
TECHNISCHE UNIVERSITÄT DRESDEN

FAKULTÄT INFORMATIK

INSTITUT FÜR TECHNISCHE INFORMATIK

PROFESSUR FÜR COMPILERBAU

Diplomarbeit

Investigating Input Representations and
Representation Models of Source Code for

Machine Learning

Alexander Brauckmann

17. Februar 2020

Erstgutachter: Prof. Dr.-Ing. Jeronimo Castrillon
Zweitgutachter: Prof. Dr. Markus Krötzsch
Betreuer: M.Sc. Andrés Goens

Abstract

Machine Learning methods are actively used to solve various tasks on source code, such
as in Compilers to improve performance of executable code, or IDEs to boost developer
productivity. While the use cases are manifold, most of these methods rely on manually-
defined features that require substantial engineering efforts, while not necessarily being
optimal.

In this thesis, we introduce a novel approach to encode programs as graphs that include
compiler-internal semantics and use the recently discovered class of Graph Neural Networks
to learn task-specific features automatically. Specifically, we design a framework for learning
program representations based on Abstract Syntax Trees and Control- and Dataflow Graphs,
extracted with the Clang/LLVM compiler infrastructure.

We empirically evaluate the approach in compiler heuristic use cases and show to outper-
form existing methods based on Recurrent Neural Networks (RNNs) in generalization per-
formance and inference time. In the task of code generation however, we show limitations of
the graph-generative architecture we used, which cause a bias towards generating samples
of less size and complexity.

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die am heutigen Tag eingereichte Diplomarbeit zum Thema:

Investigating Input Representations and Representation Models of Source Code for Machine
Learning

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel ver-
wendet habe. Alle Zitate sind als solche kenntlich gemacht.

Dresden, den 17. Februar 2020

Alexander Brauckmann

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 2
1.3 Contriubtions . 2

2 Related work 3
2.1 Machine Learning Applications on Source Code 3
2.2 Code Embeddings in Compiler Applications . 5

3 Representations of Programs 7
3.1 Compiler Intermediate Representations . 7
3.2 Compiler Analyses . 8

3.2.1 Control-Flow Analysis . 8
3.3 The Clang/LLVM Compiler Framework . 10

3.3.1 Clang Abstract Syntax Tree . 10
3.3.2 LLVM IR . 12

3.4 Program Representations for Deep Learning . 15
3.4.1 Source Token Sequence . 16
3.4.2 LLVM IR Token Sequence . 16
3.4.3 Source Dataflow Graph . 17
3.4.4 LLVM IR Control- and Dataflow Graph . 18

4 Embedding programs with Artificial Neural Networks 19
4.1 Artificial Neural Networks . 20

4.1.1 Multilayer Perceptrons . 20
4.1.2 Activation Functions . 20
4.1.3 Optimization with Supervised Learning 22

4.2 Recurrent Neural Networks . 24
4.2.1 Long Short-Term Memory . 25
4.2.2 Gated Recurrent Unit . 26

4.3 Graph Neural Networks . 27
4.3.1 Propagation Phase . 28
4.3.2 Output Phase . 29
4.3.3 Recurrent Propagation Schemes . 30
4.3.4 Convolutional Propagation Schemes . 31

5 Task-specific Architectures 33
5.1 Predictive Tasks . 34

5.1.1 RNN-based . 34
5.1.2 GNN-based . 35

5.2 Generative Tasks . 37
5.2.1 RNN-based . 37
5.2.2 GNN-based . 37

6 Design and Implementation 41
6.1 Requirement Analysis . 41
6.2 Framework Design . 43
6.3 Framework Implementation . 48

7 Evaluation 49
7.1 Performance Metrics . 49
7.2 Heterogeneous Device Mapping Task . 51

7.2.1 Metrics . 51
7.2.2 Experimental Setup . 52
7.2.3 Results . 53

7.3 Thread Coarsening Task . 56
7.3.1 Metrics . 56
7.3.2 Experimental Setup . 56
7.3.3 Results . 58

7.4 Code Generation Task . 59
7.4.1 Metrics . 59
7.4.2 Experimental Setup . 60
7.4.3 Results . 62

8 Conclusion and Outlook 69
8.1 Conclusion . 69
8.2 Outlook . 70

8.2.1 Analysis of Learned Features . 70
8.2.2 Extend Program Graph Semantics . 70
8.2.3 Domain-Specific Aggregation Schemes 70
8.2.4 Ensembles Across Representations and Models 70
8.2.5 Domain-Specific Generative Model for S-DFGs 71
8.2.6 Learning Dataflow Analyses . 71
8.2.7 GNN Model Heuristic in a Real-World Compiler 71

Bibliography 73

Appendices 79

A Further Program Examples 81

B Cross Validation with Training-Test-Validation Splits 91

1

1

Introduction

1.1 Motivation

Since the 1950s, software is developed in high-level programming languages and translated
into low-level executable machine code by compilers. Having a key position in the process of
software engineering, one of the main objectives in compiler research is to produce highly
optimized machine code for a given target architecture. While many problems in compiler
design can efficiently be solved with deterministic algorithms, some problems still remain
unsolved due to their complexity or their statistic nature. In order to approximate the solu-
tions of those problems, data-driven Machine Learning methods have proven to be a useful
tool.

A key component of the performance of machine learning methods is the quality of its fea-
tures, i.e. the goodness of the representation of the data sample at hand. For this reason,
e.g. the computer vision and natural language processing communities have invested large
efforts to devise so-called Deep Learning models that operate on the raw data and are opti-
mized to extract high-quality features.

In the compiler community, several deep learning models have been proposed. However,
these models tend to not leverage from the known semantics of source code. In this thesis,
we will introduce a hybrid approach to feature extraction and evaluate it in various settings.
In contrast to relying exclusively on the raw input data and the capabilities of deep learning
models, our approach combines semantic structures known from decade-long research on

2 1. INTRODUCTION

compilers with a recently discovered deep learning models for graphs.

1.2 Outline

This thesis is structured as follows: In chapter 2, we will show various use cases in compilers
and software engineering, where machine learning methods have successfully been used.
On the one hand, the tasks will motivate this study; on the other hand, it will present tasks
that are the basis of the later evaluation.

In chapter 3, we will describe different representations of programs that can be embedded
with the deep learning models shown in chapter 4. While the models are used to extract
good features of the code, they need to be integrated into a higher-level architecture to
solve a real task. Therefore, chapter 5 shows an architecture for predictive and one for
generative tasks. As the basis for evaluation of the different representations and models, we
will proceed with describing a framework that can be used to solve predictive and generative
tasks on graphs, as shown in chapter 6. We evaluate the representations in two predictive
and one generative task in chapter 7, along with the result interpretation and conclusion in
chapter 8.

1.3 Contriubtions

The contributions of this thesis are as follows:

• To the best of our knowledge, we are the first who apply Graph Neural Networks
(GNNs) to compiler-internal program representations in the use case of compiler heuris-
tic models. The GNN model has proven to be well-suited for extractions of features
from graphs in various other domains. In this thesis, we evaluate its performance and
compare it to existing machine learning approaches for compiler heuristic tasks.

• We apply a graph-generative model based on GNNs to source code and evaluate its
performance to the state-of-the-art generative model based on sequences.

• We introduce a flexible framework that supports predictive and generative tasks based
on compiler-internal graph representations of programs, which can be re-used and
applied to further tasks.

3

2

Related work

In this chapter, we will give the context for this work by describing several examples of
applications, where probabilistic machine learning methods have been used. The presented
applications pose potential use cases for deep learning representation models. Therefore
we consider them as relevant.

In the second part of this chapter, we will focus on related work on embedding models for
source code used in the application field of compilers.

2.1 Machine Learning Applications on Source Code

The fields of applications for probabilistic machine learning methods on source code are
manifold. From a high-level perspective, they can be grouped into the domains of Software
Engineering and Optimizing Compilers. Each of them has different reasons for the use of
probabilistic models.

Software Engineering Allamanis et al. (2018) give a comprehensive review in this domain.
They motivate the use of probabilistic machine learning methods for code by the fact that
these methods capture the statistical properties of the source code. In contrast, strongly
deterministic methods fail to do so. The reviewed work is classified into the application
fields. We adopt this taxonomy and present the most relevant, as well as additional work:

4 2. RELATED WORK

• Recommender Systems are used to make recommendations to the user in the software
engineering process. An example is auto completion, where the next tokens of a pro-
gram are predicted for a given context (Bruch et al. (2009); Nguyen et al. (2013);
Raychev et al. (2014)). Another example is variable name recommendation or variable
misuse prediction as done by Allamanis et al. (2017), who used a graph neural network
model to do predictions on Abstract Syntax Tree (AST) nodes.

• Inspired by the success of Statistical Machine Translation (SMT) in natural language,
Code Translation methods are applied to programming languages in order to translate
one into another (Karaivanov et al. (2014); Nguyen et al. (2015)). However, the
translation task currently only supports languages of the same paradigms, e.g., Java
to C#, but not Java to C.

• Examples for Code-to-Text generation are prediction of variable names (Bavishi et al.
(2018)), function names (Allamanis et al. (2016)), and comments (Movshovitz-Attias
and Cohen (2013)) for a given context. Integrated into IDEs, they are useful tools to
assist pasting of code and generating documentation.

• In Program Synthesis, probabilistic methods are successfully used to generate code.
Based on a specification expressed in natural language or as examples, programs that
fulfill this specification are generated. Probabilistic models have not only proven to be
useful as a heuristic for a guided search (Liang et al. (2010)), but also for the use case
of dataset augmentation for predictive models (Cummins et al. (2017b)). However,
they didn’t achieve convincing results yet. (Goens et al. (2019)).

• Vulnerability Prediction is another relevant use case of probabilistic machine learning
methods in the software engineering tools domain. After being trained on a large body
known vulnerabilities, they have proven to generalize to new, previously unknown
vulnerabilities (Li et al. (2018c,b))

Compilers Wang and OBoyle (2018) survey the application domain of machine learning-
based compilation. They argue that machine learning is a natural fit for predicting best-
performing compiler optimizations in the compiler task of translating a source language into
an instruction set of a target architecture. They classify the use cases into the following
categories:

• In Compiler Optimization Selection, probabilistic models have proven to achieve signif-
icant speedups in various settings by selecting optimizations, along with their tuning
parameters. Early work is done by Monsifrot et al. (2002), who predict whether it is
desirable to unroll a loop or not. One of the most prominent examples is the Mile-
post GCC compiler, which predicts the best-performing optimizations of GCC on a
function-level granularity (Fursin et al. (2011)). Magni et al. (2014) introduced a
probabilistic model to predict the best thread coarsening factor in OpenCL. In the pro-
posed method that combines multiple OpenCL work items into a single thread. An
entirely new compiler optimization on the other hand, enabled through probabilistic
modeling was proposed by Grewe et al. (2013). They use a probabilistic model to de-
cide whether it is better to transform OpenMP annotated code to OpenCL and execute
it on the system’s GPU.

2.2. CODE EMBEDDINGS IN COMPILER APPLICATIONS 5

Reference Application Code embedding Prediction model

Monsifrot et al. (2002) Loop unrolling
Manually-defined

features
Decision Tree

Fursin et al. (2011)
Optimization

selection
Manually-defined

features
Decision Tree

Grewe et al. (2013) Device Mapping
Manually-defined

features
Decision Tree

Magni et al. (2014) Thread Coarsening
Manually-defined

features
Neural Network

Cummins et al. (2017a)
Device Mapping,

Thread Coarsening
Learned features

(RNN)
Neural Network

Ben-Nun et al. (2018)
Device Mapping,

Thread Coarsening
Learned features

(RNN)
Neural Network

Table 2.1: Overview of used code embeddings in different compiler applications.

• Compiler Phase Ordering Selection considers the order in which compiler optimizations
are applied. Kulkarni and Cavazos (2012) show significant speedups in the Java Jikes
RVM by using a probabilistic machine learning model. Ashouri et al. (2017) present a
method that reduces the search space by clustering individual passes, then searching
for good cluster orders. Implemented in the LLVM compiler framework, they achieved
major speedups.

2.2 Code Embeddings in Compiler Applications

Table 2.1 gives an overview of different code embeddings and prediction models used in
various compiler applications.

Several of these methods use manually-defined features in combination with decision trees
and neural networks. Developing such a method is a two-step process: First, a domain
expert defines several features and extracts them from the raw data using deterministic
methods. For example, in the context of the loop unrolling task, the features are the number
of statements and arithmetic operations in the loop. Second, a decision tree or a neural
network model is optimized with the objective to fit best a set of provided training example
pairs of input and output.

Inspired by the success of deep learning in research areas like image recognition applications
(LeCun et al. (2015)), these models recently have been used in compiler applications as
well. Cummins et al. (2017a) proposed the DeepTune model, in which a Recurrent Neural
Network (RNN) is optimized to extract relevant features from the raw source code. For this,
the source code is normalized for any identifiers, then represented as a sequence of tokens.
The authors have shown to outperform decision tree models by far in a compiler heuristic
task. In contrast to that, Ben-Nun et al. (2018) use a sequence representation based on
the LLVM IR, while embedding the LLVM IR tokens with a method following the notion
of word2vec (Mikolov et al. (2013)) in order to produce similar embeddings for LLVM IR
tokens that share similar contexts.

6 2. RELATED WORK

7

3

Representations of Programs

In this chapter, we will define different representations of programs that are used as input
representations to the deep learning models shown in chapter 4.

We begin by describing the typical architecture of a compiler to put different code represen-
tations and analyses into a broader context. We then narrow down to the Clang and LLVM
framework as mature and modern implementation. In the second part of this chapter, we
will give the concrete definitions of the representations.

Throughout the descriptions, we demonstrate the concepts on a running example of a simple
program, finally building up to our representations.1

3.1 Compiler Intermediate Representations

In order to translate a program expressed in a source code programming language to exe-
cutable machine code, the compiler sequentially processes it and passes it through a pipeline,
consisting of multiple stages. Figure 3.1 shows such a pipeline with stages grouped into
the Frontend, the Middleend, and the Backend meta components. At the beginning of the
pipeline, the Frontend tokenizes and parses the source program, performs analyses and
transforms it into a more universal, low-level representation. Next, the Middleend trans-

1More complex examples of programs and our representations are included in Appendix A, as they’re too
complex for the scope of this chapter.

8 3. REPRESENTATIONS OF PROGRAMS

Lexical
Analyzer Parser

SSA IR
Generator

Opt.
Pass

Opt.
Pass

Code
Generator

Source
Code

Source
Tokens

AST
IR

SSA
IR

SSA
IR

Executable
program

Frontend Middleend Backend

Figure 3.1: Compiler-internal pipeline architecture.

forms the representation to be more efficient by applying multiple optimization passes. Fi-
nally, the pipeline ends with the Backend that generates executable machine code supported
by an Instruction Set Architecture (ISA).

Highlighted in grey are the Intermediate Representations (IRs), which are data structures
representing the program throughout the compiler pipeline. Compilers typically use differ-
ent forms of IRs, transforming one to another when reaching a certain stage. This is largely
due to the diversity of requirements that the components have at different stages: While
the components at the beginning of the pipeline require a representation for tasks close to
the grammar of the source language, components in the later stages perform lower-level
tasks that require an IR closer to the target ISA. Relevant structures would remain hidden
when working on a higher-level IR. Also, it is an important design decision that allows for
the reusability of compiler components across programming languages and ISAs.

Having representations of the program that are designed for entirely different purposes
results in a variety of rich semantics rich available in the compiler. In the context of designing
program representations for deep learning, these semantics pose a great opportunity.

3.2 Compiler Analyses

Along the compilation pipeline, analyses are performed in order to perform error analyses,
performance optimizations, and transformations into new IRs. Common analyses are the
control-flow analysis and dataflow analysis.

3.2.1 Control-Flow Analysis

Control-flow analysis makes the control structures within a program explicit, which act as
the basis for further analyses, as well as the construction of IRs. Especially lower-level IRs
and machine code implicitly contain control-flow information.

Allen (1970) describes control-flow analysis as a two-step process: First, instructions are
partitioned into basic blocks. Then, a control-flow graph is constructed based on this con-
tracted representation as defined below:

3.2. COMPILER ANALYSES 9

Definition 1 (Basic block (BB)). A BB is the maximal sequence of IR instructions where each
instruction has exactly one control-flow successor, except for the last instruction. The control-
flow can only enter the first and leave in the last instruction.

Definition 2 (control-flow graph (CFG)). A CFG is a directed graph where the nodes repre-
sent BBs and the edges the control-flow.

An example of a function defined in the C programming language, along with its corre-
sponding CFG representation is given below. The function consists of a while statement
with a conditional statement and one instruction in its body. Lastly, a return statement ter-
minates the function. The corresponding CFG consists of three BBs that are connected with
CFG edges: The while condition is followed by the while body and the return statement.
The while body has a back edge to the while-condition.

1 in t foo (in t i) {
2 while (i<100) {
3 i = i ∗ i ;
4 }
5
6 return i ;
7 }

(a) Source code.

while (i<100)

i = i ∗ i ; re turn i ;

(b) Control-flow graph.

Figure 3.2: Example function and its corresponding control-flow graph.

10 3. REPRESENTATIONS OF PROGRAMS

3.3 The Clang/LLVM Compiler Framework

The Clang/LLVM compiler framework is an example of an implementation of the pipeline
architecture. It supports various programming languages and architectures. This is achieved
by using rich IRs, which make it a good candidate for further studies.

From a high-level perspective, the framework is a combination of two strictly decoupled
libraries: While Clang is responsible for the Frontend functionality close to the source code
like lexing, parsing, and semantic analysis, LLVM performs the Middle- and Backend tasks
like optimization and target code generation.

The high decoupling enables using the libraries in two use cases: First, it is a flexible frame-
work for the implementation of a compiler, in which new programming languages and target
architectures can be implemented with minimal effort by reusing and sharing various com-
ponents: When implementing a new programming language, the Clang Frontend can be
replaced by a custom Frontend, while the LLVM Middleend and all target architecture code
generators can be kept. Similarly, the new target architectures can be supported by imple-
menting a Backend, while preserving the support for existing Frontends. Second, the Clang
Frontend is a popular framework for the development of productivity and code analysis
tools in order to e.g. perform refactorings, find syntax errors, checking coding conventions,
and finding vulnerabilities.

The analyses performed by Clang and LLVM operate on different forms of IRs: Clang con-
structs an Abstract Syntax Tree (AST), LLVM an own, specially designed IR called the LLVM
IR. In the scope of a compiler, the Clang AST is used for source-level representation and
error reporting. In the use case of tooling on the other hand, it is the basis for various
analyses, which is the reason for its high degree of development. In combination, the two
libraries interface at the LLVM IR, which is constructed at a final stage in the Clang library
by traversing the AST. The LLVM library performs further analyses with the objective of
producing well-performing code while preserving the program semantics.

