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Abstract

Algorithms for conventional alias analysis compute whether two pointers must
always, may sometimes, or must never point to the same memory location. Prob-
abilistic alias analysis tries to enrich these results with information on how likely
it is for two pointers to alias, which allows for more aggressive optimizations. In
this thesis, we evaluate to what extend graph neural networks can learn to answer
probabilistic alias queries. We make the following contributions: First, we present
a methodology to dynamically collect probabilistic alias information from a dataset
of runnable C programs. We apply our methodology to the Jotai input dataset.
Second, we train multiple graph neural network based models and evaluate their
performance on the created dataset. Our results show, that graph neural networks
can, in general, learn to predict labels of probabilistic alias analysis queries. Fur-
thermore, the trained model based on gated graph neural networks outperforms
both random and the multi layer perceptron baseline on the task of predicting
conventional and probabilistic aliasing queries obtained from the Jotai dataset.
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Chapter 1

Introduction

1.1 Motivation

Modern software development rely on compilers to transform source code from
high-level languages to machine code. Compiler optimizations try to improve
the properties of the generated machine code, such as execution time, memory
footprint, or code size. In order to decide when and where to apply optimizations,
compilers heavily rely on program analysis. Being required by many common
optimizations, there has been a lot of ongoing research on alias analysis during
the last 30 years. While algorithms for [conventional alias analysis (CAA)| try to
determine whether two pointer variables must not, may or must alias,
lalias analysis (PAA)| tries make statements about the statistical probability of
two variables aliasing. This information can be used by speculative optimizations
where [CAA| cannot provide a definitive must or no alias result.

Deep learning has been successfully applied to many tasks in the compiler
domain, such as compiler option tuning|l|, parallelism mapping|2|, speedup pre-
diction, and codesize reduction. [graph neural networks (GNNs) have been shown
to automatically extract relevant features from graph representations of program
source code, such asabstract syntax trees (ASTs)|or |control- and data-flow graphs|

(CDFGs)|2]. It is the goal of this thesis, to study to what extend (GNNs|are capable
of learning [PAA]

1.2 Document structure

This thesis is structured as follows: In chapter [J we give a short introduction into
the field of alias analysis, and provide additional motivation for our research on
[probabilistic alias analysisl Furthermore, we cover the required technical knowl-




edge about the LLVMH compiler toolchain, which we used for the dataset creation.
Chapter [3| contains the necessary background about different machine learning
models, such as [GNNg

In chapter [4] we outline our methodology for creating a ground-truth dataset
for PAA] We start be explaining the quality criteria we imposed on our creation
process, continue by describing our design decisions, and provide an overview over
our implementation at the end of the chapter.

The result of our dataset creation process is a set of programs, associated [PAA]
queries and their ground-truth results. At that point of the thesis, it remains
unclear how to represent the programs and queries in a way that can be processed
by [GNN}based model. We discuss possible approaches to this problem in chapter
and define the architecture of our machine learning model.

In chapter[6] we evaluate the performance of this machine learning model: First,
we apply our dataset creation methodology to the Jotail3]| dataset and evaluate
its quality. Second, we compare two variations of the model to different
baselines and interpret the evaluation outcomes.

Chapter [7|summarizes the results of this thesis and describes possible improve-
ments and open topics.

1.3 Contributions
This thesis makes the following contributions:

e We design a methodology to dynamically collect probabilistic alias informa-
tion from an input dataset of compilable and runnable C programs.

e We apply and evaluate this methodology on the Jotai input dataset.

e We develop [GNN}based machine learning models which are capable of pro-
cessing alias queries. We evaluate these models in comparison to multiple
baselines.

'LLVM is the name of the compiler toolchain we used, and is no longer an acronym



Chapter 2

Alias analysis

2.1 Compiler stages: Front end, middle end and
back end

A lot of programs are written in languages that are not directly executable on
computer hardware. It is the task of a compiler to translate source code from an
input programming language into executable machine code, that can be run on
target hardware. For example, the LLVM compiler framework can produce binary
files that can be executed on the x64 CPU architecture from source code written in
the e.g. C++ programming language. During this process called compilation, the
compiler should produce correct output, in the sense that the generated machine
code behaves exactly as defined in the input source coddl]

For almost every input program, there are (infinitely) many correct output
programs, out of which the compiler has to generate exactly one. Finding a good
machine code for a given target architecture is commonly done by repeatedly
applying optimizations to the input program. Because real-world programming
langauges and the optimizations that are applied to them can be very complex,
compilers are generally divided into multiple stages. We will give an overview of
the three-stage compiler model and focus on the parts that are required as back-
ground for the later chapters. For a more complete introduction into compilers,
we recommend [4].

Compiler front end

In the first stage, the compiler front end converts the input program into a
stream of tokens (lexing). Next, this stream is parsed into an [AST] which is one

IThe intended behavior of a programming language is commonly defined in its language
specification



derivation tree of the grammar of the input language. The [AST]is then type
checked and converted to an [intermediate representation (IR )| of the program.

The [[R] can be seen as an intermediary programming language, that acts as
an in-between layer of the input and target language. It is designed to be at an
abstraction layer that is easy to analyze and optimize. For example, the [R]used by
LLVM compiler toolchain, is in [single static assignment (SSA)|form, where every
variable is assigned exactly once. Furthermore, the individual instructions of the
LLVM [[R] are divided into basic blocks. A basic block is a sequence of instructions
that can only be jumped to at the first instruction (entry node), and only contain
branches or jumps as the last instruction (exit node).

Compiler middle end

In the second stage, the compiler iteratively improves the [[R] of the program.
It does so by repeatedly applying optimizations, that transform parts of the [[R]
Different analysis passes, such as alias analysis, are used to determine where to
optimize, and whether the optimization can be applied without changing the se-
mantics of the input program.

Compiler back end

It is the task of the last stage to convert the[[R]produced by the middle end into
machine code that can be executed a the target architecture. In this process, it has
to assign registers, perform instruction scheduling and target-specific optimizations
according to the specification of the target architecture, emitting an runnable
output program.

Program analysis that is done at compile time, also called static analysis, can, in
general, not use run time time information, such as the future program input. Run
time information is not available at compile time, because the compiled program
should function on any set of inputs.

2.2 Conventional alias analysis

[CAA] is characterized by the results of aliasing queries having to be correct. In
distinction to [PAA] other terms used for [CAA] are traditional, safe or definitive
alias analysis.

For an algorithm for [CAA]to determine that two pointers NoAlias, there must
not be a single case where the pointers alias at run time, independent of the
program inputs. If an algorithm for [CAA] can not infer a NoAlias or MustAlias
relationship for a pair of pointer variables, it has to conservatively answer with



MayAlias. Because of these semantics, optimizations using [CAA]information can
rely on the alias results being Correctﬂ

Research on both [CAA] and [PAA] is located in the broader field of pointer
analysis. With alias analysis being concerned about whether two pointer variables
point to the same location, other related analysis also exist. For example, points-
to analysis tries to statically infer points-to relationships, describing the variables
and memory locations a given variable of pointer type possibly or definitely points
to. Some algorithms for [CAA] can also directly determine points-to relationships.

Theoretical results show, that precise is, in general, undecidable [5]. Al-
gorithms for [CAA] used in compilers can therefore only compute a subset of the
aliasing relationships. Thus, different dimensions for comparing [CAA] algorithms
exist:

Example: Flow sensitivity

Flow-sensitive alias analysis takes the position in the program control flow
into account when determining aliasing relationship. Oppositely, flow-insensitive
algorithms must always respond with the same aliasing result, independent of the
position in the program flow. Therefore, they have to answer with a MayAlias
result, even if two variables alias at just one possible position in the programs
control flow.

Even precise flow-insensitive is known to be NP-hard|6]. Thus, algorithms
such as Steensgards|7| and Andersons|§|, which are for example used in LLVM, are
additionally context-insensitive.

Other categorizations of CAA

Next to flow sensitivity, [CAA] can also be categorized with respect to field
and array sensitivity (whether different fields of structs or array elements can be

distinguished), context sensitivity and being demand-driven or exhaustive. For
additional background on [CAA] see [9].

2This means, if an still returns an incorrect results, this is considered a bug in the
alias analysis algorithm. If optimizations use the incorrect aliasing information, this can lead to
program transformations that do not preserve the semantics of the program (also called compiler
bugs).



Focusing CAA sensitivity using heuristics

To improve the scalability of [CAA] algorithms to large programs, several ex-
citing algorithms|10], [11], [12], [13] and machine learning approaches|14] to focus
e.g. the context or field sensitivity on certain parts of the program have been
developed.

This allows heuristics to improve the precision of existing algorithms for [CAA]
Because the results are still always definitive, optimizations can use the existing
interfaces for [CAA] In contrast to[PAA] these approaches do not provide statistical
information about the probability of two pointers aliasing.

2.3 Alias analysis in LLVM

LLVM|15] implements multiple algorithms for alias analysis, as well as multiple op-
timization passes that use aliasing information. LLVM provides the 11vm: :AliasAnalysis
class as common interface between the twdCk

AliasResult AAResults::alias(const MemoryLocation &LocA,
const MemoryLocation &LocB)

An AliasResult encodes information about the result of the analysis. Most
importantly, it contains whether the two memory locations NoAlias, MayAlias,
MustAlias or Partial Alias. Each memory location refers to an instruction with
a pointer type, and additionally includes information about the size of the pointer
(e.g. how many addressable units the the alias analysis should assume the pointed-
to values are long)F_f]. If the the pointer variables defined by the two memory
locations do not point to the exact same address in memory, but still to overlapping
objects, as defined by the size of the memory locations, Partial Alias is returned.

