
TU Dresden
Center for Advanding Electronics Dresden

Chair for Compiler Construction

Detection and exploitation of
data-parallelism in assignments of

multi-dimensional tensors

Bachelor Thesis

Submitted by Til Jasper Ullrich
Date of submission 2018-08-21

Degree program Informatik (Bachelor)
Matriculation number 4514861

1st referee Prof. Dr.-Ing. Jeronimo Castrillon
2nd referee Prof. Dr.-Ing. habil. Heiko Vogler
Supervisor Dr. Norman Rink

Selbstständigkeitserklärung
Hiermit erkläre ich, dass ich die von mir am heutigen Tag dem Prüfungsausschuss
der Fakultät Informatik eingereichte Arbeit zum Thema “Detection and ex-
ploitation of data-parallelism in assignments of multi-dimensional tensors” voll-
kommen selbstständig verfasst und keine anderen außer den angegebenen Quellen
und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Dresden, den 21.08.2018

Til Jasper Ullrich

Abstract

This thesis studies data-parallelism in tensor assignments. Building
on the domain specific language described in [7], an extension of the for-
mal language semantics is proposed to detect so called compatible state-
ments, which describes when a statement is data-parallel. Using a type
system, the correctness of the extension is shown and a conjecture about
the optimality is proposed. Applying the extension, two optimizations for
exploiting the data-parallelism are described. These optimizations reduce
the memory usage for computation, therefore reducing cache misses and
improving runtime. The speedup which can be gained mostly depends
on the complexity of the kernel and the size of the tensors. For simple
kernels like multiplication of a vector with a scalar or elementwise multi-
plication of two vectors, a speedup of up to 2x can be achieved. For more
complex kernels like a kernel containing matrix-matrix multiplication, the
speed difference is a few percent. Additionally, a kernel called interpola-
tion consisting of incompatible statements is analysed to check whether
a similar optimization can be applied. The result is that while the op-
timization does not result in a speedup, similar improvements might be
possible. Finally, in order to gain a better understanding of what effect
the optimizations might have, different kernels are analysed regarding the
data size at which parallelism makes sense.

Contents

1 Introduction 1
1.1 Parallelization . 1
1.2 Existing DSLs and compilers . 2

2 Background 3
2.1 Tensors and tensor operations . 3
2.2 A language for tensor manipulation 4

3 Compatible statements 6
3.1 Detecting compatible statements 7

4 Extension of the DSL 8

5 Correctness of the extension 12

6 Performance evaluation 17
6.1 Copy vs. in-place (avoid-copy) 17
6.2 Other variable vs. in-place (reduce-cache-miss) 19

6.2.1 Explanation of the optimization 19
6.2.2 Measuring the impact . 20

6.3 Memory reusing for incompatible statements 21

7 Evaluation of data sizes for parallelization 23

8 Summary 26

9 Outlook 27

Appendices 29

1 Introduction

Tensors are a way of storing multi-dimensional data and making calculations
on it. They are the generalization of vectors and matrices to higher ranks. For
example, a vector can be seen as a tensor of rank 1 and a matrix as a tensor
of rank 2. A tensor of rank 3 would therefore be a cube of numbers, or a
3-dimensional array, with some operations defined.

Tensors have a wide range of applications. In scientific computing and specif-
ically physics, tensors are used for simulations (continuum mechanics), electro-
magnetism, general relativity and quantum mechanics (also quantum chemistry
and quantum computing). In machine learning, neural networks are usually
computed using tensor operations and in general, multi-dimensional data like
videos are modelled as tensors of rank 3 or higher. Also, tensors are used in
computer vision, image processing and, as vectors and matrices are a special
case of tensors, everywhere these are used.

One problem with a lot of tensor applications is the large runtime of compu-
tations. Decreasing this runtime is done through a lot of optimizations which,
as the programmer can’t be reasonable expected to try to apply all of them, are
usually included in the compiler. A specific method which can improve runtime
significantly, but which is rarely included in the compiler, is parallelization.

1.1 Parallelization

The amount of runtime improvement gained by parallelization usually varies
with how good the problem can be parallelized, the number of cores and the
data sizes. As tensor computations consist of a large number of independent
small computations (the elements), they are usually very good parallelizable and
one can expect a linear speedup in the number of cores by distributing an equal
amount of elements to every core. Figure 1 shows a simple scalar multiplication
and the corresponding linear speedup gained from parallelization as measured
by the author. N denotes the size of the vector and REP denotes how often
the kernel has been measured in order to stabilize variance (σ2 < 0.0009) and
decrease standard error.

Figure 1: Scalar multiplication, N = 1 000 000, REP = 27

0 2 4 6 8 10 12 14 16 18 20 22 24
0

10

20

number of cores

sp
ee
d
u
p
v
s.

si
n
gl
e
co
re

This linear speedup can be achieved for a lot of kernels. However, as the
number of cores increase, so does the overhead of threads. This means that for
smaller data sizes, the speedup can be limited by this overhead. Decreasing the

1

data size N from 1 000 000 to 10 000 shows this thread overhead as can be seen
from Figure 2. In this case the speedup is not a linear function of the number
of cores but gets saturated at 8 cores and decreases after that.

Figure 2: Scalar multiplication, N = 10 000, REP = 214

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

number of cores

sp
ee
d
u
p
v
s.

si
n
gl
e
co
re

As parallelization in general can be difficult to apply, it is usually not used
by the compiler but by the programmer. However tensors represent a particular
exception and are often “embarrassingly parallel”, which means that they can
be parallelized with little to no effort. It is therefore possible for the compiler
to assist the programmer in parallelizing the computation. While this can be
done with general-purpose languages like C, detecting and optimizing the ten-
sor computations is more difficult than with a domain specific language (DSL)
specifically created for the problem, i.e. tensor computations.

This thesis builds upon an existing DSL defined in [7], which compiles to
parallel C code. By extending an existing type system, we try to make more
statements about programs in the language. We show the correctness of the
extension formally and how it can be used for practical optimizations. Because
the DSL is not the first of its kind, the next section presents alternative DSLs
and the corresponding compilers. The DSL which will be used in this thesis will
be presented in Section 2.2.

1.2 Existing DSLs and compilers

While these projects presented in this section mostly include all necessary tensor
operations, they often have some primary use case. For example, while Tensor-
flow [5] could be used for a wide range of applications1, it is mostly used for
machine learning and is also marketed as such. The tools in this section are
therefore divided by their primary use-case.

Scientific Computing: In [8], the authors designed a DSL called CFDlang
similar to the DSL from [7] “for expressing and optimizing performance-critical
operations in fluid dynamics simulations”. The problem described mainly uses
comparably small data structures, e.g. in which L1 cache size is not a limiting
factor. The authors created a compiler for the language which generates C code.
The compiler includes SIMD pragmas for parallelization and optimizes the code
using algebraic transformations. The Tensor Contraction Engine [1] is another
compiler from a Mathematica-style language to FORTRAN mainly designed for
a class of quantum chemistry computations. The compiler also uses algebraic

1https://www.tensorflow.org/tutorials/pdes

2

https://www.tensorflow.org/tutorials/pdes

transformations and optimizes for memory usage by fusing loops. ITensor [2] is
a C++ library used in quantum physics and supports sparse tensors.

Machine Learning: Tensorflow [5] is a framework for machine learning which
compiles graphs built in one of the languages providing an API (often python)
to C++. While the system currently does not optimize across different oper-
ations, there exists an experimental compiler, XLA [11], which includes these
optimiziations by using an IR. Besides AOT compilation (ahead of time, mean-
ing before runtime), XLA can also use JIT compilation (just in time, meaning
at runtime) and therefore enables specializing for actual runtime dimensions.
Tensor Comprehensions [10] is a C++ library and mathematical language for
generating efficient CUDA kernels. Notable is that, among many other opti-
mization techniques, it uses evolutionary search to generate multiple alternative
implementations and selects the best performing ones for the current hardware.

General Purpose: The Tensor Algebra Compiler [3] is a system for generating
kernels from C++ and includes optimizations for both dense and sparse tensors.
The High-Performance Tensor Transpose library [9] is a library for C++, C
and python focusing specifically on tensor transpositions. As layout of data in
memory can have a large impact on the runtime due to memory locality, these
transpositions can be used to change the layout before applying more expensive
operations, e.g. fast Fourier transform.

2 Background

2.1 Tensors and tensor operations

As tensors also exist for higher ranks than 1 (vectors) and 2 (matrices), it is
also necessary to define operations for these higher ranks. These operations
must generalize to all ranks (including 1 and 2) and it should be possible to
build existing operations like matrix multiplication from these more general
operations. Usually, the following operations, which are also used in the DSL
from [7], are defined.

Scalar operations, which are defined for a scalar k and another tensor u. The
scalar is a tensor of rank 0, i.e. a single element. For the language described
here, only multiplication and division are used and notated as k ∗ u or u/k.

Elementwise operations, which are defined for two tensors u and v which have
the same rank and dimensions. They are notated as u⊙v where ⊙ ∈ {+,−, ∗, /}
and defined as (u⊙ v)i = ui ⊙ vi.

Tensor product, also called outer product and usually denoted as u = v⊗w.
It creates a new tensor with rank equal to the sum of two input tensors and is
defined as uij = vi · wj . In the DSL used here, it will be denoted as u = v#w.

Tensor contraction u = v . [m n], which is the generalization of the trace
of a matrix.2 m and n denote two dimensions of the tensor v. The result of
the contraction is a tensor which has its rank reduced by 2 and where every
element is calculated as the trace (sum over diagonal) of the matrix spanned by
the dimensions m and n.

2Normally, contraction is defined for two tensors instead of one and represents the gener-
alization of matrix multiplication. However, defining it for one tensor represents no loss of
generality as general tensor contraction can be built by applying the tensor product before-
hand. While this would result in a large slowdown at runtime, this will not be important for
the topic presented in this thesis.

3

Transposition u = v ˆ [m n], which switches two dimensions with each other.
It is defined as ui1,...,im,...,in,...,ik = vi1,...,in,...,im,...,ik . In the case of a matrix
u = vT , the dimensions are implicit as there are only two, but in general they
must be specified.

