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Abstract

Reactors are a novel model of computation introduced in “Reactors: A Deter-
ministic Model for Composable Reactive Systems” [1]. A core claim of this
model is that it behaves predictably under certain conditions, i.e. it is deter-
ministic. Currently, its mathematical model is neither well-defined nor verified.
In this thesis we formalize a well-defined subset of the Reactor model and rigor-
ously prove its determinism. To ensure correctness of our mathematical work,
we employ a modern approach to formalization, by using a proof assistant: Lean
Theorem Prover. Along the way we show some of the unique aspects of working
with Lean.
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1 Introduction

In 2013, the Reactive Manifesto [2] defined the core principles of so-called Re-
active systems. They are software systems, which aim to be

more flexible, loosely-coupled and scalable. This makes them easier
to develop and amenable to change. They are significantly more
tolerant of failure and when failure does occur they meet it with
elegance rather than disaster. [2]

The manifesto does not mandate hard and fast rules for reactive systems. Hence,
over the years a variety of systems with different trade-offs have been created.!
Some of these systems are implicitly defined by their software implementations,
while others define their behavior upon mathematical foundations. In this thesis,
we consider a specific model of computation for reactive systems called Reac-
tors.2 The Reactor model aims at minimizing one of the downsides of reactive
systems:

While scalability, resilience, elasticity, and responsiveness — all tenets
of the manifesto — are clearly important, the gains in these dimen-
sions come at the loss of testability due to the admittance of nonde-

terminism. [...] We argue that the goals of reactive programming can
also be achieved without adopting a nondeterministic programming
model. [1]

Loosely speaking, a system is considered deterministic if multiple executions of
the system on the same inputs exhibit the same behavior. While determinism
is rather common in closed software systems, it can be hard to maintain upon
interaction with real-world components, like sensors, actuators, etc. This is
especially unfortunate in that these so-called cyber-physical systems can come
with a much higher cost of failure than purely digital systems.® A vital means
for avoiding software failure, especially for larger systems, is traditional testing.
While software testability is determined by many factors, it is significantly im-
paired if the system under test is inherently nondeterministic [4, p. 7]. Hence,
the Reactor model’s stride towards determinism is also a stride towards testa-
bility.*

While the Reactor model aims at being deterministic under certain condi-
tions, its determinism is yet unproven. Proving this claim is also hindered by
the fact that the model lacks a well-defined formalization. Thus, the first goal
of this thesis is to provide a well-defined subset of the model.

1E.g. the cross-platform framework ReactiveX and Apple’s main Ul-framework SwiftUL
2 An implementation of this model is realized by Lingua Franca [3].

3For an example, cf. [1] Section 1.1.

4For a complete discussion of the benefits of Reactors, cf. [1] and [4].



1.1 Reactor Model

In this section we start by giving a very brief overview of Reactors. Further
details are discussed in subsequent sections.
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Figure 1: Schematic representation of a reactor [1]

Components: The Reactor model is best understood visually — Figure 1
illustrates most of its components. The entirety of the illustration shows a single
reactor, which serves as an isolated container of functionality. Communication,
i.e. data flow, between different reactors is achieved by their ports. Ports can
be written to and read from, and therefore carry values. The main components
that read and write values are called reactions. They can be considered the
atomic functional units within a reactor. Reactions are triggered by incoming
values, perform computations on those values and produce a resulting output.
Aside from their purely functional aspect though, reactions also have access to
mutable state that is shared among all reactions in a given reactor.

The full Reactor model has a breadth of additional components and features
that allow modeling complex behaviors [4, pp. 18-40]. For the sake of brevity,
this thesis will only consider a subset of those features, which we call the Simple
Reactor model.

Semantic Time: The Simple Reactor model, as described so far, is purely
instantaneous — it has no notion of time. A key feature of the Reactor model,
is its semantic notion of time. It introduces two distinct variants of time: logical
and physical. While physical time represents “real” time, as on a clock, logical



time is a system-internal notion. That is, the separation between the digital
and the physical worlds that is present in cyber-physical systems, is applied to
time as well [5, p. 235]. Separating these two notions of time makes it possible
to reason deterministically about events in logical time, while still allowing for
interaction with physical time under explicitly defined semantics. While the
details of these interactions are not explored in this thesis, we will reap some of
the benefits of logical time in later sections. For example, we can easily define
an order of execution of events within logical time, such that we need not care
about their actual runtimes. Adding a notion of physical time would further
allow us to impose physical time limits on their execution.

Actions: Time manifests itself in reactors through actions. They provide a
means for reactions to send and receive values over time. The distinct notions
of time described above carry over to distinct notions of actions — there are
physical and logical actions. A reaction can schedule a logical action, to occur
at a specific logical time in the future. When that time is reached, the target
of that action will receive a specified value as input. Physical actions on the
other hand have external origins — they are scheduled by entities like physical
sensors. In the Simple Reactor model, we only consider logical time and its
actions.

1.2 Simple Reactor Model

In this section we define the Simple Reactor model as a subset of the full Re-
actor model (with minor changes). The definitions given here may change con-
siderably in the rigorous formalization presented in Section 3, as they contain
problematic inaccuracies.® Additionally, the following definitions may be par-
tially redundant. This is a result of trying to remove any aspects not relevant
to readers unfamiliar with [1], while still showing how this model is obtained by
reducing the full Reactor model.

Identifiers & Values: Two of the primitive notions in the Reactor model
are identifiers and values. Identifiers, defined as members of a set X, are used
to refer to a variety of components within the Reactor model: state variables,
actions, ports, etc. A set of values ¥ contains opaque values that are the “data”
upon which computation takes place. We require that ‘U contain a special value
€ called the absent value. The opaque nature of identifiers and values shows
that our model does not depend on their structure.b

Tags: Logical time progresses in discrete steps. For each of those steps we
define a tag, as an element of T = N x N. For a tag ¢t = (v,m) we call v the
time value and m the microstep inder. Notationally, we reference fields of a
tuple by their given names. For example, for a given tag ¢, its time value can be

5Cf. Section 1.2.2.
SWe will see in Section 5.1 that it can be useful to add some well-defined structure to them.



referenced as v(t) and its microstep index as m(t). This representation of time
is called superdense [5], as it allows us to step through an arbitrary number of
tags before reaching a new time value. The order of these tags is given by their
lexicographical order”.

Actions: An action a is defined as a = (z,d, 0), where:

1. z € ¥ is the action’s identifier.

2. d € N is the delay — an offset from the current logical time that specifies
when the action should be scheduled.

3. 0 € O is the origin — a descriptor for whether the action is logical or
physical. Since the Simple Reactor model only allows for logical actions,
the set O of origins can be described by the unit set {logical}, and is
therefore redundant.

Scheduling an action implies the creation of an event. The value carried by an
action is placed in its corresponding event.
Events: An event e is defined as e = (t,v, g), where:

1. t € X is the event trigger — the object that scheduled the event.

2. v € Y is the trigger value — the value to be associated with t when the
event occurs.

3. g € T is the event tag — the logical time at which the event should occur.

Reactors: A reactor rtr is defined as a tuple rtr = (I,0, A, S, N, P), where:
e [ C X is the set of input ports.
e O C X is the set of output ports.
e S C ¥ is the set of state variables.

e AC Y x N x 9 is the set of actions.

N is the set of reactions.

e P : N — N is the priority function — an injective map from reactions
to their priorities. Priorities are used to determine order of execution for
reactions. The full Reactor model does not require this function to be
injective, thereby allowing multiple reactions to have the same priority.
This is a deliberate choice, as it allows non-determinism to be introduced
if explicitly chosen. The Simple Reactor model requires reactions to have
unique priorities, as this imposes a total order on them, which simplifies
the proof of determinism.

"For tags t1 and ta: t1 < to if v(t1) < v(t2) or v(t1) = v(t2) A m(t1) < m(t2).



Reactions: A reaction rcn is defined as ren = (D, T, B, DV, H). Let C be the
reactor that contains rcn, then:

1. D C I(C) is the set of dependencies — ports that can be accessed when
the reaction executes.

2. T C DUx(A(C)) is the set of triggers — ports and actions that cause the
execution of the reaction’s body, when set to a non-absent value.

3. B is the body of the reaction, which is opaque executable code.

4. DY C O(C) is the set of antidependencies — ports that can be written to
when the reaction executes.

5. H C x(A(C)) is the set of schedulable actions — actions for which the
reaction can generate events.

Reactor Networks: In the full Reactor model the mechanism for creating
a network of reactors is given by a reactor’s ability to define nested reactors.
As we do not account for this feature in the Simple Reactor model, we need to
define a separate mechanism for creating networks. Hence, we define a reactor
network o as a graph structure o = (R, F), where:

1. R is the set of reactors.

2. E C ¥ x X are the directed edges connecting reactors’ ports.

1.2.1 Execution Model

The execution model as presented in [1] is defined by a given set of procedures.
Here we present the execution model visually instead of algorithmically for two
reasons:

e The procedures in [1] need to handle many features (like physical actions)
which we have omitted in the Simple Reactor model. Any attempt at re-
ducing the algorithms would retain no more than a vague correspondence.

e An algorithm that uses the definitions stated above, would diverge greatly
from the rigorous algorithms presented in Section 3, and thus have little
utility.

Prerequisites: We define computation for reactor networks. Our definition is
rudimentary in that we define no real starting point. That is, we simply begin
computation upon whatever state our given reactor network is in, without any
previous setup.® To perform computations, we require three additional objects:

8This is in contrast to the full Reactor model, which defines initialization actions.



e A global tag — since we only consider logical time, this is our only time
keeping mechanism.

e An event queue — a list of events to be processed, ordered by their tags.
As actions are scheduled, events are added to this queue. Execution is
complete when this queue is empty.

e A precedence graph — a graph that manifests the dependencies between
reactions in the network. This is used to determine the order in which
reactions should be executed.

Let Figure 2 illustrate our reactor network. We have three reactors, R1, R2 and
R3 with a total of five reactions. R1 can propagate data from its output ports,
to R2 and R3. R2 can propagate data back to itself, as well as to R3. The only
reactor that uses actions is R1.

A e = A
R2 =

R1

71

[ A

,
2
|
A

£\

- Anti-/Dependencies
_—— Triggers
/\/ Port Connections

Figure 2: Reactor network

The precedence graph for this network is illustrated in Figure 3. We obtain this
graph by placing edges between reactions according to their priorities within a
reactor, as well as the connections between their anti/-dependencies. Notably,
our precedence graph contains no cycles. This is an important restriction of
the Reactor model: we only define computation for reactor networks that have
acyclic precedence graphs. Without this restriction, it wouldn’t be possible to
deterministically define an order of execution, as each reaction would depend
on some other reaction before it could execute. With an acyclic precedence

9 An algorithm for computing precedence graphs is presented in [1].



graph, we define reactions’ order of execution as a topological ordering over
the precedence graph.'® Thus, we don’t require the precedence graph itself for
execution, but rather a topological ordering (Qr) over it:

Qr = [R1.n1, R1.n2, R2.nl, R2.n2, R3.nl]

[ R1.nl R1.n2 R2.nl R2.n2 R3.nl ]

Figure 3: Precedence graph

Execution: Using these prerequisites, we can describe how to execute a reac-
tor network.

1. Increase the global tag to match the next event e in the event queue. If
there is none, execution has completed.

2. Run each reaction in the order defined by Qg:

(a) Check if the reaction is triggered by its dependencies, i.e. if at least
some trigger is non-absent.

(b) If so, run the reaction’s body. If not, advance to the next reaction.

(c¢) For each action scheduled during the body’s execution, add a corre-
sponding event to the event queue. Actions can only be scheduled
with a tag greater than the current one.'!

(d) For each output port written to by the reaction’s body, propagate
the values to any connected ports.

3. Clear all ports, dequeue all events for the current tag, and go to Step 1.

Example: We can visualize these steps with an example. Let Figure 4 be the
initial state of our reactor network. That is, our current tag is (4,2), we have
one event in the event queue and all ports are set to e.

Figure 5: Our first step is to increase the tag to (5,0), as that’s the tag of the
next event. We then start executing the reactions with R1.n1. We assume here,
that al belongs to its triggers and thus R1.nl triggers. Thus, R1.nl’s body
executes and aside from its port-dependencies (which are all €), it receives the
value V specified for al at the current tag.