The public interface of the 11vm: :AliasAnalysis restricts what types of anal-
ysis algorithms can be implemented in LLVM. Because the interface does not
support expressing information about the control flow, the alias analysis interface
is flow-insensitive’l

LLVM implements multiple alias analysis passes, the providing aliasing infor-
mation e.g. based on the langauge specifics, algorithms such as Steensgards|7]
or even hard-coded information about address spaces for given targets. The

3We used LLVM Version 14, the most recent version of LLVM when we started writing this
thesis. The alias analysis interface might be different in other versions.

4The size information is required especially because LLVM is moving towards opaque pointer
types, where the size information is not part of the pointer type itself.

See https://releases.llvm.org/14.0.0/docs/AliasAnalysis.html for additional infor-
mation.


https://releases.llvm.org/14.0.0/docs/AliasAnalysis.html

alias analysis passes implemented in LLVM 14 include: BasicAA, CFLSteensAA,
CFLAndersAA, GlobalsAA, TypeBasedAA, AMDGPUAA.

To allow multiple different analysis passes to coexists, alias analysis chaining is
used. It works as following: Run the first alias analysis pass. If the results is one of
NoAlias, MustAlias or Partial Alias, return this alias results. Otherwise, where
the first alias analysis pass could only determine a MayAlias results, the next
[CAA] pass of the alias chain is consulted. If no alias analysis pass could determine
a non-MayAlias result, MayAlias is returned.

2.3.1 Applications of alias analysis

Alias analysis has many use cases in compilers and program analysis. Examples
include common subexpression elimination|[16], loop-invariant code motion|16],
global value numbering|17|, dead store elimination|17]| and constant propagation|16].
Additionally, it can improve the results of other analysis algorithms, such live vari-
ables and available expressions analysis (as noted in [6]). Furthermore it has ap-
plications in program analysis outside compilers, such as in analysing coredumps
and reverse execution|18|.

2.4 Probabilistic alias analysis

PAA| (also called speculative or unsafe alias analysis) enriches by providing a
probability of the two pointers aliasing at compile time. The need for arose,
because theoretical results ([5], |6]) and the scalability issues of can result in
many MayAlias responses on real world programs (see e.g. our evaluation results
on the Jotai dataset in chapter [6]).

There exist a wide range of optimizations that can utilize [PAA] information:
For example, [19] have used information for speculative multithreading. [17]
use information to perform speculatively perform code motion for target
architecture which support transactions. [18] applied with deep learning
using recurrent neural networks to root cause diagnosis of reverse execution.

10



Chapter 3

Applications of machine learning in
compilers

In this chapter, we cover the background for the model design in section [5| and its
evaluation in chapter [(] We describe different approaches to extract source code
features for machine learning on programs.

3.1 Background on machine learning

Supervised learning is a subfield of machine learning, where we try to learn a
function f from labeled training data using a computer algorithm.

Which functions are considered during training is defined by the hypothesis
space. For example, we can use all linear functions [[] as the hypothesis space:

yz@l‘x—I—Qg

Here, “training” means finding optimal or good values for the parameters 6 =
(01, 0,), such that the error defined by a loss function is minimized and the model
has low complexity as defined by a regularizer.

We will now introduce the perceptron, a basic building block of many neural
network architectures.

3.1.1 Perceptron

The perceptron takes, as input, multiple numbers x; € R, weights every number
by a pre-specified parameter w; € R, sums up the weighted numbers, and then
adds a pre-specified bias b € R. Afterwards, a non-linear activation function

'We use the term linear function for polynomial functions of degree zero or one

11



Inputs Perceptron

Figure 3.1: Perceptron with 3 inputs (1, 7, 2) and pre-defined parameters, evalu-
ating to 4

o : R — R gets applied to this sum. Possible activation functions are e.g. ReLLU
or the sigmoid function.

i

Here, w; and b are trainable parameters 6 of the perceptron. The weights
impact how relevant each z; is to the output y of the perceptron. Choosing the

right parameters is often hard, and gets done during the training process using
gradient descend.

ReLU activation function The rectified linear unit is defined as the following:

o(x) = max(z,0)

3.1.2 Multi-layer perceptron

A very basic type of neural network architecture is the multi-layer perceptron]
. It is composed of a single input layer h°, possibly multiple hidden layers
h' ...h'71, and a single output layer A'.

Each layer consists of one of multiple nodes, which are connected to the nodes
of the previous and next layer.

The input layer has one node for every input of the [MLP] The nodes of the
input layer have a value which is equal to the corresponding input: h! = z;.

Each hidden/output layer consists of multiple perceptrons. The count is de-
termined each the layers size. The ith perceptron at layer h* k > 1 processes all

12



outputs of the previous layer h;‘f_l and produces a single output hf‘l. Therefore,
each layer has as many outputs as its size.

hf =0 (Z W(k,i,j) h?il + b(kﬂ-))
J

3.1.3 Neural network architectures for processing sequences

Because have a fixed number of input nodes, they can only process a fixed
number of inputs. Adjusting the number of inputs would change the number of
connections the from the input layer to the next layer and would also change the
number of weights, which would require re-training the network.

In order to process sequences, other neural network architectures exists. For
example, the architecture of recurrent neural network (RNN)|such as [20] can be
unfolded for n time steps to process a sequence of length n, with the weights of
the network being shared for every time step. This allows training and evaluation
on sequences of variable length.

More sophisticated architectures, such as[Long-Short-Term-Memory}based RNN§|
[21] and |gated recurrent units (GRUs)|[22]| add additional gates which have, for
some tasks, shown better results, for example when processing very long sequences.

3.1.4 Neural network architectures for processing graphs

“Graph neural network” is an umbrella term for neural network architectures that
process graph-structured data. While for a [MLP| the number of inputs is a fixed
parameter of the architecture, a model can be trained and evaluated on
graphs with different amount of nodes and edges.

Although emerged as a generalization of convolutional neural networks’
(see|23]), there are multiple perspectives under which can be viewed. Many
function as message passing neural networks, where each node exchanges
messages with adjacent nodes and combines the received messages to generate its
new representation. The way the messages of the neighboring nodes are aggregated
differs between the specific architectures. For example, the GraphSAGE|24]
architecture combines the the node embeddings at each layer in the according toE|:

hy = o (W"- CONCAT(hE™', AGGR({hE ™ u € N'(v)})))

2Convolutional neural networks are used in image processing. While images can be modeled
as a grid graph of pixels that can be processed by convolution layers, arbitrary graph structures
need a generalization of the convolution operator, as in [23].

3 Adopted from algorithm 1 of the GraphSAGE paper|24]

13



Here, the weight matrix W¥ is shared between all nodes v of the same layer,
which allows training and evaluation of the same network on an arbitrary amount
of nodes. h* denotes the node embedding (or hidden feature vector) of node v at
layer k. N (v) is the set of neighbors of node v. Commonly used aggregation
function AGGR are element-wise M EAN or SUM.

There exist many adoptions of that e.g. support edge features, training
on a bigger number of layers or use skip connections between multiple layers.
During evaluation, we used [gated graph neural network (GGNN)|25] and
lattention network (GAT)[26] as possible propagation layers.

The most significant difference of to e.g. GraphSAGE is it’s use of
in the layers. The [GRU]is unrolled for as many time steps as there
are layers. It combines, at each layer, the node embedding of neighbors with
the own node embedding. In contrast to GraphSage and [GAT], the weights of the
[GRU] are shared among all GGNN] layers. The use of a [GRU] in the layer
allows information of the node embeddings of all previous layers to be used in the
following layers. For details on the exact propagation model, see section 3.2 of the
[GGNN§|25] paper.

In addition to [GGNNg we used [GATS, which have achieved similar or better
performance than [23] and GraphSAGE on some datasets|26]. The node embed-

dings at each layer are computed as followsﬁ:

h =0 Z afﬁu - Whpk=t
ueN (v)

where h¥, W* and N are defined as above, and « is the attention of neighbor
u with respect to node v and a shared single layer ak:

K cxp(a”(Wyhy, Wyhy,))

a'U u = < ==
" Dwen cxp(at(WEhy, Wihs))
For additional explanations and experiments on the performance of [GATS] see

the paper[26].

3.2 Program representations

In order to process a program using neural networks, we need to extract features
that can be processed by neural networks, from e.g. the program source code.

4Adopted from paper|26]

14



When trying to use machine learning to make predictions at compile time,
features need to be extracted statically, because run time information, such as the
program inputs, are unknown at compile time.

The source code of a program can be represented in multiple ways:

3.2.1 Fixed-size features

Some features about the program a of fixed size for every possible input program.
For example, the counts for every instruction type in the [[R] representation of a
program will always result in ¢ numbers, where ¢ is the number of instructions
that the [[R] language supports. Also information, such as the target architecture
can be used as a fixed-size feature. Because of this fixed size, these features
can be processed by many machine learning models, e.g. by [MLPs However,
selecting the best features for a given task is often not easy. For this reason,
and can be used on a more complete representation of the input program
to automatically learn which features are relevant.

3.2.2 Sequence of lexer tokens

As covered in section [2.] the lexer produces a list of tokens during compilation.
Every token can be represented e.g. by the type of token. The sequence of token
representation can then be processed by sequence-based models, such as
and [Long-Short-Term-Memorys (LSTMs)|

3.2.3 Abstract syntax tree and control- and data-flow graph

During the compilation process, many graph representations of the program can
be found. For example, the parser produces an [abstract syntax tree| (AST]). Fur-
thermore, a [CDFG]| can be extracted from the [[R] of a program. For background
information and a comparison of different graph representations, see [2].