Because Clang and LLVM each bring a highly developed representation, along with vari-
ous well-known code analyses, they are the ideal candidate for the implementation of our
method.

3.3.1 Clang Abstract Syntax Tree

While a program represented as tokens allows the programmer to express a program in
a very condensed form, this representation is not a good fit for further automated tasks.
Therefore, Clang constructs an IR that captures the program’s structure. This structure is
commonly used for high-level tasks and analyses on the source code that require a mapping
to the original source code, such as source-level transformations or error reporting, which
requires the knowledge of the exact error location in the program source code.

The Clang AST is constructed by tokenizing the program’s stream of characters, constructing
a parse tree, and then reducing it to an AST as described below:

3.3. THE CLANG/LLVM COMPILER FRAMEWORK 11

Definition 3 (Parse tree). A parse tree (or concrete syntax tree) is a tree structure represent-
ing the derivation of a source program, expressed in a given grammar. It has a one-to-one
correspondence to the sequential representation of the program, whereas nodes correspond to
non-terminal symbols and leaves to terminal symbols.

Definition 4 (Abstract syntax tree (AST)). An AST is a parse tree that is reduced by the
concrete syntax elements of the language, e.g. terminal symbols, punctuation, and parentheses.
In contrast to a parse tree, it only contains the minimum information necessary to represent a
program.

Definition 5 (Clang abstract syntax tree (Clang AST)). The Clang AST is an AST, whereas
each node belongs to one of the following type hierarchies:

• Declaration: Representing a declaration or definition such as a variable, struct, typedef,
or a function.

• Statement: Such as a compound statement that aggregates multiple statements, a binary
operator, or a control statement.

• Type: Such as scalars, pointers, or complex types.

Source Tokens

Characters

Abstract Syntax Tree

Lexical Analyzer

Parser +
Semantic Analyzer

LLVM IR Generator

Optimization
Pass 1

Optimization
Pass n

Code Generator

Source Code

Source Tokens

AST IR

LLVM IR

LLVM IR

Executable

int foo (int i) { while (i < 100

) { i = i * i ; } return i ;

int foo(int i){while(i<100){i=i*i;}return i;}

TranslationUnit

CompoundStmt

WhileStmt

BinaryOp

ImplCastExpr

DeclRefExpr

IntegerLit

CompoundStmt

BinaryOp

DeclRefExpr BinaryOp

ImplicitCastExpr

DeclRefExpr

ImplicitCastExpr

DeclRefExpr

ReturnStmt

ImplicitCastExpr

DeclRefExpr

Figure 3.3: Example function in character, token, parse tree, and AST representations taken
from the Clang/LLVM compiler.

Figure 3.3 gives an overview of the pipeline implemented in the Clang/LLVM library, along
with the frontend-based code representation at different stages. In the phase of lexical

12 3. REPRESENTATIONS OF PROGRAMS

analysis, the characters of the program are split into tokens. Then, the tokens are parsed into
the AST. After that, additional analyses from the semantic analyzer module are performed
to enrich the AST with e.g. variable references and dataflow information.

3.3.2 LLVM IR

The LLVM IR is a low-level representation of a program, which has properties that help to
meet the goal of designing a flexible, efficient, and universal IR.

It is universal to both, the high-level programming languages that are mapped to it, and the
target architectures it is translated to, allowing to support of many different programming
languages and target architectures. Representing the program at a lower level enables the
compiler to perform analyses and optimizations that would otherwise be impossible to con-
duct on a high-level representation such as the AST. The lightweight and simple instruction
set harmonize with the goal of flexibility and universality. The instruction set of the LLVM
IR, which is similar to the Reduced Instruction Set Computer (RISC) class of architectures,
allows for efficient processing. This is because the simplicity of instructions and handling
of variables empower the implementation of more general analysis and optimization algo-
rithms. On the other hand, the simple instruction set allows support for both - simple and
complex target architectures. Complex ISAs can be constructed by transforming the simple
instructions to more complex and high-level instructions in the final code generation stage.

Based on the descriptions of Lattner and Adve (2004), we will now define the LLVM IR.
Fundamentally, it is a Three Address Code (TAC), which is transformed into a Single Static
Assignment form (SSA) at a certain point:

Definition 6 (Three address code (TAC)). A TAC is a linear code, where the individual op-
erations have at most two operands and one result. Each element of an instruction is either an
address or an operation. Addresses are variable names or constants. For representing control-
flows, instructions can be referred to in jump operations by the usage of labels.

Operations commonly include expressions of unary or binary type in the form a = op b or
a = b op c , copy instructions such as a = b , jumps of conditional or unconditional
type like goto L or if a relop b goto L , function calls, function returns, and
pointer assignments like a = *b or a = &b .

Definition 7 (Single static assignment form (SSA)). An SSA is a TAC with the additional
requirement that each defined variable has a unique name and can be assigned only once. This
is desirable because it creates explicit use-def relationships, which eases further analyses and
transformations.

Enforcing this property is problematic in cases where multiple control-flows merge as it results
in ambiguities in the operands. This can be mitigated by inserting phi-functions that map a set
of variables to a single variable, conditioned on the control-flow.

Definition 8 (LLVM IR). The LLVM IR is a TAC with a RISC-like instruction set with instructions
that are general and don’t include processor-specific information such as specific operands or
physical register addresses. Instead, it is a simple and very small instruction set with a memory
model that includes an unlimited amount of virtual registers, and a virtual load/store memory.

3.3. THE CLANG/LLVM COMPILER FRAMEWORK 13

It is in SSA form if it includes no memory accesses. Lattner and Adve (2004) argue that a
memory store through a pointer location may modify multiple variables, making it very complex
to maintain the SSA requirement.

The LLVM IR also explicitly captures the control-flow information of a program. Functions frame
the control-flow of basic blocks that form a CFG. Basic blocks frame a control-flow sequence of
instructions.

LLVM IR

LLVM IR in SSA form

Lexical Analyzer

Parser +
Semantic Analyzer

LLVM IR Generator

Optimization
Pass 1

Optimization
Pass n

Code Generator

Source Code

Source Tokens

AST IR

LLVM IR

LLVM IR

Executable

1 define i32 @fn(i32) {
2 %2 = al loca i32
3 store i32 %0, i32∗ %2
4 br labe l %3
5 L3 : %4 = load i32 , i32∗ %2
6 %5 = icmp s l t i32 %4, 100
7 br i1 %5, labe l %6, labe l %10
8 L6 : %7 = load i32 , i32∗ %2
9 %8 = load i32 , i32∗ %2

10 %9 = mul nsw i32 %7, %8
11 store i32 %9, i32∗ %2
12 br labe l %3
13 L10 : %11 = load i32 , i32∗ %2
14 ret i32 %11
15 }

1 define i32 @fn(i32) {
2 br l e v e l %2
3 L2 : %0 = phi i32 [%0, %1] , [%5, %4]
4 %3 = icmp s l t i32 %0, 100
5 br i1 %3, labe l %4, labe l %6
6 L4 : %5 = mul nsw i32 %0, %0
7 br labe l %2
8 L6 : ret i32 %0
9 }

Figure 3.4: Example function in sequentialized LLVM IR representation before and after op-
timization.

Figure 3.4 continues the overview of the pipeline implemented in the Clang/LLVM library,
along with the backend-based code representation at different stages. The Clang AST is
transformed into LLVM IR by the LLVM IR Generator component. The LLVM IR is unopti-
mized, yet universal. Then, multiple optimizations transform the LLVM IR code into a more
efficient variant. Here, we show the mem2reg pass as a relevant example.

Clang’s LLVM IR Generator component solves the control-flow ambiguity problem by allo-
cating memory for the ambiguous variable. In the LLVM IR representation in the top of
Figure 3.4, the alloca instruction (line 2) allocates a memory location that is accessed
by a patterns of store and load in the different BBs: BB1 (lines 2-4) initializes the
memory location with a value. BB3 (lines 8-12) performs a computation and stores the
result in the memory location. The conditional statement in BB2 (lines 5-7) loads the value
stored at the memory location. BB4 also loads the value at the memory location in order to
return it to the caller.

14 3. REPRESENTATIONS OF PROGRAMS

As shown in the bottom of the figure, the LLVM mem2reg optimization pass transforms
the structures where alloca instructions are only followed by store - load by
replacing them with phi-functions that are conditioned on the control-flow, which results in
the LLVM IR in SSA form.

3.4. PROGRAM REPRESENTATIONS FOR DEEP LEARNING 15

3.4 Program Representations for Deep Learning

As a result of planning to evaluate the representations in two different types of tasks, we
need to consider different requirements, as summarized below:

Requirement
Generative

tasks
Predictive

tasks

Compactness Ø
Completeness Ø

Expressiveness Ø Ø

Table 3.1: Requirements on the representations.

Generative tasks In the use case of code generation, the representation needs to be com-
plete and compact. Completeness is mandatory as it allows for transforming the graph
representation back into a compiler-internal representation to produce executable code.
Compactness is crucial as it impacts model performance: As shown in chapter 4, the gen-
erative models perform better on smaller-sized representations because their performance
drops with longer decision sequences. Analyses on the generated dataset (chapter 7) reveal
that the source-based representation is generally more compact than the LLVM IR based
representation. The comprehensive type system that LLVM uses additionally contributes to
the non-compactness. Therefore, we choose a source-based representation for this task.

Predictive tasks Deep learning-based embedding models are capable of extracting rich
structural features from the data sample at hand. However, no study about the perfor-
mance of different compiler-internal representations exist. Therefore, we define several
sequence- and graph-based representations. Both, the Clang AST and the LLVM IR have
complementary advantages that could be the basis of a well-performing representation:
On the one hand, Clang’s representations are generally more compact than the LLVM IR,
resulting in a better model performance also for the predictive use case because informa-
tion in GNN-based models has a limited reach. On the other hand, the LLVM IR contains
semantics, uncovered through compiler-internal analyses that remain hidden in the Clang
representation. Another important advantage of an LLVM IR based representation is that a
Clang-based representation contains semantics specific to the programmer, such as coding
style and coding conventions. A representation based on the LLVM IR is invariant to this
because different constructs with the same computational semantics are translated into the
same LLVM IR code. Because both representations have unique properties, we decide to
design and evaluate both representations.

We will proceed with the description of four representations that are based on the Clang/L-
LVM compiler framework. Figure 3.5 gives an overview of these representations. Two of
them, Source Token Sequence and the Source Dataflow Graph are high-level representations
extracted from the Clang AST. The other representations, specifically the LLVM IR Token
Sequence and the LLVM IR Control- and Dataflow Graph, are lower-level representations,
constructed on the LLVM IR.

16 3. REPRESENTATIONS OF PROGRAMS

Compiler

Representation

Source Code / Clang LLVM

Source Token
Sequence
(S-TS)

Abstract Syntax
Dataflow-Graph

(S-DFG)

LLVM IR
Token Sequence

(LLVM-TS)

LLVM Control- and
Dataflow-Graph
(LLVM-CDFG)

Figure 3.5: Representations of code for deep learning in the context of a compiler.

3.4.1 Source Token Sequence

As a sequential representation close to the source code, we define:

Definition 9 (Source Token Sequence (S-TS)). An S-TS is a sequence of C language tokens.
The token types are C-language builtins, data types, keywords, and normalized identifiers.

Following the representation described in Cummins et al. (2017a), the source token se-
quence is constructed as follows: First, the source code is normalized so that the model is
invariant to trivial differences such as comments and method names. This is achieved by
eliminating any comments and by replacing the method and variable names with a fixed
scheme. In a second step, tokens are produced by splitting the resulting sequence of char-
acters.

Figure 3.6 shows the transformation of the running example into the S-TS-representation.
The original source code (Figure 3.6a) is normalized for variable and method names (Fig-
ure 3.6b), and finally tokenized (Figure 3.6c).

1 in t foo (in t i) {
2 while (i<100) {
3 i = i ∗ i ;
4 }
5
6 return i ;
7 }

(a) Source code.

1 in t fn1 (in t var1) {
2 while (var1<100) {
3 var1 = var1 ∗ var1 ;
4 }
5
6 return var1 ;
7 }

(b) Normalized source code.

int fn1 (int var1

) { while (var1

< 100) { var1

= var1 * var1 ; }

return var1 ;

(c) Normalized source tokens.

Figure 3.6: Transformation of the example function into the normalized source sequence
representation.

3.4.2 LLVM IR Token Sequence

As a sequential representation close to the LLVM IR code, we define:

Definition 10 (LLVM IR Token Sequence (LLVM-TS)). An LLVM-TS is a sequence of LLVM
language tokens. The token types are LLVM IR instructions, data types, and normalized identi-
fiers.

3.4. PROGRAM REPRESENTATIONS FOR DEEP LEARNING 17

3.4.3 Source Dataflow Graph

As a graph representation close to the source code, we define:

Definition 11 (Source Dataflow Graph (S-DFG)). An S-DFG is a directed graph, where the
nodes are Declarations, Statements, and Types from the Clang AST. The edges are of type AST,
representing the child-of relationships within the AST, and dataflow, representing the dataflow.

S-DFGs are constructed using the Clang AST and applying two modifications to it. First,
the tree representation is enriched with dataflow edges that are extracted from Clang’s se-
mantic analysis module, resulting in a graph. Secondly, trivial chains of AST nodes of type
ImplicitCastExpr and ImplicitCastExpr are eliminated because they are a
regularity and bloat up the graph representation. Having small graphs is especially an ad-
vantage when considering graph-generative models. This also holds true in the embedding
models we use because fewer hops help to propagate information farther.

The running example is continued in Figure 3.7, showing the original Clang AST enriched
with dataflow edges (Figure 3.7a) and the described S-DFG representation (Figure 3.7b).

fn
{'type': 'int'}

FunctionArgument
{'type': 'int'}

CompoundStmt
{}

WhileStmt
{}

ReturnStmt
{}

BinaryOperator
{'operator': '<'}

CompoundStmt
{}

ImplicitCastExpr
{}

ImplicitCastExpr
{}

IntegerLiteral
{'value': '100'}

BinaryOperator
{'operator': '='}

DeclRefExpr
{}

DeclRefExpr
{}

DeclRefExpr
{}

BinaryOperator
{'operator': '*'}

ImplicitCastExpr
{}

ImplicitCastExpr
{}

DeclRefExpr
{}

DeclRefExpr
{}

(a) Original Clang AST enriched with dataflow edges.

fn
{'type': 'int'}

FunctionArgument
{'type': 'int'}

CompoundStmt
{}

WhileStmt
{}

ReturnStmt
{}

BinaryOperator
{'operator': '<'}

CompoundStmt
{}

IntegerLiteral
{'value': '100'}

BinaryOperator
{'operator': '='}

BinaryOperator
{'operator': '*'}

(b) S-DFG representation.

Figure 3.7: Transformation of the example function into the S-DFG representation by elimi-
nating certain node types. AST child edges are in solid, dataflow edges in dashed
style.

18 3. REPRESENTATIONS OF PROGRAMS

3.4.4 LLVM IR Control- and Dataflow Graph

As a graph representation close to the LLVM IR code, we define:

Definition 12 (LLVM IR Control- and Dataflow Graph (LLVM-CDFG)). An LLVM-CDFG is
a directed graph, where the nodes are LLVM IR instructions, and the edges are of type control-
and dataflow.

Definition 13 (LLVM IR SSA Control- and Dataflow Graph (LLVM-SSA-CDFG)). An LLVM-
SSA-CDFG is a variant of an LLVM-CDFG. Memory accesses are replaced with register depen-
dencies that are expressed with phi instructions. The edges are of type control- and dataflow.

fn_0

bb_0

bb_1

bb_2

bb_3

alloca

storeload

load

store

load

load

br

mul

br

icmp

br

ret

(a) LLVM-CDFG graph.

fn_0

bb_0

bb_1

bb_2

bb_3

br

phi

mul

br

icmp

ret

br

(b) LLVM-SSA-CDFG graph.

Figure 3.8: Example function in LLVM IR-based representations. Control-flow edges are in
solid, dataflow edges in dashed style.

19

4

Embedding programs with Artificial Neural
Networks

In this chapter, we will describe the deep learning models for feature extraction of the pro-
gram code representations introduced in chapter 3. Outlined in Figure 4.1, these models
are part of the architectures for the predictive and generative tasks shown in chapter 5.

Compiler

Representation

Model

Source Code / Clang LLVM

Source Token
Sequence
(S-TS)

Abstract Syntax
Dataflow-Graph

(S-DFG)

LLVM IR
Token Sequence

(LLVM-TS)

LLVM Control- and
Dataflow-Graph
(LLVM-CDFG)

RNNs GNNs RNNs GNNs

Figure 4.1: Representations of code in the compiler with their respective machine learning
models. Please note that this Figure is an extension of Figure 3.5

20 4. EMBEDDING PROGRAMS WITH ARTIFICIAL NEURAL NETWORKS

4.1 Artificial Neural Networks

4.1.1 Multilayer Perceptrons

A Multilayer Perceptron (MLP) is an Artificial Neural Network that consists of multiple per-
ceptrons that are hierarchically grouped into layers. The right side of Figure 4.2 shows such
a perceptron which consists of an input layer, at least one hidden layer, and an output layer.
The perceptrons in each of the layers depend only on the outputs of the previous layer’s
perceptrons, enabling efficient computation.

The left side of Figure 4.2 shows the computation of the output of a single perceptron ac-
cording to the model defined by Rosenblatt (1958). By summing the element-wise product
of the outputs x of the perceptrons in the previous layers with individual, learnable weights
w, the network’s activation is computed. Another part of the perceptron’s activation is a
bias that is multiplied with a learnable weight. The bias shifts the perceptron’s activation
independently of the previous perceptrons. Finally, a non-linear activation function f is
applied to compute the perceptron’s output.

In algebraic notation, the output of a MLP with one hidden layer is defined for each hidden
perceptron of index i and each output perceptron of index i, whereas w and b are learnable
weights:

hi = f

�

n
∑

j=1

w1
ji x j + b1

i

�

(4.1.1)

yi = f

�

n
∑

j=1

w2
jih j + b2

i

�

(4.1.2)

In vectorized notation:

h= f (W 1 x + b1) (4.1.3)

y = f (W 2h+ b2) (4.1.4)

4.1.2 Activation Functions

In a biological perceptron, the decision to fire is made by an activation threshold. The
activation function models this behavior. Two of the most desirable properties for activation
functions are differentiability and non-linearity. As gradient-based optimization methods
use the derivatives to compute the model weight updates, it is mandatory for the activation

4.1. ARTIFICIAL NEURAL NETWORKS 21

Σ f

1

h1

h2

h3

h4

b
w11
w21
w31
w41

y2

1
x1

x2

x3

Input
layer

Hidden
layer

Output
layer

y1

y2

Figure 4.2: An Illustration of a MLP (left) and an individual perceptron (right).

function to be differentiable. Non-linearity is important because a network with multiple
layers with linear activation functions can be reduced to a single layer, which is undesirable.