These operations can then be used to create other operations. For exam-
ple matrix-vector multiplication can be calculated as u = (v#w) . [2 3]. The
same equation is true for matrix-matrix multiplication. Convolution can also
be expressed as matrix-matrix multiplication which solves the problem of irreg-
ular memory access when doing convolution directly. This approach is used by
multiple libraries [4].

2.2 A language for tensor manipulation

In [7], the described DSL contains all general tensor operations shown in the
previous section with the same syntax. Besides other various useful properties
for the language, [7] defines a type system for deriving the rank and dimensions
of a tensor as well as a function for calculating tensor elements. As these two
properties will be important for the topic presented here and in order to keep
this self-contained, a short overview is given.

A program in the DSL contains a list of declarations followed by a list of
statements. The declarations define all tensors which will be used including
their dimensions. As an example, the following program computes a tensor
product followed by a contraction, i.e. a matrix-vector multiplication.

var u : [300]

var v : [300 400]

var w : [400]

u = (v # w) . [2 3]

The first three lines are declarations and define u, v, w to be tensors of
dimensions 300, 300 x 400 and 400 respectively. The last line is a statement and
assigns the result of a tensor product of v and w followed by contraction to u.

In order to check the validity of statements, meaning that the types on the
left and right side are equal, the type system defines rules including, but not
limited to the ones in Figure 3. Using type derivations, often notated in form
of a tree as shown in Figure 4, the rules can be used to find e.g. the type of
(v # w) . [2 3] and validate that it is equal to the type of u.

First, s-var creates the static context Γ from the type declarations. Given
some (possibly empty) sequence of declarations, this rule allows for deriving
Γ for the sequence extended by one declaration. It does so by taking the
declared type [d1, . . . , dk] for the variable and stores it in Γ through ⊢s, e.g.
Γ(u) = (300). If the variable is already stored in Γ, i.e. x ∈ dom(Γ), then
the statement sequence can’t be validated. The rule t-var then starts type
inference by using this context for all variables in an expression. For the
previous example, this would result in Γ ⊢ u : (300), Γ ⊢ v : (300, 400) and
Γ ⊢ w : (400). The types are then propagated through rules like t-prod which
are defined for every operation mentioned in Section 2.1. Using t-prod result
in Γ ⊢ v # w : (300, 400, 400), t-paren in Γ ⊢ (v # w) : (300, 400, 400) and
t-contr in Γ ⊢ (v # w) . [2 3] : (300). Finally, the statement is validated

4

decl∗ ⊢s Γ x ̸∈ dom(Γ)

decl∗ var x : [d1, . . . , dk] ⊢s Γ{x ↦→ (d1, . . . , dk)}
s-var

x ∈ dom(Γ) t = Γ(x)

Γ ⊢ x : t
t-var

Γ ⊢ e0 : (d01, . . . , d0k) Γ ⊢ e1 : (d11, . . . , d1l)

Γ ⊢ e0#e1 : (d01, . . . , d0k, d11, . . . , d1l)
t-prod

Γ ⊢ e : t

Γ ⊢ (e) : t
t-paren

Γ ⊢ e : (d1, . . . , dm, . . . , dn, . . . , dk) dm = dn

Γ ⊢ e . [m n] : (d1, . . . , d̂m, . . . , d̂n, . . . , dk)
t-contr

x ∈ dom(Γ) t = Γ(x) Γ ⊢ e : t

Γ ⊢ x = e ok
ok-stmt

x ∈ dom(Γ) t = Γ(x)

∀i≤t xi ∈ dom(µ) ∧ ri = evalΓ,µ(ei)

⟨µ, x = e⟩ →Γ ⟨µ{∀i≤txi ↦→ ri}, ∅⟩
ev-stmt

Figure 3: Example rules from [7]

u ∈ dom(Γ)

(300) = Γ(u)

v ∈ dom(Γ)

(300, 400) = Γ(v)
t-var

Γ ⊢ v : (300, 400)

w ∈ dom(Γ)

(400) = Γ(w)
t-var

Γ ⊢ w : (400)
t-prod

Γ ⊢ v # w : (300, 400, 400)
t-paren

Γ ⊢ (v # w) : (300, 400, 400)
t-contr

Γ ⊢ (v # w) . [2 3] : (300)
ok-stmt

Γ ⊢ u = (v # w) . [2 3] ok

Figure 4: Type derivation of (v # w) . [2 3]

5

through ok-stmt which only allow assignments x = e if the type of x is equal to
the type of e. As in this case the type of u is equal to the type of the right side,
this results in Γ ⊢ u = (v # w) . [2 3] ok. These valid statements are then used
further to validate statement sequences and the whole program using similar
rules.

After the type checking has validated the program, the expressions are eval-
uated using an evalΓ,µ(.) function for calculating new values from already calcu-
lated ones. The evalΓ,µ(.) function uses a dynamic store µ to store its results and
use them for following statements through evalΓ,µ(xi1,...,ik) = µ(xi1,...,ik). Rules
like evalΓ,µ(e0#e1i01,...,i0k,i11,...,i1l) = evalΓ,µ(e0i01,...,i0k) · evalΓ,µ(e1i11,...,i1l),
which describe how a single element of a tensor is evaluated using its subexpres-
sions, allow for calculation of new values. For tensor product, this means that
the tensor resulting from e0#e1 can be calculated at index i01, . . . , i0k, i11, . . . , i1l
by multiplying two elements of e0 and e1 at the corresponding indices. The re-
sult is stored in µ by using ev-stmt from Figure 3 which describes how the store
changes after a single statements. Corresponding rules also exist for a statement
sequence and the whole program.

An example of evaluating the statement u = (v#w) . [2 3] is given. u, v
and w are again tensors of rank 1, 2, 1 respectively and the expression on the
right side is evaluated for the index (5), i.e. the 5th element of the vector u
is calculated. Using the πi(t) function from [7], which returns the size of the
dimension i of t, let π1(Γ(u)) = π1(Γ(v)) = π2(Γ(v)) = π1(Γ(w)) = 7, i.e. every
dimension of all tensors is 7. Then

evalΓ,µ′((v#w) . [2 3]5)

=
∑7

l=1 evalΓ,µ′((v#w)5,l,l)

=
∑7

l=1 evalΓ,µ′(v#w5,l,l)

=
∑7

l=1 (evalΓ,µ′(v5,l) · evalΓ,µ′(wl))

=
∑7

l=1 (µ(v5,l) · µ(wl))

The µ’s are then replaced with the stored values of v and w at the corresponding
indices. The result from summing over all the values is stored in µ(u5) and can
be used for further calculations.

3 Compatible statements

The programs from the DSL are evaluated by executing every statement in a
specific order (top to bottom). Every statement has the form x = e, meaning
that e is evaluated and the result is assigned to x. For example scalar multipli-
cation can be written as x = 3 ∗ x and matrix-vector multiplication as x = uv.
These statements can be differentiated depending on whether the variable x on
the left size also occurs on the right side, i.e. x = uv vs. x = ux.

This difference has influence on how the statements are evaluated at runtime.
In the case of x = uv, assuming that the three variables do not alias (guaranteed
by the DSL) and memory has already been allocated, the assignment can be
done directly by evaluating every element of x using u, v and writing it to the
corresponding location in memory. However for x = ux, this is not possible.
This is because for matrix-vector multiplication, in order to calculate one new

6

element of x, all old elements of x are needed. This means that using the same
memory for both reading and writing would give the wrong result. In the case of
sequential execution, the first old element of x would not be readable after the
first new element has been calculated as it has been overwritten, which means
that the second new element cannot be calculated. For parallel execution, the
exact order of read- and write accesses for tensor elements from multiple cores
is not deterministic. In both cases, in order for the calculation to be correct,
all read accesses have to be done before the results are written. This can be
achieved by writing the result to another memory location.

However, this approach has two main disadvantages. First, writing the result
to another memory location increases the amount of memory which is used.
While the memory can be freed after the statement has been executed, it is
still larger during the calculation. As a result, it could happen that either the
available memory is exceeded (e.g. hard drive) such that the calculation can’t
be completed or that slower memory must be used (e.g. L2 instead of L1 cache)
which means that the calculation might be slower. Second, if the result is
expected to be at the same memory location as before, it has to be copied back.
This adds further runtime additionally to the first problem.

The main goal of this thesis is to detect statements where x occurs on the
right side but where the same memory can be used for both reading and writing.
These statements shall be called “compatible statements”. Statements where
x does not occur on the right side can be handled trivially, although it may
be possible to rewrite and optimize them further, re-using memory of other
variables.

Specifically, the statements of interest are those where, in order to calculate
one new element of x, no old elements other than the element itself are needed.
An example of a compatible statement is x = 3 ∗ x. Calculating the first new
element of x only requires the first old element of x. In other words, even though
the old x is needed for calculating the new x, the same memory can be used
because after overwriting an old element, it won’t be needed anymore.

Definition 1 (Compatible statement, informal). A statement x = e is compat-
ible, if for the calculation of one element of x, only the same element is needed
for every occurence of x in e.

Once a statement has been found to be compatible, the same space can
be used for reading and writing. Otherwise it can still be calculated using
different memory. Note that while it would be possible to do the detection at
runtime, doing it at compile-time improves performance and enables further
optimizations, especially if the compiler generates parallel code.

Also note that in-place operations are already used and many libraries and
frameworks feature corresponding operations, functions or arguments. However,
this optimization is done manually by the programmer and not the compiler.

3.1 Detecting compatible statements

Compatible statements generally consist of variables different from x as well
as scalar- and elementwise operations if x is used with them. An example
of a compatible statement which combines all three of these components is
x = x + w ∗ (uv ∗ x) where u is a row vector, v is a column vector and w is
a tensor of same rank and dimensions as x. Calculating uv results in a scalar

7

so uv ∗ x is a scalar multiplication which poses no problem. Also x + w is
an elementwise addition and therefore ok. It should then be intuitive that an
elementwise multiplication of these two expressions and an assignment to x
results in a compatible statement.

From this example, one might try to approach the problem of detecting
compatible statements in a similar fashion, creating a tree of expressions and
marking a node like x+w ∗ (uv ∗ x) as ok if the children, in this example x+w
and (uv ∗ x) are ok and the operation itself, i.e. scalar multiplication is ok.