’ Model architecture \ Input data \ Example program features ‘
IMulti-layer perceptron| | Fixed amount of features Instruction counts
|Recurrent neural network| Sequence data Tokens from lexer
|Graph neural network] Graph-structured data AST] |CDFG

Table 3.1: Comparison of deep learning architectures in machine learning for code.

15



Chapter 4

Methodology for creating a
probabilistic alias analysis dataset

In order to train a machine learning model for [PAA] a ground truth dataset is
required. In this chapter, we cover the methodology of the dataset creation. The
dataset lays the foundation of our [GNN| model in chapter f] We evaluate the
quality of our dataset in chapter [0

We approached the creation of a model for [PAA] using supervised learn-
ing. First, we created a dataset which contains example programs together with
aliasing queries and their correct results. Second, we used this data to train ma-
chine learning models, providing them with example programs and instructing
them to produce the ground truth query results from the dataset. Because of the
supervised learning approach, the quality of the dataset puts an upper limit on
the performance of the machine learning model.

We choose to create our dataset from an existing dataset of example
programs, which we call the input dataset in this chapter. We compare different
input datasets, all based on real-world programs, in the beginning of chapter [6]
Based on the input dataset, we want to extract aliasing data to create the dataset
for [PAAL

We start this chapter by defining the goals of our dataset creation methodology,
and then cover our design decisions and give an overview of our implementation.

Dataset creation
Input dataset
process

Figure 4.1: Creating a [PAA] dataset based on an input dataset

Probabilistic alias
analysis dataset

16



4.1 Scope of our approach

Because it would in practice not be possible to implement our dataset creation
methodology for every programming language and compiler toolchain, we focused
our research on the C programming language and the LLVM compiler. We choose
LLVM because it is a modern compiler which can be extended with custom analysis
and transformation passes. It is commonly used in machine learning for compilers
research (e.g. [27], [28], [1]).

That being said, because of the universality of our approach, we believe that
in theory it can be easily adopted for other compilers (such as GCC|29|) or other
programming languages with a similar memory model as C (such as C++).

4.2 Requirements

We grouped requirements of the dataset creation process into three categories:

e The first category defines which properties the[PAA]queries should have, with
respect to their use as analysis data for downstream compiler optimizations

(see [2.4)).

e The second category hosts requirements for training machine learning models
using the [PAA] dataset.

e Our dataset creation process should ideally be universally compatible with
all input programs. We formalize this goal into the requirements in category
three.

4.2.1 Probabilistic aliasing queries

FQ1: Queries shall operate on compilers intermediate representation

Probabilistic alias analysis can be done at source code level (subjects of the
analysis could e.g. be variables in a C program), at the assembler level, or at the
level of the compiler-generated [[R] As optimizations profiting from [PAA] (covered
in section operate in the compiler middle end or back end, they transform the
program on the level of the program [[R] Therefore, a[PAA]giving responses on the
layer of source language variables or at the level of assembly instructions would be
of little use for the compiler, as the relationship between those variables and the
compilers|[R| would not always be clear. For example, new instructions introduced
in prior transformation passes do not have a one to one counterpart in the source
language.

17



ID Requirement description

FQ1 Queries should operate on compilers intermediate representation
FQ2 Query results shall encode statistic probability of aliasing

FD1 Compiler source IR shall be included

FD2 Conventional aliasing results shall be recorded

FD3 The dataset shall be split into train, test and validation sets
FD4 Similar programs shall be in the same dataset split set

FD5 Dataset shall contain correct data

FC1 All possible C files of the input dataset shall be supported
FC2 Non-relevant parts of the input dataset shall be ignored

NF1 Dataset creation shall be adjustable to different input datasets

Table 4.1: Requirements of the dataset generation methodology.

The first requirement of our dataset creation methodology is derived from the
above observation. We impose, that the subjects of the [PAA] queries shall be
objects on the level of the compilers IRl

In our case, as we focused our efforts on the LLVM compiler toolchain, this
means the subjects shall be memory locations as described in section [2.3] Down-
stream LLVM optimizations passes could directly use the probabilistic aliasing
information by asking queries on the representation that is also used for transfor-
mations.

FQ2: Query results shall encode statistic probability of aliasing

The optimizations described in section [2.4] require probabilistic alias responses
that indicate the probability of aliasing at runtime to decide when it is worth to
optimize. Therefore, the [PAA] query results shall encode statistic probability of
aliasing.

4.2.2 Dataset requirements
FD1: Compiler source IR shall be included
The [[R] generated from the input dataset shall be included in the generated

dataset, because it can be used to extract features about the program (see section
3.2.3).
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FD2: Conventional aliasing results shall be recorded

Including the results of [CAA] queries that got answered during compilation is
required to evaluate the differences between [PAA| and [CAA] with respect to the
input dataset.

FD3: The dataset shall be split into train, test and validation sets

A machine learning model training on the [PAA] dataset should be evaluated
on programs different from those used during training. In particular, our [PAA]
dataset shall include three disjunct sets of programs:

e the training set for training a machine learning model using a given set of
hyperparameters,

e the validation set to compare different hyperparameters and

e the test set which can be used to evaluate the performance of a model on
programs it has not seen before.

FD4: Similar programs shall be in the same dataset split set

Because the input datasets we considered are derived from real world programs,
often using code crawled from GitHub (e.g. [30], [31]), they may contain the same
program multiple times. This can occur if source files of a library get copied to
other software projects. One example for the Jotai|3| dataset is the file xutils.c
which is dataset twice, because it was contained in both the 1ibgit2 repository
and git repository on GitHub.

Duplicate programs in the dataset can lead to issues with the train/test/validation
splits. If the dataset splits get assigned randomly a program could occur in both the
training and the validation sets. Thus, a machine learning model could memorize
the ground truth labels during training, and achieve good results during evalua-
tion, even tough the model has not generalized at all. In the most extreme case,
where every program occurs once in the training set, and once in the validation
set, the model could achieve a perfect score just by memorization.

Therefore, not only duplicate, but also similar, programs, shall be as assigned
to the same dataset split set (either train, test, or validation).

FD5: Dataset shall contain correct data
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The dataset shall not contain any incorrect aliasing query results, because a
model trained on incorrect aliasing information would be of little use for down-
stream optimizations.

4.2.3 Compatibility with input datasets
FC1: All possible C files of the input dataset shall be supported

Because models trained on the dataset should perform well on a many
programs as possible, the dataset should include a wide range of programs for
training. Therefore, the implementation of the dataset generation shall support as
many features of the C language as possible, and thus as many programs of the
input dataset as possible.

FC2: Non-relevant parts of the input dataset shall be ignored

Some input datasets, such as Jotai, include some C functions, e.g. the main
function, that are very similar for every program. It shall be possible to exclude
such functions from the alias extraction, because their aliasing data would be very
similar, which could lead to a very biased [PAA] dataset.

4.2.4 Non-functional requirements

NF1: Dataset creation shall be adjustable to different input datasets

The programming landscape has been constantly evolving over the last decades,
with new ways to write code, new libraries and different design patterns being
established.

Furthermore, over the last years, there has been a lot of innovation around
datasets for machine learning on code ([31], [3]). As the quality of the [PAA]
dataset highly depends on the quality of the input dataset, being able to process
different input datasets is key to adapt to new developments. Being universally
compatible with all datasets is not possible, because currently there is no standard
format being used by the datasets. Still, the dataset creation methodology shall
be easily adjustable to different and new input datasets.

This could also be key to adapt the probabilistic aliasing data to a particular
field of an application, and fine-tune the machine learning model by using e.g.
transfer learning.
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4.3 Semantics of probabilistic aliasing results

Different options to define the syntax and semantics of probabilistic aliasing results
exist:

1. result € {NoAlias, MayAlias, MustAlias}

One possibility would be to mirror the interface for conventional aliasing
queries, but instead of giving definite answers, the model could return the
query result which is most likely. Contrary to [CAA] the model would not
need to prove that it’s result is correct, which would allow for more aggres-
sive no-alias and must-alias responses, which could possibility allow for more
aggressive downstream optimizations.

2. result € {{NoAlias, MayAlias, MustAlias} — [0,1]}

A problem with the first approach is that the alias result would give no
information about how likely it is that two variables alias. Therefore, we
could update the semantics as follows: When the model outputs a likelihood
of 0.9 for NoAlias ten times, the actual result for the alias queries would
only be NoAlias nine of the ten times. Downstream optimizations could
benefit from this information, in order to decide whether it is useful to do a
particular performance optimization.

3. result € [0,1] When assessing whether an optimization should be done in
a particular case, the relevant factor often isn’t how likely a NoAlias or
MustAlias response is, but instead, what the probability of the two vari-
ables actually aliasing at run time is. It could still be beneficial to perform
optimizations even if the model determines that there is a single case where
the subjects alias, but the run time probability of that case is very low.
Thus, better semantics for the query results would be to encode the statistic
probability of the two variables actually aliasing at run time. 0 as the re-
sult would mean the model determined a statistic probability of 0% for the
variables aliasing at run time, and 1 a statistic probability of 100%.

For the reasons outlined above and in to we choose the third option as the
semantics for out [PAA] interface.

4.4 Approaches to gather probabilistic aliasing data

There exists multiple options to gather the ground truth aliasing data from the
input dataset. In this section we discuss to up- and downsides of the approaches
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we considered, and explain the reasons why we chose to gather the aliasing data
using instrumentation.

We considered three approaches to gather ground truth aliasing data from the
input dataset: Static analysis, ORAQL and program instrumentation.

4.4.1 Statically using conventional alias analysis

The first approach is to statically analyze a program using existing [CAA] imple-
mentations, and to use this data for training a machine learning model. It could
then try to classify new aliasing queries.