The Unit Step function serves as the activation function in the initial perceptron model
by Rosenblatt (1958). While this function is capable of modeling a decision boundary for
a single neuron, it is insufficient for more complex functions such as regressions. Also, it
cannot be optimized with gradient-based methods because the Unit Step function is not
differentiable.

Multiple activation functions that are both differentiable and non-linear have been proposed
for different use cases. Relevant for this work are the Logistic Sigmoid, the Hyperbolic Tan-
gent, and the Softmax activation functions, shown below.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−1

0

1

a

f(
a) Linear

Unit Step
Logistic Sigmoid

Hyperbolic Tangent

Figure 4.3: Visualization of common activation functions

Logistic Sigmoid The logistic Sigmoid function, denoted as σ, is commonly used in binary
classification. Its output range of (0,1) is a natural fit for this type of problem, representing
a probability distribution of p and 1− p of two classes.

It is defined as:
f (a) =

1
1+ e−a

(4.1.5)

Hyperbolic Tangent The hyperbolic tangent function, commonly denoted as tanh, has sim-
ilar properties as the logistic sigmoid function. However, with its range of (−1,1), its gra-

22 4. EMBEDDING PROGRAMS WITH ARTIFICIAL NEURAL NETWORKS

dients are steeper and it suffers less from the optimization problems.

The hyperbolic tangent function is defined as:

f (a) =
ea − e−a

ea + e−a
(4.1.6)

Softmax For multiclass classification problems, the softmax function is a natural choice.
Taking a vector of real-valued numbers x as input, they are normalized into a probability
distribution proportional to the exponentials of its input numbers.

For a perceptron’s activation ai out of all n perceptrons activations in this layer, it is defined
as:

f (ai) =
eai

n
∑

j=1
ea j

(4.1.7)

4.1.3 Optimization with Supervised Learning

A perceptron is a function with an input x and an output y . Given tuples of (x i, yi), the
learnable weights w of the MLP function is optimized with the objective that for each input
x i the function produces the desired output yi, which is commonly referred to as supervised
learning, the tuples to as training samples.

The objective is defined as a loss function, which measures the fit of the output of the training
data and the models’ predicted output. A loss function for regression problems is the mean-
square error is defined below, whereas f is the model, and θ the learnable weights for a
single training sample:

li(x i, yi,θ) = (f (x i,θ)− yi)
2 (4.1.8)

A loss function for classification problems, such as the ones we will show in the next chapter,
is the cross entropy, whereas x i and yi are one-hot encoded vectors of size m:

li(x i, yi,θ) =
m
∑

j=1

yi j log(f (x i j,θ)) (4.1.9)

For all training samples, we obtain:

L(X , Y,θ) =
1
n

n
∑

i=1

li(x i, yi,θ) (4.1.10)

4.1. ARTIFICIAL NEURAL NETWORKS 23

Algorithm 1: Gradient Descent

initialize w, b;
foreach sample ∈ samples do

w= w+∆w;
b = b+∆b;

end

Algorithm 2: Batch Gradient Descent

initialize w, b;
∆W = 0;
∆B = 0;
foreach sample ∈ samples do
∆W =∆W +∆w;
∆B =∆B +∆b;

end
w= w+∆W ;
b = b+∆B;

Gradient Descent Algorithm Optimization of the loss function, commonly referred to as
model training, can efficiently be done with gradient-based algorithms. The most basic
algorithm is Gradient Descent, which iteratively updates the model weights according to
the following update rules that compute a delta that is applied to calculate the new model
weights, whereas η is the learning rate:

∆w= −η
∑

i

∂ li(θ)
∂ w

(4.1.11)

∆b = −η
∑

i

∂ li(θ)
∂ b

(4.1.12)

The learning rate controls the step size of the weight updates. A small learning rate will
result in a smaller step size, a higher learning rate in larger step size.

Multiple variants of the Gradient Descent algorithm exist. While in the basic version, the
weights are updated per sample, and the model is estimated with those new weights for the
next sample, the Batch Gradient Descent variant collects the weight updates for the whole
training set, before updating them. This reduces the variance and therefore results in a
more stable training. However, the optimization can converge in local optima, as shown in
Figure 4.4.

The Stochastic Gradient Descent variant mitigates this problem by estimating the new pa-
rameters based on a random subset called minibatches of the training set. The size of this
subset is commonly referred to as batch size influences the models’ convergence and training
stability.

24 4. EMBEDDING PROGRAMS WITH ARTIFICIAL NEURAL NETWORKS

Algorithm 3: Stochastic Gradient Descent

initialize w, b;
∆W = 0;
∆B = 0;
minibatches = partition(shuffle(samples));
foreach minibatch ∈ minibatches do

foreach sample ∈ minibatch do
∆W =∆W +∆w;
∆B =∆B +∆b;

end
w= w+∆W ;
b = b+∆B;

end

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−10

0

10

20

θ

L(
θ
)

Loss Function
Batch Gradient Descent

Gradient Descent
Stochastic Gradient Descent

Figure 4.4: Visualization of Gradient Descent algorithm variants.

4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a family of models that are well-suited for extracting
features about dependencies in sequential data. They have successfully been used in the
areas of Natural Language Processing (NLP), Speech Recognition, and Time-series prediction.

Figure 4.5 shows the architecture of an RNN on the left side. In comparison to feed-forward
neural networks such as MLPs, they have a feedback loop, which makes the network’s output
consumable as input in the next iteration. This enables the network to hold a state and learn
features over time.

A

ht

x t

A

h0

x0

A

h1

x1

A

h2

x2

A

ht

x t

Figure 4.5: A static and a unrolled representation of a Recurrent Neural Network.

4.2. RECURRENT NEURAL NETWORKS 25

σ σ tanh σ

× +

× ×

tanh
ft

it
c̃t

otA

x t−1

ht−1

σ σ tanh σ

× +

× ×

tanh
ft

it
c̃t

ot

ct−1

ht−1

ct

ht

x t

ht

σ σ tanh σ

× +

× ×

tanh
ft

it
c̃t

otA

x t+1

ht+1

Figure 4.6: Internal architecture of a LSTM cell.

In order to train RNNs, Werbos et al. (1990) introduced a method called Backpropagation
through time (BPTT). As shown in Figure 4.5 on the right side, the RNN is unrolled for
several iterations, while the individual instances of the RNN cell share the same learnable
parameters. Then it can be efficiently optimized using gradient-based methods, such as
Backpropagation. BPPT works well for short sequences. However, for long sequences a
number of problems arise: First, the network needs to be unrolled for the length of the se-
quence in order to extract features ranging into the past. Because computing the gradients
involves a multiplication, it is likely for gradients to result in 0 or infinity, if the individual
gradients are less or greater than 1. These so-called vanishing gradients and exploding gradi-
ents problems can be solved by using gradient clipping (Pascanu et al. (2013)) and modern
RNN cell architectures such as the Long Short-term Memory (Hochreiter and Schmidhuber
(1997)) and the Gated Recurrent Unit (Cho et al. (2014)) that can pass information, there-
fore also the gradients unchanged over long distances.

4.2.1 Long Short-Term Memory

The Long Short-Term Memory (LSTM), proposed by Hochreiter and Schmidhuber (1997),
is an RNN architecture that solves the vanishing gradients problem, which causes gradients
to converge to zero when training an RNN with BPTT. Therefore, LSTMs are able to extract
long-term features in sequential data and caused breakthroughs of deep learning methods
in various domains.

Mitigation of the vanishing gradients problem is achieved by an internal cell architecture that
allows the information and gradient to be passed through the network unaffected, intuitively
in the scope of a long-term dependency. The cell architecture, as shown in Figure 4.6 consists
of a cell state, an input gate, an output gate, and a forget gate.

The cell state is the internal memory of the LSTM. To obtain the next state, the previous cell
state ct−1 is modified by multiplying it with the output of the forget gate. Also part of the

26 4. EMBEDDING PROGRAMS WITH ARTIFICIAL NEURAL NETWORKS

sum is the input of the current time step, modified by the input gate:

ct = ft � ct−1 + it � c̃t (4.2.1)

The first component of the new cell state is controlled by the forget gate. Its task is to decide
the information to keep from the cell state ct−1 of the previous time step. It is a learnable
function based on the hidden state ht−1 and the input x , using the sigmoid activation func-
tion. When used in the described context, the function’s output - a vector of values in the
range [0,1] - represents the importance of the individual components of the previous cell
state.

ft = σ
�

Wf · ht−1 +Wf · x t + b f

�

(4.2.2)

The second component consists of a modified representation of the input, controlled by the
input gate. The input is modified by a learnable function with tanh activation. Its task is to
normalize the input to a range of [−1,1].

c̃t = tanh (Wc · ht−1 +Wc · x t + bc) (4.2.3)

The input gate then decides what information is relevant of the current input x . Its imple-
mentation is the same as the forget gate, but with a different set of learnable weights.

it = σ (Wi · ht−1 +Wi · x t + bi) (4.2.4)

After the cell state has been computed, it is passed on to the next timestep. In order to com-
pute the output ht of the cell, the output gate is applied to the cell state, which is normalized
by a tanh activation function. Again, the function of output gate is the same as the forget
gate, just with a different set of learnable weights. The output also acts as the new hidden
state ht .

ot = σ (Wo · ht−1 +Wo · x t + bo) (4.2.5)

ht = ot � tanh (ct) (4.2.6)

4.2.2 Gated Recurrent Unit

Another recent architecture of an RNN is the Gated Recurrent Unit (GRU), proposed by Cho
et al. (2014). As shown in Chung et al. (2014), it is on-par with the LSTM architecture
in different types of tasks where the data is of sequential nature. As it can be seen in
Figure 4.7, the GRU cell has fewer gates than the LSTM cell, which reduces the model’s
memory requirements. Nevertheless, LSTM and GRU models are commonly used in practice
as both offer comparable levels of prediction performance.

In contrast to the LSTM, the GRU has only one recurrent state, which we will denote as
cell state. It is updated using a sum of the previous cell state ht−1 and a candidate state h̃t ,

4.3. GRAPH NEURAL NETWORKS 27

σ σ tanh

×

×

×

+

1−
rt zt ht
A

x t−1

ht−1

σ σ tanh

×

×

×

+

1−
rt zt ht

ht−1 ht

x t

ht

σ σ tanh

×

×

×

+

1−
rt zt ht
A

x t+1

ht+1

Figure 4.7: Internal architecture of a GRU cell.

whereas an update gate decides about the ratio of the vectors individual components.

ht = (1− zt)� ht−1 + (zt)� h̃t (4.2.7)

Similarly to the LSTM, the update gate is implemented with a learnable function based on
the cell state ht−1 and the input x , using the sigmoid activation function. When used in the
described context, the function’s output - a vector of values in the range [0,1] - represents
the importance of the individual components of the previous cell state.

zt = σ (Wz · ht−1 +Wz · x t) (4.2.8)

The candidate state consists of the sum of the weighted cell input x and the gated previous
state, using the reset gate that computes a vector rt representing the importance.

rt = σ (Wr · ht−1 +Wr · x t) (4.2.9)

h̃t = tanh (Wo · rt � ht−1 +Wo · x t) (4.2.10)

4.3 Graph Neural Networks

Graph Neural Networks (GNNs) are deep learning models that are well-suited for extracting
features from graph data. In contrast to other node and graph embedding models, they
can be optimized end-to-end as part of a task-specific architecture and therefore produce
task-specific embeddings. Johnson (2017) and Li et al. (2016) have shown that GNNs can
outperform RNNs in the BaBi reasoning task benchmark of Weston et al. (2015), reaching
a perfect accuracy of 100%. Up to today, multiple variants of the GNN model have been

28 4. EMBEDDING PROGRAMS WITH ARTIFICIAL NEURAL NETWORKS

proposed. Here, we will focus on a recurrent and a convolutional variant.

The GNN model consists of two-phases: The input structure to the propagation phase is an
annotated graph G = (V, E). Nodes v ∈ V are annotated with their type vt ∈ N, edges e ∈ E
with their type et ∈ N. The outputs of this phase are node embedding vectors hv ∈ Rd that are
assigned to all v ∈ V . In the following output phase, a graph embedding vector is produced
by aggregating the node embedding vectors.

4.3.1 Propagation Phase

Nodes of the input graph are represented as one-hot encoded vectors, i.e. vectors (e j)i = δi, j,
where δi, j is the Kronecker Delta which is 1 iff i = j and 0 otherwise. Figure 4.8 illustrates
this process on a simple graph, which we will further use as a running example.

n1 n2

n3

n4 n5

v1 v2

v3

v4 v5

n1 n2

n3

n4 n5

hv

δi, j

Figure 4.8: An illustration of the initial node embedding as one-hot encoded vectors.

By applying an iterative information propagation scheme, node embedding vectors are in-
creasingly enriched with structural information of the graph. For a number of iteration
steps T , the node embeddings are propagated to their directly adjacent nodes and then
aggregated. This eventually results in node embeddings that contain information about a
T -sized neighborhood. Figure 4.9 illustrates this scheme, where the cells represent the in-
formation encoded as embedding vectors.1 For example, the embedding of the node n5
includes embedding information of the nodes n1, n2, and n3.

Gilmer et al. (2017) consolidate the notions of various GNN models and define a common
framework, named the Message Passing Neural Network (MPNN). For a consistent notation
of the different GNN-based models, we will use this framework for further definitions:

mv =
∑

u:(u,v)∈E

fmsg(hu, hv, et) ∀v ∈ V (4.3.1)

h′v = fprop(mv, hv) ∀v ∈ V (4.3.2)

In each iteration, messages are formed for each node and each edge by using the output of a

1Note that this is an artificial example to give an intuition of the model. Depending on the task, the propa-
gated embeddings will most likely be much more complex than shown in this example.

4.3. GRAPH NEURAL NETWORKS 29

T = 0
n1 n2

n3

n4 n5

hv

T = 1
n1 n2

n3

n4 n5

h′v

T = 2
n1 n2

n3

n4 n5

h′′v

fprop fprop

Figure 4.9: An intuitive illustration of the GNN node embedding propagation scheme across
3 iterations.

message function fmsg(hu, hv, et), based on the embedding informations hu, hv, and the edge
type information et . Summing the messages per target node results in message vectors mv.

New node embedding vectors h′v are formed by applying a learnable update function fprop(mv, hv),
which are based on the corresponding message vectors mv and the current node embeddings
hv.

4.3.2 Output Phase

After T iterations of the propagation scheme, the node embeddings reach a final state. Li
et al. (2016) define an attention-based mechanism to aggregate a variable amount of node
embeddings to a single fixed-sized graph embedding vector:

hG
v = fm(h

′
v) (4.3.3)

gG
v = gm(h

′
v) (4.3.4)

hG =
∑

v∈V

gG
v � hG

v (4.3.5)

After mapping the node embedding vectors to a higher size with the learnable function
fm(h′v) and gm(h′v), they are summed to the fixed-sized graph embedding vector hG. The
attention mechanism is implemented by the element-wise product of fm(h′v) and gm(h′v),
denoted as�. This decides the relevance of individual nodes in the current task. Figure 4.10
illustrates the aggregation scheme.

The functions are implemented as MLPs with hyperbolic tangent and sigmoid activation
functions. This makes the model differentiable and restricts the range of the output values
to (−1,1) for the hyperbolic tangent and (0,1) for the sigmoid function. The range of the
sigmoid function is especially well-suited for an attention mechanism because it represents a

30 4. EMBEDDING PROGRAMS WITH ARTIFICIAL NEURAL NETWORKS

n1 n2

n3

n4 n5

h′v

+

hG

fprop

gG
v � hG

v

Figure 4.10: An illustration of the aggragation of node embedding vectors to a single, fixed-
sized graph embedding vector.

weight function. The hyperbolic tangent function on the other hand normalizes the outputs,
which improves the model’s numerical stability and overall performance.

4.3.3 Recurrent Propagation Schemes

Initially, the notion of the recurrent graph neural network has been described by Scarselli
et al. (2008).

In this initial version of the graph neural network, the function fprop is implemented as a MLP
and the propagation scheme is applied until convergence to compute the gradients when
training the model. To ensure convergence, the node embeddings have to be initialized with
predefined values that are known to converge in a fixpoint. Therefore, no typed nodes are
supported, which is a significant limitation of this model.

The Gated Graph Neural Network (GGNN) model by Li et al. (2016) overcomes this limitation
by replacing the MLP of the function fprop with a GRU, a modern variant of an RNN. In the
notation of the MPNN framework:

fmsg(hu, hv, et) = Aet
· hv + bet

(4.3.6)

fprop(mv, hv) = GRU(mv, hv) (4.3.7)

The RNN is unrolled for the T number of iterations, which enables computation of the
gradients for graphs without constrained initial node embeddings. This enables initializing
the model with arbitrary node embeddings. Therefore, e.g. the type of a node can serve as
an additional source of information.

The message function consists of learnable parameters A and b. A is multiplied to the source
node embedding and bias b is added. To support multiple edge types et , multiple edge type-
specific message passing functions fmsg can exist.

4.3. GRAPH NEURAL NETWORKS 31

Recurrent GNN

Convolutional GNN

T = 0 T = 0 T = 0

hv h′v h′′vfprop

GNN weights

fprop

GNN weights

hv h′v h′′vfprop

GNN weights 1

fprop

GNN weights 2

Figure 4.11: A comparison between recurrent and convolutional GNN propagation schemes.
The recurrent GNN model shares the learnable weights of fprop across the iter-
ations, the convolutional GNN model uses different learnable weights for each
iteration.

4.3.4 Convolutional Propagation Schemes

Convolutional Graph Neural Networks (GCNs) are a class of GNNs that generalize the con-
volution operation from the euclidian space to an arbitrary amount of adjacent entities.

Kipf and Welling (2017) initially define the GCN. In the notation of the MPNN framework,
we obtain:

fmsg(hu, hv, et) = (deg(u) · deg(v))−1/2 · hv (4.3.8)

fprop(mv, hv) = ReLU(W t ·mv) (4.3.9)

The message function doesn’t contain any learnable parameters, but a normalization mech-
anism only, more concretely the symmetric normalized Laplacian.

The update function multiplies a learnable weight matrix to the message vector mv. This
learnable weight matrix is unique for each time step, which is a major difference to the
GGNN, illustrated in Figure 4.11.

32 4. EMBEDDING PROGRAMS WITH ARTIFICIAL NEURAL NETWORKS

33

5

Task-specific Architectures

In order to be practically usable and to fulfill tasks, the deep learning-based embedding
models are integrated into higher-level architectures, which will be the subject of this chap-
ter. Specifically, we will introduce two architectures: One for performing predictive tasks
and one for generative tasks.