However, this approach fails if tensor product and contraction are involved in
the expression. As an example, the statement for matrix-vector multiplication
x = (u#x) . [2 3] where u is a matrix and v a vector is not compatible. However,
swapping u and x in the expression to x = (x#u) . [2 3] makes the statement
compatible. While it might not be immediately obvious, the second statement
is a scalar multiplication of x with the trace of u. The two dimensions, 2 and
3 are the two dimensions of u so the contraction ignores x for calculation and
contracts only over u, resulting in the trace. The tensor product and contraction
can also be combined to more complex statements, requiring another approach
for detection of compatible statements.

The intuition from Definition 1 that “only the same element is needed for
every occurence of x in e” can also be formulated as “x may only be accessed at
the same position currently assigned to”. Using this formulation already gives
an intuition on how compatible statements can be detected. In order to check
if a statement is compatible, every occurence of x in the evaluated expression
has to be checked with respect to the indices used for access. If x is only
accessed at the same index currently assigned to, the statement it compatible
and incompatible otherwise. While at runtime concrete numbers are used for
the indices, at compile time the check can be done using the index variable itself.

4 Extension of the DSL

In order to implement this idea, the DSL described in [7] can be extended to
account for compatible statements. This is done by augmenting the context Γ
with the multi index (like [i][j][k] or (ι1, . . . , ιk)) used to access the variable
which is assigned to. Without loss of generality, let this variable be x and the
index be ῑ = (ι1, . . . , ιk). The new context is then denoted as Γ;x;ῑ.

This augmented context determines whether an expression e can be accessed
at a specific index in order for the statement to be compatible. For example
Γ;x;ῑ ⊢c e : (t, κ̄) can be read as “If x is the variable on the left side of the
assignment and accessed at ῑ and e is somewhere on the right side, e can be
accessed at κ̄ and the statement is compatible”.

In order to proof later, that a type system using this context will only detect
statements which are compatible, a formal definition of compatible statements
is needed. The intuition that “x may only be accessed at the same index it is
assigned to” can be expressed by using a function similar to evalΓ,µ(.) with the
difference of removing µ. The reason for this is that µ operates on concrete
numbers like (3,4,5) instead of abstract indices like [i][j][k] or (ι1, ι2, ι3)
which are important here. To achieve this, evalΓ,µ(.) can be split into two new
functions, evalΓ(.) and evalµ(.).

The definition of evalΓ(.) is shown in Figure 5 and very similar to evalΓ,µ(.).

8

evalΓ(xι1,...,ιk) = µ′(xι1,...,ιk)

evalΓ((e)ι1,...,ιk) = evalΓ(eι1,...,ιk)

evalΓ(e0#e1ι01,...,ι0k,ι11,...,ι1l) = evalΓ(e0ι01,...,ι0k) · evalΓ(e1ι11,...,ι1l)

evalΓ(e ˆ [m n]ι1,...,ιm,...,ιn,...,ιk) = evalΓ(eι1,...,ιn,...,ιm,...,ιk)

evalΓ(e0 . [m n]ι1,...,ι̂m,...,ι̂n,...,ιk) =

πm(t)∑
l=1

evalΓ(eι1,...,ιm−1,l,ιm+1,...,ιn−1,l,ιn+1,...,ιk)

where Γ ⊢ e : t

evalΓ(e0⊙ e1ι1,...,ιk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
evalΓ(e0) · evalΓ(e1ι1,...,ιk) if Γ ⊢ e0 : () and ⊙ ≡ ∗

evalΓ(e0ι1,...,ιk) / evalΓ(e1) if Γ ⊢ e1 : () and ⊙ ≡ /

evalΓ(e0ι1,...,ιk)⊙ evalΓ(e1ι1,...,ιk) otherwise

Figure 5: Definition of evalΓ(.)

The difference is that while evalΓ,µ(.) takes an expression and a concrete index
like evalΓ,µ((u+v)3,4,5) and returns a number like 13, evalΓ(.) takes an expression
and an abstract index like evalΓ((u + v)ι1,ι2,ι3) and returns an expression like
µ′(uι1,ι2,ι3) + µ′(vι1,ι2,ι3) where µ′ is a variable. The expression can then be
evaluated through evalµ(.) for a concrete index like (3, 4, 5) by setting µ′ = µ
and ι1 = 3, ι2 = 4, ι3 = 5. Using this evalΓ(.) function, compatible statements
can then be defined formally.

Definition 2 (Compatible statement). Let x = e be a statement and Γ be a
context with x ∈ dom(Γ). Also let ῑ = (ι1, . . . , ιk) be a new multi-index with
k = rank(Γ(x)). The statement is called compatible, if for every µ′(xκ̄) which
results from evalΓ(eῑ), the condition κ̄ = ῑ is fulfilled.

This definition expresses the intuition that in a statement x = e, every
occurence of x must only be accessed at the same index as on the left side.

Using the augmented context, the type system can then be extended using
rules similar to the unaugmented context. The resulting rules are shown in
Figure 6. After that, the rule ok-c-stmt from Figure 7 demands that, in order
for a statement x = e to be compatible according to the type system, it must be
possible to access e at the same index as x according to the type system. In order
to derive a statement of this form, one has to start at the rules tc-var-xy or
tc-var-xx depending on the variable. These rules express, that every variable
except x may be accessed at any index and x may only be accessed at the same
index used on the left side of the assignment. The other rules then express how
one can combine the statements to derive assumptions about the access of more
complex expressions. The rule tc-contr introduces a new index for summing
over the diagonal.

In order to give an example of how this detection would work, consider the
statement x = (x#y) . [2 3] where x is a vector and y a matrix. Showing that
this statement is compatible is done by checking if Γ ⊢ x = (x#y) . [2 3] ok has
a derivation according to ok-c-stmt from Figure 7. The derivation tree for this
is shown in Figure 8.

9

y ∈ dom(Γ) t = Γ(y) k = rank(t) y ̸= x

Γ;x;ῑ ⊢c y : (t, κ̄) for any ῑ, κ̄ = (κ1, . . . , κk)
tc-var-xy

x ∈ dom(Γ) t = Γ(x)

Γ;x;ῑ ⊢c x : (t, ῑ)
tc-var-xx

Γ;x;ῑ ⊢c e : (t, κ̄)

Γ;x;ῑ ⊢c (e) : (t, κ̄)
tc-paren

Γ;x;ῑ ⊢c e0 : ((d01, . . . , d0k), (κ01, . . . , κ0k))

Γ;x;ῑ ⊢c e1 : ((d11, . . . , d1l), (κ11, . . . , κ1l))

Γ;x;ῑ ⊢c e0#e1 : (t′, κ̄′)

t′ = (d01, . . . , d0k, d11, . . . , d1l)

κ̄′ = (κ01, . . . , κ0k, κ11, . . . , κ1l)

tc-prod

Γ;x;ῑ ⊢c e : (t, κ̄)

t = (d1, . . . , dm, . . . , dn, . . . , dk)

κ̄′ = (κ1, . . . , κm, . . . , κn, . . . , κk)

Γ;x;ῑ ⊢c e ˆ [m n] : (t′, κ̄′)

t = (d1, . . . , dn, . . . , dm, . . . , dk)

κ̄′ = (κ1, . . . , κn, . . . , κm, . . . , κk)

tc-trans

Γ;x;ῑ ⊢c e : (t, κ̄)

t = (d1, . . . , dm, . . . , dn, . . . , dk) with dm = dn

κ̄ = (κ1, . . . , κm, . . . , κn, . . . , κk) with κm = κn

κm a fresh index

Γ;x;ῑ ⊢c e . [m n] : (t′, κ̄′)

t = (d1, . . . , d̂m, . . . , d̂n, . . . , dk)

κ̄ = (κ1, . . . , κ̂m, . . . , κ̂n, . . . , κk)

tc-contr

Γ;x;ῑ ⊢c e0 : (t, κ̄) Γ;x;ῑ ⊢c e1 : (t, κ̄) ⊙ ∈ {+,−, ∗, /}
Γ;x;ῑ ⊢c e0⊙ e1 : (t, κ̄)

tc-elem

Γ;x;ῑ ⊢c e0 : ((), ()) Γ;x;ῑ ⊢c e1 : (t1, κ̄)

Γ;x;ῑ ⊢c e0 ∗ e1 : (t1, κ̄)
tc-smul

Γ;x;ῑ ⊢c e0 : (t0, κ̄) Γ;x;ῑ ⊢c e1 : ((), ())

Γ;x;ῑ ⊢c e0/e1 : (t1, κ̄)
tc-sdiv

Figure 6: Compatible expression typing

10

x ∈ dom(Γ) t = Γ(x)

k = rank(t) ῑ = (ι1, . . . , ιk)

Γ;x;ῑ ⊢c e : (t, ῑ)

Γ ⊢ x = e ok
ok-c-stmt

Figure 7: Well-formedness of compatible statements.

x ∈ dom(Γ)

t1 = Γ(x)

x ∈ dom(Γ)

t1 = (d1) = Γ(x)
tc-var-xx

Γ;x;ῑ ⊢c x : (t1, ῑ)

y ∈ dom(Γ) y ̸= x

t2 = (d2, d2) = Γ(y)
tc-var-xy

Γ;x;ῑ ⊢c y : (t2, κ̄)

for any κ̄ = (κ2, κ3)
tc-prod

Γ;x;ῑ ⊢c x#y : ((d1, d2, d2), (ι1, κ1, κ1))
tc-paren

Γ;x;ῑ ⊢c (x#y) : ((d1, d2, d2), (ι1, κ1, κ1))
tc-contr

Γ;x;ῑ ⊢c (x#y) . [2 3] : (t1, ῑ)
ok-c-stmt

Γ ⊢ x = (x#y) . [2 3] ok

Figure 8: Derivation tree for x = (x#y) . [2 3]

While inference starts from the top of the tree, an algorithm for finding an
derivation tree would start from the bottom. This is because of the quantifi-
cation “for any κ̄” in tc-var-xy, which allows variables other than x to be
accessed at any index. Because of this, a statement like Γ;x;ῑ ⊢c e : (t, κ̄) does
not always have a unique (t, κ̄), even though t is still unique as will be shown
later. While it is possible to implement this universal quantification, it is easier
to start from the bottom, as only a single index will be needed at a time.

