Quasi-Static Scheduling for Deterministic Timed Concurrent
Models on Multi-Core Hardware

SHAOKALI LIN, University of California, Berkeley, USA

ERLING JELLUM?, University of California, Berkeley, USA

MIRCO THEILE", TUM School of Engineering and Design, Technical University of Munich, Germany
TASSILO TANNEBERGER?", TU Dresden, Germany

BINQI SUN*, TUM School of Engineering and Design, Technical University of Munich, Germany
CHADLIA JERAD, University of Manouba, Tunisia

YIMO XU, University of California, Berkeley, USA

GUANGYU FENG, University of California, Berkeley, USA

MAGNUS MAHLUM, Norwegian University of Science and Technology, Norway

JIAN-JIA CHEN, Technical University of Dortmund, Germany

MARTIN SCHOEBERL, Technical University of Denmark, Denmark

LINH THI XUAN PHAN, University of Pennsylvania, USA

JERONIMO CASTRILLON, TU Dresden, Germany

SANJIT A. SESHIA, University of California, Berkeley, USA

EDWARD A. LEE, University of California, Berkeley, USA

To design performant, expressive, and reliable cyber-physical systems (CPSs), researchers extensively perform
quasi-static scheduling for concurrent models of computation (MoCs) on multi-core hardware. However,
these quasi-static scheduling approaches are developed independently for their corresponding MoCs, despite
commonality in the approaches. To help generalize the use of quasi-static scheduling to new and emerging
MoCs, this paper proposes a unified approach for a class of deterministic timed concurrent models (DTCMs),
including prominent models such as synchronous dataflow (SDF), Boolean-controlled dataflow (BDF), scenario-
aware dataflow (SADF), and Logical Execution Time (LET). In contrast to scheduling techniques tailored
exclusively to specific MoCs, our unified approach leverages a common intermediate formalism called state
space finite automata (SSFA), bridging the gap between high-level MoCs and executable schedules. Once
identified as DTCMs, new MoCs can directly adopt SSFA-based scheduling, significantly easing adoption.

“These authors contributed equally to this research.

Authors’ Contact Information: Shaokai Lin, University of California, Berkeley, Berkeley, USA; Erling Jellum, University
of California, Berkeley, Berkeley, USA; Mirco Theile, TUM School of Engineering and Design, Technical University of
Munich, Munich, Germany; Tassilo Tanneberger, TU Dresden, Dresden, Germany; Bingi Sun, TUM School of Engineering
and Design, Technical University of Munich, Munich, Germany; Chadlia Jerad, University of Manouba, Manouba, Tunisia;
Yimo Xu, University of California, Berkeley, Berkeley, USA; Guangyu Feng, University of California, Berkeley, Berkeley,
USA; Magnus Meehlum, Norwegian University of Science and Technology, Trondheim, Norway; Jian-Jia Chen, Technical
University of Dortmund, Dortmund, Germany; Martin Schoeberl, Technical University of Denmark, Lyngby, Denmark; Linh
Thi Xuan Phan, University of Pennsylvania, Philadelphia, USA; Jeronimo Castrillon, TU Dresden, Dresden, Germany; Sanjit
A. Seshia, University of California, Berkeley, Berkeley, USA; Edward A. Lee, University of California, Berkeley, Berkeley,
USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EMSOFT 2025, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-X/YYYY/MM

https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: September 2025.

HTTPS://ORCID.ORG/0000-0001-6885-5572
HTTPS://ORCID.ORG/0000-0002-2396-6284
HTTPS://ORCID.ORG/0000-0003-1574-8858
HTTPS://ORCID.ORG/0000-0002-3196-7869
HTTPS://ORCID.ORG/0000-0002-9764-6259
HTTPS://ORCID.ORG/0000-0002-5442-3098
HTTPS://ORCID.ORG/0009-0007-6862-5989
HTTPS://ORCID.ORG/0009-0007-8213-0704
HTTPS://ORCID.ORG/0009-0006-9438-6400
HTTPS://ORCID.ORG/0000-0001-8114-9760
HTTPS://ORCID.ORG/0000-0003-2366-382X
HTTPS://ORCID.ORG/0000-0002-3458-7511
HTTPS://ORCID.ORG/0000-0002-5007-445X
HTTPS://ORCID.ORG/0000-0001-6190-8707
HTTPS://ORCID.ORG/0000-0002-5663-0584
https://orcid.org/0000-0001-6885-5572
https://orcid.org/0000-0002-2396-6284
https://orcid.org/0000-0003-1574-8858
https://orcid.org/0000-0002-3196-7869
https://orcid.org/0000-0002-9764-6259
https://orcid.org/0000-0002-5442-3098
https://orcid.org/0009-0007-6862-5989
https://orcid.org/0009-0007-8213-0704
https://orcid.org/0009-0006-9438-6400
https://orcid.org/0000-0001-8114-9760
https://orcid.org/0000-0003-2366-382X
https://orcid.org/0000-0002-3458-7511
https://orcid.org/0000-0002-3458-7511
https://orcid.org/0000-0002-5007-445X
https://orcid.org/0000-0001-6190-8707
https://orcid.org/0000-0001-6190-8707
https://orcid.org/0000-0002-5663-0584
https://doi.org/XXXXXXX.XXXXXXX

5 Lin et al.

We show that quasi-static schedules facilitated by SSFA are provably free from timing anomalies and enable
straightforward worst-case makespan analysis. We demonstrate the approach using the reactor model—an
emerging discrete-event MoC—programmed using the Lingua Franca (LF) language. Experiments show that
quasi-statically scheduled LF programs exhibit lower runtime overhead compared to the dynamically scheduled
LF programs, and that the analyzable worst-case makespans enable compile-time deadline checking.

CCS Concepts: » Computer systems organization — Real-time systems; Embedded systems; « Theory
of computation — Timed and hybrid models.

Additional Key Words and Phrases: Quasi-Static Scheduling, Concurrency, DAG Scheduling, Predictability

ACM Reference Format:

Shaokai Lin, Erling Jellum, Mirco Theile, Tassilo Tanneberger, Binqi Sun, Chadlia Jerad, Yimo Xu, Guangyu
Feng, Magnus Maehlum, Jian-Jia Chen, Martin Schoeberl, Linh Thi Xuan Phan, Jeronimo Castrillon, Sanjit
A. Seshia, and Edward A. Lee. 2025. Quasi-Static Scheduling for Deterministic Timed Concurrent Models
on Multi-Core Hardware. In Proceedings of EMSOFT (EMSOFT 2025). ACM, New York, NY, USA, 25 pages.
https://doi.org/XXXXXXX . XXXXXXX

1 Introduction

Modern cyber-physical systems (CPSs) aim to strike a balance between expressiveness, performance,
and reliability. As use cases and operating environments become increasingly complex—for example,
driving an autonomous vehicle in a densely populated city or flying the Ingenuity Mars Helicopter
autonomously over complex Martian terrains—CPS designers aim to give the systems expressive
behaviors to handle such complexity. However, certain use cases that demand rich behaviors pose
stringent requirements on performance.

Despite steady progress, using multi-core architectures in CPSs remains challenging. For example,
predicting timing properties on these architectures, such as a sequential program’s worst-case
execution time (WCET), still is an active research area [30]. Furthermore, concurrent programming
is known to be notoriously difficult, especially using threads [21]—still a mainstream program-
ming model today. To balance the tradeoffs between expressiveness, performance, and reliability,
researchers have extensively studied concurrent models of computation (MoCs) and their formal
properties. In particular, models that can either fully or partially derive schedules at compile-time
receive continued attention, due to their attractive properties such as compile-time schedule valida-
tion and low runtime overhead. The technique of making most scheduling decisions at compile-time
and only some absolutely necessary decisions at runtime is known as quasi-static scheduling [22].
Prominent models amenable to deriving schedules at compile-time include synchronous dataflow
(SDF) [24], Boolean-controlled dataflow (BDF) [2], scenario-aware dataflow (SADF) [39], and logical
execution time (LET) [19], just to name a few. In this work, we treat fully static scheduling of some
models as a subset of quasi-static scheduling, which is the focus of this paper.

Challenges. For the aforementioned models, existing solutions on quasi-static scheduling show
commonalities. However, these techniques appear isolated, and no prior work has looked at
them through a unified lens. This fragmentation makes it difficult to understand their subtle
differences, complicating systematic comparison and evaluation. When new MoCs emerge, it is
unclear whether existing proven techniques can readily apply. Additionally, fragmented methods
also lead to repeated, isolated implementations, hindering code reuse.

Problem Definition. In light of these challenges, we define the following research problems:

PD1 No unified framework: Existing quasi-static scheduling methods remain fragmented, with
no unified framework available to systematically compare or integrate these techniques.

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://doi.org/XXXXXXX.XXXXXXX

Quasi-Static Scheduling for Deterministic Timed Concurrent Models on Multi-Core Hardware 3

PD2 Undefined applicability: It remains unclear which exact classes of MoCs are suitable for
unified quasi-static scheduling, complicating the adoption of existing methods into emerging
MoCs.

PD3 Lack of demonstration: Even if a unified scheduling framework could theoretically apply,
existing work does not provide concrete guidelines or examples demonstrating how such
integration could occur in practice, particularly for newly emerging MoCs.

PD4 Uncertain effectiveness: The effectiveness and practical benefits of unified quasi-static
scheduling approaches have not been demonstrated through systematic evaluation using
concrete examples of emerging MoCs.

Our Solution. In this paper, we present the first unified approach to quasi-static scheduling for
concurrent MoCs. Our approach generalizes lessons learned from SDF, BDF, SADF, and LET into a
common scheduling framework based on a new intermediate formalism called state space finite
automata (SSFA). This unified SSFA-based approach provides a frame of reference for comparing
existing quasi-static scheduling techniques and helps identify a class of models to which the
approach is applicable. We use the reactor model [28] as a concrete use case of our proposed
scheduling approach and demonstrate an implementation in the reactor model’s code generator—the
Lingua Franca [27] compiler. Our source code and evaluation artifacts are publicly available online. !
Concretely, this paper presents the following key contributions:

(1) We present the first unified approach for quasi-static scheduling based on an intermediate
formalism called state space finite automata (SSFA) (Sec. 4.2), which bridges the gap between
high-level MoCs and low-level executable schedules (Sec. 2).

(2) We further define deterministic, timed, concurrent models (DTCMs), a class of MoCs on which
SSFA-based scheduling applies. We discuss key properties of our proposed technique, includ-
ing anomaly-free timing (without requiring WCETs) and analyzable worst-case makespan
(Sec. 4).

(3) We concretely demonstrate how our unified SSFA-based scheduling approach applies to the
reactor model and integrate it directly into its existing toolchain—the Lingua Franca (LF)
compiler (Sec. 5).

(4) We evaluate the effectiveness of our approach by measuring the performance of quasi-
statically scheduled LF programs against that of the default, dynamically scheduled LF
programs using a set of benchmarks written in a synchronous subset of LF. Our results
demonstrate that quasi-statically scheduled LF programs reduce runtime overhead, achieving
an average improvement of 9 times (Sec. 6.1). In addition, we evaluate SSFA’s analyzable
worst-case makespan through a case study on a satellite attitude controller (Sec. 6.2).