101f it were not acyclic, such an ordering would not exist.

11 An action’s event’s tag is a result of the delay specified by the action. If a delay of 0 is
specified, then a microstep delay of 1 is added.
P P Yy



Figure 6: R1.nl cannot schedule any actions (according to the illustration), but
we assume here that R1.n1’s body produces outputs W and X for its ports
respectively. After propagating those values to all connected ports we progress
to the execution of reaction R1.n2.

Figure 7: R1.n2 does not trigger for the given state, so we progress to R2.nl
immediately. R2.n1’s trigger is non-absent, so we execute it, producing output
values Y and Z.

Figure 8: R2.n2 triggers, as its trigger is non-absent. Assuming the reaction
outputs some value O, this values overrides the current value Z of its output
port and is propagated to R3.

Figure 9: Lastly, R3.nl triggers, as at least one of its triggers (and in fact
both) is non-absent. We assume here that it does produce any output during
execution. Thus, we have run all reactions and progress to Step 3 of execution.
Here we set all ports to € again and remove all events with tag (5,0) from the
event queue.

The resulting event queue is empty and we have fully executed this network.

R1 - h (R2 - h
s ~
EPp~o o
p
.

Tag Event Queue

(4,2) [(al, v, (5,0)) ]

R1 | R1 | R2 | R2 R3
QR[nl n2 | nl | n2 nl]

Figure 4: Execution example — initial state
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Figure 9: Execution example — end of execution

1.2.2 Inaccuracies

Despite our reduction from the full Reactor model, the formalization presented
above has some issues that need to be addressed:

e The definitions of reactors and reactions are circular.'?

e The concept of opaque objects used for identifiers, values and reaction
bodies is not well-defined. A rigorous formalization will need to back this
up with something concrete.

e The actual “position” of values (€ %) is undefined. That is, there exists
no map from identifiers to values. It is therefore impossible to obtain
the values of components like ports or state variables. This issue has
been addressed in [4] by defining affected fields, like a reactor’s ports, as
Cartesian products of identifiers and values.

e The definition of a reaction’s body B has the aforementioned problem of
being opaque. For this object especially, the opaqueness hinders us from
creating any rigorous definitions of computation in a reaction — and hence
in the Simple Reactor model in general. For example, it is not clear how
reactions access the values associated with actions/events.

121p [1], the circularity isn’t as direct. There, the interdependency of definitions goes
reactors — reactions — container function — reactors.
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e The definition of a reactor’s reactions N as a set disallows multiple identi-
cal reactions from living in the same reactor. Though this is not a problem
from a mathematical standpoint, we consider it to be undesirable. As an
example, consider Figure 10. Let the reactions’ names (1, 2, 3) also be
their priorities. Reactions 1 and 3 have the same dependencies, antidepen-
dencies, triggers and schedulable actions (none). If we also assume their
bodies to be equal, the reactions are identical. The only differentiating
factor are their priorities. As a reactor’s set of reactions does not include
the priorities, reactions 1 and 3 would collapse into a single element. Thus,
our current model does not allow us to create the depicted reactor.

Figure 10: Example of identical reactions in the same reactor

Garbage In, Garbage Out: We would like to emphasize here that the fol-
lowing aspect of the model is not an issue: we define no restrictions on the sets
of identifiers in a reactor. That is, a reactor’s input ports I, output ports O and
state variables S can contain any identifiers. This could be considered an issue,
as a reactor could contain an identifier 4 with i € I, 7 € O and i € S. Instead,
it is rather representative of an approach to formalization used throughout this
thesis. It can be summarized by a principle called “Garbage In, Garbage Out”
(GIGO), by which we mean: If one defines nonsensical objects, like a reactor
where a single identifier is used for multiple components, then it should not be
expected that it behaves sensibly. This approach has the benefit of allowing
us to focus an object’s definition on what we want its properties to be, with-
out having to be precise about the properties it should not have. Hence, the
definitions above can be viewed as necessary but not sufficient for well-behaved
reactors.

12



2 Lean Theorem Prover

A stated goal of this thesis is to provide a well-defined formalization of the
model presented above. In this section we introduce the tool that will help us
achieve this goal: Lean Theorem Prover.

2.1 History of Proof Systems

In modern pen-and-paper mathematics, there is a common way for how we
“do mathematics”. We don’t construct an entire system of syntax and reason-
ing ourselves, but rather use predicate logic and the standard axioms declared
by Zermelo-Fraenkel set theory. Thus, our basic premise is everything is a set.
When set theoretic foundations were first formulated by Georg Cantor and Got-
tlob Frege in the late 19th century, they contained paradoxes'?. As a result,
the early 20th century saw a host of new ideas to solve these problems dur-
ing the foundational crisis of mathematics. Notably, Russel’s and Whitehead’s
Principia Mathematica attempted to solve the problems of previous theories by
introducing a hierarchy of “types” [6]. Zermelo set theory!'? was being devel-
oped around the same time and has become the prevalent theory used today.
This did not put an end to research on mathematical foundations though. In
particular, the idea of types stuck around. In the 1940s it was incorporated into
Church’s Typed Lambda Calculus'® and in 1972 Per Martin-Lof published his
Intuitionistic Type Theory [7] as an alternative foundation of mathematics. Not
least the conception of programming languages introduced new applications for
types in the form of type systems. Thus, types could be used to formalize math-
ematics and help us communicate precisely with computers. It would thereby
stand to reason that computers could help humans with mathematics.

Computer Assisted Proofs: Computers could help humans by their raw
compute power in what is called a computer assisted proof. For example, if a
mathematical proof required checking a large (finite) number of cases, a com-
puter could do that comparatively quickly. The canonical first example of using
this approach was the proof of the Four Color Theorem in 1976. Arguably this
type of computer assistance is the least helpful for coming up with new ideas,
as the human already needs to know all the details of a proof.

Proof Assistants: A more potent means of computers assisting humans are
proof assistants or interactive theorem provers. To use a proof assistant, the de-
sired mathematical statements have to be written in a specific machine-parsable
syntax. A statement can then be proven by specifying a sequence of axioms,
substitutions, proven theorems, etc. For example, the following pseudo-code
could specify a proof of the statement (1+2)+3 =24 (14 3):

13The canonical example is Russel’s paradox in Frege’s Naive set theory.
14This later became Zermelo-Fraenkel set theory.
15Cf. Section 2.2.1.
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-— apply commutativity of addition to the first term on the
-— left stde of the equation
use(left, first) nat_add_comm

-- apply assoctativity of addition to the left side of the
-- equation
use(left) nat_add_assoc

-— constuct a proof of the statement as a result of equality
-- being reflexzive
cons eq_reflexive

The proof assistant then fulfills two main functions:

1. It checks whether the given sequence of expressions constitutes a valid
proof of the desired statement.

2. It interactively visualizes the state of the current proof. This includes
showing which remaining sub-statements have to be proven to complete
the proof, the assumptions that have been introduced so far, etc.

Proof assistants still require humans to come up with the entire proof, but they
provide certainty about the proof’s correctness and aid the thought process.
There are several notable examples of proof assistants, reaching as far back as
the 1970s. These days, typical examples are Agda, Coq, Idris and Lean.'S

Automated Theorem Provers: The next step in computers helping us cre-
ate proofs would be for them to write the proofs themselves, i.e. perform auto-
mated theorem proving. Currently, the term automated theorem prover is used
somewhat loosely to also describe proof assistants, as “real” automated theo-
rem provers have not yet been developed. Fortunately, this ambiguity may be
warranted as proof assistants are becoming smarter.

Proving a theorem in a primitive proof assistant can be laborious, since ev-
ery step of the proof has to be meticulously specified. As proof assistants are
becoming more sophisticated, humans are allowed to gloss over more trivial de-
tails. The proof sequence shown above is an example of a meticulously specified
proof. Modern proof assistants can handle all of this term rewriting themselves
and could accept a statement like normalize as a full proof.

One of the specific goals of the proof assistant used in this thesis is to be even
better at these kinds of tasks. Lean aims to bridge the gap between interactive
and automated theorem proving.

16 A1l of these systems use the concept of dependent types (cf. Section 2.2.2).
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2.2 Lean’s Foundations

For this thesis we use Lean version 3. There are three aspects of Lean that are
of interest to us. Namely, how to ...

e Formalize mathematical objects
e Formalize algorithms on those objects
e Construct proofs about those objects and algorithms
All of these aspects are covered by only three fundamental notions:
o II-Types
e Type Universes

e Inductive Types

To see where these notions come from, we have to take a closer look at Lean’s
mathematical foundations: the Calculus of Inductive Constructions [8, 9], or
CIC for short. For the most part, Sections 2.2.1 and 2.2.2 are a summary of
information presented in Mario Carneiro’s MS Thesis presentation on the type
theory of Lean [10].

2.2.1 Typed Lambda Calculus

CIC is derived from Lambda Calculus. We assume that readers of this paper
have at least some familiarity with it and therefore only give an overview of its
concepts here.

In lambda calculus a term can be one of the following;:

e a variable: x
e a lambda abstraction: (Ax,t) — where x is a variable and ¢ is a term

e an application: (¢ s) — where ¢ and s are terms

A notion of computation is achieved by performing reductions on terms — most
notably the B-reduction. If we have a term (Ax,t)s then the S-reduction allows
us to rewrite it as t[xz/s] i.e. by replacing every occurrence of x in ¢ with s.
If repeated p-reduction yields a term that cannot be further reduced, it has
reached B-normal form. This normal form can serve as a notion of equality of
terms. Importantly though, repeated S-reduction is not assured to terminate,
and hence, a term may not have a $-normal form.'”

A Typed Lambda Calculus extends the former with a notion of types. We can
simply declare an identifier, like ¢, to be a type — called a base type. Or, if o

"For example, the Y-combinator: \f, Az, f(z z))(A\z, f(x z))
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and 7 are types, then we can construct a function type o — 7. From now on o
and 7 are used to denote arbitrary types, and if a term ¢ has type 7, we write
t:T.

The type judgement for terms follows three rules:

e For each base type ¢, we can assign a set of variables to have type ¢.
e Ift:0— 7and s: o, then (¢t s): 7.
e If t: 7, then (\x : 0,t) : 0 — T.

As the last rule shows, we have extended the syntax of lambda abstraction
to require that its variables declare a type (above: x : o). This has strong
implications on reductions and therefore computation. The S-reduction is now
restricted, such that it can only be performed on a term (¢ s), when ¢t : ¢ — 7 and
s : 0. The result is that every term has a S-normal form — or computationally
speaking, every computation terminates.

The expressions used so far correspond closely to Lean’s syntax.'® Base types
and unbound variables can be declared using the constant keyword. For ex-
ample, we could declare that « be a type and a be an instance of that type:

constant o : Type*
constant a : «

Declaring constants is equivalent to declaring axioms, so we won’t ever use
this feature outside these examples. Functions and applications can be written
exactly as above:

Ax : o, a —— function that maps every instance = of type x to a
fs -- application of some function f to some term s

To give names to such expressions we use the def keyword:

def my_func := A x : «, a
def my_val := my_func a

As all terms are typed, so too are my_func and my_val. To check their types
we can use the #check directive:

#check my_func -- prints "my_func : o« — o’
#check my_val -- prints "my_val : "

2.2.2 Dependent Types

Dependent Types represent another extension on our current calculus. The goal
when using dependent types is to extend the expressivity of functions. More
specifically, given a function type ¢ — 7 we want to make it possible for the

18An easy way to try out these examples is to use Lean’s web editor: https://
leanprover-community.github.io/lean-web-editor/

16


https://leanprover-community.github.io/lean-web-editor/
https://leanprover-community.github.io/lean-web-editor/

type 7 to depend on the given term of type 0. We call this a dependent function
type, or Il-type and write I1x : o, 7 to denote the dependent function type from
o to 7 where 7 can depend on z. Using dependent functions changes the type
judgement for lambda abstraction and application:

o If t: 7, then (A\z :0,t): (Ilz: o, 7).

e Ift: (Ilx : 0,7) and s : o, then (¢ s) : 7[z/s] — that is, the type 7 can
refer to the term x, which is replaced by s upon application (¢ s).

The syntax in Lean is again exactly the same:
def my_dep_func : Il x : 7, 0 x := A ...

