
Technische Universität Dresden
Faculty of Computer Science

Institute of Software Engineering
Chair for Compiler Construction

Prof. Dr. Jeronimo Castrillon

Diplomarbeit

zur Erlangung des akademischen Grades
Diplom-Informatiker

A Rust Backend for Lingua Franca

Clément Fournier
(Born 23 January 1998 in Le Havre, France, Mat.-No.: 4754263)

Tutor: Dipl. Ing. Christian Menard

Dresden, December 6, 2021

i

Declaration of authorship

I hereby declare that I wrote this thesis on the subject

A Rust Backend for Lingua Franca

independently. I did not use any other aids, sources, figures or resources than those stated
in the references. I clearly marked all passages that were taken from other sources and
cited them correctly.

Furthermore I declare that – to my best knowledge – this work or parts of it have
never before been submitted by me or somebody else at this or any other university.

Dresden, December 6, 2021

Clément Fournier

iii

Abstract

The reactor model is a deterministic model of concurrent computation, designed to
match the safety and performance requirements of safety-critical real-time systems. The
model underpins the semantics of Lingua Franca (LF), a coordination language that
allows specifying reactor programs at a high-level of abstraction, while allowing the
programmer to write the business logic of the program in any of its supported target
languages, which include C and C++.

This thesis aims to add support for Rust as a target language for LF. Using an owner-
ship model, Rust’s powerful type system allows automating memory management with-
out runtime garbage collection. Rust programs enjoy strong guarantees about memory
safety and thread safety, which makes Rust an interesting target language for LF. Rust’s
ownership model nevertheless places strong restrictions on the usage of pointers, which
make designing some programs challenging.

Building on previous work [16], this thesis presents the implementation of the LF Rust
target. It explains how Rust’s strong typing discipline can be used to enforce invariants of
the reactor model at compile-time, and how it influences the design of the Rust runtime
library, and of the code generated from LF. Thanks to sensible optimization decisions,
performance evaluation of the Rust target shows uplifting results, outperforming the
existing C++ target on a variety of benchmarks.

Kurzfassung

Das Reaktormodell ist ein deterministisches Modell für nebenläufige Berechnungen, das
entwickelt wurde, um die Sicherheits- und Leistungsanforderungen sicherheitskritischer
Echtzeitsysteme zu erfüllen. Das Modell bildet die Grundlage für die Semantik von
Lingua Franca (LF), einer Koordinierungssprache, die es ermöglicht, Reaktorprogramme
auf einer hohen Abstraktionsebene zu spezifizieren, während der Programmierer die
Geschäftslogik des Programms in einer der unterstützten Zielsprachen (Targets), zu
denen C und C++ gehören, schreiben kann.

Ziel dieser Arbeit ist, Rust als Zielsprache für LF zu unterstützen. Das starke Typ-
system von Rust verwendet ein Ownership-Modell um die Speicherverwaltung ohne
Garbage Collection zu automatisieren. Rust-Programme haben starke Garantien für
Speichersicherheit und Threadsicherheit, was Rust zu einer interessanten Zielsprache für
LF macht. Das Eigentumsmodell von Rust schränkt jedoch die Verwendung von Zeigern
stark ein, was die Implementierung einiger Programmiermuster zu einer Herausforderung
macht.

Aufbauend auf früheren Arbeiten [16] stellt diese Diplomarbeit die Implementierung
des LF Rust-Targets vor. Sie erklärt, wie die starke Typisierungsdisziplin von Rust
genutzt werden kann, um Invarianten des Reaktor-Modells zur Kompilierzeit durchzuset-
zen, und wie sie das Design der Rust-Laufzeitbibliothek und des von LF generierten
Codes beeinflusst. Dank vernünftiger Optimierungsentscheidungen zeigt die Leistungs-
bewertung des Rust-Targets erbauliche Ergebnisse, und übertrifft das bestehende C++-
Target in einer Vielzahl von Benchmarks.

iv

Résumé

Le modèle des réacteurs est un modèle de calcul concurrent déterministe, conçu pour
répondre aux exigences de sûreté et de performance de systèmes temps réel modernes.
Le modèle fonde la sémantique de Lingua Franca (LF), un langage de coordination
qui permet de spécifier un programme en termes de réacteurs, tout en permettant au
programmeur d’écrire le cœur de la logique du programme dans n’importe lequel des
langages cibles (targets) supportés, par exemple C ou C++.

L’objectif de cette thèse est de supporter Rust comme langage cible pour LF. Le
système de types de Rust utilise un modèle de propriété (ownership model) pour au-
tomatiser la gestion mémoire sans nécessiter de récupérateur mémoire à l’exécution. Les
programmes Rust jouissent de solides garanties en matière de sûreté, le système de types
éliminant par exemple par construction les situations de compétition (data races). Cela
fait de Rust un langage cible intéressant pour LF ; néanmoins, le modèle de propriété de
Rust impose de fortes restrictions sur l’utilisation des pointeurs, ce qui rend la conception
de certains programmes difficile.

S’appuyant sur des travaux antérieurs [16], cette thèse présente l’implémentation de
la target Rust. Elle explique comment le typage fort de Rust peut être utilisé pour
vérifier les invariants du modèle des réacteurs à la compilation, et comment il influence
la conception de la logique d’exécution, et du code Rust généré à partir de LF. Grâce à des
décisions d’optimisation judicieuses, la target Rust présente des résultats encourageants
lors des tests de performance, surpassant la target C++ existante sur une sélection de
benchmarks.

Contents v

Contents

List of Figures ix

List of Tables ix

List of Listings ix

1. Introduction 1

2. Background 3
2.1. The reactor model . 3

2.1.1. Structure of reactors . 3
2.1.2. Timing in reactors . 5
2.1.3. Distributed execution . 6

2.2. Lingua Franca . 6
2.2.1. Event sources . 8
2.2.2. Target properties . 10
2.2.3. The LF compiler . 11
2.2.4. Targets . 12

2.3. Related work . 14
2.4. Introduction to Rust . 15

2.4.1. Data model . 16
2.4.2. References and ownership . 20
2.4.3. Memory safety . 23
2.4.4. Abstraction in Rust . 24
2.4.5. Meta-programming . 29
2.4.6. Cargo . 31

3. Runtime design 33
3.1. Chapter outline . 34
3.2. The runtime crate . 35
3.3. Modelling reactors . 36
3.4. Overview of the execution logic . 37
3.5. Representing data dependencies . 38

3.5.1. Definition . 38
3.5.2. Implementation . 39
3.5.3. Dependency graphs . 40
3.5.4. Port communication . 42

vi Contents

3.5.5. Multiports . 43
3.6. The process_tag routine . 44
3.7. Representation of reactions . 46
3.8. Layout of reactor instances . 47
3.9. The reaction context . 48

3.9.1. API . 48
3.9.2. Implementation . 50

3.10. Parallel execution . 51
3.10.1. Thread-safety of ports . 52
3.10.2. Sharing reactors . 53

3.11. Tag cleanup . 53
3.12. Events and asynchrony . 53

3.12.1. Asynchronous events . 54
3.12.2. Main event loop . 56
3.12.3. Timeline synchronization . 58
3.12.4. Unbounded waiting and keepalive 58

3.13. Entry point for execution . 59
3.14. Assembly phase . 60

3.14.1. The assembly module . 60
3.14.2. Dependency graph implementation 61
3.14.3. Uses of dependency graphs . 61
3.14.4. Debug information . 62

3.15. Cargo integration . 63
3.16. Comparison with the prototype . 63

3.16.1. The single Reactor trait . 63
3.16.2. Debug information . 64

3.17. Notable differences with other LF targets 65

4. The LF-Rust compiler 69
4.1. Form of the generated code . 69

4.1.1. Project layout . 69
4.1.2. Reactor modules . 70
4.1.3. Reactions . 70
4.1.4. Assembly . 74
4.1.5. Code lowering . 77

4.2. LF extensions . 78
4.2.1. Common target properties . 78
4.2.2. Rust-specific target properties . 80
4.2.3. Differences with other targets . 81

4.3. Compiler implementation . 82
4.3.1. Technologies . 82
4.3.2. Code generators . 83
4.3.3. The Rust code generator . 83

Contents vii

5. Evaluation 87
5.1. Optimizing the Rust runtime . 87

5.1.1. Sparse reaction sets . 90
5.1.2. Avoiding copies . 90
5.1.3. Avoiding atomic operations . 92
5.1.4. Data structure selection . 93

5.1.4.1. TriggerId internal representation 93
5.1.4.2. Reaction sets for levels 93
5.1.4.3. Event queue . 94
5.1.4.4. Action values . 94

5.2. Comparison to other frameworks . 95

6. Future work 99
6.1. Features . 99

6.1.1. Scheduler unit tests . 99
6.1.2. Scheduler verification . 99
6.1.3. Deadline violation detection . 99
6.1.4. Mutations . 100
6.1.5. Smarter tag cleanup . 101
6.1.6. Error handling . 102

6.2. Lingua Franca syntax . 102
6.2.1. Annotations . 102
6.2.2. Required parameters . 103

6.3. Other . 103

7. Conclusion 105

Bibliography 107

A. The Savina Ping Pong benchmark 111

Acronyms 113

Index 115

List of Figures ix

List of Figures

2.1. Schematic representation of a reactor. 5
2.2. High-level overview of the compilation pipeline for an LF program. 12
2.3. A network of three Hewitt actors. 15

3.1. Venn diagram that categorizes some APIs of the runtime crate. 35
3.2. Example of a dependency graph for a simple LF program. 40
3.3. Connections in the proof of transitivity for ∗↔. 42
3.4. Dependency graph for the reactor program of Listing 3.3. 45

4.1. Directory structure of a Rust target program. 69
4.2. Top-level classes of the Rust model classes. 84
4.3. Model classes for reactors and their components. 85

5.1. Historical data for the Ping Pong benchmark. 89
5.2. Impact on execution time of the Ping Pong benchmark by commit. 89
5.3. Comparison of Akka and different LF targets. 96

List of Tables

4.1. Type of the parameter injected in a reaction as a function of component
kind and dependency kind. 72

5.1. Key for the labels in Figures 5.1 and 5.2. 88

List of Listings

2.1. A Hello World program in Lingua Franca (LF). 7
2.2. Syntax for a reaction declaration. 8
2.3. A reactor which contains an instance of the PrintReactor. 8

x List of Listings

2.4. A C++ reactor that forwards an input to an output through a reaction. . 9
2.5. A C++ reactor which declares a physical action. 9
2.6. A C++ reactor whose reaction is triggered by a timer. 10
2.7. Example target declaration featuring target properties. 11
2.8. A program which prints the string “Hello, world!” to standard output. . . 16
2.9. Definition of a Rust function that implicitly returns its last expression. . . 17
2.10. Example of field access on a tuple. 17
2.11. Different forms of struct declarations. 18
2.12. Construction of an instance of the Instant struct. 18
2.13. An enum declaration. 18
2.14. Pattern-matching on a Request instance. 19
2.15. Destructuring a tuple. 19
2.16. Example of moving and borrowing ownership. 20
2.17. Two overlapping borrows. 21
2.18. An attempt to use a reference whose referent has gone out of scope 22
2.19. A generic struct which declares one lifetime parameter. 22
2.20. A generic struct which contains a Relay object. 22
2.21. Member function definitions on a Point struct. 24
2.22. Nested module declarations and use statements. 25
2.23. Simplified declaration of the Ord trait. 26
2.24. Implementation of the trait Ord for the Instant struct. 27
2.25. Example of a generic function. 28
2.26. Example of using closures together with iterators. 29
2.27. Declarations of Option and Result. 30
2.28. Example of a derive attribute on a struct declaration. 30
2.29. Example of a conditionally compiled module using the cfg attribute. . . . 31
2.30. Example TOML configuration file for Cargo. 32
2.31. Example definition and use of a Cargo feature. 32

3.1. Declaration of the ReactorBehavior trait. 36
3.2. Declaration of the ReactorInitializer trait. 37
3.3. Simple LF program that binds two multiports together. 44
3.4. Pseudo-Rust code for the process_tag function. 46
3.5. Simplified declaration of GlobalReactionId. 47
3.6. Pseudo-Rust code that executes a single reaction in a given context. . . . 48
3.7. Comparison of the API to get and set port values in Rust, C++ and C. . 49
3.8. Simplified example of how Rayon’s combinators are used. 51
3.9. Simplified declaration of Event and EventTag. 54
3.10. Example usage of spawn_physical_thread in LF. 56
3.11. Outline of the main event loop of the scheduler. 57
3.12. Prototypical skeleton of a main function for a reactor program. 59
3.13. Simplified declarations of TriggerId and TriggerLike. 61
3.14. Selected members of DebugInfoRegistry. 63

List of Listings xi

3.15. Declaration of the Reactor trait in an early runtime prototype. 64
3.16. Declaration of ReactorId and GlobalId in the runtime prototype. . . . 65

4.1. LF code for a simple reactor. 71
4.2. Outline of the reactor module defined for SimpleReactor. 71
4.3. Declarations in the parent module of SimpleReactor. 72
4.4. Reaction declaration generated for SimpleReactor 72
4.5. Implementation of ReactorBehavior for SimpleReactor. 73
4.6. Implementation of ReactorInitializer for SimpleReactor. 75
4.7. LF definition of a reactor with a child reactor. 76
4.8. Example usage of with_child. 76
4.9. LF code showing generated synthetic reactions for timers. 79
4.10. Shows how child port references are implemented. 79
4.11. Example usage of the cargo-dependencies target property. 80
4.12. Example usage of the cargo-features target property. 81

5.1. More realistic implementation of the outer loop of process_tag. 91
5.2. Declaration of the Cow smart-pointer in the Rust standard library. 91
5.3. Declaration of ReactionPlan. 92
5.4. Example program that schedules a logical action several times. 94

6.1. Example of the LF syntax to define a deadline. 100
6.2. Possible use case for an annotation syntax. 102
6.3. Example generic reactor with a parameter. 103

A.1. Source code for the Savina Ping Pong benchmark. 112

1

1. Introduction

The reactor model is a deterministic model of concurrent computation, designed to match
the safety and performance requirements of modern cyber-physical systems. The model
underpins Lingua Franca (LF), a coordination language that allows programmers to
write reactor programs in any of its supported target languages: C, C++, Python, or
TypeScript. While the high-level structure of the reactor program is expressed in LF,
the business logic of the program is written in the target language, a general-purpose
programming language. Before execution, the LF program is compiled to translate the
LF structure into a program consisting entirely of target code. This target program can
be interpreted or compiled into a binary, depending on the target language.

The goal of this thesis is to add support for Rust as a target language for LF. Rust is
a systems programming language, whose type system leverages an ownership model to
prove safety properties of the program at compile-time, like memory safety and data race
freedom. This paradigm also allows Rust to perform automatic memory management
without runtime garbage collection, which allows Rust programs to run on memory-
constrained systems. Rust’s support for efficient, safe low-level programming makes it
an interesting target language for LF, whose paradigm is geared to benefit primarily
safety-critical systems, including embedded cyber-physical systems.

However, Rust’s type system can be an obstacle to writing some programs, e.g. be-
cause it places restrictions on the sharing of references. While previous work [16] shows
that Rust’s type system can accommodate the port-based communication of the reactor
model, the runtime performance of that prototype runtime is not satisfactory. It also
lacks support for parallel execution of reactions, a feature whose implementation may
be further complicated by Rust’s type-level verification of thread safety.

This work is focused on addressing these shortcomings, and delivering performant
multi-threaded execution capabilities. The runtime implementation described in this
thesis has been thoroughly optimized, and benchmarks indicate that it can perform
competitively compared to other LF targets and a state of the art actor framework,
Akka [6]. The runtime’s application programming interface (API) uses Rust’s powerful
type system to guarantee some of the invariants of the reactor model at compile-time,
thereby improving on the current LF targets. Where the implementation of the runtime
has to subvert Rust’s strong static verification with so-called unsafe code, it does so
backed up by formal analysis of the reactor model’s constraints.

This thesis is structured as follows. Chapter 2 presents the reactor model, Lingua
Franca and related work. It also includes an introduction to the Rust language. Chap-
ter 3 explains the design of the runtime, and its main differences with the runtime
prototype and other LF targets. Chapter 4 presents the form of the code generated by
the LF Rust code generator, and the compiler implementation. Chapter 5 evaluates the

2 1. Introduction

performance of the Rust runtime, and explains some of the main optimizations done
to the runtime during its development. Chapter 6 presents possible avenues for future
work. Finally, Chapter 7 concludes this thesis.

3

2. Background

Concurrent programming is widely regarded as a necessary means to address the per-
formance and scalability requirements of modern computer systems [43]. Concurrent
programs define actions that are to be performed simultaneously, instead of sequentially.
These actions may be carried out by multiple processor cores, or, in distributed systems,
by multiple machines running simultaneously. Many common abstractions to manage
concurrency introduce nondeterminism in the program, i.e., situations where the be-
haviour of the program does not depend solely on the program’s initial state and input.
Such abstractions include threads [10], remote procedure calls [39], and actors [21, 1].
Nondeterminism makes concurrent programs hard to understand and debug, as concur-
rency bugs are poorly reproducible [30, 37]. For applications with high safety require-
ments, testability of the program is an important property, which is undermined by
nondeterminism. Building those safety-critical applications using a deterministic model
is therefore desirable.

2.1. The reactor model

The reactor model [34] is a model of computation for concurrent and distributed pro-
gramming with deterministic semantics. It borrows concepts from other related models
of computation, like discrete-event systems [47], synchronous-reactive languages [20, 4],
and dataflow models [26, 31]. The following sections informally introduce the key con-
cepts of the model.

2.1.1. Structure of reactors

Reactors Reactors model individual components of the system. A reactor is a collection
of routines, called reactions, that have access to a shared internal state. This may
sound similar to the basic premise of object-oriented programming, but while an object’s
external interface is usually composed of routines (methods) that mediate access to the
state variables, reactions are also internal to the reactor. Instead of exposing methods,
reactors expose tagged data streams, reified by ports: input ports describe what data is
depended on by the reactor, output ports describe what data may be produced by the
reactor.

Reactions are the basic unit of execution in a reactor. They can read from input ports
of the containing reactor, and write to output ports, provided these dependencies on
components are explicitly declared. A reaction may be scheduled for execution when
one of its declared triggers produces an event. Triggers include ports, which emit events
when they are set to a new value, actions, and timers.

4 2. Background

Actions are event sources internal to the reactor, which may be scheduled explicitly
by a reaction, periodically, or through an external physical event. Timers are similar to
actions, but trigger periodically and may not be scheduled explicitly.

Events Events are the messages sent from one reactor to another (through ports), or
emitted internally by actions and timers. Events bear a timestamp, called a tag, that
orders them along a logical timeline, where two events that have the same tag are logically
instantaneous. Events are handled in tag order, and simultaneous events are handled in
a predefined, deterministic order, that is determined by the dependencies of reactions.
That ordering is an important component of the reactor model, as it models causality
between events of a reactor program. It is a central topic of Chapter 3.

The handling of an event involves executing the reactions that have registered a de-
pendency on its source. These reactions execute at the same logical time as the tag
of the event: reactions are logically instantaneous. Ports written to by a reaction may
trigger new reactions at the same logical time step, causing a “chain reaction”. Statically
checking that dependencies between ports are acyclic ensures that chained execution of
reactions terminates. Actions triggered by a reaction only trigger new reactions at a
strictly greater logical time, which allows for cyclic and periodic control flow.

Composition Reactors compose: a reactor may contain other reactors, and connect
their ports to each other, or to its own reactions and ports. Contained reactors are black
boxes, which can only be used by binding to their ports. A composition of reactors forms
a hierarchical tree, where each reactor only has access to its direct children. The root of
the tree is the outermost reactor, and it cannot have inputs or outputs.

The model also describes a way to reconfigure the dependencies between components
at runtime, called mutations [34]. Mutations are special reactions that may create new
children reactors and alter connections of the dependency graph. While mutations have
been described in the reactor model, they are not yet part of the main implementation
of the model, the LF language. For this reason, they are not described in this document.

Dependency graphs All together, dependencies between reactor components (reac-
tions, ports, actions, sub-reactors) can be represented as a directed dependency graph,
as illustrated in Figure 2.1. The outermost box represents a reactor. Ports are rep-
resented by the black triangles; inputs are on the left, and outputs on the right. In
this figure, black arrows represent instantaneous dataflow. For instance, if the port i0
receives some data, n0 will execute at the same tag, as if instantaneously. In turn, n0
may push data to the port i0 of the contained reactor R0, which will also be observed
at the same tag. Notice that ports may be connected together, as is the case between
the ports o0 and i0 of the child reactors R0 and R1, respectively. This means any value
produced by o0 will also be produced by i0 at the same tag.

Yellow arrows represent control flow that is mediated by actions, and is therefore not
instantaneous. For instance, n1 may schedule the action a1, which triggers n5. The

2.1. The reactor model 5

i0

i1

o0

o1

n0

a0n2 o3

n4

a0

n3

n6

R0i0 o0

R1i0 o0

R2
i0
i1

o0

o2n5a1

n1

Port

Reaction
Port	connection

Data	dependency

Action	dependency

Reactor

Figure 2.1.: Schematic representation of a reactor. State variables are omitted. Con-
nections between components are derived from their dependencies. For in-
stance, reaction n3 declares that it reads the input i1, and may schedule
the action a0. Notably, the subgraph in black (data dependencies, and port
connections) must be acyclic: it describes dependencies between reactions
that execute the same logical time step.

release of a1 will occur at a strictly greater tag than that at which the action was
scheduled within n1. Only the subgraph in black is required to be acyclic.

Note about terminology In this thesis, I refer to all relations between components as
their dependencies, regardless of their orientation. In a narrower sense, the term “de-
pendency” would only describe backward edges (e.g., a reaction depends on a port that
triggers it), and the term “anti-dependency” is then used for forward edges (e.g., a reac-
tion effecting an action) [34]. Similarly, I use the term dependency graph in the abstract
sense of “graph of dependencies”, without implying that it only contains backward edges.
In fact, the “dependency graphs” presented in Chapter 3 only contain forward edges and
could be termed dataflow graphs instead. Both are equivalent up to the orientation of
their connections.

2.1.2. Timing in reactors

The model distinguishes physical time, which is measured by clocks, from logical time,
which is an artificial construct. Logical time does not progress while a reaction is ex-
ecuting: outputs are (logically) simultaneous to inputs. Access to physical time is still
useful to reactor programs, because it helps deliver real-time behaviour. For this reason,

6 2. Background

both timelines are related in a way that preserves deterministic semantics.
Physical and logical time are measured in the same units, and aligned at the start of

execution. During execution, logical time is never allowed to get ahead of physical time.
This is enforced by waiting for physical time to match the logical stamp of the expected
processing of actions.

This synchronization of the logical timeline with the physical timeline is done on a
best effort basis. This depends on the real-time capabilities of the execution platform,
and the runtime load on the app. For instance, congestion in the event queue may cause
logical time to increasingly lag behind physical time. However, those external factors will
not influence the order of processing of events, which is still determined by the logical
time stamps of the events, so it does not affect determinism of the program.

Superdense time The reactor model supports a concept known as superdense time:
two logical time values that appear to be the same are not necessary simultaneous.
Conceptually, for every logical time value, there is an infinite sequence of microsteps
that are not simultaneous.

This explains how logical actions can be scheduled with a zero logical time delay.
Since they’re still required to execute strictly after the time they’re scheduled at, they’re
scheduled at least one microstep in the future.

2.1.3. Distributed execution

The port-based communication of reactors abstracts away the communication medium
used to distribute messages. In fact, reactor programs on different machines may com-
municate with one another over a network. In such a distributed setting, the multiplicity
of clocks requires attention to preserve determinism in the whole system. One problem
is that imperfectly synchronized clocks between two hosts could lead messages to be
improperly ordered, which could break causality in the system. Similarly, because of
the transit time of messages across the network, when we pick an event to process, it is
possible that some prior event emitted by another machine is on its way, but was not
yet received.

Following the ideas used by PTIDES [47], the reactor model uses assumptions on
characteristics of the network, and the clock synchronization error across hosts, to de-
termine a safe-to-process time for incoming messages. This is possible because of the
special relation between physical time and logical time [34]. Clock synchronization errors
may be further kept in check by a time synchronization protocol like the Precision Time
Protocol (PTP).

2.2. Lingua Franca

Lingua Franca (LF) [33] is a coordination language designed to write reactor programs.
The language provides syntax to describe the high-level structure of the program using
the concepts of the reactor model. Within this structure, the business logic of the

2.2. Lingua Franca 7

application is written in the target language, a general-purpose programming language.
Before execution, the LF program is compiled to translate the LF structure into a
program written entirely in the target language. The supported target languages are C,
C++, TypeScript, Python, and thanks to this work, Rust.

An LF program consists of a source file which contains the declaration of a main
reactor. This file may reference other LF source files using import statements. Source
files are loaded by the compiler recursively, and together with the main file constitute
the sources of the LF program.

1 target Cpp;
2 main reactor Hello {
3 reaction(startup) {=
4 std::cout << "Hello, world!\n";
5 =}
6 }

Listing 2.1: A Hello World program in LF.

Listing 2.1 shows a simple “Hello World” program written in LF using the C++ target.
The target is declared on line 1. This will instruct the LF compiler to use the C++ code
generation backend. On line 2, we can see the declaration of the main reactor. The main
reactor is the entry point of the program. It may contain other reactor instances, and
together, all reactor instances of the program form a tree rooted in the main reactor. On
line 3, the reaction keyword is used to define a reaction. The contents of the parentheses
that follow are a list of triggers for the reaction, here only the startup trigger, which is
triggered when the program starts. The block delimited by {= . . .=} defines the body
of the reaction. This code will be executed when a trigger for the reaction fires, here, at
startup. These special delimiters are used to enclose target code in many places in the
LF grammar.

Reactions Reactions declare their dependencies in their signature, namely,

— their triggers (timers, actions, inputs, or outputs of contained reactors). These
components emit events that cause the reaction to be scheduled for execution;

— the components that the reaction reads from but that do not trigger it;

— the components that the reaction effects, e.g. ports whose values are set by the
body of the reaction.

A more complete example of a reaction declaration is shown in Listing 2.2, showing the
placement of those different dependency kinds in the signature.

Reactions are anonymous: they can only be invoked following an event related to their
triggers, never invoked explicitly by, e.g., a method call.

8 2. Background

1 reaction(triggers) reads → effects {=
2 /* target language code */
3 =}

Listing 2.2: Syntax for a reaction declaration.

Composing reactors Reactors may contain other reactors, and create connections be-
tween their ports and the ports of the reactors they contain. For instance, Listing 2.3
defines a nested reactor, and binds its own ports to it using the → operator.

The ParentReactor has no vista into the internals of the child reactor; it may only see
its ports. From the point of view of the child reactor, the ParentReactor is completely
invisible, and only ports are used to represent the external world. This port-based design
contrasts with the actor model, where every actor has a direct reference to every other
actor it may send messages to.

1 reactor ParentReactor {
2 input in: int;
3 output out: int;
4

5 printer = new PrintReactor();
6 in → printer.in;
7 printer.out → out;
8 }

Listing 2.3: A reactor which contains an instance of the PrintReactor, defined in List-
ing 2.4.

2.2.1. Event sources

Reactions are only scheduled in response to an event of one of their triggers. The main
sources of events that have already been mentioned are ports and actions.

Ports A port emits an event when it receives a new value, which causes its downstream
reactions to be triggered.

Ports are either declared as an input or an output of a reactor. In Listing 2.4, the
PrintReactor declares an input named inp and an output port named out. Both port
declarations must specify the type of the data after the colon, here, int. This type is
target-code, and is not parsed or interpreted by the LF compiler. The reaction on line 5
just forwards the value from the input to the output, printing it in the process. The set
call will cause reactions that have a trigger dependency on out to be executed at the
same tag.

2.2. Lingua Franca 9

1 reactor PrintReactor {
2 input inp: int;
3 output out: int;
4

5 reaction(inp) → out {=
6 int port_value = *inp.get();
7 std::cout << port_value << ’\n’;
8 out.set(port_value);
9 =}

10 }

Listing 2.4: A C++ reactor that forwards an input to an output through a reaction.

Actions Actions are either physical or logical. Physical actions can be scheduled asyn-
chronously, while logical actions may only be scheduled from within a reaction. “Schedul-
ing” an action here means committing to executing the dependent reactions at some
future tag. That expected release time is the current physical time for physical ac-
tions. Logical actions are scheduled relative to the current logical time, because they’re
scheduled from within reactions (which execute on the logical timeline, conceptually).

Actions may be scheduled with a value, as shown in Listing 2.5 on line 14. This value
may then be retrieved within reactions triggered by the event, as shown on line 7.

1 target Cpp;
2 reactor PhysicalAction {
3 physical action sensorData: int;
4 output out: int;
5

6 reaction(sensorData) → out {=
7 out.set(*sensorData.get());
8 =}
9

10 reaction(startup) → sensorData {=
11 auto thread = std::thread([&] () {
12 while (true) {
13 if (/* sensor receives something */)
14 sensorData.schedule(/*get sensor value*/)
15 }
16 });
17 thread.join();
18 =}
19 }

Listing 2.5: A C++ reactor which declares a physical action and uses it to handle asyn-
chronous events produced by another thread.

10 2. Background

Timers Timers are event sources that schedule events periodically on the logical time-
line. For instance in Listing 2.6, a timer named t is declared, which will emit its first
event 1 second after program startup, and then emit a new event every 100 milliseconds.
This will schedule the reaction periodically, since the reaction declares that it is triggered
by the timer (line 5). Contrary to the events produced by actions, the events produced
by timers may have no associated value.