2 Background and Related Work
2.1 Concurrent Models of Computation

A model of computation (MoC) is a mathematical abstraction of a computing device [16]. An MoC
provides a formal framework either for designing or for reasoning about a computing device. For
example, an MoC, such as Communicating Sequential Processes [12], can be used to design a signal
processing algorithm, which together with a compiler and a runtime can result in an executable.
However, the same MoC can also be used to model the set of all possible behaviors of an algorithm
and to formally verify statements about the algorithm. In this work, we are concerned with the
former, i.e. using MoC as a mechanism to design a computation, and in particular we present a
methodology for producing quasi-static schedules from various MoCs.

IPaper artifacts: https://github.com/icyphy/emsoft25

, Vol. 1, No. 1, Article . Publication date: September 2025.

https://github.com/icyphy/emsoft25

4 Lin et al.

MoCs are distinguished by their mechanisms for modeling concurrency and time. Some MoCs,
such as the Finite State Machine and the Turing Machine do not include primitives for modeling
concurrent processes and are known as Sequential MoCs. Concurrent MoCs are increasingly
popular because the end of Dennard scaling has spawned the age of multi-cores, and recently, even
low-power microcontrollers, such as the ESP32, have adopted multi-core architectures. Concurrent
MoCs are naturally better suited for mapping onto parallel hardware.

In this work we will discuss the generation of executable schedules from various forms of
Dataflow Process Networks [1], where computation is expressed as a set of connected actors with
firing rules; Logical Execution Time [19], a task model with precedence constraints among tasks
and where each task has a logical execution time; and reactors [28], where computation is expressed
as a set of event-triggered actors with discrete-event semantics.

2.2 Quasi-Static Scheduling for Concurrent MoCs

In the literature of concurrent MoCs, the ability to derive schedules at compile-time from MoC
semantics has long been a key topic of interest. Lee and Messerschmitt [24] propose the synchronous
dataflow (SDF) model, where each concurrent actor specifies the number of tokens received from a
channel to trigger a firing, as well as the number of tokens sent into a channel after a firing. By
explicitly giving token production and consumption rates, SDF enables efficient static scheduling,
which begins by solving a balance equation representing token distributions in the system [23].
Intuitively, each iteration of the static schedule must return the distribution of tokens to the starting
state, effectively completing a hyperperiod.

SDF enables fully static compile-time scheduling, at the cost of rigidity in its behavior. To enable
more dynamicity without entirely sacrificing analyzability, Buck and Lee [2] introduce the Boolean-
controlled dataflow (BDF) model, which provides SWITCH and SELECT actors that accept Boolean
tokens that route token flow and modulate token production rate at runtime. Given the dynamic
nature of BDF, only certain BDF systems can yield compile-time schedules, subject to constraints
such as observability of the Boolean token stream that controls token routing [3]. A hyperperiod is
similarly obtained from solving a (now symbolic) balance equation.

Another MoC that aims to extend SDF with dynamism is scenario-aware dataflow (SADF) [6].
SADF models a system using multiple SDF graphs with nondeterministic transitions between them
at the end of an SDF graph’s iteration. To implement SADF, Kampenhout et al. [41] borrows the
SWITCH and SELECT actors to perform scenario change and proposes using a rolling static-order
schedule, which at runtime concatenates the static schedule of the next scenario (which itself is
an SDF graph) to a rolling schedule as soon as the next scenario is determined. This approach
exemplifies quasi-static scheduling since each scenario’s schedule is determined at compile-time,
while the switching between scenarios is determined at runtime.

Dataflow models are typically suitable for streaming applications such as digital signal processing.
For cyber-physical systems, which benefit from the ease of specifying precise timing behavior,
the Logical Execution Time (LET) model [7, 19] has gained traction. The LET model defines
deterministic system behavior by specifying that tasks appear to execute instantaneously at logical
time boundaries, while their actual computation is scheduled and completed within predefined
time windows. LET is known to be amenable to static scheduling [11] based on the hyperperiod of
the LET tasks [5] and precedence constraints [13].

While there has been work on surveying and comparing MoCs-see, e.g., a great recent survey
from Roumage et al. [34], to our best knowledge, our work provides the first unified framework on
quasi-static scheduling.

, Vol. 1, No. 1, Article . Publication date: September 2025.

Quasi-Static Scheduling for Deterministic Timed Concurrent Models on Multi-Core Hardware 5

SatelliteController

t .
Gyr°5C°Pe% Processing
out 2 i__
GyroscopeH...§ 1 > votor
> Controller deadline = 12 msec
Gyroscope

posmon out in
deadline = 2 msec @ } > rD»—b—----D
velocity H
@ Y out (0, 15 msec) ip 02 velocly, |

(0, 10 msec)
Fig. 1. A satellite attitude control system
SO

- s ~N
gyro3.reaction_1 S1 / N\ S3

. S2
gyro2.reaction_1 3 reacti 3 reaction 1
motor.reaction_1 +10 msec | 8Yr0° .reaclfon_l +5 msec o motor.reaction_1 +5 msec | 8YrO- -reaction_

gyro2.reaction_l gyro2.reaction_lI

processing.reaction_2 processing.reaction_2

. gyrol.reaction_1 gyrol.reaction_1
controller.reaction_1 2y = gy _

. . controller.reaction_1 . .
gyrol.reaction_1 processing.reaction_1) S — processing.reaction_1
) ~ +10 msec -30 msec

processing.reaction_1

Fig. 2. Hyperperiod of the satellite attitude controller in Fig. 1

3 Running Example

Fig. 1 shows the block diagram of a satellite attitude control system. The three Gyroscope actors
each sample a physical, or simulated, gyroscope sensor and are triggered every tenth millisecond.
The Processing actor combines a sample from each of the three gyroscopes into an average. The
Processing actor also produces a position and velocity estimate every 15th millisecond, which is fed
into the Controller actor implementing a PID controller. Finally, the control output is forwarded to
the Motor actor, controlling a physical (or simulated) stepper motor attached to a reaction wheel.

Attitude control of a satellite is clearly a real-time problem and the timeliness of the interaction
between software and hardware is paramount. The program has two annotated deadlines. First,
the Gyroscope actors have a 2-millisecond deadline on the reaction sampling of the sensors. This
means that the code sampling the sensors should execute within 2 milliseconds from the time that
the timer triggers. Second, the Motor actor has a 12-millisecond deadline on the reaction driving the
stepper motor, meaning that this reaction must be invoked within 12 milliseconds of the triggering
of the 15-millisecond timer in the Processing actor. This periodic program can conveniently be
expressed in a DTCM, such as SDF, BDF, SADF, or LET.

4 Quasi-Static Scheduling based on SSFA

In Sec. 2.2, prior quasi-static scheduling work reveals an important pattern: generating schedules at
compile-time typically requires finding the system’s hyperperiod, or multiple hyperperiods if the
system has dynamic behaviors (e.g., BDF or SADF). A hyperperiod encodes a sequence of system
state transitions in which the system returns to its starting state at the completion of the sequence.
For example, Fig. 2 shows the hyperperiod of the running example. Here, a state is defined by an

High-levell SSFA SSFA w/ DAG SSFA w/
MoC (DTCM) Generator DAGs Scheduler Partitioned DAGs
Fig. 3. General quasi-static scheduling workflow based on SSFA. The colors, red and blue, refer to two main
stages in the workflow: SSFA generation (Sec. 4.3) and DAG scheduling (Sec. 4.4).

, Vol. 1, No. 1, Article . Publication date: September 2025.

6 Lin et al.

OO O oo G

7 c

Fig. 4. DAG representation after conversion from the hyperperiod in Fig. 2, showing release edges in blue,
deadline edges in red, and data dependency edges in , with the virtual path above the dashed line. The
node names are the initials of the component names. The numbers in the nodes are the WCET bounds of
each task, and the nodes above the dashed line are the nodes on the virtual path. Sync nodes are identified
by s, marking the release and deadline of tasks; dummy nodes are identified by d, marking time intervals
between sync nodes. Details of virtual nodes are introduced in Sec. 4.1.

ID and a set of task invocations, and a state transition is represented by time advancements, a
representation common for time-triggered models like LET. We note that if the running example
is explicitly specified in a dataflow model, e.g., SDF, a hyperperiod similar to Fig. 2 can still be
identified by techniques such as Ghamarian et al. [8].

Fig. 3 shows our generalized quasi-static scheduling methodology. The input to the methodology
is a system specified in a concurrent MoC, such as the MoCs mentioned in Sec. 2.2. From the system
specification, a state space finite automaton (SSFA) is constructed from the semantics of the MoC.
Intuitively, an SSFA is an FSM in which each node has an associated directed acyclic graph (DAG)
representing task executions in a hyperperiod. The FSM further specifies guarded transitions that
can be taken at the end of a DAG’s execution.

In this section, we define DAGs and SSFA, and discuss how to generate both of them from a class
of MoCs called deterministic timed concurrent models (DTCM:s).

4.1 Directed Acyclic Graphs (DAGs)

DAGs are often used in real-time applications, such as automotive and avionics, to model real-time
computing tasks and their precedence constraints. This subsection introduces basic concepts and
notations for real-time DAG task modeling.

Example. Fig. 4 shows the DAG generated from the system hyperperiod in Fig. 2.

Task Model. A DAG task set is characterized by (G, P) = DAG € DAGs, in which G is a graph
that defines the set of tasks and their precedences, and P denotes the period of the DAG task set.
The graph G consists of (V, &), where V = {v;} is a set of n nodes representing n tasks, and
& = {e;;} is a set of directed edges representing the precedence relation between the tasks. For any
two nodes v; and v; connected by a directed edge e;;, v; can start execution only if v; has finished
its execution. Given the edge e;;, v; is the predecessor of v;. Each task v; is a non-preemptable
sequential computing workload, with its WCET denoted as C;.

Node-level Timing Attributes. The timing constraints of each node can be defined through four
attributes: earliest starting time (EST), earliest finishing time (EFT), latest starting time (LST), and
latest finishing time (LFT). The EST is the earliest time a node can start executing, equaling the
maximum of its predecessors’ EFTs. Similarly, the LFT defines the latest time a node can finish

, Vol. 1, No. 1, Article . Publication date: September 2025.

Quasi-Static Scheduling for Deterministic Timed Concurrent Models on Multi-Core Hardware 7

its execution to meet the deadline, equal to the minimum of its successors’ LST. Note that EST,
EFT, LST, and LFT are defined based on the precedence relations defined by & by assuming that
the execution time of a task is equal to its WCET. If v; has no precedessor, then t*5T = 0. If v; has no
successor, then tl.LFT = P. Furthermore, we have

EST _ EFT

5o = max{tj | eji € &Y,
LFT _ o IST |,
= mln{tj | eij € EY,
tFFT =BT 4 ¢,

5T = (FT ¢

(1)

These timing attributes can be computed iteratively using a fixed-point approach, following the
classic ASAP (as soon as possible) and ALAP (as late as possible) analysis [33]. Specifically, all
nodes are initially assigned tl.EST =0 and t}FT = P, where P is the period of the DAG task set. At
each iteration, values are updated according to the equations above until convergence, i.e., when
no values change between successive iterations. Since the critical path of the DAG contains at most
n nodes, convergence is guaranteed within n iterations [43]. The overall time complexity of this
computation is O(n®).