The upsides of this approach are:

e Existing implementations of [CAA] can be used.

e Machine learning models could possibly produce similar results as existing
[CAA] implementations of high computational complexity faster.

e The input dataset would only require compilable, not runnable, programs.
Furthermore, because the aliasing results are determined statically, they
would universally remain true completely independent of the input.

The downsides of this approach are:

e The last pro argument is also a downside: Because no inputs are required,
the aliasing results can never output a low probability of aliasing even when
there is only a single, however unlikely, case of aliasing.

e The data collected through [CAA] would not contain information about the
statistical likelihood of aliasing at run time.

e Because the data does not encode statistical likelihoods of aliasing at run
time, the only theoretical benefit of using a machine learning model here
would be speed. Else, one could theoretically just run the original [CAA]
implementation to obtain the results.

4.4.2 Collecting aliasing data at run time

Another approach to gather probabilistic aliasing data is to measure aliasing taking
place at run time. This can be done by using debugging tools, changing the
program to output its aliasing behavior at run time, or using a modified interpreter
for running the program.

The upsides of this approach are:
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e The measured aliasing behavior does exactly represent the percentage of
aliasing during run time. This takes the common program inputs of the
input dataset into account.

e Changes the programs and input of the input dataset allows adjusting to a
particular field of application.

The downsides of this approach are:

e Runnable input datasets are required and the quality of the gathered aliasing
data directly depends on the inputs.

e Depending on the way aliasing measurements are taken, only certain input
programs may be supported, aliasing measurements may be incorrect, or
performance of the program could be degraded.

Additionally, the aliasing queries could be collected using the ORAQL|32] tool.
Instead of using MayAlias as fallback responses in the LLVM alias analysis chain,
ORAQL responds with NoAlias to queries that no other alias analysis can find
an answer to. This can result in an incorrect compilation, because the assumed
NoAlias response might be wrong. Therefore, ORAQL iteratively refines the alias
responses in multiple compilations, until the compiled program produces its correct
output for one particular input. Using this approach, ORAQL can produce almost
optimal NoAlias responses for a single input, while still ensuring the correct pro-
gram outputs. However, like the [CAA|results, the obtained aliasing data contains
no information about the probability of aliasing happening at runtime. Further-
more, the optimistically answered queries might lead to undefined behavior, which
is undetected as long as the program produces the correct outputs.

4.5 Our approach: Collect data using instrumen-
tation

To be able to gather aliasing data that accurately represents run time behavior
and encodes the statistical likelihood of aliasing, we choose to measure it at run
time.

This section describes how we designed and implemented our Alias Instrumen-
tation Module. It comprises the following steps, that get run on every program of
the input dataset:

1. Convert the input program to LLVM [[R]
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Figure 4.2: Overview of the alias instrumentation module

2. At compile time, ask conventional aliasing queries, to compare them with
the results of (see requirement FD2).

3. Instrumentation: Run compile time transformation pass to instrument rele-
vant instructions.

4. Runner: Execute the instrumented program to gather run time data.

5. Postprocessing: Analyze run time data to compute statistical aliasing per-
centages.

6. Detect similar programs (see requirement FD4)

7. Create dataset splits (see requirement FD3)

4.5.1 Compilation of the input program to LLVM IR

A prerequisite for the following steps, and for requirement FD1, is the conversion of
the program to LLVM [[R] Both, the extraction of [CAA]data and the measurement
of [PAA] data, require the program [IR]

During the typical compilation process, a C program passes through many [[R|
because the optimization passes can change parts or even the general structure of
the program.

In order to compare the results of [CAA] and [PAA] it is important that both
extractors work on exactly the same [[R] of the program. Alias queries can not
directly be compared after applying different optimizations, because these can lead
to different programs, with different instructions and possibly different aliasing
behavior. For the same reasons it is important to use the same as input
representation of the program for the machine learning model, too.
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Therefore, we compile the program into [[R] using LLVM, and then use this [[R]
without applying any additional optimizations for [CAA]and [PAA] and also as the
input representation for machine learning. We call this the base|IR]of the program.

For simplicity, we only process every program once, and use its without
any LLVM optimizations applied. It would also be possible to run the dataset
extraction process on every program multiple times, with different optimization
passes used to generate the[[R] This could be used as a data augmentation method,
would increase the size of the dataset, and could allow the trained machine learning
model to perform better on in different stages of the compilation process. To
limit the scope of the dataset generation methodology, we did not implement this
yet.

4.5.2 Collection of conventional alias analysis data

Before running our transformation pass, we collect the results of [CAA] queries.
To achieve this, we modified the 11vm: : AAResults: :alias function. We adopted
the -aa-trace option of the LLVM opt command, and updated the logging to
include the information we need. Our logging is done after a conventional alias
result has been determined by the alias analysis chain (recall section and
before is returned to the caller of the alias analysis.

In addition to storing the LLVM aliasing result (e.g. NoAlias, MayAlias,
MustAlias, PartialAlias) we also collect information about the subjects of the
query, such as an identification of the instructions, and the sizes of the two LLVM
memory locations. To uniquely identify instructions while collecting [CAA] data
and before running the instrumentation pass, we use a tuple id € N° containing
the index of the instruction in its basic block, the index of the basic block in its
function, the name of the function, and the name of its module. This allows us to
compare the [CAA] and [PAA] results of a particular aliasing query.

We use LLVMs AliasAnalysisEvaluator to generate aliasing queries between
every pair of pointer instructions. To collect the aliasing data of a particular
program given its base [[R] we run the command described in table .2 Its output
gets passed to the post-execution analysis script through Linux pipes.

4.5.3 Compile time instrumentation pass

In order to instrument C/C++ programs, we have developed a custom LLVM
transformation pass. It analyzes the functions of an input program and adds
additional LLVM [[R] instructions to the programs base [[Rl Output is what we call
the instrumented [[R], which should produce the required aliasing information at
run time.
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Program base [[R}

store 132 5, i32% %2, align 4
store i32 10, i32% %3, align 4
store 132x %2, i32%x J4, align 8
store 132x %3, i32%x 5, align 8
%10 = load i32%, i32x* 4, align 8
%11 = call i32 Qprocess(i32x %10)
store i32 %11, i32x %6, align 4
%12 = load i32%, i32x* 5, align 8
%13 = call i32 @process(i32x %12)

Instrumented IRk

store i32 5, i32% %5, align 4
store i32 10, i32% %7, align 4
store i32x %5, i32%x 79, align 8
store 132x %7, i32%x Y11, align 8
%21 = load i32%, i32x* 79, align 8
%22 = call i32 (i8x*, ...)
@printf([...], i32 29, i32% %21, i32 %1, [...1)
%23 = call i32 @process(i32x %21)
store 132 %23, i32x %13, align 4
%24 = load i32%, i32%x %11, align 8

%25 = call 132 (i8*, ...)
@printf([...], i32 32, i32* %24, i32 %1, [...1))
%26 = call 132 @process(i32* %24)

Figure 4.3: Alias instrumentation pass applied to a list of LLVM [[R] instructions.
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Command and its argu-
ments

Description

opt

Run our modified version of the LLVMs optimizer

-00
-disable-output

Do not run any additional optimization passes
Do not print LLVM IR again

-aa
-scoped-noalias-aa
-cfl-anders-aa
-cfl-steens-aa

Use a chain of LLVMs existing [CAA| implemen-
tations (see section

-basic-aa

-aa-trace Enable logging of results as described in sec-
tion %52

-aa-eval Enable LLVMs alias evaluation to generate alias-

ing queries

program_base_ir.1ll

Path to input file containing the programs

Table 4.2: The command used to collect [CAAl data.

We restricted the scope of our implementation to only LLVM variables inside

functions, and ignored global variables. The transformation pass first identifies all
variables which return a pointer type, because these are the relevant subjects of
alias analysis, conventional or probabilistic. To track when the variables alias at
run time, we monitor the variables for changes. Because LLVM [[R]is in [SSA] form,
every variable is initialized by exactly one LLVM [IR] instruction, and not assigned
to afterwards. Therefore, we only need to track the LLVM [[R] variable after its

initialization. To accomplish this, we add [[R] instructions recording the following

information when a pointer variable is assigned to:

e The memory address where the pointer variable is pointing to.

This information allows to calculate the statistic aliasing percentages during

postprocessing.

e A number uniquely identifying the instruction.

This number can be used to associate the instruction with e.g. the [CAA]
queries collected during compile time.

e A number uniquely identifying the function context.

Variables in LLVM functions can exist multiple times during execution, in
separate stack frames. This can happen when a function is called multiple
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times in sequence, or during recursion where multiple instances of a variable
can exist at the same time. Therefore, we assign a unique, numerical ID
to every function execution at run time, and, in our post-execution analysis
script, only consider aliasing between variables in the same function context.

To uniquely identify each function context, we add a global variable to the
instrumented program, which is implemented as a counter. It keeps track
of the numerical ID that should be used for the next function context. We
add additional instructions to every function of the instrumented [[R] which
increment the global counter variable and keep track of the ID of the current
context.

4.5.4 Execution of instrumented programs

The instrumentation pass described in the last section is used to generate an
executable binary file starting from the base [[R}

Command and its argu- Description

ments

clang Run the LLVM compiler front end for C

-00 Do not run any additional optimization passes
-Xclang Load custom instrumentation pass

-fpass-plugin="libAliasInstrumentation.so"

program_base_ir.11 Path to the input file that should be compiled
-0 instrumened.o Path to the output file

Table 4.3: The command used to compile the base [[R] into an instrumented exe-
cutable.