This definition declares my_dep_func to be a dependent function from type 7
to type (o x). The ellipses (...) are not a part of Lean’s syntax, but are used
throughout this thesis to omit redundant code.

As we have not introduced a way for types to refer to terms, i.e. we have
no way of computing a type from a term, II-types do not add any functionality
yet. We can fix this with the following adjustments.

Types as Terms: Our current calculus differentiates between terms and
types, and defines functions to compute on terms. If we loosen the first re-
striction, and say that every type is a term, we gain the power of performing
computations at the type-level. That is, we keep the current calculus, but allow
a type to be used wherever we previously expected a term. For example, we can
define the function Az : 0,7 which for any input x returns not a term of type 7,
but the type 7 itself. This begs the question: what is the type of this function?

Universes: Say we wanted to write a function that returns exactly the type
that it received as input — an identity function. Since we require a function’s
input to be typed, the application (Ax : o,2) 7 will never succeed. That is, we
have no type o such that 7 : 0. To solve this, we need to introduce a type of
types, which we call a universe (U). We can then define the identity function as
Az : U, z. To avoid paradoxes that can arise by using just a single universe'®, we
define a countable hierarchy of universes. We denote the lowest universe with
Up and define that for all universes U,, : U,+1. Hence, U,, “contains” all types
that live in universes U,, with m < n. We call these subscripts the universe
level. The universe at level 0 has a special role, which will be covered in Section
2.2.4.

In Lean, we can define the aforementioned identity function as:

universe u
def identity : Type u — Type u := A x : Type u, X

That is, Type u is the universe at universe level u. Alternatively, we can make
the universe declaration implicit and use a more common function syntax:

YFor example, Girard’s Paradox.
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def identity (x : Typex) : Typex — Type* := x
Or even drop the type annotation:

def identity (x : Typex) := x

Definitional Equality: A problem that arises with the ability to compute
types is, what happens when two types look different but are actually the same.
For example, suppose 7 : Uy and id := (Ao : Uy, 0). Then, should 7 and (id 7)
be considered the same types? The answer given in dependent type theory is,
yes — we call them definitionally equal. The details of definitional equality are
subject to a host of rules, but can loosely be summarized as:

e Two types are definitionally equal if one is S-reducible to the other.

e Definitional equality is an equivalence relation.

2.2.3 Inductive Types

The last concept required for CIC are inductive types. These types are rather
complex to define mathematically [10, p. 9], so we introduce them only through
Lean.

The syntax we’ve introduced so far is great for creating functions, i.e. de-
scriptions of computations. The only mechanism we’ve seen for creating new
types was the axiomatic constant declaration. The only other way of creating
new types in Lean is as inductive types.

Intuitively, an inductive type is built up from a specified list of con-
structors. In Lean, the syntax for specifying such a type is as follows:

inductive foo : Type u

| constructor; : ... — foo
| constructory : ... — foo
| comstructor, : ... — foo

The intuition is that each constructor specifies a way of building
new objects of foo, possibly from previously constructed values.
The type foo consists of nothing more than the objects that are
constructed in this way. [11]

Constructors: Inductive types are best understood by example, so let’s first
consider Lean’s product and sum types [11, p. 99], prod and sum:

inductive prod (& : Typex) (f : Typex)
| mk (fst : «) (snd : ) : prod

inductive sum (& : Type*) (f : Type*)
| inl (a : ®) : sum
| inr (b : B) : sum
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#check prod -- "Type u_1 — Type u_2 — Type (max u_1 u_2)"
#check sum -- "Type u_1 — Type u_2 — Type (maz u_1 u_2)"

The prod type is a function from two types (« and ) to some new type: their
product type. The type defines exactly one way to create instances for it — we
say it has exactly one constructor. The constructor mk is a function that expects
an instance of « and 3 and returns a corresponding instance of prod « 3. If,
for example, we have two natural numbers x and y, we can create an instance
of their product type (a tuple of N x N):

#check (prod.mk x y) -- "prod N N”
The sum type on the other hand declares two constructors — one that takes

an « and one that takes a 3. Thus, we have two ways to create an instance of
sum o f3:

#tcheck n ——- "N”
#check z -- "Z"
#check (sum.inl n) -- "sum N 2M_1"
#check (sum.inr z) -- "sum 2M_1 Z"

The ?M_1 means that Lean cannot infer what the given type parameter is. We
ignore this here.

Recursors: Bundling up data into new instances is of little use if we don’t
have a way to unpack those instances to access their data. This is what recursors
are for. For example, if we want to add the two components of an instance of
N x N, we first need to unpack the tuple and then add the respective values:

def my_add (t : prod N N) : N :=
prod.rec (A n; ny, n; + ny) t

Lean automatically generates recursors for inductive types. The prod.rec re-
cursor is a function that expects two parameters. First, a function from the
values contained in an instance of the product type (n; and ns) to some other
value (ny + ns). Second, an instance of the product type (t) upon which this
function should be applied. The recursor of the sum type differs from that of
prod, as sum has multiple constructors:

def negate_if_left (s : sum Z Z) : Z :=
sum.rec (A1, -1) (A r, r) s

The recursor sum.rec expects two functions as parameters — one for each
constructor of the sum type. Hence, we can perform different functions based
on which kind of instance of sum we get. This is akin to switch-statements over
enums in C-like programming languages.
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Recursive Types: The prod and sum types don’t show the full capabilities
of inductive types. They are “flat”, i.e. they only combine other types into new
ones. The real power of inductive types becomes evident when we make them
recursive. For example, consider the type of natural numbers nat:

inductive nat
| zero : nat
| succ (n : nat) : nat

This type shows two new kinds of constructors:

e zero is a constructor that doesn’t expect any parameters. Hence nat .zero
is a truly new value by its own right.

e succ is a recursive constructor, i.e. it tells us how we can construct a new
nat from a given one. In this example it tells us that for a given n : nat
we can create its successor nat.succ n.

The result is that we get a formalization of the natural numbers that is anal-
ogous to that of the Peano axioms. The combination of atomic and recursive
constructors allows us to create an infinite number of new values — in this case
all natural numbers.

2.2.4 Curry-Howard Isomorphism

The main motivator for using Lean in this thesis is as a tool for theorem proving.
So far we have not discussed how to state a proposition or a proof. In this section
we explore the unique properties of propositions in CIC and show how to express
them in Lean.

In Section 2.2.2 we referred to the “special role” of the universe at level 0.
This lowest universe is special in that it contains only propositions and all
propositions. Thus, if we have a proposition p, we know p : Uy — in Lean’s
syntax p : Prop. This has an important implication: Propositions are types.
This property and especially its consequences (covered below) are known as the
Curry-Howard Isomorphism. The benefit of propositions being types is that it
allows us to model proofs as instances of their respective propositions. Say we
have the proposition (p A q) : Up. By the propositions-as-types paradigm, we
prove this proposition by constructing an instance for it. And just as with other
types we’ve seen so far, this can be done by using one of the type’s constructors:

#check p -- "p : Prop"
#check q -- "q : Prop"
#check p; —— "p; ¢ p"
#check q; —— "¢; : q"

def my_proof : and p q := and.intro p; q;

Here p and q are propositions, and p; and q; are instances (proofs) of those
propositions. To create a proof of and p q we create an instance of this type
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using and’s constructor intro, which expects a proof of its respective sub-
propositions. Thus, in Lean, proofs can be used as data, just like numbers
and lists.2® Propositions are also defined like any other type:

inductive and (a b : Prop) : Prop
| intro (left : a) (right : b) : and

inductive or (a b : Prop) : Prop
| inl (h : a) : or
| inr (h : b) : or

In fact, if we compare these definitions with those of prod and sum we notice that
they are almost exactly the same — the only difference being that these propo-
sitions’ parameters (a and b) are themselves propositions instead of any type.
This observation is one of the key aspects of the Curry-Howard isomorphism,
as it allows us to draw the following correspondence:

Logic Types
A product type
V sum type
= | function type
v II-type
3 Y-type
T unit type
1L empty type

Figure 11: Correspondences in the Curry-Howard isomorphism

A unit type is a type that has exactly one instance, whereas an empty type has
no instances. A X-type is a dependent product type. These types are exactly
how true, false and Exists are implemented in Lean:

inductive true : Prop
| intro : true

inductive false : Prop

inductive Exists {« : Typex} (p : o — Prop) : Prop
| intro (w : «) (h : p w) : Exists

We won’t review the other correspondences here, as they should become evident
during the course of this thesis.

Proof Irrelevance: Another unique aspect of propositions in CIC is their
proof irrelevance [10, pp. 6-7]: All proofs of a proposition, and therefore all
instances of it, are considered equal. This is achieved by defining any two
instances of the same proposition to be definitionally equal. As a result, we can
never depend on the specific objects used to construct a proof, but rather use
the proof as a certificate.

20There is the caveat of proof irrelevance, as covered below.
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For example, we can prove the proposition (3 n : N, n = n), by providing
the instance Exists.intro 5 (refl 5), where refl 5 is a proof that 5 = 5.
If we use an instance of this proposition though (say, in a proof), we cannot rely
on n being 5, since we might as well have received a definitionally equal proof:
Exists.intro 4 (refl 4).

2.3 Dependent Type Hell

Now that we’ve covered the formal aspects of Lean, we also need to consider
an informal yet important facet of Lean called Dependent Type Hell. As Kevin
Buzzard?! puts it:

It seems that in dependent type theory one has [to] think about
[formalization] in a certain kind of way in order to avoid pain. [12]

To demonstrate what exactly is meant by “pain” in this context, we show an
example of dependent type hell and how to circumvent it. For this purpose,
we formalize one of the basic objects required for the Simple Reactor model: a
digraph. We place two requirements on our formalization, which are not present
in conventional digraphs:

e It should be possible for the same vertex value to occur multiple times in
the graph. For example, if our digraph connects elements of N it should be
possible for 45 to occur multiple times. We achieve this by using identifiers
as vertices and define a mapping from IDs to values.

e Aside from being directed, edges should also be able to carry arbitrary
data. For example, if we form a graph of reactors, it should be possible
for the edges to specify which ports they connect. We achieve this by
making digraphs dependent on an (almost) arbitrary edge type.

Thus, we will not formalize a simple digraph, but rather a labeled multidigraph,
which we here call “L-graph”. We use this opportunity to introduce more of
Lean’s concepts and syntax:

structure lgraph (v & € : Typex) :=
(ids : finset &)
(data : ¢+ — &)
(edges : finset ¢)

The structure keyword can be used when defining an inductive type with a
single constructor, so that ids, data and edges can be thought of as the “fields”.
The finset type represents finite sets over a given type. The parameters ¢, 0,
€ are the L-graph’s generic ID, data, and edge types. This definition of 1graph
is not complete in that the edge type € is completely unrestrained. A directed
edge should have a concept of source and destination.

21 Active member of the Lean community and professor of pure mathematics at Imperial
College London.
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Type Classes: To enforce this restriction, we use type classes — a concept
first introduced in the Haskell programming language. Type classes are a con-
cept akin to what is known as interfaces, traits or protocols in mainstream
programming languages — though the analogy breaks quickly:

class edge (¢ ¢ : Typex) :=
(src : € — 1)
(dst : ¢ — 0

Type classes are declared with the class keyword, which is syntactic sugar for
an inductive type declaration with a certain attribute. A type can become part
of a type class, by providing an instance for it. For the sake of brevity, we won’t
explain instances further.

Thus, for any type € to conform to the type class edge, it needs to provide
a corresponding instance, which allows us to extract a source (src) and desti-
nation (dst). We can force our L-graph’s edge type ¢ into conforming to edge
with the following notation:

structure lgraph (¢ & € : Typex) [edge € (] := ...

Going to Hell: To demonstrate dependent type hell, we review an extended
version of 1graph. The aim of this extension is to constrain lgraph, such that:

1. The data map does not have to define corresponding data for all possible
IDs (instances of ¢), but only those which are part of the graph (€ ids).

2. The edge type € should be able to depend on the graph’s ids and data.
This information could be required by the edge type to make sure that no
invalid edges can be constructed.

We can achieve the first goal by restricting the domain of the data map using
a subtype. A subtype is a mechanism for restricting a given type, such that all
of its instances have to satisfy a given predicate.?? The subtype of all « that are
an element of ids can be written as {i : ¢ // i € ids}.

