
An Equality Saturation Tactic for Lean
Marcus Rossel

Supervised by Andrés Goens

June 21, 2024

Masters Thesis at Technische Universität Dresden
Chair for Compiler Construction

TU Dresden Fakultät Informatik, Institut für Technische Informatik, Professur für Compilerbau

Task Description for Master Thesis

For: Marcus Rossel

Degree program: Informatik (Master)
Matriculation number: 4744651
E-mail: marcus.rossel@tu-dresden.de

Topic: An Equality Saturation Tactic for Lean

Equality saturation is a powerful method in automated reasoning for working with rewrites, allowing one
to explore large rewrite spaces and optimize terms in them. Recent work [2] has shown it to be a practical
method for several applications. In some cases, fully automatic approaches do not scale well, when the
search spaces become too large. Guided equality saturation [1] has shown semi-automatic approaches
to be very effective in this case. In particular, it showcases a prototype of a proof tactic in the Lean
Theorem Prover, based on the egg library. This allows proof sketches to be written in a manner akin
to pen-and-paper proofs, leaving out details and skipping steps. However, this prototype is limited: it
supports only a small fragment of Lean and does not take advantage of many other capabilities of the
underlying library, egg. The goal of this thesis is to improve on the current implementation to support a
larger fragment of Lean, use more of egg, and be overall more useful in practice. In particular, this Master
Thesis shall include the following tasks. The student shall:

• Learn and understand equality saturation based on e-graphs, as well as the egg library.

• Learn and understand Lean’s expression language and associated metaprogramming functionality.

• Integrate egg with Lean via a proof tactic for automated proofs of equality.

• Evaluate the efficacy of the tactic (and potentially different approaches) by constructing a suitable
test suite.

• Optional: Integrate the tactic with other forms of proof automation, like Aesop.

• Optional: Extend the core egg tactic with conditional rewriting capabilities.

References
[1] Thomas Koehler et al. “Guided Equality Saturation.” In: Proc. ACM Program. Lang. POPL (2024).
[2] Max Willsey et al. “egg: Fast and Extensible Equality Saturation.” In: Proc. ACM Program. Lang.

5.POPL (Jan. 2021). doi: 10.1145/3434304. url: https://doi.org/10.1145/3434304.

Start:
End:
Referee: Prof. Dr.-Ing. Jeronimo Castrillon
Supervisor: Dr. Andres Goens

Prof. Dr.-Ing. Jeronimo Castrillon
(Professor in charge)

Marcus Rossel

Marcus Rossel

Declaration
I declare that I have prepared this thesis independently and that I used only the references
and auxiliary means indicated in the thesis.

Marcus Rossel
Dresden — June 21, 2024

Abstract
Recent years have seen a number of milestones in the use of interactive theorem provers for
formalization and verification of research-level mathematics. The Lean theorem prover, in
particular, has been at the forefront of this development. Yet, formalization still incurs a
large overhead compared to pen-and-paper proofs, thus creating a need for improved proof
automation. At the same time, the e-graph data structure for representing congruence relations
has seen a resurgence in the area of automated term rewriting. In particular, this development
has been fueled by the technique of equality saturation from the field of program optimization,
and a corresponding efficient implementation by the egg library. In [KGB+24], this library
is used to develop a proof of concept proof tactic for equational reasoning in Lean based on
equality saturation. In this thesis, we improve upon this proof of concept and turn it into
practical proof automation. This requires various techniques for bridging the gap between
the semantics of Lean’s λ calculus and the syntax-driven rewriting in e-graphs. We also add
new capabilities such as rewriting under binders, conditional rewriting, and guide terms. Our
results indicate that our proof automation significantly improves upon the proof of concept,
and shows promise for practical applicability.