Source codeSource codeSource codeSource code

Preprocessing

Code representationCode representationCode representationCode representation

Decision model

ResultResultResultResult

Auxiliary inputsAuxiliary inputsAuxiliary inputsAuxiliary inputs Optional
e.g. work group size, data size

Source normalization
Clang/LLVM Tooling

S-TS, LLVM-TS
S-DFG, LLVM-CDFG

RNNs, GNNs
MLPs

Figure 5.1: High-level architecture of the predictive models.

34 5. TASK-SPECIFIC ARCHITECTURES

5.1 Predictive Tasks

Figure 5.1 illustrates the high-level architecture for predictive tasks. The input to the archi-
tecture is an original sample of source code. Optimally, auxiliary inputs information that is
critical for the predictive task, but cannot be derived from the source code sample itself can
be added. Examples for this are the data size of the input of a function or properties of the
execution environment, such as the work-group size of an OpenCL implementation.

The source code sample is processed using a preprocessing component that extracts one of
the code representations introduced in chapter 3 from a given source code sample.

The extracted code representation and the auxiliary inputs then serve as input to a decision
model that outputs the result of the predictive model.

5.1.1 RNN-based

Originally introduced by Cummins et al. (2017a) and adopted by Ben-Nun et al. (2018),
the RNN-based architecture supports predictions based on sequences, such as the S-TS and
LLVM-TS representations.

Code representation

Decision model

Token sequenceToken sequenceToken sequenceToken sequence

Preprocessing

Source codeSource codeSource codeSource code

a) Token embedding layer

b) RNN layer

Auxiliary inputsAuxiliary inputsAuxiliary inputsAuxiliary inputs

c) Prediction layer

ResultsResultsResultsResults

hs

h

ht

aux

Figure 5.2: Architecture of the predictive model based on Recurrent Neural Networks.

A

ht

x t

A

x0

A

x1

A

x2

A

ht

x t

Figure 5.3: Sequence-to-vector architecture of a Recurrent Neural Network.

5.1. PREDICTIVE TASKS 35

Figure 5.2 shows this architecture. It consists of a initial embedding layer for creating initial
embeddings, a RNN layer, which extracts features from the token sequence, and a prediction
layer for performing a prediction.

a) Token embedding layer The number of possible token types can be arbitrarily large in
practice, which causes a large dimension when applying a one-hot encoding to the token.
Therefore, this layer reduces the large dimension of those one-hot encoded embedding vec-
tors to embedding vectors of a smaller size that matches the size of the model. This is
done by a learnable function finit(st) that maps the one-hot encoded token type st to token
embedding vectors hs, implemented as a MLP.

hs = finit(st) (5.1.1)

b) RNN layer Given a sequence of token embedding vectors hs, a learnable function fseq

computes a vector of features, denoted as ht . The function is implemented as a RNN neural
network as shown in Figure 5.3, which shows a static and dynamic view of it. The vectors
hs correspond to the network’s input x .

ht = fseq(hs) (5.1.2)

c) Prediction layer The final layer maps the extracted features, optionally concatenated
with auxiliary inputs, to a probability distribution by applying a learnable function fout to
it. It is implemented as a MLP with softmax activation.

out= fout(ht , aux) (5.1.3)

5.1.2 GNN-based

Figure 5.4 illustrates our predictive model for source code based on graphs with its corre-
sponding components and their relationships. Our architecture consists of a initial embed-
ding layer for creating initial embeddings, a embedding propagation layer for enriching the
initial embeddings with structural information, and a prediction layer that aggregates the
propagated embeddings and performs a prediction. The input of the decision model is a
code representation graph (e.g. S-DFG, LLVM-CDFG), the output a n-sized vector repre-
senting a probability distribution, with n being the number of classes. We will proceed with
a description of the layers in greater detail.

a) Initial embedding layer Since the number of possible node types tends to be very large
in practice, we introduce this embedding layer to reduce the dimension of these one-hot
encoded node vectors, to smaller size d ∈ N. The node embedding vectors hv are computed

36 5. TASK-SPECIFIC ARCHITECTURES

Code representation

Decision model

Code representation graphCode representation graphCode representation graphCode representation graph

Preprocessing

Source codeSource codeSource codeSource code

NodesNodesNodesNodes

a) Initial embedding layer

EdgesEdgesEdgesEdges

b) Embedding propagation layer

Auxiliary inputsAuxiliary inputsAuxiliary inputsAuxiliary inputs

c) Prediction layer

ResultsResultsResultsResults

hv

h′v

h′v
aux

Figure 5.4: Architecture of the predictive model based on Graph Neural Networks.

by applying a learnable function finit(vt) to the node annotation vector vt . The learnable
function is implemented as a MLP neural network.

hv = finit(vt) (5.1.4)

b) Graph neural network layer With the initial embeddings based only on the node type,
they do not contain any structural information of the graph, i.e. as expressed by the edges.
By applying a GNN propagation scheme for T iterations, the initial node embedding vectors
produced by the initial embedding layer are enriched with this structural graph information.

h′v = propT (hv, G) (5.1.5)

c) Prediction layer This layer maps the final node embedding vectors to a probability dis-
tribution. To achieve this, we follow the notion of the output model described earlier: A
fixed-size graph embedding vector is computed by aggregating the final node embedding
vectors.

A final learnable function fout(hG) computes the output based on the graph embedding
vector hG that is optionally concatenated with the auxiliary inputs aux . This function is
implemented as a MLP with a softmax activation function.

out= fout(hG, aux) (5.1.6)

5.2. GENERATIVE TASKS 37

5.2 Generative Tasks

Source codeSource codeSource codeSource code

Preprocessing

Code representationCode representationCode representationCode representation

Decision model

ActionActionActionAction

Apply

Source normalization
Clang Tooling

S-TS
S-DFG

RNNs
GNNs

Figure 5.5: High-level architecture of the generative models.

CR

DM

A

CR1

DM

a1

CR2

DM

a2

CR2

DM

a2

CRt

DM

at

Figure 5.6: High-level dynamic view of the generative models.

5.2.1 RNN-based

Used by the method of Cummins et al. (2017b), a sequence-to-vector architecture incremen-
tally predicts a sequence of tokens. This architecture closely follows Figure 5.6, whereas the
model predicts an action A based on the current state, which is the weights of the decision
model DM, and the current code representation CR. When sampling an action, the model’s
state is changed and the action is applied to the current state of the code representation CR.

5.2.2 GNN-based

For generating program graphs, we choose the graph-generative method by Li et al. (2018a)
that sets new state-of-the-art results in the task of chemical molecule generation. The
method outperforms a sequence-based generation process, in which the molecule graphs
are encoded in the SMILES1 grammar and embedded by an LSTM model, based on Hochre-
iter and Schmidhuber (1997) by 5 percentage points in a validity and by 10 percentage
points in a novelty metric. Despite the different domains, the chemical molecule graphs
also contain similarly rich structures and properties as the proposed program graphs, as
they have typed edges, representing bonds and typed nodes, representing atoms.

1The simplified molecular-input line-entry system (SMILES) is a compact sequential notation of molecule
graphs

38 5. TASK-SPECIFIC ARCHITECTURES

Add
node?

End
Add

edge?

Add
edge
to?

St
ar

t

no

yes

(+ node type)

no

yes

ε

(+ target node, edge type)

Figure 5.7: State diagram of the incremental graph generation process.

Add node?
yes, type A

A

Add edge?
no

A

Add node?
yes, type B

A B

Add edge?
no

A B

Add node?
yes, type C

A B

C
Add edge?

yes

A B

C
Add edge to?

node 1, type 2

A B

C
Add edge?

yes

A B

C

Add edge to?

node 2, type 2

A B

C
Add node?
yes, type D

A B

C

D

Add edge?
yes

A B

C

D

Figure 5.8: Example of the incremental graph generation process.

The graph-generative model consists of three steps: In a first preprocessing step, the graphs
are transformed into a sequence of structure-building actions. By applying these actions,
the graph can be re-generated in an incremental fashion. In the second step, a GNN-
based model is optimized on a large body of training data with the objective of predicting
those structure-building actions. Finally, the optimized generative model is used to predict
structure-building actions that construct a graph incrementally.

This model also follows the dynamics shown in Figure 5.6. The code representation CR is
a current state of the graph, A a structure-building action. Figure 5.7 shows the state tran-
sitions of the graph generative model. Starting with an empty graph, the model transitions
into the Add node? state and predicts whether to add a node of a specific type. If so, a node
of the specific type is added to the current state of the graph and the model transitions into
the Add edge? state and predicts whether to add an edge. In case, it transitions into the Add
edge to? state and predicts the target node and the edge type. Then, this edge is added to
the current state of the graph. An example of this incremental process is given in Figure 5.8.
The arrows represent the actions that are applied to the current state of the graph.

In Figure 5.9, we show the model architecture with its components and their relationships.
After a code representation component embeds the current state of the graph, subsequent
action-specific modules predict a probability distribution of the output. This output is sam-
pled and formed into an action, which is applied to the current state, potentially leading to
a new state of the graph. We will proceed with a description of the layers in greater detail.

5.2. GENERATIVE TASKS 39

Code representation

Decision model

Action

GraphGraphGraphGraph

NodesNodesNodesNodes EdgesEdgesEdgesEdges

a) Graph neural network layer

b) Add node
prediction module

Add nodeAdd nodeAdd node

c) Add edge
prediction module

Add edgeAdd edgeAdd edge

d) Add edge target
prediction module

Add edge targetAdd edge targetAdd edge target

e) Init node
module

Node embeddingNode embeddingNode embedding

h′v h′v h′v h′v

T times

sample:
yes/no,

node type

sample:
embedding

sample:
yes/no

sample:
target node,
edge type

Apply

Figure 5.9: Architecture of the generative model based on Graph Neural Networks.

a) Graph neural network layer The current state of the graph is encoded with the one-
hot encoding described earlier. With the initial embeddings based only on the node type,
they do not contain any structural information of the graph, i.e. as expressed by the edges.
By applying a GNN propagation scheme for T iterations, the initial node embedding vectors
produced by the initial embedding layer are enriched with this structural graph information.

b) Add node prediction module Based on a graph embedding shown in Equation 4.3.5, this
module uses a learnable function fan that outputs a probability distribution representing a
no and a node type output. It is implemented as a MLP, whereas the softmax activation
function makes the module differentiable and normalizes the probabilities.

faddnode(G) = so f tmax(fan(hG)) (5.2.1)

After adding a new node to the graph, its node embedding needs to be initialized. The
authors suggest to initialize it by a function finit that concatenates an aggregation across all
existing node embeddings with another instance of the function shown in Equation 4.3.5,
and a node feature xv. In this case, we take the node type as this node feature.

hv = finit(hG, xv) (5.2.2)

c) Add edge prediction module The learnable function faddedge, which is implemented as
a MLP, outputs a single probability for adding an edge or not. Its inputs are a graph embed-

40 5. TASK-SPECIFIC ARCHITECTURES

ding, shown in Equation 4.3.5 and the node embedding of the last added node.

faddedge(G, v) = σ(fae(hG, h′v)) (5.2.3)

d) Add edge target prediction module This module computes the probability of adding
an edge between the last added node for all nodes that exist in the current graph. The
learnable function fs is implemented as a MLP, that calculates a single score for each pair of
the current node embedding and the other nodes embeddings. The edge type is represented
in an additional dimension. In a second step, the scores of all pairs of all edge types are
concatenated and normalized by applying the softmax function.

su = fs(h
′
u, h′v) ∀u ∈ V (5.2.4)

fnodes(G, v) = so f tmax(s) (5.2.5)

e) Init node module After a node has been added to the current state of the graph, this
particular node embedding, denoted as hv, doesn’t exist. A naïve solution to solve this could
be to initialize the embedding with a one-hot encoding of the predicted node type. However,
this approach has the shortcoming that the embedding doesn’t contain any information
about its neighborhood. Therefore, a learnable function finit is used that outputs an initial
embedding for the last newly added node, conditioned on the node type e and the graph
embedding hini t

G , which uses a separate set of learnable parameters than the other modules
and therefore is a different function than hG. The function finit itself is implemented as a
MLP that outputs a vector of the node embedding’s dimension.

hv = finit(e, hini t
G) (5.2.6)

41

6

Design and Implementation

In this chapter, we will describe the design and implementation of a framework that enables
an evaluation of the graph-based program representations introduced in chapter 3 and the
graph embedding models described in chapter 4 and chapter 5 in specific tasks. After ana-
lyzing the requirements, we will describe our design and highlight our key decisions.

6.1 Requirement Analysis

The functional requirements of the framework to be designed can be grouped into require-
ments of the models, the code representations, the tasks, and the experiments. Besides that,
non-functional requirements apply. In Table 6.1, a summary of the requirements is shown,
while are more detailed description of them is given below.

Code representation The code representations that need to be extracted from raw C source
code are the ones described in chapter 3: The Source Dataflow Graph (S-DFG), the LLVM IR
Control- and Dataflow Graph (LLVM-CDFG), and the LLVM IR SSA Control- and Dataflow
Graph Representation (LLVM-SSA-CDFG) (R1, R2, R3). The implementation of the sequen-
tial code representations on the other hand is already part of existing published source code
artifacts of Cummins et al. (2017b) and Cummins et al. (2017a); Ben-Nun et al. (2018).
Therefore, they don’t require a implementation in the context of this work.

42 6. DESIGN AND IMPLEMENTATION

Name Category Description

R1 Representation Extraction of the S-DFG representation from C code
R2 Representation Extraction of the LLVM-CDFG representation from C code
R3 Representation Extraction of LLVM-SSA-CDFG representation from C code
R4 Representation Translation to a numerical representation
R5 Representation Extraction of statistics
R6 Representation Generation of an action sequences for the S-DFG
R7 Representation Generation to a compilable C code from the S-DFG
M1 Model Support for multiple neural network models
M2 Model Scalability of the graph models to large-size samples
M3 Model Support for predictive tasks
M4 Model Support for generative tasks

E1 Experiment
Support for multiple experiments with multiple steps
(Preprocessing, Execution, Evaluation)

E2 Experiment
Execution provisioning in SLURM cluster- and workstation
environments

NF1
Non-
functional

Extensibility

Table 6.1: Summary of the requirements.

In order to allow for greater flexibility, the data structure of the graph code representations
should support interactions and transformations. Examples for interactions are the map-
ping of the in-memory data structure to a numerical model with node type id encodings
or the generation of action sequences (R4), and extraction of statistics of a sample in a
certain representation for the later evaluation (R5). Examples for transformations are the
elimination of certain node types by merging for the S-DFG representation or incrementally
constructing an S-DFG by predicting the next action in the generative model (R6).

Model Starting with the model requirements, the framework needs to support all of the
graph neural network models that are subject to this work, specifically the GGNN, and the
GCN models (M1). Based on these models, task-specific architectures, specifically for predic-
tive (M3) and generative tasks (M4), should be supported. Furthermore, the graph models
require a design that supports source code samples of larger sizes (M2).

Experiment Multiple experiments should be supported, along with its preprocessing, exe-
cution, and evaluation steps that should be executed in a convenient way (E1). Automatic
provisioning in SLURM cluster- and workstation environments is a mandatory requirement
for effective execution (E2). Besides being very demanding in terms of computational re-
sources, dependencies between different experiments complicate their execution. There-
fore, an automatic and coordinated way provisioning is essential.

Non-functional For future work, the framework should be extensible in multiple ways
(NF1): It should be possible to add new graph models and the framework should be appli-
cable to new tasks without changing the architecture.

6.2. FRAMEWORK DESIGN 43

* * * *

* * * *

�interface�
Visitor

visitBegin(Visitee v)
visitEnd(Visitee v)

CodeGenVisitor

visitBegin(Visitee v)
visitEnd(Visitee v)

etc

...

...

�interface�
Visitee

accept(Visitor v)

S-DFG

accept(Visitor v)

Function

accept(Visitor v)

Statement

accept(Visitor v)

Edge

accept(Visitor v)

v. visitBegin(this);
fo r statement in this.statements:

statement.accept(v);
v. visitEnd(this);

v. visitBegin(this);
fo r statement in this.statements:

statement.accept(v);
v. visitEnd(this);

LLVM-CDFG

accept(Visitor v)

Basic Block

accept(Visitor v)

Instruction

accept(Visitor v)

Edge2

accept(Visitor v)

Client

Figure 6.1: UML Class design of the code representation component.1
1 Please note that only the most relevant attributes and functions with visitor- and object recursion

functionality are shown here. Low-level implementation details are omitted for more clarity
reasons.

6.2 Framework Design

We decide to implement a generic framework that later can be used by the experiments.
The framework is naturally divided into two components: The code representation and the
model. In the following, we will describe the design features of both of these components.

Code representation In order to comply with requirements R4, R5, R6, and R7 that de-
mand interaction with the graph representation, we design a data structure that represents
the code graphs and is easily traversable.

To construct this data structure, we use a pipeline design with components that can be
reused across the framework. We start with parsing the source code with Clang and LLVM
tools, which capture the information about the Clang AST and LLVM IR. For each source
file, the tools produce a stream in JSON format that we capture and parse in our framework
into a class hierarchy. This fulfills R1, R2, and R3. Once this data structure is constructed,
it is traversed and manipulated by further components.

Figure 6.1 shows the class design of this data structure in UML notation, along with classes
that implement concrete algorithms. With the derivates of Visitee , each of the repre-
sentations has its own class hierarchy of entities that are constructed while parsing. After

44 6. DESIGN AND IMPLEMENTATION

Representation Name Functionality

S-DFG, LLVM-CDFG MetricsVisitor
Gathering of graph metrics for statistics
and evaluation

S-DFG, LLVM-CDFG DotGraphVisitor Visualization of the representation

S-DFG, LLVM-CDFG
NodeMappingCreation-
Visitor Creation of node mappings

S-DFG
ActionSequenceCreation-
Visitor

Creation of a graph-generating
action sequence

S-DFG NodeEliminationVisitor Elimination of nodes by merging
S-DFG CodeGenVisitor Generation of C code

Table 6.2: Overview of the visitors and their functionality.

construction of the entity model, higher entity objects have associations to corresponding
lower entity objects. In the S-DFG hierarchy for instance, the S-DFG object has asso-
ciations to the functions that it consists of. Each Function object has associations to
corresponding Statement objects, which have associations to Edge objects. Finally,
each Edge object has an association to a Statement object, representing its destina-
tion. The derivates of Visitor on the other hand implement concrete algorithms that
operate on the entity class hierarchies.

