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Abstract

With increasing complexity, programs become more prone to bugs and security vulnerabilities. This is
particularly true of kernels. For example, the original feature set of the monolithic Unix kernel is still
continuously extended by functions, drivers and modules. Since these are not mutually constrained, each
additional component increases the attack surface of the entire system. There are several approaches
to solving this problem and implementing the concept of defense in depth. However, they all involve
runtime costs and, most importantly, manual customization. This effort makes it difficult or impossible
to flexibly adapt existing software to isolation mechanisms that provide an appropriate trade-off between
security and performance overhead.

The idea of this work is to investigate whether the isolation of components of a server application can
also be done by a compiler. The Ohua compiler has been developed to identify independent execution
steps in a sequential program and to transform the program into a dataflow program consisting of inde-
pendent nodes with potentially separate memory. The specific implementation of the nodes is determined
by architectural integrations. Nodes can be threads or processes, or theoretically other isolation concepts.
We wanted to use Ohua to convert a server application, in which the application, IP stack and network
interface share the same memory, into an application for the microkernel-based operating system M3 .
The main questions were i) how to restructure the server application so that in the resulting dataflow
graph the application, IP stack and network interface each operate in exactly one isolated node, and ii)
could these restructurings be implemented as compiler transformations.

We show how the application can be restructured accordingly. Formal descriptions already exist for some

of the transformations. However, it has also become clear that the syntax of the input program alone does

not contain enough information to define, for example, whether or not the program should be adapted

to concrete target systems such as M3 . Therefore, this thesis discusses which transformations could be

implemented as compiler transformations in the future, and which transformations still have to be done

by the programmer.
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1 Introduction

Whenever tasks become more extensive and complex, systems react with division of work and special-

ization. By subdividing into smaller, less complex tasks, large processes can be distributed and processed

in parallel, and at the same time the executing components are more efficient because they have to cover

less noise, peripheral cases and side aspects. We can observe this development on different scales in

computer science. At the hardware level, computations are distributed from general-purpose CPUs to

GPUs, digital signal processors (DSPs) or other adapted hardware, and the concrete hardware logic is

abstracted from the program logic to be executed. At the software level, components are separated both

vertically, i.e. between business logic, language runtime environment and operating system services, and

horizontally, i.e. between components of the different levels of independence.

Besides improved efficiency and scalability, compartmentalization has also a major advantage when it

comes to security. Separation of concerns and minimization of trust assumptions are core concepts in

defense in depth for cloud deployments. But again they are likewise seen on the scale of single machines.

A cloud deployment consisting of one big trust zone protected by a perimeter is the large scale equivalent

of a monolithic kernel, with unrestricted memory access among all kernel space processes. The problem

with this is clearly evident in monolithic Unix kernels. Despite various measures to prevent unauthorized

memory access (e.g. control flow integrity and data execution prevention) or to make it more difficult to

exploit security vulnerabilities (e.g. address space layout randomization and stack canaries), according

to statistics of the NIST[1] the number of vulnerabilities in the kernel ecosystem is still increasing. An

analysis of the NIST National Vulnerability Database in [38] looked at the reasons for critical vulnera-

bilities over the last 5 years and concluded that 34% of them were due to lack of storage security, and

another 43% were due to lack of compartimentalization. The authors also pointed out that these vulnera-

bilities could have been prevented if essentially independent processes could not access shared memory,

but that however the so-called least-privilege policy is not enforced by the Linux kernel or other big open

source projects as OpenSSL or the Apache Server. Similarly, as the authors report in [27], the majority

of known vulnerabilities in Windows, Chrome and the Android Open Source Project (AOSP) can also be

traced back to insecure memory access.

So obviously it is desirable to have compartmentalization and data locality enforcement not only in cloud

setting but also in the kernel itself. Existing solutions for memory protection are tied to specific hardware

requirements as Memory Protection Keys, Trusted Execution Environments like ARMs Trust Zone[40]

or Intels SGX [12] or specific virtualization layers ([45], [39]) and in general require manual code adap-

tations. The costs of adapting tends to make migration between architectures and to newer solutions

more difficult and leads to components being subdivided more coarsely than would make sense in or-

der to save effort and runtime costs. Also in terms of security, compartmentalization and in particular

concurrency comes at a cost. Recent trends in secure computing are strongly moving away from simple
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testing towards verification and proving. This applies to the proof of certain properties of user programs

as well as to the verification of compilers, kernels, or operating systems ([33],[28], [20]). Distributed,

concurrent programs, however, are much more difficult to verify.

While certain costs are unavoidable when program parts are isolated, the costs of manually adapting

to different isolation mechanisms are not among them. The classic approach to separating concrete run-

time implementations from program logic is compilers. They allow the programmer to define and test the

logic within specific programming models and automatically translate and add to them to fit the chosen

runtime environment and architecture. This work will therefore also be based on Ohua[17], a compiler

developed to identify independent processing steps from sequential programs and deploy them to con-

current, potentially isolated nodes of a data flow graph. Ohua works on subsets of high-level languages

such as Python or Rust. Instead of machine code, Ohua extracts a dataflow program from the input,

introducing two main abstractions, the notion of an independent node and the notion of communication

edges, and replaces them with the corresponding implementations for different run times. The second

aspect of Ohua is the ongoing effort to formally describe and verify the transformations it applies. The

goal is to be able to verify sequential input programs and transform them into a distributed program using

Ohua, without losing the guarantees of verification.

The idea of this work is to use and extend Ohuas capabilities for program transformation. We want to be

able to extract isolated components from a shared memory program suitable for unikernels and automat-

ically derive the code to deploy them in a microkernel setting. Concretely we will use the M3 operating

system as an example backend to provide process isolation. The key questions we need to answer are:

How can we rewrite a program written for monolithic or unikernels into one in which isolated

components work together in a data flow graph?

Can we generalize these refactorings to compiler transformations?

A good example case to approach the answer to this question is are server applications. They are quasi-

ubiquitous in distributed applications and consist of various components, in particular the data backend,

the TCP/IP-Stack and a network driver that should be isolated from each other for security reasons.

Using this example we make the following contributions in this work:

• We present a simple server application based on smoltcp and discuss basic structural problems that

stand in the way of compiling into independent components.

• We describe how these structural problems, such as visibility of object usage, shared memory

access or stack management when splitting methods, can be solved for the concrete example.

• We discuss which of the conversion steps are generalizable, how they could be formalized, and the

resulting requirements for the programmer.

• We propose approaches to extend the supported syntax of Ohua and the functionality of the M3

backend.
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To better understand the starting point and requirements of this work, in Chapter 2 we first consider the

function of Ohua and the properties of the target architecture M3. Certain properties of Rust’s type system

are also explained in this chapter, as they form the basis of Rust’s storage security and are helpful con-

straints for meaningful transformations. On this basis, Section 3 describes the our example application.

In a rough sketch, we approach the structural problems and describe schematically how the application

should function after the transformations. We then describe how individual aspects of the code must be

transformed. After looking at some related approaches in Chapter 4, we discuss what we can learn from

the applied refactorings. Specifically, in Chapter 5 we list the main problems targeted, to discuss whether

and how they could be solved by compiler transformations. We also address possible implementations

for language features that Ohua does not currently support. Chapter 6 briefly concludes our findings.
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2 Background

The goal of this work is to understand which transformations are necessary to convert a program from a

sequential programming model with shared memory into a distributed, concurrent programming model

of a microkernel operating system. A significant part of these transformations is already implemented in

the Ohua compiler. Therefore, the specific goal is to understand and close the ’translation gaps’ between

the programming models of the source program, the current Ohua implementation, and the M3 operating

system. So to better understand the work that needs to be done, we will introduce those models in this

chapter.

2.1 Ohua

In this section we will introduce the Ohua compiler[17]. Its essential concept is to extract the underlying

data flow graph from a sequential input program. The result is a program structure consisting of indi-

vidual steps that are connected only by incoming and outgoing data and can be executed concurrently.

These individual steps and their data channels can then be mapped to various abstractions of processes

and communication channels in the backend of the compiler to achieve parallelization and isolation of

the steps. Like most compilers, Ohua works step-by-step with different intermediate representations

(IRs) of the input program. To be able to support different languages and target architectures, Ohua uses

language integrations. Currently there are integrations for Rust and Python. In the next subsection, we

will take a closer look at the basic structure and function of Ohua.

For this work, it is also important to understand what programming model Ohua currently supports.

Here, programming model means on the one hand which restrictions in the syntax of the input programs

are currently necessary to be able to convert them into correct concurrent programs. On the other hand

it contains the explicit and implicit assumptions about the concrete implementations of ’processes’ and

’channels’. So we will also look at these aspects in more detail in this section.

2.1.1 Compiler Pipeline

When we say ’Ohua compiles a program’, we mean it compiles functions in the compile scope. In

contrast to e.g. rustc or gcc, Ohua does not compile the complete code of the program, but transforms

only the functions, for example within one or more Python modules specified in the call. We call these

functions algorithms. In contrast to algorithms, functions and methods that are imported and used within

algorithms are not compiled. They are completely opaque to the compiler. This also means that Ohua

does not require any syntax constraint in these imported functions and methods. An overview of the

compiler pipeline is shown in Figure 2.1.
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In the compiler frontend, algorithms of the target language are first parsed and translated into Ohua’s

frontend language (Frontend IR). This translation is implemented in language specific frontend integra-

tions. That is, for each language supported by Ohua, such a frontend integration must exist. This inte-

gration parses algorithms of the input language and translates them into the syntax of the frontend IR.

For non-supported syntax constructs, currently for example break statements in loops, the compilation

terminates at this point. The currently supported subset of Rust can be found in the Appendix A.1.

Figure 2.1: Structural overview of Ohua and the code transformations

In the core compiler itself there are two main representations of the code. One is Expression IR. This

language is functional and based on the call-by-need lambda calculus. To transform input algorithms to

this representation calls to other algorithms are inlined, renaming compiler passes ensure single static

assignment form, and assignment expressions are refactored to applicative normal form. A simplified

example of code before and after the transformation is shown in Listing 2.1. A central conversion step in

the compiler is the transformation of stateful calls to so called state threads([47], [31],[16]). To generate

race condition free tasks, Ohua forbids shared state use and only permits stateful computation inside

methods. However, methods in an imperative language mutate objects in place and implicitly refer to

the new, changed state by the same reference as before. The conversion of stateful calls to state threads

makes the semantic of creating a new state upon calling methods explicit. In the code example in Fig.2.1,

the call someState.do(), is internally transformed to explicitly take a state as an argument and return

a new, mutated state. Thereby, function calls downstream to not need to access a shared memory to use

stateful objects. Based on this explicit state threading, Ertel et al. [16, 15] developed functional repre-

sentations for imperative control flow on stateful computations. For example, an imperative for-loop is

translated to a so called smap operation, which is essentially a fold operation of the loop body on the

states manipulated inside the loop.

The next representation in the compile flow is the Data Flow Graph (DFG) representation. Independent

program tasks are encapsulated in the this representation and are explicitly assigned their incoming out-

going data channels. Besides function calls from the original program, this representation also contains

control nodes that govern the data flow. For example if the input code contained a branching statement

like if cond {f()} else {g()} control nodes will be introduced to a) switch data flow between

calls to f() or g() and b) to collect results from appropriate output channels of f() or g() depending

on the condition. This representation also allows to merge certain nodes by fusing their code, as well as

input and output channels. This is done for instance if a following node entirely depends on its predeces-

sor and has so little work to do that it would hardly justify the overhead of spinning up an independent
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fn algo(i){
let someState =

other_algo(i);
let a = someState.do()
let b = f(a)
return b

}

fn other_algo(i){
let s = State::new(i)
s

}

(a) Input algorithm

let someState =
λ State::new (i) in

let a, someState_0 =
λ do (someState, a) in

let b = λ f (a) in
b

(b) Pseudocode of IR

Listing 2.1: An algorithm is mapped to a nested let-expression with the innermost term representing its
return value

task in any backend implementation.

Which ultimately brings us to the compiler backend and backend integrations of Ohua. Backend inte-

grations consist of two parts. The ’Language Backend’ is only language specific. Similar to the frontend

integration, it serves the purpose of translating code inside tasks from Ohua representation syntax back

to the target language syntax. The ’Architecture Backend’ is responsible for translating the ’nodes’ and

’edges’ of the DFG into a specific implementation for concurrent tasks, communication channels and a

runtime for the graph. For example, there can be two different architectures for a given language: one

implementing tasks as threads and one using processes, with both also generating appropriate channels

and runtime code to execute the DFG. As we did not compile imported functions, the target language

must match the input language, which is automatically ensured by the compiler. Architectures for the

same language can be used interchangeably. This way Ohua can generate e.g. multi-threaded shared

memory or fully distributed programs from the same input.

In the next section we will take a closer look at the restrictions and assumptions required to ensure that

compilation works as expected.

2.1.2 Programming Model

The term programming model generally describes a relationship between syntax constructs in a pro-

gramming language and their concrete semantics in a particular execution environment. In the case of

Ohua, the programming model includes, on the one hand, the supported input syntax and the assump-

tions made about the supported terms of the input language. On the other hand, it specifies how these

terms are translated into a dataflow graph and what assumptions Ohua makes about the implementation

of nodes, edges, and runtime of the DFG. First we will look into the supported input syntax and assumed

semantics.
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2.1.2.1 Input Syntax and Semantics

We already know that Ohua’s basic input units are algorithms, i.e. pure functions inside the compile

scope. Table 2.1 depicts the language definition of the frontend representation described before. Any

syntax construct of the input language has to be mapped to the according terms of this language to be

compiled. In the following paragraphs we will describe the accepted syntax constructs and the semantics

the programming model expects them to have.

Patterns:
p ::= x | (x, . . . , x) | () named variables, tuples or unit
Expressions:
e ::= e named expression in host language

| 1, 2, 3, . . . | true | false | () typed literal in host language
| let p = e in e lexical scoping
| e e application
| λ[p, . . . , p]. e abstraction
| if e then e else e conditionals
| map e e map first expression to second
| bind e e bind an expression representing a state to

an expression representing a function to act on this state
| stmt e e expression whose return value is ignored
| seq e e
| ( e ) tuple of expressions

Table 2.1: Definition of the Expression IR

Function Calls: Beside algorithms, Ohua supports stateful and stateless function calls, i.e. methods and

pure functions, imported into the scope. Pure functions are expected to be side effect free. In particular,

the programming model assumes that pure functions do not implicitly manipulate their arguments. This

excludes, for instance, functions that manipulate their arguments by reference. If the output of a pure

function call is not used, it is considered to have no effect and is removed during compilation.

Stateful function calls, on the other hand, are expected to manipulate the object they are called on, i.e.

have a side effect. Consequently, they are not removed regardless if the output is used. Any stateful

computation is expected to happen exclusively and explicitly using method calls and also method calls

are expected to only manipulate the object state itself. This also entails the requirement that the state is

not ’leaked’ via return values. For example, in the method call let x = SomeState.do_stuff();,

x must not be, or contain, a reference to SomeState. We already assumed that other functions do not

manipulate SomeState when using x as argument. However, without this ’leaking assumption’ it would

be possible to call x as a stateful object, thereby implicitly manipulating the state of SomeState. This

implicit semantic is not handled currently and would be lost in the distributed output code.

Functions need to be typed or type-able by the frontend integration. To correctly annotate the types in

generated code, at least to the extent required for any particular backend and architecture, Ohua needs

to extract type information from the input code. Specifically the argument types of each function call

are extracted and preserved in the different IRs as typed function literals capturing the argument types of

each function call.
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Loops: Ohua supports bound and unbound for-loops. They are transformed into parallelizable pipelin-

ing of the independent calculation steps inside the loop. Inside for-loops, each state from outside the

loop must be used at most once to enable the accumulation of state changes in a single node for each

object. Conditional loops (while or do-while) are as of the beginning of this work not supported, but

can be expressed using recursion.

Recursion: Ohua supports recursion with some notable restrictions. Recursive algorithms must be tail

recursive, the recursive call must be located in the if-branch, and the return value must be in the else-

branch of recursion. Furthermore, either one must be the only statement in each branch respectively.

As return values only single variables are supported. Recursive loops will not yield any pipelining or

parallelization but a loop executed for one input at a time. This is due to the semantic of recursion, being

a repeated function on a state, where the result of each step depends not only on that step but also on

previous results. Currently, the output of recursive algorithms cannot be used in an assignment, i.e. a

recursive call can only be the last statement in another algorithm and return the calling algorithm’s final

result.

Branching: Branching is supported in case of simple if-else expressions, where both branches must be

present. Also, if-else statements, as for instance present in the Python syntax, are currently not supported.

This is because those statements have a different execution semantic than expressions, i.e. branches that

do not return a value but have side effects on variables from the surrounding scope, so they need to be

implemented separately. In addition, it is currently not possible to use stateful functions in branches.

Return, Continue, Break: Ohua currently does not support any forms of early return of conditional

execution except for recursion and branching as described before. Therefore, break and continue

are generally not supported at the moment, while return is supported only for Python and only at as

the last statement of a function block, because contrary to Rust there is no implicit value return in Python.