The binary gets run with the aliasing information being printed to the standard
output by default. We use a signature to disambiguate program output from
aliasing information.

Depending on the type of library and system calls present in the input dataset,
it may be beneficial to run the binaries as a separate user, in a Linux container
or in a virtual machine, to prevent damage to the host system and to make the
runs more reproducible. Some dataset may also include non-terminating programs,
which can be approached by restricting the execution time of the programs.
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4.5.5 Post-execution analysis

To calculate the query results, we replay the alias trace produced by the
instrumented binary at runtime. We do this for every program input. For every
function context, we keep track of the locations where pointer variables are pointing
to. When a pointer variable gets assigned to during the replay, the address it
is pointing to is compared to all other pointer variables in the current function
context. If the memory locations that the pointer variables point to overlap, the
count of DidAlias counter for the corresponding query is incremented. If the
memory locations did not overlap, the DidNotAlias counter is incremented. At

the end of the replays, the [PAA| query result is calculated as &= £f§‘§z§m s

4.5.6 Detection of similar programs using instruction k-grams

To measure program similarity, we extract all instruction k-grams from every pro-
grams uninstrumented [[R] Here, a k-gram is a sequence of k successive instructions
in the linearized IRl After extracting, we can then check whether a program A con-
tains duplicated code from a program B by calculating how many of Bs k-grams
are also included in B.

By using k-grams we can ensure that the code is actually similar, as single in-
structions being present in both programs does not imply similarity. Furthermore,
this approach is resilient to reordering of large code blocks, because the matching
k-grams inside each code block can still be detected.

Using k-grams is an adoption of techniques used in document fingerprinting
and code plagiarism detection|33].

A downside of extracting k-grams from linearized [[R]is that reordering of short
instruction sequences, such as basic blocks, can significantly change the programs
k-gram set. The effect of basic block reordering could possibly be reduced by
instead of extracting k-grams, extracting instruction neighborhoods, which are
invariant to the basic block order.

We define two programs as similar, if at least 70% of the instruction k-grams of
one program are included in the other program. We build a graph, where similar
programs are connected by an edge, and extract the connected components. All
programs in the same connected component have to be assigned to the same dataset
split.

When creating the dataset splits, we used 80% of the programs for the train
set, 10% for the validation and 10% for the test set. Starting with the connected
component with the most programs, we randomly assigned each connected com-
ponents to a dataset split that had enough space for all the programs in it.
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Chapter 5

Graph-Neural-Network based model
for alias analysis

This chapter covers the methodology used to create a machine learning model for
probabilistic alias analysis.

In the last chapter, we laid the foundation for training [GNN}based models for
[PAA] The output of our dataset creation methodology contains programs, their
base [[R] and a list of probabilistic aliasing queries including their ground-truth
results. In addition to the above, the dataset also includes [CAA] queries and their
statically obtained ground-truth results.

In this chapter we describe the design of our[GNN}based model. More precisely,
we designed an architecture that allows training models for both [CAA] and [PAA]
queries. In the next chapter, we evaluate these models both on the [CAA] queries
obtained by our dataset creation methodology and also on the dynamically gath-
ered [PAA] queries.

Thus, our model architecture has to be adjustable to both types of queries.
While the [CAA] query labels are of categorical type (one of NoAlias, MayAlias,
MustAlias and PartialAlias), query labels are of continuous nature: A
number in [0, 1] encoding the statistical probability whether two variables alias at
runtime. To unify both types of queries into one framework, we discretize
query labels into categories.

At the beginning of this chapter we describe how we represent the input pro-
grams and queries, and how we discretize the [PAA] query results. We continue
by presenting our multi-phased model architecture that can operate on the input
representation. We show how it can output predictions of [CAA] or [PAA] query
results.

Towards the end of this chapter, we take a closer look at our training method-
ology, optimizer and regularization techniques. Furthermore, we present details
about the implementation of the model architecture and training pipeline.
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5.1 Overview of the training methodology

The machine learning models should be able to predict the correct query label
category of [PAA] or [CAA] queries given an input program and input query. More
precisely, they should be able to answer aliasing queries from the test set after
being trained on a separate set of aliasing queries from the train set. The different
dataset splits should be unique, but should be drawn from the same (unknown)
probability distributionE].

Therefore, the training procedure should find good model parameters 6 € ©,
that:

1. can predict the query labels of the training set well, given the input pro-
grams and query information. More formally, this means that negative log
likelihood loss should get minimized by the training procedure:

l, = weight(c) - Y.

where [, is the loss of query ¢ with true label ¢, and ¢, . is the log-probability
of category c as obtained from the readout layer of the neural network. We
calculate the total loss as the mean of the losses of the individual queries.

2. have low complexity. We discuss the regularization techniques we applied to
minimize the model complexity later in this chapter, in section [5.5]

The second property is required to penalize the model for overfitting the train-
ing set. Instead, if the model learns to generalize, we can also apply it to the
validation and test with good results.

In order to iteratively improve the training parameters 6, we use the Adam
optimizer instead of stochastic gradient descend. We describe this in more detail
in section [5.5] of this chapter.

In addition to the trainable parameters of the model, we also need to specify
multiple hyperparameters. They we can not be optimized using stochastic gradient
descend, because no gradient of the loss function with respect to the hyperparam-
eters can be calculated. Examples of hyperparameters include the count and sizes
of the [GNN] layers of the model.

We use the validation set to compare models with different hyperparameters
trained exclusively on the train set. During hyperparameter search, we select the
models that performed best on the validation set.

IFor this reason we implemented the program similarity check in chapter but also randomly
assigned the dataset splits, not assigning similar programs to the same split
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5.2 Representation of programs and alias queries

With an overview of the training pipeline in mind, we now describe how we repre-
sented the input programs and queries in a way that can be processed by machine
learning models.

As explained in the last chapter, the[PAA] dataset includes the base [[R]of every
program, including a set of probabilistic aliasing queries and their results. This
dataset is, however, not in a representation that can be understood by a A
key ingredient for training to learn alias analysis is this representation of
programs and the aliasing queries, because it defines what information the machine
learning model can use as input.

Thus, we now cover how obtain a representation of the inputs. In the next
section we describe in more detail how this representation is used by the multi-
phase model to predict the query labels.

5.2.1 Graph representation of the programs IR

We formalize a input program either with respect to[CAA]or queries, because
the model architecture has to be slightly different for [CAA] and [PAA] because the
[PAA] queries need to be discretized.

The representation p of an input program is:

p=(G,t,Q)

where G is the graph representation of the programs base [[R] @ is the set of
aliasing queries associated with the program, and t € {CAA, PAA} is the type of
the aliasing queries.

We transform the base [[R]into an multi-graph G' = (V| E) with labeled edges.

5.2.2 Nodes

The nodes V' of the graph represent the instructions of the [[Rl

If an instructions returns a value, its node in the graph also directly represents
this return value. This means there are no separate nodes for the LLVM variables
returned by the instructions. Separate nodes for the LLVM variables would be
redundant and would increase the steps required to traverse the graph, which
would require more [GNN] layers.

For each node v € V' we extract features from the [Rk

e LLVM instruction opcode (e.g. add, alloca, store)

e LLVM type of the return value of the instruction (e.g. £32, i32%)
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We convert both the opcode and the return type to a textual representation.
We filter out values that occur in less that 0.01% of the instructions, because the
training data would be too limited to tune the associated parameters. We replace
such values with a separate category of infrequent values. For the return type, we
do not yet support complex struct types.

We concatenate the one-hot encoding of the opcode and the return type. We
call the resulting vector x, € RPV the node feature vector of node v.

5.2.3 Edges
We extract three types of edges from the [IR}

e Control-flow edges: For every successor j of instruction i: An edge (v;,v;)
with label control

e Data edges: For every operand of instruction 7 using a value of instruction
J: An edge (v;,v;) with label data

e Memory dependency edges: For every memory access of an instruction
depending on instruction j: An edge (v;, v;) with label memory

5.2.4 Representation of alias queries

We define the set of aliasing queries @ with respect to either [CAA] or [PAA] of a
program p = ((V, E), Q) to contain queries g = (vq, Uy, Sa, Sp, y) With v, v, € V,
where

® v,, S, represent the instruction and size associated with memory location a,

e vy, s, represent the instruction and size associated with memory location b
and

e y is the label of the query. For [CAA] queries, this is a categorical value
y € {NoAlias, MayAlias, MustAlias, Partial Alias}. For queries, we
divide the result space [0, 1] into |C| categories of the same size and assign
each probabilistic alias query to its category depending on its query result

(see figure [5.1]).
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Figure 5.1: Conversion of continuos probabilistic aliasing responses to discrete
categories for |C| = 9.

5.3 Task

5.4 Model architecture

Input:

Directed input graph G = (V, E), where V.= 1,2,... |V] and E C V xV. The
node feature vector x, € RPv. A probabilistic aliasing query ¢ € £ x £ is made up
of two memory locations. A memory location [ = (v, x;) with v € V A z; € RPr.

We divided our model architecture into three phases:

5.4.1 Embedding phase

In the embedding phase, each node and memory location feature vector is processed
on its own. No propagation along graph edges is done. It is goal of the embedding
phase is to transform the initial one-hot encoding of the input feature vectors into
a more compact representation.

We used a[MLP]for embedding the node input features, with the MLP]| parame-
ters ©F, being shared among all nodes. This means, that the features of every node
get embedded in the same way, and that the embedding can handle any amount
of input nodes.

We used a with separate parameters ©% to embed the feature vectors of
the memory locations. The weights are shared between both memory locations of
the aliasing query.

