
Count2Multiply: Reliable In-Memory High-Radix
Counting

João Paulo C. de Lima†§, Ben Morris III∗, Asif Ali Khan†, Jeronimo Castrillon†§, Alex K. Jones‡
TU Dresden†, ScaDS.AI§, Duke University∗, Syracuse University‡

joao.lima@tu-dresden.de, ben.morris@duke.edu, asif ali.khan@tu-dresden.de, jeronimo.castrillon@tu-dresden.de, akj@syr.edu

Abstract—Computing-in-memory (CIM) has been demonstrated
across various memory technologies, from memristive crossbars
for analog dot-products to large-scale digital bitwise opera-
tions in commodity DRAM and other non-volatile memory
technologies. However, current CIM solutions face challenges
related to latency and reliability. CIM fidelity lags considerably
behind standard memory access fidelity. Furthermore, bulk-
bitwise CIM, though highly parallel, requires long latency for
multiplication and addition due to bit-serial execution. This
paper presents Count2Multiply, a digital CIM framework that
performs multiplication, addition, and other operations using
high-radix, massively parallel counting enabled by bulk-bitwise in-
memory operations. Designed to meet fault tolerance requirements,
Count2Multiply integrates traditional row-wise error correction
codes, such as Hamming and BCH, to address the high error
rates in existing CIM designs. We demonstrate Count2Multiply
in commodity DRAMs, achieving on average 1.5× speedup, 4.6×
higher energy efficiency (GOPS/Watt), and 4.4× better area
efficiency (GOPS/mm2) over NVIDIA A100; and 9.7×, 8.1×, and
12.9× improvements, respectively, over SIMDRAM.

I. INTRODUCTION

Multiply-accumulate (MAC) is a fundamental computational
primitive in many data-intensive application domains, including
high-performance computing, machine learning, and bioinfor-
matics. GPUs, TPUs, FPGAs, and other accelerators address
these applications’ needs with parallel execution units and/or in-
tegrated specialized MAC units. Despite delivering PetaFLOPs-
scale performance, these architectures have substantial energy
requirements and remain memory-bound due to their compute-
centric nature [1]. Consequently, there is a growing trend
towards compute-in-memory (CIM) solutions [2]–[4]. CIM has
gained particular attention because emerging workloads often
require only low-precision integer-integer (≤ 8 bits) operations
for sufficient accuracy [5]–[9].

CIM solutions fully exploit the internal bandwidth and paral-
lelism offered by memory arrays. These solutions are generally
divided into two types. Analog CIM exploits current- or charge-
sharing within memory arrays to compute the weighted sum
between an input voltage vector and a column of memory
cells. This enables vector-matrix multiplication in constant
time [10]. However, it is mainly suitable for applications that
can tolerate some loss in accuracy. Conversely, digital CIM,
the focus of this paper, performs computations with greater
precision, making it useful for a wider range of applications.
In digital CIM, bulk-bitwise operations are commonly used
across various memory technologies such as DRAM, SRAM,

and emerging non-volatile memories (NVMs). These operations
enable efficient execution of basic logic gates like AND, OR,
and NOT, and serve as building blocks for more complex
functions such as addition and multiplication. Early proposals
for bulk-bitwise logic emerged about a decade ago [11]–[13].
However, it is only in recent years that experimental studies
have shown real CIM capabilities in DRAM [14]–[16] and
emerging NVMs [17]–[20]. Nonetheless, two fundamental
challenges continue to hinder CIM adoption:
Challenge 1. Bulk-bitwise operations are carried out in a bit-
serial, word-/row-parallel fashion. This offers higher throughput
compared to traditional CPU and GPU systems [21], [22] and
also significantly reduces energy consumption. However, the
per-operation latency increases. Even with massive SIMD-
style parallelism, the control flow of bit-serial operations relies
on sequential ripple propagation, as in ripple-carry adders
and multipliers [21]–[23]. For instance, in Ambit [24], each
operation takes 49 ns compared to <1 ns in CMOS. This
generally increases compute latency due to each operation’s
latency and the bit-serial steps in a full MAC operation.
Challenge 2. Fault rates for DRAM-based CIM range from
10−1 (experimental demonstration) [15] to 10−6 (simula-
tions) [25]. This higher fault rate arises from reduced sense
margin coupled with the impact of process variations [20],
[24]. Existing error correction codes (ECCs) efficiently protect
memory accesses but cannot be directly used for CIM, as they
are not homomorphic over most Boolean operations. Hence,
ECCs for CIM operations remain unsolved.

We make three observations to address these challenges:
Observation 1. Given that the number of CIM operations for
bit-serial arithmetic depends on the precision of the operands,
tuning each MAC operation to the bit-width of each data
element reduces the latency of CIM arithmetic.
Observation 2. Given that the latency of bit-serial arithmetic is
based on the number of carry operations, using larger radices
to reduce the number of carry propagation can reduce the
latency of CIM arithmetic.
Observation 3. For any Boolean operation, there exists a
sequence of additional operations that results in X(N)OR. As
traditional memory ECCs are homomorphic over X(N)OR, these
sequences can be checked via traditional syndrome checks.

Drawing from these observations, we introduce
Count2Multiply, a digital CIM framework for integer-
vector/matrix (X) and binary-matrix (Z) computations.

ba

M=1 X

XM×K

Y

YM×N =

Z

ZK×N

K

K

N

.
.
.y'

+=
 x 1.z

1
y'

+=
 x K-1

.z K-1
y +

= x K.z
K

xK-1x1 xK y1 y2 yN

z11z12 z1N

zKNzK1zK2...

...

...

...

*

Step 0
• Initializiation

.
.
.

Row buffer (local)

Row0
Row1

Rowi-1

Subarray
...

0

...

...

...
...

...

Counters

mask z1

C-group

D-group
B-group

1 1 1 0 0

Col0 Colj-1

0 0 0 0 0 0

1 1 1 1 1 1

...

...

...
matrix Y

matrix Z

Fig. 1: Count2Multiply overview (a) integer-vector–binary-
matrix multiplication example (b) DRAM subarray with
counters and masks mapping, and Ambit’s rows groups, i.e.,
computing (B-group), control (C-group) and data (D-group).

As shown in Fig. 1a, Count2Multiply departs from prior
approaches [21], [26] that store both tensor operands in
memory. Instead, it stores Z in the memory array, where it
serves as counting masks. The elements of the integer-vector
X, Xi, are converted into memory commands and broadcast
by the memory controller to update the high-radix counters
organized column-wise in the memory array. Each column
counter increments by Xi only if the bit from Z (e.g., Zi,j) is
‘1’. Count2Multiply naturally extends to perform integer-vector
integer-matrix multiplication by applying bit slicing to Z.

Count2Multiply leverages Observation 1 by tuning the num-
ber of CIM commands to the value Xi: no commands are
issued for zero-valued digits in Xi, enabling efficient handling
of sparse and narrow-width operands [27]–[32]. It also takes
advantage of Observation 2 by using high-radix counters to
minimize the number of carry operations required. When
combined with an early termination of carry propagation,
these optimizations significantly reduce the number of CIM
operations and lead to substantial improvements in latency and
energy compared to existing CIM addition methods.

Count2Multiply also considers reliability as a first-class
optimization metric. We revisit classic circuit concepts to
implement counters with Johnson encoding, which also offer
advantages in minimizing transition errors [33], [34]. Using
Observation 3, we propose a set of CIM operations that
increment Johnson counters and show how they can still protect
against CIM faults—even if they occur during protection. Most
current CIM designs lack built-in fault tolerance, relying mainly
on replication and voting schemes [16], [35]. Count2Multiply
reintroduces fault-tolerance with traditional ECCs to improve
performance, storage overhead and fault tolerance over triple
modular redundancy (TMR).

Building on Ambit [24], Count2Multiply implements fun-
damental tensor operations such as GEMV, GEMM, shift-left,
ReLU, and addition. Our concrete contributions are as follows:

• We propose a novel high-radix in-memory counting
methodology with optimizations that significantly enhance
the performance of accumulation in DRAM (Sec. V).

• We illustrate how our in-memory counting mechanism
can be used to execute massively parallel integer-vector
binary-matrix multiplication and also extend it to integer
matrix-matrix multiplications through bit-slicing, addition,

Rank 2

Step 0
• Initializiation

M
e
m
o
r
y

C
o
n
t
r
o
l
l
e
r Bank 1

D
R
A
M

C
h
i
p

DRAM Channel

Rank 1

Bank N

..
.

.
.
.

.
.
.

.
.
.

Chip I/O

SubarrayK

Sense
amplifier

row

column

Row buffer (local)

b
i
t
l
i
n
e

wordline

DRAM cell
access

transistor

capacitor

Chip

Chip

Chip

Chip

Ro
w
de
co
de
r

Ro
w
de
co
de
rSubarray1

Subarray2
.
.
.

.
.
.

(a) DRAM organization

Bitline

½VDD

½V DD

A
0

0 0 1

0

0

0

0

0

0

1

1

1

B

C

½VDD+δ

Bitline

½V DD

Bitline

V DD

Bitline

d-wordline

n-wordline

Dual-contact cell (DCC)
1

2

B
i
t
l
i
n
e

Sense
Amplifier
Enable

A

B

C

A

B

C

Initial
state

Charge
sharing

Sense
amplification

(b) Ambit’s triple-row activation for AND/OR and DCC for NOT
Fig. 2: Overview of DRAM and Ambit scheme for CIM.

and other operations (Sec. VI).
• We demonstrate how traditional row-level ECC can be

leveraged to protect CIM operations in Count2Multiply,
while still protecting row-level accesses (Sec. VII).

• We evaluate Count2Multiply on multiple applications from
the bioinformatics and machine learning domains and
compare performance to state-of-the-art in-DRAM designs
and high-end GPUs (Sec. VIII).

Count2Multiply requires no hardware modifications, and com-
pared to prior in-DRAM designs [21], it achieves up to 9.7×
improvement in execution time, while delivering an average
8.1× higher GOPS/Watt and 12.9× higher GOPS/area.

II. BACKGROUND AND RELATED WORK

A. DRAM Organization and Operation

Fig. 2a illustrates the hierarchical organization of a modern
DRAM system. A CPU manages memory through multiple
memory controllers (one per channel), each handling memory
read, write, and refresh operations. Each channel connects to
one or more DRAM modules, which contain ranks composed
of multiple DRAM chips working in lockstep. A DRAM chip
contains multiple banks that share an internal bus, connecting
them to the chip’s I/O circuitry. Each bank consists of several
subarrays (e.g., 16-32), where each subarray consists of a
two-dimensional grid of DRAM cells–the fundamental storage
elements–each consisting a capacitor and an access transistor.
These cells are organized into rows and columns and are
supported by dedicated peripheral circuitry, including row
decoders, sense amplifiers (SAs) also called row buffer, and
local wordline drivers, for data manipulation. Within a subarray,
each row is connected to a wordline, which is activated by the
row decoder to enable read or write operations.

Accessing a DRAM row is a three-step process. First, the row
is activated (ACT), bringing cell data to the row buffer. Second,

the read/write (RD/WR) operation transfers the data from/to the
row buffer to/from the bus. Third, the row is precharged (PRE),
restoring bitlines to a stable state for the next operation. The
memory controller (MC) schedules commands regulated by a
set of timing parameters that ensure sufficient delays between
commands to correctly retrieve and retain data in DRAM cells.
For example, tRAS (Row Active Time) defines the minimum
time a row must remain active before it can be precharged,
ensuring data is fully accessible.