Variables and Literals: There are two categories of variables. Local variables are bound inside al-

gorithms, environment variables are bound in outer scope. Thus, environment variables are basically

arguments of the algorithms, but can also be imported or globally defined names. Ohua supports mutable

and immutable local variable bindings. Local variables can either be used as a state, or as an argument

to a function call. If it is used as an argument it can only be used once, if it is used as a state, it may

be used more than once except, as explained before, inside loops. Environment variables cannot be used

as a state directly1, but can be used several times as function call argument. The underlying assump-

tion of this distinction is that environment variables will be available in scope for all nodes created from

an algorithm, while locally bound variables are sent to the consuming node. This assumption becomes

relevant in architectures where the generated tasks have no access to a common global scope. In those

cases, environment variables are not available to the task via a closure mechanism. This will be the

case for M3 tasks. Finally there is a limited set of literals that is directly supported in the input. This

includes integers, booleans, strings and unit literals. Other literals must be wrapped in a function call

1This changed during the course of this work. Now arguments to algorithms can be used directly as a generator for a for-loop.
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currently (simple binary operations are sufficient here e.g. to compile let x = 17 one could write

let x = 17 + 0).

Many of the current limitations are only due to lack of implementation. For example, there is no formal

reason to allow recursive calls only in the if branch. These limitations will be fixed in the future. At the

moment, however, they are the main reason why control flow expressions cannot be freely combined.

That is, there are currently restrictions on the frontend language that are not reflected in the language

itself.

2.1.2.2 Enforcement

Conformity with the allowed syntax subset is automatically implemented by each language integration,

as it has to translate the input syntax to the frontend language. However, this is only a syntactical conver-

sion. Except for tracking the annotated type of named variables, the compiler does no further semantic

analysis of the input code. This means that to comply with a programming model requirement it is suf-

ficient to match the expected syntax, but not necessarily the expected semantics. Take for example the

requirement to use each variable only once as a function input. To use a variable x twice, a programmer

needs to return it twice from a function call let (x1, x2) = fun(). However, she can freely decide

whether x1 and x2 are copies or only references of x, matching the expected syntax but not the expected

semantics of the programming model. The result might still be valid output, but it is the responsibility

of the programmer to ensure validity of reference passing in the concurrent output. Likewise, the use of

global mutable state can be encapsulated in function calls.

In general, enforcement of the programming model is currently not separately implemented and in some

case lacking completely. Violations of the programming model will either lead to runtime errors during

any point of compilation or may lead to invalid output code. The latter case was not an obvious problem

in Rust, as Rust itself enforces borrowing rules and therefore a considerable part of Ohua’s limitations.

However, this is not generally the case in other languages, so tests were added in the course of this work

to ensure compilation failure upon violations of the programming model.

2.1.2.3 Backend Language and Process Abstractions

The terms of Ohua’s backend language are depicted in Table 2.2. As complex syntax constructs of the

input language are removed in the frontend, most of the terms in the backend language are basic con-

structs of any imperative language, as variables, literals, assignments, and simple control flow terms.

To generate the code for Ohua-introduced control nodes, some specific functions are also required to be

present in the host language. In particular, the control of loop execution requires implementations for list

handling, as well as the functionality for iterable objects of the host language, to test if they have a fixed

size and if so retrieve this size information.

Obviously, the backend language also entails the notion of named and typed channels, their sending and

receiving ends, and sending and receiving of variables a means of communication among the tasks of the

data flow graph.
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Typed Task Expressions:
e ::= x |1, . . . | true | () variables, simple literals

| funRef |refenvRef !HostExpr function and environment references
| x(e, . . . , e)| Obj.x(e, . . . , e) pure function and method calls
| letx = e in e| = e scoped bindings and assignments
| stmt e e statement
| x_receiver.receive() expression to receive data
| x_sender.send(x) expression to send data

–control flow–
| while True: e
| for x in x do e
| repeat (x | l) e
| while e e
| if e then e else e

– specific functions, required for control nodes –
| newList create a list
| append x e append t to x
| hasSize x [a]→ Bool
| size x [a]→ Int
| ( l, l) | ( x, x) Tuple of literals or bindings
| (x, _) First
| (_, x) Second
| x++ Increment
| x−− Decrement
| not e

Communication Channels:
channel :: channel x Typed channel, i.e. incoming and outgoing end for variable x

| x_receiver Typed receiving end of a channel
| x_sender Typed sending end of a channel

Table 2.2: The terms of Ohuas backend language used to represent the DFG. Language specific backend
integrations translate this language to generate the output program.

A major advantage of compiling with Ohua is that the generated dataflow-based language is determin-

istic. That is, a correct, deterministic, sequential program becomes a correct, deterministic, concurrent

program by compilation. Formal verification of the compiler transformations to proof this claim and

formalize the programming model is currently an ongoing task. Nevertheless, we can already clearly

describe the assumptions concerning the concrete implementations of nodes, edges and the runtime each

architecture must provide.

Specifically, we assume for the implementation of nodes and runtime that:

1. Nodes do not share mutable memory. However, the architecture provides access to environment

references, which may be global constants, imports, and (most importantly) the arguments of the

compiled algorithm.

2. There can be more nodes than the runtime is capable of running concurrently and there is no

explicit scheduling. Therefore we assume cooperative multitasking, i.e. nodes waiting for input

will free computation resources for other nodes.

3. The runtime instantiating the nodes is capable of ending them and freeing resources.

Since it is a data flow language, the execution of the programs is controlled by the data flow. This results
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in the following assumptions for the implementation of the edges:

i) all data are transferred in order,

ii) there is no implicit use of default arguments (default arguments are in general possible, but there

has to be an explicit signal for every computation in a node and every parameter it uses that

this parameter is ’None’ and should be replaced by the default value for this particular execution

round/loop),

iii) receiving is blocking (this closely relates to ii) in the sense that there must not be a calculation or

result passed on while it is not clear whether a term of that calculation just has not arrived at the

moment of calculation),

iv) all types visible in the compile scope are sendable in the given architecture.

Contrary to the assumptions on the input code, the assumptions about the architecture and backend

integration cannot be validated inside the compiler.

2.2 Micro- and Unikernels

General-purpose operating system have to provide a broad range of functionalities to connect application

layer to hardware layer. This includes user interfaces (graphics), networking, security, device drivers, and

most obviously the functionality required for program execution and memory management, which may

also include virtualization mechanisms for programming languages as Java and Python. To enable effi-

cient execution and communication between the components, Unix-like operating systems, for example,

are often implemented as monolithic kernels. In monolithic kernels the system services (daemons) and

drivers have direct access to the hardware and the shared memory.

However, this approach has considerable downsides. Since drivers and daemons run in kernel mode,

they have full rights and access to the resources of all other processes. This means that in the event of a

vulnerability in one of the components, the entire system is affected in principle. In particular third-party

device drivers were notoriously faulty and a portal for exploits2. Also, many applications do not require

most of the services provided by those general purpose systems. For example, a microservice that merely

answers simple requests to a key-value store only needs the functionality of the network stack and the

file system. Libraries and system functions for additional user or device interfaces only unnecessarily

increase the complexity, memory consumption and attack surface of the service.

Two alternative concepts of kernels are micro- and unikernels. Figure 2.2 shows how user applications,

drivers and system services, and the hardware layer are compartmentalized in each of these kernel ar-

chitectures in principle. Basically, the idea of microkernels is to reduce the code run in kernel mode to

the absolute minimum required to access the actual hardware layer, while unikernels are often based on

a microkernel, but also give non-essential components required for a specific app to run direct access to

2Recent example of driver bugs in the Linux kernel

https://nakedsecurity.sophos.com/2021/03/17/serious-security-the-linux-kernel-bugs-that-surfaced-after-15-years/
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hardware resources. We will briefly introduce the two concepts, as well as the related concept of library

operating systems here.

Figure 2.2: Structural comparison of Monolithic, Micro- and Unikernels

Microkernels▶ Microkernels follow a minimality principle formulated by Liedtke [26] as

”More precisely, a concept is tolerated inside the µ-kernel only if moving it outside the kernel, i.e.

permitting competing implementations, would prevent the implementation of the system’s required func-

tionality.”

The central motivation for microkernels is the reduction of privileged, low-level code executing in kernel

mode. Based on the insight that large code bases of monolithic kernels come at the cost of a large po-

tential for bugs in privileged, low-level (and therefore hard to check) code, concepts to minimize kernels

(and therefore attack surface) date back to the 70th [21]. Concepts like the Mach kernel [6], separation

kernels[42], or isolation kernels [48] where developed to minimize and isolate kernel space code, to in-

crease security, and enable verification.

The minimality principle basically limits the essential components of kernel-to-memory management

(i.e. providing access and access control to address spaces), CPU allocation (i.e. providing access to

the CPU in any form of process or thread abstraction and scheduling), and inter-process communication

(IPC). Other services, such as I/O, device drivers, networking, and others are run as userland processes,

although there might be further distinctions from actual user processes. In addition to the advantage of

the smaller attack surface, the low memory requirement also makes microkernels advantageous, espe-

cially for embedded systems.

This design comes with an inherent performance penalty. In a monolithic system a userspace application

requiring access to hardware or system services would cause a single context switch to kernel mode. The

request would be answered and the result returned to the userspace process. In a microkernel, however,

the request of the user application will be forwarded by the kernel via IPC, e.g. to a driver process

that again answers via IPC indirected through the kernel. In this simple scenario, the number of context

switches doubles from two to four. Also, the communication among system services is just function calls

in monoliths, while it again involves IPC and four context switches for each invocation among services.

Currently existing examples of microkernels are L4 (formerly L3 [34]), Minix [22], Singularity [24] or

the QNX microkernel OS[23] used in embedded systems for example in phones, or as real time OSs in
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cars.

Unikernels[36] ▶: Unikernels also tackle the problem of large code base and attack surface in monolithic

kernels. However, they follow a different approach concerning process isolation. The ’uni’ in uniker-

nels refers to the idea of compiling a specific kernel for each application or even component of larger

applications. Basis for compilation is a library operating system written in rather high level languages,

the user program, and a configuration file to specify the target architecture and the required library com-

ponents. Library operating systems provide functionalities of monolithic kernels as independent library

implementations. For example, device drivers for physical NICs are implemented in libraries that can

be combined with potentially different implementations of the TCP/IP stack. Examples of library op-

erating systems are MirageOS[35], Graphene [46], IncludeOS [10] or Unikraft [29]. In the compiled

unikernel, all processes run with kernel privileges and have direct access to the hardware or hardware

abstraction layer (e.g. a hypervisor). This reduces size and attack surface compared to monolithic kernels

and has, unlike monolithic and microkernels, no IPC overhead for context switches. It is not well suited

and not intended to be used for multi-user scenarios. However, large applications can be realized with

unikernels by distributing the app components into several distinct unikernels. In cloud applications, this

setup allows the hypervisor to scale only required parts of the application. Examples of this principle are

CubicleOS [44] and FlexOS [32].

2.3 The M3 Operating System

2.3.1 The Concept

M3[9] is a microkernel concept/architecture for distributed and potentially heterogeneous architecture,

as for example different embedded processors cooperating in modern cars. It comprises a hardware and

a corresponding software, i.e. OS and kernel design. Specifically, the hardware design describes the

components necessary to connect and control separate chips, e.g. for broadband communication, signal

processing (camera, GPS), or cryptographic operations, while the corresponding operating system pro-

vides communication and access to the hardware for the apps running on each component.

An overview of the design of M3 is shown in Figure 2.3. The architecture is composed of tiles, com-

municating with each other via data transfer units (DTU). There is only one tile that runs the actual

microkernel. This tile is also the only one requiring a general purpose core (GPC) as underlying hard-

ware. The computing units (CU) inside the other tiles might be general purpose CPUs, FPGAs, DSPs

or fixed-function accelerators. Processes on CUs run independently and isolated from each other. They

can however communicate to each other via the DTUs. The kernel is responsible for scheduling tasks

on the CUs. Running tasks are called activities. On tiles using CPUs, an activity is basically a running

system thread. Via the DTUs, the kernel can also control context switches between activities on the CUs

and establish communication relations between activities. By default, activities run in their own address

space and are disconnected from each other. To establish a connection, an activity A would once request

the kernel to connect, for instance to an activity B running the network stack. Once that connection is

established, the activities can directly communicate without involving the kernel again, which eliminates

some of the communication overhead in other microkernel systems.
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Figure 2.3: The m3 architecture is composed of tiles, communicating via data transfer units (DTUs).

In Section 2.1.2.3 we discussed the assumptions Ohua makes about the backend architectures’ tasks and

channels. In particular, we noticed that tasks have to be cooperatively scheduled and channels have to

ensure in-order, guaranteed delivery. Here we take a look if these requirements are fulfilled by M3.

When activities are idle, they notify the kernel, which can then schedule another activity. So cooperative

scheduling is given. Communication channels are unidirectional, first-in-first-out connections. Activities

are not aware if their communication partner is currently running or suspended i.e. if the context was

switched by the kernel. The hardware (i.e. the DTU of the receiving tile) detects attempts to communicate

with a not-running activity and errors back to the sending activity. Upon such error, the sending activity

invokes the kernel to schedule the required receiving activity. The kernel buffers messages for the receiver

in this case. Despite this fallback mechanism, the authors state that message delivery has only-once

semantic, so data access can/must be repeated if necessary upon failure.

2.3.2 The Rust API

M3 provides a Rust integration to access its abstractions of processes and channels. Here we briefly

describe the main features of this API. A simple example of how an activity can be instantiated is shown

in Listing 2.23. Activities can be initiated either on a common tile or on several tiles. In the example,

the tile of the parent process is used. The API uses a closure syntax to define activities. However, those

definitions have no closure semantic, i.e. they do not enclose definitions from the surrounding scope.

To pass capabilities and file descriptors to a child activity, the attribute activity.data_sink() can be

used to serialize data into the process memory. This data can be accessed from inside the activity code

using data_source(). Serialization is implemented in a custom Serializer based on the serde

crate. We need this mechanism, as shown in the example, to pass send and receive gates to the activi-

ties. For simple environmental variables, the API provides a separate mechanism using m3::env. This

basically provides a global key-value store in which variables can be stored before the definition of an

activity, retrieved by key inside the activity, and deleted after the activity definition to not pollute the

namespace.

Concerning process communication, the API provides different mechanisms (mainly depending on the

size of the data to be transmitted) of which direct sending over channels is the most relevant to us.

M3 manages communication among processes using capabilities. The capability to directly send to or

receive from another process is implemented as Gates in the M3 Rust API. Gates are synchronous, di-

3Example adapted from M3 Rust unit tests

https://github.com/Barkhausen-Institut/M3/blob/master/src/apps/rustunittests/src/tactivity.rs
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fn run_send_receive(t: &mut dyn WvTester) {
// Get a descriptor of the current tile
let tile = Tile::get("clone|own");
// Initialize a new activity on the current tile
let mut activity = ChildActivity::new_with(tile, ActivityArgs::new("test"));

// initialize send and receive gate with message order, size and credits
let rgate = RecvGate::new(math::next_log2(256), math::next_log2(256));
let sgate = SendGate::new_with(SGateArgs::new(&rgate).credits(1));

// make receive gate avaible in the activities namespace
activity.delegate_obj(rgate.sel());
let mut dst = activity.data_sink();
dst.push(rgate.sel();

// define activity
let activity = activity.run(|| {

...
// make receive gate available inside activity
let mut src = Activity::own().data_source();
let rg_sel: Selector = src.pop().unwrap();
let rgate = RecvGate::new_bind(rg_sel);

// receive
let mut res = recv_msg(&rgate));
let i1 = res.pop::<u32>();
let i2 = res.pop::<u32>();

});

send_vmsg!(&sgate, RecvGate::def(), 42, 23));
}

Listing 2.2: Example of creating and running a Rust activity on M3

rected one-to-one connections, so there are send gates SGate and receive gates RGate. Receive gates are

instantiated with a maximum message size and a maximum overall size of the message buffer to prevent

memory overflows in limited environments. The absolute (system immanent) maximum message size is

2 kb. Send gates are instantiated with a number of credits. With each message send, one credit is used.

The receiver can return those credits by answering on a received message. Note that this mechanism is

hidden inside the recv_msg and send_vmsg! calls. Both are or contain macro calls to generate and

receive responses upon message receipt to pass back sending credits.

Apart from the credit system, sending messages is straight forward, as known from most pipe-like inter-

faces. Receiving is done in two steps. First a receive stream is requested using

let stream = rgate.recv_msg(). This is a blocking call, that will return upon available messages

arriving at the gate. The second step is calling let msg = stream.pop(), which is non blocking.

This call can be done arbitrarily often on an existing stream but will fail if there are no more messages in

the stream. Finally, a limitation of the current M3 API is that the standard library is not supported. There

is a separate implementation of std with essential functions but partly different function signatures. For

smoltcp itself this limitation is not relevant, since it is written without using the standard library. In

contrast, the libc API is a necessary part of smoltcp and is supported by M3 .
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2.3.3 Existing M3 Architecture Integration

Ohua already features an architecture integration for Rust on M3 . It is built on a simplified API of

M3 that provides two main encapsulations, the channel() call and the activity! macro. Listing 2.3

shows how an activity can be created using those functionalities. The function channel basically wraps

the initialization of pairs of send and receive gates with default message orderings, a default message

size, and a default of one send credit. This allows to create channels basically the same way as in pure

Rust or Python. The activity! generates code to 1) instantiate a ChildActivity on the current tile,

2) delegate the given gates to the activity, and 3) bind and activate the gates inside the activity. This again

basically resembles the initialization of a thread in pure Rust.

use funs::hello_world;

fn test() -> String {
use m3::com::channel::{Sender, Receiver};
use m3::activity;
let (a_0_0_tx, mut a_0_0_rx) = channel();
activity!(

(|a_0_0_child_tx: Sender| {
let a_0_0 = hello_world();
a_0_0_child_tx.send(a_0_0)?;
Ok(())

}
)(a_0_0_tx)

);
a_0_0_rx.activate()?;
a_0_0_rx.recv::<String>().expect("Error message")

}

Listing 2.3: Example of creating an activity using the simplified M3 Rust API

However, as previously explained, activities in M3 are not closures. This means that in order to use

environment variables, an additional mechanism will be necessary. This is currently not part of the

architecture integration.