5.4.2 Propagation phase

The propagation phase takes the node features produced by the embedding phase,
and applies one or multiple GNN layers to produce the node embeddings. These
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embeddings can additionally contain aggregated information about the nodes in
the (multi-step) neighbourhood of each node and it’s graph structure.

The propagation phase leaves information about the aliasing queries, such as
the memory location embeddings of the embedding layer, untouched. This infor-
mation is not used at all during the propagation phase.

The propagation phase can be done through one of following propagation types:
[GGNN] [GAT]and [MLP} The [GGNN] and [GAT] function as defined in section [3.1.4]
along the edges F of graph G.

For the propagation type, no [GNN] layers are used. Instead, the node
features produced by the embedding phase get processed by multiple MLP)] layers.
In the evaluation chapter, we use this propagation type as a baseline to compare

the [GNN]| propagation layers to.

5.4.3 Readout phase

The readout phase combines node embeddings obtained by propagation phase and
the feature embeddings of the memory locations obtained during the embedding
phase and produces a query result. This happens in three steps:

1. The two node embeddings of the query instructions, which are the results
of the propagation phase, get aggregated. We use element-wise summation
as the aggregation method. While also other aggregation methods such as
concatenation can be used, using e.g. summation has the benefit that is
permutation invariant. This induces the bias, that the order of memory
locations does not matter, into the network.

2. The two feature embeddings of the of the memory locations, which are the
results of the embedding phase, get aggregated, also using element-wise sum-
mation.

3. The aggregated node and memory location feature embeddings get concate-
nated.

4. A [MLP)] gets applies to the concatenated embeddings. The output layer of
the readout is of size |C|. Before calculating the negative log likelihood
loss, we apply the softmax and logarithm functions to the outputs, to obtain
log—probabilitiesﬂ

2This is the same as applying cross entropy loss.
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5.5 Regularization and optimization algorithm

Instead of using stochastic gradient descend to iteratively improve/update the
parameters © of the model, we use the Adam algorithm described in [34].

As a regularization technique, we define the weight decay as an additional
hyperparameter of the model, which specifies the L2 penalty on the parameters 6.

Furthermore, we use dropout as described in [35] in the of the embed-
ding and readout phase and in the propagation phase for the layer. If
is used as propagation phase of the model, dropout is also applied “to the normal-
ized attention coefficients” [26], in addition to the inputs of the layers. For
implementation reasons, we do not use dropout between the propagation layers
for the propagation phase.

Dropout works as a regularization technique by “preventing complex co-adaptations
on the training data. On each presentation of each training case, each hidden unit
is randomly omitted from the network with a probability of 0.5, so a hidden unit
cannot rely on other hidden units being present.”[35| Because dropout randomly
omits certain units of the network, it reduces the performance of the network.
Thus, it is only applied during training, not during evaluation. For the same
reason, dropout can lead to higher training loss that validation loss during the
training process of a neural network.

5.6 Training methodology

5.6.1 Implementation

There are multiple libraries for training (see table [5.2).
After experimenting with and implementing efficient [GNN]| layers directly with

Tensorflow using sparse matrices, we decided to use a [GNN]|library instead. This
has the advantage that different types of [GNN] layers can easily be tested and
compared (e.g. |GAT| and |GGNN]), and that their implementation is widely used
and well tested.

We decided to use PyTorch Geometric[39], because PyTorch|38] is commonly
used in research on and on machine learning for code. It furthermore has
implemented many different [GNN] layers, including [GAT] and [GGNN] layers.

Our implementation can be divided into the following phases:

5.6.2 Data preparation

1. Extracting the representation of the input program and aliasing queries from
the [PAA] dataset. To extract the graph information from the program base
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Hyperparameter name

Description

Learning rate
Batch size
Weight decay

Determines the step size of the optimizer
Size of minibatches during training
L2 penalty applied by the Adam optimizer

Embedding phase
Dropout
MLP|layer counts

MLP| layer sizes

Dropout probability

Layer count of node and memory location embedding
layers

Size of feature vectors produced by every MLP layer

Propagation phase
Propagation type

Dropout
Layer count
Layer sizes

Type of layer used for propagation of node fea-
tures

Dropout probability

Count of propagation layers

Size of every propagation layer

Readout phase
Dropout

MLP| layer count
MLP]| layer sizes

Dropout probability

Count of hidden readout layers

Size of feature vectors produced by every hidden read-
out layer

Table 5.1: Overview of hyperparameters.

Deep learning library ‘

GNN| library ‘

TensorFlow [36] Spektral [37]
PyTorch [3§] PyTorch Geometric |39
PyTorch [3§] DGL [40]

Jax [41] Jraph [42]

Table 5.2: Comparison of software for training [GNNg|

[R] of the input programs, we used a custom visitor based on the ComPy??
library. To ensure that the extraction finishes in reasonable time on large
datasets, we use the Ray Core library for parallelization.

2. Enumerating over all programs and collecting the possible feature categories
for the node and memory location features. Furthermore we calculated the
counts of the query labels, which we used to calculate the category weights
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used the loss function.

3. Converting node and memory location to one-hot encoding using the cate-
gories collected in the last step and transforming the graph structure into
the data structures used by PyTorch Geometric|39).

5.6.3 Training

1. Generation of all possible hyperparameters that should be used hyperpa-
rameter search. To execute multiple training runs in parallel we use the Ray
Tune library.

2. Batching multiple graphs into a single graph to allow effient use of minibatch-
ing. In addition to the graph collation implemented by PyTorch Geometric,
we adjust the correct indices of the nodes used by the aliasing queries when
merging multiple graphs on the GPU.

3. Training of [CAA] and [PAA] models. We use PyTorch and PyTorch Geomet-
ric for implementing out model including the embedding, propagation and
readout phases. During training we log the evaluation results on the training
and validation dataset split on every epoch.

5.6.4 Evaluation

1. Evaluating the best models on the training, validation and/or test dataset
split.

2. Visualizing the training and evaluation results.
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Chapter 6

Evaluation and discussion

In the last two chapters, we described our methodology for creating a dataset for
[PAA] and defined machine learning architectures for [GNN] models.

We continue by applying the dataset creation methodology to the Jotai input
dataset. We then train and evaluate the [GNNlbased models on the and
[PAA] queries of the obtained dataset. To find out how well [GNN}based models
can perform on the task of predicting the alias analysis queries of the dataset, we
compare them to multiple baselines and discuss the results.

6.1 Alias analysis dataset

6.1.1 Input dataset

In order to choose a input dataset, we compared multiple options used in the field of
machine learning for code. As covered in chapter [d out methodology requires not
only compilable, but also runnable input programs. See table for a comparison
of different input datasets.

We choose the Jotai|3| dataset, because with over runnable 36 K" programs it
provides a lot of data for training the machine learning models. The programs
were collected from a large amount of real-world software projects on GitHub.
The Jotai dataset is based on AnghaBench|[30], but additionally contains inputs
to run the programs. The inputs have been checked for undefined behavior, us-
ing AddressSanitizer and KCC|43|. Note that when we worked on the dataset
creation, the programs and inputs of the ExeBench dataset were not yet released.
The Jotai dataset contains 36223 programs with 69623 inputs in total.

We created the alias analysis dataset from the Jotai input dataset according
to our methodology explained in chapter 4 While converting the input programs
to LLVM [IR] 35580 out of the 36223 programs could be compiled. We continued
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Name Programs Compilable Runnable Release year

AnghaBench|30] 1M program Yes No 2021
samples extracted
from GitHub

Project CodeNet 4M accepted Yes Yes 2022
[44] C++  programs
for 4K coding
problems
Jotail3| 36K leaf functions Yes Yes 2022
extracted from
GitHub
ExeBench|31] 4.5M compilable, Yes Yes 2022

0.8M  runnable
samples extracted
from GitHub

Table 6.1: Comparison of different input datasets.

with the compilable programs. We filtered out 262 programs of the Jotai dataset
(extr_hashcatsrcmodulesmodule_XXXXX.c_module_init_Final.c, with XXXXX
being a six-digit number), which are initialization functions from the hashcat
GitHub repository. We removed them, because they contain autogenerated struct
initialization code and would on their own account for 84.3% of queries of
the whole dataset.

6.2 Graph-Neural-Network-based models

We evaluated the model on the Jotai dataset. This means, we can not make any
statement about how good the model learned [PAA]in general, but only how well
the model performed on the Jotai dataset.

We now describe out baselines, metrics and training methodology used for the
evaluation. After presenting the results, we continue by discussing the performance

of the [GNN| models and baselines.

6.2.1 Baselines

We use the following baselines during evaluation:
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Category counts of CAA query labels
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Figure 6.1: [CAA] and [PAA] category counts over all dataset splits. [PAA] categories
are discretized as described in section [5.2l PAA query category 3, which includes
query y = %, is contained once in the whole dataset, PAA query category 4, which
includes query y = %, is contained twice.
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Figure 6.2: Histogram showing how many programs with a given count of [PAA]
aliasing queries there are in the generated dataset. For example, the leftmost bar
shows that there are approximately 10* programs with 1 alias query. The scales
are logarithmic.
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Figure 6.3: Histogram showing how many [PAA] queries of a given sample count
exist in the dataset. The sample count of a query is calculated as the sum of the
DidAlias and DidNotAlias count (see section [4.5.5]).