B. Compute-In-DRAM

Previous research has shown that certain functions can be per-
formed directly in memory by carefully modifying the standard
sequence of DRAM operations [14], [24], [36]. For instance,
RowClone (RC) [36] copies src row to dst row within the
same subarray using back-to-back ACT commands followed by
a PRE command, known as activate-activate-precharge (AAP).
The AAP sequence operates by first activating the src row
to drive its contents onto the bitlines. Activating the dst row
then transfers these values to overdrive its capacitors [36].
Finally, a precharge command resets the subarray for the
next operation. In addition to RC, DRAM implements logic
operations using multirow activation (MRA), wherein multiple
rows in a subarray are activated simultaneously, followed by a
PRE command, known as activate-precharge (AP). In-DRAM
CIM designs achieve simultaneous MRA either through a
custom row decoder [21], [24] or by violating memory timings
to issue consecutive ACT commands [14], [15], [25].

As an example, consider the Ambit [24] approach in Fig. 2b
that uses triple-row activation (TRA, ❶) to perform a bitwise
majority (MAJ3) function. The state of the bitline reflects the
majority state of the three activated cells. Initially, the bitline
is precharged to a known voltage level (12VDD). During a TRA,
the charge stored in the capacitors (i.e., 0, 1, 1) is shared
onto the bitline, causing the bitline voltage to deviate (12VDD
+δ). Next, during the sense amplification, the cross-coupled
inverters detect the small voltage difference and amplify it,
pulling the bitline high (VDD). As a result, all involved cells
are overwritten with a logical ‘1’.

For functional completeness, Ambit uses dual-contact cells
(DCCs) to implement NOT, connecting a capacitor to either
the bitline or bitline via two wordlines (d- and n-wordlines)
(❷ in Fig. 2b). The MC uses reserved row addresses to access
these wordlines. To compute NOT A → R, it issues: ACT A,
ACT DCC’s n-wordline, PRE, then copies from the d-wordline
to row R. To simplify row decoding, Ambit divides the space
of row addresses in each subarray into three groups, as shown
in Fig. 1b: (i) B-group, eight rows for bulk bitwise MAJ3/NOT,
(ii) C-group, two rows storing ‘0’ (C0) and ‘1’ (C1), and (iii)
D-group, the remaining r−10 rows for data storage, where r is
the total row count per subarray. Though the B-group contains
only 8 rows, it is responsible for 16 unique addresses – these
addresses map to different combinations of 1, 2, or 3 rows –
enabling the row activations required for access, copying and
computing MAJ3, respectively.

C. Fault Modes and Fault Tolerance for CIM

Violating DRAM timing parameters facilitates CIM but
increases bit error rate [15], [16], [24], [25]. In simulations,
the interaction between activated rows and bitlines to compute
MAJ works reliably under an idealized scenario, assuming
DRAM cells have rather small variability (<6% in [24]) and
transistors and bitlines operate without deviation. However,
in practical implementations, process variation induces non-
uniform electrical characteristics across cells, resulting in
instability in multi-row activation leading to faults.

Presently, only minimal work beyond TMR exists to protect
against CIM faults but they are for memories other than DRAM.
For instance, for CIM based on Spintronic Racetracks, CIRM-
ECC protects transverse read-based logic operations [37]. For
RRAM, a recent work constructs the parity bits in specialized
peripheral circuitry following each logic level of the CIM
computation but this requires additional area overhead, and
increases critical path latency [38]. In Sec. VII, we propose
a reliability scheme that leverages existing ECC circuitry to
protect memory access and CIM operations in Count2Multiply.

D. Johnson Counters

Johnson counters (JC) [39], also known as twisted ring
counters, are cyclic shift register-based sequential circuits with
single-bit transitions between consecutive states. This intrinsic
feature minimizes transition errors [33], [34]. For example,
a 5-bit JC with the least significant to most significant bits
moving left to right progresses through states as: 10000(1)→
11000(2) ... → 11111(5) → 01111(6) ... → 00001(9)→
00000(0), maintaining the cyclic property where decimal
9 rolls over to 0. This structure allows an n-bit counter to
represent 2n distinct states. A JC counter increment shifts the
register’s content from the least to most significant bit position
(forward shift) while inverting the most significant bit as a
feedback bit to the new least significant bit (inverted feedback).
Decrements follow shifting in the reverse direction.

III. MOTIVATION

Several recent works on low-precision matrix multiplica-
tion have attempted to reduce the cost of MAC by using
bitslicing [23], [35], [40], [41] or using Ternary Weight
Networks (TWNs) [7], [42], [43]. With TWNs, multiplications
are replaced by masked additions for more efficient CIM
implementations [23], [26]. However, CIM arithmetic generally
requires bit-serial addition in the form of ripple-carry adders
(RCAs). To maximize the performance, this approach leverages
element-parallel (e.g., vector-style) computing to add many
values simultaneously [21], [26], [44]. Yet, additions in
this computation style suffer from long carry propagation
chains, even when many smaller values are added to a larger
sum. Worse, managing these long carry chains can be made
entirely unnecessary (Observation 1). Many memory-bound
applications with low arithmetic intensity accumulate narrow-
width values, as demonstrated in Fig. 3. For example, for
the DNA pre-alignment filtering and BERT use-cases (see
Sec. VIII-A), the accumulated values typically fall within a

0 2 4 6 8 10 12 14 16 18
Input value

101

103

105
Fr

eq
ue

nc
y

(a) Short-read input tokens

100 50 0 50 100
Input value

102

103

104

Fr
eq

ue
nc

y

(b) 8-bit input embeddings
Fig. 3: Input distribution in DNA pre-alignment filtering and
BERT language model. Values are small (circa 4–8 bits)

10 6 10 5 10 4 10 3 10 2 10 1

Fault Probability

10 2

10 1

100

101

102

Ro
ot

 M
ea

n
Sq

ua
re

d
Er

ro
r

JC
JC+TMR
JC+ECC

RCA
RCA+TMR
RCA+ECC

(a) Accumulated error of adds

10 6 10 5 10 4 10 3

Fault Probability
0.0

0.2

0.4

0.6

0.8

1.0

Fil
te

rin
g

F1
 S

co
re

JC Based Filter
RCA Based Filter
Unacceptable Score

(b) Fault impact on DNA filtering
Fig. 4: CIM fault rate impact on accuracy

compact 4–8 bit range, as shown in Figs. 3a and 3b, respectively.
For every new addition of these smaller values, RCA-based
accumulation must fully process the carry propagation of larger
values (circa 32 bits) due to a large accumulated total.

The additional CIM operations from carry chain management
not only increase the latency but also substantially impact
reliability, as more faulty CIM operations have the potential
to perturb higher-order bits of the accumulated value. Two
key reasons motivate the use of JC encoding for accumulation:
(i) JCs represent high-radix numbers without requiring carry
propagation (Observation 2), and (ii) the cyclic, self-checkable
nature of the encoding minimizes transition errors and allows
fault detection via invalid states. We compare the fault rate
and impact of accumulated faults for RCA-based and radix-10
JC implementations to implement DNA pre-alignment filtering
in Fig. 4. Comparing Root Mean Squared Error (RMSE) (4a),
RCA shows substantial error with a CIM fault rate of 10−6,
while JC can tolerate fault rates up to 10−5 to achieve the same
error rate. The JC-based implementation sustains high accuracy
at much higher fault rates compared to the RCA-based filter.
This is critical for sensitive applications such as pre-alignment
filtering, where the impact of faults on the application accuracy
is severe. Fig. 4b highlights how the F1 score for RCA-based
filters degrades sharply when CIM faults are introduced.

We also note that redundancy and voting are inherently
inefficient: TMR has a circa 4× overhead in operation count
(three repeated operations and the voting operation) for both
encodings (RCA+TMR and JC+TMR). In addition, TMR has
a higher error rate than single ECC (RCA+ECC and JC+ECC).
This motivates our approach that leverages JC accumulation
and introduces integrated error correction based on traditional
ECCs (Observation 3) rather than replication and voting.

IV. COUNT2MULTIPLY OVERVIEW

The Count2Multiply framework adopts the Ambit architec-
ture as-is, including both the memory subarray and the MC
proposals. It implements counting—a fundamental operation
that is then leveraged to perform in-memory vector addition,

0 1 0 1 …

0 1 1 1 …

0 1 0 1 …

0 1 0 1 …
0 1 0 0 …

Row Buffer

Co
u
nt
er

ma
s
ks

C-counters

MSB

LSB+1

LSB+2

LSB+3

LSB

… Onext

θ0…

…X X X X

…X X X X

…X X X X

X X XX

0 0 0 0

: : : ::…

: : : ::…

: : : ::…

(a) initial

0 1 0 1 …

0 1 0 1 …

0 1 0 1 …

0 1 0 0 …
1 0 0 0 …

Row Buffer

…

…

…X X X X

…X X X X

…X X X X

0 0 1 0

: : : ::…

: : : ::…

0 1 1 1

: : : ::…

(b) all count

0 1 0 1 …

0 1 0 1 …

0 1 0 0 …

0 1 0 0 …
1 0 1 0 …

Row Buffer

…

…

…0 0 1 1

…X X X X

…X X X X

0 0 1 0

: : : ::…

: : : ::…

0 1 0 1

: : : ::…

(c) masked

0 1 0 1 …
: : : : :…
0 1 0 0 …
0 0 1 0 …

0 0 0 0 …

Row Buffer

m

MSB

Le
a
st

 S
ig
ni
fi
ca

nt
 D

ig
i
t

LS
D
+1

LSB+1

LSB

0 0 1 0 … LSB

Onext

MSB

Onext

: : : : :…
…0 0 0 0

…0 0 1 1

…X X X X

…0 0 0 0

Co
u
nt

er

: : : ::…

: : : ::…

(d) multi-digit

Fig. 5: C, 5-bit JCs in memory: (a) before counting; (b) all
counters count; (c) masked counting; (d) multi-digit counting.

vector-matrix and matrix-matrix multiplication, as well as other
tensor operations.

To illustrate in-memory counting, consider the example in
Fig. 5a, where C single-digit JCs are stored in a memory array.
All counters are n-bit and can count from 0 to 2n − 1, i.e.,
radix-2n. In the figure, n = 5 corresponds to a base-10 counter,
from 0 (“00000”) to 9 (“00001”). Our n-bit JC requires n+1
memory rows (one row for overflow, Onext). Bit positions are
annotated on the right, ordered from the most significant bit
(MSB) to the least significant bit (LSB). To increment these
counters by one, each bit is forward shifted one position toward
the MSB. Then, the LSB is updated using an inverted feedback
of the old MSB, i.e., LSB← MSB.

These operations are implemented using CIM primitives as
follows. First, the MSB row is copied into a temporary row
(e.g., θ0) using RC. Next, each bit row, except the MSB, is
shifted one position toward higher significance using successive
RC operations. We call this the forward shift step. Finally,
θ0 is inverted and copied into the LSB row using a NOT
operation (see Sec. II-A). We call this the inverted feedback
step. Incrementing 5-bit JCs (as shown in the Figure) thus
requires four forward shift steps and one inverted feedback step.
The sequence of memory commands used for incrementing
is referred to as a µProgram, as illustrated in its optimized
form in Fig. 6b. For our running example, the result after an
increment by one across C 5-bit JCs are shown in Fig. 5b.

Selectively incrementing counters is supported by predicating
the operations using masks, as illustrated in Fig. 5c and detailed
in Sec. V-A. Similarly, increments by an arbitrary constant
9 ≥ k > 1 can be executed using the same number of memory
commands as a unit increment, as described in Sec. V-D.
For multi-digit counters (2-digit JC in Fig. 5d), each digit
is incremented by its corresponding value in the multi-digit
constant (k1, k0), with overflow from a lower digit propagating
an increment to the next higher digit.