Virtual Path. When mapping a multi-rate taskset to a single-rate DAG, job-level timing constraints
need to be expressed. For example, the second reaction of the gyroscope 1, g%, should only be able
to start in the second gyroscope period, i.e., after 10 ms. Additionally, that gyroscope reaction has
a deadline of 2 ms from its start, i.e., at 12 ms. To enforce these timing constraints, we borrow
the concept of virtual nodes from [43]. There are two types of virtual nodes, dummy nodes with
a predefined execution time Cy, for dummy node d; and sync nodes with zero execution time. A
virtual path (the top row in Fig. 4) can be constructed using the virtual nodes, alternating S sync and
S — 1 dummy nodes. The total execution time of the virtual path is equal to the period of the DAG
task set, i.e., 252—11 Cdj = P. Through the defined execution time of the dummy nodes, it follows
that for each sync node sy,
I-1 s-1
ST BT ST N, opo Y,)
i=1 =l
The nodes in the virtual path can be designed such that all unique offset and deadline values are
represented by a sync node. Adding an edge from the appropriate sync node s; to a task v, or
vice-versa, respectively, results in the relation

O =t <557 or #fT <151 =Dy, (3)

which enforces the timing constraints within the DAG task set.

For the offset of the second reaction of gyroscope 1, g%, the sync node s; is created, which is
preceded by two dummy nodes with a total execution time of 10 ms. By adding a precedence
constraint from s3 to g7, that gyroscope reaction cannot start before 10 ms, enforcing its offset.
Similarly, for its deadline constraint, sync node s4 is created, which is succeeded by multiple dummy
nodes with a total execution time of 18 ms. By adding a precedence constraint from g2 to sy, the
gyroscope reaction needs to finish at the latest 18 ms before the hyperperiod, i.e., before 12 ms.

Trivial Schedulability. A DAG task (G, P) is defined to be trivially schedulable on M processors,
if its makespan is shorter or equal to its period, and if its width is less or equal to the number of
available processors [40]. Sun et al. [40] proved that a trivially schedulable DAG task is schedulable
under any work-conserving executor (Lemma IV.3 and Lemma IV.4 in [40]). Additionally, they
showed that any schedulable DAG task can be transformed into a trivially schedulable DAG task by

, Vol. 1, No. 1, Article . Publication date: September 2025.

3 Lin et al.

adding edges to it. This transformation leads to the formulation of the Edge Generation Scheduler
(EGS), in which edges are added iteratively to a DAG until it is trivially schedulable.

4.2 State Space Finite Automata (SSFA)

An SSFA is an extended finite state machine designed specifically for representing the behavior of
concurrent MoCs. Formally, an SSFA is defined as a tuple:

SSFA = (M,V,D,T,G, my),

where:

e M is a finite set of modes,

e V is a finite set of variables, with cross product of their domains represented as V =
[1,ev domain(v) = domain(v;) X domain(vy) X - - - X domain(v;,),

e D : M — DAG:s is a function assigning a directed acyclic graph (DAG) to each mode m € M,

e T C M X M is a set of transitions between modes,

e G: TXV — Bis a guard function mapping the transition and variables to a boolean
condition,

e my € M is the initial mode.

The execution semantics of an SSFA are as follows:

(1) The SSFA begins execution in the initial mode my.

(2) When the SSFA enters a mode m € M, it executes the DAG specified by D(m) to completion.

(3) Upon completion of the DAG execution, the guard conditions associated with the outgoing
transitions of the current mode are evaluated using G.

(4) If a guard condition evaluates to true, the corresponding transition is taken, and the SSFA
moves to the next mode. If several guards are true simultaneously, one of the enabled
transitions between modes is taken nondeterministicly.

The behavior of the running example can be represented by a trivial SSFA with a single mode
containing the DAG shown in Fig. 4 with a transition back to itself that has a default guard true. In
Sec. 4.3, we show how the SSFA for dynamic models like BDF and SADF can have more modes
with non-trivial guards. We further show a non-trivial SSFA in Fig. 11 in Sec. 5.2.

4.3 Mapping High-Level MoCs to SSFA

Existing Models to SSFA. We now discuss how to map the MoCs surveyed in Sec. 2.2 to SSFA.

SDF. Since SDF defines a unique recurring behavior, the resulting SSFA therefore has only a
single mode with a trivial self-transition. The DAG within the SSFA mode can be obtained by
running the algorithm in Appendix I of Sih [38].

BDF. Buck [3] notes that generating compile-time schedules requires the knowledge of exact
values of the emitted Boolean tokens, and an “acyclic precedence graph” (DAG) can be constructed
for each case of Boolean token values. To generate a corresponding SSFA, each possible case of
Boolean token values produces an SSFA mode, with the corresponding DAG constructed from a
resulting SDF graph after filling in the concrete case of Boolean values. The modes have all-to-all
transitions so that any mode can be switched to at runtime based on the upcoming Boolean tokens.

SADF. Each scenario becomes an SSFA mode. The SDF graph within each scenario is similarly
transformed into a DAG based on Sih [38]. Transitions between SADF scenarios become SSFA
mode transitions, and transition guards in SSFA are derived from the SADF model.

, Vol. 1, No. 1, Article . Publication date: September 2025.

Quasi-Static Scheduling for Deterministic Timed Concurrent Models on Multi-Core Hardware 9

LET. The LET tasks are by design periodic, and the schedule repeats after each iteration of
the hyperperiod of all task periods. This behavior results in a unique SSFA mode. A DAG can be
constructed from the time and data dependencies specified among the LET tasks.

From lessons learned from existing MoCs, we summarize a list of observations these MoCs satisfy
in order to map to SSFA.

(1) The MoC defines a finite set of execution phases.

(2) A phase often contains a hyperperiod, i.e., a unique partial order of task firings that eventually
returns the system state to a starting state.’

(3) The MoC defines transitions, either deterministic or non-deterministic, between phases.

SDF and LET define a unique execution mode given the static nature of their task firings, while
SADF defines a mode for each scenario. BDF defines a mode for a unique value set of its Boolean
control tokens. The execution within a mode is fully deterministic, while mode switching depends
on runtime conditions and can be non-deterministic, as SADF shows.

Deterministic Timed Concurrent Models (DTCMs). From the above requirements, we identify
a class of MoCs, named Deterministic Timed Concurrent Models (DTCMs), where the proposed
SSFA-based scheduling approach applies. A DTCM’s execution can be represented as a finite set of
phases P. Each phase p € P is a finite sequence of states (s;, Sit1, ..., Sisn) € S™. The exact definition
of a state s € S should be provided by the DTCM, and S denotes the set of all possible system
states defined by the DTCM. Within each phase p, the evolution of system states is described
by a deterministic state-transition relation T, C S X S, where each transition (s;,s;) € T, takes
the system from a state s; to a unique successor state s;. For example, SDF typically defines the
state to be a distribution of tokens in the channels. In Sec. 5, we show another example of state
definition for the reactor model. Transitions between phases are also defined by the DTCM, and
they can be nondeterministic. In SADF, nondeterministic transitions between scenarios exemplify
nondeterministic phase transitions [6].

Although there are no general rules for identifying phases for a DTCM’s execution, a classical
approach involves explicit state space exploration [2, 8, 26] to identify hypercycles. A hyperperiod
h is a sequence of states h = (s, Sit1, ..., Si+n) Such that the next state sjin41 returns to s;, assuming
no phase transition occurs. And we use the prefix “hyper-" to emphasize that, similar to the notion
of hyperperiod—the least common multiple of the periods of all periodic tasks, we aim to find a
periodic sequence of states considering all the periods of periodic tasks. To identify a hyperperiod,
the DTCM defines a predicate H : S x S — B that determines whether the second state has
returned to the first state, completing a hyperperiod. Then it unrolls from a starting state s, until a
minimal hyperperiod h = (s, Sis1, ..., s;) is found such that H (s;, sj41) = true for some j > i > 0.
This process yields a sequence of states forming a lasso structure. The leading transient states
can thus be categorized into one phase py = (so, s1, ..., Si—1), and the remaining hyperperiod into
another phase p; = (s, Si41,...,Sj). For certain DTCMs, more efficient state space exploration
techniques exist, such as solving SDF’s balance equations [24]. In general, the DTCM should supply
a technique to obtain the minimal hyperperiod based on its semantics.

Once the phase set P is obtained, the DTCM should provide a method to convert the task firings
involved in each p € P to a DAG, as described earlier in Sec. 4.1. A specific example for the reactor
model is provided in Sec. 5. Once a DAG for a phase p is constructed, a corresponding SSFA mode
can be produced—this process is repeated for each phase p € P. Lastly, transitions between SSFA
modes can be added based on guarded transitions defined by the DTCM semantics.

2We will later see that a sequence of non-recurring states can also form a phase, as in the case of reactors in Sec. 5.1.

, Vol. 1, No. 1, Article . Publication date: September 2025.

10 Lin et al.

Fig. 5. Sample output from a DAG scheduler, a transitive reduction of the DAG in Fig. 4 with width w =2 +1,
with +1 for the virtual path. The colors of the nodes show a valid partitioning to 2 available cores.

4.4 Scheduling SSFA by Graph Partitioning

To schedule the SSFA, a partitioned DAG scheduler is invoked on each DAG contained in the
SSFA states. The DAG scheduler takes an unpartitioned DAG as input, partitions the DAG based
on the number of processor cores available, and outputs graph partitions, which is a spatial
mapping between tasks and execution platforms with timing and inter-task dependencies. Given
an unpartitioned DAG, a DAG scheduler can designate nodes to any partition it deems fit. The
scheduler can modify edges if the output partitioned DAG satisfies all dependencies in the input
unpartitioned DAG. In addition, the DAG scheduler must sequentialize each partition by adding
edges such that there exists a path in the output DAG passing through all nodes within the same
partition. The resulting DAGs partitioned by this type of DAG schedulers are trivially schedulable,
as defined by Sun et al. [40] and discussed in Sec. 4.1. A trivially schedulable DAG can easily be
partitioned using paths that cover the DAG, as detailed in Algorithm 1 of [40], with an example
shown in Fig. 5.

We note that, in real-time scheduling literature, there is a large body of prior work on partitioned
scheduling [42]. And in principle, any DAG partitioning algorithm could be plugged into this step,
as long as there is post-processing that guarantees each partition is sequentialized. To execute a
partitioned DAG, there is prior work as well, e.g., Huang et al. [14] and Henzinger et al. [10]. In
our demonstration of the reactor model in Sec. 5, we use a strategy similar to Henzinger et al. [10].