1 reactor TimedReactor {
2 timer t(1 sec, 100 msec);
3 output out: bool;
4

5 reaction(t) → out {=
6 out.set(true);
7 =}
8 }

Listing 2.6: A C++ reactor whose reaction is triggered by a timer.

Startup and shutdown Two special triggers are available in all reactors: startup and
shutdown. The first is triggered only on the very first tag processed by the applica-
tion. Reactions triggered by startup are commonly used to initialize reactors, and,
for instance, to set up asynchronous threads that will produce events through physical
actions.

Conversely, shutdown is triggered on the last tag processed by the program. The
application might shut down because of a timeout, or because a reaction requested
that it stop (each target provides a function for reactions to do so), and in both cases,
shutdown is triggered at that moment. Any events produced with a tag greater than
the shutdown tag are ignored.

2.2.2. Target properties

LF provides a mechanism to configure target-specific code generation properties, and
parameters of the runtime. These are called target properties, and are declared in a
block within the target declaration, as illustrated in Listing 2.7.

Target properties are defined as key-value pairs, with a syntax reminiscent of JSON [24].
In Listing 2.7, the property build-type is bound to the value "Release". This property
is defined by the C++ target to integrate with the CMake build tool; here, it instructs
CMake to optimize the generated program. The property keepalive is a configuration
parameter for the runtime. Here, it instructs the runtime to continue execution even
if the event queue of the program is empty. The current LF targets have to use this if
asynchronous threads may produce new events (through physical actions) even after all
events of the program have already been processed.

2.2. Lingua Franca 11

1 target Cpp {
2 build-type: Release,
3 keepalive: true,
4 };

Listing 2.7: Example target declaration featuring target properties.

2.2.3. The LF compiler

The LF compiler, called LFC, has a single compiler frontend for all targets, and one
backend code generator for each target. It is developed in the GitHub repository lf-
lang/lingua-franca1. Various satellite projects are hosted in the same GitHub organiza-
tion namespace, for instance to host the runtime libraries for the various targets (includ-
ing the Rust target, at lf-lang/reactor-rust2), or integrated development environment
(IDE) plugins.

The compiler frontend parses LF source into an abstract syntax tree (AST), on which
various attribution and validation passes are performed. Some semantic checks use de-
pendency graph representations of the reactor program, which are built by the frontend.
The AST, together with these dependency graphs, are used as input to the backend code
generators once the frontend is done validating the program’s structure.

Compared to a traditional source-to-binary compiler, LFC’s backend emits source
code in the target language. The target compiler, if any, is then called to compile
the generated sources. The target compiler performs type-checking and other semantic
analyses on the target program, so LFC does not implement those in its frontend. This
strips LFC’s frontend of a lot of complexity associated with those passes; LFC does not
even have to parse the target code.

Figure 2.2 shows a high-level overview of the compilation pipeline for an LF program
with C++ target. The LF source program is first handed to the frontend, which parses
an AST and validates it. The tree is then passed on to the appropriate backend code
generator, selected by the target declaration in the LF source file, e.g. target Cpp.
The alternative backend code generators are not used here, but all code generators are
included in the LFC binary. The code generator then emits a C++ program, the target
program.

LFC then uses C++ tools to build an executable from the target program. This step
of the pipeline is target-specific, for instance, the Python target does not need a final
compilation step, since Python is an interpreted language.

One characteristic all targets share, is that the generated target program depends on
a runtime library, which implements the runtime scheduling infrastructure for reactor
programs. How this runtime library works determines how the generated program binds
to it, and so it determines the form of the generated target program. There is therefore
some degree of coupling between each code generator and its target-specific runtime

1https://github.com/lf-lang/lingua-franca
2https://github.com/lf-lang/reactor-rust

https://github.com/lf-lang/lingua-franca
https://github.com/lf-lang/lingua-franca
https://github.com/lf-lang/reactor-rust
https://github.com/lf-lang/lingua-franca
https://github.com/lf-lang/reactor-rust

12 2. Background

AST
LFC frontend

C generator

C++ programC++ generator

Python generator

ExecutableC++ compiler
LF program

LFC

...

C++ runtime library
CMake dependencies

Figure 2.2.: High-level overview of the compilation pipeline for an LF program with C++
target.

library.

2.2.4. Targets

This section gives an overview of the existing targets and their respective specificities.

C

The C language is ubiquitous in the world of embedded systems, because of its being
universally supported by embedded platforms. It is used as a lingua franca by foreign
function interface (FFI) implementations of many other programming languages. Be-
cause C code can be made very efficient, the LF C target was initially conceived to
evaluate the minimal amount of runtime overhead incurred by LF’s deterministic exe-
cution semantics.

The LF C target features two runtime implementations, that provide the same API
to LF reactions. The unthreaded runtime is built to have minimal dependencies, so that
it is able to run on low-level embedded platforms. The second runtime depends on a
POSIX thread library. This enables parallelization of reactions, and adds support for
handling asynchronous events (physical actions), which the unthreaded runtime lacks.

Given C’s weak type system, and its lack of language features to support encapsulation
or memory management, enforcing that the code of reactions is well-behaved (e.g., that
it does not access state of neighbouring reactors) is challenging. Target code is therefore
assumed to respect the semantics of the reactor model. This makes the programmer
responsible for ensuring it does, which may be a source of bugs, compared to stricter
languages like C++.

To date, the C target is one of the three targets (along with Python and Type-
Script) that support federated execution, LF’s distributed execution mechanism (cf. Sec-

2.2. Lingua Franca 13

tion 2.1.3).

C++

The C++ target is based on a standalone library that implements concepts of the reac-
tor model using object-oriented programming (OOP), only depending on the Standard
Template Library (STL). The library, reactor-cpp3, can be used on its own as a C++
framework, where users implement new reactors as classes extending base classes defined
by the framework.

The LF code generator was developed a posteriori, and links generated reactor pro-
grams to the existing framework. The use of OOP allows the C++ generator to map
LF reactor classes directly to C++ classes, without having to compute the parameters
of every reactor instance in the program at compile-time (as C does). In effect, the
C++ generator translates LF ASTs directly to target code, while the C generator needs
to unroll the full dependency graph of the program at compile-time. This makes the
implementation of the C++ code generator significantly simpler than the C code genera-
tor. The C++ runtime framework, on the other hand, creates this dependency graph at
runtime, during initialization of the program, to compute the dependencies of reactions.

Contrary to the C target, the C++ target is able to take advantage of generics to
enforce type safety of port connections at compile-time. Ports are indeed defined as
a generic class, and can only be connected to ports with the same value type. C++
ports also leverage smart pointers to enforce some invariants of the reactor model, for
instance, that a value set into a port cannot be mutated anymore by the calling reaction.
These smart pointers implement ownership semantics reminiscent of Rust’s ownership
model, which will be covered in Section 2.4.2. C++ can also be used to enforce stronger
encapsulation of reactor internals than C, by only exposing ports as public members
of the reactor class. However, C++ reaction code can still break the semantics of the
reactor model, for instance, by sending a reference to its internal state to another reactor.
While this is in some respect impossible to prevent, short of statically verifying the target
code, the C++ target still offers significantly more safety against accidental programmer
mistakes than the C target.

Python

Python is a high-level dynamically typed language, that boasts a vast ecosystem of
libraries and frameworks, accessible through an officially supported package manage-
ment system (Pip). CPython, the reference implementation of the language, provides a
convenient FFI for interfacing with C. It allows library writers to write module imple-
mentations in C for better performance, while exposing idiomatic Python bindings for
consumption by client Python code. This is the approach taken by the Python target,
as its runtime library wraps the C target’s runtime.

The Python code generator generates Python classes for each reactor class, to expose
3https://github.com/lf-lang/reactor-cpp

https://github.com/lf-lang/reactor-cpp
https://github.com/lf-lang/reactor-cpp

14 2. Background

an idiomatic API to reactions. To support Python’s dynamic type system, LF state
variables, parameters and ports do not need to specify static type annotations.

TypeScript

TypeScript is a scripting language, which extends JavaScript with a static type system.
This enables TypeScript projects to implement gradual typing, whereby initial devel-
opment is accelerated by omitting type annotations, and the codebase is subsequently
gradually consolidated by the addition of static type annotations.

The TypeScript target uses Node.js [45], a JavaScript runtime, as it allows LF pro-
grams written for the TypeScript target to integrate with the large library ecosystem pro-
vided by the Node package manager (NPM). Node.js does not provide access to threads,
and the TypeScript target can therefore not support parallel execution of reactions.
Compared to the unthreaded C runtime though, physical actions are still supported.

2.3. Related work

The reactor model has several close relatives, mostly part of a family of models of com-
putation emphasizing explicit message passing between components of the system [32].
This contrasts with approaches to concurrency that rely on shared memory for commu-
nication [37].

Actors [21, 1] are a model of computation in which the system is modelled as a col-
lection of concurrent objects communicating via asynchronous message passing. One
problem with actors is their inherently nondeterministic communication style: even as-
suming messages are delivered in the order they were sent by the communication medium
(e.g., a network), very simple actor networks still may exhibit nondeterminism. This is
illustrated in Figure 2.3. In this figure, even though both messages A and B may be
sent in a determinate order from the Source actor, making message A transit through
the Relay actor causes nondeterminism: the Target actor may receive both messages
in either order. Despite their shortcomings, actor programs exhibit a high degree of
concurrency, and are widely used for their high performance. Notable actor-based pro-
gramming languages include Erlang [3] and Pony [7]. The latter uses its type system to
enable highly parallel garbage collection, and guarantee data race freedom, like the Rust
type system. Library implementations include Akka [6], an actor framework written
in Scala, and Actix [44], a Rust framework. Akka was used in this thesis to evaluate
the performance of the LF Rust target. Actix relies on Rust’s support for cooperative
scheduling (async / await) to deliver high-performance, and is mostly geared towards
high-throughput web applications.

Other models resembling the actor model have deterministic semantics. In dataflow
models [31, 26, 17, 38], connections between components represent the flow of data from
a producer to a consumer. Computation in the consumer actor is triggered when its in-
put data is available, i.e., has been produced by the upstream actor. Dataflow networks
provide deterministic concurrency, and static information on connections enables exten-

2.4. Introduction to Rust 15

message A

message BSource Target

Relay

Figure 2.3.: A network of three Hewitt actors.

sive static analysis and efficient ahead-of-time scheduling. On the other hand, dataflow
models have generally no way to provide real-time behaviour, which is required of most
cyber-physical systems.

Under synchronous/reactive (SR) [20, 4] approaches, actor reactions are conceptually
aligned on the ticks of a global logical clock. Reactions produce their outputs at the
same logical time as their inputs, so conceptually, reactions are assumed to be instanta-
neous (the synchrony hypothesis). This family of techniques can be given deterministic
semantics, and compiled very efficiently [20]. They have also been applied to distributed
systems [5, 42]. However, contrary to LF’s approach, clocks in these languages are purely
logical, which undermines their ability to provide real-time behaviour.

Discrete-event (DE) systems are another model, where all messages sent between ac-
tors bear a timestamp, and are processed in timestamp order. DE systems synchronize
their logical timeline, defined by the order of message timestamps, to the physical time-
line (wall clock time). This allows these systems to provide real-time behaviour, but DE
systems have historically been confined to rather specialized use cases (e.g. hardware
simulation). LF’s tagged events are inspired by the semantics of DE systems.

2.4. Introduction to Rust
This section introduces some of the syntax and features of the Rust language. The goal
of this section is to give the reader unfamiliar with Rust a general feel for the language,
and allow them to understand Rust code listings in later chapters. The section also
serves as a reference for the reader to jump back to, whenever later chapters mention
language features of Rust they are unfamiliar with.

As is customary, let us begin our tour of Rust with a Hello World example, shown in
Listing 2.8. Like in main other languages, the entry point for rust programs is a function
called main. Function declarations in Rust start with the fn keyword, followed by the
name of the function and its parameter list.

The body of the function is a block. Here, line 2, we start by defining an intermediate
variable called world, using the let keyword. The type of the variable is inferred from

16 2. Background

1 fn main() {
2 let world = "world";
3 println!("Hello, {}!", world);
4 }

Listing 2.8: A program which prints the string “Hello, world!” to standard output.

the right-hand side, here it is the type of a string literal. Rust has very elaborate type
inference, which allows most types in local variables to remain implicit. Rust is still
strongly, statically typed.

The statement that follows, line 3 calls the macro println. Rust macro invocations
look like function invocations, but they use an exclamation mark (!) in their identifier.
Macros are the topic of Section 2.4.5. The println macro takes a format specifier as its
first argument, which it parses at compile-time to generate efficient printing code, and
statically ensure that the arguments match the format specifier. In the format specifier,
the string {} is a placeholder which will be replaced by the second argument to the
macro, here, the variable world.

The following section introduces the basic concepts and data model of the language.

2.4.1. Data model

Primitive types

Integer types Primitive types in Rust include integer types like i32, a signed integer
type of 32 bits, or u8, an unsigned integer type of 8 bits (a byte). Contrary to C
and C++, Rust specifies an exact size for primitive integer types. Arithmetic overflow is
prohibited by default and results in a runtime error, for applications built with assertions
enabled. This is useful as unintended overflow is a source of bugs in C and C++, and
can easily cause memory corruption [46].

String slice type Rust also predefines a string type called str, which represents a
sequence of UTF-8 encoded characters (a string slice). str is most often used with a
reference, like &str, as it has variable size and cannot be placed on the stack. It is to
be contrasted with String, which is a mutable-size character buffer.

Unit Another primitive type of interest is the unit type, written () in Rust. This type
has a single value, also written (), and is the type of blocks and functions that don’t
return an expression (of another type), for instance, the type of the empty block {}.
The presence of this type makes the type system more consistent than the void type of
C, or that of Java: in Rust, all functions return a value, even if that value is ().

Many constructs that are statements in C or C++ are expressions in Rust, meaning,
they have a type and evaluate to a value. For instance, an if/else statement has the
same type as its branches. Blocks have the type of the last expression that is written

2.4. Introduction to Rust 17

in them, or if it is missing, the unit type. This allows writing a function that returns a
value without an explicit return statement, such as the one in Listing 2.9. Notice that
the return type of the function is written postfix, after the → symbol.

1 fn sum(a: u32, b: u32) → u32 {
2 a + b
3 }

Listing 2.9: Definition of a Rust function that implicitly returns its last expression.

Expressions that have type () are commonly called statements. For instance, an if
without an else branch is a proper statement, and has type ().

User-defined types

The most important user-defined data types in Rust are tuples, structs and enums4.

Tuples Tuple types are anonymous data aggregates. For instance, the type (u32, u32)
is a pair with two u32 fields. Individual fields bear numeric identifiers. In Listing 2.10,
the sum function of Listing 2.9 is rewritten to use a tuple parameter.

1 fn sum(pair: (u32, u32)) → u32 {
2 pair.0 + pair.1
3 }

Listing 2.10: Example of field access on a tuple.

Structs Struct are named data aggregates, similar to C’s structs. The memory layout
of structs is flat, so that structs may not contain a field of their own type recursively.
The memory layout of Rust data types may be controlled with compilation flags, to be
highly interoperable with C/C++ [8].

Structs can be defined in three ways, illustrated in Listing 2.11. The declaration for
Instant (line 2) defines a struct with two named fields, time and step.

The declaration of ReactorId (line 5) defines a tuple struct, with a single unnamed
field of type u16. This form is often used to define so-called newtypes over another
type. A newtype is a design pattern in languages like Haskell, whereby one defines
a type wrapping another without necessarily providing access to the wrapped instance.
This can be used to provide new behaviour, or on the contrary, to constrain the available
behaviour on an data type. These are usually used to communicate semantic information
about the intended usage of the instance, for instance the ReactorId struct defined on
line 5 is implemented as an integer of width 16, but this is an implementation detail that

4Rust also supports defining C-like unions, but they are not memory-safe and so are rarely used.

18 2. Background

1 /// A struct that defines two fields of type Instant and i32 (integer)
2 struct Instant { time: Instant, step: i32 }
3

4 /// A "tuple struct", with a single unnamed field.
5 struct ReactorId(u16);
6

7 /// A zero-sized struct
8 struct Token;

Listing 2.11: Different forms of struct declarations.

code getting access to a ReactorId should not rely on. With the newtype pattern, the
u16 field is hidden from the users of ReactorId.

The declaration of ReactorId (line 8) defines a struct that has a unique value. Since
the struct has no fields, it also has size zero at runtime. Such structs are sometimes
useful for type-level programming.

1 let instant = Instant {
2 time: Instant::now(),
3 step: 0
4 };

Listing 2.12: Construction of an instance of the Instant struct defined in Listing 2.11.
Struct initialization expressions resemble the struct declaration, but for
each field, the part right of the colon is its initial expression, instead of its
type.

To create a struct instance, all fields must be initialized, as shown in Listing 2.12.
This contrasts with languages like Java, where the code of a constructor can observe
uninitialized fields (set to their default value, e.g. null), and also give out a reference to
a partially initialized this. This is why Rust, like OCaml for instance, does not need a
null value.

Enums Enums are tagged unions, that is, union types which carry a discriminant
at runtime that identifies which variant they represent. They can be used as simple
enumerated types which define constants, but are much more powerful.

1 enum Request {
2 Put { url: URL, content: String },
3 Get { url: URL }
4 }

Listing 2.13: An enum declaration.

2.4. Introduction to Rust 19

Listing 2.13 shows the declaration of an enum Request. The enum declares two
variants, which themselves declare an anonymous struct: they can declare fields, but
do not declare a type. The expression Request::Get { url: someUrl } creates an
instance of the second variant, and has type Request (not Request::Get). Enums can
only be used by pattern-matching on their variants.

Pattern-matching Struct and enums implement the product and sum types commonly
found in functional languages like OCaml, and Rust uses this type-level structure to
check the exhaustivity of pattern matching constructs. Pattern-matching allows con-
cisely expressing variable bindings and structural tests that differentiate enum variants.
The match expression is used for that purpose. In Listing 2.14, the match expression on
line 2 destructures the request parameter. Since Request is an enum type, an exhaus-
tive match statement must have a branch for each of the enum variants Put and Get.
On line 5, the Put pattern binds each field of the variant to a local variable binding with
the same name. If the request parameter is a Put variant, the match expression will
execute the code in that branch and print “Put(url=..., content=...)”. Note that match
is an expression, which has the same type as its branches (here, ()).

1 fn print_request(request: Request) {
2 match request {
3 // this branch binds fields of the request to
4 // variables on the right of the arrow
5 Put { url, content }
6 => println!("Put(url={}, content={})", url, content),
7 Get { url } => println!("Get(url={})", url),
8 }
9 }

Listing 2.14: Pattern-matching on a Request instance (enum defined in Listing 2.13)

Match-expressions are required by the Rust language to be total, i.e., any possible
value of the subject expression must be covered by a branch. In Listing 2.14, both enum
variants for Request are covered, which makes the match total. Total patterns can also
be used as the left-hand side of the assignment operator, a usage which is usually referred
to as value destructuring. For instance in Listing 2.15, a tuple value is destructured on
line 2, thereby binding new variables to its component fields. The pattern (x, y) is
total on the type (u32, u32), as it cannot fail.

1 fn destructure(tuple2: (u32, u32)) {
2 let (x, y) = tuple2;
3 }

Listing 2.15: Destructuring a tuple.

20 2. Background

2.4.2. References and ownership

Perhaps the most salient feature of Rust is its use of an ownership model to manage
memory at compile-time. Each value in Rust is owned by exactly one variable, called
its owner. Ownership can be transferred from a variable to another by moving, and
assignment on most types has move semantics. When a value is moved from one variable
to another, the previous variable cannot be used anymore. As this is very restrictive,
ownership may be temporarily transferred by borrowing, which creates a reference to the
value.

The language uses its type system to enforce its ownership discipline, by having types
carry ownership information. For any given type T, a variable with type T owns its value,
while a variable of type &T (read “reference to T”) is only borrowing the value from its
owner (of type T). The following example illustrates the difference between the types
Vec<i32>, which has exclusive ownership of the value, and &Vec<i32>, a shared reference
to the value, which does not have exclusive ownership (Vec is similar to std::vector in
C++).

1 fn consume(pv: Vec<i32>) { } // pv has exclusive ownership
2 fn consume_ref(rv: &Vec<i32>) { } // rv borrows ownership
3

4 fn main() {
5 let v1: Vec<i32> = vec![1, 2]; // this macro creates a new vector
6 let v2: Vec<i32> = vec![1, 2];
7

8 consume(v1); // v1 is moved into the function parameter
9 println!(v1); // error: the value in v1 was moved

10

11 consume_ref(&v2); // let the function borrow v2
12 println!(v2); // v2 still has exclusive ownership of the value
13 }

Listing 2.16: Example of moving and borrowing ownership.

In Listing 2.16, the call to consume (line 8) moves ownership of the vector value into
the function parameter pv, because pv is declared with an owned type line 1. The caller
loses access to the moved value, and so the println!(v1) statement fail to compile. In
contrast, v2 is only borrowed, using the & operator. This means the value is accessible
in the body of consume_ref through a reference, but does not have exclusive ownership.
When that function returns, v2 still has exclusive ownership of the value, because the
shared reference is provably dead.

Notice that the program does not do any explicit memory management. The compiler
tracks when each owned value goes out of scope to insert a call to its destructor. For
v2, this happens at the end of the main function, while for v1, this happens at the end
of the consume function, since its ownership has been moved.

2.4. Introduction to Rust 21

Mutability and aliasing The Rust language places restrictions on the interaction of
mutation and aliasing. Several immutable references to the same data may be live si-
multaneously (thus aliasing the memory location), but mutation of the data is impossible
while it is aliased. The Rust compiler enforces that by tracking the liveness of borrowed
references, and emitting an error when the lifetime of a mutable borrow overlaps with
the lifetime of any other borrow of the same data. This restriction is meant to statically
prevent race conditions that occur when aliased data is accessed in an unsynchronized
fashion [25, 28].

Listing 2.17 shows an example where a mutable and immutable borrow overlap, which
is prohibited by the compiler. The last statement line 10 uses refmut to extend its
scope, so that it overlaps with the immutable borrow line 8.

1 fn main() {
2 let mut v1: Vec<i32> = vec![1, 2]; // v1 owns the value
3

4 let refmut: &mut Vec<i32> = &mut v1;
5 refmut.push(3); // we can mutate the vector through the mutable reference
6 println!("{}", refmut[3]); // we can also use it for read operations
7

8 let refshared = &v1; // error: v1 is already borrowed as mutable
9

10 refmut.push(4);
11 }

Listing 2.17: Two overlapping borrows.

Summary In summary, for any type T, three variants have different ownership seman-
tics:

— T has exclusive ownership, assignment on variables of type T moves the value;

— &T is a shared reference, many of them can be alive at the same time, but the data
cannot be mutated;

— &mut T is a mutable reference, which has to be the only live reference to its data
during its whole lifetime.

Lifetime quantification

Rust statically guarantees that references point to valid data while they are live, thereby
preventing bugs associated with “dangling pointers”. This property is derived by the
compiler, by checking that the object referred to (the referent) by a reference outlives
the reference itself. For instance Listing 2.18 declares a reference r and sets its value to
a borrow of x, which is declared in a smaller scope. Because x goes out of scope before
the next usage of r, the usage of r, line 7, is invalid, as its referent variable does not

22 2. Background

1 {
2 let r: &i32;
3 {
4 let x = 5;
5 r = &x;
6 }
7 println!("r: {}", r); // usage of r
8 }

Listing 2.18: An attempt to use a reference whose referent has gone out of scope — this
produces an error [27].

1 struct Relay<’a, T> {
2 pointer: &’a T
3 }

Listing 2.19: A generic struct which declares one lifetime parameter ’a and a field of a
reference type.

exist anymore. This produces a compile-time error, as the variable x does not live long
enough.

The compiler is able to check this by comparing the lifetime of the reference r to the
lifetime of the referent x. The lifetime of a variable is roughly equivalent to its lexical
scope.

Most Rust code manipulating references does not need to deal with reference lifetime
explicitly. In Listing 2.18, for instance, the compiler infers the lifetimes of the borrows
from the structure of the code. Sometimes it’s necessary to annotate code in order to
deviate from the default inference behaviour.

For instance, when structs contain references, those must have an explicitly quantified
lifetime. The struct must in this case declare a lifetime parameter , which looks like
a generic parameter, but whose identifier starts with a single quote. For instance in
Listing 2.19, the struct declares one lifetime parameter ’a.

Any struct that contain an object of type Relay must also specify a lifetime argument
for the struct type, for instance in Listing 2.20). Lifetime parameters need to be repeated
at all layers of a composition of objects, which can be noisy when objects are deeply
nested.

1 struct RelayContainer<’a> {
2 relay: Relay<’a, i32>
3 }

Listing 2.20: A generic struct which contains a Relay object (cf. Listing 2.19).

2.4. Introduction to Rust 23

Static lifetime A special lifetime is the predeclared ’static lifetime, which is the
lifetime of references that life forever. This means their referent is part of the memory
image of the executable, like string literals or constants.

2.4.3. Memory safety

Rust’s ownership discipline is too restrictive for many low-level use-cases, for instance,
to implement mutual exclusion or inter-thread communication. As an escape hatch,
Rust has pointer types (written *const T or *mut T), which have no associated lifetime.
Pointers are not verified to obey the rules of Rust’s ownership model, and hence do not
benefit from the same safety guarantees as references. Pointers may point to uninitialized
or freed memory, or alias a mutable location in a way that may cause data races. Since
dereferencing pointers is not checked at compile-time to be safe, Rust only allows this
in unsafe blocks.

It is important to understand that unsafe blocks do not allow the programmer to vio-
late Rust’s ownership model. Rather, they delimit regions of code where the programmer
has to uphold the ownership model themselves, without the help of the compiler. Failure
to comply with the ownership model results in undefined behaviour (UB). For instance,
breaking the reference aliasing rules by aliasing a mutable reference is considered UB [9].

The syntactic overhead on using unsafe code discourages its use, and promotes its
confinement to implementations, and not APIs. Use cases that need unsafe code are
encouraged to encapsulate it into a safe API: given that safe APIs compose, they can
then be used anywhere, while the unsafe code is concentrated only in one place [25].

Smart pointers One particular use case for encapsulated unsafe code is to create types
that mediate access to a value of another type, i.e., smart pointers. Smart pointers in
Rust are elevated to the rank of design pattern, the standard library is full of them. For
example, a Mutex<T> provides atomic access to values of type T. One can only acquire
the inner value by acquiring the lock, possibly blocking the thread until the lock has
been released by other threads.

Similarly, since it’s impossible to move the same value into several places, one cannot
share a value in safe Rust without using a borrowed reference, and having to deal with
lifetimes. An alternative is to use the Rc<T> smart pointer, which can be freely cloned
into a new owned Rc<T>. This smart pointer performs reference-counting, which is one
way to ensure the inner value is only dropped once, even though a multitude of Rc may
be created. An Rc hence allows multiple readers on the same value, without dealing with
lifetimes. However, Rc does not allow mutable access to its data, since it could be used
to duplicate a memory location.

Smart pointers are very useful in practice, as they extend the language semantics;
for instance, Rc allows an object to have several owners, which is not possible with
regular Rust types. Similarly, the smart pointer RefCell allows an object to be mutated
even though it is accessed through a shared reference. This pattern is called internal
mutability, and is very useful in practice. However, this may cause data races in a

24 2. Background

concurrent setting, as shared references are not unique. The Rust compiler performs
static analysis to ensure that internally mutable types are not used where a thread-safe
object is expected.

2.4.4. Abstraction in Rust
Software abstractions enable decoupling client code from implementation details they
don’t need to know about. This section introduces some of the language features that
enable data encapsulation and polymorphism in Rust.

Namespacing and visibility

Member functions Rust types can define member functions of two kinds: methods
and associated functions. Associated functions are regular functions that live in the
namespace of the type. Methods are associated functions that also take an instance
of the type as its first parameter. Both are defined in an impl block, as shown in
Listing 2.21.

1 struct Point(x: u32, y: u32);
2 impl Point {
3 fn origin() → Self {
4 Self { x: 0, y: 0 }
5 }
6 fn manhattan(&self) → u32 {
7 sqrt(self.x * self.x + self.y * self.y)
8 }
9 }

Listing 2.21: Member function definitions on a Point struct.

Within an impl block, the keyword Self can be used as an alias for the current
type (here, Point). We also call this the self type. On line 3, we define an associated
function, which does not take parameters. This can then be called with the expression
Point::origin() from outside of the type.

On line 6, we define a method, because it has a self parameter. It takes its parameter
by reference, since that parameter is declared &self. Within the body of the function,
self is an expression that has type &Self, and so we can access fields of the point on
it, line 7. The method can be called with the syntax point.manhattan(), where point
is any expression of type Point. It can also be called like a regular associated function
(Point::manhattan(&point)), but this syntax is less convenient as it cannot be chained
and requires an explicit borrow.

Module system Types define a namespace for their members, but this is not the only
namespacing system of Rust. To provide a namespace for types themselves, Rust uses
modules. A module is an item (like functions or type declarations) that may contain

2.4. Introduction to Rust 25

other items. Listing 2.22 shows an example of two module trees. The module m defined

1 mod m {
2 fn a() {
3 nested::b();
4 }
5 mod nested {
6 use super::a;
7 fn b() {
8 a(); // m::a
9 }

10 }
11 }
12 mod n {
13 pub use super::m::a;
14 }
15 mod sibling;

Listing 2.22: Nested module declarations and use statements.

on line 1, defines a namespace containing two items — the function a and the module
nested. To use items of nested within the body of a, we have to qualify the namespace
using the :: operator, like on line 3.