2.4 smolTCP

smolTCP [5] is a Rust-based open-source library for network stack implementations. It runs entirely as

a user space application. It also provides conditional compilation features to build applications without

heap allocation. This makes smoltcp and applications built with it amenable to be used in microkernels

such as M3[8] and embedded systems such as ARTIQ (e.g. [30]). In fact, the microkernel operating

system Redox[2], as well as M3 itself, already use smoltcp for their network stack implementation. So

in both systems, smoltcp is used to create a network stack as a sequential, userspace service. This means

that, in contrast to the application to be developed in this thesis – the TCP/IP layer, the actual network

layer or system interface and the user application communicate with each other via shared memory.

The design of the library is structured according to typical TCP/IP layering. We will briefly introduce

the three main layers or components, respectively, that are relevant in this work4.

4For more information see the documentation at https://docs.rs/smoltcp/latest/smoltcp/.

https://docs.rs/smoltcp/latest/smoltcp/
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The socket module provides different socket abstractions implementing the TCP, UDP, IGMP or DHCP

protocols, respectively, as well as for raw sockets. Common features of all those abstractions are keep-

ing track of inbound and outbound data in socket buffers and implementing functionality to package or

unpack those data according to the implemented protocol. The sockets keep also track of additional state

information, relevant for their respective protocol e.g. TCP or DHCP client states, hop limits, window

sizes, etc.

The ifacemodule provides the abstractions of the IP layer. The most important structure is Interface.

In an inner component of the interface (InterfaceInner), the state data of the IP layer are stored.

This includes the IP address of the interface, a routing table, a neighbor cache, and the hardware address

(depending on the transport medium according to Ethernet or IEEE 802.15.4 standard). Accordingly,

the generation and interpretation of IP headers for outgoing and incoming packets are also tasks of

the InterfaceInner. In the currently official variant of smoltcp, the Interface also contains a field

Device, holding an abstraction of the physical network layer, and a SocketSet to manage all sockets

belonging to the interface. Smoltcp is under ongoing development and so, in the recent implementation

state, Device and Sockets are no longer part of the interface, but independent structures passed to it to

process packets from sockets to device and vice-versa. We will discuss the implication of this in further

detail in the Section 3.1.

Finally, the physical layer is implemented in the phy module. It provides different implementations of

the Device trait, to connect the application to the underlying operating systems loopback or tuntap in-

terface or raw sockets. Implementors of the Device trait provide the methods receive, transmit and

capabilities.

The actual transfer of packets from the interface to the device is realized via sending and receiving to-

kens. We explain this in a little more detail here, because it exemplifies a characteristic of the smoltcp

code. A successful call to device.receive() will yield a tuple of a receive token RxToken and a

send token TxToken. The former will contain the actual received content as a private field, the latter

contains a reference to the device specific storage for outgoing packets. In case of tuntap and raw-

socket devices, this reference is a file pointer provided by the operating system. In Lising 2.4 the a

slightly simplified implementation of a sending TxToken for raw sockets and the usage of such token

to send an Ethernet frame are shown. Two things become apparent. First, the memory for the packets

is allocated only at device level upon consuming a token. Second, any structs needed to construct the

frame are instantiated in a closure passed as an argument to tx_token.consume(). As closures are

realized via fixed size structs on the stack frame of the called function, this technique enables smoltcp

to work without heap allocation and is used heavily in the code. This principle is used in a cascading

manner i.e. dispatch_ethernet itself also receives a closure capturing objects from the calling scope.

Obviously, one implication of separating the layers of smoltcp to different, memory separated compo-

nents is that this kind of memory efficiency cannot be maintained.
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// Sending Token for RawSocket
pub struct TxToken {

lower: Rc<RefCell<sys::RawSocketDesc>>,
}

impl phy::TxToken for TxToken {
fn consume<R, F>(
self,
...,
f: F) -> Result<R>
where

F: FnOnce(&mut [u8]) -> Result<R>,
{

let mut lower = self.lower.borrow_mut();
let mut buffer = vec![0; len];
let result = f(&mut buffer);
match lower.send(&buffer[..]) {

Ok(_) => result,
// Error handling

}
}

}

//Interface using a TxToken to send a frame
pub fn dispatch_ethernet<Tx, F>(
&mut self,
tx_token: Tx,
buffer_len: usize,
f: F) -> Result<()>
where

Tx: TxToken,
F: FnOnce(EthernetFrame<&mut [u8]>),

{
let tx_len = EthernetFrame::buffer_len(buffer_len);
tx_token.consume(self.now, tx_len, |tx_buffer| {

...
let mut frame = EthernetFrame::new(tx_buffer);
let src_addr = {...};

// closure from outer scope:
f(frame);
Ok(())

})
}

Listing 2.4: Sending and receiving packages is implemented via Tokens exposing a consume method,
taking closures as argument that process the send or received content. This way, memory
allocation can be constrained a) to the device layer and b) to the stack if necessary.

2.5 Rust

The main questions of this thesis are i) What requirements must a sequential program meet in order to

be converted into a concurrent program in a semantics-preserving way? and ii) What steps are necessary

for the conversion? Rust as a programming language is particularly well suited to investigate these ques-

tions. This is due to Rust’s extended type system that cannot only enforce well-typedness of a program

but also statically ensure the validity of references and therefor safety of memory usage at runtime. The

two central concepts enabling this are ownership and lifetimes. Ownership is used to ensure memory

safety in (safe) Rust. In particular, it allows the Rust compiler to ensure at compile time that no two

pieces of code can modify an object at any time, i.e. that at runtime there is never more than one refer-

ence to an object that allows write access. Lifetimes extend the concept of ownership to track the validity

of references. This model does not only prevent frequent errors in sequential programs, it also enforces

already a substantial part of the assumptions of a distributed programming model. Therefore, necessary

restrictions of a distributed, concurrent programming model are particularly well to be examined in Rust,

because they are already enforced in the sequential code. In Chapter 3, we will refer to those concepts

and their implications for our findings. So to better understand these implications, we will first take a

closer look at the rules of ownership and lifetimes here.

Ownership: Rust has neither garbage collection nor does the user need to free and allocate memory her-

self. Instead, Rust’s runtime manages memory using ownership and lifetime rules. The Rust compiler

ensures, for most types statically, that there is exactly one owner of each value, i.e. one variable holding

it, created either on heap or stack. When this owner goes out of scope (i.e. when the scope it has been

declared in ends), the value is cleared from memory without the need for extensive reference tracking

garbage collection. This is realized by automatic implementations of the drop function for every type.

A call to drop is added automatically by the compiler for each variable as it goes out of scope.

Ownership has a different implementation for values located on the stack and on the heap. For values

stored on the stack, the owner is simply the variable assigned to that value. For a value allocated on the

heap, the variable owning that value holds a pointer to the memory location of that value and additional
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information as for instance actual and totally allocated size of the value. This difference is important

for the semantics of passing values as function arguments or returning them from functions. The act of

passing values directly, i.e. not only passing a reference, is called moving in Rust parlance. For both the

stack based and the heap based values, moving means copying the owner, i.e. copying the information

the owner holds on the stack, to the stack frame of the called function. Returning values also follows

that principle. But, as we noticed before, for stack based values this actually also copies the value itself.

This results in a new value, with a new owner, and allows the old owner to remain valid. For heap based

values on the other hand, only the memory reference to the value is copied that way. So, to prevent hav-

ing several owners addressing the same memory location, the old owner gets invalidated upon moving.

To actually duplicate heap data, one needs to implement or derive the Clone trait for the data type. An

explicit call to the clone() method will then deepcopy the heap allocated data and its owner, resembling

the semantics of implicit copy on stack based values.

In a distributed scenario, passing a value to a function call will involve transferring that value to another

process’s memory that we do not expect to sync with the original location. So, as it is enforced by the

Rust compiler, we cannot use the original reference to that value any more, since it would lead to incon-

sistent states. In fact, Ohua’s programming model, at least theoretically, is more strict than that of Rust.

While it always assumes pure function arguments to be used immutably, i.e. read-only, it also currently

requires variables to be used only once.

References: Obviously, besides passing the value directly, Rust also offers the possibility of creating

references to both stack and heap based values. In contrast to pointers, Rust’s references are guaranteed

to address valid data. References do not convey ownership. In Rust’s memory model this means, refer-

ences are just an address to the owner, and do not contain information about the size and capacity of the

data pointed to. Passing values by reference is called borrowing in Rust terminology. References, just

like values, are immutable by default. The general rule for borrowing a value is that at each point in the

code there can only be either one mutable or an arbitrary number of immutable references to each owner.

References are values themselves, i.e. they have an owner and a lifetime tied to the scope they are valid

in. So Rust can track validity of reference owners to enforce the borrowing rules. Beyond scope validity,

the rust compiler is capable of identifying the last use of a reference and shorten its lifetime to this point

(a concept called ’non-lexical lifetimes’). Therefore it is possible to borrow a value mutably multiple

times within a scope. When one mutable reference is created and used only after the last use of another

one, the compiler can shorten the former one’s lifetime to end before the next reference becomes valid.

Lifetimes5: As explained before, references do not convey ownership. So lifetimes are Rust’s way to

ensure that the owner a reference is pointing to is not dropped while the reference is still in use. In

general, every reference has a lifetime. Inside a single function scope, lifetimes are mostly implicit.

The compiler can simply derive them from the local scoping. However, when references are used as an

argument or return value, lifetimes cannot in general be derived by the compiler and need to be made

explicit. Note that the constructors of enum and struct types are essentially also just functions, taking

5We will focus on the main aspects for this work here, but a full introduction to Lifetimes, as well as rules for subtyping and
inference can be found in the Rust Book[3] and the Rust Reference[4] in the Chapter Subtyping and Variance.
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fields as arguments and returning the respective emun or struct. So obviously they also have to abide

lifetime rules.

As we noticed, lifetimes are meant to ensure reference validity. The mechanism is best explained using

the case of function return values. Returning valid values, either by value or by reference from a function

is only possible if the owner of that value will not be dropped at the end of the function. This is the case

if

a) The function returns a moved owner: The returned value is allocated on the heap and the actual owner

is returned. This will result in a move, copying the owners reference information to the return stack

frame.

b) The functions returns a copied owner: The returned value is allocated on the stack, but implements

Copy. This will copy the value itself to the return stack frame.

c) The function returns a reference to the owner: The actual owner of the value lives in the outer scope

and is manipulated by reference in the function. If a reference to the original owner is returned, the

owner will continue to be mutably borrowed for the lifetime of this reference. This also includes

references to static memory, e.g. string literals known at compile time.

When are lifetime annotations needed? The simple answer is: whenever there are references and the

compiler cannot infer them automatically. The first two cases generally do not require lifetime annota-

tions. In case a) the data live on the heap, but the ’owning information’ is copied to the return scope so

Rustc can automatically infer its lifetime further on by tracking the owner. In case b) the data is copied to

the stack of the return scope and again the compiler can automatically infer scopes and lifetimes. In case

c), however, the lifetime of the reference returned is bound to the lifetime of the memory location (ref-

erence) passed as a parameter. The reason why not every function accepting and/or returning references

needs lifetime annotations in parameters, return value, and the function itself is the so-called ’lifetime

elision’. Rust uses a set of rules to automatically annotate lifetimes in standard situations, which are

1. In a function declaration all references are assigned a freshly generated lifetime parameter

fn fun<'a, 'b, ..., 'z>(a:&'a A, b:&'b B, ...) -> &'z Z

2. If there is only one input reference, its lifetime is also assigned to the output reference.

fn fun<'a>(a:&'a A) -> &'a Z

3. If the function is a method all outputs are assigned the lifetime of the object acted on.

fn fun<'self, 'a, ... >(& 'self self, a:&'a A,...)

-> (&'self Z1, &'self Z2, ..)

The same lifetime rules that hold for function arguments and returns basically hold for structs. A struct

holding a reference in a field requires that reference to come from a surrounding scope. Just as a function

cannot take a reference that might not live as long as the function runs, a struct can only live as long as

the shortest living reference it holds. The same holds for enums, obviously. Just like for functions, this

means that those structs and enums are generic over at least one lifetime parameter, determined by the

reference they are given on creation.
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When those rules are insufficient, annotations are needed. For example if there are multiple input refer-

ences and a specific one should provide the lifetime information for the output. Also automatic inference

might lead to unwanted effects. For instance, if a reference to a static value is passed to a function, the

compiler will infer the returned reference to also live for static. This means the original value cannot

be borrowed mutably or even immutable again in the program. In this case lifetime annotations help the

compiler to solve lifetime unification at all or in a more favorable way.

So when and why would we need to consider lifetimes? We expect the programmer to provide valid input

Code to the compilation. Also, the programming model of Ohua prohibits reference arguments in scope.

So up to this point, there was no necessity to consider lifetime implications in the transformations Ohua

applies to the code. However, in this work we will not only manipulate the code ’in scope’ but also inside

the components that will later be opaque to Ohua. It is possible, and for efficiency reasons desirable,

to keep on working with references inside those components. Meanwhile, we will also introduce and in

particular split existing functions. Therefore, we will need to consider constraints and effects of reference

lifetimes on our transformations.
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3 Implementation

So our declared goal is to transform an application, written for a shared memory, single core runtime into

a form that is amenable to compilation with Ohua. Also the resulting compiled program should have the

following properties:

1. The application should have three independent, stateful components, namely a key-value store

answering requests, the TCP/IP stack and the device driver.

2. Those components can run concurrently, i.e. it is possible to streamline process packages.

3. Those components are local to a single executing process each, i.e. no statefully used component

is ever send from one process to another.

4. The final data flow program runs on the M3 operating system and architecture.

To achieve this goal, both smoltcp and Ohua must be adjusted. Therefore, in this chapter we will first

describe the structure of our smoltcp application and the necessary changes. Then we will describe how

the current functionality of Ohua needs to be adapted and extended.

3.1 Transformations in smoltcp

In its current sequential, single-threaded state, smoltcp makes use of several language features that

Ohua’s programming model does not support because they cannot be translated into a deterministic con-

current program. The first problem is the sharing of memory references between different components.

If these components are executed concurrently, race conditions occur. Roughly speaking, it is therefore

necessary to replace all accesses to shared references with explicit data flow.

The second fundamental problem is the current flow of control between stateful components. In a se-

quential program we can invoke a method on one component A, do something on it’s state, internally call

a method on another component B and finish the outer call by maybe changing As state again. A and B

belong to the memory of the same process and the state of A as well as the execution state of the outer

method are automatically preserved during the call of B. This is what happens when a packet is sent or

received using smoltcp in its current form. However, in a concurrent, distributed data flow graph, we

cannot realize this bi-directional dependency among stateful components. Why is that? The main prob-

lem here is realizing concurrency and state locality at once. We could connect distributed components A

and B using blocking connections, i.e. A calls B and blocks until it receives the result. What we achieve

this way is a distributed, sequential program. Another way would be to have A send its state along with

the call to B and B would return this state along with its answer. So A can process the next input and

upon receiving an answer it can resume the appropriate state. However, this contradicts the requirement

of state locality. In particular when states are large objects e.g. a database state, a training state of a deep
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neural network or alike, we want them to stay encapsulated in on component.

So to compile to a distributed program with local components of smoltcp, we need to disentangle state

dependencies from each other. In the following subsection, we explain how this can be done using a

small example key-value store application. We begin with introducing the concrete program and sketch-

ing the structure of the target program.

A simple server application: In Listing 3.1 we see the code for our simple key-value store application.

First the required structures, i.e. the ip_stack, the device, the store and some sockets are initialized.

Then in the ip_stack.poll call the socket and the device are used to send the messages from the

sockets to the device and vice versa. Then, depending on the state of the socket, the store answers

received messages directly to the socket. Finally the application holds for a time interval determined

by a) the current state of the sockets ip_stack.poll_delay and b) the current state of the device,

represented by waiting for its file pointer fd to become available. After that, the interface exchanges

messages again.
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fn main() {

let mut store = Store::default();

let mut device = TunTapInterface::new("tap0", Medium::Ethernet).unwrap();

// ... more interface initialization code

let mut ip_stack = builder.finalize(&mut device);

let mut sockets = SocketSet::new(vec![]);

// .. more socket initialization code

let tcp_socket = tcp::Socket::new(tcp_rx_buffer, tcp_tx_buffer);

let tcp_handle = sockets.add(tcp_socket);

loop {

let timestamp = Instant::now();

match ip_stack.poll(timestamp, &mut device, & mut sockets) {

Ok(_) => {}

Err(e) => {

debug!("poll error: {}", e);

}

}

let socket = sockets.get_mut::<tcp::Socket>(tcp_handle);

if !socket.is_open() {

socket.listen(6969).unwrap();

}

if socket.may_recv() {

let input = socket.recv(process_octets).unwrap();

if socket.can_send() && !input.is_empty() {

debug!(

"tcp:6969 send data: {:?}",

str::from_utf8(input.as_ref()).unwrap_or("(invalid utf8)")

);

let outbytes = store.handle_message(&input);

socket.send_slice(&outbytes[..]).unwrap();

}

} else if socket.may_send() {

debug!("tcp:6969 close");

socket.close();

}

phy_wait(fd, ip_stack.poll_delay(timestamp, &sockets)).expect("wait error");

}

}

Listing 3.1: Simplified example of a key-value server application using smoltcp

Obviously, this code does not meet our compilation requirements. Concrete problems are

1. There are several stateful uses of socket, e.g. in socket.listen(6969). However, we do not

want those to be visible to the compiler, since they would result in their own, stateful nodes. This

is basically a problem of efficient resource utilization, as every node incurs the overhead of an
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independent process or thread of the target architecture.