Contents
1 Introduction 1

2 Equality Saturation with egg 2
2.1 Equivalence Closure with Union-Finds . 2
2.2 Congruence Closure with E-Graphs . 3
2.3 E-Matching . 4
2.4 Equality Saturation . 5
2.5 Explanations . 6
2.6 The egg Library . 8

3 Theorem Proving with Lean 10
3.1 Introduction to Lean . 10
3.2 Type Theory . 12
3.3 Expressions . 15
3.4 Equational Reasoning . 16

4 Equality Saturation Tactic 19
4.1 Overview . 19
4.2 Representations in egg . 20
4.3 Binders in E-Graphs . 22

4.3.1 Invalid Matching . 22
4.3.2 Variable Rebinding . 23
4.3.3 E-Class Substitution . 24
4.3.4 Bound Variable Aliasing . 28

4.4 Definitional Equalities . 29
4.4.1 Normalization . 30
4.4.2 Proof Irrelevance . 31
4.4.3 Natural Number Literals . 31
4.4.4 β- and η-Reduction . 32
4.4.5 Remaining Rules . 33

4.5 Type Classes . 34
4.5.1 Projection Reduction . 35
4.5.2 Specialization . 36

4.6 Proof Reconstruction . 38
4.6.1 Explanation Construction . 38
4.6.2 Proof Generation . 39

4.7 Conditional Rewriting . 42
4.7.1 Conditional Equations . 43
4.7.2 Rewriting Procedure . 44
4.7.3 Proof Reconstruction . 44

4.8 Guidance . 45

5 Evaluation 47
5.1 Comparison to Tactic Prototype . 47
5.2 Library Tests . 50

6 Conclusion 53

A Results of Comparison to Tactic Prototype 55

B Results of Library Tests 56

References 57

1 Introduction
In recent years, machine-checkable formalization of mathematics has seen an increase in popu-
larity. While landmark projects like the computer-assisted proofs of the Kepler Conjecture
and the Four Color Theorem have existed for decades, they differ from “normal” mathe-
matics in that they initially required computer-assistance for the mere computational power.
In contrast, more recent notable formalization projects target current research mathematics
[BCM20, PS23, TT23]. Aside from the immediate upside of automated verification of correct-
ness, these projects aim to reap novel benefits of formalization, like digitization and indexing
of mathematical theorems, and large-scale collaboration [Rin24, Mas21]. A major hurdle in
this endeavor is the large overhead involved in translating pen-and-paper mathematics into
machine-checkable form, as computer systems require meticulously detailed definitions and
proofs. A direct means of combating this issue is by improving proof automation. The related
field of automated theorem proving has been pursued since at least the 1950s [HUW14], and
has given rise to many successful decision procedures. Most notably, SAT solvers for deciding
satisfiability of propositional formulas, which are also used in various other procedures like
answer set programming, satisfiability modulo theories and bounded model checking. While
automated theorem proving has thus proven useful for specific problem domains, it has seen lim-
ited success in the realm of general mathematical reasoning. The more prominent approach in
this area is interactive theorem proving, a field aimed at constructing proofs by the interaction
and guidance of a human and a computer. Important milestones in this area include the sys-
tems Automath (1968) [dB68] which introduced proofs as first-class objects, LCF (1972) which
ensured that proofs can only be constructed by operations corresponding to inference rules,
and HOL (1980s) which emphasized the use of conservative extensions over axioms [Gor00].
The ideas introduced in these systems, as well as the mathematical field of type theory, lay the
foundations for the expressiveness and trustworthiness of modern interactive theorem provers
like Isabelle/HOL, Coq, and Lean. However,

“opinions on the relative values of automation and interaction differ greatly. To
those familiar with highly efficient automated approaches, the painstaking use of
interactive provers can seem lamentably clumsy and impractical by comparison.
On the other hand, attacking problems that are barely within reach of automated
methods (typically for reasons of time and space complexity) often requires prodi-
gious runtime and/or heroic efforts of tuning and optimization, time and effort that
might more productively be spent by simple problem reduction using an interactive
prover.” [HUW14]

It should therefore come as no surprise that automated and interactive theorem provers
have seen an exchange of ideas in an attempt to mitigate their respective weaknesses. While
automated theorem provers are introducing more flexible and expressive languages1, interactive
theorem provers are improving their automation capabilities. This has also led to more sym-
biotic approaches where interactive theorem provers are used as frontends which rely on auto-
mated theorem provers as backends. A prominent example of this is Sledgehammer [BBN11],
which uses Isabelle/HOL as a frontend and calls various backends like SMT solvers, linear
arithmetic solvers, and superposition provers.2

“Sledgehammers and machine learning algorithms have led to visible success. Fully
automated procedures can prove 40% of the theorems in the Mizar math library,
47% of the HOL Light/Flyspeck libraries, with comparable rates in Isabelle. These
automation rates represent an enormous savings in human labor.” [BKPU16]