The key to the design of the representation component is the use of the Visitor design pat-
tern (Gamma (1995)) in conjunction with Object Recursion. Algorithms are implemented in
accordance with the Visitor interface and be applied by passing them to the top-level
element of a hierarchy that consists of classes that implement the Visitee interface.
The Visitor object then recursively traverses the hierarchy structure. Every time the
object traverses a Visitee object, the visitBegin method is called. On finishing
the traversal, the visitEnd method is called. Inside these hook methods, an algorithm
can be defined and the concrete Visitor object can be used to hold the algorithms’ state.
Table 6.2 gives an overview of the concrete Visitors that were implemented in this work.

The use of the Visitor design pattern and object recursion has several advantages in our
use case: First, we require to implement various tree traversal algorithms and object recur-
sion is a natural way of formulating such algorithms. Second, the Visitor pattern separates
the entity class structure from the concrete algorithms. This way, new algorithms can be
added without changing the entity classes and therefore, won’t break existing functionality.
Another advantage is reusability: An algorithm defined as a Visitor can be applied to both
representations if implemented in a generic way.

6.2. FRAMEWORK DESIGN 45

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1
*

1
*

PredictiveModel

train(data, out)
predict(data): out

GenerativeModel

train(data)
generate(): data

�interface�
GraphLayer

propagate(hv): hv

EmbeddingLayer

propagate(hv): hv

GGNNLayer

propagate(hv): hv

CGNLayer

propagate(hv): hv

EmbeddingLayerState

weights: vector

save()
restore()

GGNNLayerState

weights: vector

save()
restore()

CGNLayerState

weights: vector

save()
restore()

PredictiveCell

predict(hv): out

GenerativeCell

predict(hv): out

PredictiveCellState

weights: vector

save()
restore()

GenerativeCellState

weights: vector

save()
restore()

Figure 6.2: UML Class design of the model component.1
1 Please note that only the most relevant attributes and functions of the model organization are

shown here. Low-level implementation details are omitted for more clarity reasons.

Model When designing the model, we need to make considerations about software engi-
neering on the one hand (M1, M3, M4), scalability of graph neural network models on the
other hand (M2).

Figure 6.2 shows the UML class design of the model component. The most high-level classes
are PredictiveModel and GenerativeModel . They encapsulate the model’s
functionality and offer a clean interface to the user that allows for training the model with
labeled data, making predictions on with a trained model, or for generating new data sam-
ples. The model classes are responsible for constructing the model according to a specifica-
tion that is passed in the constructor. After construction, they hold associated objects of the
shown class hierarchy. Furthermore, the classes are partitioned into GraphLayer and
Cell classes. GraphLayer derivates represent initial embedding and GNN models
described in chapter 4. Cell classes represent architectures described in chapter 5. This
decoupling is an important design decision towards flexibility and reusability: We can base

46 6. DESIGN AND IMPLEMENTATION

GraphLayer

GenerativeCell

GraphLayer

GenerativeCell

GraphLayer

GenerativeCell

GenerativeCellState

GraphLayerState

hv

hv
hv

hv hv

Figure 6.3: Dynamic view of the states in the context of the model component.

the design of multiple architectures on the GraphLayer classes that serve as their build-
ing blocks. Additionally, this design allows for arbitrary combinations of GraphLayer
implementations. Another critical design decision is the decoupling of the state from the
functional classes. This enables us to build recurrent architectures such as the one defined
in the GenerativeModel class that requires unrolling the model for a number of
timesteps. Figure 6.3 visualizes this relationship. By constructing an unrolled network that
is interconnected with GraphLayer and GenerativeCell objects that share one
set of State objects, a recurrent model can be trained with BPTT.

Considerations regarding scalability (M2) are mainly towards the representation of the
graph structure within the model: Edges in a graph are commonly represented in two ways:
First, with an adjacency matrix, whereas a binary setting in the matrix at memory location
(x , y) represents an edge. Second, with an adjacency list where each element (x , y) rep-
resents an edge.1 Depending on the density of the graph, either an adjacency matrix or
an adjacency list allows for better time and space performance. Because traversing the
whole graph to compute a propagation step in the GNN model is a common operation, time
and space complexities are highly relevant for the model’s applicability and runtime perfor-
mance. Considering the limits of the time and space complexities2, the worst-case runtime
and space requirement3 of an adjacency matrix and an adjacency list is O(V 2). The best-case
runtimes and space requirements4 however are O(V 2) for the adjacency matrix and O(V+E)
for the adjacency list. Figure 6.4 shows the number of nodes, edges, and the density factor
of the device mapping dataset, consisting of 256 OpenCL functions. The density factor is
the proportion of the edges over the total possible amount of edges in a graph of a given
size. More precisely: D = E

V (V−1) . We conclude that a sparse graph model implementation
of the S-DFG, LLVM-CDFG, and LLVM-SSA-CDFG representations is more efficient because
the S-DFG has a median graph density of 1.65%, the LLVM-CDFG of 1.85%, and the LLVM-
SSA-CDFG of 2.17%. Another argument against a dense graph model implementation is
that some of the graphs have over 10000 nodes. Constructing a dense model of this size
has an impractical memory footprint, even on high-performance hardware.

1For simplicity, we consider untyped edges in this description. It can be easily extended to typed edges
however by replacing the binary memory in the case of the adjacency matrix, or by considering triples
(x , y,type) in the adjacency list.

2With V being the number of nodes, E the number of edges
3Which is a fully-connected graph
4Which is a sparse graph

6.2. FRAMEWORK DESIGN 47

Number of nodes Number of edges

10

100

1000

10000

S-
DFG

LLVM-
CDFG

LLVM-
SSA-
CDFG

Representation

Q
ua

nt
it

y
(l

og
)

0.00

0.05

0.10

0.15

S-
DFG

LLVM-
CDFG

LLVM-
SSA-
CDFG

Representation

G
ra

ph
de

ns
it

y
Figure 6.4: Node and edge quantities of the device mapping dataset in different graph rep-

resentations (left) and the graph densities (right).

Experiments Experiments use the code representation and model components of our frame-
work. Because these components are designed with a generic and non-task specific inter-
face, experiment implementation is straightforward. Multiple experiment steps are sup-
ported as different run modes of the experiment executables (E1).

For running the experiments in different environments, we design the experiment compo-
nent that uses a worker queue design, as shown in Figure 6.5. Users of this component,
which are the experiments, can create Task objects that represent concrete experiment exe-
cutions that are added to the ProcessingQueue. An Executor requests a configurable amount
of Tasks from the ProcessingQueue if it has free workers and executes them. On comple-
tion of all Tasks, a feedback mechanism reports the results back to the experiment, which
then adds new Tasks to the ProcessingQueue. This design stands out in allowing resource
sharing, as well as automatic experiment execution. Multiple tasks can be collectively and
concurrently executed on a single worker. Automatic experiment execution is especially
critical in the case of the hyperparameter tuning experiments because the configurations of
the experiments depend on the results of the last execution.

Experiment
Executor

Task

Task

Task

ProcessingQueue

Worker

Task Task Task

Worker

Task Task Task

push
push
push

pop

pop

Results

Figure 6.5: Processing queue of the experiment module.

48 6. DESIGN AND IMPLEMENTATION

Practically, we have two implementations of Executors, fulfilling requirement E2: A work-
station executor for running the experiments locally and a SLURM-cluster executor that
enables running the experiments across a larger number of workers.

6.3 Framework Implementation

The implementation of the framework requires at least one programming language sup-
porting the C++ Application Binary Interface (C++ ABI) because the Clang/LLVM compiler
framework provides native libraries conforming to this. Because the Clang/LLVM provides a
maintained CMake module that enables seamless cross-platform builds, we decide to use this
programming language to extract the code representations. Additionally, source-level de-
bugging within the Clang/LLVM source code has been used in the development of the extrac-
tion tools, which works seamlessly and out-of-the-box within the exclusive C++ toolchain.

Implementing further functionality of the code representations and the model requires the
usage of several algorithms and third-party libraries. The Python programming language
offers a rich third-party library ecosystem, which is why we deemed it suitable for the task
of implementing the required functionality in a productive manner. While the C++ repre-
sentation extractors only do the mandatory tasks at a minimum level, the majority of the
framework is implemented in Python. Both components interact with a data structure that
is encoded in the JSON format and passed via IO streams.

For the model, we decide to implement it using the Tensorflow library (Abadi et al. (2016)).
Using array operations, we implement a dataflow graph according to the equations de-
scribed in chapter 4 in a vectorized way, allowing for arbitrary parallel execution to exploit
the capabilities of the computation devices.

49

7

Evaluation

In this chapter, we show an evaluation of the different representations and models of code
across different tasks. For evaluating the graph-based representations and models, we use
the framework described in chapter 6. We will start by giving a definition of common perfor-
mance metrics that are shared across the experiments. Then, we will describe two predictive
experiments and one generative experiment, while giving more details on the metrics, ex-
perimental setup, and a discussion of the results.

7.1 Performance Metrics

Accuracy The accuracy in the context of classification is a statistical measure for a model’s
performance. In the case of binary classification, it is defined as the proportion of the cor-
rectly predicted samples (TP) over the sum of the TP and the wrongly predicted samples
(FP), whereas a higher accuracy value is better:

Accuracy=
TP

TP+ FP
(7.1.1)

50 7. EVALUATION

Speedup The speedup is a measure for a method’s performance in the domain of computa-
tion. Considering the same experiment and the objective is to reduce latency, it defined as
the proportion of the old runtime told over the new runtime tnew, whereas a higher speedup
value is better:

Speedup=
told

tnew
(7.1.2)

Kullback Leibler divergence (KL) The KL is a measure of similarity between two discrete
probability distributions P and Q, whereas a lower KL value means more similarity between
the distributions. P is the expectation probability distribution, Q the approximation proba-
bility distribution:

DKL (P‖Q) =
∑

x∈X

P(x) log(
P(x)
Q(x)

) (7.1.3)

Cross validation Essential to a predictive model is the ability to generalize to new unseen
data.

Therefore, the dataset is commonly split into two disjunct sets: The training set and test set.
The model is fit to the training set and evaluated on the test set, which has been held-out
during training. A typical train/test split proportion is 80/20 or 90/10.

Using a typical training and test split on small data sets has a disadvantage: Because the
test set samples are few, high variability can occur, which can be reduced by using a k-fold
cross validation scheme. The dataset is split into k parts, which are used to construct many
pairs of disjunct training and test sets. The training sets consist of k− 1 parts, the test sets
of k parts. For each of the k− 1,1 partitions, the model is retrained on the training set and
evaluated on the test set. Upon completion of this iterative scheme, the results of the splits
are aggregated using e.g. the arithmetic mean or geometric mean function.

7.2. HETEROGENEOUS DEVICE MAPPING TASK 51

7.2 Heterogeneous Device Mapping Task

The problem of heterogeneous device mapping has the goal of classifying OpenCL kernel
functions to the computation device where they run faster. This problem has been studied
extensively, and several approaches have been proposed to solve it. Initially, Grewe et al.
(2013) proposed a heuristic method based on manually-defined features and a decision tree
as decision model. Cummins et al. (2017a) used a deep learning approach based on an
RNN model and an S-TS representation, which resulted in major performance improvements.
More recently, Ben-Nun et al. (2018) used an RNN model based on an LLVM-TS representation
in combination with word2vec embeddings (Mikolov et al. (2013)) to improve upon this
further. Throughout the evaluation, we will use these sequential-based methods and refer
to them as S-TS, and LLVM-TS respectively.

7.2.1 Metrics

For evaluating the representations and models, we want to analyze their generalization
performance and inference times.

Generalization Performance For measuring generalization performance, we use the accu-
racy as a metric, which in this context is the ratio of the correctly predicted device mappings
over all predicted device mappings. As an additional metric for the performance benefit that
the methods bring in this specific compiler task, we use the speedup, which is the sample’s
runtime on the predicted compute device over the runtime of a sample on a statically cho-
sen device. Because a correctly predicted mapping of a sample yields a faster execution,
it results in a speedup. In the static mapping, a single platform (CPU or GPU) is selected
and all kernels are mapped to this platform. For selecting this static mapping, the platform
which is fastest in most of the samples of the whole dataset is chosen.

Type Vendor Model Frequency

CPU Intel i7-7700k 4.2GHz
GPU NVIDIA GTX 1080 Ti 1.5GHz
Mem GSKILL Ripjaws V 3.2GHz

(a) Hardware specification.

Type Software Version

Operating System Ubuntu 16.04
Application Python 3.6
Application Tensorflow 1.12

(b) Software specification.

Table 7.1: Measurement environment for inference times.

Inference Time Additionally, we compare the models in their inference time, which is the
time required to make a prediction. Low inference time is a rather practical goal but nev-
ertheless very important towards applicability in compiler-related tasks, as it translates to
a faster compilation time for an end-user. A low compile time is desirable in software en-
gineering because it increases the development process efficiency. For taking the measure-
ments, we first construct the models on the system described in table 7.1, then measure the
time to infer on 1 sample of the dataset.

52 7. EVALUATION

7.2.2 Experimental Setup

Dataset The dataset consists of a total of 256 OpenCL kernel functions of the seven bench-
mark suites AMD SDK, NVIDIA SDK, NPB (Seo et al. (2011)), Parboil (Stratton et al. (2012)),
Polybench (Jia et al. (2014)), Rodinia (Che et al. (2009)), and SHOC (Danalis et al. (2010)),
along with the execution times for both CPU and GPU on two different heterogeneous sys-
tems. The output of the classification problem is obtained by selecting the device that yields
the minimum execution time. Both of the heterogeneous systems on which the execution
times have been measured have an Intel Core i7-3820 CPU. In terms of GPU, one system
features an AMD Tahi 7970, the other system an NVIDIA GTX 970.

While the S-TS and LLVM-TS representations of the dataset already exist, we construct the
graph-based representations for the whole dataset. This results in graphs with 92 node types
for the S-DFG graphs and 140 node types for the LLVM-CDFG graphs.

Hyperparameters To compare the graph model with the S-TS and LLVM-TS representa-
tions, we construct a model, whereas we manually choose the hyperparameters.1 To com-
pute the initial node embeddings, we map the one-hot encoded vectors with a MLP finit

consisting of 2 hidden layers of size 64 each to vectors of size 32. As propagation size T ,
we choose 4 iterations, which yields embeddings that include a 4-neighborhood of the indi-
vidual nodes. The graph embedding vector hG of size 64 is created by aggregating the node
embeddings using the two MLPs fm and gm, which are dimensioned with 2 hidden layers of
size 64 each. The graph embedding is mapped with a MLP with two hidden layers of size
32 to a dimension of 32, then serves as input to the prediction model, which is a MLP with
1 hidden layer of size 32.

Training We train the GNN models for 1500 epochs on the S-DFG, the LLVM-CDFG, and the
LLVM-SSA-CDFG graphs with the objective to fit the training set using the stochastic gradient
descent algorithm. Additionally, we train the S-TS model of Cummins et al. (2017a), the
LLVM-TS model of Ben-Nun et al. (2018), as well as the decision-tree-based model of Grewe
et al. (2013). We compare the results to the static mapping model, and to a model choosing
the CPU/GPU mapping at random.

In all methods, we use the same training-test-data split as in Cummins et al. (2017a) and
Ben-Nun et al. (2018) in a k-fold cross-validation scheme in a first experiment. In an ad-
ditional experiment, we split according to the benchmark suites, as described in the next
chapter.

1An automatic hyperparameter search based on Bayesian Optimization is reported in Appendix B.

7.2. HETEROGENEOUS DEVICE MAPPING TASK 53

7.2.3 Results

Method
Random mapping

Static mapping

Manual features

S-TS

LLVM-TS

S-DFG-GGNN

LLVM-CDFG-GGNN

LLVM-SSA-CDFG-GGNN

0.00

0.25

0.50

0.75

AMD Tahiti 7970 NVIDIA GTX 970
Platform

A
cc

ur
ac

y

1.51.49
1.43

1.611.61

1.5

1.39

1.56

1.24

1

0.84

1.181.21.18

1.291.29
1.25

1.2

1.27

1.11

1

0.79
0.8

0.9

1.0

AMD Tahiti 7970 NVIDIA GTX 970
Platform

Sp
ee

du
p

(l
og

)

(a) GGNN model.

Method
Random mapping

Static mapping

Manual features

S-TS

LLVM-TS

S-DFG-GCN

LLVM-CDFG-GCN

LLVM-SSA-CDFG-GCN

0.00

0.25

0.50

0.75

AMD Tahiti 7970 NVIDIA GTX 970
Platform

A
cc

ur
ac

y

1.611.61

1.51.491.5

1.43
1.39

1.56

1.24

1

0.84

1.291.29
1.25

1.21.181.18
1.2

1.27

1.11

1

0.79
0.8

0.9

1.0

AMD Tahiti 7970 NVIDIA GTX 970
Platform

Sp
ee

du
p

(l
og

)

(b) GCN model.

Figure 7.1: Accuracies and Speedups of the heuristic methods in the device mapping task
with random k-fold splits.

Figure 7.1 shows the overall accuracy results and speedups of the heuristic methods in the
device mapping task. We see that the graph-based methods (S-DFG, LLVM-CDFG, and LLVM-
SSA-CDFG in combination with the GGNN and GCN models) perform better than LLVM-TS.
While the S-TS method produces a slightly better accuracy than S-DFG, LLVM-CDFG and
LLVM-SSA-CDFG yield the highest overall accuracy when used with the GGNN model. The
GCN models on the other hand, are not able to cope with the S-TS method. Further, we see
that this described trend is comparable to the speedup results.

While useful for comparison with the state-of-the-art methods used in the original work of
the S-TS and LLVM-TS methods, their cross-validation setup trains the model with kernels

54 7. EVALUATION

AMD Tahiti 7970 NVIDIA GTX 970

AM
D

SD
K

NPB

NVID
IA

SD
K

Pa
rb

oil

Po
lyb

en
ch

Rod
in

ia

SH
OC

M
ea

n

AM
D

SD
K

NPB

NVID
IA

SD
K

Pa
rb

oil

Po
lyb

en
ch

Rod
in

ia

SH
OC

M
ea

n

0.00

0.25

0.50

0.75

Benchmark Suite

A
cc

ur
ac

y
Method

Random mapping

Static mapping

Manual features

S-TS

LLVM-TS

S-DFG-GGNN

LLVM-CDFG-GGNN

LLVM-SSA-CDFG-GGNN

(a) GGNN model.

AMD Tahiti 7970 NVIDIA GTX 970

AM
D

SD
K

NPB

NVID
IA

SD
K

Pa
rb

oil

Po
lyb

en
ch

Rod
in

ia

SH
OC

M
ea

n

AM
D

SD
K

NPB

NVID
IA

SD
K

Pa
rb

oil

Po
lyb

en
ch

Rod
in

ia

SH
OC

M
ea

n

0.00

0.25

0.50

0.75

Benchmark Suite

A
cc

ur
ac

y

Method
Random mapping

Static mapping

Manual features

S-TS

LLVM-TS

S-DFG-GCN

LLVM-CDFG-GCN

LLVM-SSA-CDFG-GCN

(b) GCN model.