The second goal can be realized by extending the type of edges . Thus, ¢
should not be a Type*, but rather a dependent function (Line 2) that computes
the edge type as a function of a set of IDs and a map of IDs to data. An L-
graph’s edges (Line 8) are then a set over the edge type that we get by passing
the graph’s own ids and data to the edge type function. That is, (¢ ids data)
is the type of edges in an L-graph.

The variable(s) keyword allows us to factor out the parameters of a type.
Thus, ¢, 8, € and the type class constraint are still all part of 1graph’s definition:

1 wvariables ¢ 6 : Typex

2 variable € : IT ids : finset ¢, ({i // i € ids} — &) — Type*
3 wvariable [IT i d, edge (¢ i d) ]

4

22This is similar to the principle of restricted comprehension in set theory.
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9 structure lgraph :=

6 (ids : finset )

7 (data : {i // i € ids} — 0)
8 (edges : finset (e ids data))

While these constraints on L-graph aren’t problematic themselves, they create
problems when working with L-graphs. As an example, consider what happens
when we try to remove a vertex from the graph:

1. We remove the corresponding ID from the graph’s ids.

2. Since the ids have changed, the type {i // i € ids} has also changed.
Hence, we need to construct a new data map to match the new type.

3. Since the ids and data have changed, the type (¢ ids data) has also
changed. Rectifying this issue is non-trivial, since it means that we have
to type-cast every edge in edges to the new edge-type.

Thus, not only is it non-trivial to perform a relatively simple operation, it also
changes the type of the resulting L-graph’s edges. This is a strong indicator
that we have entered dependent type hell.

Escaping Hell: We’ve explained previously that in Lean, proofs can be used
as first-class data. One of the applications of this is to ensure properties about
values ad hoc. For example, if we have some instance n : N, and also have a
proof that n = 0 * n, then we’ve obtained a constraint on n without requiring
the type of n to be constrained (for example,as{n : N // n = 0 * n}). Thus,
we can navigate our way out of dependent type hell, by adding the following
field to our original definition of L-graphs:

structure lgraph (v 6 € : Typex*) [edge ¢ (] :=

(well_formed:
V e € edges, (edge.src e) € ids A (edge.dst e) € ids)

The type of well_formed is the proposition that all edges have a source and
destination that belongs to the set of ids. Adding this field implies that any
instance of an L-graph must come with an instance of this proposition, and hence
a proof that its edges are formed over its IDs. Hence, it is only ever possible to
instantiate “valid” L-graphs — all without constraining its edge type.

This section has shown how Lean and the underlying Calculus of Inductive
Constructions provide powerful mathematical foundations, which allow us to
formalize mathematical objects, functions on those objects, and construct proofs
about those objects and functions. Thus, in the following sections we will use
the basic notions of universes, II-types and inductive types to formalize the
Simple Reactor model. Yet, as we have just seen, we need to be careful in how
we wield these tools.
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3 Formalizing Instantaneous Reactors

Despite the Simple Reactor model being relatively small, formalizing it and
especially proving properties about it, is an extensive undertaking. To achieve
a clean separation of concerns, we split the implementation into two parts:

e In this section we implement the instantaneous components of the model,
i.e. everything that does not involve time. We call this subset the Instan-
taneous Reactor model. In Section 4 we prove determinism only for the
Instantaneous Reactor model.

e In Section 5 we add the time-based aspects of the Simple Reactor model
as a generalization of the Instantaneous Reactor model. That is, we add
them on top and do not make any changes to the Instantaneous Reactor
model in the process.

3.1 Primitives

One issue in the Simple Reactor model is circular definitions. To avoid this in
our formalization, it is important to be clear about which primitives are used
by other objects in their definitions. For example, if ports are a component
of reactors, and reactions also reference ports in their definition, then having
reactions as a part of reactors makes the definitions circular. Hence, we first
define some primitives that are used by other objects.

Values (€ ) are supposed to be opaque, but have one requirement: they
should have a notion of equality. To achieve this, we don’t define a type of
values explicitly, but instead make all other definitions dependent on some type
parameter v. That way, it is impossible for any definitions that use v to depend
on concrete instances of v — i.e. the values are opaque. We ensure that this
type is equatable, by constraining it to the type class decidable_eq:

variables (v : Type*) [decidable_eq v]

We can model a reactor’s ports and state variables as lists over such values.
Using names like reactor.ports is part of Lean’s namespace syntax. Here we
declare that the definitions of ports and state_vars are part of the namespace
reactor:

def reactor.ports := list (option v)
def reactor.state_vars := list v

We account for the absent value €, by using optional values. Wrapping any type
in the option type makes the values optional, by adding a none value, which
is generally used to represent the absence of a value. We assume here that €
is only intended for modeling absence of values in ports, and hence omit the
optionality for state variables. The term port assignment is used throughout
this thesis to mean an instance of reactor.ports v. As an example of a port
assignment, consider the following instance:

def p : reactor.ports v := [some 1, none, some 2, some 1]
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If p are the input ports of some reactor, then that reactor has exactly four input
ports, where the value in the second port is absent.

Using lists for these components solves some inaccuracies of the Simple Re-
actor model. Firstly, we now know where their values live: in the lists. Secondly,
we get the type of their identifiers for free, as we can just use the lists’ indices
(€ N) as IDs. Since a reactor will hold two instances of reactor.ports, one for
its inputs and one for its outputs, these IDs will in fact be ambiguous within a
reactor. That is, an arbitrary port-ID n could refer either to the nth input port
or the nth output port. This ambiguity will always be resolved by context.

It should be noted here that the length of these lists is not fixed, so we could
change the number of a reactor’s ports, by changing the number of elements in
one of these lists. This can be avoided, by instead using a fixed-length vector
type. The downside is that this leads to dependent type hell, so we opt for the
GIGO-approach here by declaring that port assignments’ length should not be
changed during execution.

Many of the definitions of reactor components in this thesis are accompanied by
auxiliary definitions. For example, we explicitly define fully absent ports and
a related proposition:

def ports.empty (n : N) : ports v := list.repeat none n
def is_empty (p : ports v) : Prop := (p = ports.empty v p.length)

Definitions like these improve the comprehensibility of later definitions greatly.
We will sometimes use such definitions without showing them, and instead resort
to describing their functionality in prose.

3.2 Reactors & Reactions

Using ports and state_vars makes the definition of reactors straightforward:

structure reactor :=
(input : ports v)
(output : ports v)
(state : state_vars v)
(priorities : finset N)
(reactions : N — reaction v)

The notable fields are priorities and reactions. One of the issues with the
definition of reactors in the Simple Reactor model is that since the reactions
(N) are in a set, they all have to be unique. Additionally, to ensure that
no two reactions have the same priority, the priority function (P) has to be
injective. We can circumvent both of these problems, by switching the positions
of priorities and reactions. That is, what was the set of reactions becomes the
set of priorities, and the priority function becomes a reaction function, which
maps the priorities to concrete reactions. Thus, we use a reaction’s priority as
an identifier for it. To avoid dependent type hell, we don’t restrict the domain
of the reactions function to be exactly the reactor’s set of priorities. Instead,
we require a function from all N, but only ever employ the map forn : N which
are in the set of priorities.
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Alternatively, we could use a partial function N — option (reaction v)
and add a constraint that alln € priorities must map to a non-none value.
This causes inconvenience at the call-site though, as we have to unwrap the
optional values.

This definition of reactor is only valid, if we’ve already defined reaction. That
is, our definition of reaction cannot depend on reactor:

structure reaction :=
(d; : finset N)
(d, : finset N)
(triggers : fimset {i // i € d;})
(body : ports v — state_vars v — ports v X state_vars v)
(in_con : V {i i’} s, (4 =d;= i’) — body i s = body i’ s)
(out_con : V i s {o}, o ¢ d, — (body i s).1.nth o = none)

The sets d; and d, are the reaction’s dependencies and antidependencies (D
and DV). Throughout this thesis we also refer to them as input- and output-
dependencies. They contain IDs of their enclosing reactor’s ports, i.e. indices
into the reactor’s input and output lists. The triggers are a subset of d;,
defined as a set that contains instances of the subtype {i // i € 4;}.

The first substantial change relative to the Simple Reactor model is made
to a reaction’s body (B). Our original definition declared it to be opaque code,
which we have determined to be problematic. Here we define it as a function
that maps from an input-port assignment and state variables to an output-port
assignment and new state. We define the function in curried form, as this makes
the call-site cleaner and easily allows partial application.?? The symbol x in
the target type is syntactic sugar for the prod type.

When we run a reaction as part of a reactor?*, its body receives the reactor’s
input-ports and state variables as inputs, and the body’s outputs are incorpo-
rated into the reactor by a dedicated function. The body function has the option
of not writing to an output-port, by returning the absent value for the specific
port. That is, the returned instance of ports v holds a value of none at the
corresponding index.

To ensure that this definition of body behaves in a way that is analogous to
that of the Simple Reactor model, we need to enforce some restrictions:

1. A body’s outputs can only depend on those ports which are part of its
input-dependencies d;. Thus, we achieve the same behavior as if we were
to restrict the domain of the function to be exactly d;. This restriction
is enforced by the property in_con: Given two input-port assignments i
and i’ that have the same values for all ports in d; (written as 1 =d;= i’),
the output of body has to be the same. For the purposes of this thesis,
parameters that are enclosed by braces (here {i i’}) can be considered
to be the same as parameters enclosed by parentheses.

231t is canonical to define functions in this form in Lean.
24Cf. Section 3.5.
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2. A reaction should only be able to write to those ports which are part of its
output-dependencies d,. Hence, the output-port assignment returned by
body should be none for all ports that are not in d,. This is enforced by
out_con: Given any inputs (i and s) and an output-port ID o which is not
in d,, running the body must yield a value of none for o. The expression
(body i s).1.nth o = none expresses precisely this last proposition.

3.3 Reactor Networks

As mentioned in Section 1.2, the Simple Reactor model has no notion of nested
reactors. Instead, we build reactor networks using a global graph structure. We
have previously laid the foundations for this by defining 1graph.?® To construct
a reactor network from an L-graph, we need to define which types the graph’s
identifiers and edges should have.

Identifiers: In reactor and reaction we used instances of N for identifying
reactions and ports. This works great as long as we only have one reactor. In
a reactor network, we need to extend these IDs to also specify the reactor they
live in:

def reactor.id := N

structure reaction.id :=
(rtr : reactor.id)
(rcn : N)

structure port.id :=
(rtr : reactor.id)

(prt : N)

That is, every reactor in a network has a unique number (€ N) associated with
it. Reactions and ports can then be globally identified by a combination of their
reactor and local ID.

Edges: While the vertices in a reactor network are reactors, the components
that should be connected by edges are their ports. Hence, we need the edges in
a reactor network to have a concept of which ports they are connecting;:

structure inst.network.graph.edge :=
(src : port.id)
(dst : port.id)

We don’t distinguish between types for input-port and output-port IDs, since we
know that the src always refers to an output-port and the dst to an input-port.

Graph: An inst.network.graph is now just an 1graph, that uses reactor.id
as its ID-type, reactor v as its data-type and inst.network.graph.edge as
its edge-type:

25Cf. Section 2.3.
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def inst.network.graph : Typex :=
lgraph reactor.id (reactor v) inst.network.graph.edge

For convenience, we define some accessors on this structure:

def rtr (n : inst.network.graph v) (i : reactor.id) : reactor v
:= 7n.data i

def rcn (n : inst.network.graph v) (i : reaction.id) : reaction v
:= (np.rtr i.rtr).reactions i.rcn

Network: While this concrete graph structure is well-suited for our purposes,
it is not sufficiently restrictive. There are two issues that need to be addressed:

1. Tt is currently possible to have multiple edges ending in the same port.
This is explicitly forbidden in the Reactor model. As long as we don’t de-
fine a global order on reactors (as we have with reactions in a reactor), this
restriction is necessary for maintaining determinism during value propa-
gation.

2. Ports can be connected in such a way that associated reactions can have
cyclic precedence. In Section 1.2.1 we stated that execution is only defined
for networks with acyclic precedence graphs. Here we disallow precedence-
cyclic networks entirely.