In order to use items of another module without qualification, it is possible to import
them in the current namespace with a use declaration, like on line 6. Here, this allows
calling the function a using its simple name on line 8. Within the path super::a, super
is a keyword that identifies the parent module, here, m.

use declarations may also be used to re-export members under a different namespace,
as shown on line 13. Here, the pub keyword (for public) makes other modules able to
use the path n::a an alias for m::a. This is commonly used to split implementation of
a module into separate submodules, then exporting them all under the same namespace
so as not to expose the internal module structure to clients.

Not only can modules be declared explicitly with the mod keyword, all Rust files
implicitly define a module with the same name as the file. In Listing 2.22, the file
containing the listing code is hence a module itself, whose members are the modules m
and n. This is why it is possible for line 13 to refer to m using the path super::m, where
super refers to the implicit parent module.

Modules declared without a body, like on line 15, are taken by the Rust compiler to
be defined in a sibling file with the same name. In this example, mod sibling will have
all the items declared in a sibling.rs file in the same directory. This allows splitting
the implementation of a module into separate files.

Crates Rust projects are called crates. A crate may contain several artifacts, including
binary programs, and a library artifact. Each of those is defined by a Rust file which
acts as the root of a module tree. The root module of a library artifact has the same

26 2. Background

name as the containing crate. This module is used by dependent projects to refer to the
contents of the crate. Crates that only define a library artifact (and no executables) are
called library crates.

Visibility The default visibility of all items in Rust is private, meaning, the item is
only accessible within the innermost enclosing module. This is also true of struct fields
(which are not items). The modifier pub (for public) is used to make an item accessible
from outside of its containing module.

The pub modifier also has several other forms. With pub(crate), an item is made visi-
ble to all modules of the declaring crate, but not to other crates. With pub(<module_path>),
e.g. pub(super), an item can be made visible in only a subset of the modules of the crate,
i.e., those modules that are descendants of the module referred to between parentheses.

An item t is only visible to a client module if there exists a path to t in which every
segment (module, type, and t) is visible to the client. It is common in Rust to declare
most items public, but instead restrict the visibility of the modules that contain them.
This hides the structure of the implementation modules, and decouples the public module
tree of a crate.

Traits

Behaviour that is shared between types is modelled with traits. Traits define an interface
for a type as a set of functions supported by the type. They are similar to type classes in
Haskell, as they can be implemented even on types that were defined in another project.
For example, the Rust standard library defines the trait Ord, for totally ordered types.
The simplified trait declaration is printed in Listing 2.23:

1 pub trait Ord: Eq + PartialOrd<Self> {
2 fn cmp(&self, other: &Self) → Ordering;
3

4 fn max(self, other: Self) → Self {
5 match self.cmp(&other) {
6 Ordering::Less | Ordering::Equal => other,
7 Ordering::Greater => self,
8 }
9 }

10 // . . .
11 }

Listing 2.23: Simplified declaration of the Ord trait.

The trait declaration starts with the declaration of the name of the trait, which in
this case is followed by a list of trait bounds (Eq + PartialOrd<Self>). These are
other traits that need to be implemented by any type that implements Ord. Here, these
requirements express that any totally ordered type must necessarily also be partially
ordered, and must support a total equality operation.

2.4. Introduction to Rust 27

A trait is not a concrete type, it is simply an interface, i.e., a set of members supported
by the implementer. Members may be methods, associated types, associated functions,
and associated constants. Within the trait declaration, the concrete type of the imple-
menter can be referred to generically using the Self keyword. Trait bounds constrain
the Self type of an implementation.

The Ord trait declares a cmp method line 2, which performs a three-way comparison
between self and another object of the same type (Self). This method has no body,
which means an implementer must define the implementation of this method. By con-
trast, the definition of the max method on line 4 has a body, which acts as a default
implementation, defined using cmp.

We can implement Ord for the Instant struct with a dedicated impl block, shown
in Listing 2.24. Within this impl block, the Self type is an alias for Instant. self
also has type Instant. The block must implement all unimplemented functions of the
Ord trait in order to compile, here, cmp. Additionally, the presence of an impl block for
Instant makes the compiler require that Instant also implement Eq and the other trait
bounds on Ord.

1 impl Ord for Instant {
2 fn cmp(&self, other: &Self) → Ordering {
3 self.time.cmp(&other.time)
4 .then(self.step.cmp(&other.step))
5 }
6 }

Listing 2.24: Implementation of the trait Ord for the Instant struct (cf. Listing 2.11).

Operator overloading Rust uses that Ord trait, as well as a few other traits blessed by
the compiler, to implement operator overloading. The Ord trait overloads comparison
operators like <= or >, which will be desugared to a call to Ord::cmp. The Eq trait (a
bound of the Ord trait), overloads the equality operators == and !=. It is possible to
overload other select operators, like + through the trait Add.

Contrary to C++ though, the assignment operator = cannot be overloaded. It is also
not possible to define new custom operators. This design decision limits the complexity
of the language and its parser, and is meant to make Rust programs easier to read.

Generics Rust has practically no subtype polymorphism, and parametric polymor-
phism is the preferred strategy to achieve code reuse. Structs, enums, traits and func-
tions may declare type parameters, and be used with a range of type. Type parameters
may be constrained by trait bounds, which require that the actual type argument im-
plement the trait. This allows using functions of that trait on instances of the type
parameter. For example, the function in Listing 2.25 requires that its type parameter T
implement Ord, which allows using the method Ord::cmp on a:

28 2. Background

All generic method invocations, and parameterized structs, are monomorphized during
compilation. Each monomorphic variant is optimized separately, which is one of the
reasons Rust boasts to offer zero-cost abstraction. At the same time, this means that
type information must be entirely known at compile-time everywhere. For example,
there is no equivalent to the Java type List<?>, where the type argument is unknown
(a “list of some unknown thing”).

Virtual dispatch Virtual dispatch (also known as dynamic dispatch) [36] is a feature of
most object-oriented languages, whereby a method call is only linked at runtime based
on the type of a receiver object. A single virtual method call site may hence call several
implementations of a method. In a language like Java, virtual dispatch is a crucial tool
for abstraction.

Java relies on subtype polymorphism to use dynamic dispatch: a variable declared
with a class type C may contain instances of subclasses of C. Calling a method on the
variable will dispatch the method according to the actual class of the value (which may
be a subclass).

However, as said earlier, Rust has no subtype polymorphism: one cannot use a trait
as the type of a variable, or parameter, or return value. This is because variables are
allocated on the stack, and so their size must be known at compile-time. But since traits
may be implemented by types of different sizes, a value whose type is simply Ord, for
instance, has no known size, and cannot be put on the stack. This is the reason traits
are not considered to be types in Rust.

The solution to this problem is to use references: since they are implemented by
pointers, references of different types all have the same (machine-specific) size. To do so
in Rust, we use variables with type &dyn Trait (dynamic reference to some trait Trait),
which may contain a reference to any concrete implementer of the trait. Note that using
references like this is exactly how Java (and many other languages) implements subtype
polymorphism: in Rust, it’s simply opt-in. Contrary to Java though, where every value
contains a reference to its class (and hence to its vtable), in Rust, the reference itself
needs to carry around the vpointer. Because of this implementation strategy, &dyn
pointers are called fat pointers, since they actually consist of two references.

1 fn max<T : Ord>(a: &T, b: &T) → &T {
2 match a.cmp(b) {
3 Ordering::Less | Ordering::Equal => b,
4 Ordering::Greater => a
5 }
6 }

Listing 2.25: Example of a generic function.

2.4. Introduction to Rust 29

1 fn count_if_starts_with(strings: &Vec<&str>, prefix: &str) → usize {
2 strings.into_iter()
3 .filter(|s| s.starts_with(prefix))
4 .count()
5 }
6

7 fn count_if_starts_with(strings: &Vec<&str>, prefix: &str) → usize {
8 let mut count = 0usize;
9 for s in strings {

10 if s.starts_with(prefix) {
11 count += 1;
12 }
13 }
14 count
15 }

Listing 2.26: Example of using closures together with iterators.

Functional programming

Closures and iterators Rust has some features that pertain to the functional program-
ming paradigm, for instance, it supports closures, i.e., anonymous functions that may
capture part of their environment. This is especially useful for transforming collections
in a functional style, with classic functions like map or filter. Rust’s iterators support
this programming style, as shown in Listing 2.26. On line 2, a new iterator is created,
which is then filtered on the next line using a provided closure function. In Rust’s clo-
sure syntax, the parameter list is enclosed within pipes (here, |s|), and followed by an
expression, which is the return expression of the closure. The closure defined here to
filter the iterator captures the variable prefix from its environment.

The second function defined in Listing 2.26 (line 7) is equivalent to the first, but is
written in a more imperative style. On line 9, the for loop demonstrates Rust’s first-class
support for iterators: any object implementing the trait IntoIterator, which provides
the into_iter function called on line 2, can be iterated on in a for loop.

Option and Result Other features of Rust usually found in functional programming
languages are its monadic Option and Result types. The first represents a possibly
absent value, whereas the second represents the result of a possibly failed computation.
Their declarations are reproduced in Listing 2.27.

2.4.5. Meta-programming
Macros Rust features a meta-programming system directly integrated into the lan-
guage. Contrary to C/C++ preprocessor directives, which transform the source file
before the compiler even reads it, in Rust, macros transform token streams produced by
the compiler before the parsing phase. This allows the compiler to restrict where macros

30 2. Background

1 enum Option<T> {
2 None,
3 Some(T)
4 }
5 enum Result<T, E> {
6 Ok(T),
7 Err(E)
8 }

Listing 2.27: Declarations of Option and Result.

are allowed to be used, and most importantly, how they modify their enclosing scope
(the declarations they introduce). These restrictions are called hygiene by Rust language
designers, because their intent is to make macro more readable and less error-prone than
preprocessor macros. A nice side-effect of this structured approach is that the compiler
is able to produce much more helpful error messages than in C/C++.

Macro invocations look like function calls, except the identifier is suffixed with an
exclamation mark. For instance, println!("abc") is a macro call, which prints to
standard output. Since the contents of the parentheses are interpreted by the macro, they
don’t need to be a well-formed Rust expression or so. This allows defining convenient
domain-specific language (DSL)s that look like human-language syntax.

Attributes Attributes are metadata attached to items, be they functions, type decla-
rations, modules, or otherwise. Attributes allow specifying code generation options for
the compiler. They are also used to automatically derive trait implementations from the
implementation of a struct or enum, as shown in Listing 2.28.

1 #[derive(Clone, Eq)]
2 struct Foo {
3 a: u32
4 }

Listing 2.28: Example of a derive attribute on a struct declaration.

The attribute on the first line specifies that the Foo struct will get an automatically
derived implementation of Clone , which will clone all fields recursively, and Eq, which
also will compare all fields recursively. Both of these are possible because all the types
of all fields (here, a single u32) also implement Clone and Eq.

Conditional compilation Rust features first-class support for conditional compilation,
which is also achieved through attributes. It is for instance possible to provide a different
implementation of a module depending on the target platform, like shown in Listing 2.29.
In this example, the contents of the cfg attribute specify a condition that is evaluated

2.4. Introduction to Rust 31

by the compiler during compilation to determine whether the item is to be compiled
or not. Since both cfg attributes in the example have mutually exclusive conditions, a
unique implementation for the module will be compiled, and client code can just depend
on it normally.

1 #[cfg(os = "windows")]
2 pub mod os_specific_api {
3 pub fn print_os() {
4 println!("windows!")
5 }
6 }
7 #[cfg(not(os = "windows"))]
8 pub mod os_specific_api {
9 pub fn print_os() {

10 println!("not windows!")
11 }
12 }

Listing 2.29: Example of a conditionally compiled module using the cfg attribute.

2.4.6. Cargo

Rust has a rich ecosystem of open-source libraries, accessible using its build tool and
package manager, Cargo. As a build tool, Cargo can run the Rust compiler (rustc),
run tests and benchmarks, collect lints and format code. Cargo also manages project
dependencies, and can download external crates and treat them as input to the build.
It integrates with crates.io5, the Rust package registry, and can package and publish
crates artifact with little setup on the part of the developer.

Cargo configuration Cargo is configured using a configuration file written in the TOML
language [41]. TOML is a file format for configuration files, which is designed to be easy
to read and write for humans. Like YAML and JSON, TOML defines a dictionary of
configuration entries, which can themselves contain arbitrary values, including other
nested dictionaries. Listing 2.30 shows an example Cargo configuration file for a crate
named my_crate. The file starts by defining metadata about the crate, like the crate
name and current version. The [package] header defines a TOML table, which is a
dictionary of key-value pairs. Here, its keys are name, version and authors. The
[dependencies.log] table describes that the crate has a dependency on the log crate,
Rust’s standard logging façade. The version string provided uses semantic version-
ing [40], and is therefore interpreted as a range of allowed versions. Here, the crate’s
log dependency must have a version between 0.4.0 (inclusive) and 0.5.0 (exclusive).

5https://crates.io

https://crates.io
https://crates.io

32 2. Background

1 [package]
2 name = "my_crate"
3 version = "0.1.0"
4 authors = ["Clément Fournier"]
5

6 [dependencies.log]
7 version = "0.4"

Listing 2.30: Example TOML configuration file for Cargo.

Conditional compilation and Cargo Cargo defines a number of conditional compilation
variables that can be used with the cfg attribute (cf. Paragraph 2.4.5§Attributes). For
instance, code that should only be used in tests can be annotated with #[cfg(test)].
Cargo only sets the test variable when running test code, so the annotated items are
not part of the released binary.

Cargo also supports crate-level features, which are conditional compilation flags usable
by dependent crates. A feature can be enabled when specifying a dependency on the
crate. For instance, Listing 2.31.a defines a Cargo feature named cli (line 9), presum-
ably, to provide an optional command-line interface (CLI) for the crate. The feature
references an optional dependency on a crate named clap. Unless the feature is en-
abled, this dependency is excluded from the build. This makes my_crate lighter for
those users who depend on it, but do not need a CLI. The code of my_crate can also use
the conditional compilation attribute #[cfg(feature="cli")] to compile code only if
this feature is enabled.

1 [package]
2 name = "my_crate"
3

4 [dependencies.clap]
5 version = "1.3.0"
6 optional = true
7

8 [features]
9 cli=["clap"]

(2.31.a) Definition of a Cargo feature named
cli, in the my_crate crate.

1 [dependencies.my_crate]
2 version = "0.1.0"
3 features=["cli"]

(2.31.b) Usage of the feature from a dependent
crate.

Listing 2.31: Example definition and use of a Cargo feature.

33

3. Runtime design

Motivation Existing LF targets all rely on a code generator that translates LF code
constructs into target code. The generated target program binds to a runtime library
written in the target language. The runtime library factors out logic common to all
reactor programs, in particular, the reaction scheduling logic. This design simplifies the
code generator, compared to generating a completely standalone program. It allows the
runtime library to be developed and tested independently of the compiler codebase. The
runtime library can even be made reusable without LF, for instance, the C++ runtime
can be used to write reactor programs in pure C++.

Design goals The design of the runtime library and that of the generated code is
naturally co-dependent. To guide this design, the following goals have been identified:

— The Rust target should be able to integrate within the Rust ecosystem, for instance,
it should allow the use of Rust libraries in target code.

— The target should reuse existing tools and libraries where possible. For instance,
there are Rust libraries that provide abstractions that ease parallel programming,
and the Rust runtime should be able to rely on those libraries where sensible.

— The coupling between the runtime and the code generator should be minimized.
Loose coupling here ensures that implementation details of the runtime can be
changed without having to update the code generator.

To allow a smooth integration with the Rust ecosystem, both the runtime and the
generated code rely on Cargo, the Rust packaging and build tool (cf. Section 2.4.6). The
runtime is packaged as a standalone library crate, which the generated code can bind to
using Cargo’s dependency resolution mechanisms.

To minimize coupling between the runtime and the code generator, the runtime is
architected as a framework, i.e., a library that uses inversion of control to call into the
generated code. The generated code binds to this framework using well-defined extension
points, defined by a number of traits published by the runtime crate. Implementing these
traits is declarative in nature: the generated code implements the API without having to
know the details of how it is used by the runtime. The exact workings of the runtime are
hence isolated from the generated code. The relatively low number of public extension
points makes it easier to provide API stability guarantees, which the code generator
relies on.

The following main components of the runtime have been identified:

(1) an API to model reactor programs, to be used by the generated code;

34 3. Runtime design

(2) infrastructure to execute the program using the constructed model;

(3) an API for reactions to interact with the execution infrastructure and the compo-
nents of the reactor program at runtime, from within user-written reaction code.

Items (1) couples the runtime library to the code generator, and therefore benefits
from having a stable, minimal surface. Item (2), the execution infrastructure, which is
also called the scheduler , is mostly internal to the runtime crate. A public entry point
acts as a single point of coupling between this component and the generated code (which
has to call it in its main function). Item (3) is an API that couples the runtime crate
to all reactor programs written in LF. Since making incompatible changes to this API
could require updating the code of reactions in many reactor programs, the stability of
this API is essential. It therefore also benefits from having minimal surface.

3.1. Chapter outline

This chapter is concerned with the design of the runtime crate. It does not discuss the
form of the generated code itself, which is instead presented in Chapter 4, Section 4.1.
The code listings in this chapter are to be understood as very simplified, so as to discuss
the implementation at a relatively high level of abstraction. Finer implementation details
related to performance are discussed in Chapter 5.

The rest of this chapter is structured as follows.
Section 3.2 gives an overview of the runtime crate’s main components and internal

structure. Section 3.3 then presents the basic principles of how reactors are represented
in generated code, and how the runtime interacts with them.

Section 3.4 presents a high-level overview of how executing a reactor program works,
and what pieces are required to implement the scheduler, distinguishing synchronous
and asynchronous behaviour. Section 3.5 presents a formal description of how the reac-
tor model and dependency graphs can be used to derive an execution strategy for the
synchronous part of the scheduler. Sections 3.6 through 3.11 present different aspects of
the synchronous part of the scheduler. Section 3.12 presents how the scheduler handles
asynchronous events. Section 3.13 shows how the scheduler can be instantiated from
within the generated target program. This concludes the explanation of the workings of
the scheduler.

Section 3.14 goes on to explain how the data structures required by the scheduler are
produced during the assembly phase. Section 3.15 explains how the runtime crate makes
use of Cargo conditional compilation features.

Section 3.16 compares the workings of the scheduler with an older runtime design,
presented in [16]. Finally, Section 3.17 provides some insight about the main differences
between the runtime presented here and existing LF runtimes.

3.2. The runtime crate 35

SyncScheduler
Event

EventQueue

ReactorBehavior

ReactionCtx

AsyncCtx

Readable/WritablePort

Readable/WritablePortBank

macros: after, delay, tag, ...
ReactionTrigger

LogicalAction

PhysicalActionRef

Timer
PhysicalAction

ReactorInitializerPort

PortBank

AssemblyError

AssemblyCtx and subordinates

ReactorId
GlobalReactionId

TriggerId
DataflowInfo

DebugInfoRegistry

ExecutableReactions

TriggerLike

DepGraph

Level

Figure 3.1.: Venn diagram that categorizes some APIs of the runtime crate into three
different sets: red is the scheduler, blue is the API provided for code in
reactions, yellow are types used to model the reactor program.

3.2. The runtime crate

The runtime crate was developed in lf-lang/reactor-rust1 over the course of this work. It
has been released with an MIT License. Figure 3.1 represents most of the types defined
by the runtime crate and categorizes them according to the API they belong to.

The red surface represents the scheduler , which is responsible for driving the execution
of the reactor program at runtime, by reacting to events and executing reactions. In
this implementation, the scheduler is reified by an instance of SyncScheduler. Most of
the contents of the red surface are internal types depended on by SyncScheduler, for
instance, Event and DataflowInfo.

In blue, the reaction API enables interaction between the target code of reactions and
the scheduler at runtime. It is centred around the ReactionCtx type, which mediates
requests between reaction code and the scheduler internals (red). AsyncCtx also plays
an important role in this interaction.

The yellow surface corresponds to the types used to model the reactor program. It
contains types for reactor components, like Port or Timer. Some of those are also part
of the reaction API (blue), while others are not communicated to reactions directly. For
instance, Port is exposed to reactions as a ReadablePort or WritablePort instance, to
limit the amount of interactions available to reactions. The model is built during ini-
tialization of the reactor program in a dedicated assembly phase, which revolves around
the types AssemblyCtx and ReactorInitializer. The intersection between the yellow

1https://github.com/lf-lang/reactor-rust

https://github.com/lf-lang/reactor-rust
https://github.com/lf-lang/reactor-rust

36 3. Runtime design

and red surface contains types that are built during the assembly phase for the use of
the scheduler, most importantly, DataflowInfo and DebugInfoRegistry.

3.3. Modelling reactors
Inspired by the existing C++ runtime (cf. Section 2.2.4), the Rust runtime models re-
actors using OOP concepts. This makes the code generator relatively simple, as reactor
definitions are conceptually similar to a class in the OO sense: they define a general
template for reactor instances. As introduced in Section 2.4.4, Rust’s object system is
based on structs implementing traits. The runtime hence bases its design on the prin-
ciple that each reactor definition corresponds to a struct definition, which defines fields
for reactor components, like actions, timers, and ports. The types of these components
are structs exported by the reactor runtime.

To make custom reactor structs manipulable by the runtime, the runtime publishes
traits that are implemented by the reactor struct.

1 pub trait ReactorBehavior {
2 /// Id of this reactor.
3 fn id(&self) → ReactorId;
4 /// Execute a reaction with the provided context.
5 fn react(&mut self, ctx: &mut ReactionCtx, id: LocalReactionId);
6 /// Perform cleanup actions to prepare for the next tag.
7 fn cleanup_tag(&mut self, ctx: &CleanupCtx);
8 }

Listing 3.1: Declaration of the ReactorBehavior trait (most documentation elided).

The trait ReactorBehavior (cf. Listing 3.1) is the interface through which the runtime
interacts with a reactor at runtime. The most relevant method is react, which executes
a reaction on the reactor. The implementation is generated by the compiler to dispatch
over the given identifier to the correct implementation method (cf. Section 4.1.3).

The trait ReactorInitializer (cf. Listing 3.2) is used to build reactors during the
initialization of the application. The trait’s only function is assemble, which uses an
AssemblyCtx to produce a new instance of the self type. The other argument to the
assemble function stands for an entire parameter list, which are the constructor argu-
ments for the reactor. The type is associated with each particular implementation of the
trait, using the associated type Self::Params (line 5).

Since the assembly is fallible, the result is wrapped within Rust’s Result type, here
hidden behind a type alias AssemblyResult.

The runtime use two separate traits for a practical reason: to implement the schedul-
ing logic, it uses dynamic dispatch on the react method of ReactorBehavior. As
explained in Section 2.4.4, this requires using a fat pointer &dyn ReactorBehavior to
access reactor instances of different types under a common trait type. However, using
a fat pointer requires the trait bound (here ReactorBehavior) to be object-safe, and

https://lf-lang.github.io/reactor-rust/reactor_rt/trait.ReactorBehavior.html

3.4. Overview of the execution logic 37

1 pub trait ReactorInitializer: ReactorBehavior {
2 /// Type of the user struct
3 type Wrapped;
4 /// Type of the construction parameters
5 type Params;
6 /// Exclusive maximum value of the ‘id‘ parameter of ‘react‘.
7 const MAX_REACTION_ID: LocalReactionId;
8

9 /// Assemble the user reactor, . . .
10 fn assemble(args: Self::Params, assembler: AssemblyCtx<Self>)
11 → AssemblyResult<FinishedReactor<Self>> where Self: Sized;
12 }

Listing 3.2: Declaration of the ReactorInitializer trait (most documentation elided).

object-safe traits cannot define associated constants, because that’s unsound in gen-
eral [19]. The solution to this problem is to factor out those associated members into
the separate ReactorInitializer trait. This is appropriate because they are only used
during initialization of the program, where we can use stronger typing with generics.

Both traits are hence used to interact with the same struct during distinct phases
of the program’s lifetime. While ReactorInitializer is used during assembly, the
initialization phase, ReactorBehavior is used during the execution phase.

3.4. Overview of the execution logic

Executing a reactor program can be reduced to executing a certain set of reactions at the
startup tag. Each reaction execution may trigger the execution of new reactions, either
at the same tag (when a port is set), or at a future tag (when an action is scheduled).
At a given tag, any reaction is executed at most once, and since the set of reactions
in the program is finite, the processing of a tag terminates iff each executed reaction
terminates. The program may also receive asynchronous events, which may trigger a
number of reactions at a particular (future) tag. These events may be produced by
threads executing concurrently to the scheduler; in the reactor model, they correspond
to the scheduling of a physical action (cf. Section 2.2.1).

All events are processed in tag order.

Problem Structure From these requirements, we can identify two relatively indepen-
dent sub-problems that are to be tackled by the scheduler instance:

(1) The processing of a single tag, which includes logic to let reactions trigger down-
stream reactions by setting a port, and to order reaction invocations so as to respect
their dependencies;

https://lf-lang.github.io/reactor-rust/reactor_rt/assembly/trait.ReactorInitializer.html

38 3. Runtime design

(2) The maintenance of an event queue, that stores future events in an order deter-
mined by their tag, and supports the insertion of new events by asynchronous
threads.

With the right data structures, the first sub-problem can be conceived as a simple
function of a tag and an initial set of reactions, that produces side effects on the event
queue and on the internal states of reactors.

The second sub-problem is about maintaining the current state of the execution,
which in the implementation described here is encapsulated by an instance of the struct
SyncScheduler. That instance lives as long as the program, and is what is usually
referred to when the author writes “the scheduler”.

3.5. Representing data dependencies
Processing a particular tag (problem (1) of Paragraph 3.4§Problem Structure) requires
executing reactions in a particular order, that is derived from the data dependencies of
reactions. This ordering provides for the determinism guarantee of Lingua Franca. A
definition of that ordering based on a formalism of the reactor model follows.

3.5.1. Definition
Let us first introduce a couple of ancillary definitions.

Definition 1 (port binding). A port d may be bound to a port u ̸= d, which we write
u → d. This means that whenever u is present, d is present with the same value. We
call u the upstream of d, and we say that d is in the downstream of u, as ports can be
bound to only one upstream, but may be the upstream of many ports. Bound ports
cannot be set by reactions. The relation → is called the connection relation on ports.
Connections between ports must be acyclic, i.e., for any port p, there is no path in →
from p to itself. The transitive, reflexive closure of → is called ∗→.

Definition 2 (container function). Within a reactor program, the container function
C maps every component, reaction and reactor to the reactor that contains it. C is
undefined for the main reactor.

Definition 3 (priority relation). Reactions of the reactor program are related by a
partial order ≺, called the priority relation. Within a given reactor, any two reactions
can be compared by ≺, i.e., for m, n such that C(n) = C(m), either n ≺ m or m ≺ n.

Definition 4 (immediate dependency). A reaction n has an immediate dependency on
a reaction m ̸= n, written m <1 n, iff either

(i) there exists ports u ∈ effects(m), and d ∈ triggers(n) ∪ reads(n) such that u
∗→ d,

or

(ii) C(m) = C(n) and m ≺ n.

3.5. Representing data dependencies 39

Intuitively, condition (i) means that n depends on m if m produces data that n
observes. Through setting a port, m itself may even trigger n, and so m must always
be executed before n. Condition (ii) is required because reactions share access to the
state variables of their container reactor. To capture a deterministic ordering of accesses
to that shared state, the reactor model requires that reactions that access shared state
variables be totally ordered by <1. This is the case here: if C(n) = C(m) and condition
(i) of Definition 4 does not apply, then either m ≺ n or n ≺ m, so condition (ii) applies2.

Definition 5 (dependency relation). The transitive closure of <1 is called <, the de-
pendency relation of the program, and is a strict partial order on reactions. If m < n,
then m should be executed before n at a given tag.

From this definition follows that if neither n < m nor m < n, the computation of
n and m are independent. When that is the case, those reactions may be executed in
parallel for better performance.

3.5.2. Implementation
Since the scheduler is entirely part of the runtime crate, it is agnostic to the actual
structure of the reactor program’s dependencies. In other words, that structure is a
parameter of the scheduler, and needs to be represented as a first class value — like a
dependency graph. In fact, the relation-based definition of < would be straightforward
to implement using a dependency graph. However, ordering reactions using a graph
at runtime would be inefficient, so the runtime uses a practical approximation of <,
described in the following.

During initialization of the reactor program, the runtime builds a dependency graph,
which represents reactions, ports, and actions as nodes, and their mutual dependencies
as edges. Edges are oriented in the direction of data flow.

Each reaction is then labelled with its level in that graph:

Definition 6 (level). Given a directed acyclic graph (DAG), the level of a vertex is the
length of the longest path from any root of the graph to that vertex.

By construction of the graph, for any reactions n, m, m < n implies level(m) <
level(n). By contraposition, two reactions that have the same level are independent and
may be executed in parallel. Given any set of reactions, we can partition it by level,
then execute each level one after the other, in ascending order, processing reactions of
the same level in parallel.

The entire scheduler module is built with this model in mind, as it provides a simple
way to simultaneously respect reaction dependencies and exploit some3 of the parallelism

2Lingua Franca relates every reaction of each reactor with each other by priority. This is stricter than
necessary if the reactions do not access shared state, which the LF Rust code generator exploits when
generating synthetic reactions to implement timers (cf. Section 4.1.5).