2. In the call ip_stack.poll the device is passed as an argument. This means the compiler cannot

see the device being used as an independent component and will not derive the according code.

3. The ip_stack is statefully called twice inside the loop. This means the compiler will not be able

to derive a single node acting on/as the ip_stack but instead wil derive a data flow where the

ip_stack is send from one node using it to the other.

4. We cannot simply transfer the mechanism of phy_wait(fd,...) to another operating system.

For one thing, the function itself is a system call, which means it depends on the operating system.

Secondly, fd is a file pointer and the handling of pointers and files is also strongly dependent on

the target operating system and architecture.

So given this initial code setting and the problems we need to solve to enable the compilation, we can

now proceed with describing the actual changes made in this work.

3.1.1 Sketching the Target Structure

To better understand the transformations described in this chapter, we will figure out the structure of the

target program first. We want each of the target components to be used exactly once inside the scope as

an object a method is called on. Further we want all implicit state sharing, i.e. the common use of refer-

ences between components to be eliminated and be replaced by actual explicit message passing. Finally

we want function calls, other than the three stateful calls and the initialization of our object to happen

outside the compile scope in order to restrict the resulting data flow graph to as few nodes as possible

and to generate an efficient program.

The first step to get a clearer picture of our goal is to wrap code details the compiler does not need

to see into function calls. So as a first step and to get a clearer picture of our target structure, we

encapsulate the initialization of components. Also we saw in the original code in Figure 3.1 sockets

being processed, loaded with messages by the store and than passed to the ip_stack along with

the device for actually processing the TCP/IP packets. So one could figure to use the sockets are

the vehicle we use for communication among the ip_stack and the store for now and encapsulate

the socket handling in the store.handle_message call. Also we let the store application handle the

result of ip_stack.poll. Now the code looks as in Listing 3.2:

Now to get an idea of the target structure without going to much into detail, we make the following

assumptions:

i) We assume for the time being that there is a simple control flow inside ip_stack.poll going from

the ip_stack to the device for sending, back to the ip_stack, and

ii) We know that the phy_wait call takes an input from the device, namely the file pointer fp and

an input from the ip_stack, namely a waiting time from the sockets and halts the loop for a certain

interval before the ip_stack can poll again. Given this structure, we assume we can prepend the calls

involved in phy_wait to the execution of poll itself. Applying this assumptions, we get a control flow
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fn main() {
let (mut store_app, mut sockets):(App, SocketSet) = init_app_and_sockets();
let (mut ip_stack, mut device, fd):(Interface<'static>, TunTapInterface, RawFd) =

init_stack_and_device();

loop {
let timestamp = Instant::now();

let (poll_result, sockets_polled) =
ip_stack.poll(timestamp, &mut device, sockets);

let sockets_loaded = store_app.handle_sockets(poll_result, sockets_polled);

sockets =
phy_wait(
fd,
ip_stack.poll_delay(timestamp, sockets_loaded))
.expect("wait error");

}
}

Listing 3.2: Server application after encapsulating code into objects

as depicted in Figure 3.1. We see an inner loop among the ip_stack and the device and an outer loop

among the ip_stack and the store. As smoltcp can be used heapless, all process steps act on shared

references instead of moved owned values.

Figure 3.1: Simplified structure of the original process loop

Now for this simplified structure, we can already see what needs to be done to achieve our target char-

acteristics. We need to move the inner loop inside poll into the main scope. For now we assume we

had simply split poll into parts e.g. asking the device for availability, waiting before poll, preparing

packets and sending them. And we create a method ip_stack.process() that can execute either of

those parts, based on the input. Also we change all method signatures to explicitly return and except

values instead of references.This directly results in the structure shown in Figure3.2.
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Figure 3.2: Simplified structure of the target process loop

Without looking at the inner workings of poll in detail, we can already recognize essential properties of

the target program here

1. The final structure is a nested loop.

2. Since we want to use only one method call for the ip_stack, it must return a type which can be

either an input for the device or the store.

3. The calls to device or the store must return a common type that ip_stack.poll accepts1.

4. In the original structure, the device was called inside the poll function. Therefore, after each

call to device, the control flow automatically returned to the execution state of poll. Now the

substeps of process are individual method calls. That means we will need a way to transfer the

execution state of poll from one call to the next.

In the next sections, we will first take a closer look at the control flow in poll. We will describe how to

implement inner loop extraction and what problems arise when converting reference arguments to moved

objects, i.e. call by reference to call by value.

3.1.2 Encapsulating the Socket Handling

In sketching the target program, the first change made to the original code was to encapsulate as much

of the logic as possible into either the states or the initialization functions. As a first guess, the socket

handling i.e. checking if sockets are open, setting them to listening state etc. was encapsulated in the

store.handle_sockets call. The problem with this decision is that the actual SocketSet type

contains lifetime bound references, meaning they do not implement Clone and we cannot just replace

passing them by reference with actually moving them.

1you could also return different types. However, then an additional node would be needed to convert them to a common type
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Implementing a custom, owned version of the SocketSet would be a remedy for this problem. How-

ever, the internal references are actually different buffer types used in the sockets and manipulated in

many places in the core logic of smoltcp. This means that implementing a custom, owned SocketSet

type would not only result in extensive changes, but would also negatively affect the efficiency of the

program. The other option is to not send the sockets, but only the required information among compo-

nents. What this required information is, depends on how each of the components involved interacts with

the sockets. For our example key-value store application, the interaction between sockets and store is

fairly simple. The store receives a message from a socket and answers it. As we will later see, the in-

teraction between the ip_stack and the sockets is rather involved. So instead of having a free-floating

SocketSet in the main scope, we make it part of the ip_stack upon initialization. This also means, we

need to move the code for handling the sockets into the ip_stack as well and return to the store not

directly after polling, but when a socket is processed. We will discuss how this is done in Section 3.1.4.

The main point here is to illustrate the problem of designing the interfaces between components, if they

are not clearly defined in the first place.

A less simple case could have involved, for instance, conditional opening or closing of sockets by the

store based on concrete messages, time, traffic volume etc. and would have required an extended

message interface between the ip_stack and store and potentially a replication of the sockets in both

components updating each other via this interface. In general, this information cannot be derived from

static, purely syntactic information from high-level language input code.

3.1.3 Refactoring Packet Sending

The next step is to refactor the poll method. We need to bring the stateful usage of the device into the

compile scope and create a single entry method the three components use to call each other. This entry

method will internally dispatch each call to the actual method, or generally code to be called on the states.

The code of poll is depicted in Listing 3.3. The method itself contains a loop calling socket_egress

which executes sending packets to the device and socket_ingress which receives packets and dis-

tributes them to the sockets. As long as there are packets send or received in each loop, poll continues.

As we can see the device reference is passed further down into two method calls, the receiving method

socket_ingress and the sending method socket_egress. We will start with explaining the trans-

formations in socket_egress, because it is structurally more complex than socket_ingress and

therefore better suited to demonstrate all necessary transformation steps.

3.1.3.1 Lifting device calls into Scope

Listing 3.4 shows how sending packets proceeds as a loop over the socket items. If a socket can send,

its socket.dispatch method is called passing a reference to the ip_stack and the respond closure.

As our example works with TCP sockets, inside dispatch the socket prepares a TCP packet and

passes it to the respond closure. This closure will then try to get a sending token from the device and

pass the token and the TCP packet. The token is basically a direct reference to the sending buffer of the
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pub fn poll<D>(
&mut self, timestamp: Instant,
device: &mut D, sockets: &mut SocketSet<'_>,
) -> Result<bool>
where

D: for<'d> Device<'d>,
{

self.inner.now = timestamp;
let mut readiness_may_have_changed = false;

loop {
let processed_any = self.socket_ingress(device, sockets);
let emitted_any = self.socket_egress(device, sockets);
if processed_any || emitted_any {

readiness_may_have_changed = true;
} else {

break;
}

}
Ok(readiness_may_have_changed)

}
}

Listing 3.3: Simplified code of the ip_stack.poll method

device. Finally inside the inner.dispatch call of the stackwill wrap the TCP packet into a network

representation e.g. an Ethernet frame and directly write that packet into the device buffer using the token.

The device is used twice in this method. Once for receiving a token in the device.transmit() call, a

second time implicitly when this token is used to pass a packet to the device inside the inner.dispatch_ip

call. The both of this calls occur inside the socket.dispatch method, when the respond closure

is called. To resolve the nested structure we start with inlining the code of the respond closure to

socket.dispatch and get the structure shown in Listing 3.5.

Dispatching a packet starts with a preparation phase were the socket state is checked. If no packet can be

produced, it returns with Ok(()). If a packet is produced, a token is required and if successfully created

the packet is sent. Afterwards the socket state is updated using information from the packet. If any of

the steps fail, the control flow returns an error to the outer scope i.e. to the sending loop.

To lift device usage into compile scope, we need to inline the content of socket.dispatch. This

means we refactor a function scope i.e. a separate stack frame to a simple scope in the outer stack frame.

Scopes are expressions in Rust. So there are two different ways of returning values from scopes. One is

to simply end the scope with an expression. In this case, the scope simply returns the value of that last

expression to the outer scope. The second is to use explicit return or ?. They will not only return a

value or an error to the surrounding scope, but leave the current stack frame.

So to inline function with early returns or ?, we need to refactor the early returns to conditional execution

i.e. we need to

1. instantiate a let result; at the beginning of the method and whenever either a return x or a

expression? appears
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fn socket_egress<D>(&mut self, device: &mut D, sockets: &mut SocketSet<'_>)
-> bool
{

let Self{inner, ..} = self;
let mut emitted_any = false;
for item in sockets.items_mut() {

if ! can_send(item, inner.now) {
continue;

}
let mut neighbor_addr = None;
let mut respond = |inner: &mut InterfaceInner, response: IpPacket| {

neighbor_addr = Some(response.ip_repr().dst_addr());
let token = device.transmit().ok_or_else(|| {

Error::Exhausted
})?;
inner.dispatch_ip(token, response, None)?;
emitted_any = true;
Ok(())
};

let result = match &mut item.socket {
Socket::Tcp(socket) => socket.dispatch(inner, |inner, response| {

respond(inner, IpPacket::Tcp(response))
}),
// ..handle other socket types

};
match result {

// stop looping if the device was exhausted
// update socket if adress was wrong

}
}
emitted_any

}

Listing 3.4: Simplified code of the ip_stack.socket_egress method

2. replace any returning statement including the final return by binding the potential early return

values to the result variable, in our example for instance

result = inner.dispatch_ip(token, response, None);

3. wrap every subsequent code into a conditional and,

4. return the assigned result

After this refactoring, the dispatch method can be inlined to ip_stack.socket_egress().

After lifting socket.dispatch into scope, the steps before and after the device usage can be re-

encapsulated into package pre-processing socket.dispatch_before and the socket post-processing

and after sending socket.dispatch_after. Thereby we see another refactoring problem. When we

split execution steps into different functions. In the original code, the ’packet’ i.e. the two representa-

tions where used in emit and afterwards to update the socket without any referencing or cloning. This

was possible, because they implement Copy and can therefor be implicitly duplicated. This still works

when we inline the socket.dispatch code because still any processing of the packet happens in a single,

now extended stack frame. However, it stops working as we re-encapsulated packet handling before

and after sending. The reason is that with that re-encapsulation the frame producing the packet (i.e. the
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// tcp_socket.rs
fn dispatch(...)

/*check socket state*/
if /*a packet can be produced*/{

let packet = /*produce packet*/;
neighbor_addr = Some(response.ip_repr().dst_addr());
let token = device.transmit().ok_or_else(|| {

Error::Exhausted
})?;
inner.dispatch_ip(token, response, None)?;
emitted_any = true;
Ok(())
/*
if no error occured, update socket state
using the packet information

*/
} else {

return Ok(())
}

Listing 3.5: Packet dispatch function after inlining the respond closure

pre-process call) is gone, when we want to send it. This would also happen if we did not re-encapsulate

but left the code inside poll. The reason is that in any case the steps will be interrupted by a call to the

device i.e. by leaving the current stack frame.

To fix this problem, we introduced a heap-allocated version of the package data type. Also, pre-

processing now returns two copies of the packet so that one can be used for sending and one for post-

processing the socket. This is a general problem when we want to make sequential code concurrent or

even distributed. In the first case, types need to be transferable from one function stack. Ohua cannot

recognize, nor can we automatically implement something like copy, clone or serialization for types. Be-

fore we assumed that arguments are always passed by value and that serialization in the chosen backend

is available for all types used as arguments in the compile scope i.e. all types that are send among nodes

later. If we tried to implement refactorings/transformations in the compiler that a) split functions or b)

bring code into scope that wasn’t before, we need to extend this assumption to all code possibly affected

by the transformation. Another notable point here is, that the refactoring must be applied to all types of

sockets (TCP, UDP, raw sockets etc.) individually and can not be implemented on trade level.

Refactor token usage
Now we need to eliminate the implicit use of the device inside

inner.dispatch_ip(token, response, None). The sending token, passed to this method con-

tains a reference to the devices sending buffer. So the function as it is violates two requirements by

using shared references among components and using one component implicitly inside the other. Con-

trary to packet processing, this method ends with the call to the device, meaning there are no state changes

occurring after the sending and except the sending result, nothing depends on the actual device behavior.

This means, we can separate the packet preparation inside inner.dispatch_ip(token, ..), from

the effective packet sending in the device, making both steps local to their component. For the ip_stack

we provided a local implementation of the sending token. Like the original token, the LocalToken holds
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pub trait Device<'a> {
type RxToken: RxToken + 'a;
type TxToken: TxToken + 'a;
// ...

fn send(&'a mut self, timestamp:Instant, packet:Vec<u8>) -> Result<()> {
let sending_result

// Request a token locally
= self.transmit().ok_or_else(|| {

net_debug!("failed to transmit IP: {}", Error::Exhausted);
Error::Exhausted

}).and_then(|token|
// copy the packet to the devices sennding buffer
token.consume(timestamp, packet.len(),
|buffer| Ok(buffer.copy_from_slice(packet.as_slice()))));

sending_result
}

Listing 3.6: New sending function in the device

a reference to a buffer and implements the expected token.consume method. Also we replaced the di-

rect call to inner.dispatch_ip, by a wrapper function inner.dispatch_local. That function

instantiates a local sending token, executes inner.dispatch_ip and returns the token buffer contain-

ing the packet. On the other hand the device needs an explicit sending method, instead of an implicit call

via the token. This new device.send method basically needs to call the token.consume method on

a given token, with a given packet. Therefor we do not need to have specific implementations for imple-

menters of the Device trait, but can implement send directly on the trait. The method token.consume

does not take a packet, but a closure processing a packet and copying it into a given buffer. Both already

happened in the ip_stack, so we only need a closure that copies the given packet into the actual de-

vice buffer. Finally, with respect to our target architecture there is no particular use in requesting and

returning actual tokens to the device any more. In a distributed system, file pointers as contained in the

tokens cannot trivially be send among components. Therefor, instead of sending tokens we only request

them locally in the device when needed and send Result<()> to the ip_stack instead. Hence the

implementation of the sending function looks as in Listing 3.6:

The functional split between device and ip_stack can hardly be derived automatically and in particular

statically. To do this, tha compiler would need to understand that i) there are no state changed in the

interface depending on the device reaction, ii) that tokens are references to the device, and iii) that the

closures passed to the the token.consume() function can be split into ’preparing a packet and copying

it to a local buffer’ and ’copying it to the actual buffer’.

3.1.3.2 Refactor to Message Passing

We inlined the code for socket_egress into poll and lifted the usages of the device into the scope

of the poll function. This also means that the control and data flow for sending are now explicit in the

poll function. Figure 3.3 shows the principle structure of the sending loop at this stage. The actual code

at this point can be found in the Appendix A.1. As indicated by dashed and solid errors in the graph,

the control flow and the data dependencies of the individual steps are not congruent. In particular the

currently processed socket is needed in multiple steps in the ip_stack, but not needed by the device.
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Figure 3.3: Structure of the packet sending loop after lifting all device usages into scope. Solid arrows
indicate actual control flow, dotted arrows indicate data dependencies

Refactoring control flow
Currently the sending loop happens entirely inside or above the stack frame of poll. That’s why it is

possible to use data references and resume execution automatically after the device is called. We need

to refactor the loop such that we can return the frame of the main function when the device is called

and resume the execution inside the ip_stack afterwards. As method calls of the two components are

interleaved, we cannot just merge the calls of each component i.e. call the ip_stack to get a packet,

call the device to send it and modify the ip_stacks state again based on the devices response2.

This necessarily means, we need to split the execution of poll into several method calls and we need to

preserve the state of execution and the state of variables inside poll from one sub-call to the next.