After scheduling all DAGs in the SSFA, we have now generated the quasi-static schedules for the
DTCM. Compared to prior work’s static or quasi-static schedules (such as SDF’s acyclic precedence
graphs [23] and LET’s table of possible release timing [9]), the SSFA formalism is operationally
equivalent, in the sense that task dependencies and task-to-core mappings are preserved. However,
the SSFA-based representation differs in structure and expressiveness: instead of representing a
schedule as a flat precedence graph (as in SDF) or a time-triggered release table (as in LET), SSFA
encodes scheduling decisions within the modes of an extended finite-state machine, with a DAG in
every mode and transitions guarded by logical conditions that define when the system evolves to
the next mode.

4.5 Formal Properties

In this section, we discuss formal properties provided by our SSFA-based scheduling approach.
Anomaly-Free Timing. A timing anomaly in real-time systems refers to a situation where a local
shorter execution time (like a cache hit) leads to an unexpected global effect of an increase in the

overall execution time [20, 29]. Timing anomalies can occur with the dynamic scheduling of tasks
(reactions) on multiple execution units. We now show that our proposed SSFA-based quasi-static

, Vol. 1, No. 1, Article . Publication date: September 2025.

Quasi-Static Scheduling for Deterministic Timed Concurrent Models on Multi-Core Hardware 11

scheduling guarantees that no timing anomalies will occur on multi-core processors. It is important
to note that the monotonous property holds without requiring to know WCET bounds.

Example. Fig. 6 shows two scenarios that can cause scheduling anomalies under work-conserving
scheduling for non-trivially schedulable DAGs. The first row shows a DAG task and a corresponding
schedule using a work-conserving scheduler. The DAG on the right is modified to be trivially
schedulable by adding two edges, yielding the same schedule as on the left. In the second row, we
consider a scenario where the execution time of v, is decreased by 0.2 ms, causing it to finish earlier
than v;. As a result, v5 can be started, delaying the execution of v4 and v¢, leading to a makespan
increase of 0.8 ms. This scenario is the typical scheduling anomaly example where the decrease
of an individual execution time leads to an increase in the overall makespan. On the right, in the
trivially schedulable DAG, the execution order is not altered since v5 needs to wait for v3 to finish,
and the processor stalls until v4 is ready. Thus, the makespan does not increase but decreases by
0.1 ms instead.

The third row shows that the same reordering in the work-conserving schedule can be triggered
by increasing an individual execution time, causing a larger increase in the overall makespan. By
increasing the execution time of v; by 0.2 ms, the same reordering occurs, causing an increase of
the makespan of 1 ms. For the trivially schedulable DAG, the increase in individual execution time
also does not lead to reordering, and the makespan only increases by 0.1 ms.

Formal definition. Consider a DAG task set G(V, &) with estimated execution times C € RIVI
associated with each node v; € V and a scheduling algorithm yielding an expected makespan M if
all nodes execute with their respective C;. Suppose a node executes with a different computation
time C; = C; + A;. A scheduling algorithm is monotonous if the makespan, denoted as M, resulting
from the actual computation time satisfies M(C) < M(C) + max{A;,0}.

THEOREM 4.1 (MONOTONICITY OF TRIVIALLY SCHEDULABLE DAG TASKS). When executing a trivially
schedulable DAG task in a work-conserving manner, the monotonicity property is guaranteed.

Proor. The makespan of a trivially schedulable DAG is equal to the length of its longest path, i.e.,
M(C) = maxyep L(p,C). The length of a path p € P under execution times Cis L(p,C) = Xy,¢p Ci-
Under the new execution times C, the lengths of the paths in the DAG change as follows:

_ L(p,C)+A;, ifo; €p,
Lip.€) = PO Troep @
L(p,C), otherwise.
Therefore, M(C) < max{M(C) + A;, M(C)} = M(C) + max{A;,0}.]
Non-Trivially Schedulable DAG Trivially Schedulable DAG
@ @)
ol o) omli o
No Anomaly mo v 3] mﬁ“ T 5]
..
Shorter than WCET QMG e — &‘é‘e
O o O G @AG“
N
o\)

(2)
@‘é.@
Longer than WCET % T ”@

2
j¢
q
i
g

<

Fig. 6. Scheduling anomaly example.

, Vol. 1, No. 1, Article . Publication date: September 2025.

12 Lin et al.

COROLLARY 4.1.1. If multiple nodes, denoted as N, alter their execution times, the resulting makespan
is bounded by M(C) < M(C) + Y,y max{A;, 0}.

COROLLARY 4.1.2. Since any partitioned schedule with predefined sequentialization on each processor
can be expressed as a trivially schedulable DAG (see Theorem IV.5, necessity part in [40]), any work-
conserving partitioned scheduling algorithm is monotonous.

Monotonicity implies two properties: (i) If the execution time of the nodes is less than their
estimated execution time, the makespan does not increase. This property is often called sustain-
ability [4] and guarantees the absence of timing anomalies. (ii) If the nodes exceed their execution
times by some delta, the increase of the overall makespan is bounded by the sum of the deltas. This
property is helpful for schedulers to decide on the action taken when deadlines are exceeded.

Analyzable Worst-Case Makespan. A partitioned, trivially schedulable DAG produced by the
proposed workflow yields a simple procedure to check the worst-case makespan up to some node
or for the entire hyperperiod.

Definition 4.1 (Partial makespan up to node n). The partial makespan up to a node n, denoted as
L(n), is defined recursively as

() weet(n) ifU(n) = 2,
n) =
maxyey (n) L(u) + weet(n) otherwise.

where wcet : V — T returns the WCET of a DAG node within a time domain Tand U : V — P (V)
maps a DAG node n to a set of its immediately upstream DAG nodes.

ExampiE 1. To validate the deadline of 12ms of the first invocation of the motor reaction in Fig. 1,
we calculate the partial makespan up to m! in Fig. 5, i.e., L(m?).

L(m') = L(c') + wcet(m')

= L(p;) + weet(c') + weet(m')

L(p}) +weet(p;) +weet(c') + weet(m?)

max(L(g3), L(g})) + weet(p}) + weet(p;) + weet(c') + weet(m')

max(weet(g;) + weet(g3), weet(g))) + weet(py) + weet(py) + weet(c') + weet(m')
max(14+1,1)+1+34+4+1=11<12

Therefore, the deadline of 12ms of the first invocation of the motor reaction can be guaranteed to hold.

So far we have introduced a generic methodology to generate quasi-static schedules for a
class of DTCMs and their formal properties. In the subsequent section, we demonstrate applying
the methodology to a specific new DTCM—the reactor model—and show how to implement the
methodology in concrete tooling.

5 Applying Methodology to the Reactor Model

In this section, we demonstrate an application of the general SSFA-based scheduling methodology
to an emerging MoC—the reactor model [28], which has a front-end coordination language called
Lingua Franca (LF) [27]. The reactor model in LF decouples the passage of physical time from logical
time, except when interactions with the physical world are involved (through timers, sensors, and
actuators). In part, because LF allows sporadic events, the scheduling of LF programs is carried
out dynamically at runtime. While the ideal, logical timing behavior is specified in the LF code,
alignment with physical time is executed in a best-effort way, and there are no guarantees about

, Vol. 1, No. 1, Article . Publication date: September 2025.

Quasi-Static Scheduling for Deterministic Timed Concurrent Models on Multi-Core Hardware 13

Model ::= TargetDecl Preamble * Reactor+

TargetDecl ::= target id

Reactor ::= reactor id? Params? { ReactorBody+ } EffectList ::
Params ::= (Parameter (, Parameter) *)

ReactorBody ::= Preamble | StateVar | Input | Output | Timer Input ::

Expression ::= Literal | Time | Code
TriggerList := TriggerRef (, TriggerRef)=
VarRef (, VarRef)x

id : Type = Expression

Parameter ::

input id (: Type)?

| Reaction | Instantiation | Connection Output ::= output id (: Type)?
StateVar ::= state id (: Type)? (= Expression)? Type ::= time | id | Code
Timer ::= timer id (Expression(, Expression)?) TriggerRef ::= BuiltinTrigger | VarRef
Connection ::= VarRef -> VarRef (after Expression)? VarRef ::= id (. id)x*
Instantiation ::= id = new id (Parameter (, Parameter) =) Preamble ::= Code
Literal ::= true | false | INT | FLOAT Code ::= {=id" =}

Reaction := reaction (TriggerList?) (-> EffectList)? Code

Fig. 8. Syntax of the synchronous subset of LF.

the absence of timing anomalies on multicores or deadline compliance at the MoC level, since they
are the concerns of LF’s underlying scheduling policies. We refer the reader to Lohstroh et al. [27]
for further details on the relationship between logical time and physical time. The running example
in Fig. 1 is an automatically generated diagram from the LF toolchain.

We now apply our SSFA-based quasi-static
scheduling technique to a synchronous subset of
LF, with its syntax shown in Fig. 8. We mainly
exclude two LF language features: actions and
physical connections, effectively only allowing
timer-driven tasks and event-driven tasks from
logical connections. Fig. 7 shows the LF com-
piler embedding our SSFA-based approach.

The user first provides an LF program with
optional WCET annotations, each of which in-
dicates the WCET of a reaction on a certain exe-
cution platform. WCETs, if specified, help guide
the DAG schedulers to generate better sched-
ules. In practice, this may not be known or the
estimate may be inaccurate or pessimistic. Our
procedure will still generate correct schedules,
though timing optimality cannot be assured.
Moreover, as we show in Sec. 4.5, the schedules
are free from timing anomalies, in that if an
execution time is less than the WCET estimate,
the makespan is never worse.

The LF compiler then parses the program

Compiled by GCC into executable

LF w/ Runti Inst. Executable
WCETs untime Code Schedule

Y

T

|
Schedule
Generator

-

|
Y
LF

AST
Parser Builder
DAG Phases State Space
Generator Explorer
LB

C
Generator

SSFA w/
Partitioned
DAGs

Select EGS | Edge 3

Scheduler | Generation [40] 1
DAG Schedulers

Lingua Franca Compiler

Fig. 7. LF compiler integrating the proposed approach
in Fig. 3. Colored boxes are our work. Dashed lines
denote external tools for which we build interfaces.
Like Fig. 3, the pipeline highlights SSFA generation,
and the blue pipeline highlights DAG scheduling.

and builds an abstract syntax tree (AST). Once an AST is built, the compiler invokes a C code
generator for generating program-specific instrumentation code, including custom C structs for
reactor definitions in the specific program, user-specified reaction bodies written in C, memory

, Vol. 1, No. 1, Article . Publication date: September 2025.

