
Faculty of Computer Science Center for Advancing Electronics Dresden, Chair for Compiler Construction

Master Thesis

Verifying the Rust Runtime of Lingua
Franca
Johannes Hayeß
Born on: 10th of November 1997 in Potsdam

to achieve the academic degree

Master of Science (M.Sc.)

First referee
Prof. Dr. Jeronimo Castrillon
Second referee
Dr. Steffen Märcker
Advisors
Christian Menard
Clément Fournier

Submitted on: 6th of March 2023

Fakultät Informatik Institut für Technische Informatik, Professur Compilerbau

Task Description for Master’s Thesis

for: Johannes Hayeß

Major: Master Informatik
Matriculation Nr.: 4607666

Title: Verifying the Rust Runtime of Lingua Franca

Lingua Franca (LF) is a polyglot coordination language implementing the programming model of “Reac-
tors”. This model borrows principles from well studied paradigms including actors, dataflow and discrete
event systems, and enriches them with a timed semantics that makes the model particularly useful for
designing applications in cyber-physical systems. Thereby, the reactor semantics guarantees a determin-
istic execution even in distributed systems.
The polyglot approach of Lingua Franca allows the reactor model to be used in multiple “back-ends”
supporting different target languages. Each LF target provides a specific runtime that governs the
execution of LF programs and enforces reactor semantics. In a recent effort, a Rust target was added to
Lingua Franca. Rust is a particular attractive target language for LF due to its unique paradigm based
on a strict typesystem with an ownership model. This enables the rust compiler to reason more precisely
about execution steps, allowing, in principle, execution that is predictable.
Recent works (RustBelt, RustHornBelt, Creusot) have shown that Rust is also particularly useful for
software verification. While verifying unsafe languages such as C/C++ is challenging due to the use of
mutable pointers, the unique properties of Rust enable an encoding in first-order logic. In particular,
Creusot has is capable of proofing complex properties in large Rust code bases. This has been recently
demonstrated in CreuSAT, a verified and heavily optimized SAT solver.
The goal of this thesis is to leverage the capabilities of Creusot to proof the correctness of the LF Rust
runtime. Ideally, the thesis would provide a complete proof, verifying that the Rust runtime indeed
correctly implements reactor semantics. However, at the moment of this writing, it is unclear whether a
complete proof is feasible within the scope of a Master’s thesis. For this reason, this task only requires
proofing selected properties of the runtime.
In particular, the student should understand and explain the semantics of Lingua Franca including the
Rust runtime, as well as the capabilities and limitations of Creusot. Understanding these, the student
should define one or multiple correctness criteria and develop a strategy for verifying those properties of
the runtime. According to this strategy, the student should then use Creusot to annotate the runtime
and aim at proofing the selected correctness criteria. Where possible and necessary, the software design
of the runtime should be adjusted as is needed for the proof. Similarly, any bugs encountered during this
work should be fixed if feasible. The student should further summarize the results and discuss to which
extends the correctness criteria are met and how both the proof and the runtime can be further improved
in future work.

Advisor: Christian Menard, Clément Fournier
1. Examiner: Prof. Dr. Jeronimo Castrillon
2. Examiner: Dr. Steffen Märcker

Issued: 04. October, 2022

Prof. Dr. Christel Baier Prof. Dr. Jeronimo Castrillon
Vorsitzender des Prüfungsausschusses Verantwortlicher Hochschullehrer

Abstract

Lingua Franca is a coordination language for writing applications with deterministic
concurrency in various programming languages, including Rust. For enforcement of
semantics, Lingua Franca programs rely on a runtime. In the Rust case, the runtime
is written in the same language, which provides memory safety and data-race freedom.
To further capitalise on these benefits, this work defines correctness properties for the
Lingua Franca Rust runtime and attempts to verify them with the deductive verification
tool Creusot. Beyond that, the work surveys the contemporary academic literature on
Rust software verification and its tooling. Ultimately, the verification work is only a
limited success due to Creusot’s lack of support for several Rust language features. The
verification work required the extension of Creusot’s contract coverage of Rust’s standard
library which was contributed back to the project. While full verification of the runtime
failed, it was possible to verify the correctness of a custom map data type the runtime
heavily relies on.

Declaration of authorship

I hereby declare that I have written this final thesis independently and have listed all
used sources and aids. I am submitting this thesis for the first time as a piece of assessed
academic work. I understand that attempted deceit will result in the failing grade “not
sufficient” (5.0).

Dresden, 6th of March 2023
Johannes Hayeß

Contents

1 Introduction 7

2 Background 9
2.1 The Rust programming language . 9

2.1.1 Ownership semantics . 10
2.1.2 Unsafe Rust . 12
2.1.3 Compiler architecture . 12

2.2 Lingua Franca . 13
2.2.1 Major language components . 14
2.2.2 Lingua Franca compiler . 18

2.3 Formalisation of the Reactor Model . 19
2.3.1 Preliminaries . 19
2.3.2 Time . 20
2.3.3 Components . 20
2.3.4 API for reaction body . 22
2.3.5 Reaction precedence . 22

2.4 The Rust runtime for Lingua Franca . 23
2.4.1 Reaction precedence . 23
2.4.2 Main event loop . 23
2.4.3 Reaction API . 24
2.4.4 Runtime metrics . 25

3 Rust software verification 27
3.1 State-of-the-art verification tools . 27

3.1.1 Kani . 27
3.1.2 Prusti . 31
3.1.3 Creusot . 32

3.2 Ownership semantics and verification . 34
3.3 Verification with Creusot . 35

3.3.1 Verification procedure . 35
3.3.2 Writing Creusot specifications . 38

3.4 Runtime verification considerations . 42
3.4.1 Why Creusot . 42
3.4.2 Using Creusot . 42
3.4.3 Defining correctness properties . 43

5

4 Properties of a correct runtime 44
4.1 Termination . 44
4.2 Crash freedom . 44
4.3 Correctness of VecMap . 45
4.4 Formal properties . 45

4.4.1 Reactor program state . 46
4.4.2 Constant program specification . 47
4.4.3 Linear time . 47
4.4.4 Reaction precedence derived correctly 47
4.4.5 Event processing . 47

5 Verifying the LF Rust runtime 49
5.1 Verifying the whole runtime . 49

5.1.1 Goals . 49
5.1.2 Approach . 50
5.1.3 Challenges and solutions . 51
5.1.4 Conclusion . 57

5.2 Verifying VecMap . 57
5.2.1 Goals . 57
5.2.2 Defining the sorted property . 58
5.2.3 Challenges and solutions . 58
5.2.4 Reproducing the verification . 68
5.2.5 Performance . 68
5.2.6 Conclusion . 69

6 Conclusion 70
6.1 Future work . 70

6

1 Introduction

Lingua Franca (LF) is a coordination language for constructing applications in various
programming languages, built on the theoretical foundations of the Reactor Model (RM).
Its core promise is that of deterministic concurrency. This is achieved through explicit
modelling of data dependencies of reactions, the routines of programmer-specified ex-
ecutable code, and discrete-time semantics. The execution of Lingua Franca programs
is overseen by a runtime which executes reactions in conformance with the RM. So the
promise of deterministic concurrency relies in part on the correct implementation of this
runtime. For every programming language that LF supports there is a specific runtime
implementation. The latest addition is a runtime implementation for programs written
in Rust.
With correctness of implementation being a concern, Rust is already a good choice
because it is both memory-safe and guarantees data-race freedom—something that no
other LF target language can offer. Additionally, since Rust is compiled ahead-of-time
and requires no runtime garbage collection, it rivals the performance of C and C++,
which LF can also target.

Rust is still a relatively young programming language, but in recent years interest in
formally verifying Rust software has grown in both industry and academia. Formal veri-
fication constitutes the logical next step in further guaranteeing the correctness of LF’s
Rust runtime. Among the available verification tooling, Creusot [DJM22] is the most
promising, with a novel approach for modelling pointers [MTK21] that leverages Rust’s
unique ownership model [Bei16].
The core objective of this work is to define correctness properties for the LF Rust runtime
and then to prove their validity in the runtime’s codebase using Creusot. Creusot’s abil-
ity to verify complex Rust software has already been showcased with CreuSAT [Sko22],
an optimized SAT solver. That project, however, was built specifically for verification
with Creusot. Thus the verification effort of this work will double as a trial as to how
applicable Creusot is for previously existing Rust software. The work focuses on sur-
veying the contemporary literature on Rust software verification to give the reader an
overview of this emerging field of research and illustrate why Creusot was chosen.

As research into verifying Rust software specifically is only a few years old, the tool-
ing that results from this research is still limited in various ways. These limitations
significantly impacted the verification work this thesis set out to do. The encountered
limitations and workarounds, if they were found, are documented in this work. One

7

such limitation is Creusot’s low coverage of Rust’s standard library with contracts it
needs for verifying Rust code that uses standard library functionality. As part of the
verification effort of this work, Creusot’s contract coverage was extended when needed
and contributed back to the project.

To summarise, this work surveys three Rust software verification tools, Kani, Prusti,
and Creusot, focusing on the latter. It then lays out multiple correctness criteria for
the runtime with a justification of why they are crucial for the correct functioning of
the runtime. After that, the work details an attempt at verifying the whole runtime
according to the defined correctness criteria. However, this was not successful because
of Creusot’s limitations. The focus then shifts to a module within the runtime that could
be decoupled for verification. This module implements VecMap, a critical custom data
type that is used in multiple places within the runtime. This attempt at verification
does succeed, which shows that despite limitations due to a lack of support for certain
Rust features, properly isolated code modules that avoid unsupported Rust features can
be verified with relatively minor modifications to the original code.

8

2 Background

In this chapter, we introduce in broad strokes the background for the technologies this
thesis examines. For this, it is important to understand how the following concepts
interlink. The Reactor Model (RM) underpins the entire work. This theoretical frame-
work is implemented by Lingua Franca (LF), a coordination language that provides the
ability to write reactor programs in various programming languages. The semantics in
a reactor program is facilitated through a runtime. One language supported by Lingua
Franca is Rust, for which there is also a runtime implementation.

Reactor
Model

Lingua
Franca

Rust

LF Rust
Runtime

Figure 2.1: Venn diagram showing how the used technologies interact.

2.1 The Rust programming language

Rust is a general-purpose programming language, which had its first stable release in
2015. Since then, it has greatly risen in popularity within industry and academia, now
being among the most popular programming languages in 2022 [OGr22].

9

There are two commonly used release channels of Rust: Stable and Nightly. Stable Rust
releases are official and come with backward-compatibility guarantees. Whereas the
Nightly release channel includes experimental and yet-to-be-stabilised features [Rus20].
Rust software that relies on such features will only work with Rust Nightly.

2.1.1 Ownership semantics

Rust’s core innovation is its ownership semantics. The notion of owned types was not
new. It is also present in popular languages like C++. Rust further combines this
with strict-aliasing rules for references to owned data. Aliasing occurs when more than
one reference to the same memory location is alive within a program [LR91]. For Rust
specifically, there are two types of references; shared and exclusive. Shared references
may alias but cannot mutate the underlying data, whereas exclusive references provide
the inverse functionality. Furthermore, shared and exclusive references to the same
owner may not exist simultaneously. The aliasing and mutation rules are illustrated in
Table 2.1. These semantics are enforced at compile time, which allows Rust to have a
memory-safe data model without garbage collection, as well as guaranteeing the absence
of data races [Bei16, §5.2–5.3].

Type Ownership Aliasing Mutation
T owned ✓
&T shared reference ✓
&mut T exclusive reference1 ✓

Table 2.1: Overview of aliasing and mutation rules for ownership kinds in Rust. Adapted
from [Nik17, at 24:56].

Example

To illustrate the utility of Rust’s ownership semantics, let us contrast the C++ example
in Listing 2.1 with its Rust counterpart in Listing 2.2. At first glance, the C++ code
may appear harmless. However, once we consult the documentation for push_back, the
problem becomes clear:

If the new size() is greater than capacity() then all iterators and refer-
ences (including the past-the-end iterator) are invalidated. (cppreference.com
[CPP18])

This means that depending on the state of v, pushing the string on line 7 and sub-
sequently printing ele may work or fail. If v is at capacity, pushing additional contents
will reallocate its data and invalidate existing references. When this is the case, ele is

1These are often also referred to as mutable references.

10

1 void strings_ex() {
2 std::vector<std::string> v = {};
3

4 // other things happen
5

6 auto& ele = v.front();
7 v.push_back("some string");
8 std::cout << ele << std::endl;
9 }

Listing 2.1: C++ example with a potential dangling reference.

1 fn strings_ex() {
2 let mut v: Vec<String> = vec![];
3

4 // other things happen
5

6 let ele: &String = v.first().unwrap();
7 v.push("some string".to_string());
8 println!("{ele}");
9 }

Listing 2.2: Direct Rust translation of Listing 2.1 that does not compile.

turned into a dangling reference. In this example, it may cause the printing of incorrect
information or a program crash. Additionally, when such a dangling reference is written
to, it may further cause memory corruption and security vulnerabilities. Since C++ is
not memory safe, this is a valid program, despite the potential error.

The Rust code in Listing 2.2 is the direct counterpart to the C++ code from Listing
2.1. However, due to Rust’s strict type system, this is not a valid Rust program. When
attempting to compile the example, Rust’s compiler will produce the following error:
‘cannot borrow v as mutable, because it is also borrowed as immutable’.
There is an ownership conflict with v here. The type of ele is a shared reference
(&String) borrowing from v. And Vec::push(&mut self, value: T) requires an ex-
clusive (mutable) reference to v. But since a shared reference is currently alive with ele,
an exclusive reference for mutation cannot be acquired. This conflict triggers Rust’s
borrow checker to fail the compilation process.

The reader might have noticed that there is a simple way of avoiding the conflict: swap-
ping lines 6 and 7. The exclusive reference that Vec::push() requires is dropped when
the function call completes. Thus, we can derive other references from v again. That

11

version of the program would compile. And if the same change was applied to the C++
version of the program, it would avoid the dangling reference problem.

2.1.2 Unsafe Rust

Rust’s memory safety features are sometimes a hindrance. For example, standard Rust
does not work with raw pointers (i.e. arbitrary, unchecked memory references including
null), but their usage might be desired for data structures like trees or performance reas-
ons. To resolve this issue, Rust allows for marking code blocks and functions as unsafe.
This unlocks Unsafe Rust, which relaxes a few of standard Rust’s safety guarantees. As
laid out in the book Programming Rust:

An unsafe block unlocks five additional options for you:

• You can call unsafe functions. […]

• You can dereference raw pointers. Safe code can pass raw pointers
around, compare them, and create them by conversion from references
(or even from integers), but only unsafe code can actually use them to
access memory. […]

• You can access the fields of unions, which the compiler can’t be sure
contain valid bit patterns for their respective types.

• You can access mutable static variables. […] Rust can’t be sure when
threads are using mutable static variables, so their contract requires you
to ensure all access is properly synchronized.

• You can access functions and variables declared through Rust’s foreign
function interface. These are considered unsafe even when immutable
since they are visible to code written in other languages that may not
respect Rust’s safety rules.

[BOT21, p. 628]

2.1.3 Compiler architecture

Having a high-level understanding of Rust’s compilation process is essential because
many state-of-the-art verification tools extract information from the process to facilitate
their functionality. Broadly, the compilation process is divided into four stages. The
following descriptions were adapted from the Guide to Rustc Development [Rus22].

Lexing & parsing Technically, these are two stages combined into one for brevity here.
The source code is transformed into an Abstract Syntax Tree (AST) for further
processing.

12

Figure 2.2: Illustration of Rust’s compilation process.

High-Level Intermediate Representation (HIR) lowering This IR still closely re-
sembles the original Rust code. Certain language constructs like loops are de-
sugared. Furthermore, type inference and type checking happen at this stage.