Figure 7.2: Accuracies and Speedups of the heuristic methods in the device mapping task
with grouped k-fold splits.

from the same benchmarks that it then uses to evaluate the heuristic. Having 7 different
benchmark suites, we believe that using these as groups in a k-groups-split methodology
yields more insights about the generalization capabilities of the models. This way, they are
tested on kernels from a benchmark suite they have not been trained on. To this end, we split
the dataset into 7 parts, each of the 7 parts being the different benchmarks suites, instead of
10 randomly-chosen parts out of the set of all kernels of the benchmark suites. This way, the

7.2. HETEROGENEOUS DEVICE MAPPING TASK 55

0.902

1.34

0.1
0.032

0.984

0.467

0.837

0.394

0.0

0.5

1.0

In
fe

re
nc

e
ti

m
e

(i
n

s)
Method

S-TS

LLVM-TS

S-DFG-GGNN

S-DFG-GCN

LLVM-CDFG-GGNN

LLVM-CDFG-GCN

LLVM-SSA-CDFG-GGNN

LLVM-SSA-CDFG-GCN

Figure 7.3: Inference times of the heuristic methods in the device mapping task.

model is tested on data that is fundamentally different from the benchmarks it was trained
on. Figure 7.2 shows the results of the experiment with this alternative setup. Since we split
the train and test sets by benchmarks, we can see how the models fare on every benchmark
after being trained on the other six. It is notable how the different methods can have vastly
different results on the different benchmarks. The final entries for each platform show an
aggregated result (arithmetic mean) over all benchmarks.

In the results, we can see that S-DFG is not only the one with the best overall results but
also the most consistent ones. It had an overall accuracy of 60.6% when combined with
the GGNN model, which is over 12 percentage points better than that of the S-TS model at
47.9% and even better than the 44.9% overall accuracy obtained by the LLVM-TS model. In
this case, LLVM-CDFG had a similar performance, beating the S-TS method by less than a
percentage point in accuracy at 48.5%. Similar results can be observed for the combinations
with the GCN model. In fact, we see how when tested on different benchmark suites than
they were trained on, all state-of-the-art methods we compared to here perform worse than
a coin-toss (50.9% accuracy). This indicates that the models probably do not learn the
relationship between the code’s semantics and the optimal compute device in a way that is
generalizable when the code becomes different enough.

Figure 7.3 shows the inference times of the heuristic methods. We can see that the manually-
defined features method is considerably faster in training and inference. The deep learning
models are much slower in inference than the decision tree based on manually-defined
features. It is important to note however, that the graph-based models are up to an order
of magnitude faster in inference than the sequence-based deep learning-based models.

56 7. EVALUATION

7.3 Thread Coarsening Task

In parallel architectures, faster execution times can sometimes be achieved by merging mul-
tiple parallel threads to fewer threads. The thread coarsening factor is a parameter that
controls this behavior in OpenCL implementations. Various predictive models have been
proposed to solve this task, such as that by Magni et al. (2014), who used an MLP based
on static code features, such as the quantities of certain LLVM IR instructions. Similarly to
the heterogeneous device mapping task, Cummins et al. (2017a) and Ben-Nun et al. (2018)
used deep learning approaches based on a RNN models and S-TS and LLVM-TS representa-
tions to improve upon this.

7.3.1 Metrics

For evaluating the representations and models, we want to asses them in terms of general-
ization performance and inference times.

Generalization Performance For measuring the generalization performance in this task,
we use the speedup, which is the ratio of the runtime of a kernel with a correctly predicted
thread coarsening factor over the runtime of a kernel with no thread coarsening applied.

Inference Time Again, we compare the different models in their inference time because
the resulting fast compilation time when integrating such a heuristic model into a compiler
method is a desirable property. For this, we use the measurement environment described in
table 7.1. After constructing the models, we measure the time to infer on 1 sample in the
dataset.

7.3.2 Experimental Setup

Dataset The dataset for this problem consists of a total of 17 selected kernels from the
AMD SDK, NVIDIA SDK, and Parboil (Stratton et al. (2012)) benchmark suites. As output,
the model predicts among 6 classes for every kernel, corresponding to the coarsening factors
of 1, 2, 4, 8, 16, 32. Furthermore, the dataset consists of runtime measurements for each
of the kernels for each thread coarsening factor on 4 different GPUs.

Hyperparameters For this dataset, we obtain a total of 46 distinct node types for the S-
DFG and 54 node types for LLVM-CDFG graph representations. In this task, we keep the
dimensions of the model at a minimum, as the amount of training data is quite slim. We
apply one-hot encoding to the nodes represented as node types and map the resulting vectors
with the MLP finit to a size of 4. This MLP only contains the input and output layers and no
hidden layers. After 4 propagation time steps T , we aggregate the node embedding vectors

7.3. THREAD COARSENING TASK 57

to a graph embedding vector hG of size 8 by using the two MLPs fm and fg with no hidden
layers.

1.08

1.01
1.05

1.01

0.930.94

1.41

1.02

0.93

1.021.01

0.99

1.02

1.31

0.87

0.92
0.950.97

1

0.79

1.24

1.04

0.86

0.92

1.03

0.97

0.74

1.16

0.7

0.8

1.0

AMD
Radeon HD 5900

AMD
Tahiti 7970

NVIDIA
GTX 480

NVIDIA
Tesla K20c

Platform

Sp
ee

du
p

(l
og

)

Method
Oracle

Manual features

S-TS

LLVM-TS

S-DFG-GGNN

LLVM-CDFG-GGNN

LLVM-SSA-CDFG-GGNN

(a) GGNN model.

1.02

1.14

0.79

1.01

0.930.94

1.41

0.98

0.57

0.91

1.01

0.99

1.02

1.31

1
1.01

0.83

0.97
1

0.79

1.24

0.94

0.56

0.97

1.03

0.97

0.74

1.16

0.6

0.7

1.0

AMD
Radeon HD 5900

AMD
Tahiti 7970

NVIDIA
GTX 480

NVIDIA
Tesla K20c

Platform

Sp
ee

du
p

(l
og

)

Method
Oracle

Manual features

S-TS

LLVM-TS

S-DFG-GCN

LLVM-CDFG-GCN

LLVM-SSA-CDFG-GCN

(b) GCN model.

Figure 7.4: Speedups of the heuristic methods in the thread coarsening task.

Training We train the GNN models for 1500 epochs on the dataset on the S-DFG, the LLVM-
CDFG, and the LLVM-SSA-CDFG graphs with the objective to fit the training set best using
the stochastic gradient descent algorithm. Additionally, we train the S-TS model of Cummins
et al. (2017a), the LLVM-TS model of Ben-Nun et al. (2018), as well as the MLP-based model
of Magni et al. (2014).

In all methods, we use the same training-test-data split as in Cummins et al. (2017a) and

58 7. EVALUATION

0

0.559

0.208

0.001 0.002 0.001 0.001 0.001 0.001
0.0

0.2

0.4

0.6

In
fe

re
nc

e
ti

m
e

(i
n

s)

Method

Manual features

S-TS

LLVM-TS

S-DFG-GGNN

S-DFG-GCN

LLVM-CDFG-GGNN

LLVM-CDFG-GCN

LLVM-SSA-CDFG-GGNN

LLVM-SSA-CDFG-GCN

Figure 7.5: Inference times of the heuristic methods in the thread coarsening task.

Ben-Nun et al. (2018) in a k-fold cross validation scheme.

7.3.3 Results

Figure 7.4 shows the results of the thread coarsening experiment. In the figure, we add
an “Oracle” value for reference, which depicts the best possible speedups. It becomes obvi-
ous that in many cases, the predicted thread-coarsening factors yield an overall slowdown.
Overall, the S-TS model yields an overall speedup (geometric mean) of around 0.97 across
all platforms. In combination with the GGNN model, the S-DFG is slightly better at 0.98, and
LLVM-CDFG is slightly worse at 0.93. With the GCN model, the S-DFG achieves a speedup
of 0.87, the LLVM-CDFG 0.78, and the LLVM-SSA-CDFG 0.98, which is mostly worse than
the combinations with the GGNN model. The MLP relying on the manually-defined features
of Magni et al. (2014) yields an overall speedup of 0.87. The best results in this task are
achieved by the LLVM-TS and the LLVM-SSA-CDFG-GGNN models, which have an overall
speedup of 1.00, i.e. just as good as doing nothing. In general, all predictive fare com-
parably bad at this task. This might be explained in part by the modest possible maximal
speedups, which are limited to the oracles that are 1.28 overall. Also, the sparsity of training
data contributes to the poor performances of the methods.

Figure 7.5 shows the inference times of the heuristic methods. Similarly to the heteroge-
neous device mapping task, we can see that the MLP based on the manually-defined features
method is considerably faster in training and inference. While the other models relying on
more complex deep learning architectures are generally slower in inference than the MLP, it
is important to note that the graph-based model is an order of magnitude faster in inference
than the sequence-based deep learning models. The faster inference times of the GNNs over
the RNNs can be explained by the different natures of computation: While the dataflow in
the RNN model is sequentially dependent on the results of the previous computation step,
the GNN models perform computations with very little dependencies. Therefore, the com-
putation of the GNN model can be massively parallelized, which is in contrast to the RNN
models where the computation is strongly sequential.

7.4. CODE GENERATION TASK 59

7.4 Code Generation Task

Generative models of code can be used in two ways: First, to tackle the problem of dataset
sparsity. As statistical methods, such as the thread coarsening factor prediction we have
evaluated in the previous paragraph, may suffer from enough training data, generative
models of source code can learn to re-generate the distribution of source code they have
been trained with and beyond - to generate new samples that have similar properties as
the training samples. However, current deep learning-based methods are biased towards
shorter and little complex samples, as shown by Goens et al. (2019). A second use case
of generative models of code could be to tackle one of the major problems of compiler re-
search: The lack of representative benchmarks. As pointed out by Hall et al. (2009), many
widely used programs are proprietary, rendering them unavailable to the compiler research
community that requires them to design and experimentally validate new methods. Gener-
ative models could bridge this gap by learning the distribution of closed-source programs
in a closed, e.g. company-internal environment. Sharing the trained models with compiler
researchers enables them to generate programs with properties that match the distribution
of the properties of the closed-source programs, while the actual programs remain secret.

Considering these two use cases, they share a similar objective: Re-generating the distribu-
tion of the training data. For the use case of dataset augmentation, re-modeling the original
distribution is a needed objective before considering to generate new data samples. For the
use case of generating benchmarks for compiler research, re-generating the distribution is
the main goal.

Throughout this experiment, we will evaluate two generative models: One based on an
S-TS representation, one on an S-DFG representation. A generative method based on an
S-TS representation in conjunction with an RNN deep learning model has been proposed
by Cummins et al. (2017b), which we will re-use and re-evaluate in our experiments. The
S-DFG representation, on the other hand, is implemented in our framework.

7.4.1 Metrics

For evaluating the code-generative models towards the objective of re-generating the dis-
tribution of the training data, we use the KL between the probability distributions of different
code properties that we extract from the training data and the generated samples. In this
metric, the expectation probability distribution P represents the probability distribution of
the properties of the training samples, the approximation probability distribution Q the
probability distribution of the generated samples.

While the code properties are a useful metric for evaluating the main objective, we evaluate
on an additional metric for the use case of dataset augmentation: We extract the code
features of the compiler heuristic of Grewe et al. (2013) and perform a principal component
analysis on them, in order to analyze the KL between the main principal components of the
training set and the generated sets. This will indicate whether the generative models could
be useful in this specific task.

60 7. EVALUATION

7.4.2 Experimental Setup

Dataset The dataset for this task consists of OpenCL kernel functions that have automati-
cally been obtained from popular open-source projects from the GitHub software develop-
ment collaboration platform, following the methodology of Cummins et al. (2017b).

For this experiment however, we limit the total dataset consisting of 6800 compilable OpenCL
kernels to a subset. This is because the development of a code generator for generating valid
C code is a major engineering effort and therefore, we chose to support only the major fea-
tures of the C programming language. Another reason for limiting the data set to smaller-
sized samples is that training of the models requires a large amount of time to converge.
The S-TS model for example has been trained for several weeks, as the authors reported
in the original work. By limiting the dataset to smaller-sized samples, we can considerably
reduce the experiment execution time, while allowing a first comparison of the generative
models.

After preprocessing the reduced dataset, which consists of 1423 samples, we obtain a nor-
malized S-TS and a S-DFG representation. The S-DFG representation has a total of 56 node
types. The distributions of different code properties of the training dataset can be seen in
Figure 7.8. After filtering the original training set with the criteria about the size and the
code generator support described above, the training set consists of kernel functions with
a maximum AST depth of 13 and AST node quantity of 87, which translate to a maximum
amount of 336 sequence-generating and 490 graph-generating actions.

Hyperparameters We dimension the S-DFG model to be of a similar size as the S-TS model:
After applying one-hot encoding to the nodes according to their types, we map it to embed-
dings hv of size 256 with a MLP finit with no hidden layers. Based on all node embeddings
hv that are propagated for 4 timesteps T , we compute hG with the MLP fm and gm that have
one hidden layer each. Based on hG, we compute the probability distributions of the next
action with the MLPs faddnode, faddedge, and fnodes that have one hidden layer each.

Training and Sampling Both, the S-TS and the S-DFG models are trained with the same
data set until convergence of the loss function described in chapter 4 using the stochastic
gradient descent algorithm.

After training the models, we use them to produce new samples, starting with an empty
initial state, which is an empty sequence2 and an empty graph. We generate a total amount
of 1423 valid samples with each model in each configuration we report to match the number
of samples of the training set for the later result evaluation. The criterion for a sample being
considered as valid is passing the Clang/LLVM compiler pipeline without any errors and
obtaining executable code. Please note that this criterion only includes compilability, not
executability.

Additionally, we control the sampling process by varying the randomness by introducing a

2Please note that this is different from the original S-TS work, which uses a function header with a return
type, 4 arguments, and parentheses as initial set in the sampling process.

7.4. CODE GENERATION TASK 61

temperature parameter t, which we implement in both models by scaling the logits, which
are the inputs to the final softmax and sigmoid functions that produce the probability dis-
tributions over the actions by a function f . This methodology was originally introduced
by Hinton et al. (2015).

f (ai) =
eai/t

n
∑

j=1
ea j/t

(7.4.1)

The effect of the temperature parameter t is as follows: A smaller value of t makes the
sampling process more confident, but also conservative because the probability distribution
is sharper. This causes the class with the largest logit to be more likely to be chosen, which
makes the generative model produce more valid, but fewer novel samples. A smaller value
of t on the other hand causes a smoother probability distribution, which makes the sampling
process produce more novel, but also less valid samples.

Tuning the t parameter unveils the performance potential of the methods. We produce
samples in the configurations t = 0.6,0.8, 1.0,1.2, 1.4,2.0.3 and optimize for the minimal
KL.

3The temperature configuration of t = 1 yields the same results as without the temperature sampling.

62 7. EVALUATION

7.4.3 Results

0.0

0.1

0.2

0.3

0.4

0.5

0.0 2.5 5.0 7.5 10.0
NumFunctionArguments

D
en

si
ty

t=0.6
KL= 1.98
t=0.8
KL= 1.89
t=1.0
KL= 1.83
t=1.2
KL= 1.81
t=1.4
KL= 1.72
t=2.0
KL= 1.62

Training
0.00

0.25

0.50

0.75

1.00

0 5 10 15
NumDeclStmts

D
en

si
ty

t=0.6
KL= 0.45
t=0.8
KL= 0.43
t=1.0
KL= 0.42
t=1.2
KL= 0.38
t=1.4
KL= 0.36
t=2.0
KL= 2.24

Training

0.0

0.2

0.4

0.6

2.5 5.0 7.5
NumArraySubscriptExprs

D
en

si
ty

t=0.6
KL= 1.46
t=0.8
KL= 1.39
t=1.0
KL= 1.32
t=1.2
KL= 1.27
t=1.4
KL= 1.21
t=2.0
KL= 0.99

Training
0.00

0.25

0.50

0.75

1.00

0 2 4 6
NumControlStmts

D
en

si
ty

t=0.6
KL= 3.09
t=0.8
KL= 0.02
t=1.0
KL= 0.01
t=1.2
KL= 3.06
t=1.4
KL= 3
t=2.0
KL= 3.01

Training

0.0

0.1

0.2

0.3

0 5 10 15
NumOperatorStmts

D
en

si
ty

t=0.6
KL= 0.06
t=0.8
KL= 0.04
t=1.0
KL= 0.04
t=1.2
KL= 0.05
t=1.4
KL= 0.08
t=2.0
KL= 5.02

Training
0.0

0.1

0.2

0.3

0.4

0 5 10 15
NumLiteralStmts

D
en

si
ty

t=0.6
KL= 0.14
t=0.8
KL= 0.13
t=1.0
KL= 0.11
t=1.2
KL= 0.1
t=1.4
KL= 0.06
t=2.0
KL= 0.74

Training

0.0

0.1

0.2

0.3

0.4

0 5 10 15
MaxASTDepth

D
en

si
ty

t=0.6
KL= 0.63
t=0.8
KL= 0.34
t=1.0
KL= 0.1
t=1.2
KL= 0.36
t=1.4
KL= 0.08
t=2.0
KL= 1.48

Training
0.00

0.01

0.02

0.03

0 50 100 150
NumASTNodes

D
en

si
ty

t=0.6
KL= 0.23
t=0.8
KL= 0.18
t=1.0
KL= 0.13
t=1.2
KL= 0.1
t=1.4
KL= 0.06
t=2.0
KL= 0.18

Training

Figure 7.6: Distribution of code properties of S-TS generated samples with their KL-
Divergence to the training set.