Other theorem provers, like Lean, have seen a slightly different approach towards proof
automation. Instead of a large “hammer tactic”, it features an abundance of smaller domain-
specific proof automation tools. For example, in this thesis, we consider proof automation for

1For example, in TLA+ [Lam99].
2https://isabelle.in.tum.de/dist/doc/sledgehammer.pdf

1

https://isabelle.in.tum.de/dist/doc/sledgehammer.pdf

equational reasoning in Lean, introduced in [KGB+24]. The tool is based on a single proof
automation backend for equality saturation [TSTL09], which is a technique for automated term
rewriting based on e-graphs [NO80]. While e-graphs are usually used for congruence closure
inside of tools like SMT solvers, they have seen more widespread use in recent years. This
is, in part, a result of an efficient implementation for e-graphs and equality saturation by the
egg library [WNW+21]. By connecting Lean to egg, [KGB+24] develops a proof of concept
for automated equational reasoning, which exhibits capabilities which are currently lacking in
other prominent proof automation tools. In particular, by virtue of equality saturation, it is
able to perform rewriting without getting stuck at locally optimal solutions, whereas existing
proof automation (like simp) performs greedy rewriting up to a local optimum. However, the
implementation of [KGB+24] is intended only as a proof of concept, and does not hold up in
practical use. Thus, in this thesis, we revisit their approach and try to improve it up to the
point of practical usability. A major component of this is handling the differences between
Lean’s expression semantics and the syntax-driven approach of e-graphs. Understanding these
differences requires background in Lean’s type theory and implementation, as well as e-graphs
and equality saturation. Thus, we start by introducing equality saturation and egg in Sec-
tion 2, and Lean and its underlying theory in Section 3. Subsequently, we develop our proof
automation for equational reasoning in Section 4, and finally evaluate it in Section 5.

2 Equality Saturation with egg
Egg is a Rust library for equality saturation, a technique for rewriting expressions while main-
taining a congruence relation over them. Equality saturation is used for program optimization
[TSTL09, Kœh22, KGB+24] as well as automated theorem proving [DMB08, KGB+24]. In
this section, we first review the techniques underlying equality saturation and then show how
egg builds on and modifies them.

2.1 Equivalence Closure with Union-Finds
The need for efficient representations of equivalence relations in computers goes at least as
far back as the 1960s. In [AGG61] equivalence relations are represented as a sequence of
equivalence declarations. An equivalence declaration is a list of elements which are declared to
be equivalent, like (x, 5). A sequence of equivalence declarations then represents an equivalence
relation by taking the equivalence closure over the equivalence declarations. For example, if
we have an equivalence relation defined by (x, 5)(z, x)(4, w), then the elements in the first two
equivalence declarations belong to the same equivalence class (as they share x), while the last
equivalence declaration forms its own equivalence class. Determining whether given elements
belong to the same equivalence class thus requires an algorithm. In the subsequent work
[GF64], summarized in [Knu97], equivalence declarations are no longer used to represent the
equivalence relation but are rather taken to be inputs used to construct directed trees which
represent the equivalence relation. Each tree represents a distinct equivalence class with the
root node being the (arbitrary) representative of the class. An example of this is shown in
Figure 1.

z

5 x

4

w

Figure 1: Tree-representation of the equivalence relation {{x, 5, z}, {4, w}}.

Based on this representation, checking equivalence of two elements can be reduced to check-
ing whether they belong to equivalence classes with the same representative. The operation
of finding the representative of the class of a given element e is aptly called the find operation

2

and is easily implemented by traversing upwards from e until a root node is found. For this
approach to work, we need to maintain the property that equivalent elements are members
of the same tree. Thus, we need to merge existing trees if any of their members are declared
to be equivalent by a new equivalence declaration. As merging trees corresponds to taking
the union of their equivalence classes, we call the associated operation union. Merging trees is
easily achieved by attaching the representative of one tree as a child of the representative of
the other tree.

As the data structure we have described is based on a tree structure with union and find
operations it has become known as a union-find. The union and find operations can be made
more efficient by performing maintenance steps as outlined in [Tar75]. When performing a
find, the children visited during the traversal of the tree can be added as direct children of the
representative in order to flatten the tree (which leads to faster finds). A similar optimization
is achieved by ensuring that union operations attach the tree with fewer node as a child of
the tree with more nodes. With both of these techniques applied, the time it takes to perform
u unions with f > u intermixed finds is bounded by Θ(f · α(f, u)) where α is “related to a
functional inverse Ackermann’s function and [thus] very slow-growing” [Tar75, NO05]. Thus,
unions and finds are practically constant amortized time operations.

