier (Sec. 4.4),
while being 8.8x slower (Sec. 4.5). Yet, obfuscation, in gen-
eral, is still a challenge for binary diffing, as the experiments
in this paper demonstrate. The craft of algorithms able to
identify heavily obfuscated codes is an open question, onto
which we shall be working. Nevertheless, we expect that
the findings already reported in this paper prove valuable in
activities such as copyright auditing, malware identification,
plagiarism detection, and any other scenario where accurate
identification of program similarities is essential.
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