In Count2Multiply, µPrograms are generated at compile
time, incurring no runtime overhead. During execution, the host
CPU reads an increment value, populates the corresponding
µProgram, and broadcasts the associated memory commands
to all memory arrays containing the counters, as demonstrated
in Fig. 10. Section VI builds on this basic in-memory counting
primitive to enable MAC and related operations. The key idea is

to store one operand in memory in a bit-sliced format (used as
masks), broadcast the other operand as memory commands to
all arrays, and accumulate the latter in the counters. This MAC,
realized in broadcast-and-accumulate fashion, enables vector-
matrix multiplication. We improve performance by skipping
zero-valued inputs, reducing the number of counting operations.
Our approach benefits workloads with sparse inputs [45]–[47].
When combined with our early-termination optimization in
Sec. V-D, this results in value-dependent counting latencies,
accelerating execution on inputs with narrow-width or bit-level
sparsity [27]–[32].

In Section VII, we extend µPrograms to enable protection.
Importantly, like the counting logic, this requires no additional
hardware; rather, we rely on the existing ECC modules in
DRAM. We accomplish this by leveraging the data-dependent
nature of faults in Ambit and other types of CIM.

V. IN-MEMORY HIGH-RADIX COUNTERS

High-radix counters are constructed using multi-bit “digits”
based on a specified radix and can consist as many digits as
required to represent the maximum value for a given application.
To implement these counters in memory, we allocate dedicated
memory rows as shown in Fig. 5a, such that all bits of a
counter reside in the same column. For counter digits, we
adopt Johnson encoding (see Sec. II-D) as it requires fewer
operations than an RCA for a single increment and provides
fault-tolerance properties. A natural alternative to JC would
be the trivial binary encoding. However, it inherently supports
only power-of-two radices, reducing it to a special case of
RCA-based accumulation, with the same drawbacks in terms
of carry propagation and fault sensitivity.

A. Single-Digit Masked Unit Increment

Some applications, particularly those involving tensor oper-
ations, require selective increments or masked counting, where
only a subset of counters is updated based on a stored mask m.
This mask is stored in a row within the subarray containing the
counters (highlighted row in Fig. 5c). The masked forward shift
and inverted feedback are implemented using the following
logical expressions:

bi = (bi ∧m) ∨ (bi−1 ∧m), where i ∈ {n, n− 1, . . . , 2}
b1 = (b1 ∧m) ∨ (bn ∧m)

where bi represents the counter bit at index i ∈ {LSB...MSB}.
For every bit position (bi) in the forward shift, the increment

process requires two AND, one OR, and one NOT operation.
The inverted feedback requires an additional NOT operation
to invert the MSB. Fig. 6 shows the Majority-Inverter Graphs
(MIGs) [48] and µProgram for both forward shift and inverted
feedback using Ambit’s [24] primitives. As illustrated, we
construct AND and OR from the MAJ3 function. We first syn-
thesize this expression into a MIG (Fig. 6a), and subsequently
employ MIG-based optimizations, similar to prior works [48],
[49]. This minimizes the number of RCs in both the forward
and backward shifts by scheduling the MAJ3 operations and
allocating the rows in the B-group to maximize data reuse and

Forward shift
MIG-opt

forward shift

Inverted feedback Overflow

MAJ

m bi-1
0

1

MAJ

bi

MAJ

m
bi

bi

MAJ

1 MAJ

m bi0

MAJ

m O00

bi

MAJ

1 MAJ

m bibi-1 0

MAJ

m 0

MAJ

1MAJ Onext

Onext

MSB′ O00

(a) MIG-based circuits

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:

AAP bn, O0
ForwardShift:
 AAP m, B8
 AAP C0, B9
 AAP bi-1, B2
 AP B12
 AAP bi, B2
 AAP B14, B3
 AAP B15, bi
InvertedFeedback:
 AAP b1, B2
 AAP m, B8
 AAP C0, B9
 AAP B14, B3
 AAP O0, B5
 AP B11
 AAP B15, b1

// O0 ← MSB; Setup

// T0 ← m; DCC0 ← m̅;
// T1 ← 0; DCC1 ← 1;
// T2 ← bi-1
// T0,T1 ← T2 & T0
// T2 ← bi
// T3 ← T2 & DCC0
// bi ← T0 | T3

// T2 ← LSB
// T0 ← m; DCC0 ← m̅;
// T1 ← 0; DCC1 ← 1;
// T3 ← T2 & DCC0
// D̅C̅C̅0 ̅← O0
// T0 ← DCC0 & T0
// LSB ← T0 | T3

(b) µProgram for Ambit [24]
Fig. 6: Majority-based in-DRAM operations for counting and
overflow detection.1

reduce the number of row initialize operations, i.e., cloning
constant ‘0’ or ‘1’ control rows for AND or OR to a compute
row.

Fig. 6b presents the optimized sequence of seven AP/AAP
memory commands for each step of the counter increment.
Using AAP operations, the mask row m, constant zero C0, and
the counter bit bi−1 are cloned to three rows in the B-group
(Line 2–4 in Fig. 6b), followed by MAJ3 to implement AND
(Lines 5,7) and OR (Line 8) operations. The NOT operation
is inherently handled by a RC operation with special DCC
rows [24], so obtaining m incurs no additional overhead. This
process repeats for all n bits in the counter (n−1 forward shift
and 1 inverted feedback step), for a total of 7n operations.

B. Overflow Detection in Single-Digit Counters

For single-digit counters (Fig. 5a-5c), when a counter rolls
over (overflows), this information is retained in a dedicated
row (Onext). An overflow is detected when the JC’s MSB
transitions from ‘1’ to ‘0’. In masked counting, each increment
can potentially cause an overflow in one or more of the C
counters. The overflow detection is expressed as: Onext ←
Onext OR θ0 AND MSB′, where MSB′ is the new MSB after
increment (forward shifts and inverted feedback). Calculating
Onext, as illustrated in Fig. 6a, requires a total of six AAP
operations (4 RC and 2 MAJ3 operations).

C. Multi-Digit Increment

For D-digit counters (Fig. 5d), all digits belonging to a
counter are stored in the same column, requiring D · (n+ 1)
rows. Starting from the least significant digit (LSD), the
counter digits are updated sequentially using the single-digit
counting mechanism. After 2n increments (forward shift,
inverted feedback and overflow detection) to the LSD, Onext

is used to increment the LSD+1 and subsequent digits through
Onext rippling. Note, so far we have only discussed single-
digit inputs. However, in practice, inputs can also have multiple
digits, with each digit ranging between 0 and 2n− 1. In such
cases, for counter accumulation, i.e., adding the same multi-
digit input to all multi-digit counters in memory, we align
digits with equal significance and update all digits sequentially

1We modified Ambit’s B-group mapping [24] so address B11 activates T0,
T1, and DCC0. This does not affect prior operations as B11 was unused.

from the LSD, resolving carries as we move to the most
significant digit (MSD). To add an input x to a counter,
the unit increment process must be repeated D +

∑D
i=1 di

times, where di is the value of the i-th digit of x (represented
in base 2n). The summation represents the total number of
unit increments triggered by all digits of the input, while
the outer D term accounts for the unit increments required
for preventing overflow (carry rippling). This sequential digit
increment remains costly, motivating a series of optimizations
in Sec. V-D to reduce the number of CIM operations.
Overflow Detection and Carry Rippling. In multi-digit
counters, an overflow in the current digit triggers an increment
in the next higher digit. A detected overflow in the LSD
generates a carry (Onext) to the next significant digit, i.e.,
LSD → LSD + 1, which potentially ripples through to the
MSD, depending on the counters state. A naı̈ve implementation
of carry rippling would fully resolve detected overflows
in the LSD, propagating carries through all digits before
proceeding to the next increment.2 This approach is inefficient
since an overflow check after every increment is unnecessary,
particularly for unit and small-value increments. To optimize
this critical path operation, we use one dedicated Onext row
per digit to retain the pending overflow until it is unavoidable
to resolve it (see Sec. V-D2).
Decrements. For negative inputs, the counter is decremented
through backward shifts and inverted feed-forward. The un-
derflow detection mechanism is similar to overflow except the
MSB transitions from zero to one and the Onext bit is used to
decrement the next significant digit accordingly. Outstanding
overflows or underflows must be resolved before switching from
increment to decrement and vice versa, or a row representing
a sign-bit of overflow must be allocated, Osign.

D. Optimized Counter Design

Counters with unit increments and digit-wise carry rippling
are more costly than directly implementing ripple-carry addition
(Fig. 8a). In this section we propose scheduling optimizations
to significantly improve all counters’ performance.

1) Variable-Step (k-ary) Increment: This section presents
an optimization that enables increments by k, where 1 ≤
k ≤ 2n− 1, with the same number of memory operations as a
unit increment; increment by one and increment by k have the
same latency. The cyclic property is preserved, meaning the JC
state rolls back to 0 when the sum exceeds the counter capacity
(2n− 1). For instance, a 5-bit JC can transition directly from
10000(1) → 00111(7) and 00111(7) → 11100(3) when
incrementing k = 6. Overflow detection indicates whether an
increment results in an overflow (Sec. V-B).

For any k-ary increment, while the number of fundamental
steps (forward shift and inverted feedback) remain the same
as in unit increment, the shifting patterns are different. Fig. 7
illustrates all patterns for achieving a direct state transition
from any radix-10 JC’s value to its value incremented by k. For

2Digit-wise carry ripple: unit increment to the next higher digit using Onext

as a mask.

LSB+1LSB LSB+2 LSB+3 MSB LSB+1LSB LSB+2 LSB+3 MSB LSB+1LSB LSB+2 LSB+3 MSB

LSB+1LSB LSB+2 LSB+3 MSBLSB+1LSB LSB+2 LSB+3 MSB LSB+1LSB LSB+2 LSB+3 MSB

LSB+1LSB LSB+2 LSB+3 MSB LSB+1LSB LSB+2 LSB+3 MSB LSB+1LSB LSB+2 LSB+3 MSB

+1 +2 +3

+4 +5 +6

+7 +8 +9

Fig. 7: Transition patterns of a 5-bit counter (radix-10) for
incrementing any value between 1 and 9.

2 4 6 8 10 12 14 16 18 20
Radix

250
500
750

1000
1250
1500
1750
2000
2250

AA
P

op
er

at
io

ns

RCA_i16
unit_i16

RCA_i32
unit_i32

RCA_i64
unit_i64

(a) Unit vs. k-ary increment

2 4 6 8 10 12 14 16 18 20
Radix

200

400

600

800

1000

1200
k-ary_i16
IARM

k-ary_i32 k-ary_i64

(b) k-ary only vs. IARM
Fig. 8: Masked addition performance for unit, k-ary, carry
rippling minization (IARM), and ripple-carry adder (RCA)

instance, an increment by +2, equivalent to applying the unit
increment (+1) twice, is simplified into three forward shifts
and two inverted feedback steps. The same principle applies
to all patterns in Fig. 7. These transition patterns correspond
to k distinct µPrograms, yet all require the same number of
CIM (i.e., AAP) commands.

Algo. 1 generalizes the transition pattern generation, illus-
trating how each counter bit is updated depending on the
value of k with respect to n. The bit manipulation depends on
whether the increment amount is less than or greater than n.
If less than or equal to n, Lines 2-7 conditionally update the
counter state using a mask m and calculate the digit overflow
accordingly. This process is illustrated by the increments from
1 to 5 in Fig. 7. Line 3 corresponds to the upper arrows,
while Line 5 represents the lower arrows with a NOT operation.
Similarly, for increments from 6 to 9, Line 12 corresponds
to the upper arrows, and Line 10 represents the arrows with
a NOT operation. With k-ary transitions, counting requires
2 · (7n+7) operations per input digit, as each k-ary increment
may propagate a carry, leading to an additional carry rippling
command sequence. This occurs because k-ary transitions do
not take a carry input, making carry propagation a separate
operation. Next, we present a method to minimize the cost of
this cascading effect in counters.

Fig. 8a compares the average number of AAP operations
required for different bases when accumulating (uniform distri-
bution) of 8-bit inputs on counters with capacities equivalent
to 16, 32, and 64-bit ints.3 k-ary counting provides a 2–6×
reduction in CIM operations over unary counting for varying-
radix counters.