Mid-level Intermediate Representation (MIR) lowering This stage validates Rust’s
ownership semantics (also called borrow checking). MIR represents a control flow
graph on which optimisations with retained Rust semantics are performed.

LLVM IR lowering & code generation Again, technically these are two stages com-
pressed into one for brevity. Rust uses LLVM as its code generation backend for
the many hardware platforms it supports. To do this, MIR is lowered to LLVM
IR.

2.2 Lingua Franca

The theoretical foundation of Lingua Franca is the Reactor Model. In a nutshell, reactors
are reactive program components whose behaviour and interactions enjoy deterministic,
time-based semantics.
Reactions form the atomic computational unit of the RM. They are routines grouped
by reactors over which they share common state. As the name implies, reactions are
executed in reaction to certain events. Each reaction explicitly declares its trigger events
and other data dependencies required for execution. The dependency information is then
used to determine an execution plan of reactions that enable the model’s determinism.
Dependencies alone are not enough for this, however. Since reactions share mutable state
across their reactions, competition over those resources has to be resolved determinist-
ically. The model does this by defining a total order for reactions within a reactor and
scheduling reaction execution along a well-defined logical timeline. A tag is an instant
on this logical timeline. If two reactions are triggered at the same tag, they are executed
according to the total reaction order. Shared state is isolated to reactors, which easily
allows for concurrency within the model. Reactions from different reactors that have

13

1 target Rust;
2

3 main reactor GreetingsAndFarewell {
4 reaction (startup) {=
5 println!("Hello!");
6 =}
7

8 reaction (shutdown) {=
9 println!("Goodbye!");

10 =}
11 }

Listing 2.3: LF example program containing two reactions.

their trigger satisfied can be executed in parallel without hurting the RM’s promise of
determinism.
However, if desired, non-determinism can be introduced deliberately to reactor programs
via physical actions. They are designed to allow outside input (e.g. a button press) into
a reactor program. The key benefit is that, while physical actions may be scheduled non-
deterministically, the rest of the program retains the RM’s promise of determinism.

Lingua Franca, an implementation of the RM, is a coordination language that requires
writing the reaction logic in a specific programming language. All other RM components
and their relations are expressed in LF’s syntax. During the compilation process, this
code is transformed fully into the target language. The generated target code makes use
of a runtime library to facilitate the RM semantics. As of the time of writing, supported
LF target languages are: C, C++, Python, TypeScript, and Rust.

Every LF source file has to declare its target language. And each LF program has to
declare a main reactor, which represents the top-most reactor in the reactor topology
(i.e. it transitively contains all other reactors).
Take, for example, the LF program in Listing 2.3. First, it declares the program’s target
language: Rust. The main reactor called GreetingsAndFarewell contains two reactions
triggered on program startup and shutdown respectively. The body of reactions enclosed
by {= and =} is written in the target language. When executed, the program will print
‘Hello!’, as that is triggered by startup, as defined. Then the program has no further
events to process and initiates shutdown automatically. This triggers the reaction that
prints ‘Goodbye!’ and after that, finally, the program terminates.

2.2.1 Major language components

This section explains the major Lingua Franca language components.

14

1 target Rust;
2

3 reactor Square (x: f64(0.0)) {
4 state x: f64(x);
5

6 reaction (startup) {=
7 println!("The square has an area of {}.", self.x * self.x);
8 =}
9 }

10

11 main reactor Main {
12 square = new Square(x = 3.5);
13 }

Listing 2.4: Example of one reactor containing another in LF.

Reactors

Each reactor has a set of private state variables and a set of reactions. The internal state
variables of the reactor can be shared across reactions when their data dependencies are
declared appropriately. One reactor may contain several others.
For an example of reactor containment, see Listing 2.4. Here the reactor Main contains
Square. This reactor has one state variable denoting the side length of the square it
represents. And further, the internal state is used in the only reaction to print the
square’s area.

Reactions

Reactions take the general form

reaction(<triggers>) <sources> -> <effects> {= … =}.

Each block enclosed by < and > represent comma-separated lists of reactor components.
In detail they denote the following:

Triggers The components that, when present, trigger the reaction. The triggering
occurs if one or more of the listed triggers is present. A reaction requires at least
one trigger.

Sources The reactor components the reaction gets access to in a read-only form. Its
declaration is optional.

Effects The list of reactor components the reaction can write to. Its declaration is
optional, but if omitted, -> must be omitted as well.

15

Event sources

Event sources produce events that reactions may be triggered by. Previous examples,
like Listing 2.3, already introduced two special events: startup and shutdown. As their
name implies, these events are produced at program startup and shutdown respectively.
But LF contains other constructs that can serve as sources for events. Among them are
ports and actions.

Ports Ports are an important language construct for reactor communication. They
facilitate the only way for reactors to communicate with each other. A port is declared
as either input or output and associated with a specific reactor. A reactor has access to
the ports of the reactors it immediately contains2, but, crucially, nothing else. Accessible
ports can be connected—output to input. When a reaction writes to an output port, the
written data is propagated to the connected inputs logically simultaneously. This means
that reactions depending on such input as a trigger get executed at the same tag as the
reaction that originally wrote to the output. In order to prevent port connections from
blocking the advancing of logical time, port connections and the reactions that depend
on them and set them are forbidden from forming a cycle.

Actions Actions are exclusively for triggering reactions within their reactor. They
are scheduled during reaction execution and are split into logical and physical actions.
Logical actions are scheduled synchronously, whereas for physical actions the scheduling
is asynchronous. This allows the programmer to use physical actions to deliberately
introduce non-determinism into the program. For example, a physical action could be
used to trigger a reaction on user input. If a certain button is pressed, a LF program
could schedule a physical action that alerts all reactions depending on that action as a
trigger. But the asynchronicity is exclusive to the scheduled physical actions. Reactions
triggered by physical actions are executed synchronously.

Example

The example LF program in Listing 2.5 showcases all the introduced language compon-
ents. It computes the nth entry in the Fibonacci sequence, as given by seq_idx on line
40 which is a parameter of the main reactor Fibonacci. The main reactor contains two
further reactors. Adder takes in two summands and writes their sum to the reactor’s
output. And Holder holds the current intermediate step of the computation of the
Fibonacci sequence and further tracks how many computational steps remain to obtain
the result.
Holder uses a logical action to advance the sequence computation. When receiving the
next value in the sequence on input next_f, it adjusts its internal state with this new

2There is no such access through transitive containment.

16

1 target Rust;
2

3 reactor Adder {
4 input a: u64;
5 input b: u64;
6 output sum: u64;
7

8 reaction(a, b) -> sum {=
9 if ctx.is_present(a) && ctx.is_present(b) {

10 ctx.set(sum, ctx.get(a).unwrap() + ctx.get(b).unwrap());
11 }
12 =}
13 }
14

15 reactor Holder(rounds: usize(1)) {
16 state rounds: usize(rounds);
17 state f_n: u64(0);
18 state f_m: u64(1);
19 logical action next;
20 input next_f: u64;
21 output a: u64;
22 output b: u64;
23 output result: u64;
24

25 reaction(startup, next) -> a, b, result {=
26 if self.rounds > 0 {
27 ctx.set(a, self.f_n);
28 ctx.set(b, self.f_m);
29 self.rounds -= 1;
30 } else { ctx.set(result, self.f_n); }
31 =}
32

33 reaction(next_f) -> next {=
34 self.f_n = self.f_m;
35 self.f_m = ctx.get(next_f).unwrap();
36 ctx.schedule(next, Asap);
37 =}
38 }
39

40 main reactor Fibonacci(seq_idx: usize(1)) {
41 state seq_idx: usize(seq_idx);
42 holder = new Holder(rounds=seq_idx);
43 adder = new Adder();
44 holder.a -> adder.a;
45 holder.b -> adder.b;
46 adder.sum -> holder.next_f;
47

48 reaction(holder.result) {=
49 let result = ctx.get(holder__result).unwrap();
50 println!("In the Fibonacci sequence {} is at position {}.", result, self.seq_idx);
51 =}
52 }

Listing 2.5: A reactor program computing a number in the Fibonacci sequence. It
showcases multiple reactors, ports, port connections, and logical actions.

17

Fibonacci

Holder

12 L
next_f

a

b

result

Adder
a

b

sum

Figure 2.3: A Diagram illustrating the structure of the reactor program in Listing 2.5.
Reactors are represented by rounded quadrilaterals. Their reactions are rep-
resented by arrow-like shapes. If a reactor contains more than two reactions,
the numbers printed on top of the reactions represent their rank in the total
order of reactions within that reactor. The triangle shapes represent ac-
tions (L for logical). The circle in Holder represents the startup event. And
lastly, the arrowheads at the edges of reactors represent their input and out-
put ports.

value and schedules the logical action next. This then triggers the reaction depending on
it, which puts the last two values in the sequence on the output and awaits the next se-
quence value, until the result is reached. The main reactor composes Adder and Holder
so that Adder computes the next value for Holder. This is achieved by connecting the
right ports from these reactors. The example further demonstrates, how reactions can
directly depend on the output ports of contained reactors. This can be seen in the only
reaction of Fibonacci. How all of these components overall fit together is illustrated in
Figure 2.3.

2.2.2 Lingua Franca compiler

The Lingua Franca compiler (LFC) is the program that transforms a complete LF pro-
gram to the final executable. The form that these executables take, depends on the
target language of the LF sources. But for the purposes of this thesis, we will limit our
view to the compilation process for the Rust target.

LFC can broadly be divided into a frontend and a backend. The frontend is shared
among targets and has the task of parsing the LF sources into an abstract syntax tree
(AST) for further processing in the backend. In the backend, the specific code generator
for the target in question is invoked. These transform the reactor structure described in
LF to native constructs of the target language. The reaction bodies, which are already
written in the target language, are inserted by the generator. Here reactions and the

18

Figure 2.4: Illustration of the compilation process of LFC for the Rust target.

other reactor model constructs are composed with the runtime library. Ultimately, the
generator produces a complete Rust program, which is then handed over for compilation.
The compilation is managed by the Cargo utility, which provides package management
and compilation functionality. Cargo is invoked on the generated source, fetches its
dependencies and compiles it all to a single executable file.

2.3 Formalisation of the Reactor Model

The first formal description of the Reactor Model was offered in Reactors: A Determ-
inistic Model for Composable Reactive Systems [Loh+20], which was then refined in
[Loh20]. This section mostly follows what was laid out in those works and highlights
where LF diverges. Formal descriptions of the RM usually define mutations, constructs
similar to reactions that can alter the structure of reactors that contain them, but so far
Lingua Franca has not implemented them. For this reason, they will be omitted here.
Another such concept is reaction deadlines, which have not been implemented in the LF
Rust runtime. Thus it will be omitted as well.

2.3.1 Preliminaries

Most formalised components in this section will be described as tuples. Since the RM
heavily relies on components interacting with each other, like in the reference literature,
we define a shorthand for accessing individual tuple elements like so:

Definition 2.3.1. Let t = (a, b) be an instance of the tuple construct described by
(A,B). Then A also describes a mapping such that A(t) = a. The mapping B is defined
analogously.

The following definitions will make heavy use of two sets:

Identifiers (Σ) Used to uniquely refer to various components.

19

Values (V) Refers to the values used within and exchanged with other reactors. The
values are untyped. There is a special value denoting when values are absent,
ϵ ∈ V .

2.3.2 Time

A time instance in the RM is represented by a tag from the set G, where G = T×N. The
first part of a tag refers to a discrete-time value. The exact definition of T will depend
on the implementation. By convention, N is the set of natural numbers. It describes the
micro-step index to the time value it is associated with.

Definition 2.3.2 (Tag order). Elements of G are totally ordered lexicographically, i.e.

∀(t,m), (t′,m′) ∈ G : (t,m) < (t′,m′) ⇐⇒ (t < t′) ∨ (t = t′ ∧m < m′).

Definition 2.3.3 (Logical time). Logical time is a monotonically increasing sequence
of tags in G. When reactions execute at the same tag, they are said to be logically
simultaneous.

Definition 2.3.4 (Physical time). Physical time is a monotonically non-decreasing se-
quence of integer values obtained from a device for measuring time (e.g. a clock).

2.3.3 Components

Definition 2.3.5 (Events). An event e is a tuple e = (t, v, g) where

• t ∈ Σ is the event’s trigger,

• v ∈ V ,

• g ∈ G is the event’s assigned tag.

Definition 2.3.6 (Reactors). A reactor r is a tuple r = (I,O,A, S,N,R, P,G, {•, ⋄})
where

• I ⊆ Σ is the set of inputs,

• O ⊆ Σ is the set of outputs,

• A ⊆ A× {logical, physical} is the set of actions,

• S ⊆ Σ is the set of state variables,

• N is the set of reactions,

• R is the set of contained reactors,

20

• P : N → P is the priority function,

• G ⊆
∪

r∈R O(r)×
∪

r∈R I(r) is the topology graph,

• {•, ⋄} ⊆ Σ are the special triggers for startup and shutdown respectively.

All identifiers used in a reactor and its contained reactors are unique. P assigns an order
to the reactor’s reactions which is used for deterministically resolving competition over
resources when two reactions are triggered at the same tag. The order is defined by map-
ping reactions to P (defined below), the priority set. The topology graph G describes how
inputs and outputs of contained reactors are connected. When a value becomes available
on an output, it is automatically and logically simultaneously propagated downstream
across the edge in G to the designated input.

Definition 2.3.7 (Priority set P). The priority set is given by P = N+ ∪ {∗}, where
N+ = N \ 0. P has a partial order given by the order in N+, extended with the following
rule for ∗:

∗ ≤ ∗ ∧ ∀n ∈ N+ : n < ∗.

Reactions that do not access the reactor state are assigned priority ∗. Since those re-
actions definitionally do not compete for resources they do not need to be assigned a
priority. This means that reactions with priority ∗ are easily parallelizable.

There are some crucial differences between this formalisation and the implementation in
Lingua Franca:

• G encodes the port connections that a reactor can declare for its contained reactors’
ports. But in LF, port connections may also be declared from and to the reactor’s
own ports, which this formalisation does not account for.

• In this formalisation {•, ⋄} are not more concretely defined. With this, it would
be possible to have individual startup and shutdown triggers for each reactor. In
LF however, startup and shutdown are unique global triggers that are the same
for each reactor.

Definition 2.3.8 (Reactions). A reaction n is a tuple n = (D,T,B,D∨,H), where

• D ⊆ I(C(n)) ∪
∪

r∈R(C(n))O(r) is the set of dependencies,

• T ⊆ D ∪A(C(n)) ∪ {•, ⋄} is the set of triggers,

• B is the body of the reaction (i.e. the executable code of the reaction),

• D∨ ⊆ O(C(n)) ∪
∪

r∈R(C(n)) I(r) is the set of anti-dependencies,

• H ⊆ A(C(n)) is the set of schedulable actions.

C is the containment function for reactions.

21

Definition 2.3.9. The containment function C maps reactions to the reactors that
contain them. Let n be a reaction, then C(n) = r s.t. n ∈ N(r).

The sets D, T , and D∨ relate to the concept of triggers, sources, and effects for reactions
in LF as introduced in §2.2.1. Triggers in LF and T in this formalisation are equivalent.
The same is true of effects and D∨. But for sources, it is equivalent to D \ T .

2.3.4 API for reaction body

The following procedures are available in the body of reactions to affect the execution
of the reactor program.

currentTag Get the current logical time.

physicalTime Get the current physical time.

get Returns the value currently associated with the specified port or action from D.

set Binds the specified value to the specified port in D∨.

schedule Schedule a given action in H with a minimum delay of one micro-step.

requestStop Issue request to runtime for the reactor program to terminate.

2.3.5 Reaction precedence

In the same way that reactions within a reactor have a well-defined precedence through
P , the RM requires such an ordering on all reactions for execution precedence to ensure
determinism.