2.2 Congruence Closure with E-Graphs
While union-finds can be used for constructing equivalence relations, they cannot maintain
congruence relations without additional information. The notion of congruence is only mean-
ingful in a context where the elements of the union-find are known to be terms constructed
from applications of function symbols. Thus, [NO80] uses a union-find in conjunction with a
labeled DAG, called the term graph, for representing the structure of terms. Each node in the
term graph represents the term obtained by traversing the graph starting at the given node.
The union-find then constructs equivalence classes over the nodes of the term graph as shown
in Figure 2a.

(a)

Term graph for
{a, b, f(a), g(a, b), f(g(a, b))}

f f

g

ba

n1

n2

n3

n4

n5

Union-find for
f(a) ≈ g(a, b) ≈ b

n1

n4 n5

n2

n3

f(a) ≈ g(a, b) ≈ b ≈ a

(b)

n2

n1

n4 n5

n3

union(n2, n4)

Figure 2: (a) Example of an e-graph as in [NO80]. (b) Example of how union does not preserve
congruence.

The combination of a union-find and a term graph has become known as an e-graph [Nel80].
The equivalence classes of the union-find are then called e-classes with the nodes of the term
graph being e-nodes. By ensuring that a given term is represented by at most one e-node in
the term graph, the e-graph’s relation maintains reflexivity while also keeping the term graph
compact. Symmetry and transitivity of the relation are retained by checking equivalence via
find . Maintaining congruence, instead of just equivalence, in an e-graph’s union-find requires
additional work. The reason being that unions do not uphold congruence, as shown in Fig-
ure 2b. Here we apply union to the e-nodes representing a and g(a, b), but the e-nodes of

3

the now congruent f(a) and f(g(a, b)) remain in separate e-classes. Thus, we introduce a
new merge operation for processing equivalence declarations, which extends union such that
congruence of the e-graph’s relation is maintained.

For this, we first define the notion of congruence over e-nodes. Given an e-node n, let λ(n)
be its label, δ(n) its out-degree and n[i] its ith child in the term graph. We call e-nodes n1

and n2 congruent if

1. λ(n1) = λ(n2)

2. δ(n1) = δ(n2)

3. ∀ 1 ≤ i ≤ δ(n1), n1[i] and n2[i] are congruent

Given equivalence declaration (n1, n2), where n1 and n2 are e-nodes, the merge operation
then performs the following steps.

1. If n1 and n2 are already in the same equivalence class, do nothing.

2. Otherwise, collect all parent nodes P1 and P2 pointing to n1 and n2 respectively in the
term graph.

3. union(n1, n2)

4. For each pair of parent nodes p1 ∈ P1 and p2 ∈ P2, if find(p1) ̸= find(p2), λ(p1) = λ(p2),
and all their children are pairwise equivalent, then merge(p1, p2).

Thus, the given e-nodes are unioned, while all nodes which have become congruent as a
result are unioned, as well. Accordingly, this operation comes at a higher runtime cost with
merge taking O(m) amortized time, where m is the number of edges in the term graph.

Congruence closure with e-graphs has been adopted in the legacy SMT solver Simplify
[DNS05] as well as the widely successful SMT solver Z3 [DMB08]. Notably, both of these sys-
tems rely on a technique called e-matching for enabling equivalence declarations with quantified
variables.

2.3 E-Matching
The congruence closure procedure presented in Section 2.2 works only on equivalence decla-
rations relating ground terms, that is, terms containing no quantified variables. Thus, they
cannot encode universally quantified theorems like ∀x ∈ N : x = x+0. In the context of SMT
solvers, “[t]he typical solution to this problem is to generate ground instances of the quantified
[formulas] and hope that the particular instances generated are the ones required” [MŁK08]. To
determine which ground instances to generate, a common approach was pioneered by [DNS05].
It considers only those instances relevant which instantiate the quantified variables in such a
way that the resulting ground terms are congruent to terms already contained in the term
graph. Or stated conversely, it deems all instances irrelevant which contain terms not rep-
resented in the current e-graph. The problem of finding such relevant instances is called the
e-matching problem and, following [MŁK08], can be stated as follows.