14 Lin et al.

SatelliteController2

Userinput
Intalization
O"’D' out
Gyroscope%‘ Processing E———
GWOSCOPGV—’M Z desired angl g Motor
i3 § lesired_angle 7E> S
Gyroscope o position /. out in,
@D out (1 sec, 15 msec) > Tipmination
(1 sec, 10 msec) QE
1 target C { 23 reactor UserInput { 45 main reactor {
2 workers: 2 24 output out: IntArr3 46
3} 25 reaction(startup) 47 gyrol = new Gyroscope()
4 reactor Gyroscope { 26 -> out {=...=} 48 gyro2 = new Gyroscope()
5 timer t(1 s, 10 ms) 27 } 49 gyro3 = new Gyroscope()
6 output out: IntArr3 28 reactor Controller { 50 userInput = new UserInput()
7 @wcet ("1 ms") 29 input position: IntArr3 51 processing= new Processing()
8 reaction(t) -> out {=...=} 30 input velocity: IntArr3 52 controller= new Controller ()
9 } 31 input desired_angle:IntArr3s53 motor = new Motor ()
10 reactor Processing { 32 output out: IntArr3 54
11 input il: IntArr3 33 reaction(desired_angle) 55 gyrol.out -> processing.il
12 input i2: IntArr3 34 = 000 =B 56 gyro2.out -> processing.i2
13 input i3: IntArr3 35 @wcet ("4 ms") 57 gyro3.out -> processing.i3
14 output ol: IntArr3 36 reaction(position,velocity)ss processing.ol ->
15 output o02: IntArr3 37 -> out {=...=} 59 controller.position
16 timer t(l s, 15 ms) 38 reaction(shutdown) {=...=} 60 processing.o02 ->
17 @wcet ("1 ms") 39 } 61 controller.velocity
18 reaction(il,i2,i3) {=...=} 40 reactor Motor { 62 userInput.out ->
19 @wcet ("3 ms") 41 input in:IntArr3 63 controller.desired_angle
20 reaction(t) 42 @wcet ("1 ms") 64 controller.out -> motor.in
21 -> ol, o2 {=...=} 43 reaction(in) {=...=} 65
22 } 4 } 66 }

Fig. 9. Satellite attitude controller with user input and termination, written in the synchronous subset of LF.
The C code inside reactions is omitted for conciseness.

allocation and deallocation functions, etc. These steps are captured in the white boxes of Fig. 7 and
are not part of this work.

Our contribution begins with a state space explorer, which explores all phase of the LF program
(the concept of phase is introduced in Sec. 4.3) and conditions for phase transitions. Then, a DAG
generator transforms each hyperperiod to a corresponding DAG. Combined with the conditions
of phase transitions, the red pipeline in Fig. 7 yields a fully specified SSFA. We now discuss SSFA
generation in detail.

5.1 Generating SSFA from Reactors and Scheduling

To generate an SSFA from an LF program, the state space explorer identifies three execution
phases of LF: initialization, periodic, and shutdown. The initialization phase contains a non-repeating
sequence of state space nodes starting from the initial logical timestamp. The periodic phase contains
a sequence of state space nodes that forms a hyperperiod. The shutdown phase contains a sequence
of nodes that follows after the periodic phase until the end of execution.

To help identify a hyperperiod for reactors, we first define the notion of a system state, as required

by DTCM in Sec. 4.3. The definition is similar to the one given by Lin et al. [26].
Definition 5.1 (Reactor System State). The system state s of an LF program is a tuple s =
(id*, t°, N, E), where id®* € ID is an identifier of the state, t* € 7 is a timestamp in a time do-
main, N € N is a set of reactions, and E C & is a set of pending events, where each event is
e = (id% t°) € E such that id® € ID is an event identifier and t° € 7 is a timestamp.

, Vol. 1, No. 1, Article . Publication date: September 2025.

Quasi-Static Scheduling for Deterministic Timed Concurrent Models on Multi-Core Hardware 15

Termination

¢Initializati0n

¢ » TIMEOUT/ processing.reaction_1
3
»

controller.reaction_1

controller.reaction_2
A T controller.reaction_3
Periodic \ true/ ! motor.reaction_1

controller.reaction_1
userInput.reaction_1

Fig. 10. State space exploration identifies phases of the updated satellite controller (Fig. 9) with guarded
transitions. The full-size periodic phase is shown in Fig. 2.

Notation. Subseuqently, when referring to a particular element of s in a state sequence (so, ..., Sn),
we use the subscript to denote an element from a particular state in the sequence, e.g., Ny is the
element N of the state tuple s;.

We now define the H function for reactors, as suggested in Sec. 4.3, to enable checking whether
two states complete a hyperperiod.

Definition 5.2 (Hyperperiod Checking Function #). A sequence of states (so, ..., s,) is said to
form a hyperperiod, if the subsequent state s,4; satisfies the following :

(1) Ny = N,41. This means that the same sets of reactions should be invoked;
(2) V(id§,t5) = eg € Eo.[V(id, |, t,,) = ens1 € Enya.[id§ = idy,, A5 —t5 = t2 —t .,]]. This
means that for all pending events in E and E,41, not only their event identifiers need to be

the same, but their relative time offsets to the current timestamps should also be the same.

If so, H (so, Sn+1) = true, and H(so, sp+1) = false otherwise.

The LF state space explorer implements Algorithm 1 from [26], which constructs the initialization
and periodic phase by unrolling a simulated execution from the initial startup events until either:

(1) there are no more pending events, i.e. E = @,
(2) or a hyperperiod is found based on H defined in Def. 5.2.

When this procedure is completed, the sequence of states simulated typically forms a lasso shape.
The explorer factors out the nodes leading up to the loop, i.e., the stem of the lasso, into the
initialization phase, and the loop nodes into the periodic phase.

To identify a hyperperiod for the shutdown phase, the explorer begins a new simulation run,
assuming the shutdown triggers and all input ports are present in case some connection delivers
an event at the same time as the shutdown time.

To show the above state exploration in action, in Fig. 9, we augment the running example with a
UserInput reactor, which sends a desired satellite orientation to the controller when the LF program
starts up (the white circle inside UserInput represents a STARTUP trigger). In addition, the Controller
reactor has a third reaction triggered by a SHUTDOWN trigger, representing a termination procedure
when the system shuts down. Fig. 10 now shows the three phases identified by the state space
explorer with conditions for switching between phases. To construct a proper SSFA from this
representation, a DAG needs to be constructed from each hyperperiod, a task performed by the
DAG generator, which we discuss next.

Converting Reactor Phases to DAGs. For each phase of the LF program, a DAG is constructed
based on Algorithm 1. The DAG generator traverses each state in a phase, generates a sync node
(introduced in Sec. 4.1) from its logical timestamp, and generates a task node for each reaction
invocation in the state.

Edges are drawn between task nodes and sync nodes based on the reactor semantics, including:

, Vol. 1, No. 1, Article . Publication date: September 2025.

16 Lin et al.

Algorithm 1 Generate a DAG from an LF Phase

1: procedure GENERATEDAG(phase)
2 dag = (V,E) « {0,0} > Initialize an empty DAG.
3 state < phase.head > Initialize a running variable to the head of the phase.
4 while True do > Iterate over all states in the phase.
5: BREAKIFALLVISITED(state, phase)
6 time < GETLOGICALTIME(state) > Get the logical time of the current state.
7 syncNode « CREATESYNCNODE(time)
8 V « V U {syncNode}
9 reactions < GETREACTIONS(state)
10: reactionNodes < CREATETASKNODES(reactions)
11: V « V U reactionNodes
12: E < E U CREATESYNCTOTASKEDGES(syncNode, reactionNodes)
13: E « E U CREATEDATADEPENDENCYEDGES(reactions) » Priorities, triggers, barrier sync.
14: state «— GETNEXTSTATEFROMPHASE (phase, state)
15: end while
16: V « V U CREATEFINALSYNCNODE (phase, dag)
17: E < E U CREATEEDGESFORUNCONNECTEDTASKNODES(dag)
18: for all reaction € GETREACTIONNODESWITHDEADLINES() do
19: deadlineNode = CREATEDEADLINESYNCNODE(reaction)
20: V « V U {deadlineNode}
21: E «— E U CREATETASKTODEADLINEEDGE (reaction, deadlineNode)
22: end for
23: ADDANDCONNECTDUMMYNODESBETWEENSYNCS(dag)
24: return dag

25: end procedure

(1) Release edges from sync nodes marking release times to released task nodes;

(2) Deadline edges that connect task nodes to sync nodes that mark their completion deadlines;

(3) Data dependency edges between nodes having data dependency constraints: (i) one reaction’s
output triggers a downstream reaction (e.g., in Fig. 4, the edge from p; to c'); (ii) reaction
priorities (e.g., the edge from p; to p,); (iii) barrier synchronization within a reactor (e.g., the
edge from p; to p?, meaning that reaction 2 at a previous timestamp has to complete before
releasing reaction 1 at a new timestamp).

The DAG generator produces additional sync nodes marking deadline on task completion. Lastly,
it adds dummy nodes between sync nodes and use additional edges to connect all sync nodes to
form the virtual path. For example, the DAG in Fig. 4 is generated based on the rules above from
Fig. 2. More concretely, Fig. 2’s gyro3.reaction_1 in state SO has a release time of t = Oms and a
deadline of ¢t = 2ms (deadline not shown in Fig. 2), producing sync nodes sy, s, and a dummy d; in
Fig. 4. The resulting unscheduled SSFA after generating DAGs for all LF phases is shown in Fig. 11.

Scheduling each DAG by Partitioning. In our extended LF compiler, we support two different
types of DAG schedulers: A load-balanced scheduler (LB) and an edge generation scheduler (EGS),
by Sun et al. [40]. The load-balanced scheduler takes the generated DAG as its input and produces
graph partitions that aim to assign each processor core the same amount of work measured in
execution times. On the other hand, in case of the edge generation scheduler, instead of distributing
workloads fairly across workers, the focus is on satisfying timing constraints. Given a DAG task

, Vol. 1, No. 1, Article . Publication date: September 2025.

Quasi-Static Scheduling for Deterministic Timed Concurrent Models on Multi-Core Hardware 17

set with a deadline, which can be the end of a hyperperiod, EGS checks whether the DAG task
set is trivially schedulable on the given number of processors. If it is not trivially schedulable
by construction, EGS adds edges to make it trivially schedulable. Once all DAGs in the SSFA is
partitioned, the SSFA is considered scheduled and is ready to be compiled into an executable.

Scalability. We gauge at the scalability of our proposed approach through the lens of time
complexity, which varies at different stages of our approach. First, during compile-time state space
exploration, the explored state space for LF forms the shape of a lasso, which consists of a stem (the
initial path leading into the loop) and a loop (the repeating cycle). In this case, the execution time
of state space exploration scales linearly with the size of the stem and the loop, which are defined
by the structure of the LF program. Next, when generating DAGs from explored phases (such as
Fig. 10), the time complexity is O (n), where n is the number of states in the explored phases, since
Algorithm 1 linearly traverses through all states in a phase. Then, when partitioning the generated
DAGs, the time complexity depends on the specific DAG partitioning algorithms, which [42] has
a good overview of. The benefit of quasi-static scheduling is that the scheduling cost is paid at
design-time. Once the executable schedule is generated (which we discuss in the next section), if
the system has no dynamic behavior at runtime, the system operates with constant-time overhead:
every core simply follows its precomputed schedule, yielding O(1) per scheduling decision. A
global dynamic scheduler, such as EDF, must account for all enabled tasks, which incurs O(n)
complexity for n concurrently enabled tasks.

5.2 Compiling Scheduled SSFA to Executable Schedules

In this section, we detail how a scheduled SSFA is further compiled into executable schedules.