Starting from Γ ⊢ x = (x#y) . [2 3] ok, only ok-c-stmt can be applied to
derive this statement, demanding that x is only accessed at the same index as
(x#y) . [2 3]. As the expression is a contraction, only tc-contr can be applied,
introducing a new dimension and index. Contraction sums over a diagonal
so the dimension and index are used two times each. tc-paren simply takes
the inner expression and continues with the same type. tc-prod splits both the
dimensions as well as the index. It therefore requires x to be accessed at ῑ = (ι1)
which is allowed according to tc-var-xx and y to be accessed at (κ1, κ1). y can
be accessed for any (κ2, κ3), so this is especially true for κ2 = κ3 = κ1.

Changing the order of x and y makes the statement incompatible. Before
changing the order, the contraction has been done over the matrix y and x
has only been accessed at the assigned index. After changing the order, the
contraction is done over the second dimension of y as well as x. This means, that
x is now accessed at a new index different from the index used for assignment.
This fact also shows in the derivation tree, which is now impossible to construct
as can be seen in Figure 9. The tree is approximately the same as for Figure 8,
however when dividing the indices onto y and x, x must now be accessed at
a new index κ1 ̸= ῑ. As statements about x can only be derived through
tc-var-xx and this rule only allows ῑ for access, it is not possible to find a
precondition for this statement. It is however still possible to find a derivation
in the unaugmented type system, as indices are not relevant there. Removing

11

the augmentation and changing the rules to the unaugmented versions yields a
derivation tree similar to the one from Figure 4 on page 5.

x ∈ dom(Γ)

t1 = Γ(x)

y ∈ dom(Γ) y ̸= x

t1 = (d1, d2) = Γ(y)
tc-var-xy

Γ;x;ῑ ⊢c y : (t1, κ̄)

for any κ̄ = (κ2, κ3)

no possible precondition
tc-var-xx

Γ;x;ῑ ⊢c x : ((d2), (κ1))
tc-prod

Γ;x;ῑ ⊢c y#x : ((d1, d2, d2), (ι1, κ1, κ1))
tc-paren

Γ;x;ῑ ⊢c (y#x) : ((d1, d2, d2), (ι1, κ1, κ1))
tc-contr

Γ;x;ῑ ⊢c (y#x) . [2 3] : (t1, ῑ)
ok-c-stmt

Γ ⊢ x = (y#x) . [2 3] ok

Figure 9: Attempted derivation tree for x = (y#x) . [2 3]

If the statement is determined to be compatible, the evaluation can pro-
ceed without using temporary variables. This is done by changing the rule
ev-stmt, removing the temporary variable ri and instead assigning the result
from evalΓ,µ(ei) directly.

x ∈ dom(Γ) t = Γ(x) ∀i≤txi ∈ dom(µ)

⟨µ, x = e⟩ →Γ ⟨µ{∀i≤txi ↦→ evalΓ,µ(ei)}, ∅⟩
ev-c-stmt

The rule is not changed directly, instead a new rule with the changes is intro-
duced. This is because if the statement is incompatible, it can still be evaluated
using the unaugmented type system and the rule ev-stmt, however this assigns
using temporary variables ri for which space has to be allocated.

5 Correctness of the extension

Having established the type system, the next step is to show that it is correct,
i.e. that compatibility under the type system does not differ from the one in
Definition 2. In order to make this proof easier, it will be helpful if the derivation
of a specific statement is unique, i.e. there are not multiple derivations of a
statement like Γ;x;ῑ ⊢c e : (t, κ̄). Because a statement about the multiplication
or division of two scalars can both be derived from tc-smul and tc-sdiv, this
is currently not the case. However, changing these rules will ensure uniqueness
as expressed by the following lemma.

Lemma 1 (Uniqueness of type derivations). Assume that the rules tc-smul

and tc-sdiv from Figure 6 have been replaced with these:

Γ;x;ῑ ⊢c e0 : ((), ()) Γ;x;ῑ ⊢c e1 : (t1, κ̄) t1 ̸= ()

Γ;x;ῑ ⊢c e0 ∗ e1 : (t1, κ̄)
tc-smul’

Γ;x;ῑ ⊢c e0 : (t0, κ̄) Γ;x;ῑ ⊢c e1 : ((), ()) t0 ̸= ()

Γ;x;ῑ ⊢c e0/e1 : (t0, κ̄)
tc-sdiv’

Then Γ;x;ῑ ⊢c e : (t, κ̄) has at most one derivation up to renaming of new indices.

12

Proof. By induction on the structure of e.

Case e ≡ x: Only tc-var-xx can be applied so Γ;x;ῑ ⊢c e : (t, κ̄) has exactly
one derivation for κ̄ = ῑ and zero otherwise.

Case e ≡ y ̸≡ x: Only tc-var-xy can be applied so Γ;x;ῑ ⊢c e : (t, κ̄) has exactly
one derivation for every κ̄ = (κ1, . . . , κk) with k = rank(t) and zero otherwise.

Case e ≡ e0#e1: Given Γ;x;ῑ ⊢c e : (t, κ̄), there is exactly one (t0, κ̄0), (t1, κ̄1)
such that Γ;x;ῑ ⊢c e0 : (t0, κ̄0), Γ;x;ῑ ⊢c e1 : (t1, κ̄1) and tc-prod can be applied.
As both of these statements have at most one derivation and tc-prod is the
only appliable rule, Γ;x;ῑ ⊢c e : (t, κ̄) also has at most one derivation.

Case e ≡ (e0) and e ≡ e0 ˆ [m n] are handled analogously.

Case e ≡ e0 . [m n]: While there are multiple (t0, κ̄0) where Γ;x;ῑ ⊢c e : (t, κ̄)
follows from Γ;x;ῑ ⊢c e0 : (t0, κ̄0) by applying tc-contr, they only differ by the
naming of the fresh index.

Case e ≡ e0 ⊙ e1 where ⊙ ∈ {+,−, ∗, /}: If ⊙ ≡ ∗, Γ ⊢ e0 : () and Γ(e1) ̸= (),
only tc-smul’ can be applied as tc-elem would imply through de-augmentation
that Γ(e0) = Γ(e1). As both Γ;x;ῑ ⊢c e0 : ((), ()) and Γ;x;ῑ ⊢c e1 : (t, κ̄) have a
unique derivation, the same is true for Γ;x;ῑ ⊢c e : (t, κ̄). The same schema can
be applied for Γ ⊢ e1 : () using tc-elem, Γ(e0) ̸= () and ⊙ ≡ /. The last case
with ⊙ ∈ {+,−} is analogous to e0#e1.

As shown in the last section, the rules in Figure 6 are similar to the the type
system described in [7]. Given a derivation of a statement like Γ;x;ῑ ⊢c e : (t, κ̄),
removing the augmentation of the contexts and types yields a derivation for
Γ ⊢ e : t by the rules in [7]. This is also true after the rules have been changed
in Lemma 1. Note however, that there can be multiple derivations of Γ ⊢ e : t,
as this type system has not been changed similar to Lemma 1. This means,
that the opposite direction is not always true. To make statements about this
direction, the following definition is useful.

Definition 3 (Subexpressions). Given two expressions e, e′ such that Γ ⊢ e : t
and Γ ⊢ e′ : t′. If there exists a derivation of Γ ⊢ e : t in which Γ ⊢ e′ : t′

occurs, e′ is a subexpression of e. Additionally, as evalΓ(.) defines an algebraic
expression, subexpressions are already defined for it.

The next lemma about these subexpressions will be helpful.

Lemma 2. If Γ ⊢ e′ : t′ occurs in one derivation of Γ ⊢ e : t, then it occurs in
all derivations of Γ ⊢ e : t.

Proof. All derivations of Γ ⊢ e : t only differ by whether t-smul / t-sdiv or
t-elem have been used in the case of scalar-scalar multiplication or division and
all three rules require the same precondition in this case.

The following two lemmas then connect the two type systems.

Lemma 3 (De-augmentation of contexts and types). Let e be an expression
and let x be a variable (which is also an expression).

1. If Γ;x;ῑ ⊢c e : (t, κ̄), then also Γ ⊢ e : t

13

2. If x is not a subexpression of e, then Γ;x;ῑ ⊢c e : (t, κ̄) ⇔ Γ ⊢ e : t for any
ῑ, κ̄ = (κ1, . . . , κk) where k = rank(t)

Proof. For the ⇐ direction of 2. by induction on the structure of e

Case e ≡ y: Inverting t-var implies y ∈ dom(Γ) and t = Γ(y). As x is not a
subexpression of e, Γ ⊢ x : Γ(x) does not occur in any derivation of Γ ⊢ e : t.
Therefore e ̸= x and y ̸= x, so the statement follows from tc-var-xy.

Case e ≡ e0#e1: As x is not a subexpression of e, it is also not a subexpression
of both e0, e1. Otherwise, in the case of e0, this would mean that Γ ⊢ x : Γ(x)
would occur in any derivation of Γ ⊢ e0 : Γ(e0) and as Γ ⊢ e0 : Γ(e0) is needed
for Γ ⊢ e : Γ(e), Γ ⊢ x : Γ(x) would occur in a derivation of Γ ⊢ e : Γ(e) which
contradicts the fact that x is not a subexpression of e. The same is true for
e1. Therefore the induction hypothesis can be applied. Starting from Γ ⊢ e : t
where t = (d01, . . . , d0k, d11, . . . , d1l):

t-prod inverted
=========⇒ Γ ⊢ e0 : (d01, . . . , d0k)

Γ ⊢ e1 : (d11, . . . , d1l)
induction
======⇒ Γ;x;ῑ ⊢c e0 : ((d01, . . . , d0k), κ̄0) for any ῑ, κ̄0 = (κ01, . . . , κ0k)

Γ;x;ῑ ⊢c e1 : ((d11, . . . , d1l), κ̄1) for any ῑ, κ̄1 = (κ11, . . . , κ1l)
tc-prod
====⇒ Γ;x;ῑ ⊢c e : (t, κ̄) for any ῑ, κ̄ = (κ01, . . . , κ0k, κ11, . . . , κ1l)

Case e ≡ (e0) and e ≡ e0 ˆ [m n] are handled analogously.

Case e ≡ e0 . [m n]: Rule t-contr can’t be inverted for specific dm = dn, how-
ever there exists some dm = dn such that Γ ⊢ e0 : (d1, . . . , dm, . . . , dn, . . . , dk)
and these dm = dn are removed when applying tc-contr after the induction
hypothesis.