2) Input-Aware Rippling Minimization: Optimizing the k-
ary increments within a digit boosts performance, but the

3A D-digit counter with n bits per digit has a capacity of (2n)D . Counters
are sized to meet or exceed the capacity of binary integers by adding digits.

Algorithm 1: Variable-step increment for n-bit JC
Input: Johnson counter C ← [b0, . . . , bn−1], mask m, increment amount k

1 if k ≤ n then
2 for i ← n − 1 downto k do
3 b′i ← (m ∧ bi) ∨ (m ∧ bi−k); // Forward Shift
4 for i ← 0 upto k − 1 do
5 b′i ← (m ∧ bi) ∨ (m ∧ bn−k+i); // Inverted Feedback

6 O′next ← Onext ∨ (bn−1 ∧ b′
n−1

); // Overflow Checking

7 else
8 k← k−n;
9 for i ← n − 1 downto k do

10 b′i ← (m ∧ bi) ∨ (m ∧ bi−k); // Inverted Feedback
11 for i ← 0 upto k − 1 do
12 b′i ← (m ∧ bi) ∨ (m ∧ bn−k+i); // Forward Shift

13 O′next ← Onext ∨ (bn−1 ∨ b′
n−1

) ∧m; // Overflow Checking

MSD

LSD

digit-wise carry rippling pending overflow

I
n
i
t
i
a
l

s
t
a
t
e

0

9

9

9
18

1#

0

9

9

7

10

0

9

9

18

18

1

0

9

9

9

9

2 3 11

+ 9

0

9

9

19

17

10 12

repeat +9
8 times

...
+ 9 + 9 + 9 + 9

13

0

9
10

16

10

0

9

9

17

19

Fig. 9: Increments with delayed overflow resolution.

full carry propagation between digits remains a performance
bottleneck. This section introduces Input-Aware Rippling
Minimization (IARM), a run-time mechanism that postpones
carry propagation to higher-order digits. Recall, each digit is
augmented with an additional flag bit, Onext. Because this
signals when there is a carry to propagate to the next digit, it
increases the effective range of a digit from 2n− 1 to 4n− 1
unique values. Thus, even when a value exceeds 2n− 1, we
do not trigger carry handling and delay it until a subsequent
increment causes the counter to exceed 4n− 1. Furthermore,
when a carry operation is performed, the digits may only store
up to 2n−1. Meaning, a minimum of 2n+1 further increment
is required before it is possible to exceed the 4n − 1 total
capacity.

Based on this observation, IARM selectively triggers carry
rippling based on increment history. Because IARM is oblivious
of the masks stored in memory, it must presume each increment
is applied to some counter. In other words, IARM must
consider the worst-case increment behavior across all counters
to maintain computational correctness. IARM implements a
virtual counter, which increments all input values, to track the
worst-case state of any counter. This virtual counter controls
how long carry rippling can be delayed and issues commands
just before one of its digit exceeds 4n− 1.

In Fig. 9 we explain an example of how IARM avoids
overflow ripple operations where the counter has already been
initialized to 9999. Presuming a radix-10 (n = 5) system
with ≥ 5 digit counters, with traditional rippling, even an
increment of 1 would cause a ripple effect from the lowest
digit to the fifth digit. The baseline approach must presume
this type of ripple is possible in some counter at any time
requiring ripple propagation in all digits for every increment.
In contrast, consider a worst-case series of increments (by 9
for radix-10) in IARM. Digits represented as 1# indicate digits
storing values between 2n and 4n− 1 or between 10 and 19
for n = 5. In step 1 no carry resolution is necessary because
the lowest digit stores 18 and the entire counter is 99918. A

second increment by 9 to step 2 does cause a ripple increment
to the next digit, but then stops there resulting in 99107. If we
continue to add values of 9, we will eventually get to 991719
in step 10 , 991818 in step 11 and 991917 in step 12 prior to
rippling beyond the tens digit in step 13 to 9101016. In our
target applications, the increment’s digit range tends to be
much smaller than the counters’ range, thus benefiting from
IARM and reducing rippling.

Fig. 8b demonstrates the performance improvements from
IARM over k-ary increment (without early termination). As
our mechanism is solely input-dependent (determined by the
number of non-zero digits in one operand), varying counter
capacity does not affect its operation count, as reflected by
the single IARM curve, invariant of counter capacity. IARM
provides the fewest operation implementation over all other
approaches, particularly for radices 4–8. 4

VI. COUNT2MULTIPLY IMPLEMENTATION

A. Execution Model and System Integration

Recall the Matrix-vector multiplication example from Fig. 1.
Count2Multiply employs a broadcast and accumulate execution
model, where a host-side program converts an input stream
into AAP/AP command sequences representing increments, as
illustrated in Fig. 10 and formalized in Algo. 2. To generate
these memory commands, i.e., ❶..❸ in Fig. 10, the host-side
program first reads elements of X from the memory (Lines 3–
7). After converting Xi from binary to the counter radix (Lines
8–12), ❷ an AAP/AP sequence for each digit of Xi—based
on the appropriate µProgram (Line 18; Fig. 6b)—is selected
from preconstructed assembly macros. The optimized CIM
sequence is generated offline using Majority synthesis [48].
Next ❸, this µProgram is issued by the MC to one or many
memory subarrays for parallel operation. An example of this
process from Fig. 6b: ❶ “0b00101101” is read from memory
and unpacked into the digits “45” (radix-10). ❷ For each digit,
we use a k-ary increment µProgram with the row addresses
(counter) of the corresponding digit position—adding “5” to
the ten’s place and “4” to the hundred’s place. Essentially, the
input digit value determines the composition of forward shifts
and inverted feedback (Sec. V-D1) as well as the row addresses
for the corresponding counter-digit.

❸ These µPrograms are then converted into a memory
command sequence (i.e., ACT/PRE), which the MC broadcasts
to the memory chips. This enables selective incrementing of
memory columns at destination addresses (Y values stored
as counters in memory) based on bit masks (Z). In doing
so, Count2Multiply updates only the necessary digits of Y
to maintain computational accuracy, ultimately implementing
the early termination of carry propagation among digits,
consequently avoiding useless operations on high-order digits.
IARM Integration. The IARM mechanism (Sec. V-D2) is
also implemented on the host side. Each Xi value is first
accumulated in a software-emulated virtual counter before

4Note that radix-4 incurs no storage overhead over binary; the Onext signals
are only relevant during counting and otherwise have no effect.

Memory Controller

host CPU

Commands
- PRE, ACT
- RD, WR

Input Stream
 Matrix X

unpack digits

for each element of

non-zero digits only

DRAM module
1

2

3

X
Chip

on-die ECC

Chip
on-die ECC

Chip
on-die ECC

Chip
on-die ECC

MIG-opt μProgram
assembly macro

Count2Multiply
 SW routine

MAJ

AAP m, B8
AAP C0, B9
AAP bi-1, B2
AP B12
//adjust addresses bi-1, bi and m
//extra insts for error correction (opt)

0 0 4 5

xi ← 0b 0000 0000 0010 1101

*parity checking in DRAM

mbi

Fig. 10: CPU - DRAM system and µProgram generation.

broadcasting the k-ary increments to memory, as illustrated in
Algo. 2. If the next increment command could possibly cause a
double overflow in any of the counters, an overflow instruction
is prepended to the guilty increment command (Lines 21–22).
The guilty increment command proceeds only after the current
overflow bit has been cleared, preventing double overflow and
ensuring correctness. Because the IARM mechanism runs on
the host side (during conversion of input to commands), it
is transparent to the CIM side, which only see a stream of
deterministic instructions from the host.
System Integration. Fig. 10 illustrates a system where the
CPU executes Count2Multiply’s routine, unpacking inputs
and populating µPrograms with designated rows to trigger
counting directly in memory. However, Count2Multiply is also
compatible with non-CPU-based systems. For example, in
FCDRAM [15], an FPGA can serve as the MC, orchestrating
µProgram execution. Alternatively, a specialized control unit
integrated into the MC, like in SIMDRAM [21], is also suitable
for implementing the masked matrix accumulation program,
thus independently populating µPrograms for DRAM execution.
The overhead of dynamically building µPrograms is negligible:
(i) it involves only a few arithmetic instructions per input X
(shown in Algo. 2), and (ii) the AAP/AP processing rate of the
DRAM module is generally much lower than the µPrograms
generation on the host side, even when considering a single-
core processor (see Tab. II). Note that a conversion step from
Johnson to binary encoding is unnecessary when the matrix
multiplication is followed by a ReLU, and the output is directly
reused as input to the next matrix multiplication (Algo. 2,
Line 4). Moreover, for integration with accelerator designs
based on LUT-based operators (e.g., softmax [50]), the Johnson
encoding can be seamlessly incorporated into LUTs, thereby
avoiding explicit format conversion. A detailed exploration of
this integration is left to future work.

B. Kernels Accelerated by Count2Multiply

Integer-Vector Binary-Matrix Operations: Since counters
increment a single input at a time, vector-matrix multiplications
is reinterpreted as masked matrix accumulations. In Fig. 1a, we
illustrate how vector-matrix multiplication Y⃗ = X⃗.Z is formed
by computing Y⃗ =

∑K
i=1 Xi.Z⃗i, wherein elements (Xi) of

the integer-vector X⃗ are accumulated into the vector Y⃗ , as

Algorithm 2: COUNT2MULTIPLY: host-side SW routine.
1 Inputs: tensor X, digit radix r, address of counters JC_addr, address of masks m_addr
2 virtual_counter← INIT(0); //Only one multi-digit counter in the host to accumulate all values of x
3 for all x ∈ X do
4 x ← BINARY2BASE(x, r); //Optional. This is called only if input X is binary encoded
5 for all i = 0 to |x| − 1 do
6 if x[i] ̸= 0 then
7 INCREMENTDIGIT(virtual_counter, x[i], i, r); //It only increments non-zero digits
8 function BINARY2BASE(n, r):
9 digits← empty list;

10 while n > 0 do
11 append (n mod r) to digits; n ←

⌊
n
r

⌋
;

12 return digits;
13 procedure INCREMENTDIGIT(VC, digit_incr, digit_pos, r):
14 incr ← digit_incr; j ← digit_pos;
15 while j < |VC| do
16 sum = VC[j].digit + incr; VC[j].digit ← sum mod r; //Update virtual counter
17 ISSUE CIM(µProgram[incr], JC_addr[j], m_addr); //Populate and issue µProgram
18 if sum ≥ r then
19 if VC[j].Onext then
20 VC[j].Onext ← False;
21 j ← j + 1; incr ← 2; continue; //Increment +2 if it overflows twice
22 VC[j].Onext ← True;
23 break;

predicated by the mask rows (Z⃗i) in Z.5 Here, Y⃗ is stored
in memory as high-radix counters, Z is stored in memory as
binary masks, while X⃗ is an external input processed by the
host CPU and issued by the MC (Sec. VI-A). This approach
draws inspiration from the sum of outer products to ultimately
implement an integer-binary matrix multiplication through
broadcast and accumulation.
Integer-Matrix Binary-Matrix Operations: Vector-matrix
multiplication naturally generalizes to matrix-matrix multi-
plication when M > 1,5 as shown in Fig. 1a. Each row
Y⃗o of the output matrix Y is computed independently as
Y⃗o =

∑K
i=1 Xoi · Z⃗i, for o = 1, . . . ,M , where the matrix

Z is reused. As the rows of Y are computed sequentially,
each computed matrix row can either be moved to a different
subarray or used immediately. Copying the matrix row requires
copying the memory rows dedicated to the high-radix counters
to another subarray. Recall these are memory rows to store the
counters from the D-group in Fig. 1b. These memory rows can
be reused for accumulation of the new matrix row for Y. This
eliminates the need for dedicated counters for a specific row
of Y within a single subarray and avoids the higher cost of
copying the many more rows storing mask data, i.e., matrix Z.
Integer-Integer Matrix Operations: Integer-binary matrix
multiplication can be extended to integer-integer computation
through bit-slicing matrix Z. To support low-precision p-bit
int and uint matrices, each value is decomposed into
canonical signed digit (CSD) form [51], [52], requiring 2(p−1)
or p power-of-two-weighted binary masks, respectively. Each
bit slice, representing a specific power-of-two significance and
sign, maps to a row address in the memory subarray. For
example, converting an INT2 value (p = 2) in CSD form
maps to two bit-sliced rows representing +20 and −20. The
positive row encodes 0,+1, and the negative row 0,−1; when
both are ‘1’, they cancel out to zero. During accumulation,
inputs from X are sequentially incremented for negative rows
or decremented for positive ones. For larger bitwidths, the
accumulation still uses counter array Y but uses power-of-
two-scaled inputs based on the bit slice value. We can think
of each row of Z requiring multiple bitsliced memory rows

5In the general case, matrix X has shape [M × K], Z [K × N], and Y
[M ×N].