Definition 2.3.10. Let ≺ be the binary reaction precedence relation. For two reactions
n1, n2, n1 ≺ n2 (i.e. n1 is of higher precedence than n2) if n2 has a dependency on an
anti-dependency of n1. Additionally, for two reactions n3, n4 within the same reactor:

P (n3) < P (n4) =⇒ n3 ≺ n4

22

2.4 The Rust runtime for Lingua Franca

The Rust LF runtime library provides several critical components for reactor programs
written in Rust. A first working implementation was finalised during Clément Fournier’s
thesis work A Rust Backend for Lingua Franca [Fou21] in 20213.
The runtime includes the startup routine, the main event processing loop, and the event
scheduler. On top of that, it contains static routines (e.g. the connecting of ports) that
the LFC code generator will use in assembling the reactor program. When discussing
specificities of the implementation, it will be in reference to the version of Git commit
hash 98991f3.

2.4.1 Reaction precedence

The Rust runtime follows the routine outlined in [Loh+20, §3.6]. When the reactor
program starts up, it builds a dependency graph for reactions which is a representation
of the precedence relation. But since traversing a graph is too expensive at runtime, the
graph is transformed into a set of so-called levels.

Definition 2.4.1 (Level [Fou21]). Given a directed acyclic graph (DAG), the level of a
vertex is the length of the longest path from any root of the graph to that vertex.

Since the level sets of reactions are directly derived from the dependency graph, reactions
of different levels may have a dependency between them, but reactions of the same level
are by construction independent [Fou21, p. 39].

2.4.2 Main event loop

The Rust runtime operates on a loop where it takes the closest upcoming reactions from
the event queue, processes them, stores their effects, and then repeats until the shutdown
is initiated. Physical actions complicate this simple loop, so for explanation purposes
they are omitted here.

Event and reaction queue

Crucially, the runtime’s event queue does not contain events, but instead, it stores
the reactions triggered by events for a specific tag in lists sorted by their level. On
each iteration, the upcoming event’s triggered reactions are removed from the queue
and given to the process_tag routine, which works similarly to how it is defined in
[Loh+20, p. 17].
The reaction queue stores triggered reactions for the tag that is currently being processed.

3The current implementation can be found at https://github.com/lf-lang/reactor-rs.

23

https://github.com/lf-lang/reactor-rs

Figure 2.5: UML state machine diagram of the main event loop.

These reactions will exclusively be the ones triggered by dependencies on ports since data
on outputs is propagated to connected inputs instantaneously w.r.t. logical time. Since
actions are scheduled with minimally one micro-step of delay, those reactions exclusively
triggered by them will not be in the reaction queue.

Processing a tag

When process_tag is invoked with the initial reactions for the tag, the routine extracts
the reactions of the lowest level (i.e. with the highest precedence). These are then
executed one after the other, or, if parallelism is desired, executed in parallel. Sched-
uled actions are already added to the event queue during execution, while immediately
triggered reactions are merged into the reaction queue after the processing of a level
finishes. And then the processing loop restarts at extracting the reactions of the lowest
level on the reaction queue. This is repeated until the reaction queue is fully drained.
Figure 2.5 illustrates the whole scheduler main event loop, including the process_tag
routine.

2.4.3 Reaction API

The Rust LF runtime provides the API as defined in §2.3.4 in reaction bodies. It is
provided through the ReactionCtx object, available in reaction bodies through the ctx
variable. It also provides additional functionality (e.g. how much time has elapsed since
execution start). Details are documented in the runtime’s API documentation [Rusb].

24

2.4.4 Runtime metrics

As measured with the code statistics tool Tokei45, the runtime consists of 5879 lines of
code, of which 826 are comments and 849 are blanks. But since Rust allows for easy usage
of dependencies with its package manager Cargo, the amount of code actually compiled
is much greater. Figure 2.7 shows the dependency graph of the Rust LF runtime.

Runtime performance

The Rust runtime performs well compared to other LF targets. Of primary interest
is the comparison with C and C++, since they also are ahead-of-time compiled sys-
tems programming languages. Against them, the Rust target performs competitively
in benchmarks from LF’s benchmarking suite6, as can be seen in Figure 2.67. This
performance is the product of the optimisation work detailed in [Fou21, §5.1]. Some of
these optimisations rely on using Unsafe Rust.

Fork Join (throughput) NQueens first N solutions Radix Sort Thread Ring Trapezoidal Approximation

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

0

200

400

600

0

20

40

60

0

200

400

600

0

100

200

0

50

100

150

threads

m
ed

ia
n

tim
e

in
 m

s

target lf−c lf−cpp lf−rust

Figure 2.6: Five benchmark result comparisons between LF’s C, C++, and Rust targets.
The Fork Join (throughput) benchmark highlights a performance problem
within the Rust runtime, especially with parallel execution. But otherwise,
the performance of the Rust target is very competitive or significantly better
than those of C and C++.

4The tool is available from https://github.com/XAMPPRocky/tokei.
5The version used is 12.1.2.
6The benchmarking suite is available at https://github.com/lf-lang/benchmarks-lingua-franca.
7Reproducibility: Benchmarks performed on a machine with an Intel(R) Core(TM) i9-10900K CPU

with 32 GB of RAM. The version of LF is the one identified by Git commit 7d52516 and for the
benchmarking suite it is dfba277.

25

https://github.com/XAMPPRocky/tokei
https://github.com/lf-lang/benchmarks-lingua-franca

Figure 2.7: Full dependency graph of the Rust LF runtime. The dependencies purely
used for parallel execution are coloured purple.

26

3 Rust software verification

This chapter introduces several state-of-the-art verification tools for Rust software: Kani,
Prusti, and Creusot. We will put extra emphasis on Creusot since it is the tool we elected
to be the most promising at the start of this work. Further, we will explain how Rust’s
ownership model can help in verifying pointer-based programs.

3.1 State-of-the-art verification tools

Attempts at verifying Rust software are almost as old as the language itself. Initial
work used the LLVM IR of the compilation process as a foundation (e.g. [LAL18] and
[BHR18]), for which tooling was already available. Over the years academic interest in
Rust surged and as a result, approaches to verifying Rust software grew more sophist-
icated. State-of-the-art verification tools all use MIR, the intermediate representation
used before lowering to LLVM IR. This is because MIR preserves high-level abstractions,
including Rust’s unique ownership semantics. For details on Rust’s compilation process
see §2.1.3.

To illustrate the functionality of each presented tool, we will use the running example
given in Listing 3.1. The property we wish to verify is the one outlined in the comment
above the function: assuming the provided vector is sorted, it remains sorted after calling
insert_in_order(). We will outline how this property can be specified with each tool
in the following subsections.

3.1.1 Kani

Kani is a model checker for Rust programs. The tool is publicly developed as open source
software1 at Amazon Web Services (AWS). It has been used to verify properties of AWS’s
Firecracker virtual machine management solution [Van+22], for example. Under the
hood, Kani employs the CBMC model checker [CKL04] for the C programming language,
by converting MIR to C with goto-statements. Further, it extracts information about
traits from the Rust program, to gain additional function pointer restrictions for the
generated C code to reduce verification time [Van+22, §3.3]. By default, Kani checks for
memory unsoundness issues (e.g. out-of-bounds memory access), but the user may add

1The project can be found at https://github.com/model-checking/kani.

27

https://github.com/model-checking/kani

1 /// Insert item into v. This preserves ordering of elements,
2 /// assuming they were ordered in the first place.
3 fn insert_in_order<T: Ord>(v: &mut Vec<T>, item: T) {
4 let mut insert_idx = 0;
5 if v.last() <= Some(&item) {
6 insert_idx = v.len();
7 } else {
8 for idx in 0..v.len() {
9 if v[idx] > item {

10 insert_idx = idx;
11 break;
12 }
13 }
14 }
15 v.insert(insert_idx, item);
16 }

Listing 3.1: This is an insert function over the generic type T. We provide the vector
v as a mutable reference to be inserted into and an item for insertion. The trait Ord
which T implements, requires that there is a total order over the instances of the type.
This allows us to compare the ordering of elements despite T being generic. The function
itself finds an appropriate insertion index (insert_idx), under the assumption that the
vector is sorted: if a last element in v exists and is greater than the item we want to
insert, we insert it at the end, otherwise, we linearly search the vector for the right point.

28

Figure 3.1: An illustration of Kani’s verification pipeline.

additional arbitrary properties to verify in a Kani proof. Currently, the model checker
does not support any of Rust’s concurrency constructs [Van+22, §3.1.1].

Considering the running example, Listing 3.2 shows how the order-preserving property
can be verified. Notice how a function is_sorted() was added to verify the property
before and after. Notice also, how the actual proof code in verify() is a separate
function which applies insert_in_order() to a vector of u64 integer types. It does not
verify the generic case in which the function is defined. This is because Kani is a model
checker. As defined by Baier and Katoen:

Model checking is an automated technique that, given a finite-state model of
a system and a formal property, systematically checks whether this property
holds for (a given state in) that model. [BK08, p. 11]

So Kani needs an explicit program to operate on—it cannot abstractly reason about
code. We might inductively reason that since the ordering property holds for integer
types like u64, it will probably also hold for other types with a total order. But Kani
cannot do this reasoning for us, it can only tell us that the checked properties are valid
in this particular instance. Further, our inductive reasoning may not prove true. There
are many reasons why insert_in_order() could have the order-preserving property for
u64, but not for other types. What if the function relied on an assumption about how
many different values the generic type can have?

There is another problem. Notice how in verify() the size of the generated vector v
is set as variable X. When running the Kani tool this would have to be substituted
with a fixed number. Then kani::any() will produce slices of that size or lesser, filled
with arbitrary instances of u64. Then why not set X to the maximum size of a vector?
Because this would produce a state space so large, that verification on contemporary
hardware would be impossible. So we can only verify the property over a subset of the
possible input. But even with these restrictions, we run into issues quickly. If X = 0,
there is one possible value for v: the empty vector. If X = 1 there are 264 possible values
for v, because that is how many different valuations of u64 there are. The problem gets
exponentially worse from here. Table 3.1 shows the exponential increase in verification

29

1 fn is_sorted<T: Ord>(slice: &[T]) -> bool {
2 for idx in 1..slice.len() {
3 if slice[idx - 1] > slice[idx] {
4 return false;
5 }
6 }
7 true
8 }
9

10 #[cfg(kani)]
11 #[kani::proof]
12 fn verify() {
13 let mut v = kani::any::<[u64; X]>().to_vec();
14 kani::assume(is_sorted(&v));
15 let item: u64 = kani::any();
16 insert_in_order(&mut v, item);
17 assert!(is_sorted(&v));
18 }

Listing 3.2: The Kani proof for the function from Listing 3.1 (omitted here).
is_sorted() defines the property we wish to check before calling the function and after.
The proof itself is in verify(). kani::any() is used to produce an arbitrary instance of
a given type. For example, we use it to produce an arbitrary unsigned 64-bit integer for
item. And we use it to create arbitrary slices of that type up to a given length (written
as X) and convert them to a vector for v. kani::assume() tells the model checker to
discard all states in which the contained property is not satisfied. Finally, Kani over-
writes the standard assert!() macro, to verify that the contained property is satisfied
for every state.

30

X Kani verification time in seconds
0 0.38
1 0.88
5 6.55
10 24.21
20 102.49
30 257.09

Table 3.1: The verification times on the running example with varying X. The verification
times blow up exponentially very quickly.

time with linear increases of X2. Verification of the order-preserving property for vectors
of any size is not realistic with Kani.

Admittedly, our running example is particularly ill-suited for verification with Kani. But
it will serve well in highlighting the differences it has with Prusti and Creusot.

3.1.2 Prusti

Prusti [Ast+22] is a deductive verification tool for Rust software. Under the hood, it
utilises the Viper verification platform [MSS16]. Instead of solely relying on the Rust
compiler for verifying the ownership model in Rust code, Prusti models Rust’s memory
model separately for verification. By default, Prusti checks for the unreachability of
panics and the absence of integer overflows in Rust code. Additionally, custom prop-
erties may be verified by annotating code with, for example, pre- and postconditions.
However, the project still appears to be quite immature. Several Rust language features
used in the running example, like the Vec type and for-loops (due to their reliance on
iterators) are at the time of writing not supported by Prusti. Even with adjustments
to the running example to work around these issues, no verification of the absence of
panics and integer overflows was possible due to the tool crashing.

This is unfortunate because Prusti’s approach of deductive verification is much more
promising for the running example. Instead of model checking, where the program is
modelled as a set of states and transitions from one to the other, deductive verification
formally abstracts the programs so that we can deductively reason about their func-
tionality. Since the reasoning is over an abstract model, instead of concrete program
states, the size of the vector in the running example or the generic definition of the
function is not a problem like it is with Kani. If Prusti was more mature, we would
be able to directly annotate the running example’s function with an expression of the
order-preserving property and verify its correctness through Viper.

2The numbers were obtained by running Kani version 0.22.0 on a computer with an Intel(R) Core(TM)
i9-10900K CPU and 32 GB of RAM.

31

Figure 3.2: An illustration of Creusot’s verification pipeline.

3.1.3 Creusot

For an in-depth description of Creusot’s features, see §3.3.

Creusot [DJM22] is a deductive verification tool for Rust software. It is developed
publicly as free software3. Properties can be defined in Rust code through annotations
and special logic functions. The tool transforms MIR to WhyML, the ML dialect of
the Why3 proof environment [Bob+11]. For verification, the generated WhyML code is
loaded into Why3, where individual proofs are attempted to be verified through external
SMT solvers like Alt-Ergo [Con+18], CVC4 [Bar+11], and Z3 [MB08].
By default, specifications generated by Creusot check for crash freedom of the software it
was derived from. However, at the time of writing, the tool does not support concurrent
or unsafe Rust code. One of Creusot’s major achievements that underscore its utility is
CreuSAT, a verified SAT solver written in Rust [Sko22].

Listing 3.3 gives the specification of the running example in Creusot. Note how the
order-preserving property was expressed in a precondition and postcondition in lines
3 and 4. The precondition requires that v is sorted and the postcondition ensures
that v is still sorted at the end of the function. Note further, how this specification
requires Creusot-specific trait constraints. The last annotation is the invariant on the
for-loop. The annotation shows off several features of Pearlite, Creusot’s language for
logic expressions, like implication and universal quantification. The invariant is crucial
for verification because it specifies that up until the current index in the iteration, all
items before that point in v are less than or equal to item. produced is an internal
variable Creusot provides when going through an iterator in a for-loop. It holds a
sequence of all produced values of the iterator up until that point in the iteration. Lastly,
in the first line, we import everything from Creusot’s contracts library. It contains the
specifications for Creusot-internal types and for standard library contents. For example,
the specification of Vec::insert(), which is used on the last line of the function can be
seen in Listing 3.4.

3The project can be found at https://github.com/xldenis/creusot.

32

https://github.com/xldenis/creusot

1 use creusot_contracts::*;
2

3 #[requires(v.deep_model().sorted())]
4 #[ensures((^v).deep_model().sorted())]
5 fn insert_in_order<T>(v: &mut Vec<T>, item: T)
6 where
7 T: Ord + DeepModel,
8 T::DeepModelTy: OrdLogic,
9 {

10 let mut insert_idx = 0;
11 if v.last() <= Some(&item) {
12 insert_idx = v.len();
13 } else {
14 #[invariant(prev_leq, forall<i: Int> i >= 0 && i < produced.len() ==>
15 v.deep_model()[i] <= item.deep_model())]
16 for idx in 0..v.len() {
17 if v[idx] > item {
18 insert_idx = idx;
19 break;
20 }
21 }
22 }
23 v.insert(insert_idx, item);
24 }

Listing 3.3: The Creusot specification for the function from Listing 3.1. This version
imports Creusot’s contracts library at the top. The new annotations contain the spe-
cification for the function. requires() describes a precondition, whereas ensures() is a
postcondition. invariant() contains the invariant for the loop below. It is expected to
be true at every iteration start of the loop. Lastly, there are additional trait constraints
on T which are specific to Creusot.