Given a set of constant and function symbols Σ and a set of variables V, let T denote the
set of terms over Σ and V.3 For a ∈ T , let Va be the set of variables contained in a. Given an
e-graph e, we denote by G ⊆ T the set of ground terms represented by e’s term graph, with
R ⊆ G being those ground terms which are the representatives of their e-class (their e-nodes
are fixed points under find). We write a1 ≈e a2 to mean that ground terms a1 and a2 are
congruent according to e. The solution to the e-matching problem for pattern term p ∈ T is
then the set of substitutions:

S = {σ : Vp → R | ∃ g ∈ G, σ′(p) ≈e g}
3More precisely, the set of Σ-terms over V as defined in [FV22].

4

By σ′ we denote the homomorphic extension of σ to a function with signature T → G.
Having σ only map to terms which are representatives of their e-class has the effect of avoiding
redundant substitutions. Namely, those which would result in congruent ground terms. Based
on e-matching, we can compute the congruence closure in an e-graph e with respect to a
quantified equation ∀x1, ..., xn : lhs = rhs as follows.

1. Compute S by e-matching on the pattern term lhs with V = {x1, ..., xn}.

2. For each equivalence declaration (l, r) in {(σ′(lhs),σ′(rhs)) | σ ∈ S}, add l and r to e’s
term graph and merge(l , r).

There are two important caveats to this procedure. First, our choice of e-matching on lhs
instead of rhs causes problems as soon as Vrhs ̸⊆ Vlhs , because then σ′(rhs) is not a ground
term. Thus, we only match on lhs if Vrhs ⊆ Vlhs , and match on rhs if Vlhs ⊆ Vrhs . We call
the chosen pattern term the trigger. For some theorems, variable inclusion is given in neither
direction which makes them incompatible with this procedure. Second, the given procedure
does not necessarily compute the (full) congruence closure with respect to the given equation.
The reason being that applying this procedure may produce new terms which can thus not
have been considered during e-matching. Hence, for some equations like ∀x ∈ N : x = x + 0,
the procedure would have to repeated infinitely often to construct the full congruence closure.

We have not provided an algorithm for e-matching. In theory, deciding whether S = ∅ for a
fixed e-graph and pattern is NP-hard [MŁK08]. In practice, this tends not to be a problem as
the number of variables in a pattern is usually small. Thus, despite the discouraging runtime
complexity, efficient e-matching algorithms have been developed in [DMB07] and more recently
combined with techniques from relational databases queries in [ZWWT21]. Aside from use in
SMT solvers, congruence closure with e-matching has also enabled a technique called equality
saturation which lies at the heart of egg.

2.4 Equality Saturation
Equality saturation is a technique which uses congruence closure with e-matching for efficiently
rewriting terms. The idea is developed in [TSTL09] for the domain of program optimization
with the goal of addressing the phase ordering problem: Given a program and a set of opti-
mizations, in which order should the optimizations be applied such that the resulting program
is optimal with respect to a given metric? The fundamental problem is that applying an opti-
mization is destructive (it replaces a program with a new one) which may change how effective
subsequent optimizations are, or whether they are even applicable. To sidestep this problem,
the approach of equality saturation is to simply try all orders of optimizations. Naively, this
creates factorially many versions of the program. The solution to this combinatorial explosion
is the use of e-graphs and congruence closure to maximize sharing of equivalent subprograms.

In order to apply e-graphs to the problem, two prerequisites need to be fulfilled. First,
programs need to be expressed as elements of some term language. Second, optimizations need
to be expressed as (quantified) equivalence declarations. The former is achieved in [TSTL09] by
introducing an intermediate representation (PEGs), while the latter requirement is partially
lifted by generalizing equivalence declarations as follows. Instead of consisting of a simple
quantified equality, they are taken to be a pair consisting of a trigger pattern and a callback
function which receives the substitutions after e-matching. The callback can then modify the
e-graph as needed, which allows for “normal” congruence closure with e-matching, but also
custom rewriting logic. We start calling these generalized equivalence declarations rewrites or
rewrite rules from here on.4

With these two requirements fulfilled, equality saturation is a rather simple procedure.
Given an e-graph e containing initial terms (like a program to be optimized), and a set of
rewrites R (like program optimizations):

4These generalized equivalence declarations are called equality analyses in [TSTL09] – not to be confused
with e-class analyses in egg.