(+2p−2, ...,+20 and −20, ...,−2p−2). The host-side routine
scales the inputs based on the bit slice row address that indicates
the power-of-two. The host can also use shifting for scaling as
the bitsliced masks represent only powers-of-two, avoiding the
need for or use of a CPU multiplier to generate µPrograms.
The host-side scaling allows accumulations for different bit
slices to operate directly on a single counter row.
Additional Tensor Style Operations: Counting can also be
leveraged to perform shift-left, ReLU, and vector addition of
counters. For c << i the counter value can be added to itself i
times. ReLU checks whether a counter is non-negative which
is possible by checking Osign. Adding two vectors of counters
(C1 and C2) is done with both counters in memory. This
approach involves using one of the n-bit counters (e.g., C1) as
masks for unit incrementing a second counter (C2) in place,
i.e., C2 ← C1 + C2.

VII. FAULT TOLERANCE

CIM operations that involve multi-row activations are more
prone to faults than standard memory reads (Sec. II-C). Our
goal is to detect these faults using the same ECC hardware
already present in DRAM, rather than adding custom logic.
To do this, we express each CIM operation in a form that is
homomorphic with respect to ECC parity generation.

A. System Overview

We consider an on-die ECC setup, wherein each DRAM
die locally contains both parity bits and checking hardware.
The only constraint is that the on-die setup must be able to
communicate detection of errors to the memory controller. Prior
works [53] propose exactly this in order to improve the overall
system reliability. For example, XED [53] utilizes a unique
“catch word” to communicate detected errors, but a single-bit
signal can also be used. In our case, detected errors are sent to
the memory controller and host so that CIM instruction flow
can be reset to the most recent safe checkpoint. For our CIM
fault protection scheme to be useful two conditions must be
satisfied: 1) the on-die ECC must be triggered when a fault
occurs during the computation of a result, 2) the on-die ECC
must not be triggered when a fault does not occur during
the computation of a result. In the next section, we go on to
show how the property of homomorphism satisfies the latter
condition and how fault propagation satisfies the former.

B. Fault Protection Scheme Setup

Conventional ECCs such as Hamming, BCH, and Reed-
Solomon codes are homomorphic over XOR, i.e., ECC(a⊕b) =
ECC(a) ⊕ ECC(b), but they are not homomorphic over AND
or OR, e.g., ECC(a ∧ b) ̸= ECC(a) ∧ ECC(b). Therefore, if a
CIM operation performs AND or OR directly, its output cannot
be verified by ECC parity bits. To overcome this, we embed
each CIM operation in XOR so that the final result can still
be validated through ECC. The synthesis of an XOR function
using AND, OR, and NOT gates is a two-step process, as shown
in Fig 11a. The target operation to be protected–either OR
or AND–produces IR1 or IR2, respectively. By additionally

AND

IR1 IR2

OR AND

FR

a ab b

(a) XOR synthesis

a b IR1IR2 FR XOR

0 0 0 0 0 0
0 1 1 0 1 1
1 0 1 0 1 1
1 1 1 1 0 0
0 0 1∗ 0 1 0
1 1 0∗ 0 0 0
0 1 0∗ 1∗ 0 1
0 1 0∗ 1∗ 1∗ 1

(b) Fault examples

Fig. 11: Fault detection in OR/AND via XOR-based parity check.

computing the complementary IR and combining both IRs
to generate the final XOR result, i.e., FR = IR1 ∧ IR2, we
perform ECC checks on FR to detect faults that may have
occurred when computing IR1, IR2, and/or FR itself.

Two key properties emerge from these operations: (i) most
faults from an intermediate gate flip FR, invalidating the
parity bits for FR (Fig. 11b); and (ii) faults that remain
undetectable occur only for rare, data-dependent patterns
with rates comparable to standard DRAM accesses–which
we hereafter refer to as unlikely. The latter comes from the
following observations: for the inputs (0,0,0) and (1,1,1),
MAJ3 is reliable, since all cells pull the bitline uniformly,
enabling safe sensing [16]. Recall, AND(a, b) = MAJ(a, b, 0)
and OR(a, b) = MAJ(a, b, 1). Similarly, the NOT operation is
functionally equivalent to RC, which is known to be unlikely
to fault [15]. Even for a more fault-prone NOT implementation,
we can express NOT as XOR with ‘1’, so it can also be directly
protected by ECC. We leverage this data-dependent fault pattern
to ensure fault protection against all likely CIM faults.

By exhaustively analyzing all possible inputs and combina-
tions of likely and unlikely faults, we observe three possible
fault modes: ① a single fault could occur in any result (IR1,IR2,
or FR); ② two faults could occur–with both in IR1 and IR2

or with one in an IR and one in FR; ③ a fault occurs in all
three computations. Figure 11b illustrates selected examples
of each case through a single-bit comparison between FR and
the expected XOR result, with faults marked in red∗. The two
possible outcomes of case ① are shown in the fifth and sixth
rows of Fig. 11b. A fault occurs flipping IR1 to ‘1’. The fault
propagates to FR and is detected by parity check (i.e., FR ̸=
XOR). However, if a single unlikely fault occurs, our scheme
cannot detect it as illustrated in the sixth row (fault in IR1

but FR = XOR) making it a silent error. In case ②, shown
in the seventh row of Fig. 11b, a fault occurs in both IR1

and IR2. Because neither of these faults were unlikely, the
fault is propagated to FR and ̸= XOR, making it detected. In
case ③, the scheme will not protect against faults in all three
operations, shown in the eighth row of Fig. 11b. The only
likely undetectable faults occur with one or both IRs being
faulty and faulty computing of FR. Recomputing FR correctly
reveals the fault.

C. Fault Tolerant In-Memory Counting

In our k-ary counting method, we compute each new row
by combining two rows (bi and bi−k) masked with m and

1//Protected masking
2AND bj,m,ir2 //ir2=bj&m
3OR bj,m,ir1 //ir1=bj|m
4AND ir1,!ir2,fr //fr=ir1&!ir2
5RC ir2, t2 //t2=ir2
6AND bi,!m,ir2 //ir2=bi&!m
7OR bi,!m,ir1 //ir1=bi|!m
8AND ir1,!ir2,fr //fr=ir1&!ir2
9//Update row
10OR t2,ir2,bi //bi=tj|ir2

(a) Generic protected forward shift
µProgram

P

m 1 1 1 1 0 0 0 0 0

bj 0 1 1 1 0 1 0 1 0

IR1 1 1 1 1 0 1 0 1 0

IR2 0 1 0 1 0 0 0 0 0

FR 1 0 1 1 0 1 0 1 0

Data Row

➊

➋ ➌

(b) Fault propagation and de-
tection in masking operation

Fig. 12: ECC scheme for in-memory counting.

m (Sec. V-A). Similarly, XOR(a, b) = (a ∧ b) ∨ (a ∧ b).
Both functions share the following characteristics: (i) similar
structure, being an OR of two AND terms, (ii) both represent a
conditional and can be seen as multiplexers, with XOR being a
specific case of 2-to-1 MUX with bi−k = a. This observation
is useful because, in both functions, OR operates solely on
mutually exclusive masked rows. Consequently, only the ANDs
responsible for masking in the k-ary counting must be protected
by embedding the mask in XOR as described in Sec. VII-B.

Fig. 12a details the generic increment µProgram when using
our protection scheme, omitting some RCs for the forward
shift seen in Fig. 6b. In line 2, we compute one of the
masking results to be protected: bj ∧ m. In lines 3 and 4,
the additional operations required to complete the XOR–and
thus protect the FR–are performed. Line 5 copies the masking
result to a temporary destination so that IR1 and IR2 can be
reused in this example. Lines 6–8 compute and protect the
masking operation bi ∧ m. Finally, line 10 updates the row
with our protected results (line 10). The listing demonstrates
the operation overhead to enable traditional ECC checks to
detect errors in CIM results. Specifically, lines 3, 4, 7, 8 are
the overhead required for protection when compared to the
unprotected forward shift program in Fig. 6b.

Fig. 12b shows fault protection for an example row during
in-memory masking. Initially, mask m and JC bit bj rows are
stored with a traditional parity bit, P. A fault occurs during
the masking step which generates IR2. This fault flips the bit
stored in the position highlighted and labeled ➊. For the error
detection scheme we compute IR1 and FR, noting the flip from
➊ propagates to ➋. FR fails the parity check ➌ performed in
ECC hardware. This requires repeating the computation. In
Fig. 12a, this implies that if an ECC check fails after line 4 it
is necessary to restart from line 2.
TABLE I: Fault tolerance varying recompute and fault rate.
FR checks 2 4 6
Fault rate 10−1 10−2 10−4 10−1 10−2 10−4 10−1 10−2 10−4

Error rate 1.4E-3 1.5E-6 1.5E-12 1.4E-5 1.5E-10 1.0E-20 1.4E-7 1.5E-14 1.0E-20
Detect rate 3.1E-1 3.5E-2 3.5E-4 4.4E-1 5.4E-2 5.5E-4 5.5E-1 7.3E-2 7.5E-4

Ambit 13n + 16 23n + 26 33n + 36

D. Optimizations and Extensions

While performing the increment step with inversion bi ∧m,
the protection can be combined with that of bi ∧ m by
using De Morgan’s Laws (they produce valid IR1, IR2 for
XOR synthesis as in Fig. 11a). Because we can protect two

V0 V1 V2 V3 V4 M0 M1 M2 M3 M4
101
103
105

Ex
ec

. T
im

e
(m

s) SIMDRAM:1 SIMDRAM:4 SIMDRAM:16

V0 V1 V2 V3 V4 M0 M1 M2 M3 M4
101
102

Th
ro

ug
hp

ut
 (g

op
s) C2M:1 C2M:4 C2M:16

Fig. 13: Comparison of DRAM designs on ternary
GEMV/GEMM from LLAMA and LLAMA-2 [7], [57], [58]

masking steps through computing XOR when performing
inverted feedback and the inverted feedback step accounts
for half of all increment steps (Fig. 7), the net protection
overhead can be reduced by 25%. Further, in Ambit [24]
the special address groupings can be used to perform the
NOT simultaneously with other operations. However, Ambit
suffers seriously from the requirement that CIM operations be
performed within the limited set of CIM-enabled addresses.
Additionally, DRAM CIM solutions in general [15], [24] are
destructive, requiring operand copying before each operation.
For all schemes, we carefully consider potential optimizations
and challenges in order to make a fair comparison. Tab. I shows
operation counts under different protection levels.