Intermediate Representation (IR). From the partitioned DAGs, the schedule generator in Fig. 7
generates executable schedules, which are composed from an intermediate representation (IR)
we design to direct how a CPU core should execute a DAG partition. The approach of using an
IR for implementing real-time scheduling is pioneered by Henzinger et al. [10], which we take
inspiration from. Table 1 shows the full IR for composing executable schedules. The IR combines
elements from RISC-V [44], timing instructions from PRET Machines [17, 25, 45], and the reactor
model’s task abstraction. It includes standard control-flow and arithmetic instructions (ADD, ADDI,
BEQ, BGE, BLT, BNE, JAL, JALR) for manipulating auxiliary state and managing schedule logic. Timing
instructions (DU, WU, WLT) make timing a semantic aspect of execution, enabling real-time alignment
and inter-worker synchronization. Reactor-inspired instructions include EXg, which invokes C
functions (e.g., reaction bodies), and STP, which terminates execution.

Termination

Initialization

>

i il true/ N \a ? t = TIMEOUT/ 9
OSE IOl ittt R 4

= W © o j/l ©
@ @ Periodic f true/ 1

Fig. 11. SSFA of the updated satellite controller generated from Fig. 10. In the Initialization mode, Task nodes
without WCETs are labeled “-”. In the Termination mode, dummy nodes of “c” indicate that tasks do not
have timing constraints on completion.

, Vol. 1, No. 1, Article . Publication date: September 2025.

18

Table 1. Intermediate Representation for Composing Executable Schedules

Lin et al.

Instruction

Description

Basic instructions

Inspired by RISC-V [44]

ADD opl, op2, op3

Add to an integer variable (op2) by an integer variable (op3) and store to a destination variable (op1).

ADDI opl, op2, op3

Add to an integer variable (op2) by an immediate (op3) and store to a destination variable (op1).

BEQ opl, op2, op3

Take the branch (op3) if the op1 variable value is equal to the op2 variable value.

BGE opl, op2, op3

Take the branch (op3) if the op1 variable value is greater than or equal to the op2 variable value.

BLT opl, op2, op3

Take the branch (op3) if the op1 variable value is less than the op2 variable value.

BNE opl, op2, op3

Take the branch (op3) if the op1 variable value is not equal to the op2 variable value.

JAL opl op2

Store the return address to op1 and jump to a label (op2).

JALR opl, op2, op3

Store the return address to op1 and jump to a base address (op2) + an immediate offset (op3).

Timing instructions

Inspired by PRET Machines [17, 25, 45]

DU opl, op2 Delay until the physical clock reaches a base timepoint (op1) plus an offset (op2).
WLT opl, op2 Wait until a variable value (op1) to be less than a desired value (op2).
WU opl, op2 Wait until a variable value (op1) to be greater than or equal to a desired value (op2).

Task instructions

Inspired by the reactor model [28]

EXE opl, op2

Execute a function (op1) with argument (op2).

STP

Stop the execution.

Auxiliary Variables. The semantics of quasi-static schedules rely on both worker-specific and
global auxiliary variables. Each worker maintains a counter to track its progress, a return_addr
for storing return addresses during jumps, and two temporary registers temp® and templ. Global
variables include start_time (the start timestamp), timeout (the final timestamp), and time_offset
(the start time of the current SSFA state). To advance time_offset, the scheduler uses a global
offset_inc variable to store per-state increments. For inter-worker synchronization at hyperperiod
boundaries, each worker has a binary semaphore binary_sema. Two global constants, zero and one,
hold the values 0 and 1, respectively.

Synchronization. In our execution strategy, we support two types of synchronization: (i) local
synchronization between a pair of workers, and (ii) global synchronization across all workers. Local
synchronization is achieved by letting a wu block on another worker’s counter variable. On the other
hand, global synchronization across all workers is performed at the completion of an SSFA state
and is achieved by inserting a synchronization code block into each worker’s executable schedule.
Worker 0 first blocks until all other workers enter the code block and wait. Once all other workers
start waiting, worker 0 increments the global time_offset, resets all workers’ counters, advances all
reactors’ timestamps, clears all reactors’ output ports, and finishes by signaling other workers to
unblock.

Instruction Generation. Given a partitioned DAG, the instruction generation algorithm traverses
the graph in topological order, emitting instructions for each node. For reaction nodes, it generates
synchronization instructions (WU) to ensure correct inter-worker dependencies, timestamp advance-
ment instructions (ADVI, DU) if the logical time progresses, and conditional branching instructions
(BEQ, JAL) to test for triggers. If deadlines are declared, a guard sequence is emitted before executing
the reaction body (EXE). After execution, connection management helpers and counter updates
(apDI) are inserted. For terminal synchronization nodes, the algorithm finalizes connection helpers
and inserts synchronization and delay instructions across workers to prepare for the next logical

, Vol. 1, No. 1, Article . Publication date: September 2025.

Quasi-Static Scheduling for Deterministic Timed Concurrent Models on Multi-Core Hardware 19

tag. The generated instruction streams are compiled into binary programs; each core interprets its
stream at runtime, coordinating to preserve the deterministic behavior of the original LF program.

Assumptions for Makespan Analysis. In Sec. 4.5, we introduced a simple procedure to analyze
worst-case makespan for generic DAGs. To apply this procedure in the context of LF, the WCET of
a task node (e.g., the WCET of 1ms for node g} in Fig. 5) needs to include: (i) the reaction body’s
WCET, (ii) the sum of the generated IR instructions’ WCETs. For example, if a DAG node n produces
instructions EXE;ADDI, where EXE launches the reaction body and AbpI performs bookkeeping using
the counter variable, then the total WCET of node n is wcet,, = wWceT(reaction) + wceT(EXE) +
wCET(ADDI). The inter-core communication cost is accounted for in the WCETs of instructions Wwu
and WLT. Their values can be derived from the microarchitecture of the multi-core processor. The
additional wait time due to task dependencies is captured by the max operator in analysis (as seen
in Example 1).

6 Evaluation

In this section, we evaluate the performance of executing quasi-statically scheduled LF programs
and compare the execution overhead with that from using the dynamic scheduler of LF. Furthermore,
we demonstrate the analyzable worst-case makespan property in Sec. 4.5 using a case study on a
satellite attitude control system.

6.1 Performance

We evaluate the performance of the quasi- static scheduler by evaluating a set of LF benchmarks
on a Raspberry Pi 4 Model B running QNX (SDP 8.0) real-time operating system. By performance,
we refer to the runtime overhead, quantified as lags in the context of LF. Specifically, lags are
measured as the difference between a reaction’s actual physical firing time and its intended logical
firing time. This metric applies to both the dynamic and the quasi-static scheduler. We compare
the quasi-static schedulers’ performance against that of the default dynamic scheduler. The eight
benchmarks are selected from [26, 32] with a focus on concurrent actor design patterns [15], which
can be found in modern cyber-physical systems. LongShort is an exception, as it is not drawn
from the aforementioned citations but is instead introduced in this paper. This benchmark employs
a design pattern that combines long- and short-running reactions, each executed at a frequency
equal to the reaction’s WCET. We annotate each reaction’s WCET using an @wcet attribute (as
seen in Fig. 9) for each benchmark program, and we collect performance data using LF’s tracing
utility. Each event contains an event type, a logical timestamp, and a physical timestamp. In this
experiment, we only collect events for the starting points of reactions. This choice ensures that the
tracing overhead stays uniform for all three schedulers under test.

Table 2 shows an overview of the performance results. Compared to the dynamic scheduler, both
static schedulers have smaller average, maximum lag, and standard deviation on all benchmarks,
except for the ADASModel when scheduled with EGS. This outlier is due to edge generation’s
scheduling strategy involving adding edges to the DAG, which could delay the releasing of tasks in
exchange for schedulability guarantees. We note that the goal of using EGS is not to minimize lags,
but to use its analysis capability to ensure that a DAG is schedulable. This makes larger lags from
EGS tolerable.

Using the performance data reported in the "Average (us)" column of Table 2, we compute the
Performance Improvement Ratio (PIR), shown in the "PIR" column of the same table. The PIR
quantifies the relative performance of the baseline techniques LB and EG compared to DY, and
is calculated as the ratio of the average execution time of DY to that of LB (%) and EG (%),
respectively. A higher PIR value indicates a greater performance improvement of the baseline

, Vol. 1, No. 1, Article . Publication date: September 2025.

20 Lin et al.

Table 2. Average, maximum, and standard deviation of the benchmark performance (lag) using the dynamic
scheduler (DY), the static LoAb BALANCED scheduler (LB), and the static EDGE GENERATION scheduler (EGS).

Average (1Ls) Maximum ([Ls) Standard Deviation (LLs) PIR
Program LoC (LF) DY LB EG DY LB EG DY LB EG DY/LB DY/EG
Philosophers [32] 314 86.1 2.99 2.53 1.37e+04 24.8 24 841 1.34 1.21 28.8 34.0
PingPong [32] 124 20.3 1.27 115 1.38e+04 6.43 5.8 377 0.758 0.677 16.0 17.7
Throughput [32] 166 5.21 2.43 2.53 10.1 6.33 7.43 1.38 1.19 1.25 2.1 2.1
ThreadRing [32] 217 6.95 2.29 2.02 13.1 5.89 5.15 2.39 1.32 1.17 3.0 3.4
LongShort (by us) 31 1.5e+06 77.2 78.7 2.92e+06 1.92e+03 1.95e+03 8.11e+05 379 386 19430.1 19059.7
CoopSchedule [18] 54 8.15 2.12 2.46 12.9 4.52 5.98 2.87 0.955 1.17 3.8 3.3
Counting [32] 179 5.81 1.41 1.27 98.5 7.76 9.2 33 0.592 0.703 4.1 4.6
ADASModel [26] 91 5.87 1.07 2.15e+03 22.2 3.35 1.2e+04 3.13 0.791 3.57e+03 5.5 0.0

technique over DY. Again, LB and EG consistently perform better than DY across various programs,
with significant speedups. However, the LongShort and ADASModel programs are notable outliers,
with LongShort showing extreme values due to its high execution time in DY, and ADASModel
displaying a dramatic drop in performance when comparing DY to EG. We compute the average
PIR of LB and EG across all benchmarks while excluding LongShort (because it appears overly
favorable to our approach). The resulting average PIR values indicate that LB and EG improve
performance by factors of 9.0 and 9.3, respectively, compared to DY.

Fig. 12 shows strip plots of lags during the periodic phase of each program. For most reactions,
LB and EGS have smaller lags than the dynamic scheduler. The occasional outliers shown in the
strip plots can be due to several reasons, including interruptions, from the underlying OS and the
flushing of trace buffers to disk.

Notably, for the LongShort benchmark, LB and EGS significantly outperforms the dynamic
scheduler. This performance gain can be explained by the fact that the quasi-static schedulers keep
track of the current logical time for each reactor, meaning that every reactor can advance its logical
time independently as long as the core LF semantics is respected, i.e. each reactor processes events
in timestamp order. On the other hand, the dynamic scheduler uses a single variable to track logical
time for all reactors, ensuring that all reactors advance time together. The LongShort benchmark
has a design pattern that combines infrequent, long-running reactions with frequent, short-running
reactions. The dynamic scheduler struggles because it performs a global barrier synchronization at
the end of each timestamp. The barrier makes reactions that are to occur at the next timestamp
wait on the long-running reactions, even if there are no more actual data dependencies to fulfill. In
the quasi-static schedulers, the capability to advance time individually for each reactor effectively
prevents waiting unnecessarily, resulting in significantly reduced lags.