Hence, our previous definition only defined a network graph. The definition of
a complete instantaneous reactor network wraps such an inst.network.graph,
and requires additional proofs about it:

structure inst.network :=
(n : inst.network.graph v)
(unique_ins : 7.has_unique_port_ins) -- addresses Issue 1
(prec_acyclic : n.is_prec_acyclic) -- addresses Issue 2

The first restriction is easy to implement. We require that all (non-equal) edges
in the network have different destinations:

def has_unique_port_ins (n : inst.network.graph v) : Prop :=
YV (e € n.edges) (e’ € n.edges), e # ¢ — e.dst # & .dst

To implement the second restriction, we first need to formalize a notion of
precedence in a reactor network.
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3.4 Precedence Graphs

The intuition behind precedence in a reactor network is rather simple. A reac-
tion r can take precedence over another reaction s if it satisfies at least one of
the following conditions:

1. r and s live in the same reactor, and r has a higher priority than s.
2. A dependency of s is connected to an antidependency of r.26

3. r is transitively determined to take precedence over s.

While the first condition can be analyzed locally, the latter require a global
view of dependencies. Hence, we define a precendence graph. A precedence
graph connects reactions, such that the edges represent their immediate (non-
transitive) precedences:

structure prec.graph.edge :=
(src : reaction.id)
(dst : reaction.id)

def prec.graph : Typex :=
lgraph reaction.id (reaction v) prec.graph.edge

Again, while this concrete graph structure is well-suited for our purposes, it is
not sufficiently restrictive. We need a way of ensuring that its vertices and edges
actually reflect the precedences for a given network graph. If this is the case,
we call the precedence graph well-formed over a fixed instantaneous network
graph:

1 def is_well_formed_over

2 (p : prec.graph v) (1 : inst.network.graph v) : Prop :=

3 p.edges_are_well_formed_over n A
4 p.ids_are_well_formed_over 17 A
) p.data_is_well_formed_over 7

The three expression (Lines 3-5) are propositions about the three components
of 1graph, and therefore prec.graph: edges, IDs and data.

Edges: The first property (Line 3) is the most interesting. It makes sure that
the precedence graph contains edges between exactly those reactions that satisfy
precedence conditions 1 or 2:

1 def edges_are_well_formed_over
2 (p : prec.graph v) (i : inst,network.graph v) : Prop :=

3 V e : edge, e € p.edges
4 internally_dependent e.src e.dst V
) externally_dependent e.src e.dst 7

Lines 4 and 5 correspond to precedence conditions 1 and 2 respectively, and are
not further explored here.

26 and s may or may not live in the same reactor.
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Identifiers: The second property in is_well_formed_over (Line 4), expresses
the restriction that a precedence graph must contain exactly those reactions
(represented by their IDs) which are present in the network graph:

1 def ids_are_well_formed_over
(p : prec.graph v) (n : inst.network.graph v) : Prop :=
V i : reaction.id, i € p.ids «
i.rtr € n.ids A
i.recn € (n.rtr i.rtr).priorities

U W N

Recall here that a reactor identifies its reactions by their priorities. Hence, Line
5 states that i.rcn should be a member of the reactor identified by i.rtr.

Data: We consider a precedence graph’s data to be well-formed over a given
instantaneous network graph 7, if it corresponds exactly to the reactions in 7.
That is, the reaction-IDs in p have to map to the same reactions as in . Hence,
we explicitly ignore the wvalues in the network graph, since they do not affect
precedence.

def data_is_well_formed_over
(p : prec.graph v) (n : inst.network.graph v) : Prop :=
V i : reaction.id, p.rcn i = n.rcn i

Thus, a precedence graph that is well-formed over a network graph 7 contains
precisely all reactions present in 77, while connecting exactly those reactions by
edges that fulfill precedence conditions 1 or 2.

Transitivity: To find transitive precedences between reactions (precedence
condition 3), we need to further analyze the precedence graph. Namely, if the
precedence graph has a path from one reaction to another, then the former takes
precedence over the latter. The notion of paths is defined directly on lgraph.
If r and s are IDs and p is an L-graph, then the notation r~p~>s is used for
the proposition that there is a path from r to s in p. By using paths to express
transitive precedence, we can define the is_prec_acyclic property, required
for inst.network:

def lgraph.is_acyclic (g : lgraph ¢ & €) : Prop :=

Vi, =(i~g~>i)

def inst.network.graph.is_prec_acyclic
(n : inst.network.graph v) : Prop :=
V p : prec.graph v, (p X 1) — p.is_acyclic

The notation (p > n) stands for (p.is_well_formed_over 7). Thus, we re-
quire all well-formed precedence graphs over 7 to be acyclic.

3.5 Execution Model

Now that we have a formal notion of instantaneous reactor networks, we can de-
fine what it means to run them. For this we use a hierarchy of small algorithms,
composed into a singular run function.
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3.5.1 QOutline

Two of the algorithms required for the run function are special, in that we do
not define them explicitly. Instead, we define their behavior by constraints.

1 structure prec_func :=
2 (func : inst.network v — prec.graph v)
(well_formed : V o, (func o) < o.m)

(func : prec.graph v — list reaction.id)

3
4
9 structure topo_func :=
6
7 (is_topo : ...)

An instance of prec_func is a function that generates the precedence graph for
a given network (Line 2), while being subject to the constraint that it must
produce only well-formed precedence graphs (Line 3). We don’t define this
function explicitly, as it is of no interest to our model how the function works.
All we care about is what it returns. The same holds for instances of topo_func.
All we need to know about such a function is that it can compute a topological
ordering for a precedence graph.2” It is irrelevant how it does it.

This aspect of the execution model is not simply a convenience, but rather
a feature of the Reactor model. The execution of reactor networks behaves
the same, independently of the concrete precedence and topological-ordering
functions. Thus, formalizing prec_func and topo_func in this way, ensures
that we retain this property of independence.?®

The explicitly defined algorithms required to define instantaneous reactor net-
work execution align quite closely with the following steps. They can be thought
of as a more rigorous version of the steps presented in Section 1.2.1, while omit-
ting time-based aspects like the global tag, event queue and actions.

1. Generate the reaction queue as a topological ordering over the network’s
precedence graph. This is covered by prec_func and topo_func.

2. For each reaction in the reaction queue, execute it.
(a) Compute the reactor that we get by running the reaction, isolated to
its reactor (without any value propagation).
(b) Apply that modified reactor to the reactor network.

i. Swap the “old” reactor for the new one, i.e. point the relevant
reactor-ID to the new reactor created in step (a).

ii. Propagate the values of all of the output-ports that were written
to by the executed reaction.

Figure 12 shows that some of these steps are themselves subdivided in the
implementation. This is especially true for value propagation.

27The is_topo property (Line 7) constrains the output of func to be a topological ordering.
The exact implementation is omitted here to hide unnecessary detail.
28 A proof of independence will be covered in Section 4.4.
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Figure 12: Explicit algorithms for instantaneous reactor network execution

3.5.2 Implementation

Algorithms in Lean are fundamentally functional (as opposed to imperative).
That is, they cannot contain sequences of statements. Instead, an algorithm
consists of one, possibly deeply nested, expression which computes the desired
result. For the Instantaneous Reactor model, the run function is the root ex-
pression which computes the result of running a given reactor network:

def run
(0 : inst.network v) (f, : prec_func v) (f; : topo_func v)
inst.network v :=
run_aux o (f; (£, o))

This definition exemplifies the structure that most of the following algorithms
have. They compute one small partial result and pass it on to the next algorithm
(according to Figure 12). In the case of run, we only compute a topological
ordering (£, (£, n)) for the given network, and pass it to run_aux:

def run_aux (o : inst.network v) (t : list reaction.id)
inst.network v :=

{ inst.network . n := o.np.run_topo t,
unique_ins := ..., prec_acyclic := ... }
The syntax { inst.network . n := ..., ... }is a constructor for structures.

In Lean, appending _aux to a function’s name is common practice, when a
function needs to be divided into multiple parts that are tightly coupled. In the
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case of run_aux, all we do is forward the reaction queue from run to run_topo,
which computes the result of executing that reaction queue on the network’s
graph. The main function of run_aux is to then reassemble that result back
into an instance of inst.network, by providing proofs that it still fulfills the
unique_ins and prec_acyclic properties.??

The run_topo function iterates over the given reaction queue, executes each
reaction and combines the outputs into a single result. For this it uses a fold,
as is typical in functional languages:

def run_topo (n : inst.network.graph v) (t : list reaction.id)
inst.network.graph v :=
t.foldl run_reaction 7

The way in which this function executes each reaction, is by calling run_reaction:

def run_reaction (1 : inst.network.graph v) (i : reaction.id)
inst.network.graph v :=
(n.run_local i) .propagate_ports
((n.run_local i).index_diff 7 i.rtr role.output).val.to_list

This function is central to our implementation. It performs three steps:

1. It runs the given reaction in its reactor and swaps the “old” reactor for
the executed one in the network graph: (n.run_local i). Running a
reaction isolated in its reactor has its own set of steps, which we omit here
for brevity.

2. It computes which output-ports have been written to as a result of the
reaction’s execution (index_diff).

3. It propagates the values of the affected ports according to the network
graph’s connections (propagate_ports).

Output Propagation: Output propagation has an entire hierarchy of sub-
steps of its own. For the sake of brevity, we show them all at once. The following
definitions live in the inst.network namespace. Thus, any type whose name
starts with “graph” actually starts with “inst.network.graph”.

1 def propagate_ports (n : graph v) (ps : list port.id)
2 graph v :=

3 ps.foldl propagate_port 7

4

5 def propagate_port (n : graph v) (p : port.id)

6 graph v :=

7 7.propagate_edges (1.e, p).val.to_list

8

9 def propagate_edges (n : graph v) (es : list graph.edge)
10 graph v :=

11 es.foldl propagate_edge 7

29Cf. Section 4.3.
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12

13 def propagate_edge (1 : graph v) (e : graph.edge)

14 graph v :=

15 n.update_port role.input e.dst (7.port role.output e.src)

Value propagation is highly repetitive. These functions specify that propaga-
tion of a list of ports requires repeated propagation of a single port (Line 3).
Propagation of a single port requires propagation of all of its connected edges
(Line 7), and propagation of a list of edges requires repeated propagation of a
single edge (Line 11). The non-trivial expressions contained in this are:

e Line 7: The expression (n.e, p) returns the set of graph.edges out of n
that start in port p. The suffix .val.to_list turns that set into a list.

e Line 15: The expression (n.update_port ...) writes a given value to a
given port, identified by its ID and its “role” (input or output). The
expression (n.port ...) returns the value of a given port.

3.6 Constructivism

The run function and prec_func have something in common: They both define
how to map one object to another. The prec_func does this by stating what the
result should be, by virtue of the propositions defined by is_well_formed_over.
The run function defines what an executed reactor network should look like, by
providing us with a procedure for how to construct it. The difference between
these approaches reflects the difference between classical and constructive math-
ematics.

Constructive mathematics is distinguished from its traditional coun-
terpart, classical mathematics, by the strict interpretation of the
phrase “there exists” as “we can construct”. In order to work con-
structively, we need to re-interpret not only the existential quantifier
but all the logical connectives and quantifiers as instructions on how
to construct a proof of the statement involving these logical expres-
sions. [13]

Thus, in a constructivist world-view, our definition of prec_func is of little
value, unless we can specify a procedure for how to construct a well-formed
precedence graph. It is explicitly not enough to show that an instance of
prec_func must exist, by indirect inference.