1 #[ensures((@^self).len() == (@self).len() + 1)]
2 #[ensures(forall<i: Int> 0 <= i && i < @index ==>
3 (@^self)[i] == (@self)[i])]
4 #[ensures((@^self)[@index] == element)]
5 #[ensures(forall<i: Int> @index < i && i < (@^self).len() ==>
6 (@^self)[i] == (@self)[i - 1])]
7 fn insert(&mut self, index: usize, element: T);

Listing 3.4: The Creusot specification for Vec::insert().

33

When running Creusot on this example, it produces WhyML output combining the
specification and the translated code. This file can then be loaded into Why3. And
there running the verification process at the highest level of automation produces a
proof for this specification.

3.2 Ownership semantics and verification

The core abstraction that is commonly used today for verifying programs that use point-
ers is separation logic. The memory of the program and its actions on it (allocation,
deallocation, and read/write access) are modelled separately. One of the foundational
publications on separation logic by O’Hearn et al. summarises the problem it solves:

Pointers have been a persistent trouble area in program proving. The main
difficulty is not one of finding an in-principle adequate axiomatization of
pointer operations; rather there is a mismatch between simple intuitions
about the way that pointer operations work and the complexity of their ax-
iomatic treatments. For example, pointer assignment is operationally simple,
but when there is aliasing, arising from several pointers to a given cell, then
an alteration to that cell may affect the values of many syntactically unre-
lated expressions. [ORY01]

Crucially, with Rust’s ownership semantics, this problem does not arise since aliasing and
data mutation are mutually exclusive. This makes the separation logic approach super-
fluous for Rust. RustHorn [MTK21] describes a technique for transforming a safe subset
of Rust into constrained Horn clauses, a fragment of first-order logic. This approach
supersedes the requirement of separately modelling the program’s memory. Instead, it
represents a mutable reference &mut ma as a tuple (a, a◦), where a represents the current
value of *ma (ma dereferenced) and a◦ represents the future value of *ma at the moment
the reference dies. Having a◦ in this abstraction is important because when the reference
dies, the underlying data may be aliased again. Later, RustHornBelt [Mat+22] utilised
previous work, RustBelt [Jun+17], to semantically prove the validity of the RustHorn
approach to verifying Rust programs.
Creusot, presented in §3.1.3, utilises the insight from RustHorn for its transformation
from MIR to WhyML. Within its annotations, the user can refer to the final value of a
mutable reference &mut ma through the final operator ^ma.

One limiting factor of the RustHorn approach is that the transformation only works for
Safe Rust. While Unsafe Rust does not disable Rust’s ownership semantics outright,
allowing for the dereferencing of pointers makes simultaneous mutation and aliasing of
data possible. So separation logic may still be required for Unsafe Rust.

34

3.3 Verification with Creusot

This section gives a practical overview of how to verify Rust software with Creusot. For
a surface-level overview see §3.1.3.

3.3.1 Verification procedure

Given a Rust program that is already annotated for Creusot, how is one to proceed
with proving the specification? To illustrate this, we will reuse the running example
in Listing 3.3. First, it is important to understand that Creusot operates on complete
Rust projects, that is, complete Rust libraries or applications. Typically Rust projects
are built to be used with Cargo, the official building and package management tool. To
work with this status quo, Creusot provides an extension for Cargo to conveniently use
the tool for Rust projects.

The file structure of the finished project is as follows:
insert-creusot

Cargo.toml
prelude

prelude.mlw
seq_ext.mlw

rust-toolchain
src

lib.rs

The file lib.rs contains the code from Listing 3.3. But before compiling the project, it
has to be set up appropriately. Remember that we used Creusot’s contracts library in
the running example. Cargo has to know where to fetch this external dependency from.
To do this we add the following to the project’s Cargo.toml file under the dependency
section:

8 [dependencies]
9 creusot-contracts = { git = "https://github.com/xldenis/creusot" }

Typically, libraries are fetched from the central repository hosted at crates.io, but since
Creusot is experimental software, it is only available from GitHub directly. Further, we
need to provide a way of enabling this dependency’s contracts feature. Conventionally,
this is done by appending the following to Cargo.toml.

11 [features]
12 default = []
13 contracts = ["creusot-contracts/contracts"]

This defines two feature sets for our project: default and contracts, which in turn
enables the contracts feature for creusot-contracts. This is because the contracts

35

feature is necessary to generate the WhyML specification from the project with Creusot.
The project would not regularly compile with this feature enabled. So the default fea-
ture set allows for regular compilation of the project, whereas contracts is used for
verification. Lastly, the Rust compiler has to be set to a specific version. This version
is the same one that Creusot was compiled with. Conventionally, this information is
put into the rust-toolchain file in the project root where channel is set to the desired
version:

1 [toolchain]
2 channel = "nightly-2023-01-15"
3 components = ["rustfmt", "rustc-dev", "llvm-tools-preview"]

When Cargo is invoked, this will download the appropriate version of the Rust compiler
and adjacent tooling, if not already present. With this, the project is ready for the next
step.

Generating the WhyML specification

When the project is set up appropriately, we invoke Creusot as follows:

1 cargo creusot -- --features=contracts

Note that we select the contracts feature for the previously explained reason. If the
process exits successfully, one finds the generated specification in the target/debug/
subdirectory with the file extension .mlcfg.

Loading the specification into Why3

The generated file is ready to be loaded into Why3 for proving. In addition to this file,
we also have to load Creusot’s WhyML prelude. This can be found in Creusot’s main
repository on GitHub. Now with both the generated file and the prelude dependencies,
we can load them into Why3 like so:

1 why3 ide -L <path to prelude>/prelude target/debug/*.mlcfg

Proving in Why3

On opening the Why3 IDE, this is what we see:

36

Most of the space is taken up by the contents of the loaded WhyML file. The sidebar
on the left contains a root node for this file, and within, nodes for the individual proof
goals Why3 extracted from the specification. Since our running example is simple, it
contains only one goal node. By double-clicking on this node Why3 opens the original
lib.rs file with coloured spans. Green represents statements that are assumed to be
true, and yellow statements for which the validity is the goal to verify.

Now we want to move on and prove this one goal node. Why3 offers four different levels
of automating the proving process. The levels differ in the configured timeout for the
external SMT solvers and if solvers produce inconclusive output, whether goal nodes

37

should be split up into several smaller ones. A comparison of Why3’s levels is found in
Table 3.2. For our purposes, the highest level, 3, is appropriate. To select it we right-

Auto level Timeout Auto-splitting
0 short
1 long
2 short ✓
3 long ✓

Table 3.2: Overview of Why3’s auto levels comparing prover timeout and if after the
timeout is reached, the goal is split and proving is attempted on the subgoals.
This behaviour is described in [Why22, p. 68].

click the goal node and select ‘Auto level 3’ from the context menu. Eventually, the
root icon will turn green, indicating that the verification was a success4. If we expand
the root node again, we can see that the SMT solvers failed to produce a conclusive
result for the initial goal node. But since we selected ‘Auto level 3’, Why3 proceeded
to automatically split the goal into ten sub-goals. And through repeated application of
this procedure, the original goal was verified.

3.3.2 Writing Creusot specifications

At the time of writing, Creusot does not have comprehensive or complete documentation
of its features. This section documents features that will be important for understanding
the presented work. It does not aim to be exhaustive. Information is assembled from
[Sko22], [DJM22], and [DJ22].

4For the meaning of node icons see Help>Legend from the main menu.

38

Pearlite

Pearlite is Creusot’s specification language. It adds logic constructs important for writing
specifications but remains syntactically similar to Rust.

Logic constructs Creusot features familiar logic constructs, like implication and
quantifiers. An implication like a =⇒ b is written as a ==> b. Quantifiers are boolean
statements for an instance t of some Rust type T. They are followed by another boolean
statement (stmt) using t. The full statement is written as quantifier<t: T> stmt,
where quantifier is replaced with forall and exists for universal and existential
quantification respectively.

Final operator The final operator brings the core insight of RustHorn to Pearlite.
By prefixing a variable that represents a mutable reference with the final operator ^,
it allows for reasoning about the referenced value at the time the reference dies. For
example, this is how the running example in Listing 3.3 allows for specifying the value
of *v on function exit since that is also the moment when v dies.

Special variables In specific contexts, Creusot exposes special variables to make the
writing of specifications more convenient. The result variable is available when writing
annotations for functions. It refers to the value the function returns. And the produced
variable is available when writing invariant annotations for for-loops. In Rust a for-
loop is always derived from an iterator, and produced holds the sequence of values that
were already produced by the iterator. This is how the invariant for the running example
in Listing 3.3 can refer to its length via produced.len() to restrict i. For details see
[DJ22, §2.3].

Function purity

Regular Rust functions may not be called from within Pearlite. To call functions they
have to be logically pure (i.e. free of side effects). Such functions are declared with the
#[logic] annotation. Within, the pearlite!-macro may be used to write expressions
in Pearlite. If such a logic function is boolean, it can also be declared as a #[predicate].
For example, instead of relying on Creusot’s internal sorted predicated, we could define
our own like in Listing 3.5. Note how we use the function Seq::len() within the
pearlite!-block, which is only possible because it is a logic function, too.

Assertions

Standard Rust assert! and debug_assert! statements get converted to proof goals
by Creusot. Further, Creusot offers the additional proof_assert!-macro. It functions

39

1 #[predicate]
2 fn is_sorted<T: OrdLogic>(seq: Seq<T>) {
3 pearlite! {
4 forall<m: Int, n: Int> m >= 0 && n >= 0 &&
5 m < seq.len() && m < n ==>
6 seq[m] <= seq[n]
7 }
8 }

Listing 3.5: A custom Creusot predicate for checking if a Seq<T> is sorted.

similarly to assert! but explicitly exists for verification purposes. Statements inside are
written in Pearlite. The assertion is not checked if the program is regularly compiled.

Annotations

• #[requires()] is a precondition for a function.

• #[ensures()] is a postcondition for a function.

• #[maintains()] is syntactic sugar that is converted into the same pre- and post-
conditions for a function.

• #[invariant(name, stmt)] is an invariant that holds for each step of a loop
(for, while, and loop). Each invariant annotation requires a name. Every loop
requires such an annotation, even if stmt is a tautology.

• #[trusted] code is not checked by Creusot. Other annotations for the code are
assumed to be valid. For example, this feature can be used to write specifications
for unsafe Rust code, which Creusot does not otherwise support.

Traits

Creusot heavily utilises Rust’s trait system to define properties of types.

Model The idea of models in Creusot is to have an abstraction from existing types
that might contain additional complexity that is not required for verification. Creusot
distinguishes between shallow and deep models. A shallow model applies the abstraction
only to the type itself, whereas a deep model applies the abstraction recursively to
contained types. Writing specifications using shallow models can be simpler because it
doesn’t require that the contained type provides a model as well. Deep models are for
reasoning about the contained data. Listing 3.6 shows how models are defined as traits.
Importantly, the model traits require a model type which the struct implementing the

40

1 pub trait ShallowModel {
2 type ShallowModelTy;
3 #[logic]
4 fn shallow_model(self) -> Self::ShallowModelTy;
5 }
6

7 pub trait DeepModel {
8 type DeepModelTy;
9 #[logic]

10 fn deep_model(self) -> Self::DeepModelTy;
11 }

Listing 3.6: The definition of the model traits in Creusot.

trait is then turned into when abstracted into a model. For example, for Vec<T>, the
shallow model type is Seq<T> and the deep model type is Seq<T::DeepModelTy>. Here
Seq is Creusot’s abstraction for sequences in WhyML. Unlike Vec, Seq does not track
allocation information, which is of little interest for verification. Pearlite’s @-operator is
syntactic sugar for calling shallow_model().

OrdLogic The OrdLogic trait can be seen as an extension of Rust’s standard Ord trait,
which is used for defining total orders on types. OrdLogic gives additional properties
of the ordering relation. It is reflexive, transitive, and antisymmetric. When doing
comparisons of order with Pearlite, it is required that the compared type implements
OrdLogic.

Trait extensions Some traits require Creusot-specific extensions of the same name
but within Creusot’s namespace. One example of this is the Default trait. Standard
Default provides a default value for types implementing it. Creusot’s extension also
requires the definition of a predicate Default::is_default(). The specification for
Default::default() uses it as follows:

1 #[ensures(result.is_default())]
2 fn default() -> Self;

Another such example is the Iterator trait. It requires that the Iterator::completed()
predicate is implemented among other functions. It returns true if the iterator is ex-
hausted and will not return any more items.

41

3.4 Runtime verification considerations

This section discusses in broad strokes how verifying the Rust LF runtime with Creusot
was approached, including a summary of why Creusot was chosen from the previously
presented tools.

3.4.1 Why Creusot

While there is no publicly available case study in verification work for existing medium-
complexity Rust software, Creusot appears to be the best choice to make the attempt
out of the tools presented in §3.1. Generally, Prusti appears to be too immature for
the task, which leaves Creusot and Kani. Creusot’s lack of support for Unsafe Rust
and concurrency is certainly a limiting factor. Lack of support for Unsafe Rust less so,
because the LF Rust runtime only has very few unsafe statements in its source. The lack
of support for concurrency is a greater concern since deterministic concurrency is one of
the unique properties of the Reactor Model, however, Kani does not support concurrency
either. Another significant factor is that CreuSAT showcases Creusot’s capability to work
with Rust software projects of comparable size to the LF Rust runtime. Presumably,
Kani is similarly battle-tested at AWS. The introductory publication on the tool does
mention it being used to verify parts of Firecracker, AWS’ virtual machine management
tool, however, this work is not public. Additionally, Kani being a model checker, it
does not scale well with custom properties one would wish to verify. Further, Kani can
only reason about concrete programs, which is problematic for verifying a runtime in
the abstract. Contrast this with Creusot, which is capable of abstract reasoning about
Rust software through deductive verification. Not only does the verification of custom
properties scale much better with this approach, it means that verified properties hold
for every reactor program using the runtime, not just a singular instance.

3.4.2 Using Creusot

Due to some of Creusot’s limitations, this work can only verify a subset of the Rust
LF runtime. The lack of support for concurrency means that verification work can
only be done on the runtime with the parallel-runtime feature disabled. But this
also means that physical actions cannot be verified either, since those are scheduled on
separate threads. Another limitation of Creusot is the lack of support for Unsafe Rust.
This means that the few optimizations that use unsafe code will have to be reverted for
verification.
Regarding the proofs themselves, when the generated WhyML is loaded into Why3, they
should verify at most on auto level 3. This is because it makes the proofs reproducible
from scratch, but without the complication of needing additional manual input.

42

3.4.3 Defining correctness properties

Before the verification work, the to-be-verified properties have to be laid out clearly.
The ideal way of formulating the correctness properties would be similar to how the
Creusot authors specified and verified iterators in Rust in [DJ22]. This would require
defining a transition relation for the runtime state. While the published literature on
Lingua Franca does define how the runtime should process events and triggers, there
is no formal definition of the runtime state from which correctness properties could be
derived. So this work will have to present its own encoding of the state of a reactor
program, with which one can formulate properties as logical expressions. These would
then easily translate into similar expressions in Pearlite.

43

4 Properties of a correct runtime

This section presents several correctness criteria for the LF Rust runtime. Some of
these properties will be general and applicable to other implementations and others
will be highly specific to the Rust implementation. Every property is accompanied
by an explanation of why the property is desirable and important for the runtime’s
correctness.

4.1 Termination

Termination of reactor programs is not necessarily a desired property. For example,
a reactor program that acts as a server should, ideally, be able to run for indefinite
amounts of time. This would mean that within the runtime the main event loop never
terminates. However, that individual iterations of the loop terminate is a desirable
property and important for the correctness of the runtime. If an individual iteration of
the main event loop does not terminate, it would mean, that events are not processed
by the runtime. And even if the loop is implemented perfectly, it could still be that the
body of an invoked reaction does not terminate. These considerations lead to the first
correctness property: assuming that the invoked reaction bodies within the main event
loop terminate, the individual iteration of the loop terminates also.