Case e ≡ e0 ⊙ e1 where ⊙ ∈ {+,−, ∗, /}: When Γ ⊢ e : () and ⊙ ∈ {∗, /}, the
exact rule used can’t be determined but in all three rules t-elem, t-smul and
t-sdiv the premise contains both Γ ⊢ e0 : (), Γ ⊢ e1 : () so tc-elem can be
applied after the induction hypothesis. Otherwise one has to differentiate on
whether e is a scalar multiplication / division or an elementwise operation and
use the corresponding rules analogously to e0#e1.

Lemma 4 (Type derivations of subexpressions). Let Γ;x;ῑ ⊢c e : (t, κ̄) and let
e′ be a subexpression of e. There exists t′ and κ̄′ such that Γ;x;ῑ ⊢c e

′ : (t′, κ̄′)
and Γ;x;ῑ ⊢c e

′ : (t′, κ̄′) occurs in the derivation of Γ;x;ῑ ⊢c e : (t, κ̄).

Proof. Take the derivation of Γ;x;ῑ ⊢c e : (t, κ̄). Removing the augmentation
from the context and the types yields a derivation of Γ ⊢ e : t using Lemma 3.
If Γ;x;ῑ ⊢c e′ : (t′, κ̄′) does not occur in the derivation of Γ;x;ῑ ⊢c e : (t, κ̄)
for some t′, κ̄′, Γ ⊢ e′ : t′ also does not occur in the yielded derivation of
Γ ⊢ e : t. According to Lemma 2, this means that Γ ⊢ e′ : t′ does not occur
in any derivation of Γ ⊢ e : t. However this violates the premisse that e′ is a
subexpression of e.

Because the definition for compatible statements (Definition 2) is based on
evalΓ(.), establishing a connection between the type system and evalΓ(.) makes
it possible to proof the correctness of the type system. Having established a

14

connection between the augmented and unaugmented type system, the following
theorem then connects the augmented type system and the evalΓ(.) function.

Theorem 1. Let Γ;x;ῑ ⊢c e : (t, κ̄) and let e′ be a subexpression of e. Then for
all κ̄′, the following are equivalent up to renaming of fresh indices:

(a) evalΓ(e
′
κ̄′) is a subexpression of evalΓ(eκ̄).

(b) Γ;x;ῑ ⊢c e
′ : (t′, κ̄′) occurs in the derivation of Γ;x;ῑ ⊢c e : (t, κ̄).

Proof. By induction on the structure of e.

The cases below assume that e′ is a “real” subexpression of e, i.e. not e ≡ e′.
If this is the case, both (a) and (b) are always true and therefore equivalent.
For the following cases, it will therefore be assumed that e ̸≡ e′. The cases
e ≡ x and e ≡ y cannot exist unless e ≡ e′, as otherwise e′ would not be a
subexpression of e. The theorem is therefore true for both of these cases.

Case e ≡ e0#e1, (a) ⇒ (b): As evalΓ(eκ̄) = evalΓ(e0κ̄0
) · evalΓ(e1κ̄1

), with
κ̄ = (κ01, . . . , κ0k, κ11, . . . , κ1l), κ̄0 = (κ01, . . . , κ0k) and κ̄1 = (κ11, . . . , κ1l),
evalΓ(e

′
κ̄′) is a subexpression of at least one of evalΓ(e0κ̄0), evalΓ(e1κ̄1). Using

Γ;x;ῑ ⊢c e : (t, κ̄) with t = (d01, . . . , d0k, d11, . . . , d1l) and inverting tc-prod

gives Γ;x;ῑ ⊢c e0 : (t0, κ̄0) and Γ;x;ῑ ⊢c e1 : (t1, κ̄1) where t0 = (d01, . . . , d0k) and
t1 = (d11, . . . , d1l). The induction hypothesis implies that Γ;x;ῑ ⊢c e′ : (t′, κ̄′)
occurs in the derivation of at least Γ;x;ῑ ⊢c e0 : (t0, κ̄0) or Γ;x;ῑ ⊢c e1 : (t1, κ̄1).
As both of these statements are needed to conclude that Γ;x;ῑ ⊢c e : (t, κ̄),
Γ;x;ῑ ⊢c e

′ : (t′, κ̄′) occurs in the derivation of Γ;x;ῑ ⊢c e : (t, κ̄).
(b) ⇒ (a): Γ;x;ῑ ⊢c e : (t, κ̄) can only be concluded using tc-prod and both
Γ;x;ῑ ⊢c e0 : (t0, κ̄0), Γ;x;ῑ ⊢c e1 : (t1, κ̄1). Therefore Γ;x;ῑ ⊢c e′ : (t′, κ̄′)
occurs in the derivation of at least one of these two statements. Applying the
induction hypothesis implies that evalΓ(e

′
κ̄′) is a subexpression of at least one

of evalΓ(e0κ̄0), evalΓ(e1κ̄1). As both of these expressions are subexpressions of
evalΓ(eκ̄), evalΓ(e

′
κ̄′) is a subexpression of evalΓ(eκ̄).

Case e ≡ (e0) and e ≡ e0 ˆ [m n] are handled analogously.

Case e ≡ e0 . [m n], (a) ⇒ (b): Using the prerequisite Γ;x;ῑ ⊢c e : (t, κ̄) where

t = (d1, . . . , d̂m, . . . , d̂n, . . . , dk), κ̄ = (κ1, . . . , κ̂m, . . . , κ̂n, . . . , κk) and inverting
tc-contr implies Γ;x;ῑ ⊢c e0 : (t0, κ̄0) with t0 = (d1, . . . , dm, . . . , dn, . . . , dk),
κ̄0 = (κ1, . . . , κm, . . . , κn, . . . , κk) where κm = κn is a fresh index. Because
evalΓ(e

′
κ̄′) is a subexpression of evalΓ(e0 . [m n]κ̄), it is also a subexpression of

evalΓ(e0κ̄0) where the sum index l = κm = κn ist a fresh index ranging from 1 to
πm(t). Using the induction hypothesis implies that Γ;x;ῑ ⊢c e

′ : (t′, κ̄′) occurs in
the derivation of Γ;x;ῑ ⊢c e0 : (t0, κ̄0). As this statement is a necessary condition
to conclude that Γ;x;ῑ ⊢c e : (t, κ̄), Γ;x;ῑ ⊢c e′ : (t′, κ̄′) occurs in the derivation
of Γ;x;ῑ ⊢c e : (t, κ̄).
(b) ⇒ (a): Only tc-contr can be applied to conclude Γ;x;ῑ ⊢c e : (t, κ̄).
Therefore Γ;x;ῑ ⊢c e′ : (t′, κ̄′) occurs in the derivation of Γ;x;ῑ ⊢c e0 : (t0, κ̄0).
By induction, evalΓ(e

′
κ̄′) is a subexpression of evalΓ(e0κ̄0). As this expression is

always a subexpression of evalΓ(eκ̄) up to renaming of the fresh index, evalΓ(e
′
κ̄′)

is a subexpression of evalΓ(eκ̄).

Case e ≡ e0 ⊙ e1 where ⊙ ∈ {+,−, ∗, /}, (a) ⇒ (b): If ⊙ ≡ ∗ and Γ ⊢
e0 : (), evalΓ(e

′
κ̄′) is a subexpression of at least one of evalΓ(e0), evalΓ(e1κ̄). If

15

additionally Γ ⊢ e1 : () then the only rule which can be applied is tc-elem as
tc-smul’ needs Γ;x;ῑ ⊢c e1 : (t1, κ̄) with t1 ̸= () as a precondition which by
Lemma 3 would imply Γ ⊢ e1 : t1. Therefore tc-elem can be inverted which
gives Γ;x;ῑ ⊢c e0 : (t, κ̄), Γ;x;ῑ ⊢c e1 : (t, κ̄). Lemma 3 implies Γ ⊢ e0 : t. As
Γ(e0) is unique, t = () and therefore κ̄ = (). 3 Using the induction hypothesis
implies that Γ;x;ῑ ⊢c e′ : (t′, κ̄′) occurs in the derivation of at least one of
the two statements. As both of the two statements are needed in tc-elem,
Γ;x;ῑ ⊢c e′ : (t′, κ̄′) occurs in the derivation of Γ;x;ῑ ⊢c e : (t, κ̄). The proof for
Γ(e1) ̸= () is analogous as it is for Γ(e0) ̸= (). The same is true for ⊙ ≡ /. The
last case for ⊙ ∈ {+,−} is analogous to e0#e1.
(b) ⇒ (a): If ⊙ ≡ ∗, Γ ⊢ e0 : () and Γ ⊢ e1 : () then only tc-elem can be
applied to conclude Γ;x;ῑ ⊢c e : (t, κ̄). Therefore Γ;x;ῑ ⊢c e′ : (t′, κ̄′) occurs in
the derivation of at least one of Γ;x;ῑ ⊢c e0 : ((), ()), Γ;x;ῑ ⊢c e1 : ((), ()). By
induction evalΓ(e

′
κ̄′) is a subexpression of at least one of evalΓ(e0), evalΓ(e1).

As both of these expressions are subexpressions of evalΓ(eκ̄), evalΓ(e
′
κ̄′) is a

subexpression of evalΓ(eκ̄). The remaining cases are analogous.

Using this relationship, one can then proof the correctness of the type sys-
tem. This is done by showing that, given a statement x = e where x is also a
subexpression of e, if the type system implies that the statement is compatible,
then x is only accessed at the same index currently assigned to.

Corollary 1 (Correctness of the type system). Let Γ;x;ῑ ⊢c e : (t, ῑ). Assume
that the expression x (variable) is a subexpression of e. Then the following hold:

(a) evalΓ(xῑ) is a subexpression of evalΓ(eῑ).

(b) If evalΓ(xκ̄) is a subexpression of evalΓ(eῑ), then κ̄ = ῑ.