While the single error detection scheme can detect all
possible single CIM faults, this may not suffice for higher
fault rates, i.e., 10−1 – 10−4. Our protection scheme can be
extended to two error detection and beyond. Additionally, the
number of times we repeat the FR is configurable. Since all
cases of likely faults going undetected require one of the faults
to be in the FR (Sec. VII-B), we can simply repeat the FR
computation to improve our fault tolerance. Tab. I compares
protection schemes with varying repeats (FR checks) applied
to different CIM fault rates. The error and detect rates report
the per-bit probability of undetectable and detectable errors
respectively. In our analysis, we assume that the unlikely CIM
faults will exhibit a fault rate similar to that of a typical
memory read operation (conservatively estimated at 10−20 for
DRAM [54]), giving an upper bound on our fault tolerance
level. The error rates bounded by DRAM fault rates in Tab. I
are italicized.
TABLE II: Memory organization and architectural parameters

DRAM

DDR5-4400, 1 channel, 1 rank, 8 devices, on-die ECC;
4Gb DRAM chip, 32 banks, 1 kB row size, 1024 rows per subarray;
Timing (ns): tRC = 46, tRAS = 32, tRP = 14.5, tFAW = 14.5

HBM2e, 16 channels, 8 Gb/channel, 8-Hi TSV stack;
32 banks/channel, 256-bit DQ width, 1 kB row size;

Timing (ns): tRC = 10.8, tRAS = 9.7, tRP = 4, tFAW = 8.6

host CPU in-order RISC-V @1.45 GHz, 64KB D-cache, 16KB I-cache [55], [56]
Memory Controller 8 kB row size, FR-FCFS scheduling

VIII. EXPERIMENTAL SETUP AND RESULTS

To quantitatively evaluate the Count2Multiply approach,
Ambit-style DRAM CIM is simulated by extending
NVMain/RTSim [59], [60] with a cycle-level CIM simulation
model. Our implementation of Ambit and SIMDRAM was
rigorously validated against the results reported in [21], [24] and
by MIMDRAM’s simulator [61]. The architectural parameters
of our memory organization are listed in Tab. II. Our setup
follows commercial DRAM organization and timings.

A. Configurations and Workloads

We consider the following in-DRAM designs and GPUs:

V0 V1 V2 V3 V4 M0 M1 M2 M3 M4
102

103

104

105

Th
ro

ug
hp

ut
 (g

op
s) SIMDRAM:16 C2M:16 GPU

V0 V1 V2 V3 V4 M0 M1 M2 M3 M4
100

101

102

Th
ro

ug
hp

ut
/W

at
t

V0 V1 V2 V3 V4 M0 M1 M2 M3 M4
100

101

102

Th
ro

ug
hp

ut
/m

m
²

Fig. 14: Performance comparison for real ternary GEMM and GEMV [7], [57], [58]. DDR5-based SIMDRAM and C2M.

BERT
LLAMA-3 3B

LLAMA-3 8B DNA filt GCN GIN GSAGE
100

101

Th
ro

ug
hp

ut
/W

at
t

Protected SIMDRAM-HBM C2M-HBM A100

BERT
LLAMA-3 3B

LLAMA-3 8B DNA filt GCN GIN GSAGE
101

102

Th
ro

ug
hp

ut
/m

m
²

Protected SIMDRAM-HBM C2M-HBM A100

BERT
LLAMA-3 3B

LLAMA-3 8B DNA filt GCN GIN GSAGE
101

102

No
rm

. S
pe

ed
up

SIMDRAM-HBM C2M-DDR5 RTX3090 C2M-HBM A100

Fig. 15: Performance comparison of real-world workloads, including the protection scheme overhead.

TABLE III: GEMV and GEMM dimensions from [57], [58]
Model ID M N K ID M N K

LLaMA V0 1 22016 8192 M0 8192 22016 8192
LLaMA V1 1 8192 22016 M1 8192 8192 22016

LLaMA-2 V2 1 8192 8192 M2 8192 8192 8192
LLaMA-2 V3 1 28672 8192 M3 8192 28672 8192
LLaMA-2 V4 1 8192 28672 M4 8192 8192 28672

• SIMDRAM:X RCA-based CIM design [21] using X banks.
• GPU: NVIDIA RTX 3090 Ti and A100. Each data point

averages ten runs with a warm-up phase to avoid cold
cache effects. GPU kernel performance and power reported
with cudaEvents API and nvidia-smi, excluding data
transfer. Die area is 628 mm2 [62] for RTX and 826
mm2 [63] for A100. For a fair comparison, BitBLAS [64]
is employed in GEMV and GEMM implementations.

• C2M:X is DRAM-based Count2Multiply using X banks.
We evaluate Count2Multiply on the following workloads:
• GEMV and GEMM: We adopt the GEMM and GEMV

shapes (M,N,K) from Tab. III, based on [57], [58],
assuming INT8-INT2 data types, where X is integer, Z
is ternary, and Y is (high-radix) integer. These shapes
represent the key computational loads in the models and
serve as performance proxies.

• Transformer inference faces memory-bound challenges
due to its large-scale data requirements. We evaluate all
GEMV/GEMM operations in the attention layer of BERT
and LLama-3 models. INT4 parameters [42] and sparse
activations [45] are considered.

• Pre-alignment filtering is a memory-intensive step in
DNA analysis, where the input genome is compared to
a reference genome stored as bitvectors in memory [65].
Nucleotide repetitions in the reads of input genomes are
represented as integers. For our evaluation, we use a
human genome and a similar setup to prior work [66].

• Graph Neural Networks operate on graph-structured data
(highly sparse) by aggregating and transforming features
from a node’s local neighborhood using the graph’s
connectivity. We evaluate three models (GCN, GIN, and
GraphSAGE) on a node classification task using the
Amazon dataset [67], [68]. All models are quantized to
INT4.

B. Design Space Exploration: LLM Kernels

In this section we evaluate Count2Multiply on tensor
kernels from large language models LLaMA and LLaMA-2
for different metrics.

Impact of DRAM Parallel Execution: Fig. 13 presents a
comparative analysis of the performance, i.e., latency and
throughput, of only in-DRAM implementations with different
subarray CIM parallelism for integer-ternary GEMV and
GEMM workloads described in Tab. III. The evaluation
uses an 8-bit signed integer input and radix-4 counters. All
configurations assume an accumulation capacity of 64-bit
integers to ensure computational precision.

Due to the sequential nature of RCA in SIMDRAM, C2M
consistently outperforms SIMDRAM on all workloads and all
system configurations. On average (geomean), C2M is 2×
faster and delivers 1.15× higher throughput and throughput
per Watt. This finding is in agreement with previous results
obtained for a single addition (Fig. 8) and confirms that C2M
maintains its performance gains in more complex kernels such
as GEMV and GEMM.

We vary the number of banks from 1 to 16. With a single
bank, latency is high, allowing one AAP every tAAP + tRRD.
With 4 banks, commands can overlap across banks, though the
fifth activation must still wait for the first to finish—bounded
by tAAP + tRRD. At 16 banks, latency improves as the fifth
activation is now constrained by tFAW , which is shorter than
tAAP (tRAS + tRP + 4).
Comparison with GPU: Fig. 14 presents throughput and
throughput per Watt and area of SIMDRAM, C2M, and the GPU
(RTX) baseline. As expected, with GPUs and BLAS routines
being particularly designed and hand-optimized for GEMM,
the CIM accelerators exhibit lower throughput than the GPU.
Note that all results for in-DRAM designs use a single rank
with one subarray per bank doing the computations. The results
scale linearly with increasing the number of CIM subarrays
and ranks. Further, we are using conservative estimates with
a tFAW of 14.5 ns. All-bank activation, as suggested in prior
work in the CIM domain [69], leads to superior throughput
compared to powerful GPUs, as discussed in Sec. VIII-C.
Impact of Sparsity on Performance: Count2Multiply skips
zero-value inputs (and zero digits from non-zero-value inputs),
making it an ideal fit for sparse operations, which are common
across various domains, including graph-based workloads,
scientific computing, and deep learning, with sparsity ranging
from 90% to 99.5% [70]–[72].

Fig. 16 compares latency and throughput of the GPU
(RTX), SIMDRAM, and our 16-bank C2M configuration
across varying sparsity levels (0% to 99.9%) for V0 and M0

0 20 40 60 80

Sparsity (%)

10 3

10 2

10 1

100

La
te

n
cy

 (
m

s)

103

104

105

106

T
h
ro

u
g
h
p
u
t

(g
o
p
s)

C2M SIMDRAM GPU

0 20 40 60 80

Sparsity (%)

101

102

103

104

La
te

n
cy

(m
s)

103

104

105

106

T
h
ro

u
g
h
p
u
t

(g
o
p
s)

Fig. 16: Performance using sparse inputs: (left) Vector-Matrix
Multiply (V0), (right) Matrix-Matrix Multiply (M0).

10 6 10 5 10 4 10 3 10 2 10 1

CIM Fault Rate

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re JC

JC+TMR
JC+ECC
RCA
RCA+TMR
RCA+ECC

(a) DNA Filtering

10 6 10 5 10 4 10 3 10 2 10 1

CIM fault rate

40

50

60

70

80
BE

RT
 a

cc
ur

ac
y

(%
)

SW
JC
JC+TMR
JC+ECC
RCA
RCA+TMR
RCA+ECC

(b) BERT
Fig. 17: Accuracy comparison under CIM fault probability.

workloads (Tab. III). C2M outperforms SIMDRAM by orders
of magnitude and matches or exceeds GPU latency beyond
40% sparsity in GEMV and 99.6% in GEMM. It also achieves
higher throughput than the GPU in GEMV even for dense
inputs, and in GEMM beyond 99.1% sparsity, despite the GPU
leveraging optimized tensor cores and cuBLAS.

C. Benchmark Analysis

This section analyses the impact of faults on applications’
accuracy and the impact of fault tolerance on various metrics.
Fault Tolerance Impact on Accuracy: Count2Multiply, re-
quiring significantly fewer CIM operations is less susceptible to
accuracy degradation. Fig. 17 illustrates this in two applications
– DNA filtering and a BERT model – using a generic MAJ-based
RCA as a proxy for MAJ-based addition in CIM designs using
DRAM [20]. As shown, Count2Multiply (JC) consistently
achieves higher accuracy than RCA-based implementations
across all fault probabilities and remains reliable under more
severe fault conditions.

JC with protected schemes (+ECC or +TMR) outperforms
RCA due to its lower fault susceptibility from early carry
termination. The MAJ-based ECC method (Sec. VII) also
applies to RCA designs and renders more reliable results than
using TMR for both applications. Notably, TMR, the fault-
tolerance approach used in SOTA [16], performs worse than
ECC with a single repetition.

In DNA filtering, performance degrades more gradually,
while BERT exhibits a sharp accuracy drop in task classification
on the GLUE dataset [73] due to its many layers and greater
error propagation. For DNA filtering, an F1 score over 0.9
with a fault rate of 10% is remarkable and acceptable for
less sensitive downstream tasks such as phylogenetic analysis
and genome assembly. For the BERT classification task (i.e.,
MNLI) >70% accuracy is considered acceptable [73] and is
easily achieved for fault rates up to 5%.

Fault Tolerance Impact on Performance: Fig. 15 compares
C2M with and without protection with the GPU and SIM-
DRAM. Protection increases latency by increasing operations
for fault detection (7n + 7 → 13n + 16), and by requiring
recomputation upon fault detection (see Tab.I). TMR avoids
recomputation but triplicates and votes over CIM operations
(×4 operations) and suffers from high error rates (Sec. VIII-C).
Bars labeled Protected in Fig.15 reflect the protection overhead
in terms of GOPS/W and GOPS/mm2.

Estimating protection overhead requires the memory’s fault
rate and the number of repetitions to be performed. In Fig. 15,
we consider an inherent fault rate of 10−4 and 1 round of FC
computation (repeats=1). This translates to a detected fault rate
of 3.5 × 10−4 per bit (Tab. I) and 0.16 per 512-bit row. As
shown in Fig. 15, the correction overhead in DRAM designs
is 19.6%. This could be improved if a more fine-grained
CIM control could repeat only columns with potential errors,
decoupling a counter’s need to recompute from its distant
neighbors—similar to differential write for NVMs [74].