4.2 Crash freedom

Crashes are a generally undesired occurrence for programming platforms like Lingua
Franca. The programmer, of course, may still introduce crashes into the program, but
the foundations like the runtime should not crash on their own. Since programmers
generally interact with the programming environment through abstractions, only a few
will have a holistic understanding of the full functionality of their program. Thus crashes
not caused by the programmer’s code would be unanticipated. This could at worst lead
to security problems where the deliberate crashing of the program could be exploited
to facilitate a denial of service attack. Rust’s memory safety already prevents certain
classes of bugs that are a common cause of crashes in programming languages like C,
but certain APIs may still deliberately trigger a crash on certain input and Rust’s safety
guarantees are significantly relaxed in Unsafe Rust. This leads to the second correctness
property: the runtime does not cause crashes.

44

4.3 Correctness of VecMap

VecMap is the only custom generic data type implementation within the runtime’s code-
base. It is a simple map implementation that stores key-value pairs and allows data to
be retrieved by the associated key. The data is tightly packed in memory by using Rust’s
standard Vec type underneath. To minimise key lookup time, the key-value pairs are
retained in sorted order by their key. This data type is used in multiple places across
the code base:

• during initialisation when building the dependency graph,

• when storing the values scheduled for a specific action and tag,

• when storing the triggered reactions for a tag in the event queue (grouped by level).

So the correct implementation of this type is vital for the correct functioning of the
runtime. And while the runtime does depend on similar other data types as external
dependencies like index_vec and smallvec, these are very popular Rust project depend-
encies1. While popularity does not ensure correct implementation, it is reasonable to
be much more confident about the correctness of their implementation, with many Rust
projects choosing to use them.
Laying out concrete correctness criteria for VecMap is hard, because the data structure
has an extensive API. Ideally, it is possible to prove that each of VecMap’s functions
satisfies the contract described in their documentation. But there is one invariant they
all rely on: key-value pairs are stored in sorted order of their keys. This is because item
retrieval uses binary search that assumes items are correctly ordered. If that assumption
is not true, binary search will not work correctly. This results in the third correctness
property: as long as an instance of VecMap exists, its stored items are sorted in key
order.

4.4 Formal properties

The previously expressed properties are hard to express formally. This section presents
properties expressed in first-order logic. These properties are defined over the execution
of the main event loop (described in §2.4.2). It makes up the biggest amount of code that
is executed consecutively, without interruption from reaction bodies or code from the
code generator. Thus it is an attractive target over which to define runtime correctness
properties.

1As of the 30th of January 2023, index_vec has 57 thousand downloads on crates.io and smallvec
has 111 million.

45

https://crates.io/

4.4.1 Reactor program state

To be able to define formal properties over the execution of reactor programs, a formal-
isation of the state of reactor programs is needed. This state is made up of the runtime’s
state, plus the description of the reactor program.

Definition 4.4.1. A reactor program’s state is a tuple ξ = (R,R0, N,≺, g,V, QE , QR, TR)
where

• R is the set of reactors of the program,

• R0 ∈ R is the top-level reactor,

• N is the set of reactions of the program,

• ≺ is the partial order of reactions in N ,

• g ∈ G is the current logical time,

• V : Σ −→ V is the valuation mapping,

• QE is the event queue (set),

• QR is the reaction queue (set),

• TR ∈ N×G×N is the executed reactions trace.

Definition 4.4.2. The set Ξ is the set of all reactor program states.

The static information about the program found in R, R0, N , and ≺ is highly redund-
ant. Theoretically, these sets could all be derived from just R0. However, making the
information redundantly available like this simplifies the writing of properties. V maps
the identifier of a reactor component, like input/output or state variable to its current
value. While QE and QR are called queues, this is to describe their role in this represent-
ation and the wider literature, not their functionality. They are sets in this abstraction.
Finally, TR is a construction that is absent in the LF runtime, but important for the
formal definition of correctness properties. It contains every executed reaction together
with the logical time it was executed at. But since logically simultaneously observed
reactions are in practice processed sequentially, TR additionally stores a constantly in-
creasing index for each reaction.

The last thing needed for describing formal properties is a transition relation from one
reactor state to the other.

Definition 4.4.3. ⇓ : Ξ −→ Ξ is the reaction execution relation, where the execution of
a reaction according to RM semantics leads to the resulting reactor program state.

46

Since reactions are the atomic computational components of the RM, using their exe-
cution as the basis for defining distinct reactor program states makes sense. A proper
formal definition of ⇓ is beyond the scope of this work.

Definition 4.4.4. ⇓+: Ξ −→ Ξ is the transitive closure of ⇓, i.e.

∀ξ, ξ′ ∈ Ξ: ξ ⇓ ξ′ =⇒ ξ ⇓+ ξ′

and
∀ξ, ξ′, ξ′′ ∈ Ξ: ξ ⇓ ξ′ ∧ ξ′ ⇓+ ξ′′ =⇒ ξ ⇓+ ξ′′.

With these definitions, it is now possible to define correctness criteria.

4.4.2 Constant program specification

The specification of a reactor program stays constant during execution. This may not
be true once mutations are implemented, but since LF does not implement them, this is
of no concern. The specification is as follows:

∀ξ, ξ′ ∈ Ξ: ξ ⇓+ ξ′ =⇒ R(ξ) = R(ξ′) ∧R0(ξ) = R0(ξ
′) ∧N(ξ) = N(ξ′)∧ ≺ (ξ) =≺ (ξ′)

4.4.3 Linear time

The RM semantics require that time moves forward. This leads to the following prop-
erty:

∀ξ, ξ′ ∈ Ξ: ξ ⇓+ ξ′ =⇒ g(ξ) ≤ g(ξ′)

4.4.4 Reaction precedence derived correctly

LF’s promise of determinism relies on the reaction precedence relation ≺ being derived
correctly from the program specification. For a definition of ≺ see §2.3.5. This definition
can be translated into the notation here, turning it into a correctness property that
verifies that ≺ was derived correctly:

∀ξ ∈ Ξ.∀n, n′ ∈ N(ξ) : n ≺ n′ =⇒
(∃d ∈ D(n′) : d ∈ D∨(n)) ∨
(∃r ∈ R(ξ) : n ∈ N(r) ∧ n′ ∈ N(r) ∧ P (r)(n) < P (r)(n′))

4.4.5 Event processing

This section groups formal correctness properties related to processing events in the
main event loop. It is important to note here that in the RM, the value associated with
an event is overwritten when the same action is scheduled for the same tag.

47

Reaction execution precedence

In the same way that it is important for the reaction precedence relation ≺ to be derived
correctly, it is equally important that reactions are actually executed according to it:

∀ξ, ξ′ ∈ Ξ.∀e, e′ ∈ QE(ξ).∀n, n′ ∈ N(ξ).∃j ∈ N : ξ ⇓+ ξ′ ∧
g(e) = g(e′) ∧ t(e) ∈ T (n) ∧ t(e′) ∈ T (n′) ∧
n ≺ n′ ∧ (j, g(e′), n′) ∈ TR(ξ

′) =⇒
∃i ∈ N : j > i ∧ (i, g(e), n) ∈ TR(ξ

′)

Events stay on QE until triggers are processed

An event stays on the event queue (QE) as long as the reactions triggered by the event
aren’t executed:

∀ξ, ξ′ ∈ Ξ.∀e ∈ QE(ξ).∀n ∈ N(ξ).∃i ∈ N : ξ ⇓+ ξ′ ∧
(i, g(e), n) ∈ TR(ξ

′) ∧ t(e) ∈ T (n) =⇒
g(e) ≤ g(ξ′) ∧ ¬∃e′ ∈ QE(ξ

′) : g(e) = g(e′) ∧ t(e) = t(e′)

Again, it is important to remember that for scheduled events the associated value may
change. This is why the final expression does not simply read e /∈ QE(ξ

′).

Events are only removed from QE after their designated time

This last property ensures that events stay on the queue until their assigned tag is
reached. Otherwise, with the previous properties, the execution could happen earlier,
which, of course, is not desired. The property is as follows:

∀ξ, ξ′ ∈ Ξ.∀e ∈ QE(ξ) : ξ ⇓+ ξ′ ∧ g(ξ′) < g(e) =⇒
∃e′ ∈ QE(ξ

′) : g(e) = g(e′) ∧ t(e) = t(e′)

48

5 Verifying the LF Rust runtime

This section details the results of attempting to verify Lingua Franca’s Rust runtime in
reference to the correctness criteria laid out in §4. The first part details the attempt at
applying Creusot to the whole runtime and the second part goes over the verification
of the vecmap module within the runtime. Both parts outline their general approach
and list the problems that were encountered, and how the problem was overcome if a
solution was found.

5.1 Verifying the whole runtime

Unfortunately, verifying a single module of the runtime with Creusot is not feasible.
This is because the function preconditions have to be valid when used, and often it is
the case that a function is defined in one module and then used in another. This is why
the initial verification attempt covers the entire runtime.
Throughout this section, the time module is used as an illustrative example for the
changes that had to be made.

5.1.1 Goals

Covering the entire runtime with Creusot means that the initial verification goal should
not be one of the specific and detailed correctness criteria from §4.4. This is because
the function preconditions necessary for these properties would also apply to and have
to be specified for their call sites, meaning that they balloon into further pre- and
postconditions and so forth. Among the remaining correctness properties, the logical
starting point would be proving crash freedom as detailed in §4.2, because it requires
covering the entire code base, while not being too specific. Since Creusot checks for the
absence of crashes by default, the derived annotations would be the minimum required
to progress to any of the other correctness properties. These annotations would involve,
for example, requiring that integers do not overflow.
Additionally, this verification work should not alter the outward API which the LF code
generator relies on, because this avoids having to adjust the code generator for changes
in the API, or the rewriting of existing reactor programs if the API of ReactionCtx was
touched.

49

Figure 5.1: A graph illustrating the dependencies of the Rust LF runtime modules. The
modules with the least coupling are leftmost with no outgoing dependency
relations. This means that only the modules impl_types, time, and vecmap
have no coupling.

5.1.2 Approach

Verifying an existing large code base with Creusot is challenging because the tool auto-
matically covers all code in the compilation process. And doing the verification module-
by-module is not possible, since the different modules that make up the runtime are
strongly dependent on each other. See Figure 5.1 for an illustration of the runtime’s
module dependency graph. With the exception of impl_types, time, and vecmap, every
module has some degree of coupling that makes the module-by-module approach im-
possible. Further, impl_types and time are very small modules that mostly only con-
tain simple type declarations.

The strategy that was decided upon for this work was to comment out parts of the
code that would trigger this dependency ripple effect, and then gradually activate the
commented code again until the whole runtime is covered. During this process, Creusot-
specific traits like ShallowModel/DeepModel are implemented as necessary. To not
disrupt the ongoing development and usage of the runtime library, it was forked into
a separate repository1. The Creusot version used for this section is identified by Git
commit hash edb39db.

1The forked runtime with the changes made throughout this work is located at
https://github.com/jhaye/reactor-rs.

50

https://github.com/jhaye/reactor-rs

5.1.3 Challenges and solutions

During the verification attempt, several issues were encountered that this section details.
Most of these problems relate to lacking support for Rust language features in Creusot.
For some of these issues, a solution was found, which will also be explained.

No support for concurrency

Creusot’s lack of support for concurrency was well understood before this verification
attempt started. The Rust runtime uses the external dependency rayon to execute
reactions in parallel. During the initialisation of the runtime, a pool of worker threads is
created and the loop executing reactions level-by-level is parallelised. The effects are then
merged and the loop starts over. Executing reactions of the same level in parallel like
this works since they, by definition of the level, are independent of each other. This way
of parallelising the work is relatively simple, which also made it easy to remove. There
is no reason to keep functionality that cannot be verified. This also greatly simplifies
the dependency tree of the runtime. As seen in Figure 2.7, rayon and its respective
dependencies make up a significant part of the runtime’s dependencies.

No support for Unsafe Rust

The lacking support for Unsafe Rust in Creusot was also anticipated. Since the runtime
was constructed knowing of the issues that using Unsafe Rust could introduce, the
runtime contains relatively few unsafe blocks. This is why the same approach as for
concurrency was taken. All unsafe blocks within the runtime were removed and re-
placed with previous, less efficient, but verifiable implementations. Overall, 20 uses of
unsafe were removed.

No support for const

The Creusot version used in this verification attempt does not support constant ex-
pressions2. This means that both const functions, as well as variables crash Creusot.
However, this is only a minor issue, because constants can be rewritten to not be con-
stants. For example, the time module defines a type MicroStep with the constant
ZERO:

1 pub struct MicroStep(u32);
2

3 impl MicroStep {
4 pub const ZERO: MicroStep = MicroStep(0);
5 }

2This problem is partially documented in Creusot’s GitHub issue #358.

51

https://github.com/xldenis/creusot/issues/358

This type is the runtime’s implementation of the micro-step index of a tag—a simple 32-
bit integer essentially. But since Creusot does not support constants, MicroStep::ZERO
cannot be used. The solution is to comment out the constant’s definition and to substi-
tute its usage with MicroStep(0).

No support for impl/dyn traits

While the lack of support for constants was a minor obstacle, the lack of support for
impl/dyn traits is not3. This Rust feature is for restricting types of function arguments
and return values to specific traits that they implement. While impl traits are just syn-
tactic sugar that is resolved at compile time, dyn traits provide polymorphism through
dynamic dispatch. For example, imagine we had a function that takes an argument
of type &mut dyn Write and in its body called the write function this trait provides,
and further, that this function is called separately with the concrete types File and
TcpStream. Both types implement Write, but because the argument is dyn, the de-
cision of which specific instance of write to call for these concrete types is made at
runtime.
The problem is that these language features are used both at the core of the runtime as
well as the Rust standard library. For example, the Debug and Display traits are Rust’s
idiomatic way of string formatting the instances of Rust structs. Both traits are struc-
tured very similarly, providing a fmt function that takes a Formatter as an argument
which looks like this:

1 pub struct Formatter<'a> {
2 flags: u32,
3 fill: char,
4 align: rt::v1::Alignment,
5 width: Option<usize>,
6 precision: Option<usize>,
7 buf: &'a mut (dyn Write + 'a),
8 }

The buf member has the dyn Write trait, which means it will cause Creusot to crash,
and consequently Debug and Display do the same. This means that any implementa-
tion of these traits has to be commented out and any code using it (e.g. for logging or
printing to the console) also. Further, the runtime uses dyn traits for reaction execution,
meaning that this crucial part of the runtime cannot be verified either.
Unfortunately, there is no alternative to this language construct compared to, for ex-
ample, constants which can be replaced by non-constants. The feature is deeply embed-
ded in Rust’s standard library and code using it would have to be greatly reconstructed
to work without it. And marking the code with #[trusted] does not work either. The
code that is marked as such is still processed by Creusot, triggering the crash.

3This problem is reported in Creusot’s GitHub issues #539 and #610.

52

https://github.com/xldenis/creusot/issues/539
https://github.com/xldenis/creusot/issues/610

Insufficient coverage of standard library

Any invoked function that is checked with Creusot needs a contract. For functions
and types from the standard library, Creusot comes with creusot-contracts, which
provides contracts for them. However, the overall coverage of the standard library is
small. This prompted the writing and contributing of new contracts since the Rust LF
runtime heavily utilises the standard library.
To give an example, to measure time, the runtime uses the standard-library-provided
types Instant and Duration. The runtime records a startup instant t0, and whenever
it needs to measure the duration since startup, it creates a new Instant and with this
and t0 a Duration representing this value can be generated. But neither type had any
defined contracts when starting the work.