Limitations and Trade-offs. While our LF quasi-static schedulers seem to be quite performant in
terms of low overhead, we note that quasi-static scheduling has its limitations. One of them is lack
of flexibility. Since the schedule is determined at compile-time, the quasi-static schedulers require
tight WCET labels and properly partitioned DAGs to generate high-quality schedules with high
CPU utilization. Although this does not affect the correctness of the LF semantics delivered, overly
loose WCET labels or poorly paritioned DAGs (in case of EGS, this could come from poorly added
edges) could keep certain core unnecessarily idle. In addition, the execution times of tasks should
not vary wildly within the WCET bound. If a task finishes too early, the nature of pre-determined
schedules does not automatically keep the free core busy. On the other hand, dynamic scheduling is
known for flexibility, which can keep the CPU utilization high without any knowing WCETs, at the
cost of having scheduling overhead at runtime. This highlights the trade-off between predictability
vs. utilization/runtime overhead. What we observe in this work is that more predictability results in
less utilization and less runtime overhead, a trade-off the system designer needs to be mindful of.

, Vol. 1, No. 1, Article . Publication date: September 2025.

Quasi-Static Scheduling for Deterministic Timed Concurrent Models on Multi-Core Hardware

Timing Accuracy: DY vs. STATIC (L8, EGS)

Timing Accuracy: DY vs. STATIC (L8, EGS)

100000 Dataset Dataset
. o :
s 12000 s ' P
| ‘
i L
g g
40000 000, .
20000 . ‘ . ‘ .
i . 200 . l ' ‘
. =1 ab = - - Se
s & & & & & & &
(a) Counting (b) CoopSchedule
: , - i
.. HS H
25 ‘.. 10
.
20 o 08
-
gus .. Fos
10 bad 04 - - -
05 - . 02
.
.
w — — W cee cem cece oo+ cea eaa
(c) LongShort (d) ADASModel
: Y . L
s .
r
s :
; o
. H i
8000 » N
e -
" . : §
P, .
z -) . H
i P T
: i i i
> e, i
. L]
. - = - - - - - - . - s -
= Ve & # #
N Group (Reactor, Destination) N < Group (Reactor, Destination)
(e) PingPong (f) ThreadRing
. . v
HE : H
. &
’ o i L | :
o ; M ! ? N | .
P ; o . :
' § v 4 . .
8 PR 4 ' i ¥ o :)
[c .
g9 weaee coa cea caa cee -
s o s S " & o & o &
y & v@’é ¥ , & gﬁp & ;\@*f 3’; P s‘,e“ &

Group Reactor Destnaton)

(g) Throughput

‘Group (Reactor, Destinaton)

(h) Philosophers

Fig. 12. Timing accuracy results showing runtime overhead, measured on QNX (SDP 8.0) running on a
Raspberry Pi 4. The X-axis represents reaction names, with each reaction displaying three distributions: DY,

LB, and EGS. The Y-axis indicates lag in nanoseconds.
, Vol. 1, No. 1, Article . Publication date: September 2025.

2 Lin et al.

6.2 Case Study: Satellite Attitude Control System

We return to the satellite attitude control system from Fig. 1 and demonstrate the use of our
analyzable worst-case makespan property in Sec. 4.5 to perform compile-time validation of LF
deadlines. The experiment is done on FlexPRET [45], a time-predictable processor, and the WCET
analysis tool Platin [31] to obtain verifiable hard real-time guarantees.

Real-time requirements. To assure the stability of this control system, we need to minimize
both the input jitter and the end-to-end latency of the system. We encode the requirements on the
input jitter by specifying a release deadline of 20 us for the sensor sampling reactions. This means
that using the logical timestamp of the Gyroscope reactions as sensor timestamps, at most, will be
20 ps off. The requirement on the end-to-end latency is encoded by the release deadline of 300 s

on the reaction of the Motor reactor.

Determining WCET Bounds. In LF, the business logic expressed in
the reactions is often short and linear code sequences with bounded
loops. They are, therefore, analyzable by existing WCET analysis tools
including static tools such as Platin [36] and hybrid tools such as Ga-
meTime [37]. We extend the work of determining WCET bounds of LF
reactions, originally started with LF on Patmos [35]. To perform WCET
analysis with Platin, we first compile the program with the RISC-V ver-
sion of patmos-clang, which generates a Platin Metainfo File that Platin

Table 3. WCET bounds for
the reactions in the satel-
lite attitude controller com-
puted by Platin. The sub-
script denotes the reaction
number within the reactor.

Reaction WCET (us)
consumes. We compute WCET bounds for all reaction bodies.
. . Gyro; 21
This currently leaves a few small sections of code unanalyzed, such SensorFusion, 61
as the setup code of the reactions and the wake-up overhead of the controller, 172
platform. We performed measurements on those functions, showing Motor, 1

that the wake-up execution time is in the order of microseconds, and
the setup code execution times are in the sub-microsecond range, which we overapproximate with
a constant number in our timing analysis. In future work, we plan to get these parts of the runtime
amenable to WCET analysis, instead of using measurement.

Table 3 shows the WCET bounds computed by Platin for the reactions part of the periodic phase
of the program, when targeting a FlexPRET processor clocked at 100 MHz.

Scheduling. The reactions are annotated with their WCET bounds, allowing the EGS scheduler to
produce a partitioned schedule. EGS rejects a program if the input DAGs are not schedulable. The
LF compiler takes the partitioned DAG and produces a quasi-static schedule. A subtlety is that the
EGS scheduler does not consider runtime overhead when scheduling the DAG; this means that
for certain high-utilization programs with very tight WCET bounds, the resulting schedule might
not be feasible if it results in too much coordination overhead. The LF compiler thus performs a
final deadline satisfaction check, including the runtime overhead of the executable schedules as
computed by Platin.

Evaluation. The resulting cross-compiled program targets a 100 MHz FlexPRET processor sup-
porting four fine-grain multithreading hard real-time threads, representing logical execution cores.
A cycle-accurate emulation executes 1000 iterations of the program with simulated sensor inputs,
and the execution times and completion times of each reaction are recorded. The results are shown
in Fig. 13. The figure shows the measured execution time and the release time of each reaction in
the periodic phase, represented as histograms. For the execution time, the WCET computed by
Platin is shown by a red vertical line. For the release times, the LF release deadline, if applicable, is
also shown by a red vertical line.

, Vol. 1, No. 1, Article . Publication date: September 2025.

Quasi-Static Scheduling for Deterministic Timed Concurrent Models on Multi-Core Hardware 23

Gyroscope SensorFusion Controller Motor
300

2,000 [WCET 1,000 [WOET WeET 1,000] WOET .
g 1so0p 1 200]- | &
£ 1000 1 so0f 1 500 f 2
g 100 |- Z
2500
0 , , | 0 , , ok , | .| 0 , ,
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
T T T T 1000 T T n 300 T
: Deadline

2,000 7 r
2,000 Deadine 1.000

1,500 200]-

of Runs

1,000 H ! 500 - 1 500 -
100 -

Release time

Nu

500

, , | 0 , , 0 , | oh , , !
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

in ps in s in s in ps

0

Fig. 13. Measured release times and execution times of the reactions from Fig. 9 on FlexPRET.

We observe that the measured execution times fall within the WCET bounds computed by Platin.
The WCET bounds are, in most cases, significantly higher than the measured execution times;
this is partly because FlexPRET does not have a hardware multiplier, so all multiplications and
divisions are done in software. Such software implementations have data-dependent execution
times. We also observe that the Gyroscope, SensorFusion, and Motor reactions show virtually no jitter in
the execution times. Only the PID controller introduces variable, data-dependent execution times.

As guaranteed by our methodology, all reactions meet their release deadlines. The release time
of the Gyroscope reactions is at 17 ps with zero variability, and the release time on the Motor reaction
is met with a comfortable margin.

7 Conclusion

In this paper, we present the first unified quasi-static scheduling approach based on an intermediate
formalism called state space finite automata (SSFA), bridging the gap between high-level MoCs
and low-level executable schedules. We show that our unified scheduling approach applies to
existing models, including SDF, BDF, SADF, and LET, and we identify a class of deterministic timed
concurrent models (DTCMs) to which the SSFA-based methodology is applicable. We demonstrate
the application of the proposed approach to an emerging MoC—the reactor model. Our evaluation
confirms a successful application of the SSFA-based quasi-static scheduling approach to reactors
from its reduced average runtime overhead (by 9 times compared to the default dynamic scheduler),
and the LF compiler’s newly added support for compile-time deadline validation, benefiting from
the properties of quasi-static scheduling. Moving forward, we plan to evaluate our approach
quantitatively using larger-scale benchmarks as well as applying our unified SSFA-based scheduling
framework to more emerging models of computation.

Acknowledgment

The work in this paper was supported in part by the National Science Foundation (NSF), award
#CNS-2233769 (Consistency vs. Availability in Cyber-Physical Systems), by Intel, and by the iCyPhy
Research Center (Industrial Cyber-Physical Systems). This work was funded in part by the German
Federal Ministry of Research, Technology and Space of Germany (BMFTR) in the programme
“Souveran. Digital. Vernetzt” joint project 6G-life (16KISK001K), and by the German Research
Council (DFG) through the InterMCore project (505744711). This work is also part of a project
(PropRT) that has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 865170). This
work also received funding from the EU Horizon Europe Programme under grant agreement No
101135183 (MYRTUS). Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union. Neither the European Union nor the granting

, Vol. 1, No. 1, Article . Publication date: September 2025.

24

Lin et al.

authority can be held responsible for them. Mirco Theile and Bingi Sun were supported by the
Chair for Cyber-Physical Systems in Production Engineering at TUM. Linh Thi Xuan Phan was
supported by NSF CNS-2111688 and CCF-2326606. The authors thank Marten Lohstroh, Christian
Menard, and the anonymous reviewers for providing helpful feedback. Shaokai Lin thanks Zitao
Fang and Yang Huang for collaborating on a CS267 project at UC Berkeley that inspired this work.

References

[1] 2014. System Design, Modeling, and Simulation using Ptolemy II.
[2] JT. Buck and E.A. Lee. 1993. Scheduling dynamic dataflow graphs with bounded memory using the token flow model.

[10
[11

[12
[13

— =

[t}

[14]

(15

[16
[17

[18

[19
[20
[21
[22
[23

[24
[25

]

—

]

—

]
]

—

]

—_

In 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 1. 429-432 vol.1.

Joseph T. Buck. 1993. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token Flow Model. Ph. D.
Dissertation. EECS Department, University of California, Berkeley.

Alan Burns and Sanjoy Baruah. 2008. Sustainability in real-time scheduling. Fournal of Computing Science and
Engineering 2, 1 (2008), 74-97.