While the distinction between constructive and classical mathematics is not
clear-cut, it often involves the decision of whether to use the aziom of choice
and the law of excluded middle (LEM): Vp : pV —p. Classical mathematics uses
a definition of predicate logic, which implies LEM:. Notable consequences are:

e Double negation: Vp: =—p=p

e Proof by contradiction: Vp:p=-p— L
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Lean allows us to use classical or constructive mathematics. If we want to
make our definitions explicitly classical, we can use an additional axiom called
classical.choice. The namespace classical then contains useful theorems,
like LEM. In order to be clear about when classical reasoning is used, Lean forces
any definitions that rely on classical.choice to be marked as noncomputable.
In fact, all of our explicit algorithms shown above are noncomputable, as they
rely on non-computable equatability of certain objects — we’ve simply omitted
the keyword here to avoid confusion. More generally, this thesis does not aim to
be constructivist, and uses non-computable constructs throughout. It must be
noted though, that the differences between a constructive and classical approach,
exemplified by run and prec_func, come with their respective upsides and
downsides.

e Defining an object constructively allows us to gloss over many of the de-
tails that are implicit in the construction. For example, it would be signifi-
cantly more complicated to define the run function by propositions, which
describe what its result should look like. This kind of definition would also
be highly non-intuitive, as conceptually the result of run should be “the
product of executing a given sequence of steps”.

e The downside of a constructive approach is that run tells us nothing about
the properties of the objects it produces. We will see below that in con-
sequence it is much harder to prove properties about run than about the
propositionally defined prec_func.

e In the context of this thesis, there is an additional drawback that comes
with a constructive approach. As we are formalizing a model, not an
implementation for reactors, definitions should be descriptive. Formaliz-
ing aspects of the model by concrete implementation, like the execution
model above, is not descriptive. Thus, any actual implementations of the
model (cf. Lingua Franca [3]) must ensure that the implemented behavior
matches the implementations of the model. This makes the model less
useful, in that it becomes more of a reference implementation than a de-
scription. Despite these drawbacks, we’ve chosen this approach for this
thesis, as it allows us to narrow the scope of this initial formalization.

While the first aspect has already manifested itself in this section, the second
one will become relevant in the following section.
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4 Proving Determinism

In Section 1 we introduced determinism as the property of a system, which states
that equal inputs lead to equal behavior. With respect to the run function, this
means that we expect equal inputs to produce equal outputs. As run is a
function in the mathematical sense, this property is trivially fulfilled. In this
section we prove a stronger result. Determinism, as used here, means that
for a given instantaneous reactor network, the run function produces the same
output, regardless of the given prec_func and topo_func:

theorem determinism
(¢ : inst.network v) (p p’ : prec_func v) (t t' : topo_func v)
c.runpt =oc.run p t' = ...

4.1 Lean’s Proof Syntax

The syntax used to state the theorem above, while new, should look familiar. In
Lean, proofs of theorems and lemmas are defined using the theorem and lemma
keywords. Their types are propositions, that is, types from within Prop. As
logical implication corresponds to function types in the Curry-Howard isomor-
phism, theorems can still take parameters just like functions. This extends to
dependent functions by the correspondence between II-types and V. For exam-
ple, the type of the theorem determinism is:

YV (o : network v) (p p’ : prec_func v) (t t’' : topo_func v),
c.run pt = o.run p’ t/

To prove determinism, we need to provide an instance of this type. One way
of going about this is to manually construct such an instance, by composing
instances of the respective logical connectives. For example: 3°

lemma and_add_q (h : p A @ : g ApAgq :=
and.intro h.right (and.intro h.left h.right)

While this approach works great for small proofs, it can become hard to manage
for larger ones, as it does align with a human way of thinking about proofs: as
a sequence of steps towards a proof goal. This is why Lean provides a more
human-friendly way of constructing proofs, called tactics.

4.1.1 Tactics

[T]actics are commands, or instructions, that describe how to build
[...] a proof. Informally, we might begin a mathematical proof by
saying “to prove the forward direction, unfold the definition, apply
the previous lemma, and simplify.” Just as these are instructions
that tell the reader how to find the relevant proof, tactics are in-
structions that tell Lean how to construct a proof term. [11]

30For the definition of and, cf. Section 2.2.4.
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Therefore, while a proof still has to be a concrete instance of a proposition, we
don’t have to build this instance ourselves. In this section we briefly introduce
Lean’s tactic mode by proving a lemma about reactors:

1 lemma run_eq_input (rtr : reactor v) (rcn : N)
(rtr.run rcn).input = rtr.input := ...

def reactor.run (rtr : reactor v) (rcm : N) : reactor v :=
if (rtr.reactions rcn).triggers_on rtr.input
then rtr.merge
((rtr.reactions rcmn).body rtr.input rtr.state)
else rtr

OO ULk WD

The reactor.run function defines how to run a reaction locally within a reactor.
For this, we first check whether the reactor’s input ports cause the reaction to
trigger (Line 5). If so, we run the reaction’s body on the reactor’s input and
state (Line 7) and merge the result back into the reactor (Line 6). The merge
function integrates the output of the reaction’s body into the reactor by, first,
overriding the reactor’s state with the new state and, second, overriding exactly
those output ports for which the reaction produced a non-absent value. If the
reaction does not trigger, we simply return the reactor as is (Line 8).

The lemma run_eq_input states that running a reaction does not change the
reactor’s input ports. Intuitively, this lemma should hold, as running a reaction
only changes output ports and state variables. We can rigorously prove this,
with the following steps:

1 lemma run_eq_input (rtr : reactor v) (rcn : N)

2 (rtr.run rcn).input = rtr.input :=
3 begin

4 unfold reactor.run,

5 split_ifs,

6 { unfold reactor.merge T,

7 { refl }

8 end

We enter tactic mode with begin and leave it with end. All of the statements
between these delimiters will tell Lean how to construct the proof term for this
lemma. Using tactic mode allows us to reap the benefits of interactive proof
assistants as described in Section 2.1. That is, we get an overview of the tactic
state, which on Line 4 looks as follows:

rtr : reactor v

rcn @ N
F (rtr.run rcn).input = rtr.input

The first two lines show our current assumptions: We have instances rtr :
reactor v and rcn : N. The term after the symbol F is the current goal, i.e.
the remaining subproof that needs to be shown to complete the proof of the
entire lemma. Our aim is to transform the goal in such a way that we can
then prove it by using existing axioms and theorems. In the example above, we
start by unfolding a definition: unfold reactor.run. On Line 5 our goal state
therefore changes to:
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rtr : reactor v

rcn : N

F (ite ((rtr.reactions rcm).triggers_on rtr.input) (rtr.merge
f+((rtr.reactions rcn) rtr.input rtr.state)) rtr).input =
rtr.input

It is not uncommon to have goals that are hard to parse when unfolding func-
tions. The problem here is that we have a large if-then-else expression (ite) in
the goal. To simplify our goal, we can split it into two cases: one where the ite
resolves to the positive case and one where it resolves to the negative case. We
do this by using the split_ifs tactic. The result is that we have two distinct
goals:

rtr : reactor v

rcn @ N

h : (rtr.reactions rcn).triggers_on rtr.input

F (rtr.merge f}((rtr.reactions rcn) rtr.input rtr.state)).input =
rtr.input

rtr : reactor v

rcn : N

h : —(rtr.reactions rcmn).triggers_on rtr.input
F rtr.input = rtr.input

For the first goal, it suffices to unfold the definition of merge (Line 6) for Lean
to be able to prove that this goal is true. The second goal can be proven by the
reflexivity of equality. Hence, we use the refl tactic to close this goal (Line 7).
Thus, all goals have been closed, and we have proven the lemma.

There are a variety of other tactics that allow us to change our goal, introduce
new assumptions, split our goal into multiple subgoals, apply tactics repeatedly,
etc.3! As this thesis shows virtually no proof code, we will refrain from showing
them here. We instead focus on showing the claims made by lemmas and
theorems, as well as how they compose. The reason we can afford to ignore the
proofs themselves is that their correctness is already checked by Lean.

The following proof of determinism consists of two parts. We first show that
the choice of prec_func does not affect the run function, as there exists at most
one prec_func. Secondly, we prove that run behaves the same, independently
of the reaction queue generated by topo_func. Hence, the choice of topo_func
does not affect the output of run.

31Cf. https://leanprover.github.io/reference/tactics.html
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4.2 Equality of Precedence Graphs

The first step in proving determinism is to show that all precedence functions
are equal, i.e. there exists at most one unique precedence function:

1 theorem prec_func.unique (p p’ : prec_func v) : p = p’ :=

2 begin

rewrite prec_func.ext p p’,

funext o,

exact prec.wf_prec_graphs_are_eq
(p.well_formed o) (p’.well_formed o)

N O Uik W

end

The main step for proving this theorem is to show that all well-formed prece-
dence graphs over a fixed network are equal (used in Line 5):

theorem prec.wf_prec_graphs_are_eq

{n : inst.network.graph v} {p p’ : prec.graph v}

(hw : pxan) (v : p < n)

p=p =...
This theorem can be proven relatively directly from the properties of well-
formedness of precedence graphs. Using this result we can begin our proof
of determinism:

theorem determinism ... : o.run p t = o.run p’ t’ :=
begin
rewrite prec_func.unique p’ p,

This leaves us with the goal: - oc.run p t = o.run p t'.

4.3 Reactor Equivalence

Despite omitting many details, we will cover one concept that has been of great
utility in proving properties about reactor networks. Many of the properties of
reactor networks are a result of their structure, rather than the specific data
they hold at any given time. It is therefore useful to have a way of expressing
that two networks are equal in structure, while ignoring the data they contain.
We call such networks equivalent. The notion of equivalence starts at the level
of reactors:

instance equiv : has_equiv (reactor v) :=
(N r r’, r.priorities = r’.priorities A r.reactions = r’.reactions)

While some concepts used here3? have not been explained, it suffices to know
that this code adds a notion of equivalence to reactors, such that two reactors are
equivalent if their priorities and reactions are equal. That is, we explicitly
ignore their input, output and state. If two reactors r and r’ are equivalent, we
can write r &~ r’. This notion of equivalence is lifted to inst.network.graph
and inst.network:

32In particular, type class instances and anonymous constructors.
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instance equiv : has_equiv (inst.network.graph v) := (A n 7/,
n.edges = n'.edges A 7n.ids = 7’.ids A
Vi, (g.rtr 1) = ('.rtr i)

)

instance equiv : has_equiv (inst.network v) :=
(An 71, n.n = 1n'.n)

Networks are equivalent if they have the same edges and IDs, while only contain-
ing equivalent reactors. Hence, again, only structure matters. Using equivalence
allows us to prove some very useful results:

e Equivalence of reactors preserves precedence-acyclicity:

theorem equiv_prec_acyc_inv
{n n' : inst.network.graph v}
(hq : n =~ 1) (b, : n.is_prec_acyclic)
7’ .is_prec_acyclic

e Equivalence of reactors preserves uniqueness of connections to input-ports.
We show a slightly stronger result here, by only requiring edges to be equal,
which is a trivial consequence of equivalence:
theorem eq_edges_unique_port_ins

{n n' : inst.network.graph v}
(he : n.edges = 1’.edges) (h, : 7.has_unique_port_ins)
7’ .has_unique_port_ins

Both of these results are integral in defining the run function. Since run returns
not just an inst.network.graph, but an inst.network, we need to prove that
the result of run_topo (which is an inst.network.graph) preserves precedence-
acyclicity and input-uniqueness. This is done (inside of run_aux) by using the
theorems listed above, in combination with the proof that run_topo produces
an output that is equivalent to its input:
lemma run_topo_equiv
(n : inst.network.graph v) (t : list reaction.id)
run_topo n t = 7

4.4 Independence of Topological Ordering

The uniqueness of the precedence function allows us to keep the first step of our
proof of determinism self-contained. We don’t even consider the run function.
The remaining proof of determinism requires us to dive into the details of run.

As any given precedence graph may have multiple topological orderings, it
is possible that there exist multiple different topo_funcs. Hence, we need to
show that the result of run is independent of which topo_func is used. By
extension, the result of run_topo needs to be proven to be independent of the
given topological ordering. This is captured by the proof that run_topo is
commutative:

41



theorem run_topo_comm
{n : inst.network.graph v} (h, : 7n.has_unique_port_ins)
{p : prec.graph v} (hw : p X< )
vV {t t’ : list reaction.id} (h, : t ~ t’)
(h; : t.is_topo_over p) (h,/ : t’.is_topo_over p) ,
run_topo 77 t = run_topo n t’ := ...

ST W N

The terrible legibility of this theorem is a result of there being many precon-
ditions for the commutativity of run_topo. The term “commutative” as used
here33, is meant to express that we require the given topological orderings to
be permutations of each other (Line 4 : t ~ t/).3* We prove the theorem by
induction over one of the topological orderings, using the following intermediate
results. The notation [...,...] is used for lists, r :: [ denotes the list where element
r is prepended to list [, and [ — r denotes the list [ with all occurrences of r
removed:

1. topo.indep_head: If t = [rq,r9,...,7,] is a topological ordering, then rq
is not dependent on any other element in the list.