When we split the ip_stack.poll method, or in general any method into separate sub-methods, we

have two options to transfer data from one call to another. One is pass them explicitly, the other one is to

make them part of the state. Serialization is generally expensive and also in terms of security and process

isolation, it is desirable to only send data around that is actually needed in other components. Analyzing

the data dependencies between the ip_stack and the device, it is obvious that the only arguments

the device calls require are the packet to send and, in the actual implementation, a timestamp and the

length of the packet. So except for the packet no data needs to leave the ip_stack towards the device.

We will therefore only integrate the packet into the explicit data flow, and preserve the state of other

variables in the state of the ip_stack.

A common obstacle in both data handling options is the elimination of reference usage. As explained in

Section 2.5 Rusts type system will point to a problem, when we try to share references among different

2Actually this is an opportunity if state changes in each component are either idempotent or ordered i.e. implemented as
Conflict-Free Replicated Data Types. Both is not the case here.
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stack frames. By splitting the original ip_stack.poll method, we execute code that was supposed to

run in one stack frame in multiple frames. This means we cannot simply use the data types of the origi-

nal program. In particular, regardless if we send data or store them in a state between function call, they

must not use references among each other. This is obvious for serialized data, as references serialized

and send to processes potentially running on a different machine loose their relation to memory. For the

case of data stored in a state, consider the following example from our problem. The sending loop is an

iteration over the sockets. So at the point, where a packet is produced, there are four references to the

same memory location in scope namely i) the sockets ii) the iterator on the sockets iii) the current socket

and iv) the packet, which actually is a reference to memory inside the socket until it is finally send. As

mentioned before, packets need to be become an owned data type to be sendable to the device. Which

eliminates the fourth reference. However, we also need to store the state of iteration and the current

socket in the state, without references to the sockets. It is in general not possible to return a struct with

fields referencing each other in Rust, because the consistency of references cannot be guaranteed3. In

particular we cannot have a socket, referencing an iterator, referencing the sockets in our current state,

since any of those reference could become independently invalid leaving dangling references.

The problem was solved by implementing an owned representation of the iteration state. As shown

in, we integrated the current state of ip_stack.socket_egress as a separate, optional field to the

ip_stack. Instead of saving an iterator and a reference to the current socket, only an index of the

current socket in the socket set is stored. The socket itself must be retrieved in ever step using it. This

also implied that we need to rewrite the iteration on the socket set. Instead of using the given Iterator

implementation, we implemented iteration over the size of the socket set, starting at the currently saved

index. We did the same for the other intermediate results of the original method neighbor and packet

and address. The resulting definition of the ip_stack data type is shown below.

Like the previous refactoring, this step can not be entirely automatized, because the compiler can not

derive owned or serializable representations from arbitrary data types.

struct Interface<'a> {

..,

egress_state: Option<EgressState<'a>,

}

struct EgressState<'es>{

sockets_during_egress: Option<SocketSet<'es>>,

current_index: Option<usize>,

current_neighbor:Option<Address>,

current_presend_packet: Option<IpPacketOwned>,

current_postsend_packet:Option<IpPacketOwned>

}

Now the control flow needs to be refactored, such that the device is called in the main scope and device

and ip_stack have each only one method call visible to the compiler. This method will be entry point of

both states and internally dispatch the call to the required code. We will call the method process_call

3Actually there are ways to achieve memory consistency across function calls in Rust using e.g. the std::pin module.
However, they are not applicable to other languages so we do not consider them here.



3. IMPLEMENTATION 37

and start by defining it on the device.

Intuitively process_call would be a higher-order function. Specifically, instead of calling the device

directly, pollwould return the functions transmit or send including the necessary arguments. The de-

vice would then be called with device.process_call(fn, [args]). However, higher-order func-

tions are not a viable solution here. This is for two reasons. Firstly we envision to send the functions to

be called by process_call from one component to the other. But function references are, with some

exceptions, not serializable and sendable in distributed scenarios. Secondly we also need to pass the

arguments for those called functions to process_call so we would need to derive a common sum type

to represent all possible function arguments.

The solution to this is called defunctionalization. It is a known transformation used in compilers to trans-

form higher-order functions [41]. Instead of sending function references, a sum data type representing

all possibly called functions is defined. In Rust we can use enums for this purpose. This enum data type

also allows us to integrate the arguments called per function so the enum DeviceCall looks as follows

for the sending loop:

#[derive(Debug, Eq, PartialEq, Clone)]

pub enum DeviceCall{

Transmit,

Consume(Instant, Vec<u8>),

}

We merge control flow and data flow here so the return type will be the union of the return types of all

functions that might be called, wrapped in the respective next step of execution. In case of the device,

the next step of execution will be a the next part of the poll function to be executed. Therefor we define

device.process_call as follows:

pub trait Device<'a> {

// ...

fn process_call( &'a mut self, call: DeviceCall) -> InterfaceCall

{

match call {

DeviceCall::Transmit

=> InterfaceCall::InnerDispatchLocal(self.transmit()),

DeviceCall::Consume(timestamp, packet)

=> InterfaceCall::SocketDispatchAfter(self.send(timestamp, packet)),

}

}

In principle, each device.process_call now returns a continuation in the ip_stack.

For the ip_stack, the implementation of process_call and the enum InterfaceCall is slightly

more involved. Contrary to its implementation on the device, the ip_stack.process_call method

will need to call sub-sections of the the ip_stack.poll method. We will consider the simplified

pseudocode version shown below for now, to illustrate the principles applied. In Listing 3.7, borders of

basic blocks, i.e. points the control flow could jump to are marked and given names, because they are

needed for the transformation.
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impl Interface {
// 1st jump => InitSimplePoll
fn simple_poll(&mut self, sockets: &mut SocketSet, device: &mut Device) -> bool {

let mut something_changed = false;
let mut result: SmoltcpResult<()>;
// Jump here 2nd => StartSendLoop
for socket in sockets {

// Jump here 3rd => GetNextPacket
let next_packet = self.maybe_get_packet(socket);
if next_packet.is_ok() {

result = device.send(next_packet);
something_changed = result.is_ok();

} else {
result = next_packet.as_err()

}
// Jump here 3rd => HandleResult
self.handle_result(result)

}
something_changed

}
}

Listing 3.7: Blocks of the ip_stackpoll function that need to be directly callable after refactoring

Now the transformation from ip_stack.simple_poll to ip_stack.process_call would proceed

as follows. First the basic blocks are identified. From those blocks, a corresponding

enum InterfaceCall is defined representing each of them. If a block uses results from the device,

this results are part of the constructor of its InterfaceCall representation. For our simple example

this would yield the following enum:

enum InterFaceCall<'a> {

InitSimplePoll(SocketSet<'a>),

StartSendLoop,

GetNextPacket,

HandleResult,

}

The ip_stack.process_call is again essentially a match expression on the given call. The arms of

the matches wrap the respective parts of simple_poll. The next modification we need, is to augment

every such arm with statements to restore the original environment of each block inside the match arm.

We stored the variable state inside the state of the ip_stack as described before, in this trivial example

we assume to set them directly as filed of the ip_stack. However, the code in the branches might

still use references to the variables and we need to respect rusts borrowing rules, so we cannot generally

replace any direct variable use f(x) by f(self.x). So we add statements to get and set the stored vari-

ables in each block before the code and before each return statement respectively. Finally we replace

calls to the device by statements returning the respective DeviceCall and jumps to other blocks by the

corresponding call of ip_stack.process_call(next_block_call). The actual return statement

of simple_poll remains unchanged. So the return type of this simplified ip_stack.process_call

is Either<DeviceCall, bool> and is shown in Listing 3.8.

The actual implementation of ip_stack.process_call is obviously more complex, but was build in

the same transformation steps.
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fn process_call(&mut self, call: InterFaceCall) -> Either<DeviceCall, bool> {
match call {

InterFaceCall::InitSimplePoll(sockets) => {
// set variables something_changes, result, sockets and index
return self.process_call(StartSendLoop)

},
InterFaceCall::StartSendLoop => {

// get socket and socket_index
if socket_index+1 < sockets.size() {

let socket_index = socket_index+1;
// set sockets and socket_index
return self.process_call(GetNextPacket);

} else {
// set sockets and socket_index
return Either::Right(self.something_changed);

}
},
InterFaceCall::GetNextPacket => {

let next_packet = self.maybe_get_packet();
if next_packet.is_ok() {

return Either::Left(DeviceCall::Send(next_packet))
} else {

self.result = next_packet.as_err();
return self.process_call(HandleResult)

}
}
InterFaceCall::HandleResult => {

self.handle_result();
return self.process_call(StartSendLoop)

}
}

}

Listing 3.8: New entry function of the ip_stack
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3.1.4 Refactoring Packet Receiving – Completing the poll loop

Just like sending, receiving is triggered in the ip_stack.poll method. The main aspects of

ip_stack.socket_ingress() are depicted in Listing 3.9. In a while loop, the ip_stack tries to

receive packets from the device. In this case packets are represented by a token pair. The receive

token rx_token contains a buffer holding the received packet, the send token tx_token may be used to

directly return an answer to the device. During initialization, the transport medium used by the device

is saved in the ip_stack. By matching on the current transport medium the method to unwrap the outer

most layer of the packet is determined, in this case process_ethernet(sockets, &frame). Using

the reference to the sockets the function determines which socket the packet should be dispatched to.

Next packet is processed by the socket and copied into its receive buffer. From there it can later be

retrieved and passed to the store. The socket may also produced a direct answer, for example as part

of the TCP protocol. If so this answer is dispatched as discussed before for the sending loop using the

tx_token as a reference to the device. So in essence the device is used three times here. First time

explicitly for receiving, the second and third time implicitly by accessing its receiving and sending buffer

via the tokens.

fn socket_ingress(&mut self, sockets:&mut SocketSet) -> bool {

// ...

while let Some((rx_token, tx_token)) = device.receive() {

if let Err(err) = rx_token.consume(inner.now, |frame|

match inner.caps.medium {

Medium::Ethernet =>

match inner.process_ethernet(sockets, &frame) {

Ok(response) => {

processed_any = true;

if let Some(packet) = response {

if let Err(err) = inner.dispatch(tx_token, packet) {

/*log Send Error*/

}

}

Ok(())

}

},

_ => /*handle other Medium types*/

}) else {/*log Handling Error*/;

}

processed_any

}

Listing 3.9: Simplified code of the Interface.socket_ingress() method

Again we need to eliminate the use of common references between ip_stack and device and integrate

the receiving control flow into the process_call logic of both components. So we first eliminate the

use of reference tokens. A packet can no longer be received via a reference to the device, hence we

implement a new receiving method on the device. This new method device.receive_token_free

first executes device.receive. Receiving might or might not succeed, so it needs to return an

Option<Tokens>. If token tuple is returned, an owned buffer is allocated and rx_token.consume
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fn pseudo_ingress(&mut self, device: &mut Device) -> bool {
while let Some(packet, send_permission) = device.receive_tokenfree() {

let local_tx = /*init LocalToken*/;
match inner.caps.medium {

/*process &packet and local_tx as tokens before*/
}
if local_tx.len != 0 {

let packet = local_tx.take_buffer();
if let Err(e) = device.send(packet) {

/*log Send Error*/
}

}
}

}

Listing 3.10: Receiving function in the ip_stack using a local token

is called to copy the received data into that owned buffer. Instead of returning an rx_token and a

tx_token, device.receive_tokenfree then returns the received data and simple result represent-

ing the tx_token (i.e. Ok(()) or Error). Consuming the rx_token might return an error that needs

to be logged in the original code, however this error can only occur during processing the ip_stack so

device.receive_tokenfree does not need to additionally the result of consuming.

Inside ip_stack.socket_ingress the usage of the rx_token can now be replaced by simply pass-

ing a reference to the token to inner.process_ethernet(sockets, &frame). If a response is

returned, we use the same mechanism as in the sending loop before. A local token is passed to

ip_stack.inner.dispatch and the device.send function is used to explicitly send this owned to-

ken buffer to the device. After this refactoring, the core control flow between the two components looks

basically as in Listing 3.10:

There are now two explicit, stateful usages of the device and we can apply the same procedure as with

the ip_stack.socket_egress function, to integrate the basic blocks of ip_stack.socket_ingress

into the ip_stackstack.process_call matching. The method itself is divided into three additional

InterFaceCalls i) InitIngress to trigger the ingress call including the first receive call to the de-

vice, ii) ProcessIngress handling either a received packet or ending ingress and iii) LoopIngress

logging the device result and calling the device.receive again. For the device we also needed to

add two calls. One is obviously DeviceCall::Receive. The second one is needed, because the call

DeviceCall::Send is now used in two different control flow states of the ip_stack, once during

egress and once during ingress. So we need a way to distinguish in the ip_stack if the control flow

should continue in the egress or the ingress loop after a device.send call. There are at least three

options to handle this, The first is to create a new DeviceCall, the second is to save the current state

in the ip_stackand add an additional dispatch based on this state, the third one is to make the current

state another value in the data flow and have the device decide which InterfaceCall to return after

sending. We decided to use the third option and augmented the DeviceCall::Send(Packet) with

an additional parameter enum InterfaceState being either Ingress or Egress. The device would

now also pattern match on this parameter and return the next call to the ip_stack accordingly.
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let mut ip_stack_call = InitPoll;
loop {

let device_or_app_call = ip_stack.process_call(ip_stack_call);
if calls_dev(&device_or_app_call){

ip_stack_call = device.process_call(device_or_app_call);
} else {

let socket = sockets.get_mut(socket_handle);
/*first socket state handling */

let outbytes = store.handle_message(input);
socket.send_slice(outbytes);

/*second socket_state_handling 2*/
phy_wait(/*...*/);
}

}

Listing 3.11: Structure of the server loop before socket handling is moved into the ip_stack

Now there is one missing element in the basic loop. In Section 3.1.2 it was described that the socket

handling, i.e. setting sockets to listening state, calling the receive function on the socket etc. had to be

moved into the ip_stack code. To simplify previous explanations we ignored this so far. If we left the

socket handling in scope, the main loop would be structured as shown in Listing 3.11:

We can see that socket handling happens in two parts. One directly after the ip_stack returned

from polling, the second after the store is called. Therefore, as socket handling was moved into the

ip_stack, only one new InterfaceCall was introduced. The first part of socket handling was di-

rectly attached to the match arm of the last InterfaceCall during polling. Instead of only returning

the polling result, the closure ending poll now also returns the request if the socket received one. The

second part of socket handling was moved to a separate InterfaceCall, capturing the result from the

store. This also meant that waiting before the next poll i.e. the phy_wait call now happens between

two ip_stack calls and needs to change its position in the loop. In transforming phy_wait, aspects

had to be taken into account that have not been addressed so far. Therefore, this will be considered

separately in the next section.

3.1.5 Waiting in M3

Now we need to refactor the phy_wait call. This function is basically a wrapper function to the system

call libc::select. It accepts a file pointer and a waiting duration and halts the current thread until

either the file becomes available or the waiting duration is exceeded. The file pointer is a pointer to the

system file the device uses to write the packets to. The maximum waiting duration is determined by the

ip_stack based on the current state of sockets. We are facing two problems with this function. One is

that we need to integrate it into the refactored control flow. The second is that it is using a system call

and a file pointer. Both file access and system calls are operating system specific, and therefore may be

implemented differently in m3 or any other target architecture.

Functionally, three things are realized in the phy_wait call. Determines the maximum waiting time

for the sockets is obviously a reading operation on the state of the ip_stack and should be integrated

in ip_stack.process_call. Determining the file pointer availability in a distributed setting needs

to happen in the component that holds the pointer, so we will need another call to the device. Finally
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loop {
let device_or_app_call = ip_stack.process_call(iface_call);
if is_device_call(&device_or_app_call){

let iface_call_or_wait = device.process_call(device_or_app_call);
iface_call = maybe_wait(call)

} else {
// call the store to answer messages

}
}

Listing 3.12: Final server loop structure

waiting is a system operation. The component that should wait is the interface. However, we need to

implement waiting in an m3 specific manner and therefor we either have to do it in the main scope,

or we have to import the according m3 API into the interface module. The clearly preferable op-

tion is to wait in the main scope over mixing component internal logic and runtime logic. So in essence

wwe refactor the phy_wait call to another loop between the ip_stack, the device and the main scope

As waiting should always happen immediately after ’loading’ the sockets with answers from the store,

we do not need to introduce another InterfaceCall. Instead we rewire the internal logic of

ip_stack.process_call. So far we just ignored waiting. After the sockets are loaded with mes-

sages from the store in ip_stack.process_call(AnswerToSocket(/*messages*/), we would

directly proceed calling self.process_call(InitPoll) again. Now instead the waiting time for

the sockets is calculated as before in the main loop using the self.poll_delay() function. Then the

calculated duration is send to the device using a new DeviceCall.

To process the new DeviceCall::NeedsPoll(Duration), we define a method needs_poll on the

device trait. M3 implemented its network stack with smoltcp, but provides altered versions of the devices.

Those devices provide the needs_poll method to implement waiting in the main scope, so this refac-

toring mimics their behavior while allowing us to run our refactored smoltcp version also on standard

Linux. The method accepts a duration and returns a boolean indicating if the device is available again.

In the concrete implementations of the device trait we can again use phy_wait, to maintain original

behavior while we do not run on M3 .

Finally we need to alter the general control flow. Waiting has to happen in the main scope in M3 . So after

calling the device with DeviceCall::NeedsPoll, the ip_stack should not be invoked directly as

before but instead a waiting function is called, mimicking the behavior of M3 waiting implementation.