5

1. Apply each rewrite in R to e.

2. If e is unchanged after Step 1 or if a given exit condition is met, complete. Otherwise,
go to Step 1.

When this procedure completes because e remained unchanged after applying rewrites, we
say that we have saturated. That is, we have reached a fixed point under (the closure operator
of) application of rewrites. In this case, we know that e is the full congruence closure with
respect to R. As discussed in the previous section, computing the full congruence closure with
e-matching may require infinitely many iterations, so equality saturation does not always satu-
rate. Thus, a suitably chosen exit condition, like a bounded number of iterations or a timeout,
are generally required to ensure termination. Once equality saturation terminates, the e-graph
represents all rewritten (and non-rewritten) versions of terms with a congruence relation over
those terms. This result can be used in various ways. In the case of program optimization, the
next step would be to extract a concrete program from the e-graph. In particular, a program
which is known to be equivalent to the initial program and which minimizes some cost function.
Another use case is to approximate the solution to the ground word problem in the domain of
equational reasoning and term rewriting [BN98], which is the primary use case in this thesis.
The ground word problem for a set of (quantified) equations E and ground terms t1 and t2 is
the problem of deciding whether t1 = t2 is a semantic consequence of E . Intuitively, this is the
case if all assignments of variables which satisfy all equations in E also satisfy t1 = t2.5 The
ground word problem is undecidable in general, but is decided by congruence closure when the
equations in E do not contain variables. This coincides with our observation that introducing
e-matching to handle quantified equations does not necessarily construct the full congruence
closure anymore. Solving, or rather approximating, the ground word problem is useful for the-
orem proving as it automates equational reasoning. In the case of interactive theorem proving,
this generally comes with the additional requirement of wanting to know why the given equa-
tion holds – that is, which steps were taken to prove the equation. To satisfy this, congruence
closure needs to be extended with a procedure for constructing proof witnesses.

2.5 Explanations
In the context of congruence closure, proof witnesses are usually called explanations. This
follows [NO05], which introduced the first procedure for constructing explanations. In its most
basic form, the procedure is stated for equivalence relations with atomic terms and solves the
following problem. Given terms a and b and a union-find constructed from equivalence decla-
rations U = {(t1, t2), ..., (tn−1, tn)}, find the minimal subset E ⊆ U such that a is equivalent
to b in the equivalence closure of E . Note that E has no order over its elements, though in
practice we do require an order and can easily construct it from E . Two solutions to the
explanation problem are given in [NO05]. The first procedure is based on labeling the edges
of the union-find with equivalence declarations. This takes O(k · log(k)) time to produce an
explanation with k declarations while maintaining the optimal time bounds for union and find .
In the following, we focus on the second procedure which aims to achieve an optimal O(k) time
bound to produce an explanation with k declarations. For this purpose, we maintain a proof
forest structure. This is a graph where edges connect exactly those terms which are related
by an equivalence declaration. Notably, this graph will always be a collection of trees where
equivalent elements are contained in the same tree.6 Based on such a graph, we can construct
an explanation between terms a and b by collecting the equivalence declarations on the path
connecting a and b. The explanation problem is thus reduced to efficiently finding a path
between given terms a and b. We achieve this by rooting each tree in the forest at an arbitrary
node and directing each edge towards the root. The desired path can then be found by travers-
ing to the root from both a and b. Unfortunately, this root directedness needs to be explicitly
maintained in unions, as shown by the example in Figure 3. When an equivalence declaration

5This notion is defined more precisely as Definition 3.5.3 in [BN98].
6This property only holds if union ignores redundant equivalence declarations.

6

(t1, t2) introduces an edge between previously unconnected proof trees and we choose t1’s root
to be the new root of the combined tree, then t2’s tree needs to be rerooted at t2, thus flipping
the direction of all edges connecting t2 to its root. This slows down unions to be amortized
O(log(n)) in a union-find constructed from n unions.

a

b c

d e

f

g h

f

g h

e

c

ad

b

merge(g, e)

Figure 3: Merging of proof trees which involves flipping (the dashed) edges.