3It should be noted, that level(m) < level(n) does not imply m < n. Specifically, it may be the case
that level(m) ̸= level(n) and neither m < n nor m > n, i.e., n and m are independent. Since we only
parallelize when level(m) = level(n), this represents some missed opportunities for parallelism.

40 3. Runtime design

1 target Rust;
2 reactor Sender {
3 output out: u32;
4 // @label send
5 reaction(startup) → out {=. . .=}
6 }
7

8 reactor Receiver {
9 input in: u32;

10

11 // @label recv
12 reaction(in) {=. . .=}
13 // @label die
14 reaction(shutdown) {=. . .=}
15 }
16

17 main reactor {
18 sender = new Sender();
19 receiver = new Receiver();
20

21 sender.out → receiver.in;
22 }

(a) LF code of a simple program with two reac-
tors communicating over connected ports.

startup

reaction 'send'

triggers

shutdown

reaction 'die'

triggers

receiver.in

reaction 'recv'

triggers

higher precedence

sender.out

forwards to

writes to

(b) Corresponding dependency graph, as built
internally by the runtime. Reactions closer
to the roots (startup and shutdown) have
a lower level, and should be executed first.
Note that the level of “die” is 5, not 1.

Figure 3.2.: Example of a dependency graph for a simple LF program.

in the application. Sequential execution is a degenerate case of this model, where instead
of parallelizing reactions that have the same level, the scheduler just executes them
sequentially. Note that this implementation strategy is not original, but was inspired by
the C++ runtime, and a former C implementation.

Figure 3.2 shows an example of a dependency graph for illustration. In this example,
the reaction send produces some data that is consumed (through a port) by the reaction
recv. Accordingly, in the graph, recv is reachable from send over the port nodes, and
level(send) < level(recv), so send is always executed before recv. Note the presence of
an edge between recv and die, which represents their relative priority explicitly.

3.5.3. Dependency graphs

For a given reactor program, the runtime defines a dependency graph G = (V, E) as the
following DAG:

3.5. Representing data dependencies 41

— The vertex set V is the union of the set of reactions N and triggers T of the
program. T contains all actions, timers, and ports of the program, and the special
startup and shutdown triggers;

— The edge set E is the union of:
1. The connection relation on ports →,
2. The priority relation on reactions ≺,
3. The set of effect edges { (n, p) | n ∈ N , p ∈ effects(n) ∧ p is a port },
4. The set of trigger edges { (c, n) | n ∈ N , c ∈ triggers(n) },
5. The set of read edges { (c, n) | n ∈ N , c ∈ reads(n) }.

Note that only effect edges for ports are included, and not actions or timers (item 3).
This information is not needed by the runtime to order reactions, as the dependency
relation on reactions only cares about ports. Actions and timers are still included in the
graph, as are special startup and shutdown triggers, so that the set of reactions they
trigger can be computed the same way as for ports. The graph as defined above must
be acyclic, which is checked at runtime.

Note that edges are oriented forward, in the direction of effects, and of port connec-
tions. For that reason, the dependency graph is actually a dataflow graph.

In Section 3.5 we assumed that the execution strategy for parallel reactions is ade-
quate, i.e., we can rely on level information in the dependency graph to approximate the
dependency relation < on reactions. We now prove that it is.

Let G = (V, E) a dependency graph. We name E∗ the edge set of the transitive,
reflexive closure of G. For a, b ∈ V , if there exists a path from a to b in G (or a = b),
then we write (a, b) ∈ E∗. Obviously, since →⊂ E, we have ∗→⊂ E∗.

By definition of level (Definition 6), if (a, b) ∈ E, then level(a) < level(b). By exten-
sion, if (a, b) ∈ E∗, then level(a) ≤ level(b).

Lemma 1. For any two reactions m, n ∈ V , m <1 n implies level(m) < level(n).

Proof. Let m, n ∈ V be reactions such that m <1 n. Let us consider the two cases in
the definition of <1 (Definition 4) separately.

(i) There exists ports u ∈ effects(m), d ∈ triggers(n) ∪ reads(n) such that u
∗→ d.

Since u
∗→ d, we know that (u, d) ∈ E∗, and hence level(u) ≤ level(d). By definition

of E, we know that (m, u) ∈ E (item 3) and (d, n) ∈ E (items 4 or 5). Finally, we
have level(m) < level(u) ≤ level(d) < level(n).

(ii) C(m) = C(n), and m ≺ n. Then, since ≺⊂ E, (m, n) ∈ E and level(m) <
level(n).

The extension to < is immediate:

Theorem 1. For any two reactions m, n ∈ V ,

m < n implies level(m) < level(n).

42 3. Runtime design

u1 u2

p qs

∗ ∗ ∗ ∗

(a) Initial situation.

x0

u1 u2

p qs

∗

∗ ∗

∗

(b) Placement of x0 as the upstream of s.

Figure 3.3.: Visual representation of the connections in the proof of transitivity for ∗↔.

Proof. Let m, n ∈ V be reactions such that m < n. There must be an ascending chain
in <1 that starts with m and ends with n. By our lemma, each member of the chain has
a greater level than the previous one, so, by transitivity, level(m) < level(n).

3.5.4. Port communication
Using →, we can derive a relation ∗↔ between ports: p

∗↔ q iff there is a port u such
that u

∗→ p and u
∗→ q.

Theorem 2. ∗↔ is an equivalence relation on ports.

Proof. The relation ∗↔ is trivially symmetric. Reflexivity is also easy to show, since
p

∗→ p for any p, which implies p
∗↔ p.

The proof of transitivity is less obvious. Let p, s, q be ports such that p
∗↔ s and

s
∗↔ q. There must be ports u1, u2 such that u1

∗→ p, u1
∗→ s, u2

∗→ s, u2
∗→ q (cf.

Figure 3.3a). Since a port may only be bound once, s has at most one upstream port.
Either:

(i) s has no upstream port, in which case s = u1 = u2 and p
∗↔ q.

(ii) s has an upstream port x0 (i.e., x0 → s), u1
∗→ x0, and u2

∗→ x0 (cf. Figure 3.3b).
Since x0 itself has at most one upstream port, we can apply the same reasoning
repeatedly. Since → is finite, we must end up on the base case u1 = u2, and
therefore p

∗↔ q.

Within an equivalence class C for ∗↔, all ports observe the same values at the same
tags. Ports connected to each other by → are all in the same equivalence class for ∗↔.

Theorem 3. Within any non-empty equivalence class C for ∗↔, there is exactly one port
wC that is not bound.

Proof. By contradiction. Assume C contains n ̸= 1 ports that are not bound.

(i) If n = 0, then all ports are bound. Let us assign a numeric label to every port
in C as follows: let x0 be a port in C. For i ≥ 0, the port xi is bound, and has a
unique upstream in C, which is labelled xi+1. There are only |C| distinct xi, so, by
the pigeonhole principle, there exists k, 0 ≤ k < |C| such that x|C| = xk. The ports
{xi}k≤i<|C| form a cycle, which contradicts the definition of →.

3.5. Representing data dependencies 43

(ii) If n > 1, then there must be two distinct ports p, q ∈ C which are not bound. Since
they have no upstream, there cannot exist a port u such that u

∗→ p and u
∗→ q,

which contradicts p
∗↔ q.

The port wC is the only one that can be set by a reaction (i.e., be in its effects set),
since bound ports cannot be set.

This hints that all ports of a given equivalence class C can share access to a common
data cell. Since wC is unique, and any reaction which effects that port precedes (in <)
any reaction that depends on a port in C \ wC (the readers of the data cell), no two
reactions will have concurrent read and write access to the data cell (even though many
may share concurrent read-only access to it). Similarly, if several reactions effect wC ,
they must be in the same reactor —C(C(wC)) if wC is an input, C(wC) otherwise—, and
hence be related by <. In other words, no two reactions can share concurrent mutable
access to the port.

This shows that the rules of the reactor model are strict enough to guarantee that
sharing a single data cell between ports equivalent by ∗↔ will not result in data races
at runtime, and that usage of the cell will in practice respect Rust’s borrowing rules.
This conclusion is relevant for optimization of the runtime, as it provides a basis to elide
locks and runtime checks that would be mandated by the Rust compiler otherwise (cf.
Section 3.10.1).

The rules of the reactor model that have to be respected to yield the data race freedom
property are summarized as follows:

— a bound port has a unique upstream (it can only be bound once)

— bound ports cannot be set by any reaction, they only receive values from their
upstream

— an input i can only be set by reactions in C(C(i))

— an output o can only be set by reactions in C(o)

Those are verified at compile-time by the code generator, as they are part of the
semantics of LF. They may also be checked at runtime by the reactor runtime, when
building with assertions enabled.

3.5.5. Multiports

Multiports are a shorthand syntax to declare several ports at once. These ports are
called the channels of the multiport. In the dependency graph, each channel of the
multiport is represented as a separate independent port. An additional node is added
to the graph for each multiport, that has an outgoing edge towards each channel node.
Connecting two multiports generates an edge between each individual channel, and no
edge between the multiport nodes themselves. Figure 3.4 shows how the graph looks
like for the simple multiport connection created in the program of Listing 3.3.

44 3. Runtime design

The addition of multiports to dependency graphs does not change the connection
relation →. The only change required to the formalism of this section is to add a case
to the definition of <1 (Definition 4):

(iii) m <1 n if there exists a multiport u in effects(m), a port d ∈ triggers(n)∪reads(n),
and a channel c of u such that c

∗→ d.

It is easy to see how the proof of Lemma 1 can be adapted to accomodate this new case,
thereby preserving the main result of Theorem 1.

1 reactor Node(size: usize(4)) {
2 input[size] in: u32;
3 output[size] out: u32;
4 // @label writer
5 reaction(startup) → out {=. . .=}
6 // @label reader
7 reaction(in) {=. . .=}
8 }
9

10 main reactor {
11 nodes = new Node(size=4);
12 nodes.out → nodes.in;
13 }

Listing 3.3: Simple LF program that binds two multiports together.

3.6. The process_tag routine

The method process_tag of the scheduler implements problem (1) of Paragraph 3.4§Prob-
lem Structure. This central piece of the scheduler executes reactions at a given tag,
starting from an initial set of reactions scheduled to execute at that tag. Listing 3.4
shows an implementation of this method.

The set of remaining reactions to execute is named todo (line 6). For each level in
increasing order, the outer loop retrieves the triggered reactions with that level. The
inner loop, line 11, executes each of those reactions. This inner loop may be paral-
lelized, which will be the topic of Section 3.10. On line 12, the reaction body is invoked,
using the method execute_reaction. This will be the topic of Section 3.7. The ob-
ject reaction_ctx, the reaction context, is used to accumulate events produced by the
reaction execution. After execution, the newly triggered reactions for this tag are ac-
cumulated into the todo set (line 15). They will be handled in the next iterations of
the outer loop, since by construction of the dependency graph, they necessarily have a
strictly greater level than the current level. Finally, those reactions that are scheduled
to trigger at a future tag are pushed into the event queue on line 16 (Section 3.12).

3.6. The process_tag routine 45

/nodes/out

out[0] out[1] out[2] out[3]

/nodes/in

in[0] in[1] in[2] in[3]

startup

reaction ’writer’

reaction ’reader’

Figure 3.4.: Dependency graph for the reactor program of Listing 3.3.

46 3. Runtime design

1 fn process_tag(
2 &mut self, // SyncScheduler
3 tag: EventTag,
4 initial_reactions: ReactionSet,
5) {
6 let mut todo = initial_reactions;
7 let mut cur_level = 0;
8 while !todo.is_empty() {
9 let reactions_at_this_level = todo.remove_all(|r| level(r) == cur_level);

10 let mut reaction_ctx = self.new_ctx(tag);
11 for n in reactions_at_this_level {
12 self.execute_reaction(n, &mut reaction_ctx);
13 }
14 // executing reactions may have triggered new ones
15 todo = todo.union(reaction_ctx.get_triggered_reactions());
16 self.push_events(reaction_ctx.get_future_events());
17

18 cur_level += 1;
19 }
20 }

Listing 3.4: Pseudo-Rust code for the process_tag function, which processes a tag.

3.7. Representation of reactions

In Listing 3.4, the method execute_reaction (line 12) executes a reaction. The type
of the parameter n is not specified, but it is a first-class object that represents the
reaction to execute. To make process_tag as efficient as possible, we need a type for
this reaction object that is cheap to copy, and to store in sets like todo (line 6). We also
want a low-overhead strategy to implement execute_reaction.

In the C++ and TypeScript targets, each component and reaction is an object that
contains lists of dependencies and anti-dependencies, which contain pointers to other
components it depends on. In safe Rust though, such a pointer-heavy design is not
impossible to implement, but not idiomatic, because it requires using smart pointers,
or unsafe code. In previous work [16], the Rust runtime used to represent reactions
with objects that are directly executable. This was a major strain on performance (cf.
Section 3.16), so the current runtime uses a different approach.

In the current implementation, reactions are represented with simple symbolic iden-
tifiers (IDs). Reaction identifiers are as wide as a 32-bit integer4, so they can be very
efficiently copied and compared. Compared to the approach of C++ , or the previous
Rust prototype, these identifiers do not give immediate access to the reaction they stand
for. This design separates the problem of where the addressee is in memory, from the

4The runtime also supports using 64-bit integers, with a conditional compilation flag. For the sake of
exposition we assume this feature is not used. Confer Section 3.15.

3.8. Layout of reactor instances 47

problem of having to symbolically refer to it and copy such references. It allows us to
manipulate those references much more easily and flexibly compared to actual references
(“pointers”), whose usage is constrained by the ownership system. Rust references also
need to have a referent, but as we will see, in this framework, reifying reactions with
unique objects is unnecessary.

To make reaction identifiers directly executable by the scheduler, we give them addi-
tional structure: an ID contains both an identifier for the container reactor, and one for
the reaction within the given reactor (cf. Listing 3.5).

1 pub(crate) struct GlobalReactionId {
2 container: ReactorId,
3 local: LocalReactionId,
4 }
5 struct ReactorId(u16);
6 struct LocalReactionId(u16);

Listing 3.5: Simplified declaration of GlobalReactionId. Instances have the same layout
as a single u32, which makes them very efficient to copy and hash.

Using these identifiers, we can now express that e.g., setting a port triggers a set of
reactions, by using a set of GlobalReactionId to represent those reactions. At runtime,
to execute a given reaction of this set, the runtime can map the ReactorId to the instance
of the corresponding reactor, and make a virtual call to ReactorBehavior::react with
the LocalReactionId as a parameter.

3.8. Layout of reactor instances
To implement the execution strategy for GlobalReactionId described in the previous
section, the runtime needs to associate each ReactorId with its corresponding instance.
A simple solution is to make the scheduler store all reactor instances within a vector.
Each reactor’s ReactorId is its index in the vector, so that it can be fetched in constant
time. To allow storing reactors of different types within the same vector, we have to use
a fat pointer5 using the trait bound ReactorBehavior (presented in Section 3.3). These
special references allow for dynamic dispatch on the react method. The vector is a
field of the scheduler instance, so because of Rust’s memory safety rules, reactors cannot
contain references that live for a shorter time than the scheduler itself. In practice, this
means they can only contain references with a static lifetime. This constraint applies to
port values and state variables.

Listing 3.6 shows how this strategy is used to implement the execute_reaction func-
tion used on line 12 of Listing 3.4.

Storing reactors within a vector makes for a straightforward, constant time strategy
to fetch reactors without using pointers or references. However, this vector structure is

5Confer Paragraph 2.4.4§Virtual dispatch.

48 3. Runtime design

1 fn execute_reaction(&mut self, n: GlobalReactionId, ctx: &mut ReactionCtx) {
2 let GlobalReactionId { container, local } = n;
3 // self.reactors: Vec<Box<dyn ReactorBehavior>>
4 let reactor = &mut self.reactors[container];
5 reactor.react(reaction_ctx, id);
6 }

Listing 3.6: Pseudo-Rust code that executes a single reaction in a given context.

also hard to change at runtime, since reactors need to be stored at the index of their
reactor ID. This may cause difficulties to support mutations in the future (cf. 6.1.4).

3.9. The reaction context
The reaction context (type ReactionCtx) is used to mediate between the scheduler and
the code of reactions. It provides an API for the reaction to manipulate and query
components of the reactor program.

In C and Python, that API is provided by functions that have access to a global
scheduler instance. In Rust, this is not idiomatic, and global mutable state anyway
requires unsafe Rust code.

In C++ , all components are objects that can be directly manipulated by reactions.
This works because components contain a reference to the scheduler, and may mutate it,
for instance to trigger reactions when a port is set. In Rust, reactor components are also
objects, but they pre-exist the scheduler, so they cannot be constructed with a reference
to it. In fact, without using unsafe Rust (or a lot of smart pointers), they cannot contain
a reference to the scheduler, since that would be duplicating a mutable reference.

For that reason, the Rust runtime treats reactor component objects as simple data
types, and the ReactionCtx6 centralizes the implementation of operations on them.
ReactionCtx serves as a façade for the internals of the scheduler, and is the single
coupling point between the user-written target code in LF and the internals of the
scheduler.

3.9.1. API
The API of ReactionCtx is structured in the following way:

— Methods to query the current state of the logical subsystem: get_current_tag,
get_logical_time, is_shutdown, etc.;

— Methods to query ports, actions and timers: get, set, is_present, etc.;

— Methods to schedule logical actions: schedule, schedule_with_v7;
6https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.ReactionCtx.html
7For schedule with a value.

https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.ReactionCtx.html
https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.ReactionCtx.html

3.9. The reaction context 49

— A method to use asynchronous physical actions: spawn_physical_thread8;

— A method to shutdown the application: request_stop.

Those methods act on reactor components that are injected in reactions (cf. Sec-
tion 4.1.3), like LogicalAction and Timer. Importantly, while ports are implemented
by a Port<T> struct, we never directly inject this struct into reactions. Instead, we wrap
references to them within the types ReadablePort and WritablePort. This restricts the
possible interactions of the reaction with the port: you can’t write into a ReadablePort,
nor read from a WritablePort. Simply using Rust’s mutable and immutable reference
types wouldn’t achieve this goal, as a mutable reference may be both written to and
read from. Note that this level of indirection is most likely completely eliminated by the
Rust compiler.

Back in Figure 3.1, the components and API that are made available to reactions and
can be manipulated with ReactionCtx are all in the blue surface. The reactor runtime
crate exports them in a module called prelude9, so that importing all this API can be
done with a single import statement: use reactor_rt::prelude::*.

1 reaction(input_port) → output_port {=
2 // Rust
3 if let Some(value) = ctx.get(input_port) {
4 ctx.set(output_port, value);
5 }
6 // Rust (2), equivalent
7 ctx.set_opt(output_port, ctx.get(input_port));
8 // C++
9 if (input_port.is_present()) {

10 output_port.set(input_port.get());
11 }
12 // C
13 if (input_port → is_present) {
14 SET(output_port, input_port → value);
15 }
16 =}

Listing 3.7: Comparison of the API to get and set port values in Rust, C++ and C. The
ctx object is an injected ReactionCtx instance.

Listing 3.7 compares the API to get and set port values in Rust, C++ and C. The
compared code samples have equivalent behaviour: if the value is not present, then no
error occurs. In Rust, the fact that values may be present or not is made explicit by
using an Option type. The Option type forces the user to pattern-match on the value
in order to access it.

8spawn_physical_thread is the topic of Section 3.12.1.
9https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/index.html

https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/index.html
https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/index.html

50 3. Runtime design

Note that get, its variants, and is_present, are generic and work uniformly for ports,
actions and timers. There is an invariant, that for any c, ctx.is_present(c) returns
true if and only if ctx.get(c) returns a non-empty Option instance. The method
is_present is not very useful for ports, as pattern-matching on the result of get is a
more ergonomic way to safely access the port value. However, timers, and many actions,
do not carry values — in this case, their value type is set to (), the unit type. For these
components, is_present is a useful shorthand. The generic API uniformly offers all
those methods for all those components, as it allows reducing the number of methods of
ReactionCtx (Rust does not support overloading).

Note that set and schedule are not generic, and only work on ports and actions,
respectively.

3.9.2. Implementation

The high-level API of ReactionCtx hides a divide in the underlying implementation.
When setting a port, not only needs the data cell of the port be updated, but reactions
that declared a dependency on that port10 need to be triggered at the current tag.
Similarly, scheduling an action triggers the dependent reactions at a future tag. Those
two types of interactions are handled somewhat differently.

Reactions that are triggered at the current tag are accumulated into a set, that is
merged into the next reactions to execute (cf. Listing 3.4 line 15), and handled immedi-
ately. Instead, scheduling an action at a future tag causes the creation of an event that
is pushed to a global event queue. An event is basically a tuple of tag and triggered
reactions, and the event queue keeps these events sorted by tag.

An early implementation of ReactionCtx captured a mutable reference to the sched-
uler. While this allowed pushing events directly into the event queue, it falls short of
supporting parallel execution, as several contexts might be alive simultaneously in dif-
ferent threads, and the event queue is not synchronized. At the time the runtime was
updated to support parallel execution the ReactionCtx implementation was updated
not to require a mutable borrow of the scheduler, and events are placed into a tempo-
rary queue local to the ReactionCtx before being pushed into the main event queue (cf.
Listing 3.4 line 16).

ReactionCtx still borrows some of the fields of the scheduler immutably. This re-
quired careful placement and scoping of the different field borrows in the process_tag
method. But these borrowed fields are vital to the functionality of ReactionCtx, as they
include a crucial piece of information: the object instance that records, for each trigger
component (port, action, etc), which reactions they trigger. As already mentioned, trig-
ger components have been kept intentionally simple, and do not store themselves this set
of reactions. This has a practical reason: if all information, for all trigger components,
is stored in a single separate data structure, then we can borrow those sets of reactions
from that data structure instead and avoid cloning them. The reasons why this is so
will be explored in Section 5.1.2.

10in fact, on any port in the same equivalence class for ∗↔ .

3.10. Parallel execution 51

3.10. Parallel execution
The principles behind parallel execution of reactions were exposed in Section 3.5. Trans-
lated into pseudo Rust-code, this means the inner loop of Listing 3.4 may be parallelized.

Rust has a large array of libraries that ease writing data-parallel code, like Cross-
beam11, easy-parallel12, and crates from the async ecosystem like Tokio13. The Rust
runtime uses Rayon14. This choice was mostly motivated by simplicity, as this library
offers simple combinators to turn a sequential loop into a parallel one. Rayon also has
simple APIs to implement thread pooling, which is a feature of the C and C++ runtimes.

1 // reactors: &mut Vec<Box<dyn ReactorBehavior>>
2 reactions_at_this_level
3 .iter()
4 .par_bridge()
5 .fold_with(ctx, |mut ctx, reaction_id| {
6 // execute the reaction
7 let GlobalReactionId { container, local } = n;
8 let reactor = &mut reactors[container];
9 reactor.react(ctx, id);

10

11 ctx
12 })
13 .fold(|| Default::default(), ReactionCtx::merge)
14 .reduce(|| Default::default(), ReactionCtx::merge)

Listing 3.8: Simplified example of how Rayon’s combinators are used to parallelize the
inner loop over the set of reactions at a given level (Listing 3.4 line 11).
Rayon provides the method par_bridge as an extension to regular iterators.
It returns an instance of the trait ParallelIterator, which provides the
combinators seen below: fold_with, fold, reduce. In Rayon, fold operators
are not terminal, which is why they have to be followed with reduce.

Listing 3.8 sketches how Rayon combinators are used to parallelize the inner loop
of process_tag (cf. Listing 3.4). The fold_with combinator takes a reaction context
instance (ctx), and a function of a context and reaction ID (here, a closure). Rayon
clones 15 the context instance so that each worker thread gets its own instance, and exe-
cutes the provided callback. The result of the fold_with call is another parallel iterator
containing all reaction contexts that ended up being created and used. The remaining
fold and reduce combinators, lines 13 and 14, merge these reaction contexts together in
11https://docs.rs/crossbeam
12https://docs.rs/easy-parallel
13https://docs.rs/tokio
14https://docs.rs/rayon
15Rayon relies on the Clone trait for this. If implemented directly by ReactionCtx, Clone could be used

by reaction code to subvert the semantics of the reactor model. Instead, the newtype pattern is used
to implement Clone on a separate wrapper type, not shown in the listing.

https://docs.rs/crossbeam
https://docs.rs/crossbeam
https://docs.rs/easy-parallel
https://docs.rs/tokio
https://docs.rs/rayon
https://docs.rs/crossbeam
https://docs.rs/easy-parallel
https://docs.rs/tokio
https://docs.rs/rayon

52 3. Runtime design

parallel, using the provided combination function ReactionCtx::merge. This produces
a single context which contains the set of reactions and future events triggered by all the
parallel reaction executions. All those combinators implicitly use Rayon’s thread pool,
which the reactor runtime configures at the start of execution. As an optimization, this
logic is not executed when there is a single reaction to execute for a given level. In that
case, the overhead introduced by Rayon cannot be compensated by parallelism, so the
scheduler just executes the reaction inline.

Enhancing the runtime with parallel execution capabilities required a large refactoring
of the internals of ReactionCtx, as explained in Section 3.9.2. The other large piece of
work required that was required for this is related to Rust’s type system. In Rust,
the type system is used by the compiler to guarantee the absence of data races. The
compiler automatically implements the Send and Sync marker traits on data types that
are thread-safe. APIs that require thread safety, like Rayon’s combinators, can then use
Send or Sync as regular trait bounds on type parameters for user-provided data. As
soon as one uses such an API in an existing sequential program, the compiler starts
checking that the data types that are used are thread-safe. Importantly, the compiler
does not consider internally mutable types to be thread-safe. Since instances of those
types may be mutated through a shared reference, different threads that each have a
reference may cause a data race. In the reactor runtime, internal mutability is crucial
to the implementation of ports, so by extension, ports, and reactors that contain them,
are not declared thread-safe by the compiler. The following section explains how this
was solved.

3.10.1. Thread-safety of ports

Section 3.5.4 showed that constraints on the declaration of port connections and reaction
dependencies give us the property that a port will not be used concurrently by reactions,
unless all those concurrent accesses are read-only. Hence, the way we use ports is safe,
and cannot exhibit a data race.

This conclusion was drawn using knowledge about the structure of →, namely, knowl-
edge of the constraints on → imposed by the reactor model (cf. Section 3.5.4). This
information is lost to the Rust compiler’s borrow checker. To prove to the compiler that
ports are not causing data races (which is undefined behaviour in Rust), we need to
use unsafe code. While there is no way around it, Rust’s standard library allows using
safe smart pointers which encapsulate that unsafe code. The smart pointer RefCell
checks at runtime that Rust’s borrowing rules are respected: at any point in time, either
exactly one mutable borrow, or zero or more immutable borrows. Its implementation
does not use atomic operations, so RefCell is not thread-safe. Using the thread-safe
equivalent, AtomicRefCell16, incurs a large runtime overhead (cf. Section 5.1.3). Since
this performance penalty is incurred even though we know the program is safe, the Rust
runtime uses unsafe code manually to avoid them.

16https://docs.rs/atomic_refcell/

https://docs.rs/atomic_refcell/
https://docs.rs/atomic_refcell/

3.11. Tag cleanup 53

3.10.2. Sharing reactors

The astute reader will probably realize that there is a problem with Listing 3.8. Line
8 borrows the reactor to execute the reaction. But this mutable borrow might happen
multiple times concurrently, on the same reactors vector, which violates Rust’s bor-
rowing rules. Here, there is no way around unsafe code: we have to use pointers instead
of references, and explicitly tag this pointer as Send (using a newtype). There is no data
race occurring, because the reactions within the set reactions_at_this_level are all
from different reactors. This is guaranteed by the construction rules of the dependency
graph: if two reactions are in the same reactor, then an edge connects them in the de-
pendency graph to represent their priority relation. Hence, no two reactions of the same
reactor have the same level.

Note that here, there is truly no way to write this in purely safe code using e.g. a
mutex or other standard smart pointers17. The root of the problem is not thread-safety
proper, it is that all reactors are stored within the same vector, and the compiler cannot
prove that distinct indices are accessed.18

3.11. Tag cleanup
LF semantics specify that ports and actions may be either present or absent at a given
tag. At the start of every tag, all ports must be absent, and they only become present if
they are set by some reaction executing at that tag. Similarly, actions are only present
at a given tag if they have been scheduled for that tag.

In the current implementation, port and action values are contained in the port or
action instances. This means that these instances need to be emptied of their value after
processing a tag, to make sure that their value is not observable in future tags. This
is implemented by a virtual call to the cleanup_tag function of ReactorBehavior (cf.
Listing 3.1, line 7). As a simple implementation strategy, this method is called on all
reactors of the application at the end of the process_tag function, which might be a
performance bottleneck for some programs. Improving this implementation is left for
future work (cf. Section 6.1.5).

3.12. Events and asynchrony
While processing a tag by synchronously executing reactions, new reactions may be
scheduled at a future time point, because of logical action. Using physical actions, it is
even possible for asynchronous code to schedule reactions. In the runtime framework,
these future triggerings are called events, and they are reified by the struct Event.

Listing 3.9 shows the declaration of Event and EventTag. An Event contains the tag
at which it is to be executed, and a set of reactions to execute. When handling the
17Short of wrapping the reactor vector itself in a mutex, thereby making our loop entirely sequential.
18It is perhaps interesting to note that it is the only instance where using unsafe code in the runtime

cannot be avoided.