This means a call to the device can now either return a call to the ip_stack or an instruction to

wait, containing the information M3 will require for waiting. Consequently in the main scope a new

case distinction is needed. If the device returned an InterfaceCall, it is directly forwarded to the

ip_stack, otherwise the waiting instruction is executed by a placeholder and and the InterfaceCall

to restart polling is generated. To keep control flow simple in the main loop, this case distinction is

wrapped in a function maybe_wait, yielding a control flow as shown in Listing 3.12.
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3.2 Adaptations in Ohua

Although Rust is a strongly typed language, type annotations for local variables are often unnecessary,

since they are automatically derived from the type inference of the rust compiler. In contrast, defini-

tions of types, i.e. structs, enums and functions, are the basis of type inference and must be annotated

manually/by the programmer. Since Ohua produces new code in the backend, it is not enough to transfer

existing annotations of the input to the output. In particular, the communication channels of the produced

tasks require type annotations, since these cannot be completely derived by the Rust type inference even

in the shared memory scenario. Also in view of a later extension to fully distributed systems, distributed

compilation of individual components or the use of languages with less powerful inference, it is impor-

tant not to rely on the type inference specific to the compiled language.

So where do we get the type information we need? One important observation is that Ohua does not

create new types. The control functions Ohua inserts into the data flow graph are mainly there to pass

on existing intermediate results of the original program. That is, the types of these functions that is, of

their input and output channels can be derived from the input code. For this we need a) a type extraction

from the input program and b) a type propagation which propagates the corresponding types through

the representation of the data flow graph. Both were basically available at the beginning of the work.

However, the existing implementation had problems or was not fully functional. This means that some

types had to be annotated by hand in the output code. The following sections describe how type extrac-

tion and type propagation worked and which changes were necessary to achieve the desired functionality.

3.2.1 Type Extraction

So the first functionality we had to address was the TypeExtraction in the frontend integration. Until

now this was a two step process. In a first pass two kinds of data were extracted from the input module.

One was the algorithms i.e. the Rust functions that were to be compiled. Those were translated to an

internal representation of the supported Rust subset as described in Section 2.1.1. The second structure

kept track of imports defined in the module.

The second pass was needed to annotate types to function names. As each function call

let z = someFun(x, y); might become an independent node, the compiler needs type annotations

for x and y to later annotate the channels for sending those variables among independent tasks. To do

so first the function names called in the parsed algorithms were extracted. Then all files defined in the

imports where scanned for function definitions. From this information, a hashmap was built over all

function names and the extracted function types. Finally, in a further traversal over the input code, this

hashmap was used to lookup function types and annotate them in the input code. This procedure had

some disadvantages, namely :

• The entire compile scope, including for example the standard library, had to be available for the

compiler to find and process. This introduced path dependencies of the compiler and notably

excludes the import of compiled libraries in other languages e.g. libc, which is critical in our case.
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• We had to restrict the entire compile scope and imported libraries to syntax the compiler could

understand. This has previously been addressed by re-implementing some required libraries in a

simpler form.

• We had to keep track of name spaces and aliasing for all functions

• We could not support 1. generic type parameters in function definitions and 2. overloaded function

definitions.

The main point of concern was really the need to parse the whole scope and therefore to have all libraries

used available and compatible to Ohua supported syntax. Therefore, we chose to change the source of

type information. Instead of collecting function signatures from the scope and typing functions globally

for the complied module, we now type each call site according to the local context. Remember, we need

to type the input parameters for each function call inside an algorithm. Those parameters can be:

• global constants, in which case Rust requires a type annotation

• input parameters of the algorithm, in which case we know their type from the algorithm signature

• local variables bound in the algorithm, in which case we now require the programmer to provide

type annotation

So for most syntax constructs, we can derive the type information needed from the local context. This

requires the programmer to annotate types manually in local assignments, where it would not be required

by Rust itself. Listing 3.13 shows an example, where additional local bindings are required. In the

example code, to be able to type the function call to h(e) we need an additional binding statement as it

is not possible to type annotate a loop pattern currently.

fn test(i:i32) -> {

let s = State::new();

for e in range_from(i) {

let r = h(e);

s.some_method(r);

}

s

}

fn test(i:i32) -> () {

let s:State = State::new();

for e in range_from(i) {

let e1:i32 = e;

let r:i32 = h(e1);

s.some_method(r);

}

s

}

Listing 3.13: To extract type information for function call from the local context we require the program-
mer to annotate the according types to local variables. As shown in the right code example
it is sometimes also necessary to have additional binding statements to annotate every rele-
vant variable i.e. every input to a function call.

The main change, required to implement this solution was threading a monadic context through the

complete process of transforming the input code to the frontend representation. In particular also through

the first step of this process, where the Rust code is mapped to a subset of Rust supported by Ohua. These

context keeps track of variable bindings and according types in the current scope. In the outermost scope

i.e. the global level of the input code, this context is pre-filled with constant definitions, including all

global constant definitions parsed before the actual algorithms.
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The conversion of algorithms is also monadic process and the initial context contains the names and types

extracted from the global scope. For each algorithm the parameter names and their types are parsed from

the signature and added to the context. Upon parsing the body of the algorithm each right hand side

of a let binding4 is checked for type annotation and registered in the local context if annotated properly.

Unannotated bindings will yield an error at this point. AS shown in the example in Figure 3.13 this might

require some additional local assignments, when local variables result from pattern binding.

Now, whenever a function call is converted, the function type is derived from its arguments. In the case

of a stateful call, this also includes the called object. If the arguments are variables, the types are obtained

from the context. If the variables are not in the context, again an error is thrown. For supported literal

arguments (currently integers, booleans and strings) the types are derived automatically. Obviously, this

limits the accepted input syntax in that only literals and variables are valid as direct function arguments.

Still the advantage of being able to use the entire Rust syntax again in the imported libraries outweighs

this in our opinion. As function types now depend on the types of local variables we added test cases to

the regression test suite to ensure proper typing, when local scope variables shadow names from outer

scopes. Notably name shadowing is currently only supported for loop local scopes. Ohuas renaming

algorithm and could therefore not be tested.

3.2.2 Type Propagation

The second aspect arises in the core compiler. When Ohua generates a Data Flow Graph, it introduces

control functions e.g. to guard branching or collect results of a loop (see [18] for further details). Some of

these functions are only present in intermediate representations because node fusion implemented down-

stream in the compiler may integrate them into bigger nodes. Some however occur as separate tasks in

the final program. In particular for the later kind, proper type annotations are essential but it is sensible

to provide them for any such function if possible, to reduce the assumptions among the steps of compi-

lation. Also the transformation of code to SSA form introduces new variable names that need to be typed.

Control function by their nature do not introduce new types. So it is possible to infer most of their input

and output types from the host-language types parsed in the frontend. The code example in Listing 3.14

shows a Rust function and its last representation in the compilers DFLang representation. Marked in

bold we can see the functions Ohua introduced to control the dataflow in the final program. We can also

see that one of those functions, namely smap is not preceded by the namespace marker ohua− lang/.

This is because most of the control functions are currently not represented by own constructors of the

function representation in DFLang. They are represented internally just the same as host-language func-

tion calls and only recognized in pattern matching upon their names. In contrast smap is already imple-

mented as a separate constructor.

4We currently only support variable or tuple patterns
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fn test(i:i32) -> () {

let s:State = State::new();

for e in range_from(i) {

let e1:i32 = e;

let r:i32 = h(e1);

s.gs(r);

}

}

let s_0_0_1 =

ohua.lang/unitFun(State/new_state, ()) in

let a_0_0 = /range_from ($i) in

let (d_1, (ctrl_0_0, ctrl_0_1), size_0) =

smapFun(a_0_0) in

let s_0_0_1_0 =

ohua.lang/ctrl(ctrl_0_0, s_0_0_1) in

let lit_unit_0 =

ohua.lang/ctrl(ctrl_0_1, ()) in

let r_0_0_0 = /h (d_1) in

let (_, ) = /gs [s_0_0_1_0] (r_0_0_0) in

let d_0_0 =

ohua.lang/unitFun(ohua.lang/id, lit_unit_0) in

let x_0_0_0 =

ohua.lang/collect(size_0, d_0_0) in

let c_0_0 = ohua.lang/seq(x_0_0_0, ()) in

c_0_0

Listing 3.14: Example of a Rust input function and its last stage in the core compiler representation
DFLang. Functions in bold are control functions, introduced during compilation that need
to be type annotated.

Basically, the TypePropagation works as follows. Remember in the frontend we annotated the argument

types for the called Rust functions, in the example in Listing 3.14 the function calls

State::new_state(), range_from(i), h(e1) and gs(r). Using this information the type propa-

gation happens in a bottom-up traversal over each compiled algorithm. Due to this bottom-up processing

each use of a variable is processed before its assignment. That means in our example, the function call

(_, ) = /gs [s_0_0_1_0] (r_0_0_0) is processed before the assignment r_0_0_0 = /h (d_1).

As the function call is processed its argument types are used for two things 1. update the type field of

the variables used in the call and 2. update the context to contain the associations between the variable

names and the according function type arguments.

Contrary to Rust function calls argument types of Ohua control functions are not annotated at this point.

However, we can always tell their output type from the input, because they only guard data flow and

do not calculate results themselves. For example the collect control function is introduced to collect the

results of a loop. We know its signature has to be collect :: nat− > A− > [A], to collect a given number

of arguments of type A before returning a list of type [A]. If the output list is used by another function

downstream, we already know the type A from the context and can completely annotate the variables in

statements using collect.

Now there were two problems with the existing implementation of the TypePropagation. The first rather

trivial one was that several control functions where not or incorrectly processed. The second problem

is illustrated in the code example. It is possible that a graph ends in one or more control functions. In

this case there output is not used by any typed Rust function, so we could not type there arguments and

returns in the bottom up pass. Due to this problems, the existing TypePropagation was only partially

functional. While the former TypeExtraction mechanism just complicated or restrained the assembly of

proper input code, missing TypePropagation functionality actually leaded to non functional code, in the
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sense that type annotations had to be made manually in the output code after compilation.

To fix this issue we have made two main changes. First, we have extracted the return type for all algo-

rithms, i.e. all compiled functions in the frontend. This is now passed as an additional parameter through

the compiler pipeline and is available in the type extraction. In the example code in Listing 3.14 the

return value is c_0_0. Given this type information we can now also annotate Ohua control functions

whose output is not used by an annotate Rust function in the bottom-up pass. The second change was

obviously to fix or add type propagation for previously wrongly typed control functions. Finally all tests

where adapted to expect correct typing of the output code.

One problem that has not been addressed in this work is that the control functions are not represented

by separate constructors in the DFLang. This means that they can only be distinguished from normal

Rust functions by their function name, which is error-prone and difficult to maintain. So in the future the

control functions should at least be mapped in their own constructors. Also arguments with known type,

like the first argument of the function collect :: int− > A− > [A] should optimally be enforced by the

type system.

3.2.3 Destructuring Higher Arity Tuples

Destructuring of function output was limited to to flat tuples of two elements. As shown in the List-

ing 3.15 below, a function output consisting of more than two elements would have to be destructed in

steps. This was obviously inconvenient, but more importantly, the added destruction step, as other func-

tion calls would have created a separate node in the derived DFG. This means that processes or threads

were created for these unnecessary destructuring nodes, and the corresponding data was unnecessarily

serialized and deserialized via these processes. In this smoltcp case study the problem is even more

pronounced. Remember the goal is to not send the stateful components from one process to another at

all. However, the recursive loop of preparing, sending, receiving, and processing data takes all three

components as well as the data as arguments. So the limitation of destructuring would have required us

to introduce destructuring steps in the input code and prevented state locality in the final graph.

let (x, y, z):(A, B, C) = actual_fun(); let (x, yz):(A, (B, C)) = actual_fun();

let (y, z): (B, C) = invented_destruct(yz);

Listing 3.15: With destruction being limited to two elements, programmers needed workarounds as ad-
ditional destruction steps to use function outputs of more that two variables

Therefore, we had to extend the support for tuples in three ways. Firstly we made tuple destructur-

ing representable in the backend language. In particular tuples where represented there as expressions

Tuple(e1, e2), where the expressions e1 and e2 where either literals or variables. Tuple indexing was

implemented as dedicated expressions Firstbnd and Secondbnd, where the binding bnd was the name of

the indexed variable, e.g. First”myList” would be converted to myList[0] in the Rust backend.

Now tuple expressions are represented as lists of literals or variables Tuple[EitherLitVar] and indexing

is represented via the more general term Indexingbndnum, representing indexing of bnd at the natural
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number index num.
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4 Related Work

4.1 Flexible OS approaches

The problem of overcoming disadvantages and potentially combining advantages of microkernel-based

operating systems and unikernels has been addressed before. For unikernels disadvantages were a lack

of isolation among components and the necessity to adapt to the component the library OS provides.

Microkernels on the other hand provide strong isolation but only at the cost of significant overhead for

IPC calls and again the necessity to adapt the existing code not to provided components but to commu-

nication primitives provided by the kernel. To avoid unnecessary overhead, programmers may also need

to refactor the general structure of their code to minimize inter process communication.

One example approach is CubicleOS [44]. It provides three main, new abstractions to overcome the

problems of the isolation vs. overhead trade-off. Those abstractions are

1. cublicles used to define memory-isolated processes (components)

2. windows used to define temporary memory sharing among trusted components, and

3. cross-cubicle calls used to implement control flow integrity among cubicles

Memory isolation is implemented using Intel’s Memory Protection Keys (MPK)[25]. A mechanism

implemented in the ISA that manages access rights to virtual page tables based on keys assigned to

processes. The current implementation of CubicleOS is based on the Unikraft library OS[29]. The pro-

grammer has to specify the components that should become cubicles. During the build process, function

call among cubicles are identified. To enforce isolation the build system of CubicleOS generates en-

veloping functions for those calls. These enveloping functions called cross-cubicle calls implement the

context switch between cubicles at runtime. Applications using CubicleOS can run on standard Linux.

To enforce memory isolation, CubicleOS comes with two runtime components one loading the compo-

nents with according memory rights, one managing memory access rights.

The main adaptations the programmer is required to make are a) using Unikraft components b) defining

the cubicles and c) defining exceptions from the memory isolation. Exceptions are needed to improve

performance and lower the overhead of context switches, when isolation is not desired. Those exception

cases are either whole cubicles or just data structures shared for particular calls among components.

Cubicles that are used frequently and are trusted can be declared ’shared’ meaning that there will be no

context switches upon calls to any of their functions or usage of static constants. Data structures can be

shared using CubicleOSs API for windows, which enables the programmer to specify memory locations

and sizes and the coded sections for which they should be shared. An example of this API is shown in

Figure 4.1, adapted from the original publication.
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(a) Original code of application FOO calling library
BAR

(b) Annotated code using Cubicles windows to
share memory after compilation

Figure 4.1: To use Cubicle the developer basically needs to surround calls to other components, in this
case BAR with windows. Cubicle will derive isolated components and their (legitimate)
interaction

The aim of FlexOS [32] is to provide an easy way to exchange isolation primitives for existing code with-

out (extensive) rewrites. Like CubicleOS it is based on an adapted version of the Unikraft library system.

The two main primitives the FlexOS API provides are abstract gates and abstract shared data. In or-

der to compile code with FlexOS, the programmer must replace all function calls between components

with abstract gate definitions and all shared memory areas with abstract shared data definitions. These

adjustments have also been made in the adapted system libraries. In addition the FlexOS build system

needs a configuration file, which defines among other things the isolation mechanism and the division

of the components. During compilation, the abstract definitions are replaced by concrete mechanisms

of the target memory isolation techniques, which are MPK, Software Guard Extensions (Intel SGX) and

Extended Page Tables [25].

In comparison to our approach, FlexOS and CubileOS solve a very similar problem with very similar

constraints for the programmer. She has to define components and their communication explicitly and the

adaptation to a concrete architecture is only possible through compilation, because she has to select from

suitable system calls and libraries in the input already. In contrary to those systems, we do not provide an

API to explicitly allow data sharing via references. It is possible to use reference sharing in Ohuas input

programs, as only explicit reference passing is excluded. However Ohua will tread arguments passed

by reference the same way as arguments passed by value. So if the resulting program is functional and

if pass-by-reference is any more efficient than pass-by-value depends on the target architecture. Which

also means we could not effectively use FlexOS or CubileOS as backend integrations.

4.2 Compiling to State Local Programs

Of course, many of the problems and approaches that emerged in the implementation are not new. Dena-

tionalization as a concept for mapping higher-order functions to serializable data types was first presented

in the work of Reynolds [41]. Building on that concept, as well as Danvy [13] discussed how defunc-

tionalization and refactoring to continuation passing style (CPS) can be used to transform programs with

structural operational semantics (including interruptions and errors) to reduction semantics. The author

integrates their results with previous work yielding the transformation based equivalence graph shown

in Figure 4.2. Given those results we can explore and maybe better describe in future what our trans-

formations should be, for example it would also be conceivable to defining stateful objects as abstract
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machines within the DFG. In a subsequent work Danvy and Millikin [14] present Refunctionalization

as the left inverse of Defunctionalization. This transformation can be applied as an intermediate step, if

programs are not directly amenable to defunctionalization. As the authors describe it “A program can

fail to be in the image of defunctionalization if there are multiple points of consumption for elements

of a data type or if the single point of consumption is not in a separate functionÂ´Â´. Considering the

initial structure of the poll function, the transformation described by Danvy and Millikin might also be

necessary to formalize the findings in this work.