Proof. (a) Let t′ = Γ(x), t = Γ(e). As x is a subexpression of e, by definition
Γ ⊢ x : t′ occurs in the derivation of Γ ⊢ e : t. Rule tc-var-xx implies
Γ;x;ῑ ⊢c x : (t′, ῑ). Also Γ;x;ῑ ⊢c e : (t, ῑ) is given. Using Lemma 4 implies
that Γ;x;ῑ ⊢c x : (t′, ῑ) occurs in the derivation of Γ;x;ῑ ⊢c e : (t, ῑ). Applying
Theorem 1 implies that evalΓ(xῑ) is a subexpression of evalΓ(eῑ).

(b) Theorem 1 and (a) implies that Γ;x;ῑ ⊢c x : (t′, κ̄) occurs in the derivation
of Γ;x;ῑ ⊢c e : (t, ῑ). Rule tc-var-xx then implies that κ̄ = ῑ.

Note that µ′(xκ̄) can only result from evalΓ(xκ̄) and (b) implies that for
every evalΓ(xκ̄) which results from evalΓ(eῑ), the condition κ̄ = ῑ is fulfilled.
This means, that ῑ = κ̄ is also true for every µ′(xκ̄) resulting from evalΓ(eῑ). In
other words, the statement is compatible.

The corollary therefore proofs, that if the statement is compatible under
the type system i.e. Γ;x;ῑ ⊢c e : (t, ῑ), it is also compatible by Definition 2. In
other words, the type system is correct. It does not show however, that if the
statement is compatible according to Definition 2, then it is also compatible
under the type system, i.e. the type system is optimal. This can be expressed
by the following conjecture, which is however left for further work. The case if
x is not a subexpression of e has already be shown by Lemma 3.

3 It is not possible to derive a statement of the form Γ;x;ῑ ⊢c e : (t, κ̄) with t = (d1, . . . , dk1),
κ̄ = (κ1, . . . , κk2) where k1 ̸= k2. This is because there is no rule which has no statements or
only statements where k1 = k2 as conditions to derive an statement where k1 ̸= k2

16

Conjecture 1 (Optimality of the type system). Let x be a subexpression of e
and let ῑ be an arbitary index. Then if for every evalΓ(xκ̄) which is a subexpres-
sion of evalΓ(eῑ) the condition κ̄ = ῑ is fulfilled, the statement Γ;x;ῑ ⊢c e : (t, ῑ)
has a derivation.

6 Performance evaluation

In order to evaluate the impact, optimizations based on compatible statements
could have, different kernels have been measured. The two most important
kernels are scalar operations and elementwise operations as these can be seen
as the basic building blocks for compatible statements.

As parallelization is an often used tool, it is also interesting to evaluate these
kernels in a parallel setting. This has been achieved by adding OpenMP [6]
pragmas to the code in order to evaluate it using multiple CPU cores.

Normally, to compute a statement in the DSL, temporary memory is necces-
sary to store the result of the calculation. Additionally, if the result is expected
to be in a certain memory location, it must be copied back. However, if it is
known that a statement is compatible, one can instead use the same memory
for reading and writing, resulting in a possible speedup. In Section 6.1, we
therefore compare two versions of different kernels, one writing inplace and the
other writing to another location and then copying back.

If the memory location of the result can be changed, the copy operation is
not needed. However, different memory locations are still used for input and
output tensors. A possible speedup of this version is discussed in Section 6.2.

6.1 Copy vs. in-place (avoid-copy)

The first kernel of interest is multiplication of a vector with a scalar. The code
for the version using a temporary variable is depicted in Figure 10a while the
version without in Figure 10b. In the single core version, the OpenMP pragmas
are removed.

#pragma omp parallel for

for (int i = 0; i < N; i++)

xtmp[i] = s * x[i];

#pragma omp parallel for

for (int i = 0; i < N; i++)

x[i] = xtmp[i];

(a) with a temporary variable

#pragma omp parallel for

for (int i = 0; i < N; i++)

x[i] = s * x[i];

(b) without a temporary variable

Figure 10: Code for scalar multiplication

Comparing the runtime of these versions and plotting the speedup for differ-
ent amount of cores then yields the graph from Figure 11. As can be seen, the
speedup is practically independent of the amount of cores used for computation
and is around 1.859x. As the standard deviation is up to 3% and the amount
of repetitions is 27, the standard error of the mean is around 0.2%. The last
decimal might therefore not have much significance.

17

Figure 11: Scalar multiplication, N = 1 000 000, REP = 27

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

2

number of cores

co
p
y
/
in
p
la
ce

ru
n
ti
m
e

The second kernel is elementwise multiplication, with the code shown in
Figure 12. Measuring this kernel yields a plot very similar to Figure 11. The
only difference is that the speedup is approximately constant around 2.007x.

#pragma omp parallel for

for (int i = 0; i < N; i++)

xtmp[i] = x[i] * v[i];

#pragma omp parallel for

for (int i = 0; i < N; i++)

x[i] = xtmp[i];

(a) with a temporary variable

#pragma omp parallel for

for (int i = 0; i < N; i++)

x[i] = x[i] * v[i];

(b) without a temporary variable

Figure 12: Code for elementwise multiplication

The third measured kernel is a linear combination. It can be expressed as
x = s1 ∗ x+ s2 ∗ u+ s3 ∗ v where s1, s2, s3 are scalars and x, u, v vectors of the
same size. The measured speedup for this kernel is again almost independent
of the number of cores and is around 1.697x.

As can be seen, the speedup gained by re-using the memory decreases with
an increasing kernel complexity. This result is not suprising as the time taken
for the copy-operation is approximately constant while the computation time
for the kernel itself only increases. Notably however, the kernel for elementwise
multiplication results in a higher speedup than for scalar multiplication.

This result is also visible when analysing kernels like x = uv ∗ x where uv is
a matrix-vector multiplication resulting in a vector which is then elementwise
mutliplied with x. The code for this kernel is shown in Figure 13. Note that
the use of a single temporary variable is allowed. The goal is to prevent copying
the whole tensor (vector).

In this case, the speedup of re-using memory is not independent of N. For
the previous kernels, the runtime complexity of both the copy operation as well
as the kernel itself was O(N). The constant factor between these two runtimes
was equal to the gained speedup minus one. However as the runtime complexity
of this kernel is O(N2) while the copy operation is still O(N), it is necessary to
plot the speedup for different N.

As can be seen from Figure 14, the speedup gained by re-using memory

18

for (int i = 0; i < N; i++) {

double tmp = 0.0;

for (int j = 0; j < N; j++)

tmp += u[i][j] * v[j];

xtmp[i] = tmp * x[i];

}

for (int i = 0; i < N; i++)

x[i] = xtmp[i];

(a) with a temporary variable

for (int i = 0; i < N; i++) {

double tmp = 0.0;

for (int j = 0; j < N; j++)

tmp += u[i][j] * v[j];

x[i] *= tmp;

}

(b) without a temporary variable

Figure 13: Code for matrix-vector elementwise multiplication (x = uv ∗ x)

Figure 14: Matrix-vector elementwise multiplication (x = uv ∗ x)

0 20 40 60 80 100 120 140 160 180 200
1

1.2

1.4

N

co
p
y
/
in
p
la
ce

ru
n
ti
m
e

gets smaller as N increases. The reason for this is that while the runtime of
the copy operation increases lineary with N, the runtime of the kernel increases
quadratically and therfore the percentage of the runtime which is due to the
copy operation gets smaller with increasing N. However even for large N like 200,
there is still a speedup of approximately 1.0075x (REP = 215 ⇒ σ− ≈ 0.00016x)
which might be relevant for long running computations.

Generally, it can be said that the higher the fraction of data size to kernel
runtime is, the more data must be copied which results in a higher speedup
when re-using memory. In the case of scalar multiplication, both the data size
and runtime are in O(N) which results in a high speedup. Note that the data
size does not always equal N, e.g. for matrix-matrix multiplication, the data size
is in O(N2) and the runtime in O(N3).

6.2 Other variable vs. in-place (reduce-cache-miss)

6.2.1 Explanation of the optimization

The kernels of interest are the same as in the last section. However the compared
versions include no copy operation. The only difference between the two versions
is the variable they write to. For example, the code for scalar multiplication is
shown in Figure 15.

The expectation might be that the code from Figure 15b is faster than the
code from Figure 15a for some N. For example, if the L1 data cache size is 32K

19

#pragma omp parallel for

for (int i = 0; i < N; i++)

y[i] = s * x[i];

(a) write to different variable

#pragma omp parallel for

for (int i = 0; i < N; i++)

x[i] = s * x[i];

(b) write to same variable

Figure 15: Code for scalar multiplication

and x has a size of 25K, it will not fit into cache twice. This means that for
Figure 15a, only one of x, y can fit inside the cache at one time.

When the code from Figure 15a gets executed, after a number of iterations
parts of both x and y will be in the cache. While it might not be necessary
for y to be cached, the exact behaviour depends on a variety of factors like the
type of computing unit (CPU, GPU4) or the important memory for the data
sizes (cache, DRAM, etc.) and might not be changeable by the programmer.
Also, while it might be possible that writing y overwrites only cachelines which
belong to the part of x which has already been used, this is not guaranteed and
it is not realistic to expect it to happen every time. The main reason why the
code from Figure 15b might not be noticable faster is prefetching, as only the
next few iterations are important for low-latency access.

In order to explain why the comparison is useful in the context of this thesis,
consider the two code examples from Figure 16 using the defined DSL.

y = s * x

v = y # w

(a) write to different variable

x = s * x

v = x # w

(b) write to same variable

Figure 16: Example code from the DSL

Given Figure 16a, if the compiler knows, e.g. through liveness analysis, that
x will not be needed in the future, it can transform the code to the faster running
Figure 16b, replacing every occurence of y after the first line with x. Note that
this is different from re-using the same memory of x in general, the difference
being that x is re-used in the same statement where it is also used for the last
time, possibly resulting in better performance. Also, in general, the memory
of x can only be re-used after the first line. This specific optimization is only
possible if the transformation of the first statement would be compatible.

6.2.2 Measuring the impact

As the cache sizes are important in order to understand the results, they are
specified beforehand. All of the measurements have been done using an Intel
Xeon CPU E5-2680 v3 with cache sizes L1d/32K, L2/256K, L3/30M.

From these cache sizes one can already calculate the N’s for which interesting
results might happen. For the L1d cache, a vector with size N = 4096 would
fill the whole cache. In the case of elementwise multiplication, N = 1024 and
N = 2048 are therefore relevant. As the runtime for these small N’s on multiple

4although only CPUs are tested here, in general the behaviour depends on the type of
computing unit which is why GPUs are mentioned here

20

cores would mostly be dominated by the thread overhead resulting in very high
variance, only a single core is used.