7.4. CODE GENERATION TASK 63

0.00

0.25

0.50

0.75

0.0 2.5 5.0 7.5 10.0
NumFunctionArguments

D
en

si
ty

t=0.6
KL= 3.66
t=0.8
KL= 6.66
t=1.0
KL= 6.26
t=1.2
KL= 2.05
t=1.4
KL= 1.89
t=2.0
KL= 1.34

Training
0.00

0.25

0.50

0.75

1.00

0 5 10 15
NumDeclStmts

D
en

si
ty

t=0.6
KL= 2.36
t=0.8
KL= 2.35
t=1.0
KL= 2.4
t=1.2
KL= 2.39
t=1.4
KL= 2.28
t=2.0
KL= 2.33

Training

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5
NumArraySubscriptExprs

D
en

si
ty

t=0.6
KL= 2.04
t=0.8
KL= 1.37
t=1.0
KL= 1.15
t=1.2
KL= 1.06
t=1.4
KL= 1.34
t=2.0
KL= 5.77

Training
0.00

0.25

0.50

0.75

1.00

0 2 4 6
NumControlStmts

D
en

si
ty

t=0.6
KL= 2.98
t=0.8
KL= 2.98
t=1.0
KL= 2.98
t=1.2
KL= 2.98
t=1.4
KL= 2.98
t=2.0
KL= 2.99

Training

0.00

0.25

0.50

0.75

0 4 8 12
NumOperatorStmts

D
en

si
ty

t=0.6
KL= 6
t=0.8
KL= 5.57
t=1.0
KL= 5.49
t=1.2
KL= 5.13
t=1.4
KL= 5.18
t=2.0
KL= 5.05

Training
0.00

0.25

0.50

0.75

0 4 8 12
NumLiteralStmts

D
en

si
ty

t=0.6
KL= 4.08
t=0.8
KL= 1.55
t=1.0
KL= 1.5
t=1.2
KL= 1.47
t=1.4
KL= 4.12
t=2.0
KL= 1.54

Training

0.00

0.25

0.50

0.75

1.00

0 5 10 15
MaxASTDepth

D
en

si
ty

t=0.6
KL= 6.25
t=0.8
KL= 5.39
t=1.0
KL= 2.92
t=1.2
KL= 2.9
t=1.4
KL= 4.6
t=2.0
KL= 4.41

Training
0.00

0.01

0.02

0.03

0.04

0 50 100
NumASTNodes

D
en

si
ty

t=0.6
KL= 2.06
t=0.8
KL= 1.37
t=1.0
KL= 1.27
t=1.2
KL= 0.9
t=1.4
KL= 0.92
t=2.0
KL= 1.09

Training

Figure 7.7: Distribution of code properties of S-DFG generated samples with their KL-
Divergence to the training set.

64 7. EVALUATION

M
et

ho
d

Te
m

pe
ra

tu
re

N
um

Fu
nc

ti
on

A
rg

um
en

ts
(K

L)

N
um

D
ec

l
St

m
ts

(K
L)

N
um

A
rr

ay
Su

bs
cr

ip
t

Ex
pr

s
(K

L)

N
um

C
on

tr
ol

St
m

ts
(K

L)

N
um

O
pe

ra
to

r
St

m
ts

(K
L)

N
um

Li
te

ra
l

St
m

ts
(K

L)

M
ax

A
ST

D
ep

th
(K

L)

N
um

A
ST

N
od

es
(K

L)

Va
lid

it
y

(p
er

ce
nt

ag
e,

m
ax

.
1)

S-TS 0.6 1.98 0.45 1.46 3.09 0.06 0.14 0.63 0.23 0.38
S-TS 0.8 1.89 0.43 1.39 0.02 0.04 0.13 0.34 0.18 0.37
S-TS 1.0 1.83 0.42 1.32 0.01 0.04 0.11 0.10 0.13 0.32
S-TS 1.2 1.81 0.38 1.27 3.06 0.05 0.10 0.36 0.10 0.25
S-TS 1.4 1.72 0.36 1.21 3.00 0.08 0.06 0.08 0.06 0.16
S-TS 2.0 1.62 2.24 0.99 3.01 5.02 0.74 1.48 0.18 0.01

S-DFG 0.6 3.66 2.36 2.04 2.98 6.00 4.08 6.25 2.06 0.88
S-DFG 0.8 6.66 2.35 1.37 2.98 5.57 1.55 5.39 1.37 0.71
S-DFG 1.0 6.26 2.40 1.15 2.98 5.49 1.50 2.92 1.27 0.56
S-DFG 1.2 2.05 2.39 1.06 2.98 5.14 1.47 2.90 0.90 0.45
S-DFG 1.4 1.89 2.28 1.34 2.98 5.18 4.12 4.60 0.92 0.31
S-DFG 2.0 1.34 2.33 5.77 2.99 5.05 1.54 4.41 1.09 0.16

Table 7.2: Summary of the sampling results of the generative model regarding KL and Va-
lidity.

Figure 7.6 shows the distribution of the code properties across different temperature con-
figurations on the S-TS method, Figure 7.7 on the S-DFG method respectively. The code
properties that we analyze are quantities extracted from the original, unmodified Clang AST.
Specifically, the number of function arguments (NumFunctionArguments), the number of
declaration statements (NumDeclStmts), the number of array accesses (NumSubscriptEx-
prs), the number of control flow statements such as for and while loops and conditionals
statements (NumControlStmts), the number of operator statements which include binary
and unary operators, the number of literals such as floats and integers. Additionally, we
measure the maximum depth of the AST (MaxASTDepth), and the overall quantity of AST
nodes (NumASTNodes).

Table 7.2 summarizes the KLs of the code properties, along with the validity in different
temperature configurations. A first important observation is that the S-DFG method has
a higher overall validity than the S-TS method in all configurations of t. By lowering the
t parameter, the validity increases, as well as the KL values for most of the code proper-
ties, which means that the probability distributions increasingly diverge. By raising the t
parameter, the validity decreases. However, this results in a lower KL until to a certain con-
figuration of t, which means that the similarity between the distributions increases. This
minimum point is as follows: For the S-TS method, a temperature configuration of t = 1.4
produces the minimum KL for the majority of code properties. For the S-DFG method this
configuration is t = 1.2 respectively. We consider these parameters as optimal within each
of the methods regarding the objective to re-generate the code distribution of the training
data. As a first conclusion, we can see that tuning the temperature positively influences the
model’s abilities to reproduce the input distribution.

7.4. CODE GENERATION TASK 65

0.0

0.2

0.4

0.6

0.0 2.5 5.0 7.5 10.0
NumFunctionArguments

D
en

si
ty

S-TS
KL=1.72
S-DFG
KL=1.89

Training

0.00

0.25

0.50

0.75

0 5 10 15
NumDeclStmts

D
en

si
ty

S-TS
KL=0.36
S-DFG
KL=2.28

Training

0.0

0.1

0.2

0.3

0.4

0.5

2.5 5.0 7.5
NumArraySubscriptExprs

D
en

si
ty

S-TS
KL=1.21
S-DFG
KL=1.34

Training

0.00

0.25

0.50

0.75

1.00

0 2 4 6
NumControlStmts

D
en

si
ty

S-TS
KL=3
S-DFG
KL=2.98

Training

0.0

0.1

0.2

0.3

0.4

0 5 10
NumOperatorStmts

D
en

si
ty

S-TS
KL=0.08
S-DFG
KL=5.18

Training

0.0

0.2

0.4

0.6

0.8

0 4 8 12
NumLiteralStmts

D
en

si
ty

S-TS
KL=0.06
S-DFG
KL=4.12

Training

0.0

0.1

0.2

0.3

0.4

0 5 10 15
MaxASTDepth

D
en

si
ty

S-TS
KL=0.08
S-DFG
KL=4.6

Training

0.00

0.01

0.02

0.03

0.04

0 30 60 90 120
NumASTNodes

D
en

si
ty

S-TS
KL=0.06
S-DFG
KL=0.92

Training

Figure 7.8: Distribution of code properties of samples of the S-TS and S-DFG data sets with
their KL-Divergence to the training set.

Having the tuned methods, we will now compare the results between them. Figure 7.8
shows the S-TS method in configuration t = 1.4 and the S-DFG method in configuration
t = 1.2, along with their KL on the code properties. We see that the S-TS method has
a lower KL in 7 out of 8 code properties, which means that it more closely reproduces

66 7. EVALUATION

the probability distribution of the training set. Notable is that the S-DFG method fails to
produce samples with higher values in almost all of the code properties. Because most
code properties are quantities, we can assume that the S-DFG fails to produce larger-sized
samples. This assumption is also supported by the trend of the NumASTNodes property,
which is a measure for the size of a sample.

The additional comparison of the methods regarding the manually-defined features defined
by Grewe et al. (2013) supports this trend. Figure 7.9 shows the two main principal compo-
nents of the tuned methods. While the S-TS method is able to generate samples that cover
several clusters of the original feature space in terms of these components and beyond,
the S-DFG method fails to do so and generates samples that mainly cover one cluster of it.
However, the S-TS method also fails to reproduce some of the training sets samples. The
probability density function representation along with an analysis of the KL in Figure 7.10
supports this numerically: The first principal component (PC1) of the samples generated
with the S-TS method have a considerably lower KL than the ones generated with the S-
DFG method.

It is an interesting observation that the samples produced with the S-DFG method tend to
be smaller sized than the ones produced with the S-TS method. To investigate this further,
we analyze the number of predictions it takes to generate a sample because in sequential
generative models, there is a small probability of producing an error in each prediction of
a structure-building action. Long prediction sequences cause this error probability to grow.
Relying on a sequence of predictions, both of the evaluated methods suffer from this.

To compare the proneness of methods to this issue, we analyze the distributions of pre-
diction sequence lengths for the different methods on the training samples, as well as the
generated samples. Figure 7.11 reveals that the prediction sequences of the S-DFG method
are significantly longer than the ones of the S-TS method. For the generated samples, the
lengths of the prediction sequences are about equal, which means that both methods are
about equally-well fit to the training data. However, because the predictions needed to
construct a graph are longer for the S-DFG method and the probability of generating an
erroneous sample increases with the number of predictions, it is more biased towards gen-
erating smaller-sized samples than the S-TS method.

7.4. CODE GENERATION TASK 67

Figure 7.9: A complete view (left) and a view of the densest cluster (right) of the two main
principal components (PC1 and PC2) of the training and the generated S-TS and
S-DFG data sets.

1e-04

1e-03

1e-02

1e-01

0 25 50 75
PC1

D
en

si
ty

(l
og

)

1e+05

1e+06

1e+07

1e+08

-0.1194295 -0.1194294
PC1

D
en

si
ty

(l
og

)

Method
S-TS,
KL=0.041
S-DFG,
KL=0.216
Training

Figure 7.10: A complete view (left) and a view of the most dense cluster (right) of the two
main principal components (PC1 and PC2) of the training and the generated
S-TS and S-DFG data sets.

68 7. EVALUATION

0

100

200

300

400

500

Training Generated
Method

A
ct

io
n

qu
an

ti
ty

Method

S-TS

S-DFG

Figure 7.11: Number of generating actions for the S-TS and S-DFG methods in the training
and generated data sets.

69

8

Conclusion and Outlook

8.1 Conclusion

In this thesis, we have successfully defined and implemented compiler-internal represen-
tations of programs for different types of tasks. We have shown an empirical evaluation
between them in predictive and generative tasks.

In the scope of the evaluated predictive tasks, the results allow the conclusion that the GGNN
models in combination with LLVM-SSA-CDFG and S-DFG representations mostly outperform
the other methods in terms of generalization performance on unseen data. In inference time,
simple models that rely on manually-defined features show the best results. In the class of
deep learning methods however, GNNs can have a magnitude faster inference times if the
graph representation is compact. Based on the evaluated metrics generalization perfor-
mance and inference times, which are a tradeoff, we conclude that the GNN-based methods
bring the best generalization results while having acceptable inference times.

In the class of generative tasks, we evaluated an RNN-based method based on sequences,
as well as a GNN-based method that operates on graphs. The results suggest that the RNN-
based architecture outperforms the GNN-based, which is conceptually due to longer predic-
tion sequences of the graph-constructing actions that lower the probability of producing a
valid sample of larger size.

70 8. CONCLUSION AND OUTLOOK

8.2 Outlook

8.2.1 Analysis of Learned Features

We have shown an evaluation of the different deep learning models across different tasks.
In the scope of future work, it would be interesting to understand the learned features
across the models, similarly to the work done by Karpathy (2015), who analyzed the learned
features of LSTMs as cell activations on a character-based representation of C code.

8.2.2 Extend Program Graph Semantics

In this work, we limited the evaluation to part of the semantic information that can be ex-
tracted from Clang and LLVM. Further semantics that can be added to the program graph
representations are for example control-flow or liveness information for the S-DFG or domi-
nator trees in the LLVM-CDFG. Additionally, multiple variants of integrating these semantics
into the graph structure are possible, which can be subject to future work.

8.2.3 Domain-Specific Aggregation Schemes

While GNNs are powerful architectures to extract features of a node and its neighborhood
as a node embedding, the aggregation to a fixed-sized graph-level embedding is a limiting
factor of this architecture. Intuitively, this is because of the compression of many vectors to
a single vector of a fixed and limited dimension.

One approach to further improving the aggregation scheme is to use domain-specific knowl-
edge about the graphs, i.e. by limiting the aggregation scheme to specific nodes of the graph
only. An extreme example of this is to include only the return statement of a function, or
more moderately, to include only dataflow-terminating nodes. Another interesting approach
is to exploit known structures, e.g. the instructions affinity to basic-blocks. By aggregating
node embeddings to basic block embeddings first, then basic block embeddings to a graph
embedding, the graph embedding can be formed hierarchically and information can be re-
duced in a more structured way.

8.2.4 Ensembles Across Representations and Models

In machine learning model competitions, so-called ensembles are successfully used to achieve
state-of-the-art results. This is done by combining several state-of-the-art models into a sin-
gle prediction model. In the context of the representations and models shown in this work,
combining them could lead to further improvements in accuracy and speedup.

8.2. OUTLOOK 71

8.2.5 Domain-Specific Generative Model for S-DFGs

We have shown that the graph-generative model is biased towards generating shorter and
structurally simpler samples than the sequence-based model. We investigated that this is be-
cause the graph-generative model uses longer generation sequences than the graph model.
By using domain-specific knowledge about a programming language, such as its grammar,
the number of graph-generating actions can be reduced. A further example of exploiting
such domain-specific knowledge is limiting the decisions of certain states, e.g. in binary
operators, which need to have one incoming AST and two dataflow edges. Therefore, at
least three actions can be saved in this specific case.

8.2.6 Learning Dataflow Analyses

Another exciting direction is to train the GNN model to predict common dataflow-analyses.
In this work, we have used the GNN model to make graph-level predictions. However, by
skipping the output phase, it can be used for node-level predictions. A first objective could
be to investigate the model’s capability of learning dataflow analysis on dataflow-labeled
graphs. Afterwards, the model could be integrated into a higher-level architecture to solve
a compiler task. Analyzing the optimized dataflow features could allow conclusions on the
design for future dataflow analyses.

8.2.7 GNN Model Heuristic in a Real-World Compiler

We evaluated the model in the predictive use case as a compiler heuristic in two concrete
tasks. These tasks are popular among the research community and are well-suited for a first
evaluation of different models’ potentials.

A further exciting use case for the GNN models as heuristics is the Milepost GCC project by
Fursin et al. (2011) who integrates a heuristic model relying on manually-defined features
that are input to a decision tree into the production-grade GCC compiler. By predicting
optimizations and their order on a function-level granularity, they achieve speedups over
GCC’s highest optimization level.

In this work, we have shown that models relying on manually-defined features can be out-
performed by far by deep learning-based models while maintaining acceptable inference
times. Integrating the graph-based models into Milepost GCC could further improve the
speedup and reduce the execution times and energy efficiency of real-world applications.

72 8. CONCLUSION AND OUTLOOK

73

Bibliography

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for
extreme summarization of source code. In International Conference on Machine Learning,
pages 2091–2100, 2016.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent
programs with graphs. arXiv preprint arXiv:1711.00740, 2017.

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of
machine learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4):
81, 2018.

Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5, pages 1–19. ACM,
1970.

Amir H Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano, Sameer Kulkarni, and
John Cavazos. Micomp: Mitigating the compiler phase-ordering problem using optimiza-
tion sub-sequences and machine learning. ACM Transactions on Architecture and Code
Optimization (TACO), 14(3):29, 2017.

Rohan Bavishi, Michael Pradel, and Koushik Sen. Context2name: A deep learning-
based approach to infer natural variable names from usage contexts. arXiv preprint
arXiv:1809.05193, 2018.

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural code comprehension:
a learnable representation of code semantics. In Advances in Neural Information Processing
Systems, pages 3585–3597, 2018.

Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from examples to improve code
completion systems. In Proceedings of the the 7th joint meeting of the European software

74 Bibliography

engineering conference and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 213–222. ACM, 2009.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha Lee,
and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In 2009
IEEE international symposium on workload characterization (IISWC), pages 44–54. Ieee,
2009.

Kyunghyun Cho, B van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the prop-
erties of neural machine translation: Encoder-decoder approaches. In Eighth Workshop
on Syntax, Semantics and Structure in Statistical Translation (SSST-8), 2014, 2014.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence modeling. In NIPS 2014 Workshop
on Deep Learning, December 2014, 2014.

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. End-to-end deep
learning of optimization heuristics. In 2017 26th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 219–232. IEEE, 2017a.

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. Synthesizing bench-
marks for predictive modeling. In 2017 IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO), pages 86–99. IEEE, 2017b.

Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C Roth, Kyle
Spafford, Vinod Tipparaju, and Jeffrey S Vetter. The scalable heterogeneous computing
(shoc) benchmark suite. In Proceedings of the 3rd Workshop on General-Purpose Compu-
tation on Graphics Processing Units, pages 63–74, 2010.

Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam,
Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, et al. Mile-
post gcc: Machine learning enabled self-tuning compiler. International journal of parallel
programming, 39(3):296–327, 2011.

Erich Gamma. Design patterns: elements of reusable object-oriented software. Pearson Edu-
cation India, 1995.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1263–1272, 2017.

Andrés Goens, Alexander Brauckmann, Sebastian Ertel, Chris Cummins, Hugh Leather, and
Jeronimo Castrillon. A case study on machine learning for synthesizing benchmarks. In
Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages, pages 38–46. ACM, 2019.

Dominik Grewe, Zheng Wang, and Michael FP O’Boyle. Portable mapping of data parallel
programs to opencl for heterogeneous systems. In Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages 1–10. IEEE,
2013.

Bibliography 75

Mary Hall, David Padua, and Keshav Pingali. Compiler research: the next 50 years. Com-
munications of the ACM, 52(2):60–67, 2009.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. Mrpb: Memory request prioritization
for massively parallel processors. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA), pages 272–283. IEEE, 2014.

Daniel D. Johnson. Learning graphical state transitions. In International Conference on
Learning Representations (ICLR), 2017.

Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. Phrase-based statistical transla-
tion of programming languages. In Proceedings of the 2014 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming & Software, pages 173–184.
ACM, 2014.

Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Net-
works, May 2015. URL http://karpathy.github.io/2015/05/21/
rnn-effectiveness/.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

Sameer Kulkarni and John Cavazos. Mitigating the compiler optimization phase-ordering
problem using machine learning. In ACM SIGPLAN Notices, volume 47, pages 147–162.
ACM, 2012.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program anal-
ysis & transformation. In Proceedings of the international symposium on Code generation
and optimization: feedback-directed and runtime optimization, page 75. IEEE Computer
Society, 2004.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436,
2015.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence
neural networks. In International Conference on Learning Representations (ICLR), 2016.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep
generative models of graphs. arXiv preprint arXiv:1803.03324, 2018a.