54 3. Runtime design

event, these reactions will be fed to process_tag as the initial set of reactions for the
tag. The event may also cause termination of the program after the tag is processed.
Termination events are otherwise treated like regular events, so that it is possible for
timers and actions to be triggered normally even on the shutdown tag. Termination
events are produced by calls to ReactionCtx::request_stop19.

1 struct Event<’x> {
2 tag: EventTag,
3 reactions: ReactionPlan<’x>,
4 terminate: bool,
5 }
6 /// Represents a tag
7 struct EventTag {
8 offset_from_t0: Duration,
9 microstep: MicroStep,

10 }

Listing 3.9: Simplified declaration of Event and EventTag.

EventTag is represented as a time offset from the start time of the program. For much
of the history of the runtime, EventTag was actually based on absolute time instants.
While both are equivalent in terms of the ordering they define on tags, using relative
times makes for more readable trace messages, and basing EventTag directly on relative
times means we do not need the scheduler’s initial time to perform relativization when
pretty-printing tags. Another benefit of relative offsets is that tags can be created in a
vacuum from a duration. This is leveraged by the tag!20 macro, which allows creating
a tag with the syntax tag!(T0 + 20 ms) for instance. This facility is used extensively
in LFC’s integration tests.

Events are processed in increasing order of their tag. Before it is time to process
them, they are stored in an event queue, which stores them in ascending tag order.
Implementation details are the focus of Section 5.1.4.3.

3.12.1. Asynchronous events

Events may be produced by asynchronous threads, which is useful to handle input coming
from the external world (e.g. keyboard input, or a pressure reading from a probe). Such
events are associated with a physical action, and have, as their tag, the current physical
time at the point where the physical action was scheduled (plus a possible offset). This
ensures that they are scheduled in the future (with respect to the latest tag processed
by the logical subsystem, or currently being processed), since the current logical time is
always lagging behind physical time.
19https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.ReactionCtx.html#

method.request_stop
20https://lf-lang.github.io/reactor-rust/reactor_rt/macro.tag.html

https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.ReactionCtx.html#method.request_stop
https://lf-lang.github.io/reactor-rust/reactor_rt/macro.tag.html
https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.ReactionCtx.html#method.request_stop
https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.ReactionCtx.html#method.request_stop
https://lf-lang.github.io/reactor-rust/reactor_rt/macro.tag.html

3.12. Events and asynchrony 55

Events produced by asynchronous threads need to be forwarded to the event queue of
the scheduler. Since we can’t just share a mutable reference to the event queue between
threads, we instead use a channel abstraction, provided by the Crossbeam21 library.
Channels are a multi-producer single-consumer22 abstraction, which (in our case) uses
a shared unbounded buffer23 to communicate. The receiver remains in the ownership of
the scheduler, while the senders can be cloned and given out to new threads.

API Asynchronous threads that want to communicate with the scheduler cannot be
allowed all interactions permitted to reactions by ReactionCtx. For instance, functions
like get_logical_time, and functions that manipulate components like ports and ac-
tions should not be callable asynchronously, as they would be racing with the main
scheduler thread. For this reason, the restricted API provided to emit asynchronous
events is not provided by ReactionCtx, but by the struct AsyncCtx24.

AsyncCtx only allows scheduling physical actions, as this is the way provided by the
reactor model to produce events outside of synchronous reaction execution. Physical
actions are scheduled using an offset from the current physical time, not the logical
time. AsyncCtx communicates with the scheduler through the event channel. It owns a
sender instance bound to the scheduler’s receiver.

AsyncCtx instances are produced by reaction context instances using the method
spawn_physical_thread25. The AsyncCtx instance captures immutable references to
the internals of the scheduler. To ensure that these references do not become dangling
if the scheduler is dropped and the asynchronous thread is still running, we use scoped
threads (provided by Crossbeam). Scoped threads are bound to a scope, which is a lexical
scope reified by a scope object. When the scope object is dropped, the thread is joined,
i.e., the destructor of the scope blocks until the thread terminates. This ensures that
we can use references within the thread, provided the references outlive that scope. The
reactor runtime creates a scope on program startup that joins asynchronous threads when
the scheduler shuts down, so that the references captures by threads to the scheduler
are guaranteed to be valid. The lifetime of this global scope is symbolized by a lifetime
parameter on the scheduler and on ReactionCtx. The Rust type system otherwise
ensures that we do not capture references that do not outlive that scope.

Listing 3.10 shows an example usage of spawn_physical_thread. The only references
that may be captured by the thread closure are those that outlive the thread scope (they
are internals of AsyncCtx). Importantly, the thread cannot capture e.g. ctx, the reaction
context, because the compiler can prove that the ctx reference injected into the reaction
does not live long enough.

21https://docs.rs/crossbeam
22Crossbeam channels support multiple consumers, but in the reactor runtime, the receiver is unique.
23Using a bounded buffer would have advantages, cf. Paragraph 3.17§Concurrency.
24https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.AsyncCtx.html
25https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.ReactionCtx.html#

method.spawn_physical_thread

https://docs.rs/crossbeam
https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.AsyncCtx.html
https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.ReactionCtx.html#method.spawn_physical_thread
https://docs.rs/crossbeam
https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.AsyncCtx.html
https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.ReactionCtx.html#method.spawn_physical_thread
https://lf-lang.github.io/reactor-rust/reactor_rt/prelude/struct.ReactionCtx.html#method.spawn_physical_thread

56 3. Runtime design

1 physical action act: u32;
2

3 reaction(startup) → act {=
4 // clone to gain ownership
5 let act = act.clone();
6 ctx.spawn_physical_thread(move |link| {
7 std::thread::sleep(Duration::from_millis(200));
8 // This will send an event through the channel.
9 // The event tag is the current physical time

10 // at the point this statement is executed.
11 link.schedule_physical_with_v(&act, Some(123), Asap).unwrap();
12 });
13 =}

Listing 3.10: Example usage of spawn_physical_thread in LF.

3.12.2. Main event loop

The main event loop of the scheduler drains events from the Receiver regularly, and
inserts them into the sorted event queue. To select which event to process, the scheduler
picks the event with the earliest tag, and then waits until the current physical time
matches the logical time of the tag.

Listing 3.11 shows the implementation of the event loop. It starts by processing the
initial tag (line 2). Reactions that declared a dependency on startup are executed using
the process_tag routine. On line 4, the program enters an unconditional loop using
the loop keyword. On line 6, pending asynchronous events are flushed from the channel
receiver. The macro push_event is used to insert those events into the event queue,
which reorders them according to their tag. The call to try_iter does not block to wait
for events, and the loop proceeds to line 10 if the channel is empty. On line 10, the call
to take_earliest attempts to remove the earliest event from the event queue.

If the event queue is non-empty, the identifier evt is bound to the removed event,
and we proceed into the body of the if statement. On line 11, the event is checked to
be earlier than the timeout of the application, if there is one. If it is past the timeout,
the event is ignored and the shutdown routine is called (line 13). This will execute
reactions that depend on the shutdown trigger, using the timeout as the logical time of
the shutdown tag. The program ends, because of the return statement. If the tag of the
event is not past the timeout, on line 16, the call to wait_until will pause the current
thread to wait for the tag of the event, in case the logical time of the event tag is greater
than the current physical time. When this call returns, the current physical time is
greater than the tag of the event, and it can be processed. Then, if it was a termination
event (produced by a request_stop call), the shutdown tag is processed and the program
ends (line 18). Otherwise, process_tag is called to execute the reactions triggered by
the event (line 20). The loop then proceeds to its next iteration.

If the event queue is empty, take_earliest will return None (line 10). In this case, an

3.12. Events and asynchrony 57

1 fn launch_event_loop(mut self) {
2 self.startup();
3

4 loop {
5 // flush pending events, this does not block
6 for evt in self.rx.try_iter() {
7 push_event!(self, evt);
8 }
9

10 if let Some(evt) = self.event_queue.take_earliest() {
11 if let Some(timeout) = self.timeout_tag {
12 if timeout < evt.tag {
13 return self.shutdown(timeout, None);
14 }
15 }
16 self.wait_until(evt.tag); // may sleep, async wake up code elided
17 if evt.terminate || self.shutdown_time == Some(evt.tag) {
18 return self.shutdown(evt.tag, evt.reactions);
19 }
20 self.process_tag(evt.tag, evt.reactions);
21 } else if let Some(evt) = self.receive_event() { // this call may block
22 push_event!(self, evt);
23 } else {
24 // all senders have hung up
25 return self.shutdown(EventTag::now(), None);
26 }
27 }
28 }

Listing 3.11: Outline of the main event loop of the scheduler.

58 3. Runtime design

attempt is made to wait for an asynchronous event by blocking on the channel receiver
(line 21). If this succeeds, the new event is pushed into the event queue, and the loop
proceeds to its next iteration, where the event will be processed. Otherwise, this means
that the channel returned a RecvError, because it is disconnected. This happens if
no live asynchronous thread holds a reference to a sender, which means that the event
queue will remain empty forever. In this case, the shutdown routine is executed, and
the program ends (line 25).

3.12.3. Timeline synchronization

The call to wait_until on line 16 (Listing 3.11) lets physical time catch up with logical
time, to resynchronize the two timelines.

The wait is implemented by blocking on the channel receiver with a timeout. The
precision of the response time is unknown as of yet, and future experiments should be
dedicated to evaluating it. However, compared to using a better specified wait function
like shuteye26, this offers a very significant advantage: the scheduler wakes up as soon as
an asynchronous event is produced. A naïve implementation with e.g. thread::sleep
would indeed have the scheduler ignore any new events while it sleeps.While the reactor
model specifically allows logical time to lag behind physical time, this is to be avoided,
as timely event handling might be safety-critical.

Implementing the same behaviour with shuteye or thread::sleep would require im-
plementing a busy wait with exponential backoff. While Rust libraries like Crossbeam27

provide facilities to ease this, a prior investigation to determine the precision of the
channel’s timeout is required.

3.12.4. Unbounded waiting and keepalive

An empty event queue does not necessarily mean the program should be terminated:
if asynchronous threads exist, they may still push events to the scheduler. Other LF
targets have no way to check that this condition holds, so they rely on configuration to
determine whether the event loop should terminate, or wait. This is the purpose of the
keepalive target property: if true, the program will wait for asynchronous events when
the event queue is empty, possibly indefinitely (modulo timeout).

In Rust though, a better solution is possible. We know that asynchronous threads can
only produce events through Sender instances that the scheduler gives out. Channels
also have a built-in disconnection mechanism: if no sender exists, the channel is consid-
ered disconnected, which means that any attempt to receive a message will result in a
RecvError or equivalent (without blocking). If the event queue is empty, the scheduler
could just try waiting for a message, and exit the program if it receives a RecvError.

This sounds like it should work out of the box. However, this overlooks an important
aspect of the channel API: the only way to create a new sender is by cloning an existing
26https://crates.io/crates/shuteye
27https://crates.io/crates/crossbeam-utils

https://crates.io/crates/shuteye
https://crates.io/crates/crossbeam-utils
https://crates.io/crates/shuteye
https://crates.io/crates/crossbeam-utils

3.13. Entry point for execution 59

one. If the sender count drops to zero, no more senders can be created. In both std28

and Crossbeam channels, this makes the transition to a disconnected state irreversible.
Since the scheduler has to be able to produce a new sender whenever a reaction asks

for it, it has to keep a sender alive all the time, and the channel never gets disconnected.
This is solved by patching Crossbeam’s channel implementation to make the Receiver
instances able to produce new senders at will. This was a complex change, both from a
purely technical standpoint (channel internals are complex, low-level unsafe code), and
also to create a safe Rust API for this new feature of Receiver. The problem with the
API is namely, that Sender and Receiver offer a unified façade over different channel
implementations, and not all of them should be able to produce new senders at will.

The patch is currently waiting for a review29 to be included in the upstream Crossbeam
repository.

3.13. Entry point for execution

The members of SyncScheduler are nearly entirely private: the type only exposes a
public entry point as an associated function. An example usage of that entry point
is shown in Listing 3.12. The type SchedulerOptions (line 2) configures the runtime
itself, while the other argument (built on line 6) are construction parameters for the main
reactor type. The call to run_main (line 8) builds an instance of the main reactor, which
recursively assembles the entire reactor tree for the program. run_main then transforms
the built dataflow graph into a DataflowInfo instance, builds a scheduler instance with
it, and launches the event loop shown in Listing 3.11.

1 fn main() {
2 let mut options = SchedulerOptions::default();
3 options.timeout = Some(delay!(15 ms));
4 options.threads = 8;
5

6 let main_args: MainReactorType::Params = . . .;
7

8 SyncScheduler::run_main::<MainReactorType>(options, main_args);
9 }

Listing 3.12: Prototypical skeleton of a main function for a reactor program, whose main
reactor has type MainReactorType.

28https://doc.rust-lang.org/std/sync/mpsc/index.html
29https://github.com/crossbeam-rs/crossbeam/pull/750

https://doc.rust-lang.org/std/sync/mpsc/index.html
https://github.com/crossbeam-rs/crossbeam/pull/750
https://doc.rust-lang.org/std/sync/mpsc/index.html
https://github.com/crossbeam-rs/crossbeam/pull/750

60 3. Runtime design

3.14. Assembly phase

The execution infrastructure for reactors requires runtime data structures that are de-
rived from the structure of the reactor program. These include, for instance, a record of
which reactions are triggered by which port, which is required to handle setting a port
correctly.

This information is collected from a global dependency graph during initialization of
the program, in a dedicated assembly phase. Building a dependency graph at runtime
allows the runtime to verify the program structure, and to not have to trust the LF
code generator completely. It also makes for a simple mapping from the reactor model
concepts to an execution strategy, as explained in Section 3.5. Note however, that the
dependency graph is thrown away before execution starts, as the scheduler only uses
more efficient data structures to drive the rest of the execution.

3.14.1. The assembly module

Types related to assembly are mostly concentrated in the assembly30 module. The
contents of the assembly module, and other related types are graphed in the yellow
surface of Figure 3.1 (page 35). The intersection with the scheduler (red) represents the
data structures built during assembly, and used at runtime by the scheduler, the most
important of which being DataflowInfo. The yellow surface contains types for reactor
components, like Port or Timer. Some of them are also part of the reaction API (blue),
while others are not communicated to reactions directly (like Port).

The most important public types in the assembly module are AssemblyCtx and
ReactorInitializer, whose purpose and interaction have been cursorily presented in
Section 3.3. Each reactor has to implement the trait ReactorInitializer (cf. List-
ing 3.2), whose assemble function creates an instance of Self using an AssemblyCtx
parameter. The latter provides a declarative API to create new reactor components and
declare their dependencies. That API encapsulates all the details of the graph construc-
tion, so as to limit the coupling of ReactorInitializer to the internals of the assembly
module.

Reactor components are owned by the struct that implements ReactorInitializer,
and we cannot place references to them in the graph. Instead, the graph use symbolic
identifiers to refer to components: reactions are identified by a GlobalReactionId, while
triggers use the type TriggerId.

TriggerId is a newtype over u32 (u64, with a compilation flag). Trigger components
implement TriggerLike, which allows the assembler to access their ID generically. The
relevant declarations are reproduced in Listing 3.13.

Size constraints on reactor programs The structure of identifiers for reactions (List-
ing 3.5) and components (Listing 3.13) poses clear upper limits on the size of reactor
programs:
30https://lf-lang.github.io/reactor-rust/reactor_rt/assembly/index.html

https://lf-lang.github.io/reactor-rust/reactor_rt/assembly/index.html
https://lf-lang.github.io/reactor-rust/reactor_rt/assembly/index.html

3.14. Assembly phase 61

1 struct TriggerId(u32);
2 trait TriggerLike {
3 fn get_id(&self) → TriggerId;
4 }

Listing 3.13: Simplified declarations of TriggerId and TriggerLike.

— The maximum number of reactors is 216 (range of ReactorId)

— The maximum number of reactions per reactor is 216 (range of LocalReactionId)

— The maximum number of total components in the program is 232 − 2 (range of
TriggerId minus 2 reserved values for shutdown and startup)

With the appropriate conditional compilation flag (cf. Section 3.15), the runtime crate
may also be built with 64-bit wide GlobalReactionId and TriggerId. In this case, the
range of ReactorId and of LocalReactionId are both expanded to 232 distinct values,
while the range of TriggerId is expanded to 264 − 2.

3.14.2. Dependency graph implementation

The runtime uses a graph library called petgraph31 to represent the dependency graph.
Petgraph’s DiGraph API assigns an opaque index to every node when it is first recorded
in the graph. Operations on a digraph, e.g. recording an edge, always use these in-
dices instead of the node itself. This scheme allows petgraph to simplify some graph
algorithms, and also allows mutating the graph while traversing it (which would not be
possible if the indices were references to the internals of the graph).

Since the reactor runtime already has its own specialized implementations of TriggerId
and GlobalReactionId, the runtime implements a wrapper over a petgraph DiGraph
called DepGraph. The dependency on petgraph and its specific index types is confined
to the internals of DepGraph as an implementation detail.

DepGraph uses TriggerId and GlobalReactionId to represent triggers and reactions,
not the reactor components themselves, which are owned by their enclosing reactor
instance. This should be kept in mind when reading the mathematical formalism of this
section, as it equates IDs and their referent.

3.14.3. Uses of dependency graphs

At runtime, the only information that the reaction context requires about the structure
of the program is the set triggered(t) of reactions triggered by each trigger component
t ∈ T . This is necessary to implement functions like ReactionCtx::set (for ports)
and ReactionCtx::schedule (for actions). When a port t is triggered through set,
triggered(t) is merged into the set of reactions that are to be executed next at the same
31https://docs.rs/petgraph/

https://docs.rs/petgraph/
https://docs.rs/petgraph/

62 3. Runtime design

tag. When an action or timer t is triggered through schedule, triggered(t) is used to
build an Event that is to be pushed to the event queue.

In terms of the reactor model, triggered(t) is defined as follows:

(i) If t is a port, then triggered(t) is the set of reactions which declare a trigger
dependency on a port p such that t

∗↔ p.

(ii) Otherwise, t is an action, a timer, startup, or shutdown. triggered(t) is the set of
reactions that have directly declared a trigger dependency on t.

In terms of dependency graphs, triggered(t) is the set of reactions reachable from t in
one step, or if t is a port, the reactions reachable in one step from any port reachable
from t through edges contributed by → (which are the only edges that connect ports
together)32.

Hence, a simple graph exploration suffices to compute a map data structure that
corresponds to t ∈ T 7→ triggered(t).

DataflowInfo The data structure that encapsulates the map described above is called
DataflowInfo. In order to implement the process_tag function as shown in Listing 3.4,
we would also need this data structure to contain level information for reactions, as in
that listing, level is called on line 9 to filter reactions. This could be accomplished by
saving e.g. a HashMap<GlobalReactionId, u32>. The actual runtime implementation
does not need to do that explicitly, as reaction sets are actually pre-partitioned by level
during the construction of DataflowInfo. This optimization and the way it rewrites
process_tag are described in Section 5.1.1.

3.14.4. Debug information

Apart from building the dependency graph, the assembly phase also collects debug infor-
mation for all reactions, reactors, and components into a specialized data structure, the
DebugInfoRegistry. Apart from preserving identifiers of the LF source, it also contains
compact data structures that preserve the containment relationship of reactor compo-
nents. This information is used to perform validity checks at runtime, for instance, to
check that the assumptions detailed in Section 3.5.4 are respected.

The API of DebugInfoRegistry is reproduced in Listing 3.14. The struct is internal
to the scheduler, and is used to format trace messages, when logging is enabled. Keep-
ing debug information outside of reactor components themselves makes the component
objects lighter, and centralizes this concern.

32Note that this algorithm gives incorrect results for bound ports, since we only explore the downstream
of t, not the entire equivalence class for ∗↔ . However, bound ports are never set explicitly, so we do
not need to know the reactions they trigger and ignore them.

3.15. Cargo integration 63

1 impl DebugInfoRegistry {
2 fn get_debug_info(&self, id: ReactorId) → &ReactorDebugInfo;
3 fn fmt_reaction<’a>(&’a self, id: GlobalReactionId) → impl Display + ’a;
4 fn fmt_component<’a>(&’a self, id: TriggerId) → impl Display + ’a;
5

6 fn get_container(&self, id: ReactorId) → Option<ReactorId>;
7 fn get_trigger_container(&self, id: TriggerId) → Option<ReactorId>;
8 }

Listing 3.14: Selected members of DebugInfoRegistry.

3.15. Cargo integration
The runtime integrates with Cargo, the main advantage being easy access to a large
number of Rust libraries. It also provides ancillary features, like documentation gener-
ation, and conditional compilation. Publicly supported conditional compilation flags33

include:

parallel-runtime Unless this is provided, the runtime is built without parallel execution
support. In which case, the Rayon dependency is not compiled at all. This re-
duces compile times and binary size for programs which do not exhibit a lot of
concurrency, or platforms that do not support threading.

wide-ids This feature widens GlobalReactionId and TriggerId to be 64 bits wide, on
64-bit platforms. This allows the reactor runtime to address a greater number of
reactors (232 compared to 216), and may be useful for programs with very large
numbers of reactors. Using this feature comes with a slight performance degrada-
tion, so the default ID size is 32 bits, even on 64-bit platforms.

no-unsafe Changes the implementation of ports to use check at runtime that Rust’s
borrowing rules are respected. The default implementation uses unsafe code, as
explained in Section 3.10.1.

The runtime also defines conditional compilation features for internal use, for instance,
to make internal implementation details of the crate available to benchmarking code.

3.16. Comparison with the prototype
3.16.1. The single Reactor trait
The design presented in [16] uses a single Reactor trait. The most important difference
between this trait and the current ReactorBehavior is that Reactor uses strongly typed
reaction identifiers, by using an associated type as shown in Listing 3.15. This provides
additional type safety: it makes the react function total on the type of the reaction
33Cargo features, cf. Section 2.4.6.

64 3. Runtime design

ID, and makes reaction IDs of different reactors incomparable and unconvertible to each
other. On the other hand, this also makes it impossible to define an object-safe version
of the trait: reaction IDs of different reactors might have different sizes, and hence we
can’t use dynamic dispatch on that method. Instead, to execute reactions generically,
a closure is created, that captures both a reference to the reactor and a copy of the
(strongly typed) reaction identifier. The closure is then callable as a function of nothing
more than the ReactionCtx parameter. Dynamic dispatch is used on the closure type,
rather than on the reactor type.

This has several unintended drawbacks. The first is that each closure needs its own
mutable reference to the reactor instance and its state. Of course Rust’s ownership
rules do not allow several simultaneous mutable borrows, so the reactor reference has to
be wrapped within several layers of smart pointers to be shared. Similarly, since Rust
checks thread-safety at compile-time, one layer of this stack of smart pointers has to
be a Mutex, to guarantee the absence of data race for the reactor state. This mutex is
acquired on every reaction execution, which in itself is a very significant performance
bottleneck.

Another significant drawback of the previous design is that the closure objects that
represent reactions are very expensive to clone, as to be thread-safe, the reference to the
reactor needs atomic reference-counting operations. However, the scheduler needs to be
able to represent e.g. a set of reactions to schedule, and in that previous design, these sets
actually contain a clone of the closure. Due to otherwise suboptimal design, the amount
of replication is large, which makes this another significant performance bottleneck. In
the runtime presented in this thesis, LocalReactionId is on the contrary, very cheap to
copy (cf. Section 3.7).

1 pub trait Reactor {
2 type ReactionId;
3 // Execute a reaction with the given ID
4 fn react(. . ., reaction_id: Self::ReactionId, . . .);
5 }

Listing 3.15: Declaration of the Reactor trait in an early runtime prototype [16]. At
that time reactor instances were still assembled manually so there are no
initialization-related methods on the trait.

3.16.2. Debug information

Another inefficiency of the older prototype is that, for the sake of debugging, it makes
reactor identifiers carry information about all enclosing reactors. This makes reactor
IDs larger and more expensive to copy.

Listing 3.16 shows the declaration of those IDs in the older runtime. That runtime
uses GlobalId to reference both triggers and reactions, while the runtime presented in
this thesis has distinct types, that have a different internal structure. ReactorId is

3.17. Notable differences with other LF targets 65

1 pub enum ReactorId {
2 Root;
3 Child {
4 // Rc = reference counting smart pointer
5 parent: Rc<ReactorId>,
6 name: &’static str
7 }
8 }
9 pub struct GlobalId {

10 container: ReactorId,
11 local: u32,
12 name: &’static str,
13 }

Listing 3.16: Declaration of ReactorId and GlobalId in the runtime prototype.

structured as a linked list of identifiers, using an Rc smart pointer (line 5). This way,
every reactor ID knows about its container. The main benefit of that design is that these
IDs can be pretty-printed easily. The reaction context can also check at runtime that
some interactions are legal with respect to the declared dependencies of reactions.

These IDs need to be copied and passed around a lot, which is obviously very ineffi-
cient, not only because of the size of the IDs, but also because of the recursive cloning
of the whole Rc chain.

The runtime described in this thesis uses more lightweight IDs, and the debug infor-
mation is isolated into the DebugInfoRegistry (cf. Section 3.14.4). This means debug
information does not get in the way of efficient copying of IDs.

3.17. Notable differences with other LF targets

Reactor internals The most important difference with other object-oriented target is
that reactor instances are much simpler in Rust. They only contain their state, their
own components and their ID, and different concerns are distributed across separate
registries.

For instance, dependency information is centralized in the dependency graph. While
the use of a dependency graph at runtime is similar to what the C++ target does, in
Rust, the dependency graph is truly the only place where dependency information is
registered. By contrast, in C++, each reactor component and reaction contains lists
of dependencies and anti-dependencies, thereby making the object graph a dependency
graph itself. This kind of design is not idiomatic in Rust, as the ownership model makes
it extremely difficult to implement such self-referential, pointer-heavy data structures.
The Rust implementation makes sure that reactors never contain dangling pointers to
other components, as these pointers are not needed in the first place. Similarly, storing
debug and topological information is offloaded to the DebugInfoRegistry, for use by the

66 3. Runtime design

scheduler logging functions and for runtime assertions. The use of symbolic identifiers
to refer to components and reactions and glue everything together is a unique feature of
the Rust target.

References in states and ports That the state of reactors may not contain references,
unless those references have the static lifetime. This is because reactor instances are
owned by the scheduler, so the references contained by reactors must outlive the scheduler
instance, which itself lives as long as the entire execution phase of the program. In
practice, the static lifetime is nearly equivalent. Since port instances are owned by
reactor instances, port values must also have the static lifetime.

This constraint is imposed by Rust’s ownership model, and makes sure that reactors
or ports never contain dangling pointers. It also enforces at compile-time that reactors
cannot leak references to their internal state to other reactors, thereby possibly causing
data races. The Rust runtime is currently the only LF runtime that can enforce this.
Applications that cannot avoid sharing references, e.g., for performance reasons, can still
use unsafe code to do so, or smart pointers.

Port implementation In the C++ runtime, ports have a pointer to their upstream,
while in Rust, the data cell is actually a separate first-class object and no pointers to
the ports themselves exist. In Rust, transitive port connections are completely reduced:
all ports of a given equivalence class for ∗↔ have the same pointer to the same data cell,
and so the data is exactly one pointer indirection away. In C++, the number of data
accesses is linear with respect to the length of the upstream chain (though these chains
are typically very short).

Concurrency The Rust runtime delegates parallelization of reactions to the Rayon
framework, which reduces the complexity of the implementation. By contrast, the C
and C++ runtimes implement their own thread pooling logic.

The use of channels as a communication abstraction between asynchronous threads
and the scheduler is also a specificity of the Rust runtime. As explained in Section 3.12.2,
this removes the need to write custom waiting routines using thread::sleep or equiva-
lent. It also makes the Rust target the only one to date not to need the keepalive target
property. The channel implementation currently uses an unbounded buffer, which could
cause event-producing threads to overwhelm the scheduler. In the C runtime, asyn-
chronous threads have to compete for a mutex in order to schedule an event, giving the
scheduler a natural mechanism for applying backpressure. In Rust, this could be achieved
by changing the unbounded buffer to a bounded one, which would block event-producing
threads in case the buffer is full.

The use of scoped threads to enable safe borrowing of stack-local data is also a speci-
ficity of the Rust target. C++ has libraries for scoped threads34, so the C++ runtime
could do that too in the future.
34https://www.boost.org/doc/libs/1_76_0/doc/html/thread/ScopedThreads.html

https://www.boost.org/doc/libs/1_76_0/doc/html/thread/ScopedThreads.html

3.17. Notable differences with other LF targets 67

The types of port and action values are verified at compile-time to be thread-safe
(using Rust’s Sync trait). This ensures that executing reactions reading from the same
port concurrently will not cause a race condition.

Safety The Rust type system helps to prevent data races in concurrent code, and to
guarantee memory safety. It does so by forcing library authors to think thoroughly about
the corner cases of their abstractions, and the actual safety conditions of their “unsafe”
code. For this reason, the Rust runtime enjoys a high standard of safety, though it could
be improved further by formal verification in future work (cf. Section 6.1.2).

Package management Since the runtime leverages Cargo, it has first-class integration
within the Rust ecosystem. This allows the runtime to use features like conditional
compilation, and documentation generation. The same can be said of the TypeScript
and Python targets, but not so much the C and C++ targets.

69

4. The LF-Rust compiler

Aside from its runtime, the second piece of the LF Rust target is its code generator.
The code generator generates a target Rust program that binds to the runtime library
using the traits it publishes (cf. Section 3.3). The entry point of the target program
is a main function that calls the entry point of the scheduler (cf. Section 3.13). This
chapter describes the form of the generated Rust program in Section 4.1, and the code
generator’s architecture in Section 4.3.