Fig. 15 also shows normalized speedup over SIMDRAM-
DDR5. Across all workloads, C2M significantly outperforms
SIMDRAM and both GPUs when implemented in HBM. On
average, C2M-HBM achieves up to 2.0× speedup over A100,
while offering the best energy efficiency, with GOPS/Watt
ranging from 1.7× to 12.5×. On average, C2M delivers a
4.4× higher GOPS/mm2 than A100.

D. Overhead Analysis

Storage Capacity Analysis: While binary (radix-2) encoding
offers optimal storage efficiency, higher-radix counters deliver
better performance with only moderate storage overhead
(Fig. 8). Fig.18a compares the bit requirements for various
counters to meet application-specific capacity needs. Notably,
the absolute bit difference does not prohibit higher-radix use.
For instance, DNA filtering needs a capacity of 100, achievable
with 7 bits in binary or 10 bits in radix-10. BERT’s projection
and attention layers require capacities to accumulate 64 and
792 ternary products, respectively. Our chosen radix-4 counters
offer the same bit-level storage density as binary. Fig. 18b
shows row usage for GEMV in SIMDRAM (binary) versus
C2M (radix-4/6/8). SIMDRAM must co-locate operands and
output within the same subarray, whereas C2M stores only the
mask (one operand) and counter. Despite moderate overhead
from additional rows, higher radix enables denser operand
placement and reduces costly inter-subarray operand transfers,
improving row utilization.
Runtime and Code Footprint: We validate the suitability
of the host CPU to execute the Count2Multiply SW under
worst-case workloads–including JC conversion to non-power-
of-two bases and dense inputs–on gem5. This evaluation
ensures that the speed of µProgram generation is sufficient
to sustain parallel execution of matrix tiles across multiple
memory banks. By interleaving Count2Multiply’s operations,
the host CPU can generate and issue one AAP command
every 8 ns, which is sufficient to fully exploit bank-level
parallelism in Count2Multiply. This throughput is achieved

24 28 212 216 220 224 228 232

Counter Capacity (Range)

0

10

20

30

40

50
Nu

m
be

r o
f B

its
 R

eq
ui

re
d

Binary
Radix 4

Radix 6
Radix 8

Radix 10
DNA Filter

BERT-Proj
BERT-Attn

(a) JC capacity in workloads

2¹ 2³² 2
Counter Capacity

32
64

128

256

512

Nu
m

be
r o

f R
ow

s

Bi
na

ry

Bi
na

ry

Bi
na

ry

Ra
di

x
4

Ra
di

x
4

Ra
di

x
4

Ra
di

x
6

Ra
di

x
6

Ra
di

x
6

Ra
di

x
8

Ra
di

x
8

Ra
di

x
8

Counter
Operands

B-group
Overhead

(b) Array utilization
Fig. 18: JC storage capacity and subarray row usage for
SIMDRAM (binary) and C2M (radix-4/6/8)

because the fixed cost of Algo. 1 for a single input is amortized
over multiple AAP commands for forward shifts. Also, the
code footprint of µPrograms and the Count2Multiply SW is
negligible: each µProgram comprises 20 AAP/AP commands
(42 with protection), each command implemented as a single
instruction, the size of which depends on the host’s ISA. Storing
4 µPrograms (i.e., for radix-4) in the host cache requires at
most 2KB, assuming 64-bit instructions. In total, Algo. 2 code
requires ∼4KB. In terms of energy, the designated CPU’s power
consumption is as low as ∼60mW [55]. This corresponds
to only about 1.2% of the power drawn by a DDR5 module
(∼5W per DIMM under typical workloads), indicating that
the energy overhead of host side is negligible.
Johnson-binary Conversions: As discussed in Sec. VI-A, no
encoding conversion is needed when matrix multiplications are
followed by ReLU or LUT-based operations. When conversion
is necessary, the binary-to-base and vice-versa conversions for
power-of-two radices incur a modest overhead of 30–60 CPU
cycles (i.e., x86) per 8–16-bit integer.

IX. CONCLUSIONS

We present Count2Multiply, a digital-CIM framework for
integer-binary and integer-integer matrix multiplications using
high-radix, parallel counting with bitwise logic operations.
Count2Multiply considers reliability a first-class metric and
presents a fault tolerance method that is compatible with
existing ECCs. Unlike prior in-DRAM designs, Count2Multiply
accelerates sparse matrix operations by skipping zeros, with
substantial improvements over prior DRAM CIM and GPU
baselines while providing dramatic energy improvements and
better performance per chip area.

ACKNOWLEDGMENT

The authors acknowledge the financial support by the Federal
Ministry of Research, Technology and Space of Germany and
by Sächsische Staatsministerium für Wissenschaft, Kultur und
Tourismus in the programme Center of Excellence for AI-
research “Center for Scalable Data Analytics and Artificial
Intelligence Dresden/Leipzig”, project identification number:
ScaDS.AI, and funded by the German Research Council (DFG)
through the HetCIM project (502388442), the CRC/TRR 404-
Active 3D (528378584), and NSF Awards 2534062, 2450596,
2511445, 2328972.

REFERENCES

[1] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, and P. s. Ranganathan,
“Google workloads for consumer devices: Mitigating data movement
bottlenecks,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2018, pp. 316–331.

[2] F. Aguirre, A. Sebastian, M. Le Gallo, W. Song, T. Wang, J. J. Yang,
W. Lu, M.-F. Chang, D. Ielmini, and Y. Yang, “Hardware implementation
of memristor-based artificial neural networks,” Nature Communications,
vol. 15, no. 1, p. 1974, 2024.

[3] H. Ahmed, P. C. Santos, J. P. Lima, R. F. Moura, M. A. Alves, A. C.
Beck, and L. Carro, “A compiler for automatic selection of suitable
processing-in-memory instructions,” in 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 564–569.

[4] H. Farzaneh, J. P. C. de Lima, M. Li, A. A. Khan, X. S. Hu,
and J. Castrillon, “C4cam: A compiler for cam-based in-memory
accelerators,” in Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’24), Volume 3, ser. ASPLOS ’24. New York, NY,
USA: Association for Computing Machinery, May 2024, pp. 164–177.
[Online]. Available: https://arxiv.org/abs/2309.06418

[5] F. Li, B. Liu, X. Wang, B. Zhang, and J. Yan, “Ternary weight networks,”
arXiv preprint arXiv:1605.04711, 2016.

[6] Y. Li, X. Dong, S. Q. Zhang, H. Bai, Y. Chen, and W. Wang,
“Rtn: Reparameterized ternary network,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 04, 2020, pp. 4780–
4787.

[7] S. Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong, R. Wang,
J. Xue, and F. Wei, “The era of 1-bit llms: All large language models
are in 1.58 bits,” arXiv preprint arXiv:2402.17764, 2024.

[8] J. Wang, Y. Wang, Z. Yang, L. Yang, and Y. Guo, “Bi-gcn: Binary graph
convolutional network,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 1561–1570.

[9] J. P. C. de Lima and L. Carro, “Quantization-aware in-situ training for
reliable and accurate edge ai,” in 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2022, pp. 1497–1502.

[10] A. A. Khan, J. P. C. De Lima, H. Farzaneh, and J. Castrillon, “The
landscape of compute-near-memory and compute-in-memory: A research
and commercial overview,” arXiv preprint arXiv:2401.14428, 2024.

[11] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “Magic—memristor-aided logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895–899, 2014.

[12] S. Hamdioui, L. Xie, H. A. Du Nguyen, M. Taouil, K. Bertels, H. Corpo-
raal, H. Jiao, F. Catthoor, D. Wouters, and L. s. Eike, “Memristor based
computation-in-memory architecture for data-intensive applications,” in
2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2015, pp. 1718–1725.

[13] V. Seshadri, K. Hsieh, A. Boroum, D. Lee, M. A. Kozuch, O. Mutlu,
P. B. Gibbons, and T. C. Mowry, “Fast bulk bitwise and and or in dram,”
IEEE Computer Architecture Letters, vol. 14, no. 2, pp. 127–131, 2015.

[14] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “Computedram: In-memory
compute using off-the-shelf drams,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’52. New York, NY, USA: Association for Computing Machinery, 2019,
p. 100–113.

[15] I. E. Yuksel, Y. C. Tugrul, A. Olgun, F. N. Bostancı, A. G. Yağlıkçı,
G. F. Oliveira, H. Luo, J. Gómez-Luna, M. Sadrosadati, and O. Mutlu,
“Functionally-complete boolean logic in real dram chips: Experimental
characterization and analysis,” in 2024 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2024, pp. 280–296.

[16] I. E. Yuksel, Y. C. Tugrul, F. Bostanci, A. G. Yaglikci, A. Olgun, G. F.
Oliveira, M. Soysal, H. Luo, J. G. Luna, and M. s. Sadrosadati, “Pulsar:
Simultaneous many-row activation for reliable and high-performance
computing in off-the-shelf dram chips,” arXiv preprint arXiv:2312.02880,
2023.

[17] Y. Lv, B. R. Zink, R. P. Bloom, H. Cılasun, P. Khanal, S. Resch, Z. Chowd-
hury, A. Habiboglu, W. Wang, and S. S. s. Sapatnekar, “Experimental
demonstration of magnetic tunnel junction-based computational random-
access memory,” npj Unconventional Computing, vol. 1, no. 1, p. 3,
2024.

[18] B. Hoffer, V. Rana, S. Menzel, R. Waser, and S. Kvatinsky, “Experimental
demonstration of memristor-aided logic (magic) using valence change
memory (vcm),” IEEE Transactions on Electron Devices, vol. 67, no. 8,
pp. 3115–3122, 2020.

https://arxiv.org/abs/2309.06418

[19] H. Padberg, A. Regev, G. Piccolboni, A. Bricalli, G. Molas, J. F. Nodin,
and S. Kvatinsky, “Experimental demonstration of non-stateful in-memory
logic with 1t1r oxram valence change mechanism memristors,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 1,
pp. 395–399, 2023.

[20] L. Brackmann, T. Ziegler, D. J. Wouters, and S. Menzel, “Experimental
verification and evaluation of non-stateful logic gates in resistive ram,”
IEEE Transactions on Circuits and Systems I: Regular Papers, 2024.

[21] N. Hajinazar, G. F. Oliveira, S. Gregorio, J. a. D. Ferreira, N. M. Ghiasi,
M. Patel, M. Alser, S. Ghose, J. Gómez-Luna, and O. Mutlu, “Simdram:
a framework for bit-serial simd processing using dram,” in Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
329–345.

[22] G. F. Oliveira, M. Kabra, Y. Guo, K. Chen, A. G. Yağlıkçı, M. Soysal,
M. Sadrosadati, J. O. Bueno, S. Ghose, and J. s. Gómez-Luna, “Pro-
teus: Achieving high-performance processing-using-dram via dynamic
precision bit-serial arithmetic,” arXiv preprint arXiv:2501.17466, 2025.

[23] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, “Dracc: A dram
based accelerator for accurate cnn inference,” in Proceedings of the 55th
annual design automation conference, 2018, pp. 1–6.

[24] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:
In-memory accelerator for bulk bitwise operations using commodity dram
technology,” in 2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2017, pp. 273–287.

[25] X. Xin, Y. Zhang, and J. Yang, “Elp2im: Efficient and low power bitwise
operation processing in dram,” in 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 2020, pp.
303–314.

[26] S. Roy, M. Ali, and A. Raghunathan, “Pim-dram: Accelerating machine
learning workloads using processing in commodity dram,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 11, no. 4,
pp. 701–710, 2021.

[27] M. M. R. Islam and P. Stenström, “Characterization and exploitation of
narrow-width loads: The narrow-width cache approach,” in Proceedings
of the International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES). ACM, 2010, pp. 167–176.