The Duration type stores two values: the number of elapsed seconds and the number
of elapsed sub-second nanoseconds. The first thing to implement is the model traits.
Duration records seconds and nanoseconds, so it is easiest to convert it into overall
nanoseconds, making the model type Int, WhyML’s generic unrestricted whole integer
type. The problem is that the internal value for a Duration is not accessible, so the
state of it used in the contracts has to be defined axiomatically. For the model func-
tions this means that we cannot derive what the internal value is, but merely what a
valid value for Duration is. While the seconds part of Duration is a 64-bit unsigned
integer, u64, which is fully used, the sub-seconds part must be lower than one second,
meaning its valid range is from 0 to 999,999,999 nanoseconds. Furthermore, durations
are definitionally positive. The model trait implementations for Duration with these
restrictions can be seen in Listing 5.1. Since Duration does not contain any other gen-
eric type, both ShallowModel and DeepModel ought to return the same value. The
secs_to_nanos function is a simple unit conversion function. The absurd statement in
the function body is a WhyML construct, representing code that shouldn’t be reached,
which is the case since the functions are marked as #[trusted]. The utility in this open
definition is that when through one of Duration’s functions the internal value is set, we
can define what the value of the model is. The excerpt of the annotated implementation
of Duration in Listing 5.2 demonstrates this. For new it is important to require that the
seconds part of a Duration does not overflow since the nanos parameter is converted
and added to it if it is greater or equal to a second. Arithmetic on Duration is also
defined and used within the runtime. Similar precautions to prevent integer overflows
have to be made there, as can be seen in Listing 5.3. Writing contracts for the Instant
type is very similar.

53

1 impl ShallowModel for Duration {
2 type ShallowModelTy = Int;
3 #[logic]
4 #[trusted]
5 #[ensures(result >= 0 &&
6 result <= secs_to_nanos(@u64::MAX) + 999_999_999)]
7 fn shallow_model(self) -> Self::ShallowModelTy {
8 pearlite! { absurd }
9 }

10 }
11

12 impl DeepModel for Duration {
13 type DeepModelTy = Int;
14 #[logic]
15 #[trusted]
16 #[ensures(result == self.shallow_model())]
17 fn deep_model(self) -> Self::DeepModelTy {
18 pearlite! { absurd }
19 }
20 }

Listing 5.1: The implementation of the model traits for Duration.

1 impl Duration {
2 #[requires(@secs + nanos_to_secs(@nanos) <= @u64::MAX)]
3 #[ensures(@result == secs_to_nanos(@secs) + @nanos)]
4 fn new(secs: u64, nanos: u32) -> Duration;
5

6 #[ensures(@result == secs_to_nanos(@secs))]
7 fn from_secs(secs: u64) -> Duration;
8

9 #[ensures(@self == 0 ==> result == true)]
10 #[ensures(@self != 0 ==> result == false)]
11 fn is_zero(&self) -> bool;
12

13 #[ensures(@result == @self)]
14 #[ensures(@result <= secs_to_nanos(@u64::MAX) + 999_999_999)]
15 fn as_nanos(&self) -> u128;
16 }

Listing 5.2: A selection of contracts for Duration.

54

1 impl Add<Duration> for Duration {
2 #[requires(@self + @rhs <= secs_to_nanos(@u64::MAX) + 999_999_999)]
3 #[ensures(@self + @rhs == @result)]
4 fn add(self, rhs: Duration) -> Duration;
5 }

Listing 5.3: The contract for the Add trait for Duration.

Contributed specifications for Creusot Standard library specifications created for
this verification work were contributed back to the Creusot project. Overall, for this work
the following specifications were added to creusot-contracts:

• specifications for std::time::Duration,

• specifications for std::time::Instant,

• specifications for std::collections::VecDeque,

• specifications for std::result::Result,

• the implementation of DeepModel and OrdLogic for std::cmp::Reverse.

No support for many trait derivations

For many traits, Rust has support for automatically deriving them. For example, for
the MicroStep type it looks like this:

1 #[derive(Debug, Eq, PartialEq, Ord, PartialOrd, Copy, Clone, Hash)]
2 pub struct MicroStep(u32);

Since MicroStep is just the primitive u32 underneath, deriving Eq (equality), PartialOrd
(partial order) or Ord (total order) is possible. With the exception of Debug for afore-
mentioned reasons, these traits can all be implemented with Creusot as well, but only
few can be auto-derived4. This is because the automatic derivation also has to provide
Creusot-specific information, like annotations and trait implementations. For this ex-
ample, Creusot supports auto-deriving Clone and PartialEq, and Copy and Eq can be
auto-derived as well, since they directly rely on those traits. But Creusot does not offer
this functionality for Ord or PartialOrd—they have to be implemented manually. The
manual implementation of these traits is depicted in Listing 5.4. Notice how the manu-
ally implemented traits are annotated. Also, notice how the specific auto-derived traits
have to be imported explicitly from creusot_contracts.

4This is reported in Creusot’s GitHub issue #609.

55

https://github.com/xldenis/creusot/issues/609

1 use creusot_contracts::{Clone, PartialEq, *};
2

3 #[derive(Eq, PartialEq, Copy, Clone)]
4 pub struct MicroStep(u32);
5

6 impl Ord for MicroStep {
7 #[ensures(result == self.deep_model().cmp_log(other.deep_model()))]
8 fn cmp(&self, other: &Self) -> Ordering {
9 self.0.cmp(&other.0)

10 }
11 }
12

13 impl PartialOrd for MicroStep {
14 #[ensures(result == Some(self.deep_model()
15 .cmp_log(other.deep_model())))]
16 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
17 Some(self.cmp(other))
18 }
19 }

Listing 5.4: Manual trait implementations for MicroStep.

No special support for working with dependencies

Creusot heavily relies on Rust’s trait system, providing and requiring the implementation
of several custom traits specific to Creusot. This however turns problematic with the
usage of external dependencies. When external types are used in a Rust program and we
wish to verify it with Creusot, then those types will also be a part of the annotations we
write. At that point, the external type’s implementation of Creusot-specific traits like
DeepModel or OrdLogic is desirable, if not necessary. But this is not possible within the
program using the external dependency, because of orphan rules. Put briefly, orphan
rules require that if one wants to implement some trait A for some type T, at least one
of them has to be local (i.e. defined in the same project the implementation happens)
[Rusa]. The Rust Book further explains the necessity for orphan rules: ‘This rule ensures
that other people’s code can’t break your code and vice versa. Without the rule, two
crates could implement the same trait for the same type, and Rust wouldn’t know which
implementation to use’ [KN19, p. 184].
This makes the implementation of Creusot-specific traits for external types impossible
because they are not local. That means that the only way of implementing Creusot-
specific traits for external dependencies requires the forking of that dependency and
implementing the traits directly.

56

5.1.4 Conclusion

The verification of the Rust LF runtime with the Creusot version used in this section
failed. The core obstacle is the lack of support for impl/dyn traits. Every other problem
listed in this section can be worked around, even if with significant additional work in
some cases.
An improved version of Creusot that addressed all the limitations listed here, including
broad or even full coverage of the standard library with contracts would significantly
reduce the effort required for verifying existing Rust software like this runtime. But
even for mature tooling, the effort required should not be underestimated. The work
presented here does not allow for an estimate of how much time a full verification of the
runtime in its current state would take.

5.2 Verifying VecMap

With the verification of the whole runtime out of the picture, this work’s focus shifted
to verifying individual parts of the runtime. As explained in the previous section, this
is very difficult, because of the many module interdependencies within the runtime.
But one module stands out with no coupling at all: vecmap. This section covers the
verification process for this module.

5.2.1 Goals

Since Creusot operates on the crate level of a Rust project, not the module level, vecmap
cannot be verified as is. But because there is no coupling, the module can very easily
be turned into a stand-alone crate. This requires very little refactoring work within the
runtime, mostly changing use statements from crate-internal to external ones. As laid
out in §4.3, the core property that should be verified is that items stored in a VecMap
stay sorted by their key throughout. Roughly this requires defining a predicate that
checks if a VecMap is sorted and then requiring it for every function call of the type.
Further, if the function can mutate the internal state (&mut self in function signature),
the sorted property is ensured via post-condition. And simultaneously this verification
work should pay attention to what individual functions do and verify their functionality,
not just that internal storage stays sorted.
Additionally, vecmap is relatively small compared to the full runtime and its functionality
is nicely abstracted with its API that the rest of the runtime uses. This means that this
verification work can be done on the proper runtime, instead of forking it like in the
previous section. But this comes with concerns over which Rust version to use. Creusot
requires Nightly Rust, however, previous work spent effort on making the Rust LF
runtime work with Stable Rust. This is because when one dependency requires Nightly
Rust, the entire project has to be compiled with Nightly Rust. Ideally, the code used
for verification of vecmap and the code used within the runtime would be one and the

57

1 pub struct VecMap<K, V>
2 where
3 K: Eq + Ord,
4 {
5 v: Vec<(K, V)>,
6 }

Listing 5.5: The definition of VecMap.

same, however in order to ensure that the runtime remains usable with Stable Rust that
would not work. To satisfy this constraint, there are two versions of vecmap, identical
in function, one for use and one for verification.

5.2.2 Defining the sorted property

The VecMap type’s definition is in Listing 5.5. Key (K) and value (V) are defined as type
parameters. And key-value pairs are stored in a regular Vec as tuples.
The first thing that is necessary for defining a predicate that checks if a VecMap is
sorted, is requiring that its keys can be compared and ordered. Regular Rust does this
via the Ord trait, as VecMap requires throughout its definition. But for Creusot this is not
enough—they have to implement its specific OrdLogic trait. One way of resolving this is
to require in the implementation, that provides the sorted predicate, that K implements
DeepModel and further that the model type implements OrdLogic. The last important
thing to remember for this property is that keys within a VecMap are unique. Since items
are inserted into the map in ascending order of their key, this means for two items in
the map that are not equal, the key of the one with the lower index in the internal map
is strictly lesser than the other, not lesser or equal. The sorted predicate is defined in
Listing 5.6.

5.2.3 Challenges and solutions

This section, similarly to the previous section, details the encountered challenges and
solutions in this verification work.

Unsupported features

The Creusot version used for this verification is the same as for the verification attempt
for the whole runtime. This means that the limitations discussed in the previous sec-
tion also apply here. Luckily, VecMap does not use impl or dyn traits, so verification is
actually possible. Technically this is not fully accurate, because like most data types,
VecMap implements Debug and the module also contains a Display implementation. But

58

1 impl<K, V> VecMap<K, V>
2 where
3 K: Eq + Ord + DeepModel,
4 K::DeepModelTy: OrdLogic,
5 {
6 #[logic]
7 #[trusted]
8 #[ensures(result.len() == (@self.v).len() &&
9 forall<i: Int> i >= 0 && i < (@self.v).len() ==>

10 result[i] == (@self.v)[i].0.deep_model())]
11 fn key_seq(self) -> Seq<K::DeepModelTy> {
12 pearlite! { absurd }
13 }
14

15 #[predicate]
16 fn is_sorted(self) -> bool {
17 pearlite! {
18 forall<m: Int, n: Int> m >= 0 && n >= 0 &&
19 m < (@self.v).len() && n < (@self.v).len() && m < n ==>
20 self.key_seq()[m] < self.key_seq()[n]
21 }
22 }
23 }

Listing 5.6: The definition of the predicate to check if a VecMap is sorted, as well as a
logic function that extracts the sequence of keys in a VecMap.

59

1 #[cfg(not(feature = "contracts"))]
2 impl<K: Ord + Eq + Debug, V: Debug> Debug for VecMap<K, V> {
3 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
4 self.v.iter().collect::<Vec<&(K, V)>>().fmt(f)
5 }
6 }

Listing 5.7: Using conditional compilation to not implement Debug when verifying.

since these are used for printing, they do not contribute to VecMap’s functionality that
is being verified here. However, these implementations cannot simply be removed, since
the runtime depends on them. A useful feature for this case is conditional compilation.
Rust allows conditionally compiling designated code blocks if certain feature flags are
set or not. As is convention for other Creusot projects, compiling for verification re-
quires that the contracts feature is enabled. This can be used to not compile the code
implementing Debug for VecMap, like in Listing 5.7. Another function that was chosen
to be conditionally disabled like this is VecMap::iter. The function simply forwards
the call to the Vec’s iterator function. And since this function is not used within the
implementation itself and is trivially correct, assuming the standard library one is, the
work of writing a specification for it was deemed not to be worth the effort.

Closures

Closure expressions are a language feature in Rust known under multiple names in
other programming languages, like lambda functions/expressions or anonymous func-
tions. They are functions that are not associated with an identifier and can capture
parts of their environment. They often serve as arguments for higher-order functions.
Creusot does have support for closures, but with the version used, writing specifications
for higher-order functions is very involved [DJ22]. So much so that rewriting code using
closures to not use them is much easier. The function VecMap::max_key illustrates the
simplicity for verification when closures are eliminated. Originally, the function read:

1 pub fn max_key(&self) -> Option<&K> {
2 self.v.last().map(|e| &e.0)
3 }

Since the underlying Vec is continually sorted in ascending order, the last element has
the maximum key in the map. But a Vec can be empty, which is why Vec::last’s
return type is Option<T>. Option is an enum that either is None, or Some(t) where t
is some instance of T. Now, the internal Vec of the map does not store keys on its own,
but instead, stores key-value pairs as tuples. So the last key-value pair is extracted with
Vec::last if it exists. The ideal way of just extracting the key of the pair, while retaining
the information about an empty vector is with Option::map. It takes a closure as an

60

1 #[requires(self.is_sorted())]
2 #[ensures(result == None ==> (@self.v).len() == 0)]
3 #[ensures(forall<k: &K> result == Some(k) ==>
4 forall<i: Int> i >= 0 && i < (@self.v).len() ==>
5 self.key_seq()[i] <= k.deep_model()
6)]
7 pub fn max_key(&self) -> Option<&K> {
8 match self.v.last() {
9 Some(e) => Some(&e.0),

10 None => None,
11 }
12 }

Listing 5.8: The max_key function without the closure.

argument which is applied to the encapsulated value Option, if it is Some(j), otherwise
None stays untouched. For the purpose here the closure takes the key-value tuple and
extracts the first element—the key.
How should the closure be eliminated? One simple way is rewriting Option::map’s
behaviour with a match expression like in Listing 5.8. This code already contains the
necessary annotations for Creusot. The behaviour of the code is unchanged. And with
this, it is possible to verify the function without writing a specification for Option::map,
which would undoubtedly be a much more complicated undertaking. But the removal
of closures was not always so simple. The VecMap::find_k function is used whenever
elements in the map are searched. Originally, the function looked like this:

1 fn find_k(&self, key: &K) -> Result<usize, usize> {
2 self.v.binary_search_by_key(&key, |(k, _)| k)
3 }

The function simply forwards the result of binary_search_by_key, which returns Ok(i),
if key is in the map at index i, and Err(j), if key is not in the map, but j is the index
where an item with key could be inserted to maintain sorted order. The important part
is the second argument which is the key-extraction function provided as a closure. The
extraction function is applied to every element in the search and then compared to the
supplied key. Replacing this closure requires the manual inlining of the binary-search
function and applying the key extraction where usually the closure would be called. The
resulting code, plus annotations are in Listing 5.9. The key extraction happens on line
31. Because of the many integer variables in the function, the while loop that forms
the heart of the search function is annotated with many invariants restricting their
values. And while, again, this might seem quite complicated, writing a specification
for binary_search_by_key was attempted by Creusot lead author Xavier Denis and
deemed too complicated, compared to the inlining described above.