4.1. Form of the generated code
This section describes the form of the generated code. The reader may refer to Section 3.3
for definitions of the traits that the generated code has to implement.

4.1.1. Project layout

To integrate with Cargo, the Rust code generator generates a Cargo project with a
standard structure. Figure 4.1 shows the structure of the directory in which the target
program is generated.

The top-level directory contains a generated Cargo.toml file, which is the configu-
ration file for Cargo. The rust-toolchain file is also used as configuration. The src
directory contains generated Rust sources, and the target directory contains build ar-
tifacts generated by Cargo.

Within the source directory, a main.rs file contains the entry point of the program
(the main function). A subdirectory defines a module named reactors, which contains

/
Cargo.toml
rust-toolchain
src

main.rs
reactors

mod.rs
reactor1.rs
. . .

target
. . .

Figure 4.1.: Directory structure of a Rust target program.

70 4. The LF-Rust compiler

a Rust file for each reactor class used in the LF program (in Figure 4.1, reactor1.rs is
one of them). Each such reactor file declares a Rust module (cf. Section 2.4.4).

4.1.2. Reactor modules

Each reactor class corresponds to a Rust module in the generated program. This mod-
ule contains a struct definition that implements the traits published by the runtime,
ReactorBehavior and ReactorInitializer (cf. Section 3.3), and several other structs
whose role is explained in this section and those that follow.

Listing 4.1 shows a simple LF reactor, and Listing 4.2 shows the outline of the cor-
responding reactor module. The reactor declaration generates a struct declaration con-
taining the state variables of the reactor (line 4). This state struct has the same name
as the LF reactor, as it is the only one with which user-written target code interacts
directly (cf. Section 4.1.3). Reactor parameters are generated into a separate struct,
here, SimpleReactorParams (line 13).

Another struct implements the traits of the reactor runtime, defined here on line 18.
Since it implements the adapter design pattern, its name ends with Adapter. This struct
contains an instance of the state struct in a field (line 20). It also contains fields for each
reactor component defined by the reactor class, here, the port out (line 22).

The names of fields defined by the the code generator (like __impl) start with two
underscores, which is an identifier prefix reserved by LF to avoid name collisions. Identi-
fiers in LF may indeed not start with this prefix, which, e.g., prevents a port from being
named __impl, thereby conflicting with other generated fields.

Parent module

The parent module for all reactor implementation modules is the reactors module,
defined by the mod.rs file shown in Figure 4.1. For each reactor submodule, the parent
module exports the type of the adapter struct and of the param struct, as shown in
Listing 4.3. In this listing, the mod declaration links the sibling simple_reactor.rs file
as a submodule of the reactors module. The exports that follow make it easier to refer
to those types when reactors assemble children instances (cf. Section 4.1.4).

4.1.3. Reactions

The body of reactions may access state variables of the containing reactor. Reactions
are declared as methods of the state struct, and can therefore access the state struct
with the keyword self.

Listing 4.4 shows how the method for the reaction of SimpleReactor (cf. Listing 4.1)
is declared, on line 9. This method is private (as it omits the pub modifier). It takes a
&mut self parameter, for the state struct, a parameter for the reaction context, named
ctx, and a parameter for the port it declared a dependency on (out). The body of the
method is copy-pasted from the LF source file without further transformation. Notice

4.1. Form of the generated code 71

1 reactor SimpleReactor(param: u32(0)) {
2 state x: u32(param);
3 output out: u32;
4 reaction(startup) → out {=
5 ctx.set(out, self.x);
6 =}
7 }

Listing 4.1: LF code for a simple reactor.

1 use reactor_rt::prelude::*;
2

3 // state struct
4 pub struct SimpleReactor {
5 x: u32,
6 }
7

8 impl SimpleReactor {
9 // reaction implementations (elided)

10 }
11

12 // parameter struct
13 pub struct SimpleReactorParams {
14 param: u32,
15 }
16

17 // adapter struct
18 pub struct SimpleReactorAdapter {
19 __id: ReactorId,
20 __impl: SimpleReactor,
21 // component declarations
22 pub out: Port<u32>,
23 }
24

25 impl ReactorInitializer for SimpleReactorAdapter {
26 type Wrapped = SimpleReactor;
27 type Params = SimpleReactorParams;
28 // (elided)
29 }
30

31 impl ReactorBehavior for SimpleReactorAdapter {
32 // (elided)
33 }

Listing 4.2: Outline of the reactor module defined for SimpleReactor (cf. Listing 4.1),
in a simple_reactor.rs file. Reaction declaration elided.

72 4. The LF-Rust compiler

1 mod simple_reactor;
2 pub use simple_reactor::SimpleReactorAdapter;
3 pub use simple_reactor::SimpleReactorParams;

Listing 4.3: Declarations in the parent module of SimpleReactor (cf. Listing 4).

1 use reactor_rt::prelude::*;
2

3 // state struct
4 pub struct SimpleReactor {
5 x: u32,
6 }
7

8 impl SimpleReactor {
9 fn react_0(&mut self, ctx: &mut ReactionCtx, out: WritablePort<u32>) {

10 ctx.set(out, self.x);
11 }
12 }

Listing 4.4: Reaction declaration generated for the SimpleReactor of Listing 4.1.

the import statement on line 1, which brings useful types and macros of the reactor
runtime crate in scope for reactions to use.

Dependencies the reaction declares in its signature are all injected as parameters of
the method. For instance in Listing 4.4, the port out is injected as an instance of
WritablePort, as the reaction declares an effects dependency on it. This type provides
write-only access to the port (through the API of ReactionCtx). The type a dependency
is injected with depends on the type of component and on the dependency kind, as shown
in Table 4.1. As we can see in this table, the types of parameters injected for trigger
and read dependencies are always shared references, so that Rust can prevent them from
being mutated. Undeclared dependencies, and dependencies on startup or shutdown,
do not create a parameter on the generated method.

Component Trigger/read dependency Effect dependency

Port of type T &ReadablePort<T> WritablePort<T>
Logical action of type T &LogicalAction<T> &mut LogicalAction<T>
Physical action of type T &PhysicalActionRef<T> &mut PhysicalActionRef<T>
Timer &Timer n.a.
Port bank of type T &ReadablePortBank<T> WritablePortBank<T>

Table 4.1.: Type of the parameter injected in a reaction as a function of component kind
and dependency kind.

4.1. Form of the generated code 73

ReactorBehavior implementation The runtime invokes reactions through a virtual
call to ReactorBehavior::react (cf. Section 3.7). The implementation of this method
selects the correct reaction method using the LocalReactorId parameter. The trait
ReactorBehavior is implemented by the adapter struct, not directly the state struct.
Its implementation for SimpleReactor is reproduced in Listing 4.5.

react is implemented with a match statement, shown on line 14. Each branch cor-
responds to a separate reaction invocation. Here, there is a single reaction, whose ID
is zero; the corresponding branch is defined on line 15. The right-hand side of the ar-
row calls the method react_0 on the state struct instance. Here, the out field for the
corresponding port is mutably borrowed, and this reference is wrapped in an instance
of WritablePort. The last branch is taken if the local reaction ID does not correspond
to a reaction of the reactor. It is defined to panic, as this is an error in the scheduling
logic.

The implementation for the remaining methods of ReactorBehavior are also shown
in Listing 4.5. The method id (line 9) just returns the reactor ID of the current reactor.
This can be used by the scheduler to check at runtime that the reactor is correct. The
method cleanup_tag clears ports and actions of the reactor, as explained in Section 3.11.

1 // adapter struct
2 pub struct SimpleReactorAdapter {
3 __id: ReactorId,
4 __impl: SimpleReactor,
5 pub out: Port<u32>,
6 }
7

8 impl ReactorBehavior for SimpleReactorAdapter {
9 fn id() → ReactorId {

10 self.__id
11 }
12

13 fn react(&mut self, ctx: &mut ReactionCtx, rid: LocalReactionId) {
14 match rid.raw() {
15 0 => self.__impl.react_0(ctx, WritablePort::new(&mut self.out),),
16 unknown => {
17 panic!("Unknown reaction ID {}", unknown);
18 }
19 }
20 }
21

22 fn cleanup_tag(&mut self, ctx: &CleanupCtx) {
23 ctx.cleanup_port(&mut self.out);
24 }
25 }

Listing 4.5: Implementation of ReactorBehavior for the SimpleReactor of Listing 4.1.

74 4. The LF-Rust compiler

4.1.4. Assembly

During assembly, the runtime uses the trait ReactorInitializer to create an instance
of each reactor. The implementation of this trait is shown in Listing 4.6. On line 4, a
constant is defined to represent the maximum reaction ID of the reaction.

The implementation of assemble follows, on line 6. This function uses an AssemblyCtx
parameter to create a new instance of the reactor, including its components like ports
and actions. It records the dependencies of all its reactions on these components using
the API of the assembly context, which itself internally builds a dependency graph using
this information.

The implementation starts by destructuring the parameter struct on line 9. This is
used to bring individual parameters in scope, so that they are accessible in expressions for
the constructor arguments of child reactors. Since the SimpleReactor does not feature
children reactor instances, this is here somewhat pointless, but the following subsection
will show an example usage.

The rest of the function is a call to AssemblyCtx::assemble, starting on line 10.
This method takes a closure that needs to return an AssemblyIntermediate instance.
Instances of this type can only be produced by two functions of the AssemblyCtx, one of
which is assemble_self, which is called on line 11. The assemble_self method creates
and initializes a new instance of the current reactor, using first a closure (line 12) that
creates the reactor itself using the auxiliary function user_assemble (defined on line 30).
This closure can use a ComponentCreator instance (the cc parameter here), and the id
for the newly created reactor. The component creator is the only object that can create
new reactor components, e.g., Port or Timer. When doing so, it registers them in the
dependency graph that the AssemblyCtx encapsulates. The second closure used by
assemble_self, on line 18, is used to register the dependencies of declarations. Its
parameter __assembler is an instance of DependencyDeclarator, which has methods
to declare dependencies, while building the dependency graph internally. The second
parameter is called __self, a mutable reference to the reactor instance being created,
which is used to access the actions and ports instances that are in its fields. The last
parameter is an array of reaction IDs, created by AssemblyCtx. The body of the closure
declares dependencies using the methods of the dependency declarator.

While this API may appear unintuitive and complicated compared to a more imper-
ative style, it gives the AssemblyCtx a lot of freedom regarding the order in which it
calls these closures and creates components like reaction IDs. The generated code is very
declarative, which decouples the internals of the assembly context from the generated
code. The API also uses types like AssemblyIntermediate and FinishedReactor to
make sure that the implementation of assemble uses the API of the assembly context,
instead of e.g. just returning an instance of Self without registering its components
in the assembler. Various type-level assertions are performed here, for instance, that
MAX_REACTION_ID is equal to the number of reactions created by assemble_self, and
to the number of debug labels provided for reactions (line 16). It is hence difficult to
write an incorrect implementation that compiles.

4.1. Form of the generated code 75

1 impl ReactorInitializer for SimpleReactorAdapter {
2 type Wrapped = SimpleReactor;
3 type Params = SimpleReactorParams;
4 const MAX_REACTION_ID: LocalReactionId = LocalReactionId::new(1);
5

6 fn assemble(__params: Self::Params, __ctx: AssemblyCtx<Self>)
7 → AssemblyResult<FinishedReactor<Self>> {
8

9 let SimpleReactorParams { param, } = __params;
10 __ctx.assemble(|__ctx|
11 __ctx.assemble_self(
12 |cc, id| Self::user_assemble(cc, id, SimpleReactorParams { param, }),
13 // number of non-synthetic reactions
14 1,
15 // reaction debug labels
16 [None],
17 // dependency declarations
18 |__assembler, __self, [react_0]| {
19 // --- reaction(startup) → out {= . . .=}
20 __assembler.declare_triggers(TriggerId::STARTUP, react_0)?;
21 __assembler.effects_port(react_0, &__self.out)?;
22 Ok(())
23 }
24)
25)
26 }
27 }
28

29 impl SimpleReactorAdapter {
30 fn user_assemble(__assembler: &mut ComponentCreator<Self>,
31 __id: ReactorId,
32 __params: SimpleReactorParams) → AssemblyResult<Self> {
33 let SimpleReactorParams { param, } = __params;
34 let __impl = SimpleReactor { x: param, };
35

36 Ok(Self {
37 __id,
38 __impl,
39 out: __assembler.new_port::<u32>("out", PortKind::Output),
40 })
41 }
42 }

Listing 4.6: Implementation of ReactorInitializer for the SimpleReactor of List-
ing 4.1.

76 4. The LF-Rust compiler

Creating children

The method AssemblyCtx::with_child is used to assemble children reactor instances.
Listing 4.8 shows how this method is used within the assembly method of a SimpleParent
reactor, defined in Listing 4.7. The method is called within the closure parameter of
assemble, line 6. The type of the child is specified explicitly, as the assembler will use
it to assemble the child recursively. The first parameter of the with_child call is the
name of the child instance, which is stored in the debug information registry.

Next, the constructor arguments of the child are provided, using the child’s Params
associated type. These arguments may refer to parameters of the current instance, as
they were destructured to bring them into scope (line 4). Notice that on line 8, the LF
expression {=param * 2=} has been translated to a Rust block expression, {param * 2}.
This allows using arbitrarily complex logic to create arguments, e.g., to introduce inter-
mediary variables.

The last parameter, on line 9, is a closure that provides access to the assembly context,
and the built child instance. The child instance (here, the child closure parameter) is
only a mutable reference, as its ownership remains in control of the assembler. Since
only the port fields are public (cf. Listing 4.2, line 22), the only thing the parent reactor
can do with the child is bind its ports to its own.

1 reactor SimpleParent(param: u32(2)) {
2 child = new SimpleReactor(param={=param * 2=});
3 }

Listing 4.7: LF definition of a reactor with a child reactor.

1 fn assemble(__params: Self::Params, __ctx: AssemblyCtx<Self>)
2 → AssemblyResult<FinishedReactor<Self>> {
3

4 let SimpleParentParams { param, } = __params;
5 __ctx.assemble(|__ctx|
6 __ctx.with_child::<super::SimpleReactorAdapter, _>(
7 "child",
8 super::SimpleReactorParams::new({param * 2}),
9 |mut __ctx, child| {

10 __ctx.assemble_self(/* assemble self parameters */)
11 }
12)
13)
14 }

Listing 4.8: Example usage of with_child in the assemble implementation of the
ParentReactor of Listing 4.7.

4.1. Form of the generated code 77

When several children instances are to be created, the with_child calls are nested
within each other, each of them successively bringing a mutable reference to the new
child into scope. Since with_child returns an AssemblyIntermediate result, and its
closure parameter also needs to return an AssemblyIntermediate, these nested closures
have to end with the assemble_self call.

Notice that the strict API of AssemblyCtx can only be used to access children of the
current reactor. It is impossible to access children of the children, for instance. This is
in line with the reactor model’s scoping constraints, and adds a further layer of safety
on top of the verification performed by the LF compiler ahead of time.

4.1.5. Code lowering

Some high-level features of LF are easier to implement using existing simpler features.
This increases code reuse in the code generator and the runtime. In traditional compilers,
this is usually implemented by lowering a high-level intermediate representation (IR) into
a lower-level IR. While LFC does not do that, as it does not feature a traditional IR
(instead working on ASTs), this section reuses the term lowering to describe how some
of the high-level features of LF are implemented in terms of simpler features.

Timers

Timers have first-class support in the reactor runtime API, through the struct Timer.
However, the reactor runtime does not do anything special with timers, except consider-
ing them as triggers during assembly. The periodic behaviour of timers is implemented
by adding synthetic reactions to the generated Rust program. Each timer generates two
synthetic reactions, a bootstrap reaction, which schedules the first release of the timer on
startup, and a periodic reaction, which reschedules the timer each time it is triggered (if
the timer is periodic). Listing 4.9 shows how those reactions would look like, were they
to be written in LF.

These synthetic reactions are special in that they are not ordered by the priority
relation (≺) with respect to other reactions in the same reactor. This is required because
priority edges may cause causality loops, and it is safe since the synthetic reactions never
access state of the current reactor.

Port references

Reactions may reference ports of child reactors in their signature. Since child reac-
tors are not contained by their parent (all reactors are flattened in the reactor vec-
tor, cf. Section 3.8), the port of the child is not accessible at runtime from within
ReactorBehavior::react. To circumvent this, a port reference is actually code gener-
ated as a port of the current reactor that is connected to the port of the child. Listing 4.10
compares the LF source code to how the Rust code generator understands it. Note that
the synthetic ports are neither inputs nor outputs, as for instance __child__in may be

78 4. The LF-Rust compiler

set by reactions of the current reactor (like an output), but also be the upstream of a
child port (like an input).

4.2. LF extensions

The section reports on some of the functionality available within LF programs to pro-
grams written using the Rust target. Most of this functionality is provided by target
properties (cf. Section 2.2.2) allow specifying code generation options, and configuring
some of the behaviour of the runtime. The target properties supported by the Rust
runtime are described in the following two subsections. Section 4.2.3 then describes the
few instances where, the Rust target gives slightly different semantics to some LF code
constructs.

4.2.1. Common target properties

The Rust target supports part of the target properties supported by all targets:

timeout The timeout property allows specifying the maximum amount of time the pro-
gram is allowed to run for. The implementation of this feature is described in
Section 3.12.2.

keepalive The keepalive property specifies that the program should not terminate as soon
as the event queue is empty. As explained in Section 3.12.4, the property is not
useful in the Rust target, as the runtime implements a better strategy to keep the
program alive only as long as necessary. It is still supported for compatibility, but
is ignored.

files The files property allows copying files to the generated sources directory. In the
Rust target, it is not very useful, as including Rust files is instead done with the
rust-include property (cf. Section 4.2.2).

The other common properties, that are currently not supported, are the following:

fast The LF fast property is currently not supported, although there is no particular
obstacle to its implementation. It is the subject of Paragraph 6.3§Fast execution
mode in the Future Work chapter.

logging The LF logging property is not supported, as the log levels it uses that are
incompatible with Rust’s standard logging levels. Specifically, Rust’s standard log
levels are error, warn, info, debug, and trace, while LF’s are error, warn, info,
log, and debug. Since both cannot be reconciled because of the debug level, the
Rust target sticks to Rust’s standard levels, and does not use this target property to
configure log levels. Instead, it relies on an environment variable. As this variable
can be set at runtime, it can be changed without recompiling the LF project, and
is therefore more flexible.

4.2. LF extensions 79

1 reactor /* . . .*/ {
2 timer t(offset, period);
3

4 // the bootstrap reaction
5 reaction(startup) {=
6 ctx.schedule(t, After(offset));
7 =}
8

9 // the periodic reaction
10 reaction(t) → t {=
11 if !period.is_zero() {
12 ctx.schedule(t, After(period));
13 }
14 =}
15 }

Listing 4.9: LF code showing generated synthetic reactions for timers.

1 reactor ChildReactor {
2 input in: u32;
3 output out: u32;
4 }
5 reactor ParentReactor {
6 child = new ChildReactor();
7

8 reaction() → child.in {==}
9 reaction(child.out) {==}

10 }

(4.10.a) LF code for a reactor whose reac-
tions reference ports of a child re-
actor.

1 reactor ChildReactor {
2 input in: u32;
3 output out: u32;
4 }
5 reactor ParentReactor {
6 child = new ChildReactor();
7

8 // these ports are neither
9 // inputs nor outputs

10 port __child__in: u32;
11 port __child__out: u32;
12

13 reaction() → __child__in {==}
14 reaction(__child__out) {==}
15

16 child.out → __child__out;
17 __child__in → child.in;
18 }

(4.10.b) Pseudo-LF code showing how the
Rust code generator interprets the
ParentReactor.

Listing 4.10: Shows how child port references are implemented by the Rust code gener-
ator.

80 4. The LF-Rust compiler

4.2.2. Rust-specific target properties

The generated code is a Cargo project, and for usability of the Rust target, some of the
features of Cargo are accessible through target properties.

Dependency declarations The LF user can specify dependencies on arbitrary Cargo
crates using the cargo-dependencies target property. An example usage is shown in List-
ing 4.11.a. On line 3, a dependency on the crate rand (a random number generation
library) is registered, along with a version specification. The target property can also
be used to configure the runtime crate, as shown on line 4. Here, the parallel execu-
tion feature is enabled. Any combination of the features described in Section 3.15 is
possible. The corresponding generated Cargo.toml file is shown in Listing 4.11.b. Any
dependency can be registered using the dictionary syntax shown on line 4. The keys and
their meaning are defined by the Cargo specification, as they match the keys usable in
a TOML dependency specification.

1 target Rust {
2 cargo-dependencies: {
3 rand: "0.8",
4 reactor_rt: {
5 features: ["parallel-runtime"]
6 }
7 }
8 };

(4.11.a) Rust target declaration that specifies some
cargo dependencies.

1 [dependencies.rand]
2 version = "0.8"
3

4 [dependencies.reactor_rt]
5 features = ["parallel-runtime"]

(4.11.b) Corresponding excerpt of the
generated Cargo.toml file.

Listing 4.11: Example usage of the cargo-dependencies target property.

Rust module inclusion An LF program can also include files written in pure Rust as
submodules of the root module of the crate. The target property rust-include is used
for this purpose; its value is an array of file paths that should be included. They are
linked into the generated project by generating a corresponding mod declaration in the
main file (cf. Paragraph 2.4.4§Module system). Using this property, an entire module
tree can be included by specifying a directory containing a mod.rs file. It will then be
recursively cloned to the generated sources directory.

CLI generation The generated crate also declares Cargo features (cf. Section 2.4.6),
which are used for conditional compilation, and conditional dependencies. To enable
features, the cargo-features target property is used, as shown in Listing 4.12. Currently,
the only supported feature is named cli, as it adds a command-line interface (CLI) to
the generated executable. When this feature is enabled, a CLI argument parser library
is added as a dependency, and a conditionally compiled module is enabled within the

4.2. LF extensions 81

crate. This module interacts with the parser library to configure the CLI argument
parser. One CLI parameter is generated for each constructor parameter of the main
reactor, and additional parameters are generated to set parameters of the runtime.

1 target Rust {
2 cargo-features: ["cli"]
3 };

Listing 4.12: Example usage of the cargo-features target property.

4.2.3. Differences with other targets

Constructor parameters The LF Rust target has one significant divergence point from
existing targets. In all LF targets, constructor parameters are available within the
body of reactions. For instance in the Python target, parameters are stored in instance
variables, like state variables.

In Rust, this is more complicated to implement, as LF constructor parameters have to
be in scope in the argument expressions of a nested reactor constructor call. Destructur-
ing the parameter struct to bring parameters in scope (cf. Listing 4.6, line 9) and then
rebuilding it to save it for later access within reactions would cause surprising errors
in some cases, as referencing a parameter in an argument to a child instance creation
may move the parameter outside of the assemble function. One alternative would be to
mandate that parameter types implement the Clone trait, and produce a clone of the
parameter struct before destructuring it. This trait bound might be constraining for
LF users, so currently, LF constructor parameters are only visible within nested reactor
constructor calls, and state variable initializers. To access a constructor parameter from
within a reaction, it is necessary to store it into a state variable explicitly.

This design makes LF constructor parameters simpler, as they are just treated as local
variables. Persisting state is solely done with state variables, which also makes the code
generator simpler, and those two LF features more orthogonal. Persisting parameters
in state variables is still a common pattern in the Rust target, and it is verbose. Future
work could make it more ergonomic (cf. Section 6.2.1).

State variable initialization Since {= =} code blocks are generated as Rust block ex-
pressions, they can include arbitrary initialization logic, including statements and inter-
mediary variable declarations. This contrasts with other targets, where variable initial-
izers are usually restricted to being a single expression, and more complex initialization
logic has to be written in a startup reaction. Rust cannot use this pattern, as all fields
of the state struct have to be initialized when it is created (cf. Paragraph 2.4.1§Structs).
Deferred initialization in a reaction is much less practical in Rust.

To make this more ergonomic, in the Rust target, state variable initializers can refer
to other state variables (provided there is no forward reference). This is another dif-

82 4. The LF-Rust compiler

ference compared to other targets, where state variable initialization details are usually
unspecified.

4.3. Compiler implementation
The LF compiler, LFC, was presented in Section 2.2.3. This section focuses on the
implementation of LFC, and presents how the Rust code generator is implemented.

4.3.1. Technologies
Xtext The compiler frontend is built using the Xtext framework [13]. Xtext provides
a grammar language that allows defining a lexer, parser, and the classes modelling the
language’s AST in a single file. Xtext automatically implements an attribution pass on
the AST that link together code constructs that refer to each other. This even works
across files, as Xtext has a built-in file import mechanism on top of which LF’s import
statement is built. Additionally, Xtext is able to automatically generate classes that
plug in to Eclipse’s APIs, to enhance Eclipse with language-specific IDE features like
compilation, syntax highlighting, and reference resolution. Xtext is also able to generate
a language server for the language that implements Microsoft’s Language Server Protocol
(LSP) [35], and hence can be used with IDEs that support it, e.g. Visual Studio Code.
All this makes Xtext a powerful framework to bootstrap language development, and
provide with relatively little effort a front-end and editing environments for language
users.

Eclipse However convenient Xtext has been to get the compiler started, it also locks
our compiler in the Eclipse environment, which is significantly split from the more main-
stream Java world. Eclipse relies on OSGi [2], and hence cannot use dependencies that
weren’t packaged as an OSGi bundle. This excludes a lot of useful libraries that are
available in package repositories like Maven Central1, the main package repository for
such widely used build tools as Apache Maven [14] and Gradle [23].

Languages The compiler runs on the Java Virtual Machine (JVM), and unsurprisingly,
parts of it are written in Java. At the start of this work though, most of the compiler
was written in Xtend [12], a language that also runs on the JVM and claims to improve
on Java’s perceived flaws. Xtend has very good interoperability with Java, and many
convenience features such as extension methods, string interpolation, and null-coalescing
operators. However, Xtend also has shortcomings of its own. Since 2021, the language is
barely maintained, and might become unmaintained in the near future. For this reason,
the LF team aims to gradually remove Xtend sources from the codebase.

The LF team has instead turned its eye to the Kotlin [18] language, which also promises
an improved developer experience compared to Java. Kotlin is developed by JetBrains,
and runs no risk of going unmaintained in the near future, as Google’s endorsement

1https://mvnrepository.com/repos/central

https://mvnrepository.com/repos/central
https://mvnrepository.com/repos/central

4.3. Compiler implementation 83

of the language for Android Platform development in 2017 [29] gave the language a
powerful ally. Xtend sources are to be rewritten either in Java or Kotlin.

4.3.2. Code generators

Historically, each target code generator has been written somewhat independently, and
not necessarily by the same developers. At the start of this work, most of them were
pretty monolithic Xtend classes. The exception was the C++ code generator, which had
recently been rewritten in Kotlin and featured a more modular design. The TypeScript
generator was soon to follow.

Most of the compiler (including the code generators) relies heavily on the monolithic
Xtend class ASTUtils, which provides API that is missing from the AST classes through
Xtend extension functions. Extension functions are static methods (in the Java sense)
that can be called as if they were instance methods of their first parameter. Extension
functions are a useful tool to extend an API which one does not control. This is the case
with the AST classes, as they are generated by Xtext and cannot be modified manually.
Kotlin also features extension functions, albeit with a more explicit syntax. Xtend
extension functions are not recognized as extension functions by the Kotlin compiler.

4.3.3. The Rust code generator

The Rust code generator is written entirely in Kotlin. Its entry point is the class
RustGenerator. RustGenerator virtually does not use its base class GeneratorBase,
as this is a very complex class which contains much C-specific functionality, and is very
hard to change. It still extends it for compatibility with other code generators.

Model classes Contrary to other existing code generators, the Rust code generator
features a specialized set of model classes that abstract away the AST, and present
Rust-specific code generation information. The Rust code generator first builds a tree of
those model classes from the AST, then hands them to an emitter object, which emits
the generated code using only the model classes as input.

For instance, the State AST node, which represents a state variable, is represented
by the model class StateVarInfo. This class exposes the initializer expression as target
code, and not as a child AST node. This simplifies the emitter object, as it is handed
sanitized2 target code, that it can then include directly into the string templates used
for code generation, without further transformation.

The root of the tree of model classes is the class GenerationInfo, visible in Figure 4.2.
It contains metadata about the generated crate, and information about the code gen-
eration options specified as target properties. It also contains a list of all ReactorInfo
of the program, which are the model classes that represent reactor class declarations.
ReactorInfo and related model classes are illustrated in Figure 4.3.

2For instance, identifiers may be escaped so as not to conflict with reserved Rust keywords.

84 4. The LF-Rust compiler

Generat ionInfo

executableNam e: St r ing

RustTargetPropert ies

val keepalive: Boolean
val t im eout : TargetCode?
val threads: Int
val exportGraph: Boolean

CrateInfo

val nam e: St r ing
val version: St r ing
val authors: List< St r ing>
val dependencies: Map< St ring, CargoDependencySpec>
val m odulesToIncludeInMain: List< Path>
val enabledCargoFeatures: Set< St r ing>

ReactorIn fo

*

Figure 4.2.: Top-level classes of the Rust model classes.