Figure 17: Elementwise multiplication

102 103 104 105 106 107
0.9

1

1.1

N

ot
h
er

va
r.

/
in
p
la
ce

ti
m
e

Measuring elementwise multiplication does not result in any measurable dif-
ference for the sizes relevant for L1d and L2 cache as shown in Figure 17. This
is probably due to data prefetching as the access pattern is very predictable.
However N = 221 does result in a speed difference of 7.8%. In this case, the
size of a single vector is 16M. The version which writes to a different variable
(u = v * x) uses 3 vectors and does not fit into L3 cache while the other ver-
sion (x = v * x) uses 2 vectors which almost fit into L3 cache. The difference
is therefore only visible once the last cache is exceeded and DRAM must be
used. While the speed difference for larger N’s becomes lower as both versions
have to use more DRAM, it is still 6.1% for N = 224.

The same is true for scalar multiplication. The difference becomes measure-
able at N = 221 with 3.3%, peaks at N = 223 with 8.2% and then falls again to
6.8% with N = 224. These numbers again correspond to the L3 cache size.

It can be estimated, that the speedup gained from the optimization is mostly
due to avoiding cache misses. As for kernels with a simple access pattern, the
number of avoided cache misses is correlated to the size of the “saved variable”,
this size has influence on the speedup. For elementwise multiplication, 3 vectors
of size N are reduced to 2 vectors of size N (33% reduction), resulting in a speed
difference of up to 7.8%. For scalar multiplication, 2 vectors of are reduced to
a single vector (50% reduction), resulting in a speed difference of up to 8.2%.
The same result also shows for the linear combination reducing 4 to 3 vectors
(25% reduction) with a resulting difference of 4.3% for N = 221.

However, this means that for simple kernels, if the time complexity of the
kernel and the space complexity of the “saved variable” are different, no mea-
surable speedup will be achieved for larger N. That this is the case can be seen
using the matrix-vector elementwise multiplication kernel from Figure 13. The
resulting plot (not shown here) is simply an approximately straight line with
speedup equal to 1x. Therefore, with a time complexity of O(N2) and a space
complexity of O(N), no significant speedup (larger than 1x) is measurable.

6.3 Memory reusing for incompatible statements

The avoid-copy and reduce-cache-miss optimization presented in Sections 6.1
and 6.2 are based on the concept of compatible statements introduced in this

21

thesis. This means, that they can only be applied if statements are compatible or
can be made compatible. The goal of this section is to look at a kernel consisting
of incompatible statements, to see whether similar optimizations can be applied.
The kernel which will be analysed is called the “Interpolation operator” and is
motivated by its usage in computational fluid dynamics and a project related
to this thesis, CFDlang [8] which uses a similar DSL.

Changing the DSL notation slightly, the interpolation kernel can be written
as v = A # B # C # u . [[2 9] [4 8] [6 7]]. A, B, C are matrices and v, u
are tensors of rank 3. The double brackets denote a group of contractions which
is applied without changing the dimension numbers as it would normally be
the case if the contractions would be applied in succession. As calculating the
tensor product of the 4 tensors would result in a tensor of rank 9, this calculation
is normally done in multiple steps to reduce runtime complexity. Applying the
contraction directly after each tensor product results in the code from Figure 18.

tmp1 = C # u . [2 5]

tmp2 = B # tmp1 . [2 5]

v = A # tmp2 . [2 5]

Figure 18: Interpolation with immediate contractions

Because this code does not contain any variables on both sides in a single
statement, the avoid-copy optimization does not apply. The reduce-cache-miss
optimization would try to transform each statement in order to reuse memory.
Taking the first statement as an example, the transformed code is shown in
Figure 19. However, as the first transformed statement is not compatible, this
optimization is not possible for the first statement. Transforming the other
statements also gives a negative result.

u = C # u . [2 5]

tmp2 = B # u . [2 5]

v = A # tmp2 . [2 5]

Figure 19: Wrongly transformed interpolation

Assuming that u will not be needed anymore, it is however possible to reuse
a variable in another statement than where it is currently needed. The resulting
code is shown in Figure 20.

v = C # u . [2 5]

u = B # v . [2 5]

v = A # u . [2 5]

Figure 20: Correct transformed interpolation

The basic idea behind this optimization is the same as for the reduce-cache-
miss-optimization. By reducing the amount of memory used at a time, it may be
possible for the data to be in a lower level memory. Comparing the implemen-
tation of the code from Figure 20 (shown in appendices, page 29, Figure 26b)
with Figure 18 (shown in Figure 26a) yields Figure 21.

As the L3 cache size is 30M and a single rank 3 tensor for N = 140 is around
21M, a possible speedup for Figure 20 should have appeared before this N.

22

Figure 21: Interpolation

0 20 40 60 80 100 120 140
0.9

1

1.1

N

fi
g.

18
/
fi
g.

2
0
ru
n
ti
m
e

However, this is not the case. While the specific cause is not known to the
author, two possible reasons are given.

The first reason could be that the space complexity of the “saved variables”,
in this case tmp1 and tmp2 with O(N3) is again smaller than the time complexity
of the kernel with O(N4) meaning that for N > 100, the difference is too small
to be measurable. However, due to the sum from contraction, the access pattern
is not as simple as before and this might not be a valid reason.

The second possible reason is that amount of memory used in a single state-
ment is still the same. While the memory is reduced for the whole program, the
cache misses might only occur the first time the data is needed and might be
negligible.

7 Evaluation of data sizes for parallelization

While the optimizations based on compatible statements presented in this thesis
can be applied in both sequential and parallel computation, the speedup might
depend on the method which is used. For example, the reduce-cache-miss op-
timization has been evaluated using a single core as for small data sizes (e.g. a
bit larger than the size of the L1 cache) the variance would be too high due to
thread overhead. As multiple cores often share the same L3 cache, the measure-
ments might be different for multiple cores. It is therefore useful to find data
sizes (N) where one might switch between sequential and parallel computation
as thread benefit outweigh thread overhead in order to understand the results
from the previous sections better.

Doing this not only makes sense for the kernels analysed previously or even
only kernels using compatible statements. While trying to optimize the inter-
polation operator in Section 6.3 gave a negative result, this does not mean that
similar optimizations are not possible. Finding the N between sequential and
parallel computations for different kernels makes sense in general and can help
to optimize and exploit parallelism better.

This section analyses a number of different kernels. The first two are scalar-
and elementwise operations due to their role in compatible statements. The
3rd kernel is the interpolation operator due to its usage in computational fluid
dynamics and CFDlang [8]. For similar reasons, a stencil kernel is chosen,
generally also used in computational fluid dynamics and convolution. The last
kernel is matrix-matrix multiplication because of its general significance in a

23

wide range of problems.
The N at which one might apply parallelism is not always the same and

depends on the problem. For some problems, it might be sufficient to achieve
a speedup of e.g. 1.3x using two cores while for other problems one might only
apply parallelism if it gives a linear speedup, i.e. 2x. To accommodate these
different needs, one method is to fix different N’s for a kernel and plot the
speedup with the number of cores as a variable.

The plots for scalar multiplication with N = 1 000 000 and N = 10 000 were
already shown in Figure 1 and Figure 2 but are shown again in Figure 22. Even
with N = 10 000 one can still achieve a speedup of 2.8x for 4 cores which might
be enough for some use cases. It is therefore useful to look at even smaller N
to see where one might switch from sequential to parallel computation. For
N = 1 000, it is not possible to achieve a speedup when using 2 cores, so one
would not apply parallelism in this case. However for N = 2 000, a speedup
of 1.3x is achieved using 3 cores. The decision on whether to apply parallel or
sequential computation in this case depends on the use case. Measuring ele-
mentwise multiplication yields almost the same results as scalar multiplication.
For N = 1 000, no speedup can be achieved and N = 2 000 allows for a speedup
of 1.3x using 3 cores.

Figure 22: Scalar multiplication, N in legend

0 2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

number of cores

sp
ee
d
u
p
v
s.

si
n
gl
e
co
re

1 000 000
100 000
10 000
2 000
1 000

Scalar and elementwise operations have a very low runtime complexity of
O(N). As the thread overhead is mostly constant for some fixed number of
cores and the thread benefit increases approximately linear with runtime, an
increasing runtime complexity corresponds to lower N needed for thread benefit
to outweigh overhead. Therefore the following kernels, which have a higher
runtime complexity, need lower N to a achieve linear speedup.

The interpolation operator has O(N4) runtime complexity and very small
N’s are needed. As shown in Figure 23, for N = 10, it is already possible to
achive a speedup similar to N = 10 000 for scalar multiplication, i.e. 2.8x for 4
cores. Decreasing N further to N = 7, it is still possible to achieve 1.2x with 2
and 1.4x with 3 cores. For N = 6, the result is a speedup of 1.2x with 3 cores
but no speedup with any other number of cores. This is also the lowest N where

24

one might apply parallelism, as for N = 5 using any number of cores does not
give a speedup.

Figure 23: Interpolation, N in legend

0 2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

number of cores

sp
ee
d
u
p
v
s.

si
n
g
le

co
re

70
30
15
10
7
5

As can be seen from Figure 24, approximately the same holds true for the
stencil operator (code in appendices, Figure 27, page 30). For N = 10, it is
possible to achieve a speedup of 2.5x with 8 and 2.2x with 4 cores. Decreasing
N to 7 still gives a speedup of 1.4x with 3 cores, N = 6 results in 1.2x for 3 cores
and parallelizing N = 5 with multiple cores does not give any speedup.