Emilia Farcas and Wolfgang Pree. 2007. Hyperperiod bus scheduling and optimizations for TDL components. In 2007
IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007). 1262-1269.

Marc C. W. Geilen, Mladen Skelin, J. Reinier van Kampenhout, Hadi Alizadeh Ara, Twan Basten, Sander Stuijk, and
Kees G. W. Goossens. 2020. Scenarios in Dataflow Modeling and Analysis. 145-180.

Kai-Bjérn Gemlau, Leonie Kéhler, Rolf Ernst, and Sophie Quinton. 2021. System-level Logical Execution Time:
Augmenting the Logical Execution Time Paradigm for Distributed Real-time Automotive Software. ACM Transactions
on Cyber-Physical Systems 5, 2 (2021), 1-27.

AH. Ghamarian, M.CW. Geilen, S. Stuijk, T. Basten, B.D. Theelen, M.R. Mousavi, A.J.M. Moonen, and M.J.G. Bekooij.
2006. Throughput Analysis of Synchronous Data Flow Graphs. In Sixth International Conference on Application of
Concurrency to System Design (ACSD’06). 25-36.

T. A. Henzinger, B. Horowitz, and C. M. Kirsch. 2001. Giotto: A Time-Triggered Language for Embedded Programming.
In EMSOFT 2001, Vol. LNCS 2211. 166-184.

Thomas A. Henzinger and Christoph M. Kirsch. 2002. The embedded machine: Predictable, portable realtime code. In
International Conference on Programming Language Design and Implementation (PLDI). 315-326.

Thomas A. Henzinger, Christoph M. Kirsch, and Slobodan Matic. 2003. Schedule-Carrying Code. In Embedded Software.
241-256.

C. A. R. Hoare. 1972. Towards a Theory of Parallel Programming. In Operating Systems Techniques, Vol. 9. 61-71.
Benjamin Horowitz. 2003. Single-mode, single-processor Giotto scheduling.

Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. 2022. Taskflow: A Lightweight Parallel and Heteroge-
neous Task Graph Computing System. IEEE Transactions on Parallel and Distributed Systems 33, 6 (2022), 1303-1320.
Shams M. Imam and Vivek Sarkar. 2014. Savina - An Actor Benchmark Suite: Enabling Empirical Evaluation of Actor
Libraries. In Proceedings of the 4th International Workshop on Programming Based on Actors Agents & Decentralized
Control (Portland, Oregon, USA). 67-80.

Axel Jantsch. 2003. Modeling Embedded Systems and SoCs - Concurrency and Time in Models of Computation.

Erling R. Jellum, Shaokai Lin, Peter Donovan, Chadlia Jerad, Edward Wang, Marten Lohstroh, Edward A. Lee, and
Martin Schoeberl. 2023. InterPRET: A Time-Predictable Multicore Processor. In Proceedings of Cyber-Physical Systems
and Internet of Things Week 2023 (San Antonio, TX, USA). 331-336.

Erling Rennemo Jellum, Shaokai Lin, Peter Donovan, Efsane Soyer, Fuzail Shakir, Torleiv Bryne, Milica Orlandic,
Marten Lohstroh, and Edward A. Lee. 2023. Beyond the Threaded Programming Model on Real-Time Operating
Systems. In Fourth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023), Vol. 108. 3:1-3:13.
Christoph M Kirsch and Ana Sokolova. 2012. The logical execution time paradigm. Advances in Real-Time Systems
(2012), 103-120.

R. L. Graham. 1969. Bounds on Multiprocessing Timing Anomalies. SIAM J. Appl. Math. 17, 2 (1969), 416—-429.

E.A. Lee. 2006. The problem with threads. Computer 39, 5 (2006), 33—-42.

Edward A Lee. 1988. Recurrences, iteration, and conditionals in statically scheduled block diagram languages. VLSI
Signal Processing 3 (1988), 330-340.

Edward Ashford Lee and David G. Messerschmitt. 1987. Static Scheduling of Synchronous Data Flow Programs for
Digital Signal Processing. IEEE Trans. Comput. C-36, 1 (1987), 24-35.

Edward A. Lee and David G. Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 75, 9 (1987), 1235-1245.

Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and Edward A. Lee. 2008. Predictable
Programming on a Precision Timed Architecture. In Proceedings of the 2008 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (Atlanta, GA, USA). 137-146.

, Vol. 1, No. 1, Article . Publication date: September 2025.

Quasi-Static Scheduling for Deterministic Timed Concurrent Models on Multi-Core Hardware 25

[26] Shaokai Lin, Yatin A. Manerkar, Marten Lohstroh, Elizabeth Polgreen, Sheng-Jung Yu, Chadlia Jerad, Edward A. Lee,
and Sanjit A. Seshia. 2023. Towards Building Verifiable CPS Using Lingua Franca. ACM Trans. Embed. Comput. Syst. 22,
55 (2023).

[27] Marten Lohstroh, Christian Menard, Soroush Bateni, and Edward A. Lee. 2021. Toward a Lingua Franca for Deterministic
Concurrent Systems. ACM Transactions on Embedded Computing Systems (TECS), Special Issue on FDL’19 20, 4 (2021),
Article 36.

[28] Marten Lohstroh, fiiigo Incer Romero, Andrés Goens, Patricia Derler, Jeronimo Castrillon, Edward A. Lee, and Alberto

Sangiovanni-Vincentelli. 2020. Reactors: A Deterministic Model for Composable Reactive Systems. In Cyber Physical

Systems. Model-Based Design — Proceedings of the 9th Workshop on Design, Modeling and Evaluation of Cyber Physical

Systems (CyPhy 2019) and the Workshop on Embedded and Cyber-Physical Systems Education (WESE 2019) (New York

City, NY, USA). 59-85.

Thomas Lundqvist and Per Stenstrém. 1999. Timing Anomalies in Dynamically Scheduled Microprocessors. In

Proceedings of the 20th IEEE Real-Time Systems Symposium. 12-21.

Claire Maiza, Hamza Rihani, Juan M. Rivas, Joél Goossens, Sebastian Altmeyer, and Robert I. Davis. 2019. A Survey of

Timing Verification Techniques for Multi-Core Real-Time Systems. ACM Comput. Surv. 52, 3 (2019).

Emad Jacob Maroun, Eva Dengler, Stefan Dietrich, Chistian Hepp, Benedikt Herzog, Henriette Huber, Jens Knoop,

Daniel Prokesch, Peter Puschner, Phillip Raffeck, Martin Schoeberl, Simon Schuster, and Peter Wagemann. 2024. The

Platin Multi-Target Worst-Case Analysis Tool. In 22th International Workshop on Worst-Case Execution Time Analysis

(WCET 2024).

Christian Menard, Marten Lohstroh, Soroush Bateni, Matthew Chorlian, Arthur Deng, Peter Donovan, Clément

Fournier, Shaokai Lin, Felix Suchert, Tassilo Tanneberger, Hokeun Kim, Jeronimo Castrillon, and Edward A. Lee. 2023.

High-performance Deterministic Concurrency Using Lingua Franca. ACM Trans. Archit. Code Optim. 20, 4 (2023).

Giovanni De Micheli. 1994. Synthesis and optimization of digital circuits.

Guillaume Roumage, Selma Azaiez, Cyril Faure, and Stéphane Louise. 2025. An Extended Survey and a Comparison

Framework for Dataflow Models of Computation and Communication. arXiv preprint arXiv:2501.07273 (2025).

[35] Martin Schoeberl, Ehsan Khodadad, Shaokai Lin, Emad Jacob Maroun, Luca Pezzarossa, and Edward A. Lee. 2024.
Invited Paper: Worst-Case Execution Time Analysis of Lingua Franca Applications. In 22nd International Workshop on
Worst-Case Execution Time Analysis (WCET 2024), Vol. 121. 4:1-4:13.

[36] Martin Schoeberl, Wolfgang Puffitsch, Stefan Hepp, Benedikt Huber, and Daniel Prokesch. 2018. Patmos: a time-

predictable microprocessor. Real-Time Syst. 54, 2 (2018), 389-423.

Sanjit A. Seshia and Alexander Rakhlin. 2012. Quantitative Analysis of Systems Using Game-Theoretic Learning. ACM

Transactions on Embedded Computing Systems (TECS) 11, S2 (2012), 55:1-55:27.

Gilbert C. Sih. 1991. Multiprocessor Scheduling to Account for Interprocessor Communication. Ph.D. Dissertation. EECS

Department, University of California, Berkeley.

Sander Stuijk, Marc Geilen, Bart Theelen, and Twan Basten. 2011. Scenario-aware dataflow: Modeling, analysis and

implementation of dynamic applications. In 2011 International Conference on Embedded Computer Systems: Architectures,

Modeling and Simulation. 404-411.

Bingi Sun, Mirco Theile, Ziyuan Qin, Daniele Bernardini, Debayan Roy, Andrea Bastoni, and Marco Caccamo. 2024.

Edge Generation Scheduling for DAG Tasks Using Deep Reinforcement Learning. IEEE Trans. Comput. 73, 4 (2024),

1034-1047.

[41] Reinier van Kampenhout, Sander Stuijk, and Kees Goossens. 2017. Programming and analysing scenario-aware
dataflow on a multi-processor platform. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.
876-881.

[42] Micaela Verucchi, Ignacio Safiudo Olmedo, and Marko Bertogna. 2023. A survey on real-time dag scheduling, revisiting
the global-partitioned infinity war. Real-Time Systems 59, 3 (2023), 479-530.

[43] Micaela Verucchi, Mirco Theile, Marco Caccamo, and Marko Bertogna. 2020. Latency-aware generation of single-rate
DAGs from multi-rate task sets. In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).
226-238.

[44] Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovic, Volume I User level Isa, Andrew Waterman, Yunsup
Lee, and David Patterson. 2014. The RISC-V instruction set manual. Volume I: User-Level ISA’, version 2 (2014).

[45] Michael Zimmer, David Broman, Chris Shaver, and Edward A. Lee. 2014. FlexPRET: A processor platform for mixed-
criticality systems. In 2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS). 101-110.

[29

—

[30

[t}

[31

—

[32

—

[33
[34

[lami bt

[37

—

[38

[t

[39

—

[40

—

Received 30 March 2025; revised 15 June 2025; accepted 13 July 2025

, Vol. 1, No. 1, Article . Publication date: September 2025.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Concurrent Models of Computation
	2.2 Quasi-Static Scheduling for Concurrent MoCs

	3 Running Example
	4 Quasi-Static Scheduling based on SSFA
	4.1 Directed Acyclic Graphs (DAGs)
	4.2 State Space Finite Automata (SSFA)
	4.3 Mapping High-Level MoCs to SSFA
	4.4 Scheduling SSFA by Graph Partitioning
	4.5 Formal Properties

	5 Applying blackMethodology to the Reactor Model
	5.1 Generating SSFA from Reactors and Scheduling
	5.2 Compiling Scheduled SSFA to Executable Schedules

	6 Evaluation
	6.1 Performance
	6.2 Case Study: Satellite Attitude Control System

	7 Conclusion
	References