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, Zhaoxuan Chen, Sujuan Wang, and
Jialai Wang. Sysevr: a framework for using deep learning to detect software vulnerabili-
ties. arXiv preprint arXiv:1807.06756, 2018b.

Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi
Zhong. Vuldeepecker: A deep learning-based system for vulnerability detection. arXiv
preprint arXiv:1801.01681, 2018c.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

76 Bibliography

Percy Liang, Michael I Jordan, and Dan Klein. Learning programs: A hierarchical bayesian
approach. In Proceedings of the 27th International Conference on Machine Learning (ICML-
10), pages 639–646, 2010.

Alberto Magni, Christophe Dubach, and Michael O’Boyle. Automatic optimization of thread-
coarsening for graphics processors. In Proceedings of the 23rd international conference on
Parallel architectures and compilation, pages 455–466. ACM, 2014.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Antoine Monsifrot, François Bodin, and Rene Quiniou. A machine learning approach to
automatic production of compiler heuristics. In International conference on artificial intel-
ligence: methodology, systems, and applications, pages 41–50. Springer, 2002.

Dana Movshovitz-Attias and William W Cohen. Natural language models for predicting
programming comments. In Proceedings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), volume 2, pages 35–40, 2013.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Divide-and-conquer approach
for multi-phase statistical migration for source code (t). In 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pages 585–596. IEEE, 2015.

Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. A statistical
semantic language model for source code. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pages 532–542. ACM, 2013.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International conference on machine learning, pages 1310–1318, 2013.

Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical language
models. In Acm Sigplan Notices, volume 49, pages 419–428. ACM, 2014.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and orga-
nization in the brain. Psychological review, 65(6):386, 1958.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfar-
dini. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):
61–80, 2008.

Sangmin Seo, Gangwon Jo, and Jaejin Lee. Performance characterization of the nas parallel
benchmarks in opencl. In 2011 IEEE international symposium on workload characterization
(IISWC), pages 137–148. IEEE, 2011.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. In Advances in neural information processing systems, pages
2951–2959, 2012.

John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang, Nasser
Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil: A revised benchmark suite for
scientific and commercial throughput computing. Center for Reliable and High-Performance
Computing, 127, 2012.

Bibliography 77

Zheng Wang and Michael OBoyle. Machine learning in compiler optimization. Proceedings
of the IEEE, 106(11):1879–1901, 2018.

Paul J Werbos et al. Backpropagation through time: what it does and how to do it. Proceed-
ings of the IEEE, 78(10):1550–1560, 1990.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriënboer,
Armand Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of
prerequisite toy tasks. arXiv preprint arXiv:1502.05698, 2015.

78 Bibliography

Appendices

79

81

APPENDIXA

Further Program Examples

82 APPENDIX A. FURTHER PROGRAM EXAMPLES

i n t i sPr ime (i n t n) {
i f (n <= 1) re turn 0;
i f (n % 2 == 0 && n > 2) re turn 0;
f o r (i n t i = 3; i < n / 2; i += 2) {

i f (n % i == 0)
re turn 0;

}
re turn 1;

}

Figure A.1: Original source code of the isPrime function.

isPrime
{'type': 'int'}

FunctionArgument
{'type': 'int'}

CompoundStmt
{}

IfStmt
{}

IfStmt
{}

ForStmt
{}

ReturnStmt
{}

BinaryOperator
{'operator': '<='}

ReturnStmt
{}

BinaryOperator
{'operator': '&&'}

ReturnStmt
{}

DeclStmt
{'type': 'int'}

BinaryOperator
{'operator': '<'}

CompoundAssignOperator
{'operator': '+='}

CompoundStmt
{}

IntegerLiteral
{'value': '1'}

IntegerLiteral
{'value': '1'}

IntegerLiteral
{'value': '0'}

BinaryOperator
{'operator': '=='}

BinaryOperator
{'operator': '>'}

IntegerLiteral
{'value': '0'}

IntegerLiteral
{'value': '3'}

BinaryOperator
{'operator': '/'}

IntegerLiteral
{'value': '2'}

IfStmt
{}

BinaryOperator
{'operator': '%'}

IntegerLiteral
{'value': '0'}

IntegerLiteral
{'value': '2'}

IntegerLiteral
{'value': '2'}

BinaryOperator
{'operator': '=='}

ReturnStmt
{}

IntegerLiteral
{'value': '2'}

BinaryOperator
{'operator': '%'}

IntegerLiteral
{'value': '0'}

IntegerLiteral
{'value': '0'}

Figure A.2: S-DFG representation of the isPrime function.

83

fn_0

bb_0

bb_1

bb_2

bb_3

bb_4

bb_5

bb_6

bb_7

bb_8

bb_9

bb_10

bb_11

bb_12

alloca

alloca

store

store

store

store

load

alloca

store

loadload

load

load

loadload

load

load

store

store

icmp

brsrem

icmp

br

br

icmp

sdiv

br

br

add

br

srem

icmp

br

br

br

br

br

icmp

br

ret

(a) LLVM-CDFG graph.

fn_0

bb_0

bb_1

bb_2

bb_3

bb_4

bb_5

bb_6

bb_7

bb_8

bb_9

bb_10

bb_11

bb_12

icmp

br

srem

br

srem

icmp

br

br

br

phi

sdiv

icmp

add

br

br

phi

br

icmp

br

br

icmp

br

br

ret

(b) LLVM-SSA-CDFG graph.

Figure A.3: LLVM IR-based representations of the isPrime function. Control-flow edges
are in solid, dataflow edges in dashed, memory access edges in dotted, and call
edges in bold style.

84 APPENDIX A. FURTHER PROGRAM EXAMPLES

i n t f i bb on ac c i (i n t n) {
i f (n == 0) {

re turn 0;
} e l s e i f (n == 1) {

re turn 1;
} e l s e {

re turn (f i b bo n ac c i (n−1) + f i bb on ac c i (n−2));
}

}

Figure A.4: Original source code of the fibbonacci function.

fibbonacci
{'type': 'int'}

FunctionArgument
{'type': 'int'}

CompoundStmt
{}

IfStmt
{}

BinaryOperator
{'operator': '=='}

CompoundStmt
{}

IfStmt
{}

IntegerLiteral
{'value': '0'}

ReturnStmt
{}

BinaryOperator
{'operator': '=='}

CompoundStmt
{}

CompoundStmt
{}

IntegerLiteral
{'value': '0'}

IntegerLiteral
{'value': '1'}

ReturnStmt
{}

ReturnStmt
{}

IntegerLiteral
{'value': '1'}

ParenExpr
{}

BinaryOperator
{'operator': '+'}

CallExpr
{'function_name': 'fibbonacci'}

CallExpr
{'function_name': 'fibbonacci'}

BinaryOperator
{'operator': '-'}

BinaryOperator
{'operator': '-'}

IntegerLiteral
{'value': '1'}

IntegerLiteral
{'value': '2'}

Figure A.5: S-DFG representation of the fibbonacci function.

85

fn_0

bb_0

bb_1

bb_2bb_3 bb_4

bb_5

alloca

alloca

store

store store

load

store

load load

load

load

call

icmp

br

icmp

br

sub

fibbonacci

call

add

sub

fibbonacci

br

br br

ret

(a) LLVM-CDFG graph.

fn_0

bb_0

bb_1

bb_2

bb_3

bb_4

bb_5

icmp

br

icmp br

br

sub br

call

fibbonacci sub

call

addfibbonacci

br

phi

ret

(b) LLVM-SSA-CDFG graph.

Figure A.6: LLVM IR-based representations of the fibbonacci function. Control-flow
edges are in solid, dataflow edges in dashed, memory access edges in dotted,
and call edges in bold style.

86 APPENDIX A. FURTHER PROGRAM EXAMPLES

i n t i sPa l indrome (i n t ∗ s t r , i n t s i z e) {
i n t l = 0;
i n t h = s i z e ;

while (h > l) {
i f (s t r [l++] != s t r [h−−]) {

re turn 0;
}

}
re turn 1;

}

Figure A.7: Original source code of the isPalindrome function.

isPalindrome
{'type': 'int'}

FunctionArgument
{'type': 'int*'}

FunctionArgument
{'type': 'int'}

CompoundStmt
{}

DeclStmt
{'type': 'int'}

DeclStmt
{'type': 'int'}

WhileStmt
{}

ReturnStmt
{}

IntegerLiteral
{'value': '0'}

BinaryOperator
{'operator': '>'}

CompoundStmt
{}

IntegerLiteral
{'value': '1'}

IfStmt
{}

BinaryOperator
{'operator': '!='}

CompoundStmt
{}

ArraySubscriptExpr
{}

ArraySubscriptExpr
{}

ReturnStmt
{}

UnaryOperator
{'operator': '++'}

UnaryOperator
{'operator': '--'}

IntegerLiteral
{'value': '0'}

Figure A.8: S-DFG representation of the isPalindrome function.

87

fn_0

bb_0

bb_1bb_2

bb_3

bb_4

bb_5

bb_6

alloca

alloca

store

load

store

alloca

store

load

load

alloca

store

load

alloca

storeload

store

load

store

load

store

load

br

br

br

ret

getelementptr

add

sext

load

icmp

getelementptr

add

sext

load

br

icmp

br

br

(a) LLVM-CDFG graph.

fn_0

bb_0

bb_1

bb_2

bb_3

bb_4

bb_5

icmp

br

icmp br

br

sub br

call

fibbonacci sub

call

addfibbonacci

br

phi

ret

(b) LLVM-SSA-CDFG graph.

Figure A.9: LLVM IR-based representations of the isPalindrome function. Control-
flow edges are in solid, dataflow edges in dashed, memory access edges in dot-
ted, and call edges in bold style.

88 APPENDIX A. FURTHER PROGRAM EXAMPLES

void i n s e r t i o n S o r t (i n t ∗ arr , i n t n) {
i n t i , key , j ;
f o r (i = 1; i < n ; i++) {

key = ar r [i] ;
j = i − 1;

while (j >= 0 && ar r [j] > key) {
ar r [j + 1] = ar r [j] ;
j = j − 1;

}
ar r [j + 1] = key ;

}
}

Figure A.10: Original source code of the insertionSort function.

insertionSort
{'type': 'void'}

FunctionArgument
{'type': 'int*'}

FunctionArgument
{'type': 'int'}

CompoundStmt
{}

DeclStmt
{'type': 'int'}

DeclStmt
{'type': 'int'}

DeclStmt
{'type': 'int'}

ForStmt
{}

BinaryOperator
{'operator': '='}

BinaryOperator
{'operator': '<'}

UnaryOperator
{'operator': '++'}

CompoundStmt
{}

IntegerLiteral
{'value': '1'}

BinaryOperator
{'operator': '='}

BinaryOperator
{'operator': '='}

WhileStmt
{}

BinaryOperator
{'operator': '='}

ArraySubscriptExpr
{}

BinaryOperator
{'operator': '-'}

BinaryOperator
{'operator': '&&'}

CompoundStmt
{}

ArraySubscriptExpr
{}

IntegerLiteral
{'value': '1'}

BinaryOperator
{'operator': '>='}

BinaryOperator
{'operator': '>'}

BinaryOperator
{'operator': '='}

BinaryOperator
{'operator': '='}

BinaryOperator
{'operator': '+'}

IntegerLiteral
{'value': '0'}

ArraySubscriptExpr
{}

ArraySubscriptExpr
{}

ArraySubscriptExpr
{}

BinaryOperator
{'operator': '-'}

IntegerLiteral
{'value': '1'}

BinaryOperator
{'operator': '+'}

IntegerLiteral
{'value': '1'}

IntegerLiteral
{'value': '1'}

Figure A.11: S-DFG representation of the insertionSort function.

89

fn_0

bb_0

bb_1

bb_2

bb_3 bb_4bb_5

bb_6 bb_7

bb_8

bb_9

alloca

alloca

store

load

load load

load

load

alloca

store

load

alloca

store

load

load

load

load

store

alloca

store

load

load

store

load load

load

load

store

loadload

br

getelementptr

sext

load

sub

br icmp

br

ret

add

br

phi

br

getelementptr

sext

load

icmp

br

getelementptr

sext

load

store

getelementptr

add

sext

sub

br

icmp

br

store

getelementptr

add

sext

br

(a) LLVM-CDFG graph.

fn_0

bb_0

bb_1

bb_2

bb_3

bb_4

bb_5

bb_6

bb_7 bb_8

bb_9

br

phi

sext

getelementptr

load

sub

icmp

store

brphi

icmp add

br

ret

br

phi

br

sub

add

sext

getelementptr

load

br

sext

getelementptr

load

add

store

sext

getelementptr

br

icmp

br sext

getelementptr

br

(b) LLVM-SSA-CDFG graph.

Figure A.12: LLVM IR-based representations of the insertionSort function. Control-
flow edges are in solid, dataflow edges in dashed, memory access edges in
dotted, and call edges in bold style.

90 APPENDIX A. FURTHER PROGRAM EXAMPLES

91

APPENDIXB

Cross Validation with Training-Test-Validation Splits

As an additional validation of part of the results presented in this thesis, we perform a hyper-
parameter search for the device mapping task. For this, we perform k-fold cross-validation
on the same split as the original work with the modification that we group the dataset into
three parts: A training set to fit the data, a validation set to find the best hyperparameters,
and a test set to evaluate the performance with the model with the best hyperparameters.

Such an evaluation has not been done before by any of the prior works that compare in
this task. Nevertheless insightful as it allows drawing general conclusions the models per-
formances, independently of the hyperparameter sets, that are commonly part of published
deep learning-based methods.

Applying the 10-fold cross-validation of the original works with this 3-split results in 90
unique configurations of this split:

�10
8

�

= 45 yields 45 configurations of a training set.
Because two configurations of the remaining sets as validation and test sets exist, we finally
obtain 2
�10

8

�

= 90 configurations.

We use Bayesian Optimization (Snoek et al. (2012)) to find the set of best-performing hyper-
parameters for each of the configurations. Bayesian Optimization is a guided hyperparam-
eter search that treats the model as a black-box function and tries to iteratively minimize its
output (the objective) by proposing new values for model estimation, while constructing a
model internally. As this objective, we use the negative accuracy on the validation set. In
our setup, we use a unique bayesian optimizer for each of of the configurations, because the
combination of the model with each of the configurations is a unique function.

92 APPENDIX B. CROSS VALIDATION WITH TRAINING-TEST-VALIDATION SPLITS

Hyperparameter
Model
function

Domain

State dimension 2x [1,9]
Number of LSTM layers x [0,6]
Number of epochs 2100 x [0,7]
L2 loss 0.05 x [0,10]

(a) Sequence-based method.

Hyperparameter
Model
function

Domain

Hidden dimension 2x [4,9]
State dimension 2 x [1,9]
hG dimension 2x [1,9]
Number of timesteps 2 x [1,4]
Number of epochs 2100 x [0,7]

Backedges x
TRUE,
FALSE

L2 loss 0.05 x [0,10]

(b) Graph-based methods.

Table B.1: Hyperparameters, model functions, and domains for Bayesian Optimization.

However, the computational cost of a hyperparameter search is enormous, because each
iteration requires a model estimation, which is a complete training in this case. We try to
evaluate as many representations as we can for a fixed amount of iterations in the scope of
the given computational resources. Concretely, we decided for 35 iterations on the device
mapping task on the AMD dataset, which results in a total of 3150 trainings. We can report
results for the S-TS, the S-DFG-GGNN, and the LLVM-CDFG-GGNN representations.

Figure B.1 shows arithmetic means of the accuracies of the methods over the 90 split con-
figurations per iteration. The hyperparameter search space is summarized in Table B.1,
along with the model function that we use to compute the actual hyperparameter with the
bayesian optimizations estimation as input x . Please note that we modify the S-TS method
of the original work to support more hyperparameters.

The results at iteration 35 generally support the conclusions drawn in our previous exper-
iments obtained with hand-chosen hyperparameters as shown in Figure 7.1: The LLVM-
CDFG-GGNN method performs the S-TS method on the test and validation sets, however
modestly. Additionally to that, the S-DFG method also outperforms S-TS method in both of
the sets.

93

0.70

0.75

0.80

0.85

0 10 20 30
Iteration

A
cc

ur
ac

y Method

S-TS

S-DFG-GGNN

LLVM-CDFG-GGNN

(a) Validation set.

0.68

0.72

0.76

0.80

0 10 20 30
Iteration

A
cc

ur
ac

y Method

S-TS

S-DFG-GGNN

LLVM-CDFG-GGNN

(b) Test set.

Figure B.1: Accuracy on the test and validation sets in the hyperparameter search.

94 APPENDIX B. CROSS VALIDATION WITH TRAINING-TEST-VALIDATION SPLITS

	Introduction
	Motivation
	Outline
	Contriubtions

	Related work
	Machine Learning Applications on Source Code
	Code Embeddings in Compiler Applications

	Representations of Programs
	Compiler Intermediate Representations
	Compiler Analyses
	Control-Flow Analysis

	The Clang/LLVM Compiler Framework
	Clang Abstract Syntax Tree
	LLVM IR

	Program Representations for Deep Learning
	Source Token Sequence
	LLVM IR Token Sequence
	Source Dataflow Graph
	LLVM IR Control- and Dataflow Graph

	Embedding programs with Artificial Neural Networks
	Artificial Neural Networks
	Multilayer Perceptrons
	Activation Functions
	Optimization with Supervised Learning

	Recurrent Neural Networks
	Long Short-Term Memory
	Gated Recurrent Unit

	Graph Neural Networks
	Propagation Phase
	Output Phase
	Recurrent Propagation Schemes
	Convolutional Propagation Schemes

	Task-specific Architectures
	Predictive Tasks
	RNN-based
	GNN-based

	Generative Tasks
	RNN-based
	GNN-based

	Design and Implementation
	Requirement Analysis
	Framework Design
	Framework Implementation

	Evaluation
	Performance Metrics
	Heterogeneous Device Mapping Task
	Metrics
	Experimental Setup
	Results

	Thread Coarsening Task
	Metrics
	Experimental Setup
	Results

	Code Generation Task
	Metrics
	Experimental Setup
	Results

	Conclusion and Outlook
	Conclusion
	Outlook
	Analysis of Learned Features
	Extend Program Graph Semantics
	Domain-Specific Aggregation Schemes
	Ensembles Across Representations and Models
	Domain-Specific Generative Model for S-DFGs
	Learning Dataflow Analyses
	GNN Model Heuristic in a Real-World Compiler

	Bibliography
	Appendices
	Further Program Examples
	Cross Validation with Training-Test-Validation Splits