Uniform random sample

As a first baseline, we record the results of a random model. It does not take
any information about the [PAA] query or the program into account. Instead, it
responds to an aliasing query by uniformly sampling from the |C| possible query
label categories:

1
p(cEC’):‘F|

Random sample from training distribution

This baseline records, during training, the distribution of the query labels and
independently sample from this distribution during evaluation:

count(c)
> e count(c)

where count(c) denotes how often a label ¢ occurs in the training set.

plceC) =
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Model with MLP propagation phase (no message passing)

In addition to the random baselines, we also compare the [GNN| models the a
neural baseline. We use the architecture described in chapter [5] but use a [MLP]
instead of the propagation phase. Therefore, this baseline does not have the
ability to aggregate features from instructions other than the instructions of the
aliasing query. In contrast to the [GNN}lbased models, it use the graph structure
of the programs [[R]

6.2.2 FEvaluation metrics

During evaluation, we used the following metrics:

Cross-entropy loss

To show training progress and noise, we evaluated the loss on the train and
validation set. As described section during the training procedure, the loss on
the train set can be higher than the loss on the validation set, because of the use
of dropout in the embedding, readout or propagation layers.

Precision, recall, F1-score

Because the dataset has imbalanced query labels categories, especially for the
[CAA] queries, we used precision, recall and F1-score during as evaluation metrics.
For a binary classification task, they are defined as follows:

. tp
precision =
tp+ fp
t
recall = _P
tp+ fn

Fl_9. preciston - recall

precision + recall

where tp is the number true positives, fp is the number of false positives and fn
is the number of false negatives. We calculated all three metrics for every category
¢ € C, only taking the queries with ¢ as label into account. We then calculated
the macro average metric,,q..ro of each metric metric € precision,recall, F1 as
follows:

metriCmacro = m E metric,



For each metric we calculated the weighted average as follows:

1
count(c) - metric,
> eec count(c) ;

metTicweighted =
where count(c) is the number of queries with label c.

Accuracy

We calculated accuracy as the number of queries with a correctly predicted
label divided by the number of all queries. Note that the accuracy metric can be
misleading if the label categories are unbalanced, which is especially the case for

the [CAA] queries.

6.2.3 Experiments

We conducted two rows of experiments: On the [CAA] queries of our dataset and
on the [PAA] queries. For each type of aliasing query, our evaluation consisted of
the following steps:

1. First, we searched the hyperparameters space of each propagation type:
MLP| [GGNN] and [GAT] We started a single training run for every possi-
ble set of hyperparameters, and evaluated every models best epoch on the
validation set. We choose the best set of hyperparameters according to val-
idation loss.

2. For each propagation type, we continued with the best set of hyperparameter
that have been found. This resulted in three models, one for each propagation
type. We conducted five training runs for each of the models, to compare
the training noise for the fixed sets of hyperparameters.

3. Of the five training runs, we selected the median run (in this case third-best
run) by average loss on the validation set.

4. We evaluated the median models performance on the train set.

Note that for every training run in the above steps, we choose the model pa-
rameters ¢ at the epoch which had the lowest validation loss, which does not have
to be the last epoch.
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Hyperparameter search space

We evaluated the [MLP| [GGNN| and [GAT| models on the hyperparameters
shown in table [6.2] For [GAT] propagation layers we used a single attention head.
We did an exhaustive search of the hyperparameter space, with a single training
run per combination of hyperparameters. We selected the best set of hyperparam-

eters by comparing the validation set loss of the models.

Hyper parameter name Domain
Learning rate {0.01}
Batch size {1024}
Weight decay {0.0005}

Embedding phase
Dropout

MLP layer counts
MLP layer sizes

{0.5}
{2}
{64}

Propagation phase
Propagation type
Dropout

Layer count

Layer sizes

{(MLP,GGNN, GAT}

{0} for else {0,0.5}
{2,4,6}

{64,256, 512}

Readout phase
Dropout

MLP layer count
MLP layer sizes

0.5}
{2}
{64}

Table 6.2: Search space of [CAA] and [PAA] hyper parameter evaluation.

6.3 Discussion

We will first discuss the aliasing queries collected from the Jotai dataset. As
shown in figure there are only very few samples collected per [PAA] query from
the Jotai dataset. The few samples that there are likely mostly come from the
multiple inputs of each program, not from e.g. loops in the Jotai dataset. This
indicates that collected aliasing data is not very complex. Figure [6.1] shows that
only queries with aliasing percentage 0% and 100% exist, except for 3 queries
in the whole dataset with different categories. We therefore excluded categories 1
through 7 from the evaluation, because training neural networks typically requires
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more than 1 to 2 samples per category. Furthermore, none of the 3 queries has
been assigned to the test set, which could make recall and precision ill-defined
during evaluation (because for categories 1 to 7 there are e.g. no true positives
in the test set). We therefore decided to do evaluation only on query label
categories 0 and 8. As shown in figure [6.1] the categories of the [CAA] are heavily
unbalanced, with the majority of the queries having label MayAlias. This means,
that the majority of queries could not be answered using the [CAA] algorithms
implemented in LLVM. For exactly these cases, [PAA] could possibly still give an
useful probabilistic response.

We did an exhaustive search of the hyperparameter search space. This means
we also trained on the best set of hyperparameters during the hyperparameter
search. Because the search space is limited, there could still be better hyper-
parameter outside the hyperparameter space. For example, the results of both
hyperparameter searches show, that the best performing model uses a
propagation layer count of 6, which was the maximum count in the search space,
together with a propagation feature size of 64, which was the minimum size in the
search space (see tables and . Therefore, extending the hyperparameter
search space, to e.g. more layers, could lead to better results. However, training
even deeper might require additional techniques to combat vanishing gradi-
ents during training. We discuss this further in the outlook (section. Similarly,
the [MLP] and [GAT| models sometimes used layer counts or feature counts at the
limit of the search space (2 or 6). Here, widening the search space could lead to
improvements as well. Additionally, we did only evaluate different hyperparame-
ters of the propagation layer. It could, however, be the case, that certain types
of propagation phases perform significantly better/worse paired with a different
embedding or readout phase. This could be solved by a hyperparameter search
that also takes non-propagation hyperparameters into account. Another source
that could influence the validity of the results is training noise. Having evaluated
one training run per set of hyperparameters, it could be that the best set of hyper-
parameter averaged over more training runs has not been found because of noise
during training, that can be caused by the randomly initialized weights of the net-
work or the randomly chosen minibatches. Another results that can be observed,
is that the[GGNN]| consistently takes the first places ranked by validation loss, both
for [CAA] queries, but especially for [PAA] queries. This could indicate that for the
model, the concrete choice of hyperparameters is not as important.

Figures 7?7 and ?? show that there is some noise during the training process.
The graphs also show, that the noise is smaller that the performance difference
between the models, with the shaded area between different propagation type not
overlapping much, except for some outlier runs. To mitigate the impact of outlier
runs, we used the median model during evaluation on the test set. The figures
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furthermore show, that the [MLP]likely converged during the 100 training epochs,
but the [GAT] and especially could potentially benefit from more epochs.

The evaluation scores of the models trained on [CAA]queries in figure[6.5] allows
the following observations and conclusions:

e The[GGNN]outperforms both the MLP|and [GAT|models in all metrics. This
means the generalize best from the train and validation set to the
test set.

e The [GGNN] outperforms the all random baselines in most metrics, most
importantly in the macro and weighted F1-score.

e The neural networks perform better than the random baselines in macro
precision, recall and F1-score, but have worse weighted macro, precision and
recall scores. The reason for this is, that the neural networks got trained
using a loss function where every category gets the same weight, and is
equally important. In contrast, in the weighted precision, recall and F1-
score, categories with more samples in the dataset have a higher impact.
Better performance of the neural networks on the weighted scores could be
achieved by training without a weighted loss function, but this would lead
to lower macro scores.

The evaluation scores of the models trained on [PAA] queries in figure [6.7] allows
the following observations and conclusions:

e The outperforms both the [MLP] and [GAT| models in almost all met-

rics (except category 8 recall), but most importantly in the macro and
weighted Fl-score. This means the [GGNN] generalize best from the train
and validation set to the test set.

e All neural network models outperform the all random baselines in all metrics,
except for category 0 where the static baseline per definition has a precision
of 1.

Overall, the results show that, on the hyperparameters we evaluated, the
[GGNN] model performed best on the dataset. In other words, the model
generalized best from the train and validation sets to the test set. This indicates,
that the architecture of repeatedly applying the same aggregation of neighbouring
features (because weights are shared between the different propagation lay-
ers) is a good bias for the task of predicting [CAA|and [PAA| queries of the dataset
best.
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Prop. Prop. Prop. Prop. Trainable Avg. Avg. Global
type layers feature  dropout params val. val. ac- loss
size loss curacy  rank
MLP 2 64 0 28612 0.3343210.470492 7
MLP 2 256 0 115396  0.336512 0.429347 8
MLP 2 64 0.5 28612 0.337396 0.415565 9
MLP 2 512 0 345796  0.338110 0.521025 10
MLP 2 256 0.5 115396  0.339645 0.464891 11
MLP 2 512 0.5 345796  0.339976 0.416176 12
Details about MLP models with rank 6 to 15 omitted
MLP 4 512 0.5 873156  0.402931 0.290466 30
MLP 6 512 0.5 1400516 0.404667 0.240478 31
GGNN 6 64 0 69700 0.2535300.732258 1
GGNN 4 64 0 61508 0.259293 0.705427 2
GGNN 2 64 0 53316 0.264208 0.704289 3
GGNN 2 256 0 558276  0.313204 0.579577 4
GGNN 4 256 0 689348  0.333001 0.582222 6
GGNN 2 512 0 2149060 0.381326 0.531902 22
GGNN 4 512 0 2673348 0.455251 0.231432 37
GGNN 6 256 0 820420  0.457750 0.230905 39
GGNN 6 512 0 3197636 0.480498 0.231087 40
GAT 2 64 0 29252 0.3181060.536847 5
GAT 2 256 0 117956  0.349123 0.414470 17
GAT 2 512 0 350916  0.363584 0.357991 18
GAT 4 64 0 38340 0.379023 0.324738 21
GAT 4 256 0 252612 0.383273 0.262970 23
GAT 6 64 0 47428 0.386328 0.338562 24
Details about GAT models with rank 6 to 15 omitted
GAT 6 256 0 387268  0.897915 0.209601 44
GAT 6 512 0 1413828 0.900790 0.202828 45