Figure 4.2: Graph representing the inter-derivability relation of different abstract models for computa-
tion, taken from Danvy [13]

The paper Automatically Restructuring Programs for the Web [19] also applies refactoring to CPS fol-

lowed by defunctionalization. They target the transformation of local, interactive programs to web CGI

programs. As with the ip_stack.poll function in our case, the control flow in the source program is

continuous in or above the stack frame of the server functions, while the target setting requires explicit

handling of both the control flow and the stack state upon leaving an reentering the server function. The

paper presents a prototypical implemented automated transformations, to turn a local interactive pro-

gram into a CGI program. Interestingly in Scheme, the implementation language used, continuations are

first-class members and could be stored and reapplied to stack directly assigning each a specific URL,

such that the client request can directly address the continuation. Problem was that this was a) language

specific and b) had lots of overhead for a distributed garbage collection of stored continuations. So the

solution was to embed the control flow into the data flow using defuncionalized representations of entry

points. To handle stateful objects, i.e. in general any variable that is reassigned in different invocations

of the server, they use the Scheme concept of boxes.

This approach is very similar to what has been done in this work, e.g. by making part of the state of

the interface. They must be defined globally, are loaded on each call (from memory or a cookie) and

allow all sub-functions of the original server function to access the stateful variable. Considering the

server-client setting, the authors also comment on security considerations. The transformations made de

facto lead to control flow being integrated into the data flow and, in the case of a web application, can

be changed by a malicious user. Even if we aim at a different application scenario, we should evaluate

which parts of the control flow actually need to be integrated into the data flow. The security measures
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proposed by the authors mainly concern the cryptographic protection of the communication and are in

this respect possibly a question for further architecture integrations in Ohua.

The problem of managing stack based data in event-driven and cooperative programming has also been

addressed in [7]. Ohua doesn’t explicitly aim at event-driven programs. However we have seen that the

principle problem of shifting from automatic stack management to a control-flow "re-entering", neces-

sitates to either store and retrieve the execution state explicitly or send parts of it along the data flow, or

even passing respectively. The authors discuss necessary refactoring steps to transform single-threaded

programs to either a multi-threaded, preemptively scheduled or even-driven versions. Regardless of the

final form, they described the necessity of “Stack Ripping”, i.e. manually handling the information for-

merly based on a single function stack. While they use a different vocabulary, the core points of the

transformations are actually the same as in the works cited before, facing four main requirements for the

implementation resulting from “Stack Ripping”

1. lifting closures: Parts of functions interleaved with I/O actions or calls to other components need

to become language-level functions.

2. function scope: As more than one function now represent what was one function before the original

environment of the code in each sub-function must be manually preserved

3. automatic variables: variables that where allocated on the stack, but need to survive multiple func-

tion calls now, must be allocated on the heap

4. control structures: Structures like loops or branches lead to additional entry point functions

Further they describe how in Windows, fibers and threads are used to implement interactions between

applications using manual or automatic stack management respectively. The identified requirements are

very much in line with the necessary refactorings we identified.

4.3 (Automatic) Memory Isolation

Besides virtualization and the direct implementation of microkernel-based systems, there are also other

approaches to address the security problem of the lack of isolation. One such system is Hardware-

Assisted Kernel Compartmentalization(HAKC)[37]. The authors exemplify the problem for Loadable

Kernel Modules (LKM), which are themselves not a part of the Linux kernel but loaded and executed

in kernel space. With many of them providing audio and media processing and drivers, they are a noto-

rious entry point for system compromise exploiting local bugs. In particular they describe an example

CVE, where the exploit neither violates memory safety nor control flow integrity and could hence only

be prevented by compartmentalization of the modules involved and a defined interfacing to the kernel.

HAKC provides an API to define components and a hardware-based runtime system to enforce in-kernel

isolation of the defined components. This API allows the programmer to assign compilation units, files

or smaller fractions of code into logical units Cliques and Compartments and define directional memory

access and control-flow policies among them. So the actual compartments and access rules are entirely

made by the programmer and HAKC itself, does not check or optimize isolation policies. The hardware

mechanisms used to enforce the derived policies are called pointer authentication (PAC), introduced in
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ARMv8.3 and memory tagging extension(MET), introduced in ARMv8.5-A. The basic principle of TAC

is to have pointers cryptographically signed by their legitimate owner, store the signature in the pointer

and only allow access based on pointer authentication. MET allows to assign memory regions to differ-

ent tags and use those groupings to manage access policies. Measured with different microbenchmarks

the overhead for HAKC policy enforcement on the ipv6.ko LKM imposed a runtime overhead of 1.6%

to 24% for individual benchmarks.

To overcome the difficulty of manually identifying dependencies among components FlexC[38] was

later presented as an approach to automatically generate the compartmentalization policies that HAKC

requires as interface definition among components. The authors argue that in particular in larger system

hand-written annotations are error prone and might also lead to inefficient choices. Like HAKC itself,

FlexC uses static information from the input code, to generate a data access graph from the input pro-

gram. To account for indirect data access via pointers the analysis conservatively overestimates potential

dependencies. Dynamic data i.e. test runs of the input code can additionally be provided to weighten the

data dependencies by frequency of access and size of data. To start the derivation FlexC automatically

assigns compilation units (in C usually one ore more files) as smallest entity of isolation. By defining the

target number of compartments, the programmer can initialize a greedy fusion of nodes after the initial

graph was build, generating a coarser compartmentalization. It is also possible to manipulate the graph

using a GUI for FlexC. The output of FlexC is then directly integrated to the compilation process using

HAKC.

Since most hardware-related, system-level code is still written in C and C++, the approach of Spons

& Shields[43] directly builds on these languages. However they focus rather on a scenario commonly

encountered in cloud deployments, namely the usage of Trusted Execution Environments based on Intel

SGX TEEs. TEEs are increasingly popular for secure cloud deployments and while they where initially

used to encapsulate only specific critical user applications, they are now used to move whole OSes into

a single secure environment e.g. into an Intel SXG enclave. The identified problem is, again that this

creates large code spaces without internal access restrictions and possibly including insecure, third party

libraries, which contradicts the defense in depth approach. The next problem the authors notice is that

compartmentalization is often enforced along processes. But it is hard to redesign an application to en-

capsulate different concerns and security levels into different processes. Also the trust model of TEEs

does not include the host, while process isolation techniques are based on the primitives the host OS and

hardware (MMU) provide. The Spons& Shields framework (SSF) described in the paper consists of an

API to manage the two core abstractions Spons, which encapsulate units of execution, e.g. POSIX pro-

cesses or libraries and Shields which define hierarchical memory access regions. The programmer needs

to introduce Spons and Shields according to her requirements in the code and link against the musl stan-

dard C library. During compilation the framework will insert TEE primitives to enable the SSF runtime

to enforce memory boundaries between the Spons. To benchmark their technique they used the scenario

of a web application consisting of an NGNIX server, a PostreSQL data base (with medical data), an SSL

library for crypto and a business logic application in PHP. They compared request latency for a single

TEE vs. multi-TEE compartments vs. Shielded deployment and found that shields increase latency by

about 1.7 times using Shields while multiple TEEs increased latency about 4.4 times compared to the
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single TEE version.

PKRU-Safe[27] is an approach with a slightly different target. Instead of vertical compartmentalization it

intends to enforce a separation between memory safe and memory unsafe code in Rust applications. The

identified problem is that safe languages in this case Rust are already available and it should be possible

to interact with unsafe language components without risking memory corruption. So the whole point is

to enforce hierarchic/semi-permeable memory isolation between Rust code and unsafe languages. The

concept is to have the developer explicitly define the interface between trusted and untrusted parts of

the code. This is done via annotations in the projects build file and the untrusted libraries. With per

library annotations the adaptation overhead is significantly smaller than in annotating single functions

or data access. To analyse the code and track heap allocations PKRU-Safe uses custom plugins to rustc

and LLVM tooling. To identify the usage sites of heap allocated data the input program is run with pro-

vided profiling input to dynamically identify when the untrusted component accesses data allocated by

the trusted component. The gathered access data are used to categorize data allocation into unsafe and

safe memory, in particular data that is used by unsafe code is considered belonging to the unsafe code.

At runtime this distinction is used to enforce the policy that unsafe code can never access safe memory.

To move such data into the untrusted component entirely and to handle the two memory pools at run

time the liballoc to augment it by dedicated primitives for unsafe memory allocation. The authors

describe this runtime behavior as compartment-aware heap allocation. By keeping heap section of safe

and unsafe memory objects distinct, PKRU-Safe can implement the policies using MPK protection for

the trusted heap section. Notably this policy only applies to data on the heap. Stack data is assumed

to be protected by other mechanisms. They apply the concept to Servo, a layout-engine written in Rust

and tested the performance overhead with different benchmark suites (Dromaeo, Kraken, Octane and

JetStream2). They found the altered allocation mechanism to cause an average runtime overhead of 6%

above baseline. The overhead imposed by context switches involving MPK depended on the concrete

benchmark with an average of 11% and a maximum of about 30%.

Contrary to the Ohua approach, these techniques are currently bound to a particular language and partic-

ular hardware mechanisms. On the one hand this enables a deeper analysis of the code, in particular if

also dynamic information is considered. It can also lower the imposed overhead, because a distinction

between memory sharing and memory transfer can be made. On the other hand it limits the flexibil-

ity. All of the approaches require additional programmer information to identify the target components,

but also to shape the intended isolation policies. In how far data of one component is still accessible

to the other is in case of Ohua, depending on the chosen architecture integration and the programmers

compliance to the programming model, in case the architecture permits the usage of shared references.
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5 Evaluation and Lessons learned

In the previous chapter we described how a concrete program can be transformed in such a way that

compilation to a distributed program with local states becomes possible. The next question is now

whether we can derive an automated, formal process from this, i.e. whether we can implement the

necessary transformations in Ohua. It is also important to know what costs in terms of runtime costs

and memory, but also in terms of restrictions and effort for the programmer would be associated with the

implementation in Ohua. The fact is, even though the smoltcp application now structurally meets the set

criteria, we cannot yet compile it with Ohua or run it in the m3 operating system.

Therefore, in this chapter we summarize what we have learned so far about the necessary transformations

and what preliminary findings we have about the performance implications and propose further steps in

developing the Ohua compiler.

5.1 Learnings from Rewriting

The restructuring of smoltcp was done in several phases and on the basis of the concrete example code.

In order to find out which of these phases could be realized in Ohua in the future, we look here again at

the steps required for this and the necessary knowledge to be able to take these steps.

We faced several problems along the way. Concretely we needed to

1. encapsulate code in components and define the new interfaces of those components

2. lift stateful component use into scope

3. make states composable, and control flow among them unidirectional

4. adapt the code to the system interface of M3

5. make state use local, such that no stateful component is ever send among nodes

1. Identifying components and defining their Interaction: The interaction between the ip_stack

and the device where clearly defined. However, for the interaction between the ip_stack and the

store we had to make decisions on which of the processing steps in scope should be assorted to which

component. In Section 3.1.2, we discussed several options and their dependency on code structure. In

conclusion, identifying components, defining their interaction and encapsulating code accordingly is not

a decision that can be made automatically by our compiler. In particular if we only have static informa-

tion, we cannot predict the size and usage frequency of components at runtime to make sensible decisions

on effective communication interfaces. Also the compiler cannot infer what security implications com-

ponents have. At the moment, the compiler determines what a stateful component is based on the input

syntax alone. If the compiler should encapsulate components other than the set of stateful variables used

in the compile scope, it will need another source of information, e.g. special annotations given by the
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programmer.

2. How can state usage be lifted into Scope? : The basis for the control flow refactorings conducted

in this work, was making all stateful calls to components i) visible to the transformations and ii) explicit.

We began refactoring by inlining function call to lift device calls into scope. Inlining pure functions is

already done in Ohua and requires those functions to comply with the programming model. So the first

takeaway is that if the compiler shall be able to inline code automatically, the programmer either already

needs to know which code this is going to be or has to comply with the programming model in all of the

code. This is not trivial, as some aspects of the model cannot be automatically enforced and might be

pretty subtle. Inlining stateful functions is currently not done in Ohua, meaning that methods cannot be

treated as algorithms. In the transformations we also only inlined e.g. calls to the socket as an interme-

diate step and re-encapsulated parts of the inlined method again. Given that we aim to compile isolated

components, the inlining of methods will probably become no topic. To implement the transformations

from this work in the compiler it would be necessary instead to be able to transform methods without

inlining them into algorithms. The actual lifting can be done, by returning the control flow to the main

scope.

When it comes to making state usage explicit, the transformation process can be fairly involved. To

transform the implicit usage of device via tokens, required an understanding of the reference usage, the

effects each part of the processing would have on the components and in conclusion the reference-free

separation of processing in the ip_stack from processing in the device. So this steps could not have

been derived from syntactic information. Consequently we must require all state usages to be explicit in

the first place.

3. How can we make state use local and composable? : After lifting all usages of the device

as explicit calls into the ip_stack.poll, we essentially just needed to move calls to the device

into the outer loop and merge them into a common call. The key insight here was that it requires

a) a dispatch method process_call representing the only outer interface of each component b) a

serializable representation of the control flow point each call to this method should be dispatched to

and c) in case control flow points where originally only parts of methods a mechanism to decompose

such method into addressable syntax constructs. For the device the definition of process_call was

straight forward. Due to the previous transformations, the control flow points where exiting method calls

with explicit arguments. Those method calls, including their arguments where represented by an enum

and process_call would dispatch the call to the concretely method by pattern matching. The return

type of device.process_call is the corresponding representation enum on the ip_stack. For the

ip_stack we had to decompose the poll method into callable code blocks. This required a form of

lambda-lifting of those blocks. Contrary to lambda-lifting in pure functions, we did not turn all enclosed

variables into arguments. Instead we made variables that are not send to other components part of the

state, to retrieve and set them before and after each block.

Regardless if variables where send or stored between method calls, they needed to be free of internal

stack references. So, although the resulting process_call will not be compiled to data flow, we will
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likely have to extend the programming model assumption to the code to be transformed that way. In

particular we will need to require all variables that will be stored to be owned and all variables that will

be send to implement the required serialization. A concept that is structurally very similar to the refac-

torings made here is the transformation into continuation passing style. Therefore, we will deal next with

it whether and under which conditions we can develop automatic transformations for Ohua from it.

4. Can we automatically adapt code to different operating systems?: The short answer is no, not in

general. System call APIs are syntactically mostly indistinguishable from normal function calls. Ohuas

backend integration can adapt the generated DFG to exiting isolation mechanisms, because the compiler

itself introduced the abstractions for nodes and channels and can map them to the according architecture.

It cannot identify system accesses, like file system access or network access in the input code. A possible

remedy was to provide some kind of annotation that can be used by the specif architecture integration.

However, as the example of phy_wait demonstrated, the concrete a API of a target architecture also

influences the general structure of the input code. The most likely solution is that the programmer needs

to use the API and available libraries of the target architecture already in the input program. If the tar-

get architecture is a distributed system or a different OS, this also fundamentally calls into question the

promise of easy testability of the input code. For m3, for example, it is necessary to use the m3 device

implementations already in the input code, which is why it cannot be tested in a normal Linux environ-

ment.

5. Can we make states entirely local?: In the final program structure each state is used exactly once.

But this is not enough to create local states in the compiled program. Two problems remain. The first

problem is that Ohua currently does not support state threads for branch instructions and recursion. This

was intended so far, because both constructs potentially need to send state to nodes, for example to both

branches of an if-else statement. The second problem is that the states themselves must be initialized. In

a naive translation to a data flow graph, this would mean that there is one node that creates the state and

one node that uses the state. For reasons of code efficiency and code size, we do not want to restrict the

states to a certain size or to the use of serializable data types.

To solve the second problem we currently see two possible options. Firstly we can identify the initial-

ization node and the usage node for each state and fuse them to a single node in the backend processing.

This requires all states to be initialized by independent functions. Another possibility is to implement

wrapper types for each state. Those would hold the actual state as an Option field, or an equivalent

representation in other languages. It would also implement the process_call method, mostly dis-

patching calls to its wrapped state. The process_call implementation of the wrapper would however

additionally implement a call to initialize the inner state. Evaluating those and potential other solutions

will be part of the future work.

Solving the first problem will be one of our next tasks. Currently, Ohua’s concept of state threads is

extended to branching and recursion. In our example, the states ip_stack, device ,and store are not

used after the loop. Thus, an appropriate dependency analysis in the compiler could not only fuse the

initialization with the usage of the state, but also prevent the state from being sent to additional nodes
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after usage.

5.2 Preliminary Performance Measurement

It is clear that the transformations described here will have a negative impact on memory consumption

and performance. Since we cannot compile the application at the moment, we looked at a comparison

between the original and the adapted version of the application. We used the "Yahoo! Cloud Serving

Benchmark" YCSB [11]1 for this purpose. YCSB can be adapted to benchmark new data base applica-

tions by implementing a custom client to connect to the concrete data base and to generate Read,Insert,

Update, and Delete requests in an appropriate form.