Code emission After a GenerationInfo has been created, it is handed to the object
RustEmitter, which generates the entire Cargo project. Several helper objects are re-
sponsible for emitting specific parts of the project; for instance, RustCargoTomlEmitter
emits the Cargo.toml file that configures Cargo. Most of these objects rely heavily
on Kotlin’s string interpolation feature, which allows inserting the value of arbitrary
Kotlin expressions inside a larger string template. In fact, splitting the generation into
a separate code emission phase that works on intermediate model classes is intended to
resemble the usage pattern of a template engine like Apache Velocity [15]. Compared
to using a template engine though, writing the code emission logic in Kotlin is more
flexible.

4.3. Compiler implementation 85
R

e
a

c
to

rI
n

fo

v
a

l
lf

N
a

m
e

:
Id

e
n

t
v

a
l

is
M

a
in

:
B

o
o

le
a

n

S
ta

te
V

a
rI

n
fo

v
a

l
lf

N
a

m
e

:
Id

e
n

t
v

a
l

ty
p

e
:

T
a

rg
e

tC
o

d
e

v
a

l
in

it
ia

lV
a

lu
e

:
T

a
rg

e
tC

o
d

e

C
to

rP
a

ra
m

In
fo

v
a

l
lf

N
a

m
e

:
Id

e
n

t
v

a
l

ty
p

e
:

T
a

rg
e

tC
o

d
e

v
a

l
d

e
fa

u
lt

V
a

lu
e

:
T

a
rg

e
tC

o
d

e
?

T
y

p
e

P
a

ra
m

In
fo

v
a

l
ta

rg
e

tC
o

d
e

:
T

a
rg

e
tC

o
d

e
v

a
l

lf
N

a
m

e
:

Id
e

n
t

N
e

st
e

d
R

e
a

c
to

rI
n

st
a

n
c

e

v
a

l
lf

N
a

m
e

:
Id

e
n

t
v

a
l

re
a

ct
o

rL
fN

a
m

e
:

S
tr

in
g

v
a

l
a

rg
s:

 M
a

p
<

S
tr

in
g

,
T

a
rg

e
tC

o
d

e
>

v
a

l
ty

p
e

A
rg

s:
 L

is
t<

T
a

rg
e

tC
o

d
e

>
v

a
l

b
a

n
kW

id
th

:
W

id
th

S
p

e
c?

R
e

a
ct

io
n

In
fo

v
a

l
id

x
:

In
t

v
a

l
b

o
d

y
:

T
a

rg
e

tC
o

d
e

v
a

l
is

S
ta

rt
u

p
:

B
o

o
le

a
n

v
a

l
is

S
h

u
td

o
w

n
:

B
o

o
le

a
n

v
a

l
lo

c:
 L

o
ca

ti
o

n
In

fo
v

a
l

d
e

b
u

g
La

b
e

l:
 S

tr
in

g
?

R
e

a
ct

o
rC

o
m

p
o

n
e

n
t

a
b

st
ra

ct
 v

a
l

lf
N

a
m

e
:

Id
e

n
t

R
e

a
c

to
rN

a
m

e
s

v
a

l
m

o
d

F
ile

N
a

m
e

:
Id

e
n

t
v

a
l

m
o

d
N

a
m

e
:

Id
e

n
t

v
a

l
st

ru
ct

N
a

m
e

:
Id

e
n

t
v

a
l

p
a

ra
m

S
tr

u
ct

N
a

m
e

:
Id

e
n

t
v

a
l

w
ra

p
p

e
rN

a
m

e
:

Id
e

n
t

P
o

rt
L

ik
e

v
a

l
d

a
ta

T
y

p
e

:
T

a
rg

e
tC

o
d

e
v

a
l

is
In

p
u

t:
 B

o
o

le
a

n
v

a
l

is
M

u
lt

ip
o

rt
:

B
o

o
le

a
n

P
o

rt
D

a
ta

v
a

l
w

id
th

S
p

e
c:

 T
a

rg
e

tC
o

d
e

?

C
h

il
d

P
o

rt
R

e
fe

re
n

ce

v
a

l
ch

ild
Lf

N
a

m
e

:
Id

e
n

t

A
c

ti
o

n
D

a
ta

v
a

l
d

a
ta

T
y

p
e

:
T

a
rg

e
tC

o
d

e
?

v
a

l
is

L
o

g
ic

a
l:

 B
o

o
le

a
n

v
a

l
m

in
D

e
la

y
:

T
a

rg
e

tC
o

d
e

?

T
im

e
rD

a
ta

v
a

l
o

ff
se

t:
 T

a
rg

e
tC

o
d

e
v

a
l

p
e

ri
o

d
:

T
a

rg
e

tC
o

d
e

?

*
*

*

*
*

*
*

Figure 4.3.: Model classes for reactors and their components.

87

5. Evaluation

Message passing frameworks like actor frameworks and publish-subscribe architectures
are popular in many applications. The nondeterminism introduced by the communica-
tion architecture is accepted as a necessary evil to reach the scalability and performance
requirements of the system. Therefore, an interesting question is, how fast can a syn-
chronous, deterministic framework like LF can run? Rust has a reputation for being a
fast language, capable of rivalling with C and C++, but the Rust runtime prototype [16]
had disappointing performance results. The runtime described in this thesis attempts
to address the design flaws of the prototype (cf. Section 3.16), and has itself been sig-
nificantly optimized since its inception.

In this chapter, Section 5.1 explains some of the optimizations performed on the
runtime. The observations of this section can be a source of inspiration for future target
implementations, and perhaps for the existing C++ and C runtimes. Section 5.2 presents
some benchmark results to compare the Rust target to other LF targets and to an actor
framework, Akka [6]. While its performance analysis does not attempt to be exhaustive,
it certainly can give a first impression of how the Rust runtime fares when compared to
those other frameworks.

5.1. Optimizing the Rust runtime
In order to optimize any program, it is necessary to first assess its performance. For the
Rust runtime, the Ping Pong benchmark of the Savina benchmark suite [22] was used
to confirm the impact of optimizations. Through profiling, that benchmark also served
as a source of ideas for new optimizations.

Criterion Criterion1 is a benchmarking framework for Rust, that plugs in to Cargo
seamlessly. Compared to the standard benchmarking tools of Cargo, Criterion performs
statistical analysis, and most importantly, it keeps a record of the latest run benchmark
as a baseline. When running a benchmark, Criterion prints statistics about the relative
change in performance compared to the latest run benchmark. This makes it a very
useful tool to measure the impact of a change quickly. Criterion was used throughout
the development of the runtime to compare the Rust runtime to itself on the same
benchmark.

Workflow The use of a single benchmark is justified by the large time cost associated
with maintaining runnable benchmark code, while simultaneously developing the run-

1https://crates.io/crates/criterion

https://crates.io/crates/criterion
https://crates.io/crates/criterion

88 5. Evaluation

Label Commit ∆T (%) Description

a 4cf2ed6 -24.2 Avoiding copies using Cow
b 1568091 -12.0 Minimizing creation of new Sender instances
c 1b18bf8 -8.1 Removing hash maps within actions
d 8022924 -29.1 Introducing ExecutableReactions
e 862ad4a -26.8 Eliding atomic runtime-checks in the internals of ports
f e43f9bc -18.2 Removing hash maps to index dependency sets
g 98614f3 -9.5 Representing reaction sets with a vector

Table 5.1.: Key for the labels in Figures 5.1 and 5.2.

time and the LF code generator. The benchmark is written in LF, but Criterion expects
Rust files, so every incompatible change in LFC or the runtime requires recompiling the
LF file, and manually patching the generated program to use the Criterion API.

The main problem with using a single benchmark as a measure of efficiency is the lack
of variety of the measured usage patterns. There is a significant risk of over-optimizing
for that specific benchmark, to the detriment of other usage patterns. This has been the
case for instance with the data structure used by actions (cf. Section 5.1.4.4). The Ping
Pong benchmark also does not benefit from parallelism and cannot be used to evaluate
the performance of the code paths associated with reaction parallelization.

To alleviate this risk, a greater variety of benchmarks has been written outside of the
runtime repository. These rely on the benchmarking infrastructure of the LF project,
which was built to compare LF targets to each other, and to actor frameworks like
Akka. The results of these are described in Section 5.2 These benchmarks show that the
performance of the Rust runtime generalizes to other usage patterns.

Performance history Figure 5.1 presents a historical record of the execution time of
the Savina Ping Pong benchmark. For the 180 most recent commits in the runtime crate
(since 8d76a72), 100 iterations of the benchmark were performed and their execution
time averaged. Each iteration consists of 105 message exchanges between the two Ping
and Pong reactors.2

Average execution time of the benchmark has been divided by nearly 3.5 between the
oldest and most recent commit. Most of the improvements can be attributed to only
a handful of optimizations, whose commits are labelled in red. Figure 5.2 presents the
rate of change in execution time per commit, again with the same labels. These labels
are described in Table 5.1. Each of these optimization is the topic of one of the following
sections, in the following order:

Section 5.1.1 Introduction of ExecutableReactions, a specialized data structure to rep-
resent reaction sets (spike d);

Section 5.1.2 Avoidance of copies using Cow (spike a);
2The source code of the benchmark is provided in Appendix A.

5.1. Optimizing the Rust runtime 89

a

b

c

d

e

f g

20

40

60

Commit

E
xe

cu
tio

n
tim

e
(m

s)

Figure 5.1.: Historical data for the average execution time of the Savina Ping Pong
benchmark. The grey stripe represents a 95% confidence interval for the
execution time of the same benchmark by the C++ target. Confer Table 5.1
for a description of the labelled points.

a

b

c

d

e

f

g

−30%

−20%

−10%

0%

10%

Commit

R
el

at
iv

e
im

pa
ct

 o
n

ex
ec

ut
io

n
tim

e

Figure 5.2.: Impact on execution time of the Savina Ping Pong benchmark by commit.
Downward spikes correspond to very impactful optimizations. Confer Ta-
ble 5.1 for a description of the labelled points.

90 5. Evaluation

Section 5.1.3 Minimizing atomic operations (spikes b and e);

Section 5.1.4.1 Swapping HashMap for IndexVec to index dependency sets (spike f);

Section 5.1.4.2 Swapping HashSet for a sorted Vec for reaction sets (spike g);

Section 5.1.4.4 Swapping HashMap within actions for a vector-based map (spike c).

5.1.1. Sparse reaction sets

The process_tag implementation shown in Listing 3.4 relies on using a set of reactions,
named todo. The way this set is used is inefficient: on line 9, the function iterates
through the entire set to fetch reactions at a particular level. It also iterates over the
entire range of level indices, even though levels where at least one reaction is triggered
are commonly sparse.

Another inefficiency is that the outer loop only terminates if the todo set is progres-
sively emptied by the reaction, so it needs to be a mutable set. However, experience
shows that in many programs, we can avoid copying sets of reactions and reuse some
that are precomputed at initialization time. This will be the focus of Section 5.1.2.

The actual set implementation used avoids this by partitioning reactions according
to their level. In effect, instead of using a Set<GlobalReactionId>, the data structure
is similar to a Map<LevelIndex, Set<GlobalReactionId>>. This data structure is
called ExecutableReactions in the runtime. The map implementation is a bespoke
data structure, that is designed to store mappings in a vector, with keys in ascending
order. This allows very fast merging of two ExecutableReactions instances (required
at line 15 in Listing 3.4), as the two vectors can be zipped together. This implementation
yields O(log n) complexity for random access, which is worse than HashMap’s constant
time. However, the runtime does not need random access, as levels are only fetched in
increasing order. Fetching the next level can be done in constant time, with a much
lower constant factor than HashMap.

The outline of the actual outer loop used in process_tag is shown in Listing 5.1. The
performance gain observed after implementing this is visible in Figure 5.2 as spike d.

5.1.2. Avoiding copies

Profiling the Ping Pong benchmark showed that a significant strain on the application
is the copying of ExecutableReactions instances. This was so because such instances
were being merged together at the end of the inner loop of Listing 5.1 (line 16).

Observing that many reactions only ever set at most one port, the runtime can be
optimized to reuse existing ExecutableReactions instances instead of cloning them.
Indeed, when a reaction sets several ports, all the reactions they trigger are fetched
from DataflowInfo, and merged into a single set, that is then finally merged into the
todo set in process_tag. This means the reaction context must own an instance of
ExecutableReactions, in order to mutate it. However, usually, at most one ExecutableReactions

5.1. Optimizing the Rust runtime 91

1 fn process_tag(
2 &mut self, // SyncScheduler
3 tag: EventTag,
4 initial_reactions: ExecutableReactions,
5) {
6 let mut todo = initial_reactions;
7 let mut min_level = 0;
8 while let Some((level_no, reactions)) = todo.next_batch(min_level) {
9 // level_no is the level of the current batch of reactions,

10 // since the map is sparse, ‘next_batch‘ steps over empty levels.
11 min_level = level_no + 1;
12 for n in reactions {
13 self.execute_reaction(n, &mut reaction_ctx);
14 }
15 // executing reactions may have triggered new ones
16 todo = todo.union(reaction_ctx.get_triggered_reactions());
17 self.push_events(reaction_ctx.get_future_events());
18 }
19 }

Listing 5.1: More realistic implementation of the outer loop of process_tag. Compare
with Listing 3.4.

is merged into this set. Therefore, in that best case, the reaction context could borrow
a reference to the internal value yielded by DataflowInfo, and avoid cloning it.

Rust provides a smart-pointer for that purpose: Cow, for copy-on-write. Its declaration
is reproduced in Listing 5.2. A Cow can be either a reference, or an owned value. The
trait bound ToOwned constraints the type of borrowed data B to implement a function
that turns it into owned data, which is called when a client asks for a mutable reference
to the input data. Most commonly, this transformation just clones the referent.

1 pub enum Cow<’a, B: ToOwned + ’a> {
2 Borrowed(&’a B),
3 Owned(<B as ToOwned>::Owned),
4 }

Listing 5.2: Declaration of the Cow smart-pointer in the Rust standard library.

Since some reactions do not trigger new reactions at all, the runtime represents sets
of executable reactions with a type ReactionPlan, whose declaration is reproduced in
Listing 5.3.

Notice the lifetime parameter: since a Cow may contain a reference, its lifetime must
be quantified. ReactionPlan instances are used extensively throughout the runtime,
for instance, apart from being stored within reaction contexts, its instances are also
used within events (cf. Listing 3.9). This lifetime parameter needs to be specified ev-

92 5. Evaluation

1 type ReactionPlan<’a> = Option<Cow<’a, ExecutableReactions>>;

Listing 5.3: Declaration of ReactionPlan, the type used to represent a possibly absent,
possibly borrowed set of reactions.

erywhere in the runtime, and ultimately, since the references point to the internals of
the DataflowInfo, the DataflowInfo instance need to outlive all those references. This
means that DataflowInfo must outlive any event, and since events are contained by the
event queue, which is contained by the scheduler instance, DataflowInfo must outlive
the scheduler itself, and cannot be owned by it. Lastly, since these are shared references,
DataflowInfo cannot be mutated while the scheduler is alive. So, while this optimiza-
tion is very significant (cf. spike a in Figure 5.2), it also prevents the dataflow graph
from being mutated at runtime, which is an obstacle to implementing reactor mutations
in the future.

Another significant observation about the actual execution patterns of process_tag
can be made: often, ExecutableReactions instances only contains reactions in a single
level. After they have been executed in the inner loop of process_tag (line 12 in
Listing 5.1), they will never be fetched again, as process_tag only queries reactions
of strictly increasing level. This insight allows the runtime to avoid merging reaction
plans in many situations. For instance, imagine process_tag’s todo set only contains
reactions at level 3. After executing those reactions, the reaction context contains a
set s of newly triggered reactions. Let us assume the reactions in s are all of level 5.
Then, instead of merging s into todo, the reaction context can set todo to s. Since
process_tag will never query level 3 again, merging both sets is unnecessary, and the
loop can just carry on with those reactions of level 5. To implement this optimization,
the union function called line 16 of Listing 5.1 has been rewritten to take the current
level into account.

Together, these optimisations make up spike a in Figure 5.2.

5.1.3. Avoiding atomic operations
Atomic operations are necessary to implement thread-safe reference counting, for in-
stance in the Arc smart pointer. Profiling showed that these operations are very costly,
and identified two places in the runtime where they could be elided.

The first is the asynchronous channel used to transmit asynchronous events to the
scheduler (cf. Section 3.12.1). The channel maintains a count of currently alive sender
and receiver instances using atomic operations. To avoid these operations, it is necessary
to avoid creating short-lived receiver or sender instances, as each instance requires two
atomic operations, one when creating the new instance, and one when destroying it.
Each reaction context instance requires a way to produce a new sender instance, so as
to produce new AsyncCtx instances for use with physical actions. With the patched
channel implementation described in Section 3.12.4, it suffices for the reaction context
to have access to a receiver instance to create new senders. The reaction context initially

5.1. Optimizing the Rust runtime 93

owned a cloned receiver instance, which was destroyed at the end of process_tag. To
avoid the atomic operations this usage pattern implies, the reaction context was updated
to capture a reference to the receiver used by the scheduler. This optimization is visible
in Figure 5.2 as spike b.

Atomic operations were also used in the internals of ports. As described in Sec-
tion 3.10.1, ports contain a reference to a mutable data cell for the value, and the Rust
compiler requires that accesses to this location not cause data races. To implement this,
a smart pointer like AtomicRefCell3 can be used, as it checks at runtime that Rust’s
borrowing rules are respected (one writer xor zero or more readers), using atomic oper-
ations. By removing this smart pointer, and instead relying on unsafe code to access the
data cell, a large performance improvement was observed. In Figure 5.2, it is labelled as
spike e.

5.1.4. Data structure selection

This section focuses on some of the data structures used internally by the runtime, and
how they have been optimized.

5.1.4.1. TriggerId internal representation

For much of the history of the runtime (until point f in Figure 5.1), TriggerId was
represented just like GlobalReactionId, as a tuple of a ReactorId and a local identifier
within the reactor. While this structure makes for a convenient implementation of
DebugInfoRegistry, it also makes the only reasonable implementation of a map whose
keys are TriggerId a hash map, since trigger IDs of different reactors are numerically
far apart. Such a map data structure is stored in DataflowInfo, and is solicited every
time a port is set or an action or timer is scheduled.

Contrary to reaction IDs, trigger IDs do not require access to the ID of their reac-
tor, except to produce debugging information. Given that, a change in the structure
of TriggerId enables using a much more efficient map implementation that HashMap.
Namely, if trigger IDs are simplified to be a newtype over u32, and are allocated com-
pactly for all trigger components of the program, then the map can be implemented
as a vector of values, where the index of each value in the vector corresponds to the
TriggerId key. This change corresponds to point f in Figure 5.2.

5.1.4.2. Reaction sets for levels

In Section 5.1.1, the data structure for reaction sets is explained to be conceptually
a Map<LevelIndex, Set<GlobalReactionId>>. The data structure corresponding to
the Set<GlobalReactionId> is called Level. While it must retain the set property
(absence of duplicates), the most stressful operation on this data structure it iteration,
not insertion. Indeed, levels are iterated over in the inner loop of process_tag, which
happens more frequently than merging two levels. Most of the ExecutableReaction

3https://docs.rs/atomic_refcell/

https://docs.rs/atomic_refcell/
https://docs.rs/atomic_refcell/

94 5. Evaluation

instances are never mutated after their creation during assembly and are shared (cf.
Section 5.1.2), which reduces the number of created level sets, and hence of insertions.

To optimize this set data structure for iteration, the Level data structure does not
use a hash table, but instead a sorted vector of GlobalReactionId. While insertion
in order becomes O(n) compared to HashSet’s amortized O(1), iteration has a lower
constant factor than with HashSet, yielding a significant performance improvement on
the Savina Pong benchmark (cf. spike g in Figure 5.2).

5.1.4.3. Event queue

The event queue is implemented on top of Rust’s VecDequeue, a dequeue data structure
based on a circular buffer. This offers excellent performance while the event queue is
small. It exhibits best-case performance for insertion of an event at the start and at the
end (i.e., events that are earlier or later than all current events). Despite these desirable
characteristic, the theoretical complexity of inserting an event at a random location is
high (linear). It is easy to build a pathological program that will always hit this worse
case. However, this hasn’t proved to be a problem in the LF programs built so far with
the Rust target.

5.1.4.4. Action values

Getting the value of a port is equivalent to a couple of pointer reads, and is hence very
fast. This can be made so efficient because ports only ever store one value at a time.
In contrast, at any given time, any number of triggerings of an action may already have
been scheduled for future tags. Each of those triggerings can feature a distinct value,
and all those values need to be stored somewhere for future retrieval. For instance in
Listing 5.4, the same logical action is scheduled three times, and each value has to be
saved along with its tag.

1 main reactor {
2 logical action act: u32;
3

4 reaction(startup) → act {=
5 ctx.schedule_with_v(act, Some(30), after!(30 ms));
6 ctx.schedule_with_v(act, Some(50), after!(50 ms));
7 ctx.schedule_with_v(act, Some(70), after!(70 ms));
8 =}
9

10 reaction(act) {=
11 println!("Received {} at {}", ctx.get(act).unwrap(), ctx.get_tag());
12 =}
13 }

Listing 5.4: Example program that schedules a logical action several times.

5.2. Comparison to other frameworks 95

This is implemented with a mapping of tags to values, stored within the action in-
stance. Although using a hash table (Rust’s HashMap) is an accessible initial implemen-
tation, hashing keys was shown to take a lot of time. Since values are retrieved with a
monotonically increasing time, the data structure should support fast removal for the
smallest key. Based on the assumption that schedule is usually called with a monoton-
ically increasing time, the chosen implementation should support fast insertion for large
keys.

An optimal map implementation for this usage pattern would hence be a rotating
vector of sorted key-value pairs, e.g. implemented with Rust’s VecDequeue. With such
a data structure, insertion at the end (largest key) uses amortized constant time, and
removal at the start (smallest key) uses constant time.

Unfortunately, while the current implementation uses the same idea, it does not use
a circular buffer. This yields amortized constant time insertion and removal at the end,
but linear time insertion at the start. However, the degenerate case of a map of size 0
to 1 has constant time insertion and removal at both ends (which coincide). This seems
to be the usage pattern of the Savina Ping Pong benchmark, which is why Figure 5.2
shows spike c. Improving this implementation by using a rotating vector is left for future
work.

5.2. Comparison to other frameworks
The LF development team has implemented a benchmark suite based on the Savina
suite [22]. The Savina suite is designed to cover a wide range of programming patterns
for actor programs. Its reference implementation provides benchmark implementations
for the Akka actor framework [6]. Most of the Savina benchmarks are also implemented
in the LF C and C++ targets. A subset of those benchmarks were implemented4 in the
LF Rust target in order to perform an initial comparison with the existing LF targets
and Akka.

Figure 5.3 shows the results of this comparison. Each data point corresponds to the
mean execution time of 18 iterations5 of the benchmark program, for a given amount
of parallelism (specified as a number of threads), and for a given target framework. All
measurements were performed on an Intel(R) Core(TM) i7-9700T CPU with 32 GiB
RAM. Note that the Rust benchmark programs measured here have not used the Rust
compiler’s profile-guided optimization feature, which might improve the Rust results
further.

Discussion While an in-depth discussion of these results is out of scope for this doc-
ument, these initial experiments show that the LF Rust target can compete with those
other frameworks.

The first two plots belong to the group of concurrency benchmarks. The LF targets
show an adverse scaling behaviour as the number of available threads rise, especially

4Thanks to Johannes Hayeß for his help in this effort, particularly in fixing the Radix Sort benchmark.
520 total iterations, including 2 warmup iterations that were removed from the final data.

96 5. Evaluation

Radix Sort Trapezoidal Approximation

Counting Actor Ping Pong

Cigarette Smokers Concurrent Dictionary

2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8

200

400

600

800

400

800

1200

1600

250

500

750

1000

0

25

50

75

100

100

150

200

250

400

600

800

1000

Number of threads

M
ea

n
ex

ec
ut

io
n

tim
e

in
 m

s

akka lf−c lf−cpp lf−rust

Figure 5.3.: Comparison of Akka and different LF targets on six benchmarks of the
Savina benchmark suite.The grey halo shows a 95% confidence interval for
the position of each point.

5.2. Comparison to other frameworks 97

in the Concurrent Dictionary benchmark. That benchmark evaluates contention for a
single data structure accessible by many worker reactors, and the C target performs
significantly worse than the Rust and C++ targets. The next two plots (Counting Actor
and Ping Pong) belong to the group of micro benchmarks. Those benchmark programs
are entirely sequential, and expectedly, the curves are relatively flat. In those four plots,
the Akka framework appears scales very badly. The Akka runtime might be distributing
workloads across all available threads, which causes overhead due to context switching.
By contrast, since in LF, communication between reactions is synchronous, the scheduler
knows when it makes sense to dispatch different reactions to different threads, and when
it does not.

The last two plots (Radix Sort and Trapezoidal Approximation) belong to the group
of parallelism benchmarks. The Trapezoidal Approximation benchmark shows excellent
scaling behaviour for all the measured frameworks. Akka performs better than LF for
the Radix Sort benchmark though.

In all these experiments, the Rust target performs better than both the C++ and the
C target. The speedup of the Rust target over the other frameworks was estimated at
1.76 for the LF-C++, 1.85 for LF-C, and 3.44 for Akka. This value was computed using
the geometric mean of the speedups over individual benchmarks, for a thread count of
8.

The scaling behaviour of the Rust target appears identical to that of the C++ target.
It is difficult to find an immediate culprit to account for the difference in performance
between C++ and Rust here. Since the curves seem to differ only by a constant factor,
it is likely that the algorithms used by both runtimes have similar performance char-
acteristics, and that small differences in the data structures used add up to this large
final difference. Without profiling the C++ target, it will be difficult to determine which
optimizations can be made to improve it.

99

6. Future work

This chapter explores some possible avenues for future work, and gives some insight as
to how they could be implemented.

6.1. Features

6.1.1. Scheduler unit tests

One problem with the scheduler as currently written is that it is difficult to test: writing
reactors manually is very tedious, as it involves declaring all components and their
dependencies explicitly. Most tests for the runtime are actually integration tests written
in LF, in the repository where the compiler is being developed. One problem with these
tests is that the LF program-under-test depends both on the correctness of the runtime
scheduler, and on the correctness of the LF compiler.

The scheduler itself is a relatively small component, and our project would benefit from
unit testing that component to cover more code paths. The principal obstacle is that
the scheduler requires some reactors, and reactors are difficult to construct manually. A
possible solution would be, instead of creating reactors, to use manual implementations of
ReactorBehavior. This would require bypassing the assembly phase, and constructing
a dependency graph manually. While this is tedious, the reactor runtime already has
utilities to make this easier, which are used to unit test dependency graphs. One problem
is that these utilities imitate the functionality of AssemblyCtx, and may get out of sync.

6.1.2. Scheduler verification

Going a step further than unit testing, the safety claims of the Rust runtime could be
formally verified. Rust’s design encourages encapsulating unsafe code within safe APIs.
Projects like RustBelt [25, 11] attempt to verify that safe APIs actually compose, by
determining automatically the verification conditions required for an API implemented
by unsafe code to be safe. Using such a tool, we could discover what conditions on
reactor implementations need to be satisfied in order for a reactor program to be safe.
Such a result would be a significant token of confidence in the safety of programs written
with the LF Rust target, and could inform the future design of LF.

6.1.3. Deadline violation detection

During execution of an LF program, logical time may lag behind physical time, in a way
that compromises the real-time reactivity of the system. To counter this, LF provides a
mechanism for specifying deadlines on reactions. A deadline specifies that the invocation

100 6. Future work

of the reaction has to occur within some amount of physical time, starting from the logical
time of the tag that triggers the reaction. For example, if a reaction is invoked at logical
time t, and the reaction specifies a deadline of one hour, then the reaction has to be
executed before the physical time of the platform advances to t + 1 h. If the deadline
cannot be met by the runtime, i.e., the invocation occurs after the expected maximal
physical time, a deadline violation occurs. Dealine violations should be detected at
runtime, and handled by a user-specified deadline violation handler.

Listing 6.1 illustrates the LF syntax that defines a deadline and its handler on a
reaction. In this example, if the reaction is executed later than the tag of x plus the
deadline of 10 milliseconds, the deadline violation handler is executed instead of the
reaction itself.

1 target Rust;
2 reactor Deadline() {
3 input x: u32;
4 output deadline_miss: u32;
5

6 reaction(x) → deadline_miss {=
7 info!("Normal reaction.");
8 =} deadline(10 msec) {=
9 warning!("Deadline violation detected.");

10 ctx.set_opt(deadline_miss, ctx.get(x));
11 =}
12 }

Listing 6.1: Example of the LF syntax to define a deadline alongside with its handler.

This feature could possibly be implemented entirely by the code generator. The dis-
patch code generated to implement ReactorBehavior::react (cf. Section 4.1.3) could
be updated to check the current physical time, for those reactions that declare a dead-
line. If a deadline violation is detected, the handler should be invoked, with the same
parameters as the reaction. The advantage of implementing this feature like this is sim-
plicity of the runtime, which would not have to record a mapping of reaction IDs to
their (possibly absent) deadline. It also would not add any overhead to reactions which
do not have a deadline.