[28] O. Ergin, O. Unsal, X. Vera, and A. Gonzalez, “Exploiting narrow values
for soft error tolerance,” Computer Architecture Letters, vol. 5, pp. 8–8,
2006.

[29] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width
operands to improve processor power and performance,” in Proceedings
of the 5th International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 1999, pp. 13–22.

[30] O. Ergin, D. Balkan, G. Pekhimenko, and K. Ghose, “Register packing:
Exploiting narrow-width operands for reducing register file pressure,” in
Proceedings of the 37th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2004, pp. 304–315.

[31] M. Budiu, M. Sakr, and S. C. Goldstein, “Bitvalue inference: Detecting
and exploiting narrow bitwidth computations,” in Euro-Par 2000 Parallel
Processing, ser. Lecture Notes in Computer Science, vol. 1900. Springer,
2000, pp. 969–979.

[32] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis, “The case for compressed
caching in virtual memory systems,” in Proceedings of the USENIX
Annual Technical Conference (USENIX ATC). USENIX Association,
1999, pp. 93–108.

[33] K. Chakrabarty, B. T. Murray, and V. Iyengar, “Built-in test pattern
generation for high-performance circuits using twisted-ring counters,”
in Proceedings 17th IEEE VLSI Test Symposium (Cat. No. PR00146).
IEEE, 1999, pp. 22–27.

[34] W.-C. Lien, K.-J. Lee, T.-Y. Hsieh, and W.-L. Ang, “An efficient on-chip
test generation scheme based on programmable and multiple twisted-ring
counters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 8, pp. 1254–1264, 2013.

[35] S. Ollivier, S. Longofono, P. Dutta, J. Hu, S. Bhanja, and A. K. Jones,
“CORUSCANT: Fast efficient processing-in-racetrack memories,” in 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO),
October 2022.

[36] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, and M. A. s. Kozuch, “Rowclone:
Fast and energy-efficient in-dram bulk data copy and initialization,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, 2013, pp. 185–197.

[37] P. Brazzle, B. F. M. III, E. McKinney, P. Zhou, J. Hu, A. A. Khan,
and A. K. Jones, “Towards error correction for computing in racetrack
memory,” 2024. [Online]. Available: https://arxiv.org/abs/2407.21661

[38] H. Cılasun, S. Resch, Z. I. Chowdhury, M. Zabihi, Y. Lv, B. Zink, J.-
P. Wang, S. S. Sapatnekar, and U. R. Karpuzcu, “On error correction
for nonvolatile processing-in-memory,” in 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA). IEEE, 2024,
pp. 678–692.

[39] R. R. Johnson, “Electronic counter,” US Patent US3 030 581A, 1958.
[Online]. Available: https://patents.google.com/patent/US3030581A/en

[40] H. You, X. Chen, Y. Zhang, C. Li, S. Li, Z. Liu, Z. Wang, and Y. Lin,
“Shiftaddnet: A hardware-inspired deep network,” Advances in Neural
Information Processing Systems, vol. 33, pp. 2771–2783, 2020.

[41] X. Peng, Y. Wang, and M.-C. Yang, “Chopper: A compiler infrastructure
for programmable bit-serial simd processing using memory in dram,” in
2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2023, pp. 1275–1288.

[42] J. Chee, Y. Cai, V. Kuleshov, and C. M. De Sa, “Quip: 2-bit quanti-
zation of large language models with guarantees,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[43] J. P. C. de Lima, A. A. Khan, L. Carro, and J. Castrillon, “Full-stack
optimization for cam-only dnn inference,” in Proceedings of the 2024
Design, Automation and Test in Europe Conference (DATE), ser. DATE’24.
IEEE, Mar. 2024, pp. 1–6.

[44] O. Leitersdorf, D. Leitersdorf, J. Gal, M. Dahan, R. Ronen, and
S. Kvatinsky, “Aritpim: High-throughput in-memory arithmetic,” IEEE
Transactions on Emerging Topics in Computing, vol. 11, no. 3, pp.
720–735, 2023.

[45] J. Liu, P. Ponnusamy, T. Cai, H. Guo, Y. Kim, and B. Athiwaratkun,
“Training-free activation sparsity in large language models,” arXiv preprint
arXiv:2408.14690, 2024, submitted to ICLR 2025.

[46] H. Wang, S. Ma, R. Wang, and F. Wei, “QSparse: All Large
Language Models can be Fully SparselyActivated,” arXiv preprint
arXiv:2407.10969, 2024, submitted to ICLR 2025.

[47] Y. Gao, Z. Zeng, D. Du, S. Cao, P. Zhou, J. Qi, J. Lai, H. K. So, T. Cao,
F. Yang, and M. Yang, “SeerAttention: Learning Intrinsic Sparse Attention
in Your LLMs,” arXiv preprint arXiv:2410.13276, 2024, version updated
February 2025; submitted to ICLR 2025.

[48] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in Proceedings of the 51st Annual Design Automation Conference, 2014,
pp. 1–6.

[49] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, S.-Y. Lee, A. Tempia Calvino, and G. Marakkalage, Dewmini
Sudara De Micheli, “The EPFL logic synthesis libraries,” Jun. 2022,
arXiv:1805.05121v3.

[50] S. Liu, G. Tao, Y. Zou, D. Chow, Z. Fan, K. Lei, B. Pan, D. Sylvester,
G. Kielian, and M. Saligane, “Consmax: Hardware-friendly alter-
native softmax with learnable parameters, 2024,” URL https://arxiv.
org/abs/2402.10930.

[51] A. Avizienis, “Signed-digit number representations for fast parallel
arithmetic,” IRE Transactions on Electronic Computers, vol. EC-10,
no. 3, pp. 389–400, 1961.

[52] H. L. Garner, “Number systems and arithmetic,” ser. Advances in
Computers, F. L. Alt and M. Rubinoff, Eds. Elsevier, 1966, vol. 6, pp.
131–194.

[53] P. J. Nair, V. Sridharan, and M. K. Qureshi, “Xed: exposing on-die error
detection information for strong memory reliability,” SIGARCH Comput.
Archit. News, vol. 44, no. 3, p. 341–353, Jun. 2016.

[54] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild:
a large-scale field study,” Commun. ACM, vol. 54, no. 2, p. 100–107,
Feb. 2011.

[55] D. Barbier, “Risc-v core ip products: An introduction to sifive risc-v
core ip,” https://cdn2.hubspot.net/hubfs/3020607/SiFive-RISCVCoreIP.
pdf, Sep. 2017, accessed: 2025-10-21.

[56] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. An-
dreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj et al.,
“The gem5 simulator: Version 20.0+,” arXiv preprint arXiv:2007.03152,
2020.

[57] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, and F. s. Azhar, “Llama: Open and
efficient foundation language models,” arXiv preprint arXiv:2302.13971,
2023.

https://arxiv.org/abs/2407.21661
https://patents.google.com/patent/US3030581A/en
https://cdn2.hubspot.net/hubfs/3020607/SiFive-RISCVCoreIP.pdf
https://cdn2.hubspot.net/hubfs/3020607/SiFive-RISCVCoreIP.pdf

[58] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, and S. s. Bhosale, “Llama 2: Open
foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288,
2023.

[59] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly memory
simulator to model (non-)volatile memory systems,” IEEE Computer
Architecture Letters, vol. 14, no. 2, pp. 140–143, July 2015.

[60] A. A. Khan, F. Hameed, R. Bläsing, S. Parkin, and J. Castrillon, “RTSim:
A Cycle-Accurate Simulator for Racetrack Memories,” IEEE Computer
Architecture Letters, vol. 18, no. 1, pp. 43–46, Jan 2019.

[61] G. F. Oliveira, A. Olgun, A. G. Yağlıkçı, F. N. Bostancı, J. Gómez-
Luna, S. Ghose, and O. Mutlu, “Mimdram: An end-to-end processing-
using-dram system for high-throughput, energy-efficient and programmer-
transparent multiple-instruction multiple-data computing,” in 2024 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2024, pp. 186–203.

[62] N. Corporation, “Nvidia geforce rtx 3090 whitepaper,”
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-
architecture-whitepaper-v2.pdf, 2020, accessed: 2024-08-01.

[63] ——, “Nvidia a100 tensor core gpu architecture,” https://resources.nvidia.
com/en-us-tensor-core/nvidia-ampere-architecture-whitepaper, 2020, ac-
cessed: 2025-08-01.

[64] L. Wang, L. Ma, S. Cao, Q. Zhang, J. Xue, Y. Shi, N. Zheng, Z. Miao,
F. Yang, T. Cao, Y. Yang, and M. Yang, “Ladder: Enabling efficient
low-precision deep learning computing through hardware-aware tensor
transformation,” in 18th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 24), 2024.

[65] J. Kim, D. Senol Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan,
O. Ergin, C. Alkan, and O. Mutlu, “GRIM-Filter: Fast Seed Location Fil-
tering in DNA Read Mapping using Processing-in-memory Technologies,”

BMC Genomics, vol. 19, no. 2, 2018.
[66] F. Hameed, A. Khan, and J. Castrillon, “ALPHA: A Novel Algorithm-

Hardware Co-design for Accelerating DNA Seed Location Filtering,”
IEEE Transactions on Emerging Topics in Computing, pp. 1–1, 2021.

[67] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in Proceedings of the ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

[68] J.-A. Chen, H.-H. Sung, X. Shen, S. Choudhury, and A. Li, “Bitgnn:
Unleashing the performance potential of binary graph neural networks
on gpus,” in Proceedings of the 37th International Conference on
Supercomputing, 2023, pp. 264–276.

[69] Y. Paik, C. H. Kim, W. J. Lee, and S. W. Kim, “Achieving the performance
of all-bank in-dram pim with standard memory interface: Memory-
computation decoupling,” IEEE Access, vol. 10, pp. 93 256–93 272, 2022.

[70] J. Gao, W. Ji, F. Chang, S. Han, B. Wei, Z. Liu, and Y. Wang, “A
systematic survey of general sparse matrix-matrix multiplication,” ACM
Computing Surveys, vol. 55, no. 12, pp. 1–36, 2023.

[71] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity
in deep learning: Pruning and growth for efficient inference and training
in neural networks,” Journal of Machine Learning Research, vol. 22, no.
241, pp. 1–124, 2021.

[72] S. Qiu, L. You, and Z. Wang, “Optimizing sparse matrix multiplications
for graph neural networks,” in International Workshop on Languages
and Compilers for Parallel Computing. Springer, 2021, pp. 101–117.

[73] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“Glue: A multi-task benchmark and analysis platform for natural language
understanding,” arXiv preprint arXiv:1804.07461, 2018.

[74] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” SIGARCH
Comput. Archit. News, vol. 37, no. 3, p. 14–23, Jun. 2009.

https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://resources.nvidia.com/en-us-tensor-core/nvidia-ampere-architecture-whitepaper
https://resources.nvidia.com/en-us-tensor-core/nvidia-ampere-architecture-whitepaper

	Introduction
	Background and Related Work
	DRAM Organization and Operation
	Compute-In-DRAM
	Fault Modes and Fault Tolerance for CIM
	Johnson Counters

	Motivation
	Count2Multiply Overview
	In-Memory High-Radix Counters
	Single-Digit Masked Unit Increment
	Overflow Detection in Single-Digit Counters
	Multi-Digit Increment
	Optimized Counter Design
	Variable-Step (k-ary) Increment
	Input-Aware Rippling Minimization

	Count2Multiply Implementation
	Execution Model and System Integration
	Kernels Accelerated by Count2Multiply

	Fault tolerance
	System Overview
	Fault Protection Scheme Setup
	Fault Tolerant In-Memory Counting
	Optimizations and Extensions

	Experimental Setup and Results
	Configurations and Workloads
	Design Space Exploration: LLM Kernels
	Benchmark Analysis
	Overhead Analysis

	Conclusions
	References