2. (1) + topo.erase_is_topo: If t = [ry, 79, ..., 7] is a topological ordering
and t’ is a permutation of ¢, then 71 :: (¢’ —r1) is also a topological ordering.
That is, we can pull independent elements to the front of the list.

3. If t is a topological ordering and r is an independent element in ¢, then
run_topo produces the same output for ¢ and r :: (¢ — 7).

While results 1 and 2 are general lemmas about topological orderings, result 3
is specific to run_topo and shown by run_topo_swap:

lemma run_topo_swap
{n : inst.network.graph v} (h, : 7n.has_unique_port_ins)
{p : prec.graph v} (hw : p X 7n)
{t : list reaction.id} (h; : t.is_topo_over p)
{i : reaction.id} (b, : i € t) (h; : topo.indep i t p)
run_topo 1 t = run_topo n (i :: (t.erase i)) := ...

We again prove this result by induction over t. As a result, it suffices to show
that the order in which two independent reactions are executed is irrelevant.
That is, running independent reactions is commutative:

1 lemma run_reaction_comm

2 {n : inst.network.graph v} (h, : 7.has_unique_port_ins)
3 {p : prec.graph v} (hw : p > 7)

4 {i i’ : reaction.id} (h; : p.indep i i)

5 (n.run_reaction i).run_reaction i’ =

6 (n.run_reaction i’) .run_reaction i := ...

33While this usage of “commutative” is uncommon in the broader mathematical commu-
nity, it is canonical within Lean’s mathematical library.

34The lemma topo.complete_perm proves that this must hold for all topological orderings
returned by a topo_func.
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We can prove this lemma with the following observations. If two reactions are
independent of each other, they must (1) live in different reactors and (2) can-
not write to each other’s dependencies. Hence, they cannot affect each other’s
input-ports. Their outputs also cannot affect each other, as we’ve restrained
input-ports to have at most one incoming connection (Line 2: h,). Therefore,
independent reactions neither affect each other’s inputs, nor conflict in their
outputs. Thus, their order of execution can be swapped. While the idea behind
this proof is rather simple, the intermediate results required for this proof are
far-reaching and laborious. Hence, we omit any further details here.

Using the theorem run_topo_comm we can complete our proof of determinism
(Figure 13). Thus, determinism of instantaneous reactor networks is governed
by two main factors:

1. Equality of all well-formed precedence graphs over a fixed network graph.
2. Independence of run_topo from a specific topological ordering.

It is also important to be clear that determinism, as we have shown it, depends
35

on two assumptions:
1. There exists an instance of prec_func. This could be proven either con-
structively by providing an algorithm, or non-constructively.

2. There exists an instance of topo_func. Proving this is of less importance,
as it is a well-known result that all directed acyclic graphs have a topo-
logical ordering.

theorem determinism
(0 : inst.network v) (p p’ : prec_func v) (t t' : topo_func v)
c.runp t = o.run p' t/ :=
begin
rewrite prec_func.unique p’ p,
unfold run run_aux,
suffices h :
o.n.run_topo (t (p’ ¢)) = o.n.run_topo (t' (p’ o)),
by simp only [h],
have hw, from p’.well_formed o,
have hy, from t.is_topo hw,
have h,’, from t’.is_topo hw,
have h,, from topo.complete_perm h; h/,
exact graph.run_topo_comm o.unique_ins hw h;.left h,'.left h,
end

Figure 13: Proof of determinism of the Instantaneous Reactor model

35Further assumptions are implicit in the model.
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5 Adding Time

One of our goals in formalizing the Simple Reactor model is to separate the
instantaneous from the time-based aspects. In previous sections we've built a
rigorous model of instantaneous reactors. In this section, we add the time-based
aspects on top, i.e. without changing the instantaneous model. This allows us
to model timed reactor networks as a generalization of instantaneous networks,
while retaining a separation of concerns.

5.1 Primitives

Just as instantaneous reactors defined primitives (ports, state variables, etc.),
timed reactor networks are built upon some additional basic notions.

Tags: In the Reactor model, we use the term tag to refer to a logical times-
tamp. Hence, if we want to add a notion of time to our model, we need to
formalize tags:

def tag := lex N N

The type lex is the Cartesian product, equipped with the lexicographic order.
Thus, the definition above states that tag is equivalent to Nx N, and the relation
< for tags defines a lexicographic order. This corresponds to the superdense
representation of time [5] mentioned in Section 1.2.

5.1.1 Actions as Ports

In the Instantaneous Reactor model, the entities responsible for carrying values
are ports. In a time-based model, we additionally want to be able to propagate
values through actions. Hence, we generalize the notion of ports and formalize
actions as special ports, called action ports — a concept also employed in [4].
We will see that this also allows us to drop the formalization of events entirely.
In this section we give a rough overview of action ports. Their details will be
covered in Sections 5.2 and 5.3.

While regular ports have the ability to carry values across reactors, this
propagation is limited to occur at a fixed logical time.?6 With action ports, we
want to achieve the inverse goal. We want values to be propagated between
reactions of a single reactor, but across time. As a result, reactions need to be
able to specify when values should be propagated. To achieve this, we can exploit
the fact that the formalization of instantaneous reactors introduces a generic
value type v, on which virtually all components of the model are dependent.
That is, instantaneous reactors work the same no matter which specific type
v is. Thus, in time-based reactor networks, we give v a structure that allows
reactions to add tags to their outputs. We call this structure a timed port
assignment (TPA).

36 All ports are cleared after each logical time step (cf. Section 1.2.1).
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TPAs: A TPA consists of a finite number of tag-value pairs:

variables (v : Type*) [decidable_eq v]
def tpa := finset (tag X option v)

As in Section 3, we define the underlying data values by means of an equatable
dependent type parameter v. The tags in a TPA specify when actions, which
carry given values, should be scheduled. Since reactions can schedule multiple
actions per execution, TPAs are not just a single tag-value pair, but a collection
of them.

While the definition of TPAs is well-suited for action ports, we must consider
their interaction with regular ports. Since we make no distinction in the kinds
of values that are passed to different kinds of ports3”, action ports and regular
ports both carry TPAs. We may therefore need to define what it means for a
regular port (and by extension a reaction) to receive a TPA. Fortunately the
GIGO principle can resolve this issue: We declare that all regular ports and
reaction bodies must only receive TPAs that contain exactly one tag-value pair
where the tag is the current logical time. Otherwise, no guarantees about a
network’s behavior are made. The “instantaneous value” of such a TPA is then
the value contained in the TPA’s only tag-value pair.

5.2 Timed Networks

To understand the behavior of TPAs more clearly, we first need to define action
ports more rigorously. The only difference between regular ports and action
ports is in how we treat them in timed reactor networks:

1 structure timed.network :=

2 (o : inst.network (tpa v))

3 (time : tag)

4 (event_queue : list tag)

5 (actions : finset action_edge)

6 (well_formed : actions.are_well_formed_for o)

A timed.network is an extension on an inst.network. We define the under-
lying network to use tpas for its values (Line 2). That is, the data values in
the instantaneous world are of type (tpa v), while the data values in the time-
based world are of type v. Lines 3 and 4 add properties that will be explained
in Section 5.3. The properties concerning action ports are on Lines 5 and 6.

5.2.1 Action Edges

Reactors come with output and input ports, which receive values from reactions
and propagate values into reactions respectively. We generalize this notion to
action ports and talk about output action ports (OAP) and input action ports
(TAP). OAPs receive the TPAs produced by reactions and IAPs propagate values
back into reactions. We can connect OAPs and TAPs using special edges:

3TWe can’t, without changing the formalization of instantaneous reactors.
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structure timed.network.action_edge :=
(oap : port.id)
(iap : port.id)

Thus, everything that is an action in the Simple Reactor model is now repre-
sented by an OAP, an IAP, and an edge between them.?® If a reaction wants to
be able to schedule a specific action, it needs to declare a corresponding OAP
as its antidependency. If a reaction wants to be able to receive values from an
action, it needs to declare that action’s IAP as a dependency.

While this system works well at first glance, we need to consider the following
scenario: What if multiple reactions want to schedule the same action? Since
output ports may have multiple inputs, i.e. be an antidependency for multiple
reactions, we can connect multiple reactions to the same OAP. This leads to the
problem that, if two reactions schedule the same action during the same round
of execution, they both write to the same OAP. Thus, one of their TPAs will
override the other. What we would want is for their TPAs to be merged into a
single TPA. But to achieve this we would have to adjust the implementation of
instantaneous reactors. Hence, we take a different approach — we allow each
action to have multiple OAPs. Each reaction that wants to schedule an action
can then connect to its own unique OAP, so no overriding occurs. Figure 14
shows an example of a reactor that contains an action with multiple connected
reactions (and therefore multiple OAPs), as well as a reaction that schedules
multiple different actions.

’ Regular Port - Reaction Anti-/Dependencies

D Action Port — Action Edges

Figure 14: Reactor with two actions

38We will see below that we sometimes need multiple OAPs per action.

46



5.2.2 Well-Formedness

Modeling actions as ports and edges only works subject to some constraints.
These constraints are enforced by timed.network.well_formed (Line 6 above):

def finset.are_well_formed_for
(es : finset action_edge) (o : inst.network (tpa v)) :=
es.are_many_to_one A
es.are_local A
es.have_unique_source_in o A
es.are_functionally_unique_in o A
es.are_separate_from o

We go through these constraints in order:

1. Each action has exactly one IAP, and OAPs can belong to only one action.
Thus, OAPs cannot be connected to multiple IAPs:

def finset.are_many_to_one (es : finset action_edge) :=
V e ¢ : action_edge, e € es — & € es —
e.oap = e’.oap — e = &

2. Actions are local to a single reactor. Hence, action edges must begin and
end in the same reactor:

def finset.are_local (es : finset action_edge) :=
V e : action_edge, e € es —
e.oap.rtr = e.iap.rtr

3. To avoid overriding of TPAs (as previously explained), OAPs may be con-
nected to at most one reaction. The expression (o.7n.deps r role.output)
returns the output-dependencies of a reaction r:

def finset.have_unique_source_in
(es : finset action_edge) (o : inst.network (tpa v)) :=
V (e : action_edge) (r r’ : reaction.id), e € es —
(e.oap € o.7n.deps r role.output) —
(e.oap € o.1n.deps r’ role.output) —
r=r1

4. A single reaction cannot use multiple OAPs for scheduling the same action.
That is, if a reaction connects to two distinct OAPs, they cannot connect to
the same TAP. We make this restriction, because the execution of a timed
reactor network will require us to merge TPAs. The order in which we
perform merges is based on the priorities of OAPs. An OAP’s priority is
inherited from the reaction it is connected to. Hence, this restriction is
necessary to keep OAPSs’ priorities unique, thereby allowing us to impose a

total order on them, which allows us to retain determinism when merging
TPAs:
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def finset.are_functionally_unique_in
(es : finset action_edge) (o : inst.network (tpa v)) :=
V (e ¢ : action_edge) (r : reaction.id),
e €Ees > e € es —
(e.oap € 0.7n.deps r role.output) —
(e'.oap € 0.1.deps r role.output) —
e.iap = e’.iap —
e.oap = e’ .oap

5. While action ports are just ports, they should not also take on the role of
regular untimed ports. Hence, it must be ensured that no “regular network
edges” are attached to them:

def finset.are_separate_from
(es : finset action_edge) (o : inst.network (tpa v)) :=
V (ae : action_edge) (ne : inst.network.graph.edge),
ae € es — ne € o0.1n.edges —
ae.iap # ne.dst A ae.oap # ne.src

Giving action ports their own separate edges and imposing these five restrictions,
allows us to model actions as a generalization ports.

5.3 Execution Model

Just as the definition of timed reactor networks builds heavily on that of instan-
taneous reactor networks, so does the execution model. Time-based execution
can be modeled as a sequence of instantaneous executions. To achieve this, we
require two things: a global logical time and an event queue. We've already
added these components in our definition of timed.network above:

e time is the tag for the current logical time.

e event_queue is an ordered list of tags, that indicates at which logical
times the next instantaneous executions need to take place. In our Simple
Reactor model, a tag can only be added to this queue as the result of
scheduling an action for that tag. Note that, while the event queue in the
Simple Reactor model has explicit event objects in its event queue, this
formalization only queues tags. Explicit event objects are not used at all
in this formalization.