6.1.4. Mutations
Reactor mutations are special reactions that have the ability to reconfigure the connec-
tions between reactors components at runtime. In the runtime implementation described
in this thesis, the main obstacle to implementing mutations is the fact that the dataflow
information is summarized in a DataflowInfo object, and the dependency graph is
destroyed before starting the execution. To avoid copying reaction sets unless neces-
sary, events pushed to the event queue may contain references to the internals of the
DataflowInfo instance. Rust’s ownership model requires that the DataflowInfo not be

6.1. Features 101

mutated while there might be live references into its internals in the program. Given how
the scheduler is currently structured, the Rust compiler assumes that such live references
may exist as long as the scheduler instance is alive, and therefore forbids mutating the
DataflowInfo instance during the entire program. However, the Rust compiler is too
conservative in its analysis, as those references only actually exist while some events are
pending. If the event queue is empty, then it is safe to change the DataflowInfo. Sim-
ilarly, the vector that contains reactor instances can be changed at that time. Reactor
IDs are indeed similar to references, only, their lifetime is implicit, and their validity is
not checked by the Rust compiler. Only performing mutations when the event queue is
empty is probably very restrictive. However, it seems difficult to support reinterpreting
the contents of events after a mutation that destroyed a reactor, for instance.

Tangential to the design of mutations is the effort to support modal models, i.e.,
reactors switching between different modes, like a state machine. A reactor may have a
different internal topology depending on its state. The relative staticity of reactor modes
compared to mutations might be a better fit for Rust’s strong type system. Efforts on
supporting either can probably inform the design of the other.

In any case, implementing mutations will require reorganizing the scheduler, so as
to change what lifetime information is exposed to the scheduler. Possibly, some type
parameters of the scheduler will have to be removed, and some of its fields turned into
local variables, so as to use inferred lifetimes instead of explicit ones.

6.1.5. Smarter tag cleanup

Section 3.11 explains how ports and actions need to be cleaned up at the end of a
tag, to empty them of their value. This is currently implemented by resetting all ports
and actions in the program at the end of the processing of a tag. This cleanup phase
is a potential performance bottleneck, especially since not all ports and actions are
necessarily present at all tags. Devising a better strategy to avoid this loop would be a
good idea.

We could at the very least parallelize the loop with Rayon.
However, maybe a more lightweight approach would be to use the structure of port

connections (cf. Section 3.5.4) to trigger cleanup code exactly when it is necessary. It
might be possible, for instance, to determine the maximum level L at which a port is
read, then create a synthetic cleanup reaction n and set up its dependencies such that
the port triggers n, and level(n) > L. This would ensure cleanup is only executed if the
port was present, and after all readers have had a chance to look at the data. Figuring
out which reactor this reaction belongs to, and how to set up its dependencies, is the
hard part.

Note that a further constraint on the tag cleanup is that setting a port to None drops
the contained value, which calls its destructor. Since destructors may perform observable
side effects (including panicking), the drop call must be called at a consistent time point.

102 6. Future work

6.1.6. Error handling
The Rust reactor runtime is not resilient to crashes in user-written code. A crash (in
Rust lingo, a panic) in a reaction will just crash the entire application. Crashes in
the destructors of port and action values are also not handled. The C++ and C targets
currently have no good solution to handle these crashes either, however, low-level system
code may crash, and a robust application should be able to recover from those faults.
When a Rust program panics, the stack is unwinded until the first stack frame that has
registered a handler. It would be desirable to protect reaction execution with such a
panic handler, to allow the reactor program to recover. This should possibly only be
done if the reaction was explicitly marked as fallible in LF. A possible syntax extension
to tag reactions for this purpose is described in the following section.

6.2. Lingua Franca syntax
6.2.1. Annotations
Introducing an extensible attribute syntax could help make the Rust target more er-
gonomic. For instance, Section 4.2.3 describes how constructor parameters are not
available within reactions, unless they’re explicitly stored within a state variable. List-
ing 6.2.a shows how verbose this pattern currently is. Listing 6.2.b shows how this could
be made easier by introducing a @state annotation. Clearly, this convenience feature
could also be implemented by allowing the state keyword before a parameter, or some
other first-class syntactic construct. The main benefit of an annotation syntax is ex-
tensibility, as any target can give meaning to the annotations they like. Compared to
modifying the LF grammar itself, the overhead of adding a new annotation is minimal.

1 reactor Foo(param: u32(0)) {
2 state param(param);
3 }

(6.2.a) Current pattern used to persist a pa-
rameter for use within reactions.

1 reactor Foo(
2 @state param: u32(0)
3) {}

(6.2.b) A @state annotation, which would be
interpreted as the code of Listing 6.2.a.

Listing 6.2: Possible use case for an annotation syntax.

Other use cases for annotations abound. For instance, a @may_panic annotation on a
reaction could instruct the Rust runtime to recover gracefully from any crash in the reac-
tion (cf. Section 6.1.6). A @stateless annotation on a reaction could mean that it does
not access the state variables of the enclosing reactor, and can thereby be freed from the
priority ordering imposed on reactions of the same reactor. Annotations could be used to
add verification assertions to reactor programs. For instance, an @invokedExactly(1)
annotation could specify that a reaction should execute a specific number of times. Such
annotations could help with static analysis of reactor programs, by letting the program-
mer write-down explicit verifiable contracts using their domain knowledge about the

6.3. Other 103

application. This idea is the object of a discussion on GitHub1.

6.2.2. Required parameters

Lingua Franca syntax currently mandates reactor parameters to have a default value,
which stems from simplifying assumptions that were made in the initial language design.
While the default value is useful in some cases, in many cases it is not. In some cases,
there is no possible default value writable by the programmer, which is the case with
generic reactors, as shown in Listing 6.3. In this reactor, there is no possible expression
that can replace the . . ., as the T is unknown. Allowing parameters to have no default
value would solve this, in which case they would be interpreted as required. Required
parameters could also be useful for main reactors, in which case, in the Rust target, the
user would need to provide a value on the command-line in order to run the program.

1 reactor Generic<T>(p: T(. . .)) {
2 state s: T(p);
3 }

Listing 6.3: Example generic reactor with a parameter.

6.3. Other

First-class reactors in Rust Some of the current restrictions on Rust reactors can
be attributed to the need to comply with the conservative static analysis of the Rust
compiler. For instance, state variables cannot contain references, as the lifecycle of
reactor instances is obscured from the Rust compiler by the use of dynamically sized
types (fat pointers). These restrictions could be lifted if reactors were first-class citizens
of the Rust language. The Rust compiler could perform very fine static analysis of the
lifetime of, e.g., of port values. It would also improve the toolchain to write reactor
programs, as the Rust compiler has excellent error messages, and Rust has wide IDE
support.

Judging by historical decisions of the Rust team, any such language extension would
probably still rely on a library for its implementation. Rust’s async/await language
feature is implemented this way, and the Rust language team has not promoted any of
the several library implementations to be part of the standard library. This effort would
probably require standardizing traits (similar to e.g., ReactorInitializer), that would
be implemented automatically by the Rust compiler.

Note that macros can generate items, and could be used to integrate a “reactor DSL”
to the Rust language with no change required in the compiler, and no particular input
from the Rust language team. While such a DSL could help with the tooling situation,

1https://github.com/lf-lang/lingua-franca/discussions/756

https://github.com/lf-lang/lingua-franca/discussions/756
https://github.com/lf-lang/lingua-franca/discussions/756

104 6. Future work

as reactor programs would be pure Rust code, it is unclear whether they could be used
to also perform program-wide static analysis of the reactor program at compile-time.

Better graph algorithms The implementations of graph algorithms in the runtime were
not written with performance in mind. The level assignment algorithm even has worst-
case exponential complexity, as it is linear in the number of paths in the graph (which,
for some graphs, can be exponential in the number of nodes in the graph). This part of
the runtime could make better use of dynamic programming.

LFC refactoring The design of the Rust code generator could be used in other code
generators (cf. Section 4.3). The classes use to model the AST form a sort of IR, that LFC
currently lacks. It would be possible to split off the Rust-specific functionality of these
model classes, and reuse this IR in other code generators. Doing so could simplify some
of the existing code generators, by extracting part of their data sanitization logic. For
instance, the C++ code generator is currently relatively fragmented into small subclasses,
and it is hard to understand how they all connect together.

Tracing The C++, C and Python runtimes support logging execution traces using a
compact binary format, to minimize runtime overhead. The Rust runtime currently does
not support this, although it can log human-readable debugging information. The C++
runtime currently uses LTTNG as a tracing framework, which is a tracing toolkit for
Linux systems. A Rust crate2 provides bindings to this framework, and could possibly
be integrated to the Rust runtime. Support for this would most likely be locked behind
a conditional compilation feature.

Fast execution mode All other LF targets support a fast target property, that makes
the scheduler not wait between two tags, even if the current logical time is early. This
might be used for simulation, and while simulation has not been a goal until now, it
might be worth implementing.

Evaluate timing precision Receiver::recv_timeout is used to synchronize logical
time with physical time, as explained in Section 3.12.2. This function has unknown
precision, and an investigation would be useful to determine the resolution of the Rust
runtime’s logical timeline. LF has support for specifying time offsets as small as a
nanosecond, but the current runtime is probably less precise.

2https://crates.io/crates/lttng-ust

https://crates.io/crates/lttng-ust

105

7. Conclusion

This thesis presents a performant, safe Rust target for the Lingua Franca language.
While a fully comprehensive evaluation is beyond the scope of this work, the initial
performance results of the Rust target are very encouraging. Rust outperforms both the
C and C++ targets on all implemented benchmarks, and shows good scaling behaviour
on parallel computations. Future work should evaluate the runtime on a wider range
of usage patterns, and possibly, against other actor frameworks. The steps taken to
optimize the Rust runtime since its early prototype may in the future inform the design
of other target runtimes. In particular, quantifying the impact of some optimizations
provides useful insight into what data structures and operations are determining in
the performance of reactor programs. This historical data can complement profiling
information to guide optimization decisions.

The Rust ownership system definitely steered the design of the Rust runtime. Com-
pared to the other existing runtime implementations, the final design presented here
makes little use of references, and relies instead on symbolic identifiers. This allows a
relatively simple representation of reactors, where each reactor is unaware of its neigh-
bourhood. While this design helps remove syntactic overhead related to quantifying
reference lifetimes, it is not yet known whether it will be an obstacle or an asset for the
design of LF extensions like mutations.

The design of the Rust target leans into Rust’s strong typing discipline to provide
strong safety guarantees about the generated reactor program. Rust’s type system allows
verifying invariants of the reactor model at compile-time, and expressing constraints on
user-provided types. For instance, port values are asserted by the compiler to be thread-
safe, which is required for safe parallel execution of reactions. When the type system
is too conservative, and rejects code that appears unsafe but is used safely, it can be
circumvented by using unsafe code. This is done in select places in the runtime, but
always encapsulated within a safe API. In those places, the safety claims made by the
implementation are supported by analysis of the reactor model’s constraints. The rules
of the reactor model are checked both during compilation of the LF program, during
compilation of the target program, thanks to the strict assembly API, and at runtime.

This work can be used as a starting point to implement more features of LF, and
to enrich LF with new features, like mutations. The author hopes it can also serve as
a basis for ambitious projects, like formal verification of the reactor implementation,
or integrating reactors as a DSL embedded within Rust. These could provide stronger
safety guarantees about reactor programs. Building trust in the Rust implementation
could perhaps eventually justify reorganizing other language runtimes to use this trusted
core, instead of having each language implement its own scheduling logic separately.

107

Bibliography

[1] Gul A Agha, Ian A Mason, Scott F Smith, and Carolyn L Talcott. A foundation
for actor computation. Journal of Functional Programming, 7(1):1–72, 1997.

[2] OSGi Alliance and The Eclipse Foundation. OSGi. https://www.osgi.org/. Ac-
cessed: 2021-12-04.

[3] Joe Armstrong. Erlang — a survey of the language and its industrial applications.
In Proc. INAP, volume 96, 1996.

[4] Gérard Berry and Georges Gonthier. The Esterel synchronous programming lan-
guage: Design, semantics, implementation. Science of computer programming,
19(2):87–152, 1992.

[5] Gérard Berry and Ellen Sentovich. Multiclock Esterel. In Advanced Research Work-
ing Conference on Correct Hardware Design and Verification Methods, pages 110–
125. Springer, 2001.

[6] Jonas Bonér, Viktor Klang, Roland Kuhn, et al. Akka library. https://akka.io,
2011-2021. Accessed: 2021-12-04.

[7] Sylvan Clebsch, Juliana Franco, Sophia Drossopoulou, Albert Mingkun Yang, To-
bias Wrigstad, and Jan Vitek. Orca: Gc and type system co-design for actor lan-
guages. Proc. ACM Program. Lang., 1(OOPSLA), oct 2017.

[8] The Rust Community. The Rust reference – 10.3: Type Layout.

[9] The Rust Community. The Rust reference – 15.3: Behavior considered undefined.

[10] Eric C Cooper and Richard P Draves. C threads. Technical Report CMU-CS-88-154,
1988.

[11] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer.
Rustbelt meets relaxed memory. Proceedings of the ACM on Programming Lan-
guages, 4(POPL):1–29, 2019.

[12] Eclipse Foundation. Xtend website. https://www.eclipse.org/xtend/index.
html. Accessed: 2021-11-24.

[13] The Eclipse Foundation. Xtext. https://www.eclipse.org/Xtext/. Accessed:
2021-12-04.

https://www.osgi.org/
https://akka.io
https://www.eclipse.org/xtend/index.html
https://www.eclipse.org/xtend/index.html
https://www.eclipse.org/Xtext/

108 Bibliography

[14] Apache Software Foundation. Apache maven. https://maven.apache.org/. Ac-
cessed: 2021-12-06.

[15] Apache Software Foundation. Apache velocity. https://velocity.apache.org/.
Accessed: 2021-12-06.

[16] Clément Fournier. Investigating compatibility of the reactor model with rust’s
ownership-based type system. Großer Beleg, Technische Universität Dresden, 2021.

[17] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó Araújo, Mar-
tin Ek, Eddie Kohler, M Frans Kaashoek, and Robert Morris. Noria: dy-
namic, partially-stateful data-flow for high-performance web applications. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18), pages 213–231, 2018.

[18] JetBrains GmbH. Kotlin. https://kotlinlang.org/. Accessed: 2021-12-06.

[19] Rewi Haar. Associated constants should not be object-safe. https://github.com/
rust-lang/rust/issues/26847, 2019.

[20] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The syn-
chronous data flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, 1991.

[21] Carl Hewitt. Viewing control structures as patterns of passing messages. Artificial
intelligence, 8(3):323–364, 1977.

[22] Shams M. Imam and Vivek Sarkar. Savina - an actor benchmark suite: Enabling
empirical evaluation of actor libraries. In Proceedings of the 4th International Work-
shop on Programming Based on Actors Agents & Decentralized Control, AGERE!
’14, page 67–80, New York, NY, USA, 2014. Association for Computing Machinery.

[23] Gradle Inc. Gradle. https://gradle.org/. Accessed: 2021-12-06.

[24] ECMA International. Standard ECMA-404 – The JSON data interchange syntax.
2 edition, 2017.

[25] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt:
Securing the foundations of the rust programming language. Proceedings of the
ACM on Programming Languages, 2(POPL):1–34, 2017.

[26] Gilles Kahn. The semantics of a simple language for parallel programming. In Proc.
of the IFIP Congress 74, pages 471–475. North-Holland Publishing Co., 1974.

[27] Steve Klabnik, Carol Nichols, and the Rust Community. The Rust programming
language: 10.3 - Validating References with Lifetimes.

[28] Steve Klabnik, Carol Nichols, and the Rust Community. The Rust programming
language: 4.2 - References and Borrowing.

https://maven.apache.org/
https://velocity.apache.org/
https://kotlinlang.org/
https://github.com/rust-lang/rust/issues/26847
https://github.com/rust-lang/rust/issues/26847
https://gradle.org/

Bibliography 109

[29] Frederic Lardinois. Google makes Kotlin a first-class language
for writing Android apps. https://techcrunch.com/2017/05/17/
google-makes-kotlin-a-first-class-language-for-writing-android-apps/.
Accessed: 2021-11-24.

[30] Edward A Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[31] Edward A Lee and David G Messerschmitt. Synchronous data flow. Proceedings of
the IEEE, 75(9):1235–1245, 1987.

[32] Edward A Lee, Stephen Neuendorffer, and Michael J Wirthlin. Actor-oriented
design of embedded hardware and software systems. Journal of circuits, systems,
and computers, 12(03):231–260, 2003.

[33] Marten Lohstroh, Christian Menard, Alexander Schulz-Rosengarten, Matthew We-
ber, Jeronimo Castrillon, and Edward A Lee. A language for deterministic co-
ordination across multiple timelines. In 2020 Forum for Specification and Design
Languages (FDL), pages 1–8. IEEE, 2020.

[34] Marten Lohstroh, Ínigo Íncer Romeo, Andrés Goens, Patricia Derler, Jeronimo
Castrillon, Edward A Lee, and Alberto Sangiovanni-Vincentelli. Reactors: A de-
terministic model for composable reactive systems. In Cyber Physical Systems.
Model-Based Design, pages 59–85. Springer, 2019.

[35] Microsoft. Language server protocol. https://microsoft.github.io/
language-server-protocol/. Accessed: 2021-12-06.

[36] Scott Milton and Heinz W. Schmidt. Dynamic dispatch in object-oriented languages.
Technical report, CSIRO – Division of Information Technology, 1994.

[37] MIT. Reading 17: Concurrency. https://web.mit.edu/6.005/www/fa14/
classes/17-concurrency/, 2014. Accessed: 2021-12-04.

[38] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. Naiad: a timely dataflow system. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, pages 439–455, 2013.

[39] Bruce Jay Nelson. Remote Procedure Call. PhD thesis, USA, 1981.

[40] Tom Preston-Werner et al. Semantic versioning 2.0.0. https://semver.org, 2013.
Accessed: 2021-12-04.

[41] Tom Preston-Werner, Pradyun Gedam, et al. TOML v1.0.0. https://toml.io/
en/v1.0.0, 2021. Accessed: 2021-12-04.

[42] Lui Sha, Abdullah Al-Nayeem, Mu Sun, Jose Meseguer, and Peter C Olveczky.
PALS: Physically asynchronous logically synchronous systems. Technical report,
2009.

https://techcrunch.com/2017/05/17/google-makes-kotlin-a-first-class-language-for-writing-android-apps/
https://techcrunch.com/2017/05/17/google-makes-kotlin-a-first-class-language-for-writing-android-apps/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://web.mit.edu/6.005/www/fa14/classes/17-concurrency/
https://web.mit.edu/6.005/www/fa14/classes/17-concurrency/
https://semver.org
https://toml.io/en/v1.0.0
https://toml.io/en/v1.0.0

110 Bibliography

[43] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in
software,. Dr. Dobb’s Journal, 30(3), 2005.

[44] The Actix Team. Actix. https://actix.rs/, 2021. Accessed: 2021-12-04.

[45] Stefan Tilkov and Steve Vinoski. Node.js: Using JavaScript to build high-
performance network programs. IEEE Internet Computing, 14(6):80–83, 2010.

[46] Huon Wilson. Myths and Legends about Integer Over-
flow in Rust. https://huonw.github.io/blog/2016/04/
myths-and-legends-about-integer-overflow-in-rust/. Accessed: 2021-
11-25.

[47] Yang Zhao, Jie Liu, and Edward A Lee. A programming model for time-
synchronized distributed real-time systems. In 13th IEEE Real Time and Embedded
Technology and Applications Symposium (RTAS’07), pages 259–268. IEEE, 2007.

https://actix.rs/
https://huonw.github.io/blog/2016/04/myths-and-legends-about-integer-overflow-in-rust/
https://huonw.github.io/blog/2016/04/myths-and-legends-about-integer-overflow-in-rust/

111

A. The Savina Ping Pong benchmark

The Savina Ping Pong benchmark consists of two reactors sending messages back and
forth over a port. The count parameter (line 40) determines how many message ex-
changes are executed. The Ping Pong benchmark is entirely sequential and does not
benefit from parallel execution. Its definition is reproduced in Listing A.1.

112 A. The Savina Ping Pong benchmark

1 target Rust;
2

3 reactor Ping(count: u32(1000000)) {
4 input receive: u32;
5 output send: u32;
6 state pingsLeft: u32(count);
7 logical action serve;
8

9 reaction(startup, serve) → send {=
10 ctx.set(send, self.pingsLeft);
11 self.pingsLeft -= 1;
12 =}
13

14 reaction (receive) → serve {=
15 if self.pingsLeft > 0 {
16 ctx.schedule(serve, Asap);
17 } else {
18 ctx.request_stop(Asap);
19 }
20 =}
21 }
22

23 reactor Pong(expected: u32(1000000)) {
24 state expected(expected);
25

26 input receive: u32;
27 output send: u32;
28 state count: u32(0);
29

30 reaction(receive) → send {=
31 self.count += 1;
32 ctx.set(send, ctx.get(receive).unwrap());
33 =}
34

35 reaction(shutdown) {=
36 assert_eq!(self.count, self.expected);
37 =}
38 }
39

40 main reactor SavinaPong(count: u32(1000000)) {
41 ping = new Ping(count=count);
42 pong = new Pong(expected=count);
43 ping.send → pong.receive;
44 pong.send → ping.receive;
45 }

Listing A.1: Source code for the Savina Ping Pong benchmark.

Acronyms 113

Acronyms

API application programming interface. 1, 12, 14, 23, 33–35, 48–52, 58–62, 72, 74, 77,
82, 83, 88, 99, 105

AST abstract syntax tree. 11, 13, 77, 82, 83, 104

CLI command-line interface. 32, 80, 81

DAG directed acyclic graph. 39, 40

DE discrete-event. 15

DSL domain-specific language. 30, 103, 105

FFI foreign function interface. 12, 13

ID identifier. 46–48, 51, 60, 61, 63–65, 73, 74, 93, 100, 101

IDE integrated development environment. 11, 82, 103

IR intermediate representation. 77, 104

JVM Java Virtual Machine. 82

LF Lingua Franca. ix–xi, 1, 4, 6–8, 10–15, 33, 34, 39, 40, 43, 44, 48, 53, 56, 58, 60, 62,
66, 69–71, 76–82, 87, 88, 94–97, 99, 100, 102–105

LSP Language Server Protocol. 82

OOP object-oriented programming. 13, 36

SR synchronous/reactive. 15

STL Standard Template Library. 13

UB undefined behaviour. 23, 52

INDEX 115

Index

∗↔, 42, 43, 66

action, 4, 9, 41, 48, 53, 61
physical, 10, 37, 49, 92

aliasing, 21, 23
assembly phase, 35, 37, 60, 74
assertions, 16, 43, 62, 66, 73
associated

constant, 27, 37
function, 24, 27
type, 27, 36, 63, 76

attribute, 30

borrowing, 20, 21, 43, 53

Cargo, 31, 33, 63, 69, 84, 87
channel, 55, 58, 59, 66, 92
clone, 23, 30, 50, 51, 64, 81, 91, 92
closure, 51, 64, 74, 76
code generator, 33
conditional compilation, 30, 32, 63, 104
coupling, 12, 33, 34, 48
crate, 25, 33, 35, 80

data race, 23, 24, 43, 52, 53, 64, 66
dataflow graph, 41
dependency, 4, 5, 7, 38, 72

effect, 7, 41, 72
graph, 4, 5, 11, 39, 40, 44, 53, 59,

60, 65, 74, 104
read, 7, 41
relation, 39–41
trigger, 7, 41, 62

destructuring, 19, 74, 76, 81
determinism, 3, 4, 39

enum, 18
event, 4, 37, 50, 53, 54, 56, 62

event loop, 56
export, 25, 36, 49, 70

federated execution, 13
function, 15, 17

main, 15, 59, 69

generics, 13, 22, 27, 37

ID
reaction, 46, 54, 60, 64, 73, 74
reactor, 47, 61
trigger, 60

impl block, 24, 27
integer, 16, 46
internal mutability, 23

keepalive, 10, 58, 66, 78

level, 39–41, 44, 52, 53, 62
lifetime, 21–23, 91

parameter, 22, 55, 91, 92
static, 23, 47, 66

logical time, 54, 58

macro, 16, 29, 54, 103
main reactor, 38
match expression, 19, 73
method, 7, 24, 27, 28, 70
module, 24–26, 70, 72, 80
multiport, 43
mutations, 4, 48, 92, 100

newtype, 17, 51, 53, 60, 93

object safety, 37, 64
Option type, 29, 49, 50, 92
ownership, 20, 21, 23, 47, 64, 76

panic, 73, 101, 102

116 INDEX

parallelism, 14, 39–41, 44, 50, 51, 63,
66, 80, 101

pattern-matching, 19, 50
pointer, 23, 28, 46, 47, 65, 66

fat, 28, 36, 47, 103
polymorphism, 27, 28
port, 3, 37, 41, 42, 48, 49, 53, 61

binding, 8, 38, 76
pub, 25, 26

reaction, 35, 37, 38, 46, 48, 70
context, 35, 48, 52, 55, 70, 91, 92
priority, 38, 40, 77
signature, 7, 72, 77

reactions, 3
reactor

instance, 74, 76
main, 7, 59, 103
parameter, 36, 59, 74, 76, 81, 102,

103
ReactorBehavior, 36, 70, 73
ReactorInitializer, 36, 70, 74, 75, 103
reference, 20–23, 28, 47, 48, 55, 64, 91,

92
reference counting, 23, 65, 92
referent, 21, 22, 47, 91
Result type, 29, 36
runtime, 11, 33

C++, 13, 36, 40, 46, 48, 51, 65, 66,
104

C, 12, 40, 48, 51, 66, 104
Python, 13, 48, 81, 104
TypeScript, 14, 46

scheduler, 34, 35, 37–40, 44, 47, 48, 58
self type, 24, 27, 36
smart pointer, 13, 23, 46, 48, 52, 64, 91,

92
stack, 28
state variable, 39, 47, 81, 102
struct, 17, 22, 36, 70

tag, 4, 8, 10, 37, 38, 42, 44, 50, 53, 54,
62

target
program, 11, 33, 69
property, 10, 78

thread, 3, 12, 37, 38, 50, 51, 54, 55, 58,
63, 66

pool, 51, 52, 66
safety, 24, 52, 53, 64, 67
scoped, 55, 66

timeout, 78
timer, 4, 10, 41, 48, 77
trait, 26, 28, 33, 36, 37, 63, 70

bound, 26, 27, 37, 91
trigger, 41, 50, 60, 61

shutdown, 10, 41, 49, 72
startup, 7, 10, 37, 41, 72

tuple, 17

undefined behaviour, 23
union type, 17, 18
unit type, 16, 50
unsafe, 23, 46, 48, 52, 53, 59, 66

virtual dispatch, 28, 36, 47, 64
visibility, 26

	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	2 Background
	2.1 The reactor model
	2.1.1 Structure of reactors
	2.1.2 Timing in reactors
	2.1.3 Distributed execution

	2.2 Lingua Franca
	2.2.1 Event sources
	2.2.2 Target properties
	2.2.3 The LF compiler
	2.2.4 Targets

	2.3 Related work
	2.4 Introduction to Rust
	2.4.1 Data model
	2.4.2 References and ownership
	2.4.3 Memory safety
	2.4.4 Abstraction in Rust
	2.4.5 Meta-programming
	2.4.6 Cargo

	3 Runtime design
	3.1 Chapter outline
	3.2 The runtime crate
	3.3 Modelling reactors
	3.4 Overview of the execution logic
	3.5 Representing data dependencies
	3.5.1 Definition
	3.5.2 Implementation
	3.5.3 Dependency graphs
	3.5.4 Port communication
	3.5.5 Multiports

	3.6 The [language=Rust, style=inlineRust]processtag routine
	3.7 Representation of reactions
	3.8 Layout of reactor instances
	3.9 The reaction context
	3.9.1 API
	3.9.2 Implementation

	3.10 Parallel execution
	3.10.1 Thread-safety of ports
	3.10.2 Sharing reactors

	3.11 Tag cleanup
	3.12 Events and asynchrony
	3.12.1 Asynchronous events
	3.12.2 Main event loop
	3.12.3 Timeline synchronization
	3.12.4 Unbounded waiting and [language=Rust, style=inlineRust]keepalive

	3.13 Entry point for execution
	3.14 Assembly phase
	3.14.1 The assembly module
	3.14.2 Dependency graph implementation
	3.14.3 Uses of dependency graphs
	3.14.4 Debug information

	3.15 Cargo integration
	3.16 Comparison with the prototype
	3.16.1 The single Reactor trait
	3.16.2 Debug information

	3.17 Notable differences with other LF targets

	4 The LF-Rust compiler
	4.1 Form of the generated code
	4.1.1 Project layout
	4.1.2 Reactor modules
	4.1.3 Reactions
	4.1.4 Assembly
	4.1.5 Code lowering

	4.2 LF extensions
	4.2.1 Common target properties
	4.2.2 Rust-specific target properties
	4.2.3 Differences with other targets

	4.3 Compiler implementation
	4.3.1 Technologies
	4.3.2 Code generators
	4.3.3 The Rust code generator

	5 Evaluation
	5.1 Optimizing the Rust runtime
	5.1.1 Sparse reaction sets
	5.1.2 Avoiding copies
	5.1.3 Avoiding atomic operations
	5.1.4 Data structure selection
	5.1.4.1 TriggerId internal representation
	5.1.4.2 Reaction sets for levels
	5.1.4.3 Event queue
	5.1.4.4 Action values

	5.2 Comparison to other frameworks

	6 Future work
	6.1 Features
	6.1.1 Scheduler unit tests
	6.1.2 Scheduler verification
	6.1.3 Deadline violation detection
	6.1.4 Mutations
	6.1.5 Smarter tag cleanup
	6.1.6 Error handling

	6.2 Lingua Franca syntax
	6.2.1 Annotations
	6.2.2 Required parameters

	6.3 Other

	7 Conclusion
	Bibliography
	A The Savina Ping Pong benchmark
	Acronyms
	Index