61

1 #[requires(self.is_sorted())]
2 #[ensures(match result {
3 Ok(_) => self.key_seq().contains(key.deep_model()),
4 Err(_) => !self.key_seq().contains(key.deep_model()),
5 })]
6 #[ensures(forall<i: usize> result == Ok(i) ==> self.key_seq()[@i] == key.deep_model())]
7 #[ensures(forall<i: usize, j: Int> result == Err(i) ==> j >= @i && j < (@self.v).len() ==>
8 self.key_seq()[j] > key.deep_model())]
9 #[ensures(forall<i: usize, j: Int> result == Err(i) && j >= 0 && j < @i ==>

10 self.key_seq()[j] < key.deep_model())]
11 #[ensures(match result {
12 Ok(idx) => @idx < (@self.v).len(),
13 Err(idx) => @idx <= (@self.v).len(),
14 })]
15 fn find_k(&self, key: &K) -> Result<usize, usize> {
16 let mut size = self.v.len();
17 let mut left = 0;
18 let mut right = size;
19 let mut mid;
20 #[invariant(size_bounds, @size >= 0 && @size <= (@self.v).len())]
21 #[invariant(left_bounds, @left >= 0 && @left <= (@self.v).len())]
22 #[invariant(right_bounds, @right >= 0 && @right <= (@self.v).len())]
23 #[invariant(mid_bounds, @left < @right ==> (@left + (@size / 2)) < (@self.v).len())]
24 #[invariant(right_gt_mid, @left < @right ==> @right > (@left + (@size / 2)))]
25 #[invariant(right_geq_key, forall<i: Int> i >= @right && i < (@self.v).len() ==>
26 self.key_seq()[i] > key.deep_model())]
27 #[invariant(left_lt_key, forall<i: Int> i >= 0 && i < @left ==>
28 self.key_seq()[i] < key.deep_model())]
29 while left < right {
30 mid = left + size / 2;
31 let cmp = self.v[mid].0.cmp(key);
32 match cmp {
33 Ordering::Less => left = mid + 1,
34 Ordering::Greater => right = mid,
35 Ordering::Equal => return Ok(mid),
36 }
37 size = right - left;
38 }
39 Err(left)
40 }

Listing 5.9: The fully annotated version of find_k. This verifies in Why3.

62

1 impl<K, V> VecMap<K, V>
2 where
3 K: Eq + Ord + DeepModel,
4 K::DeepModelTy: OrdLogic,
5 {

Listing 5.10: The start of VecMap’s impl block.

1 #[cfg(not(feature = "contracts"))]
2 trait Key: Ord + Eq {}
3

4 #[cfg(feature = "contracts")]
5 trait Key: Ord + Eq + DeepModel
6 where
7 Self::DeepModelTy: OrdLogic,
8 {}
9

10 impl<K, V> VecMap<K: Key, V> {

Listing 5.11: Sketching an idea for using supertraits to keep verification and actually
used code in one file.

Same-file restriction

The goal for this verification was for the code ultimately used in the runtime and used
for verification to be one and the same. This means the code would come from the same
source file. The rationale is that translation of the verified version of VecMap into an
intermediate form to be used in the runtime could introduce errors. Because the runtime
requires Stable Rust, all usages of Creusot would have to be cut out. A change that
breaks verified functionality among such a large set of changes might not be noticed.
The original idea for approaching this issue was conditional compilation. Similarly to
disabling Display/Debug for verification, Creusot use statements and annotations could
be disabled when not verifying. The one major hurdle is the usage of Creusot-specific
traits in impl blocks. For example, the start of the main impl block for VecMap when
verified is in Listing 5.10. The Creusot-specific traits like DeepModel and OrdLogic
cannot be disabled with conditional compilation. The idea for resolving this issue was
supertraits. These are specific traits that require the implementation of other traits
before the supertrait can be implemented. With this one could define a Key trait that
is defined with conditional compilation to require Creusot-specific traits when verifying
and to not have them regularly. To sketch the idea, it would look like in Listing 5.11.
Unfortunately, this does not work, because associated type restrictions following the
where clause on trait definitions in Rust’s type system only restrict which types can
implement Key, but when it is used for restricting generics, like in the impl block starting

63

1 pub enum Entry<'a, K, V>
2 where
3 K: Ord + Eq,
4 {
5 Vacant(VacantEntry<'a, K, V>),
6 Occupied(OccupiedEntry<'a, K, V>),
7 }
8

9 pub struct VacantEntry<'a, K, V>
10 where
11 K: Ord + Eq,
12 {
13 map: &'a mut VecMap<K, V>,
14 key: K,
15 index: usize,
16 }
17

18 pub struct OccupiedEntry<'a, K, V>
19 where
20 K: Ord + Eq,
21 {
22 map: &'a mut VecMap<K, V>,
23 key: K,
24 index: usize,
25 }
26

27

Listing 5.12: The definition of the Entry type and members.

on line 10, it is ignored5. This means that once size comparisons are made with deep
models for Key, the compiler complains that OrdLogic is not implemented, despite the
definition saying otherwise. This means that the original idea of keeping one instance
of the code for both verification and usage cannot be realised like this. Ultimately, the
decision was made to have separate versions for verification and usage.

Verifying entry-getter functions

Insertion into VecMap is done through entry types. Such an entry can be obtained
through VecMap::entry. An entry is either vacant (i.e. no value is associated with
the key) or occupied. The entry type carries a mutable reference to the map during its
lifetime, ensuring that it can only be mutated through the entry and nothing else. The
Entry type is defined as in Listing 5.12. And the function for obtaining an Entry reads
as in Listing 5.13. The issue here is that annotating this function with the post-condition
self.is_sorted() will not verify in Why3, no matter what additional annotations are
added. This is because self is passed into the Entry type and thus the function does

5https://stackoverflow.com/a/47019398 is another example of this.

64

https://stackoverflow.com/a/47019398

1 pub fn entry(&mut self, key: K) -> Entry<K, V> {
2 match self.find_k(&key) {
3 Ok(index) => Entry::Occupied(OccupiedEntry {
4 map: self,
5 index,
6 key,
7 }),
8 Err(index) => Entry::Vacant(VacantEntry {
9 map: self,

10 index,
11 key,
12 }),
13 }
14 }

Listing 5.13: The VecMap::entry function.

not own the reference to it when the function ends. The scope of self within Creusot’s
annotations does not exceed the function, which is why the previously presented post-
condition does not verify. To do that, the map would have to be followed into the
entry, and the annotation verified once Entry dies. This limitation means that the post-
condition annotation is not possible for this function, contrary to what was required in
§4.
But despite this limitation of Creusot, it is still possible to argue that the map re-
mains sorted throughout the lifetime of Entry. The value of map is never passed on
in VacantEntry or OccupiedEntry. This means that if it is possible to verify that the
items in map stay sorted for every function call on the entries, it will also be sorted when
those entries die. And this is in fact verifiable.
To demonstrate this with OccupiedEntry, first the Invariant trait is defined for it. It
is defined in such a way that calling Invariant::invariant verifies that the map is
sorted. This allows for checking that the invariant holds immediately after construction.
This is done by adding the following post-condition to VecMap::entry:

1 #[ensures(forall<e: _> result == Entry::Occupied(e) ==> e.invariant())]

And finally, the invariant is also maintained for every function of OccupiedEntry, as seen
in Listing 5.14. This means that map will be sorted when an instance of OccupiedEntry
dies. The argument is analogous for VacantEntry. Thus it is proven that the entry-
getter functions preserve the item order, despite Creusot’s shortcomings.

Verifying VecMap::entry_from_ref

VecMap::entry_from_ref is in terms of functionality very similar to VecMap::entry.

65

1 impl<K, V> OccupiedEntry<'_, K, V>
2 where
3 K: Ord + Eq + DeepModel,
4 K::DeepModelTy: OrdLogic,
5 {
6 #[maintains((mut self).invariant())]
7 #[ensures((@(^self).map.v)[@self.index].1 == value)]
8 pub fn replace(&mut self, value: V) {
9 self.map.v[self.index].1 = value;

10 }
11

12 #[maintains((mut self).invariant())]
13 pub fn get_mut(&mut self) -> &mut V {
14 &mut self.map.v[self.index].1
15 }
16 }

Listing 5.14: The annotated OccupiedEntry.

It returns the Entry matching to the supplied key. The difference is that a hint needs
to be supplied as well, which indicates where an item for the key is in the underlying
Vec. This function is defined in Listing 5.15. In essence, the map is searched linearly
for key and key_hint skips items in the search, accelerating the process. This function
was implemented for more performant getting of entries compared to VecMap::entry
which does simply binary search. The function itself is not used in vecmap but is used
once within the runtime. The problem with this function is that the sorting order of
items may be invalidated if the correct input for key_hint is chosen. The type of the
argument KeyRef is defined in Listing 5.16. It stores a key and the minimum index for
where it is stored in the map. A KeyRef is valid if key is in the map and the location is
stored in the map is greater or equal to min_idx.
There are two conditions that if met allow for compromising the sorting order of items
with this function:

1. key_hint is invalid: while the validity of key_hint is checked at the start of the
function, debug_assert! is removed from release builds. So if key_hint.min_idx
refers to an entry with a key that is greater than key, then the function will return
a VacantEntry allowing for inserting at that position with key. But this does not
check for the possibility of keys greater than key before key_hint.min_idx.

2. key_hint.key > key: here the problem that is caused is the same. The difference
is that key_hint may even be valid.

The easiest solution to this problem would simply be to remove this function and rely
on VecMap::entry instead. But this would hurt the performance of the runtime which
is not desired. So instead, these limitations have been properly documented and it was

66

1 pub fn entry_from_ref(&mut self, key_hint: KeyRef<K>, key: K) -> Entry<K, V> {
2 debug_assert!(self.is_valid_keyref(&key_hint.as_ref()));
3 let KeyRef { min_idx, .. } = key_hint;
4

5 for i in min_idx..self.v.len() {
6 match self.v[i].0.cmp(&key) {
7 Ordering::Equal => {
8 return Entry::Occupied(OccupiedEntry {
9 map: self,

10 index: i,
11 key,
12 })
13 }
14 Ordering::Greater => {
15 assert!(i >= 1); // otherwise min_idx
16 return Entry::Vacant(VacantEntry {
17 map: self,
18 index: i,
19 key,
20 });
21 }
22 _ => {}
23 }
24 }
25 let i = self.v.len();
26 Entry::Vacant(VacantEntry {
27 map: self,
28 index: i,
29 key,
30 })
31 }

Listing 5.15: The entry_from_ref function defined for VecMap.

1 pub struct KeyRef<K> {
2 pub key: K,
3 /// This is a lower bound on the actual index of key K,
4 /// it doesn't need to be the index (though it usually will be).
5 min_idx: usize,
6 }

Listing 5.16: The definition of the KeyRef type.

67

ensured that the one use of this function in the runtime, which is otherwise not covered
by Creusot, is absent of the properties listed above.

5.2.4 Reproducing the verification

When VecMap was moved into its own crate, the file structure of the runtime was changed
to this:

reactor-rs
runtime

…
vecmap

Cargo.toml
README.md
src

lib.rs
creusot

Cargo.toml
src

lib.rs

vecmap contains two crates, the one at the top-level for usage and the one in the creusot
subdirectory for verification. As previously explained it was not possible to have one
file for both purposes. During verification, the verifier is asked to use a diffing tool
for vecmap/src/lib.rs and vecmap/creusot/src/lib.rs. The verifier should observe
that between the two files, the bodies for Rust functions are unchanged, the only dif-
ference is that Creusot-specific annotations and traits were removed, as well as custom
logic functions, and conditional compilation flags. If the function bodies are untouched,
the verifier can be sure that the properties they are about to prove with Why3 do carry
over to the version used in the runtime. The full verification process is described in
vecmap/README.md.

5.2.5 Performance

Software verification often relies on constructs that compromise performance. Simple
and naïve implementations are usually easier to reason about for verification than those
optimised for performance. The verification attempt for the whole runtime in §5.1 is a
good example of this. Creusot could not reason about unsafe code that was introduced to
improve runtime performance, so, for verification, these optimisations were reverted. For
verification work on VecMap, a more conservative approach was chosen. For example,
instead of removing the problematic VecMap::entry_from_ref function in favour of
the well-behaved but slower VecMap::entry function, it was kept to not hurt runtime

68

Fork Join (throughput) NQueens first N solutions Radix Sort Thread Ring Trapezoidal Approximation

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

0

200

400

0

10

20

30

0

100

200

300

0

100

200

0

50

100

150

threads

m
ed

ia
n

tim
e

in
 m

s

target lf−rust lf−rust−vverified

Figure 5.2: A comparison of the original Rust target performance from Figure 2.6 with
the runtime version where VecMap is verified. Performance is effectively the
same.

performance. But was this conservative approach successful? Figure 5.26 is affirming of
this. Across multiple diverse benchmarks, there is no measurable drop in performance
when the LF Rust runtime with the verified vecmap module is used.

5.2.6 Conclusion

Unlike the verification attempt for the whole runtime, this verification attempt for the
vecmap module was a success. The smaller scope and lack of coupling within the code
helped significantly. But the key difference is that VecMap does not use impl/dyn traits
which do not work with Creusot. Other Rust features not supported by Creusot were
a limiting factor for the extensiveness and productivity of this undertaking. But appro-
priate solutions were found.

6Reproducibility: Benchmarks performed on a machine with an Intel(R) Core(TM) i9-10900K CPU
with 32 GB of RAM. The version of LF is the one identified by Git commit 7d52516 and for the
benchmarking suite it is dfba277. For lf-rust-vverified, the runtime was substituted by the one
identified by Git commit 5d61600.

69

6 Conclusion

This work surveys the contemporary literature on Rust software verification and its
tooling. Further, after detailing the Reactor Model and its implementation, Lingua
Franca, correctness criteria for LF’s runtime are given with a focus on the Rust target.
The criteria were formulated to be easily translatable to what tools like Creusot require.
An initial attempt at proving one of the correctness criteria, the absence of crashes,
on the already existing codebase of LF’s Rust runtime was made but unfortunately
was not successful. The primary roadblock was the lack of support for some Rust
language features by Creusot. The lack of support for concurrency and Unsafe Rust was
anticipated and thus easy to work around. When standard library functionality used
by the runtime was not covered by Creusot’s contracts, those contracts were written
and contributed back to Creusot. Among the other issues that were encountered, the
lack of support for impl traits and working with external dependencies were the most
severe, because no workaround is available. While the initial verification attempt was
not successful, the verification of the important custom type VecMap within the runtime
was. It shows that despite Creusot’s limitations, already existing Rust software can be
verified with relatively little modification if the to-be-verified code modules feature low
coupling and avoid using language features not supported by Creusot. Still, formulating
contracts that do verify, is a lot of work. Maintaining them within actively developed
software modules would require arduous work, which means that ideal candidates for
verification are those software components that are mostly or completely final.

6.1 Future work

There are many avenues for future work building on what was presented here. Most
apparent is the further development of Creusot to lift the limitations enumerated in this
work. Surely, this effort would benefit from continued research and development on other
tools mentioned in this work or even the creation of wholly new ones. The landscape of
Rust software verification is expanding quickly, and there are already efforts for adding
official support for verification tools to Rust [Rus23]. During this work, the lack of
support for dyn traits by Creusot was identified as the primary blocker for annotating the
whole runtime for verification. If support for this language feature is added to Creusot
in the future, another attempt at verifying the remaining correctness properties from §4
should be made. In the meantime, verification efforts for the runtime can focus on, for
example, further analysing the composition of the runtime to see if some components can
be decoupled from the rest of the runtime’s code and individually verified, like vecmap.

70

Or, a similar verification effort could be made for external dependencies of the runtime.
This work argued that usage of these libraries in other projects increases confidence that
they are implemented correctly—but certainly would be good regardless. More broadly,
regarding Lingua Franca, the language and its runtime should be stabilised, since there
is little utility in verifying the functionality of a piece of software that might change
soon in the future. Another avenue for future work would be to shift the focus from
verifying the runtime to verifying the Lingua Franca compiler. By formally specifying
the translation from LF source to the target language, it could be verified that a valid
LF program always compiles to a valid and correspondingly specified program in the
respective target language.