Execution of a timed reactor network progresses as follows. As long as there are
events in the event queue, we execute an instantaneous version of the network
at the tag of the next event. The IAPs in this network must contain the values
specified by the actions scheduled for this tag. Upon completion, integrate the
actions scheduled during the instantaneous execution into the timed network
and advance the current logical time.
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We formalize this with the following implementation.?® For every tag T in a
timed reactor network’s event queue:

1. If the event queue is empty, complete execution. Otherwise:
2. Merge all TPAs from all OAPs into their respective TAPs.

3. Construct an instantaneous reactor network for the current tag 7', by
removing all tag-value pairs with a tag # T from all TAPs’ TPAs.

4. Run the instantaneous network as formalized in Section 3.5, but clear all
regular ports upon completion.

5. Build a timed network from the result of Step 4:

(a) Restore the TPAs in the IAPs to the state from before Step 3.
(b) Set the network’s time to T

(c) For every tag that appears in the executed network’s OAPs’ TPAs,
add it to the existing event queue. Then sort the event queue in
increasing order (earlier tags preceding later tags).

6. Repeat this procedure from Step 1, using the timed network from Step 5
for further execution.

There are again a variety of small steps required to realize such an algorithm:

timed.network.run

propagate_actions at_tag

inst.network.run
copy_ports

[

inst.network. tags in
clear_all_ports 95

inst.network. ]

(
|

propagate_tpa tpa.at_tag

\ '
[ gather_iap reduce_iap_to, tag]

tpa.merge

Figure 15: Functions in the execution of timed reactor networks

39For a discussion of why we formalize by implementation, cf. Section 3.6.
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As we show no proofs about timed networks in this thesis, we omit any details
about these functions. Instead, we only consider one important detail about
timed.network.run, namely that it doesn’t exist. We can see why, by ex-
amining the core function in the implementation of timed network execution:
run_next. This function gets the next tag in the event queue and runs the
network only for that tag:

def run_next (7 : timed.network v)
(f, : prec_func (tpa v)) (t, : topo_func (tpa v))
timed.network :=
match 7.event_queue with
| 00 :=7
| hd :: t1 := ... —= run ‘hd
end

The responsibility of timed.network.run would then be to implement Step 6
of the execution model. That is, take whatever run_next returned and feed it
back into run_next. As it turns out, directly implementing this step in Lean is
impossible. We cover the underlying issue in the following section.

5.3.1 Infinite Recursion

The reason why we cannot implement Step 6 is that it causes potentially infi-
nite recursion. By “repeating the procedure from Step 1”7 and beginning each
iteration with a new timed network, we can mutate the event queue on every
iteration. In consequence, we can repopulate it each time, thus causing an infi-
nite number of iterations. As a minimal example, consider the following timed

reactor network:

Figure 16: Indefinitely executing timed reactor network

If we assume that the reaction schedules an action every time it executes, it will
keep triggering itself, and hence sustain execution indefinitely.

Recursion in Lean: While infinite recursion can be trivially implemented in
most programming languages, Lean explicitly forbids it. In fact, recursion is
already ruled out by the typed lambda calculus, where the type restrictions for
valid terms make it impossible to define recursive functions. Thus, in Lean, any
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recursive function definition is rewritten into a valid term by the compiler. This
is only possible, when the recursively defined function provably terminates.*°
In certain cases, Lean can prove this fact for us, so we don’t need to make it
explicit. Take as an example this inductively defined function over lists:

def list_sum : list N — N
| [1 :=0
| (hd :: t1l) := hd + list_sum tl

For this function, Lean can prove to itself that:

1. Every recursive call takes as argument a list that is smaller than the one
received by the enclosing function context.

2. There’s a smallest list (the empty list) whose definition for this function
is non-recursive.

Hence, any call to this function can only recurse finitely many times. When
Lean cannot infer that a recursive call is “decreasing”, we have to implement
the recursion manually by means of the well-founded recursion theorem.4! This
mechanism allows us to explicitly prove the properties that Lean could infer
for the function above. Since the execution of timed reactor networks can be
inherently non-terminating, we cannot prove such properties and are forced to
find a different approach for modeling indefinite sequential computation. We
mention a possible solution to this problem in Section 6.2.

40There technically is a way to define infinite recursion in Lean — via meta functions.
These aren’t properly checked by Lean and hence allow us to prove false.
41For this, Lean provides definitions like well_founded.recursion and well_founded.fix.

o1



6 Conclusion

The formalization of the Simple Reactor model as shown in this thesis represents
a first step towards a rigorous formalization of the Reactor model. It allowed
us to explore the notions required to express the most primitive aspects of the
Reactor model. Sticking to a small model enabled us to incrementally build up
a repertoire of lemmas and theorems, which finally lead to a rigorous proof of
the model’s determinism. Additionally, the separation of the instantaneous and
time-based aspects, allowed us to formalize the latter as a generalization of the
former. In all of this, the correctness enforced by Lean played an integral role in
avoiding mathematical inaccuracies contained in the full Reactor model. It also
helped us surface some of the assumptions required for determinism — namely
the existence of a precedence and topological-ordering function.

6.1 Working with Lean
While Lean has been of great utility for this project, it is a double-edged sword.

Upsides: The upsides of using Lean as a proof assistant are very compelling.
It provides (almost) absolute certainty about the correctness of mathematical
work, which greatly reduces the effort required to review theorems and their
proofs. For this thesis, we wrote over 2000 lines of Lean code, including over
130 theorems and lemmas, which for the most part can be ignored without
further consideration, thanks to Lean.*?

Further, the certainty provided by Lean can benefit the user of the system.
It forces amateur or non-mathematicians into being mathematically correct,
which is particularly useful for learning how to create correct proofs.

T don’t think I really got [proofs] until encountering the Lean theorem
prover [...]. With Lean you have your hypotheses, you have your
proof goal (the thing you're trying to prove), and you have a set
of moves you can make. It’s very much like a game [...]. Before I
learned Lean, writing proofs was like playing chess without knowing
that bishops existed or how knights moved and thinking pawns could
teleport around the board. Just knowing the rules, knowing what
constitutes a valid move and knowing the space (or at least more
of the space) of valid moves, was so powerful for my understanding
of how to write a proof. Writing proofs became like navigating an
endlessly fascinating maze, using theorems to hop from place to place
until finding the conclusion! [14]

Hence, as a non-mathematician it is possible to start proving a theorem without

a solid grasp on the steps involved, and stumble upon them along the way.
Lastly, formalization in Lean may have even bigger benefits with the ad-

vancement of AI. As formalizations in Lean are growing into an ever larger

421t is of course still necessary to check that the theorems state the desired propositions.
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corpus [15], it is becoming more plausible to train software to generate proofs
in Lean. At Lean Together 2021, Jason Rute and Jesse Han presented an im-
plementation of a proof tactic based on machine learning*?, with remarkable
results. Efforts like this advance Lean into becoming more of an automated
theorem prover than a mere proof assistant.*

Downsides: The mathematical precision required by Lean can also be one of
its worst aspects. For example, we had to define (labeled multi-)digraphs and
some of their properties ourselves, even though they are of virtually no interest
to our model. In traditional mathematics we would generally gloss over such an
object, and take its lemmas for granted. Additionally, for Lean ...

[tJhe learning curve is steep. It is very hard to learn to use Lean
proficiently. [...] Are you a student at Imperial being guided by
Kevin Buzzard? If not, Lean might not be for you. [16]

While the gamified proof process is certainly useful for proving simple theorems,
it can get in the way when trying to prove larger ones. As every detail needs
to be correct, it can be easy to lose the overarching argument of a proof to
technicalities. Hence, even if you have a proof idea, you may not be able to
easily state it in Lean. And once you do manage to start proving a theorem,
there are many roadblocks that can stop you dead in your tracks.

Community: When getting stuck, the only remedy is usually to turn to the
Lean community. Fortunately, Lean has a very active community with constant
discourse on a public forum.*® It is hard to express the value it provides. Aside
from constant helpful answers to even the most niche problems, the community
actively develops and maintains the Mathlib library. Mathlib is an ever-growing,
coordinated effort to collect formalizations of “mainstream” mathematics in a
central library. In fact, many of the lemmas and structures used in this thesis
are actually part of Mathlib, rather than Lean itself.

6.2 Future Directions

As this thesis explicitly models a subset of the full Reactor model, there are
a variety of next steps that can be taken. Most pressing is probably the for-
malization of non-terminating execution as described in Section 5.3.1. A pos-
sible approach for this is to formalize the execution model of timed reactors
non-constructively, i.e. by propositions, like prec_func and topo_func. This
approach would also make the formalization of the execution model more de-
scriptive. 46 Formalizing a function in this manner could be done by returning a

43 LeanStep at https://leanprover-community.github.io/1t2021/schedule.html
44Cf. Section 2.1.

45htt:ps ://leanprover.zulipchat.com

46Cf. Section 3.6.
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(potentially infinite) sequence?” of instantaneous networks [17], such that adja-
cent elements in the sequence must be valid predecessors/successors according
to the execution model. Determinism could be proven by building upon the
determinism of instantaneous networks.

Another desirable addition would be the introduction of physical time. As
one of the key aspects of the Reactor model are distinct notions of time, key
insights into the model are only possible once time is fully formalized.

To flesh out the model, mutations and nested reactors could be added. Since
we’ve already defined a notion of reactor networks, the addition of nested reac-
tors should be unintrusive. Mutations might require some larger adjustments,
as they constitute an additional step in the execution model and therefore have
a larger impact on the proof of determinism.

Not least, it might be valuable to prove the existence of a prec_func and
topo_func by providing explicit algorithms for them in Lean. Thus, both of the
assumptions upon with determinism of instantaneous reactor networks currently
rests, would be proven.

4Thttps://leanprover-community.github.io/mathlib_docs/data/seq/seq.html#seq

o4


https://leanprover-community.github.io/mathlib_docs/data/seq/seq.html#seq

A Project Overview

The code shown in this thesis is only a tiny excerpt of the current formalization
of the Simple Reactor model. This section aims to provide a high-level overview
of the project structure, so that it may be more easily navigated. Generally,
definitions and corresponding lemmas/theorems are placed in the same file, with
the theorems appearing immediately after the definition.

The root folder contains formalizations, which are not specific to reactors:

e lgraph.lean defines L-graphs, including the definitions of paths and acyclic-
ity.

e topo.lean defines (complete) topological orderings, and proves important
lemmas about them.

e mathlib.lean contains lemmas about structures from Mathlib, which are
not (yet) part of Mathlib. These lemmas were all proven by Yakov Pech-
ersky.

The timed folder contains definitions about timed reactor networks.
e basic.lean defines tags, TPAs, and timed networks.

e exec.lean defines the timed execution model, i.e. run_next and all of its
steps.

The inst folder contains definitions about instantaneous reactors.

e primitives.lean defines state variables, ports, and many other defini-
tions/lemmas about ports which were not discussed in this thesis, such as
port-roles and inhabited indices.

e reaction.lean defines reactions and their triggering condition.

e reactor.lean defines reactors, operations for mutating them, a procedure
for executing a reaction in them, reactor equivalence, and relative equality
(another concept omitted in this thesis).

The inst/network folder defines notions about instantaneous reactor networks.
e ids.lean defines reactor-, reaction- and port-IDs.

e graph.lean defines instantaneous reactor network graphs, operations for
mutating them, a procedure for executing a reaction locally (without out-
put propagation), and network graph equivalence.

e basic.lean expands on graph.lean by defining full instantaneous net-
works, as well as lifting some notions from network graphs to networks.

e prec.lean defines precedence graphs, their property of well-formedness,
the network property is_prec_acyclic, and proves the equality of well-
formed precedence graphs.
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The inst/exec folder defines the execution model for instantaneous networks.

e run.lean defines the run function, as well as the proof of determinism.

e topo.lean defines run_topo and run_reaction, as well as the corre-
sponding proofs run_topo_comm, run_topo_swap and run_reaction_comm.

e propagate.lean defines all of the propagation functions.

e algorithms.lean defines the “implicit” algorithms, i.e. prec_func and
topo_func, as well as the proof that all prec_funcs are equal.
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