Figure 24: Stencil, N in legend

0 2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

number of cores

sp
ee
d
u
p
v
s.

si
n
gl
e
co
re

200
100
50
20
10
7

The last kernel, matrix-matrix multiplication shown in Figure 25 (code in
appendices, Figure 28, page 30) is a bit more difficult to analyse. This is due
to an additional parameter, the tile size, which has to be changed depending
on both N and the number of cores. While one could analyse a matrix-matrix
multiplication without tiling, in some cases tiling is a decisive factor on whether
parallelization makes sense. As an example, consider the kernel with N = 20 and

25

2 cores. Tiling does not make a noticable difference when using a single core,
however using 2 cores with tiling results in a speedup of 1.15x while no tiling
gives a slowdown. This is also true for even smaller N like N = 16 where the
matrix can be split into tiles of 8x8 elements. Doing so gives 4 tiles which can
be distributed across 2 cores, resulting in a speedup of 1.05x while any other N
like 15 or 17 only results in a slowdown when split across cores. Therefore there
is no N which separates usage of sequential and parallel computation. Instead,
the usage depends on the specific N.

As finding the optimal tiling size is a problem on its own, the size has been
adjusted manually and the best performing tiling size has been selected. Note
that this has not been done for every data point but instead for a group of
points with similar N and number of cores, e.g. N = 200 and #cores = 8 shares
the same tiling size with N = 200 and #cores = 12 even though it may not be
the optimal size. The real values might therefore be slightly different, however
the error should be reasonable.

Figure 25: Matrix-matrix multiply, N in legend

0 2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

number of cores

sp
ee
d
u
p
v
s.

si
n
gl
e
co
re

200
100
50
35
20
16

8 Summary

This thesis studied the detection and exploitation of data-parallelism in tensor
assignments. By proposing a mechanism for detecting data-parallelism and
using this to optimize statements in a domain specific language, it has been
shown that these optimizations can lead to a reasonable speedup. While the
speedup of up to 2x can only be achieved for a few simple kernels, a speedup
of a few percent can still be achieved for a larger number of kernels. Also, even
though optimizing the interpolation kernel using a similar optimization does not
result in a measurable speedup, this does not imply that similar optimizations
are not possible.

26

9 Outlook

While the speedup which can be obtained for specific kernels is analyzed, this
does not represent the speedup which would be obtained for more complex
problems which often use multiple different kernels. It would therefore be useful
to take programs using different kernels, analyse what number of them could be
optimized and what the actual resulting speedup would be. Furthermore, while
no speedup has been achieved for the interpolation kernel, similar optimizations
might be possible and could be analysed further.

Concerning the DSL and the corresponding type system, further extensions
might be possible. An example would be nonlinear operations like activation
functions often used in neural networks. These elementwise activation functions
behave essentially the same as parenthesis from an index perspective, i.e. a rule
would simply propagate the index down. Another possible concept which could
be introduced is convolution.

Going even further, one could consider allowing more than one element to
be accessed at a time. For example, it is possible to calculate convolution of a
N ∗ N matrix with kernel size 2K + 1 using only K ∗ N temporary memory for
storing the previous rows. While this would not improve copy performance as
the same amount of data is still copied, the amount of data used at one time is
smaller which might improve cache performance. This is especially the case if
the filter size is small and the matrix is large as often the case with simple image
filters, e.g. filter size = 3 so K = 1, and N = 1024. It might also be possible, to
generalize the concept of accessing multiple elements to other kernels.

Lastly, Conjecture 1 about the optimality of the type system still needs to
be proved.

References

[1] G. Baumgartner et al. “Synthesis of High-Performance Parallel Programs
for a Class of ab Initio Quantum Chemistry Models”. In: Proceedings of
the IEEE 93.2 (Feb. 2005), pp. 276–292. issn: 0018-9219. doi: 10.1109/
JPROC.2004.840311.

[2] ITensor: Intelligent Tensor Library. http://itensor.org/. Accessed:
2018-07-01.

[3] F. Kjolstad et al. “The Tensor Algebra Compiler”. In: Proc. ACM Pro-
gram. Lang. 1.OOPSLA (Oct. 2017), 77:1–77:29. issn: 2475-1421. doi:
10.1145/3133901. url: http://doi.acm.org/10.1145/3133901.

[4] X. Li et al. “Performance Analysis of GPU-Based Convolutional Neural
Networks”. In: 2016 45th International Conference on Parallel Processing
(ICPP). Aug. 2016, pp. 67–76. doi: 10.1109/ICPP.2016.15.

[5] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. 2015. url:
https://www.tensorflow.org/.

[6] OpenMP Architecture Review Board. OpenMP Application Program In-
terface Version 3.1. https://www.openmp.org/wp-content/uploads/
OpenMP3.1.pdf. 2011.

27

https://doi.org/10.1109/JPROC.2004.840311
https://doi.org/10.1109/JPROC.2004.840311
http://itensor.org/
https://doi.org/10.1145/3133901
http://doi.acm.org/10.1145/3133901
https://doi.org/10.1109/ICPP.2016.15
https://www.tensorflow.org/
https://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf

[7] N. A. Rink. Modeling of languages for tensor manipulation. 2018. arXiv:
1801.08771.

[8] N. A. Rink et al. “CFDlang: High-level Code Generation for High-order
Methods in Fluid Dynamics”. In: Proceedings of the Real World Domain
Specific Languages Workshop 2018. RWDSL2018. Vienna, Austria: ACM,
2018, 5:1–5:10. isbn: 978-1-4503-6355-6. doi: 10.1145/3183895.3183900.
url: http://doi.acm.org/10.1145/3183895.3183900.

[9] P. Springer, T. Su, and P. Bientinesi. “HPTT: A High-Performance Tensor
Transposition C++ Library”. In: Proceedings of the 4th ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for Array
Programming. ARRAY 2017. Barcelona, Spain: ACM, 2017, pp. 56–62.
isbn: 978-1-4503-5069-3. doi: 10.1145/3091966.3091968. url: http:
//doi.acm.org/10.1145/3091966.3091968.

[10] N. Vasilache et al. Tensor Comprehensions: Framework-Agnostic High-
Performance Machine Learning Abstractions. 2018. arXiv: 1802.04730.

[11] XLA: Accelerated Linear Algebra. Accessed: 2018-06-30. url: https://
www.tensorflow.org/performance/xla/.

28

https://arxiv.org/abs/1801.08771
https://doi.org/10.1145/3183895.3183900
http://doi.acm.org/10.1145/3183895.3183900
https://doi.org/10.1145/3091966.3091968
http://doi.acm.org/10.1145/3091966.3091968
http://doi.acm.org/10.1145/3091966.3091968
https://arxiv.org/abs/1802.04730
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/performance/xla/

Appendices

for (int i1 = 0; i1 < N; i1++) {

for (int j1 = 0; j1 < N; j1++) {

for (int k1 = 0; k1 < N; k1++) {

tmp1[i1][j1][k1] = 0.0;

for (int l = 0; l < N; l++) {

tmp1[i1][j1][k1] +=

C[i1][l] * u[j1][k1][l];

}

}

}

}

for (int i2 = 0; i2 < N; i2++) {

for (int j2 = 0; j2 < N; j2++) {

for (int k2 = 0; k2 < N; k2++) {

tmp2[i2][j2][k2] = 0.0;

for (int l = 0; l < N; l++) {

tmp2[i2][j2][k2] +=

B[i2][l] * tmp1[j2][k2][l];

}

}

}

}

for (int i3 = 0; i3 < N; i3++) {

for (int j3 = 0; j3 < N; j3++) {

for (int k3 = 0; k3 < N; k3++) {

v[i3][j3][k3] = 0.0;

for (int l = 0; l < N; l++) {

v[i3][j3][k3] +=

A[i3][l] * tmp2[j3][k3][l];

}

}

}

}

(a) implementation of Figure 18 (untransformed)

for (int i1 = 0; i1 < N; i1++) {

for (int j1 = 0; j1 < N; j1++) {

for (int k1 = 0; k1 < N; k1++) {

v[i1][j1][k1] = 0.0;

for (int l = 0; l < N; l++) {

v[i1][j1][k1] +=

C[i1][l] * u[j1][k1][l];

}

}

}

}

for (int i2 = 0; i2 < N; i2++) {

for (int j2 = 0; j2 < N; j2++) {

for (int k2 = 0; k2 < N; k2++) {

u[i2][j2][k2] = 0.0;

for (int l = 0; l < N; l++) {

u[i2][j2][k2] +=

B[i2][l] * v[j2][k2][l];

}

}

}

}

for (int i3 = 0; i3 < N; i3++) {

for (int j3 = 0; j3 < N; j3++) {

for (int k3 = 0; k3 < N; k3++) {

v[i3][j3][k3] = 0.0;

for (int l = 0; l < N; l++) {

v[i3][j3][k3] +=

A[i3][l] * u[j3][k3][l];

}

}

}

}

(b) implementation of Figure 20 (transformed)

Figure 26: Code for the interpolation kernel

29

#pragma omp parallel for collapse(2)

for (int k = 0; k < STENCIL_CHANNELS; k++) {

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

atmp[k][i][j] = 0.0;

for (int ip = 0; ip < STENCIL_SIZE; ip++) {

for (int jp = 0; jp < STENCIL_SIZE; jp++) {

if (i + ip < N && j + jp < N) {

atmp[k][i][j] += a[k][i + ip][j + jp] * S[ip][jp];

}

}

}

}

}

}

#pragma omp parallel for collapse(2)

for (int k = 0; k < STENCIL_CHANNELS; k++)

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

a[k][i][j] = atmp[k][i][j];

Figure 27: Code for the stencil kernel

#pragma omp parallel for collapse(2)

for (int it = 0; it < N; it += TILE_SIZE) {

for (int jt = 0; jt < N; jt += TILE_SIZE) {

for (int i = it; i < it + TILE_SIZE; i++) {

for (int j = jt; j < jt + TILE_SIZE; j++) {

Mtmp[i][j] = 0.0;

for (int k = 0; k < N; k++) {

Mtmp[i][j] += M1[i][k] * M2[k][j];

}

}

}

}

}

#pragma omp parallel for

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

M1[i][j] = Mtmp[i][j];

Figure 28: Code for matrix-matrix multiplication

30

	Introduction
	Parallelization
	Existing DSLs and compilers

	Background
	Tensors and tensor operations
	A language for tensor manipulation

	Compatible statements
	Detecting compatible statements

	Extension of the DSL
	Correctness of the extension
	Performance evaluation
	Copy vs. in-place (avoid-copy)
	Other variable vs. in-place (reduce-cache-miss)
	Explanation of the optimization
	Measuring the impact

	Memory reusing for incompatible statements

	Evaluation of data sizes for parallelization
	Summary
	Outlook
	Appendices