71

Bibliography

[Ast+22] Vytautas Astrauskas et al. ‘The Prusti Project: Formal Verification for Rust’.
In: NASA Formal Methods. Ed. by Jyotirmoy V. Deshmukh, Klaus Havelund
and Ivan Perez. Vol. 13260. Series Title: Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2022, pp. 88–108. isbn: 978-3-031-
06772-3 978-3-031-06773-0. doi: 10.1007/978-3-031-06773-0_5. url:
https://link.springer.com/10.1007/978-3-031-06773-0_5 (visited on
02/01/2023).

[Bar+11] Clark Barrett et al. ‘CVC4’. In: Computer Aided Verification. Ed. by Ganesh
Gopalakrishnan and Shaz Qadeer. Lecture Notes in Computer Science. Ber-
lin, Heidelberg: Springer, 2011, pp. 171–177. isbn: 978-3-642-22110-1. doi:
10.1007/978-3-642-22110-1_14.

[Bei16] Alexis Kenneth Beingessner. ‘You Can’t Spell Trust Without Rust’. Last
Modified: 2016-04-05T08:54-04:00. Text. Carleton University, 2016. url: https:
//curve.carleton.ca/05076cd2-c1c2-4207-9667-a3ee1af58db4 (vis-
ited on 26/10/2022).

[BHR18] Marek Baranowski, Shaobo He and Zvonimir Rakamarić. ‘Verifying Rust
Programs with SMACK’. In: Automated Technology for Verification and Ana-
lysis. Ed. by Shuvendu K. Lahiri and Chao Wang. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2018, pp. 528–535. isbn:
978-3-030-01090-4. doi: 10.1007/978-3-030-01090-4_32.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. Cam-
bridge, Mass. [u.a.]: MIT Press, 2008. isbn: 978-0-262-02649-9.

[Bob+11] François Bobot et al. ‘Why3: Shepherd Your Herd of Provers’. In: Boogie
2011: First International Workshop on Intermediate Verification Languages.
2011, p. 53. doi: 10/document. url: https://hal.inria.fr/hal-00790310
(visited on 11/01/2023).

[BOT21] Jim Blandy, Jason Orendorff and Leonora F. S. Tindall. Programming Rust.
Second edition. OCLC: 1289839504. Cambridge: O’Reilly, 2021. isbn: 978-
1-4920-5254-8.

[CKL04] Edmund Clarke, Daniel Kroening and Flavio Lerda. ‘A Tool for Checking
ANSI-C Programs’. In: Tools and Algorithms for the Construction and Ana-
lysis of Systems. Ed. by Kurt Jensen and Andreas Podelski. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, 2004, pp. 168–176. isbn:
978-3-540-24730-2. doi: 10.1007/978-3-540-24730-2_15.

72

https://doi.org/10.1007/978-3-031-06773-0_5
https://link.springer.com/10.1007/978-3-031-06773-0_5
https://doi.org/10.1007/978-3-642-22110-1_14
https://curve.carleton.ca/05076cd2-c1c2-4207-9667-a3ee1af58db4
https://curve.carleton.ca/05076cd2-c1c2-4207-9667-a3ee1af58db4
https://doi.org/10.1007/978-3-030-01090-4_32
https://doi.org/10/document
https://hal.inria.fr/hal-00790310
https://doi.org/10.1007/978-3-540-24730-2_15

[Con+18] Sylvain Conchon et al. ‘Alt-Ergo 2.2’. In: SMT Workshop: International
Workshop on Satisfiability Modulo Theories. 12th July 2018. url: https:
//hal.inria.fr/hal-01960203 (visited on 11/01/2023).

[CPP18] CPP Reference authors. std::vector<T,Allocator>::push_back. cppreference.
9th Jan. 2018. url: https://en.cppreference.com/w/cpp/container/
vector/push_back (visited on 28/10/2022).

[DJ22] Xavier Denis and Jacques-Henri Jourdan. ‘Specifying and Verifying Higher-
order Rust Iterators’. In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS 2023. Preprint. 25th Oct.
2022. url: https://hal.archives-ouvertes.fr/hal-03827702/document.

[DJM22] Xavier Denis, Jacques-Henri Jourdan and Claude Marché. ‘Creusot: A Foundry
for the Deductive Verification of Rust Programs’. In: Formal Methods and
Software Engineering. Ed. by Adrian Riesco and Min Zhang. Vol. 13478.
Series Title: Lecture Notes in Computer Science. Cham: Springer Inter-
national Publishing, 2022, pp. 90–105. isbn: 978-3-031-17243-4 978-3-031-
17244-1. doi: 10.1007/978- 3- 031- 17244- 1_6. url: https://link.
springer.com/10.1007/978-3-031-17244-1_6 (visited on 11/01/2023).

[Fou21] Clément Fournier. ‘A Rust Backend for Lingua Franca’. Master’s Thesis. TU
Dresden, Dec. 2021.

[Jun+17] Ralf Jung et al. ‘RustBelt: securing the foundations of the Rust programming
language’. In: Proceedings of the ACM on Programming Languages 2 (POPL
27th Dec. 2017), 66:1–66:34. doi: 10.1145/3158154. url: https://doi.
org/10.1145/3158154 (visited on 16/01/2023).

[KN19] Steve Klabnik and Carol Nichols. The Rust programming language. San Fran-
cisco: No Starch Press, 2019. 526 pp. isbn: 978-1-71850-044-0.

[LAL18] Marcus Lindner, Jorge Aparicius and Per Lindgren. ‘No Panic! Verification
of Rust Programs by Symbolic Execution’. In: 2018 IEEE 16th International
Conference on Industrial Informatics (INDIN). 2018 IEEE 16th Interna-
tional Conference on Industrial Informatics (INDIN). ISSN: 2378-363X. July
2018, pp. 108–114. doi: 10.1109/INDIN.2018.8471992.

[Loh+20] Marten Lohstroh et al. ‘Reactors: A Deterministic Model for Composable
Reactive Systems’. In: Cyber Physical Systems. Model-Based Design. Ed. by
Roger Chamberlain, Martin Edin Grimheden and Walid Taha. Vol. 11971.
Series Title: Lecture Notes in Computer Science. Cham: Springer Interna-
tional Publishing, 2020, pp. 59–85. isbn: 978-3-030-41130-5. doi: 10.1007/
978-3-030-41131-2_4. url: http://link.springer.com/10.1007/978-
3-030-41131-2_4 (visited on 18/10/2022).

[Loh20] Marten Lohstroh. ‘Reactors: A Deterministic Model of Concurrent Compu-
tation for Reactive Systems’. Issue: UCB/EECS-2020-235. PhD thesis. EECS
Department, University of California, Berkeley, Dec. 2020. url: https://
www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-235.html.

73

https://hal.inria.fr/hal-01960203
https://hal.inria.fr/hal-01960203
https://en.cppreference.com/w/cpp/container/vector/push_back
https://en.cppreference.com/w/cpp/container/vector/push_back
https://hal.archives-ouvertes.fr/hal-03827702/document
https://doi.org/10.1007/978-3-031-17244-1_6
https://link.springer.com/10.1007/978-3-031-17244-1_6
https://link.springer.com/10.1007/978-3-031-17244-1_6
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1109/INDIN.2018.8471992
https://doi.org/10.1007/978-3-030-41131-2_4
https://doi.org/10.1007/978-3-030-41131-2_4
http://link.springer.com/10.1007/978-3-030-41131-2_4
http://link.springer.com/10.1007/978-3-030-41131-2_4
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-235.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-235.html

[LR91] William Landi and Barbara G. Ryder. ‘Pointer-induced aliasing: A problem
classification’. In: Proceedings of the 18th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages. 1991, pp. 93–103.

[Mat+22] Yusuke Matsushita et al. ‘RustHornBelt: a semantic foundation for func-
tional verification of Rust programs with unsafe code’. In: Proceedings of
the 43rd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation. PLDI ’22: 43rd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation.
San Diego CA USA: ACM, 9th June 2022, pp. 841–856. isbn: 978-1-4503-
9265-5. doi: 10.1145/3519939.3523704. url: https://dl.acm.org/doi/
10.1145/3519939.3523704 (visited on 18/10/2022).

[MB08] Leonardo de Moura and Nikolaj Bjørner. ‘Z3: An Efficient SMT Solver’. In:
Tools and Algorithms for the Construction and Analysis of Systems. Ed. by
C. R. Ramakrishnan and Jakob Rehof. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 2008, pp. 337–340. isbn: 978-3-540-78800-3.
doi: 10.1007/978-3-540-78800-3_24.

[MSS16] P. Müller, M. Schwerhoff and A. J. Summers. ‘Viper: A Verification Infra-
structure for Permission-Based Reasoning’. In: Verification, Model Checking,
and Abstract Interpretation (VMCAI). Ed. by B. Jobstmann and K. R. M.
Leino. Vol. 9583. LNCS. Springer-Verlag, 2016, pp. 41–62. doi: 10.1007/
978-3-662-49122-5_2. url: http://pm.inf.ethz.ch/publications/
getpdf.php?bibname=Own&id=MuellerSchwerhoffSummers16.pdf.

[MTK21] Yusuke Matsushita, Takeshi Tsukada and Naoki Kobayashi. ‘RustHorn: CHC-
based Verification for Rust Programs’. In: ACM Transactions on Program-
ming Languages and Systems 43.4 (31st Dec. 2021), pp. 1–54. issn: 0164-
0925, 1558-4593. doi: 10.1145/3462205. url: https://dl.acm.org/doi/
10.1145/3462205 (visited on 26/10/2022).

[Nik17] Niko Matsakis. Diving Into Rust For The First Time. 10th Dec. 2017.
url: https : / / www . youtube . com / watch ? v = _jMSrMex6R0 (visited on
01/11/2022).

[OGr22] Stephen O’Grady. The RedMonk Programming Language Rankings: June
2022. tecosystems. 20th Oct. 2022. url: https://redmonk.com/sogrady/
2022/10/20/language-rankings-6-22/ (visited on 27/10/2022).

[ORY01] Peter O’Hearn, John Reynolds and Hongseok Yang. ‘Local Reasoning about
Programs that Alter Data Structures’. In: Computer Science Logic. Ed. by
Laurent Fribourg. Red. by Gerhard Goos, Juris Hartmanis and Jan van
Leeuwen. Vol. 2142. Series Title: Lecture Notes in Computer Science. Ber-
lin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 1–19. isbn: 978-3-
540-42554-0 978-3-540-44802-0. doi: 10.1007/3- 540- 44802- 0_1. url:
http://link.springer.com/10.1007/3- 540- 44802- 0_1 (visited on
16/01/2023).

74

https://doi.org/10.1145/3519939.3523704
https://dl.acm.org/doi/10.1145/3519939.3523704
https://dl.acm.org/doi/10.1145/3519939.3523704
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=MuellerSchwerhoffSummers16.pdf
http://pm.inf.ethz.ch/publications/getpdf.php?bibname=Own&id=MuellerSchwerhoffSummers16.pdf
https://doi.org/10.1145/3462205
https://dl.acm.org/doi/10.1145/3462205
https://dl.acm.org/doi/10.1145/3462205
https://www.youtube.com/watch?v=_jMSrMex6R0
https://redmonk.com/sogrady/2022/10/20/language-rankings-6-22/
https://redmonk.com/sogrady/2022/10/20/language-rankings-6-22/
https://doi.org/10.1007/3-540-44802-0_1
http://link.springer.com/10.1007/3-540-44802-0_1

[Rusa] Rust community. Implementations. The Rust Reference. url: https : / /
doc.rust-lang.org/reference/items/implementations.html (visited
on 07/02/2023).

[Rusb] Rust Lingua Franca runtime authors. ReactionCtx. reactor_rt. url: https:
//www.lf-lang.org/reactor-rs/reactor_rt/struct.ReactionCtx.
html (visited on 25/01/2023).

[Rus20] Rust community. Appendix G - How Rust is Made and “Nightly Rust”. The
Rust Programming Language. 2020. url: https://doc.rust-lang.org/
book/appendix-07-nightly-rust.html (visited on 10/01/2023).

[Rus22] Rust language authors. Overview of the Compiler. Guide to Rustc Develop-
ment. 5th Oct. 2022. url: https://rustc-dev-guide.rust-lang.org/
overview.html (visited on 01/11/2022).

[Rus23] Rust language team. Rust Contracts RFC Draft. 4th Jan. 2023. url: https:
//github.com/rust-lang/lang-team/blob/master/design-meeting-
minutes/2022-11-25-contracts.md (visited on 13/02/2023).

[Sko22] Sarek Høverstad Skotåm. ‘CreuSAT - Using Rust and Creusot to create the
world’s fastest deductively verified SAT solver’. Accepted: 2022-09-20. Master
thesis. 2022. url: https://www.duo.uio.no/handle/10852/96757 (visited
on 14/11/2022).

[Van+22] Alexa VanHattum et al. ‘Verifying dynamic trait objects in Rust’. In: Proceed-
ings of the 44th International Conference on Software Engineering: Software
Engineering in Practice. ICSE ’22: 44th International Conference on Soft-
ware Engineering. Pittsburgh Pennsylvania: ACM, 21st May 2022, pp. 321–
330. isbn: 978-1-4503-9226-6. doi: 10.1145/3510457.3513031. url: https:
//dl.acm.org/doi/10.1145/3510457.3513031 (visited on 01/01/2023).

[Why22] Why3 Development Team. Why3 Documentation. 12th Sept. 2022. url:
https://why3.lri.fr/manual.pdf.

75

https://doc.rust-lang.org/reference/items/implementations.html
https://doc.rust-lang.org/reference/items/implementations.html
https://www.lf-lang.org/reactor-rs/reactor_rt/struct.ReactionCtx.html
https://www.lf-lang.org/reactor-rs/reactor_rt/struct.ReactionCtx.html
https://www.lf-lang.org/reactor-rs/reactor_rt/struct.ReactionCtx.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://doc.rust-lang.org/book/appendix-07-nightly-rust.html
https://rustc-dev-guide.rust-lang.org/overview.html
https://rustc-dev-guide.rust-lang.org/overview.html
https://github.com/rust-lang/lang-team/blob/master/design-meeting-minutes/2022-11-25-contracts.md
https://github.com/rust-lang/lang-team/blob/master/design-meeting-minutes/2022-11-25-contracts.md
https://github.com/rust-lang/lang-team/blob/master/design-meeting-minutes/2022-11-25-contracts.md
https://www.duo.uio.no/handle/10852/96757
https://doi.org/10.1145/3510457.3513031
https://dl.acm.org/doi/10.1145/3510457.3513031
https://dl.acm.org/doi/10.1145/3510457.3513031
https://why3.lri.fr/manual.pdf

	Introduction
	Background
	The Rust programming language
	Ownership semantics
	Unsafe Rust
	Compiler architecture

	Lingua Franca
	Major language components
	lfc

	Formalisation of the rm
	Preliminaries
	Time
	Components
	API for reaction body
	Reaction precedence

	The Rust runtime for Lingua Franca
	Reaction precedence
	Main event loop
	Reaction API
	Runtime metrics

	Rust software verification
	State-of-the-art verification tools
	Kani
	Prusti
	Creusot

	Ownership semantics and verification
	Verification with Creusot
	Verification procedure
	Writing Creusot specifications

	Runtime verification considerations
	Why Creusot
	Using Creusot
	Defining correctness properties

	Properties of a correct runtime
	Termination
	Crash freedom
	Correctness of VecMap
	Formal properties
	Reactor program state
	Constant program specification
	Linear time
	Reaction precedence derived correctly
	Event processing

	Verifying the lf Rust runtime
	Verifying the whole runtime
	Goals
	Approach
	Challenges and solutions
	Conclusion

	Verifying VecMap
	Goals
	Defining the sorted property
	Challenges and solutions
	Reproducing the verification
	Performance
	Conclusion

	Conclusion
	Future work

		2023-03-05T18:01:44+0100
	Johannes Hayess