Table 6.3: Results of hyperparameter search for [CAA| queries. The propagation

phase of type Prop. type contains Prop. layers many layers, each outputting node
embeddings of size Prop. feature size. Dropout denotes the dropout probability
used only for the propagation phase, all other phases use dropout of 0.5. Loss
and accuracy of the best epoch of every model are evaluated on the validation set
and are averaged over all queries. Only half as many models were evaluated for

[GGNN] because the current implementation based on PyTorch Geometric does

not support dropout.
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Train and validation loss during training (CAA)
MLP GGNN GAT
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Figure 6.4: For each propagation layer type, we trained 5 models with the best
hyperparameters from the hyperparameter search. The darker lines show the
train/validation loss/accuracy of the model with the median (third best) perfor-
mance of the 5 models. The area between the best/worst of the 5 models at each
epoch is shaded, to visualize noise between different training runs (no smooth-
ing applied). Lower loss and higher accuracy is better. Note that the training
loss/accuracy can be worse than the validation counterpart because dropout was
used during training (see section . Also note, that the classes are heavily un-
balanced.
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Evaluation scores of GNN models and baselines on CAA dataset
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Figure 6.5: For each propagation layer type: Performance, on the test set, of the
third-best (median) of the five models, each trained with the best hyperparameters
found. Random/best static baselines for comparison. Fl-score, precision and
recall are measured for each category individually, and additionally the macro
average (equal weight per category) and weighted average (weighted by number
of queries in each category) is shown. Only relevant categories of the dataset
shown, as explained above. Higher precision/recall/F1-score is better. Note that
the categories are heavily unbalanced, as described in section [6.1.1]
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Prop. Prop. Prop. Prop. Trainable Avg. Avg. Global
type layers feature  dropout params val. val. ac- loss
size loss curacy  rank
MLP 6 256 0 380937  0.3984940.799996 9
MLP 2 64 0 28937 0.406424 0.798500 12
MLP 6 64 0.5 46089 0.409413 0.805453 14
MLP 2 64 0.5 28937 0.412525 0.825592 15
MLP 4 64 0.5 37513 0.418223 0.801578 16
MLP 6 64 0 46089 0.419695 0.847723 17
Details about MLP models with rank 6 to 15 omitted
MLP 6 256 0.5 380937  0.455150 0.738157 30
MLP 6 512 0 1400841 0.483404 0.692583 42
GGNN 6 64 0 70025 0.2054940.929443 1
GGNN 2 64 0 53641 0.219895 0.897291 2
GGNN 4 64 0 61833 0.223433 0.910627 3
GGNN 6 256 0 820745  0.267755 0.800265 4
GGNN 4 256 0 689673  0.287579 0.871770 5
GGNN 2 256 0 558601  0.324307 0.781934 6
GGNN 6 512 0 3197961 0.340842 0.858982 7
GGNN 2 512 0 2149385 0.363189 0.863740 8
GGNN 14 512 0 2673673 0.447975 0.740902 29
GAT 2 512 0 351241  0.3985100.782547 10
GAT 2 64 0 29577 0.404198 0.767101 11
GAT 2 256 0 118281  0.408323 0.723292 13
GAT 2 64 0.5 29577 0.441378 0.782816 26
GAT 2 256 0.5 118281  0.461627 0.765885 31
GAT 6 64 0.5 47753 0.465003 0.698826 32
Details about GAT models with rank 6 to 15 omitted
GAT 6 256 0 387593  0.500299 0.693207 44
GAT 6 512 0.5 1414153 0.633014 0.723410 45

Table 6.4: Results of hyperparameter search for [PAA] queries. The propagation

phase of type Prop. type contains Prop. layers many layers, each outputting node
embeddings of size Prop. feature size. Dropout denotes the dropout probability
used only for the propagation phase, all other phases use dropout of 0.5. Loss
and accuracy of the best epoch of every model are evaluated on the validation set
and are averaged over all queries. Only half as many models were evaluated for

[GGNN] because the current implementation based on PyTorch Geometric does

not support dropout.
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Train and validation loss during training (PAA)
MLP GGNN GAT
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Train and validation accuracy during training (PAA)
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Figure 6.6: For each propagation layer type, we trained 5 models with the best
hyperparameters from the hyperparameter search. The darker lines show the
train/validation loss/accuracy of the model with the median (third best) per-
formance of the 5 models. The area between the best/worst of the 5 models
at each epoch is shaded, to visualize noise between different training runs (no
smoothing applied). Lower loss/higher accuracy is better. Note that the training
loss/accuracy can be worse than the validation counterpart because dropout was
used during training (see section .

23



Evaluation scores of GNN models and baselines on PAA dataset
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Figure 6.7: For each multiphase model: Performance, on the test set, of the third-
best of the five models, each trained with the best hyperparameters found. Ran-
dom /best static baselines for comparison. Fl-score, precision and recall are mea-
sured for each category individually, and additionally the macro average (equal
weight per category) and weighted average (weighted by number of queries in each
category) is shown. Only relevant categories of the dataset shown, as explained
above. Higher accuracy /precision/recall/F1-score is better. Note that the cate-
gories are not perfectly balanced, as described in section [6.1.1}
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Chapter 7

Epilogue

7.1 Conclusion

In this thesis, we presented and implemented a dataset creation methodology that,
using instrumentation, produces [PAA] queries for a given input dataset of C pro-
grams, and additionally includes statically gathered [CAA] queries.

We introduced [GNN] architectures that can process alias queries, both prob-
abilistic and conventional, to give a prediction about the query result. For this
purpose, we extended existing graph-based representations of input programs to
include information about alias queries.

Additionally, we created a novel dataset of aliasing queries by applying our
dataset creation methodology to the Jotai[3| input dataset. Having evaluated our
[GNN}based models on this dataset, our results show that, in general, it is possible
for[GNN§|to learn [PAA] Furthermore, the[GGNN|model consistently outperformed
both random and [MLP] baselines on the task of predicting [CAA] and [PAA] queries.
However, to show the viability of using [GNNg| for [PAA]in compilers, evaluation on
additional, more challenging datasets are required.

7.2 Outlook

Input dataset To further study the strengths and limitations of [GNN| more
challenging input datasets are necessary. For example, input datasets with more
complex control-flow-graphs, multiple functions, and more inputs per program,
could provide additional information about the performance of machine learning
models.

Dataset creation methodology We designed a dataset creation methodology
for the C language. However, in the scope of future work, we can think of multiple
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promising options on how to extend this methodology:

e Applying different layers of optimization: Currently, the instrumentation
pass gets run only on unoptimized code. To allow the trained machine learn-
ing models to predict aliasing of [[R] at different stages in the optimization
pipeline of the compiler, the input programs could be optimized at differ-
ent levels. As a measure of data augmentation, this could also improve the
generalization performance of the machine learning models.

e Processing of additional input languages: Because we use the LLVM, the
instrumentation pass can also be used for other source languages supported
by LLVM, such as C++, Fortran or Rust.

e The [PAA] queries produces from the Jotai dataset mostly included aliasing
probabilities of 0% or 100%. To improve the results of the on a wider
range of program inputs, the inputs could be deliberately chosen to produce
different aliasing behaviour.

Use in compilers If continue to perform well on more challenging datasets,
the viability of using [PAA] in compilers can evaluated. We are excited by the
prospect of using [GNN4 for [PAA]in combination with existing optimizations, such
as speculative multithreading, in a compiler toolchain. This will also allow mea-
surements of the speedups obtained by the optimizations.

GNN model and training procedure We compared the [GNN}based to ran-
dom and the [MLP] baselines, however additional baselines, such as a[RNN]baseline
based on the tokens of the [[R] can be evaluated.

As part of our evaluation methodology, we conducted a search of the hyperpa-
rameters of the propagation phase. We believe, that by including the parameters
of the embedding and readout phase and other training hyperparameters, such as
learning rate, batch size, weight decay, the performance of the models can
be improved. Furthermore, the best performing model based on used the
maximum number of layers of our hyperparameter search, training with additional
layers could improve the performance especially on more challenging datasets. As
number of propagation layers directly limits the range in which the [GNN] can
gather information, techniques such as batch normalization|45| and skip connec-
tions are viable options to increase the perceptive field of the and combat
vanishing gradients. Other promising approaches exist, such as using a variable
number of [GNN] layers during evaluation, possibly different from the number of
layers using during training (e.g. as in [46]).
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Acronyms

AST abstract syntax tree. [ [6] [7]

CAA conventional alias analysis. [4] [THIO| 19}, RIH25], 27, [B0H33] 38}, [39}, [A1], {449,

CDFG control- and data-flow graph.

GAT graph attention network. [14]

GGNN gated graph neural network. [14], [35], 36|, {5} {49} 52} [55], [50]

GNN graph neural network. [4] [5] [B5H37] b3,
GRU gated recurrent unit.

IR intermediate representation. [7} [I5] [17], 18] 23430}, B2} 33} 371 39} (4], [56]
LSTM Long-Short-Term-Memory. [13]
MLP multi-layer perceptron. 48],

PAA probabilistic alias analysis. [, [, [7 33, [36] 43
A5HA8, B2, [BEL [56

RNN recurrent neural network. [I3] [15], [56]

SSA single static assignment. [7]
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