Normally, this client opens a new connection to the server for each request and closes it after receiving

the response. The problem is that, unlike other TCP APIs, smoltcp does not dynamically create handlers

for each request. Since the library should be usable without allocation, there are only sockets and packet

buffers that the programmer explicitly creates in advance. Therefore, unlike the Rust TCPStream API,

for example, the server socket can close the previous connection in a loop pass while a new request is

already arriving. The result is frequent connection failures and aborted measurements in YCSB. There

are several ways to solve this problem. We chose the option to establish a permanent connection between

client and server for the measurements. The disadvantage of this is that individual requests are no longer

separated at the TCP level, but fragments of successive requests would have to be processed simultane-

ously by the application. Since the key-value store works the same in both cases, and since we are only

interested in the performance of the network stack, we do not parse and reassemble the requests at this

time, and respond to all requests with a standard response.

Since YCSB is written in Java and M3 does not provide a Java runtime and due to time constraints, we

ran preliminary measurements on a standard Ubuntu 20.04.1. installation, on an Intel Core i7-8565U

machine with 4 cores and 16GiB RAM. YCSB allows to specify the test scenario as so called workloads.

These workloads define the kind, number and size of request to be generated and sent. As currently only

a default answer is returned, there is no performance difference to be expected between write, update and

insert operations. A difference is expected for read operations however, because read requests contain

significantly less payload that has to be processed by the network stack. So we ran two workloads

composed of insert requests only, and read and update and read requests in equal amounts. In either

case 1500 operations were executed on 1000 entries, with each entry having three fields of ten bytes

length. An excerpt of the results is shown in Table 5.1. Obviously in both variants there is a hug

smoltcp variant Update Read Insert

min 99%-Per. max min 99%-Per. max min 99%-Per. max

original 23 114 670 6 103 103 23 386 9,23

adapted 85 104 606 24 104 806 28 8,54 894

Table 5.1: Minimal, maximal and 99% percentile of response time in micro seconds for Update, Read
and Insert requests after preliminary performance measurements in micro seconds

1available on https://github.com/brianfrankcooper/YCSB

https://github.com/brianfrankcooper/YCSB
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Obviously, there is a considerable spread between the minimum and maximum response times for both

variants. Both the 99% percentile values and the maximum values for the adapted variant are extremely

high, with response times of up to 80 seconds. It is also noticeable that the response times for Read

requests are, as expected, shorter in the optimal case than for Insert and Update, but on average they

take significantly longer. The latter is probably a bug in the test setup that causes relatively small Read

to be sent and answered only when they can be combined into a larger package. However, this does not

explain the extreme deviations of the rewritten variant. The differences in the minimum response times

of the two variants seem plausible. It is therefore necessary to investigate further whether this effect is

due, for example, to an inappropriate implementation of the wait mechanism.

We should investigate this issue before making further measurements. In addition, YCSB only suitable

to a limited extent for our use case, as the application content of packets is less relevant for measuring

network stack performance than the number, frequency, and size of incoming and outgoing packets or,

for example, the frequency of failed connection attempts. We should therefore look for alternatives to

YCSB for further measurements.

5.3 State of Compilability And Future Work

While the code now fulfills all the properties structurally needed, we still cannot compile it with Ohua.

One option we have complying with the supported input syntax is to fuse both loops. The result would

be, that each loop goes through all three components, which is very inefficient. So we aim to extend

Ohuas supported syntax to include stateful computation in branching and recursion statements, before

we can finally compile the application. Since a solution to this problem is already foreseeable, we will

not discuss possible implementations further here.

However, there are other syntax constructs that Ohua does not currently support, but which would sig-

nificantly increase usability. Specifically, in the course of this work while loops, match expressions, and

expressions for runtime exceptions that needed to be reformatted so that they could be compiled. There-

fore, we briefly address here how these expressions might be directly supported in the future. Also, the

M3 backend currently has limitations that we would like to address in the future and briefly discuss here.

While Loops A very common pattern of server applications is to run in an endless loop. As neither loop

nor while are supported by the given Ohua implementation. So while thy can be rewritten to recursion

by hand, integrating an automatic transformation for them would significantly improve Ohuas usability.

The frontend language of Ohua is purely functional and hence does not entail while loops. The functional

equivalent of a while loop is a recursive function, with the following case distinction: If the condition of

the while loop is true, the inner code will be executed and a recursive call is made, otherwise the function

returns. After every run of the original loop, local bindings go out of scope and only variables that

lived outside the loop ’survive’ to the next iteration. Translated to a recursive function this is equivalent

to using all variables from the outer scope as arguments to the recursive call and return them when the

recursion ends. This is illustrated in Listing 5.1 which shows a simple while loop in Rust and a functional

equivalent using recursion.
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fn algo() {

let mut i:i32 = 0;

let mut state:State = State::new();

while check(i) {

let local = use(i);

state.mutate_with(local);

i = i + 1

}

stateObj

}

fn algo() {

let mut i:i32 = 0;

let mut state:State = State::new();

(i , state) = rec_while(i, state)

stateObj

}

fn rec_while(i:i32, state:State)

-> (i32, State) {

if check(i){

let local = use(i);

state.mutate_with(local);

i = i + 1;

rec_while(i, state)

} else {

(i, state)

}

}

Listing 5.1: To express a While-Loop in the purely functional Ohua frontend language, we can rewrite it
to a recursive function

We want that transformation to be valid/suitable for all language integrations and keep the creation

of new language integrations simple. Therefore we should augment Ohuas frontend language with a

Whileconditionbody expression, where condition and body are the respective components of the orig-

inal while-loop transformed to expressions of the frontend language. The return type of the recursion

should be determined by a bottom up analysis to only return values that are used after the recursion. The

simple transformation shown in Listing 5.1 does not account for Ohuas current limitation in recursion

syntax, i.e. that branches must only contain the return statement. So the simpler translation of while

loops is another argument to fix this restriction, especially since it is not otherwise based on content.

Match Expressions Ohuas frontend language is functional and functional languages are notorious for

pattern matching. However it does not entail a syntax representation for pattern matching as used in

Rusts match expressions. We cannot trivially translate a match expression into nested binary branching

statements, because the arms of match are guarded by pattern matches and not by boolean conditions.

However, if we wrap the actual pattern matching out of the compile scope, we can transform the guards

either to boolean values. The principle is shown in Listing 5.2
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// matching in a function

let x: type = match some_call() {

pattern1 => /*closure 1*/

pattern2 => /*closure 2*/

_ => /*closure 3*/

}

(a) Example for matching in pseudocode

// replaced function code

let y: type2 = some_call();

let x: type =

if first(y) {

/* closure 1 */

} else if second(y) {

/* closure 2 */

} else {/*closure 3*/}

//----------------

// In a new separate library

fn first(y:type) -> bool {

match y {

pattern1 => true

_ => false

}

}

fn second(y:type) -> bool {

match y {

pattern2 => true

_ => false

}

}

// ...

(b) Pseudocode for compilation result

Listing 5.2: Match moved to a library function

A more efficient implementation of this idea, is to extend the ’switching range’ of control nodes from

a binary decision to multiple branches using integer flags. This also happens basically when the Rust

compiler lowers either if-else or matches2. With this approach the match expression can be encapsulated

into a single external function, returning the integer index of the matching branch. In the main scope we

would still replace the original match function with a nested if-else, checking equality of y with the

possible indices.

fn match(y:type) -> bool {

match y {

pattern1 => 0,

pattern2 => 1,

_ => false

}

}

Listing 5.3: Rewrite pattern matches to enumerated cases

2see https://rustc-dev-guide.rust-lang.org/mir/construction.html#
lowering-expressions-into-the-desired-mirrustc docu

https://rustc-dev-guide.rust-lang.org/mir/construction.html#lowering-expressions-into-the-desired-mir
https://rustc-dev-guide.rust-lang.org/mir/construction.html#lowering-expressions-into-the-desired-mir
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Panic – Runtime Exceptions There are different ways of producing and handling runtime errors in Rust.

If runtime errors are implemented using the Result type and handling of the error by an alternative

control flow, it is basically opaque to the compiler i.e. treated like any other type. Apart from that there

are basically two types of errors, that we currently cannot handle.

This first one are runtime exceptions, called Panic in Rust parlance. They immediately terminate the

current thread. This behavior is accessible via is implemented as the panic!, but will also be introduced

via using functions that can panic. So basically we cannot detect panicking code, based on the syntax

unless we compile all code involved. After compilation, only the node executing the panicking code

will actually stop running, in a distributed scenario the other nodes will continue running, but data flow

will be interrupted at the failing node. It is desirable and necessary to have a mechanism that propagates

and handles errors across the distributed program. However, there are several reasons not to attempt this

initially through further compiler transformations. These are

1. To catch a runtime exception and propagate the error out of the failed process there are constructs

like try-catch blocks. However, this is not the case in all languages and is not provided for in Rust,

for example.

2. As already described, it is not possible to syntactically recognize function calls that produce run-

time exceptions.

3. Under certain circumstances, various nodes should not simply be terminated, but for example

resource should be returned beforehand or communications with external processes should be

gracefully terminated.

Therefor we argue that runtime exceptions should not be treated by the compiler. Instead the programmer

should implement proper error propagation and handling.

The second type are early returning errors, implemented in Rust via the ? symbol (formerly via the

try! macro). It is syntactic sugar for unwrapping either a Result or an Option. If successfully the

unwrapped value will be processed further, if an Error or a None was encountered, they are early

returned from the function. For an expression expr ?, whether expr returns a Result or an Option

we could transform the code by i) removing the ? and bind the result of expr to a variable if that is

not already done and ii) wrap the downstream execution in a branching statement such that in case of

successfully unwrapping the rest of the function is executed, otherwise the result is returned. A small

example is shown in Listing 5.4 below. Obviously we will need to handle early returns for this solution.

fn example() -> Result<T,E> {

let x : type = might_error()?;

// rest of the function

}

fn example() -> Result<T, E> {

let x:Result<type> = might_error();

if x.is_ok() {

// rest of the function

} else {

return x

}

}

Listing 5.4: Refactoring option for ?, early returning errors



5. EVALUATION AND LESSONS LEARNED 64

The M3 Backend
We currently run all nodes as separate processes on one tile. To leverage the full potential of M3, we

may change the backend implementation to actually allocate separate tiles for each process. As M3 is

designed to integrate different hardware components as tiles, this will be an interesting step towards sup-

porting heterogeneous platforms.

A limitation concerning the supported programming model is, that so far we did not implement the han-

dling of environment variables, i.e. data initialized outside the algorithms and passed as arguments or

just used in a shared scope. For the present example application, this was not an issue. We were com-

piling a main function, which does not take input arguments. However we might want to also compile

for libraries to M3, where translated algorithms may need external input. How this can be implemented,

depends on how the processes are created, i.e. on a single or multiple tiles and on whether the environ-

ment variable was defined inside the compile scope e.g. global constants or is actually passed in from

processes calling the compiled code. In this context we will also need to evaluate whether its possible

and necessary to generate the xml configuration files M3 uses to declare interfaces and names of applica-

tions.

Finally a problem that we will not be able to handle automatically is the translation of system service

accesses, such are file system access, or the usage of device drivers. We saw for example, that we

needed to adapt the implementation of phy_wait based on M3 implementations for network devices and

process waiting. As described in Section 4.1 FlexOS and CubicleOS handle this problem by providing

the programmer a) with a fixed set of supported libraries they can use and b) annotations for system calls,

such as memory allocation the compiler can use to automatically replace system call appropriately for

the target system. So likely for us adaptation to operating system features, other than the generation and

direct communication of processes, will also rely on information from the programmer and the usage of

suitable interfaces already in the input code.
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6 Conclusion

Isolating components of a kernel or larger programs from each other makes sense both for security rea-

sons and for better scalability. But adapting existing code bases is time-consuming and complicates

development and testing. This is also true, for example, when programs written for monolithic or uniker-

nels have to be rewritten for microkernel-based systems like M3 with isolated drivers and system compo-

nents. The Ohua compiler tries to solve this problem by automatically identifying independent sections

of a program and making them separate threads or processes, depending on the architecture chosen.

In this work we have looked at whether it is possible to compile programs with Ohua whose structure

does not yet contain the desired independent components. Using the concrete example of a server ap-

plication, we looked at which transformations are necessary to create a program in which the TCP/IP

stack, the network interface and the user application are independent, stateful components. By means

of a backend integration for the microkernel-based operating system M3 , a program transformed in this

way could be compiled directly from running on a uni- or monolithic kernel to running on a microkernel

based OS.

To achieve this, the components must only be used once in the compiled program. The communica-

tion between them must be realized via the arguments of a single function call, and the control flow of

the entire program must be adapted accordingly. As it turned out, part of this problem can be formally

described by transformation to Continuation Passing Style and Defunctionalization, and could be fur-

ther developed to transformations in Ohua. Other necessary steps are not possible without additional

demands on the programmer. This includes, among other things, the identification of the target compo-

nents if this is not apparent from the initial code structure. In general, lifting code into scope that was

encapsulated in function or method calls is problematic because it is the programmer’s responsibility to

respect the constraints of the programming model, e.g. that function arguments need to be serializable

for the selected backend. As the transformations that Ohua performs on the code become more complex,

it may become more difficult for the programmer to know in which areas of the code to adhere to the

programming model.

Comparing Ohua with other approaches for compartmentalization we have seen that Ohua is more flexi-

ble since it is not directly build upon a single input language, compiler toolchain or particular hardware

mechanism. However, as we have seen in the adaption to M3 , we face the same problems when it comes

to adaptations between different operating systems, namely that system calls can not be automatically

identified from the syntax and replaced by Ohua. It might be worthwhile to consider adding annotations

to Ohuas API in future versions, to enable e.g. the automatic encapsulation of components or the use

of different data transfer mechanisms. Otherwise the input program already needs to use appropriate

system calls and components, which contradicts the original idea of being able to develop the code inde-
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pendently of the target architecture.

For further work, we therefore need to clearly distinguish which transformations we can and want to

implement in Ohua, and which steps should be left to the programmer.
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A Appendix

A.1 Rust Language Integration

Block of Statements:

block ::= {s; . . . ; s} statements

Statements:

s ::= e statement returning a value

| e; statement not returning a value

| let pat = e local definition

Expressions:

e ::= x variable bindings

| 1, 2, 3, . . . | true | false literals

| e (e, . . . , e) function calls

| e callRef (e, . . . , e) method calls

| (e, . . . , e) tuples

| e + e | e − e | e > e | e == e | . . . binary operations

| −e | !e | ∗ e unary operations

| if e block else e conditional with optional else branch

| for pat in e block

| move | arg, . . . , arg | e closure

| block block expression, i.e. block returning a value

Call References:

callRef ::= z.y.x [gernericArg] namespaced binding

Patterns:

pat ::= x | (x, . . . , x)| _ bindings, tuples or wild cards

Table A.1: Subset of Rust grammar, that is accepted by the Rust integration frontend
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A.2 Additional Source Code Excerpts

pub fn poll<'a, D>(

mut ip_stack: Interface<'a>,

timestamp: Instant,

mut device: D,

mut sockets: SocketSet<'static>)

-> ( Result<bool>, Interface<'a>, D, SocketSet<'a>)

where D: for<'d> Device<'d>

{

ip_stack.set_inner_now(timestamp);

// .. fragment handling

let mut readiness_has_changed = false;

loop {

let processed_any = ip_stack.socket_ingress(device, sockets);

// Begin of inlined ip_stack.socket_egress()

let mut emitted_any = false;

for item in sockets.items_mut() {

if ip_stack.item_meta_egress_permitted(item)

{

let mut neighbor_addr = None;

let result:Result<()>;

let packet_or_ok =

// socket function wrapped to happen inside the ip_stack

// component

ip_stack.match_socket_dispatch_before(item);

if is_packet(&packet_or_ok) {

let (response, response_and_keepalive) =

from_packet(packet_or_ok);

neighbor_addr = as_optn_addr(&response);

let sending_token = device.transmit();

if sending_token.is_some() {

let local_dispatch_result = ip_stack.inner_dispatch_local(response, None);

if let Ok((packet, timest)) = local_dispatch_result{

let send_result =

device.consume_token(timest, packet, sending_token.unwrap());

if send_result.is_ok() {

// socket function wrapped to happen inside // the ip_stack component

result =

ip_stack.match_socket_dispatch_after(item, response_and_keepalive);

emitted_any = true;

} else {

result = send_result

}

} else {

result = Err(local_dispatch_result.unwrap_err());

}

} else {

net_debug!("failed to transmit IP: {}", Error::Exhausted);

result = Err(Error::Exhausted);

}

} else {

result = Ok(());

}

let maybe_break = ip_stack.handle_result(result, item, neighbor_addr);

if maybe_break {

break

}

}

}

// End of inlined ip_stack.socket_egress()

if processed_any || emitted_any {

readiness_has_changed = true;

} else {

break;

}

}

(Ok(readiness_has_changed), ip_stack, device, sockets)

}

Figure A.1: After inlining all functions using the device and re-encapsulating all code that concerns
only the ip_stack we get an interleaved usage of ip_stack and device in the sending
loop. Due to multiple mutable borrows of both components in the loop, this code will not
compile.



Acknowledgments 77

Acknowledgments

Of course, I would like to thank the people who helped me with this thesis. To my supervisor Sebastian

Ertel for his time, help and brainstorming together, as well as Felix Suchert for helping me master Rust

problems and Nils Asmussen for helping me understand M3 .

But I wouldn’t have written this thesis, and probably not a single line of code, without Vera Zeidler and

Sebastian Flügge. Without Sebastian I would not have had the idea to study computer science, and that

would have been a pity, because the idea was really good. Without Vera I literally wouldn’t be here.

Thank you for all your efforts, love and cleverness, I hope you are also a little proud.