The given procedure works in the context of equivalence closure, but needs to be adjusted
for congruence closure. This follows immediately from the observation that terms may be-
come equivalent by means of congruence and thus can only be explained to be equivalent by
equivalence of their children, instead of an equivalence declaration. For example, consider the
e-graph from Figure 2. Here, merging the e-classes of n2 and n4 entails merging of n1 and
n3, whose equivalence must therefore be explained by the equivalence of their children. While
a solution to this is already described in [NO05], we consider the technique from [FCW+22],
which is closest to the one used by egg. It replaces the notion of a proof forest with that of a
c-graph. A c-graph (V,E, j) is an undirected labeled graph where terms in V are connected by
edges in E only if they have been shown to be equivalent either by an equivalence declaration
or by congruence. The labeling function j assigns to each edge a justification where j((t1, t2))
is either:

1. The equivalence declaration (t1, t2).

2. A pair (t1[i], t2[i]) for some child term index i.

Thus, if terms t1 and t2 are congruent, they may be connected by multiple edges, one for
each pair of equivalent children. We call the edges used to show congruence of terms congruence
edges. As with proof forests, constructing an explanation from a c-graph amounts to finding a
path between terms t1 and t2. However, now each congruence edge encountered on the path
yields an explanation problem of its own. Namely, the equivalence of the associated child nodes
must be explained. Thus, explanations become DAGs where congruence steps have children
which are themselves explanations. This representation of explanations can still be flattened
into a linear sequence of proof steps, though.

Finding explanations which are minimal with respect to the DAG size (the number of
non-congruence edges) is NP-complete. As an alternative, [FCW+22] proposes two algorithms
which optimize for tree size. The tree size of a path connecting terms t1 and t2 is the sum of
the number of non-congruence edges and the tree sizes of the paths explaining the congruence
edges. Optimizing this metric is useful as it relates to the number of proof steps obtained from
flattening an explanation. A tree size optimal explanation can be constructed in O(n3) time
for a c-graph with n nodes.7 A non-optimal explanation can be constructed using a greedy
algorithm in O(d · log(d)) time, where d is the number of equivalence declarations. This greedy
algorithm is currently the only option for explanation size optimization in egg.

7Technically it can be O(n5) when the number of congruence edges is O(n2), whereas it is O(n) in practice.

7

2.6 The egg Library
At a high level, egg [WNW+21] is a library for performing equality saturation with support for
explanations. However, as it strives to be efficient and applicable in a wide range of domains,
it introduces significant modifications to the structures shown above. These warrant closer
consideration.

E-Graphs Egg’s approach to e-graphs differs from the conventional definitions. We can
motivate this approach by considering how we treat terms in an e-graph. In our definition
above, each term corresponds to an e-node in the e-graph’s term graph. E-classes are then
constructed over e-nodes. This makes it easy and efficient to check whether two terms are
equivalent, but makes it difficult to consider the entire set of terms represented by a given
e-class. To enumerate the set of terms, it does not suffice to consider all e-nodes in a given
e-class and then find the terms of those e-nodes in the term graph. As an example of how this
fails, consider Figure 4.

f

a b

n1

n2 n3

n1

n2

n3

f

a b

n1

n2 n3

n1

n2

n3

merge(n2, n3)

Figure 4: The merge operation does not affect term graphs.

Here we start with a term graph containing f(a) and b. We then merge a and b which
merges their e-classes, but notably does not change the term graph. As a result, if we consider
which terms are represented by f ’s e-class, we will only discover f(a). A solution to this
problem is to consider the children of an e-node as representing their respective e-class and not
just a concrete e-node. Thus, when enumerating all terms starting at f ’s e-node, we consider
all e-nodes in a’s e-class as children and thus find both f(a) and f(b). This view of e-nodes,
as representing terms up to equivalence, is fully embraced in egg and changes how we define
e-graphs, e-classes and e-nodes. Namely, in egg, an e-node is a constant symbol or a function
symbol applied to opaque e-class identifiers. An e-class is then a set of e-nodes, which, notably,
is not maintained by a union-find anymore, but instead by separate structures in the e-graph.
An e-graph is a structure (U,M,H) where:

• U is a union-find over e-class ids.

• M is a map from e-class ids to e-classes with the invariant that for equivalent ids c1 and
c2 we have M(c1) = M(c2).

• H is a map from e-nodes to e-class ids.

That is, the union-find maintains an equivalence over e-class identifiers, M holds the actual
e-classes (the sets of e-nodes), and H provides an efficient inverse to M . As this construction
removes the notion of a term graph, we visualize e-graphs as a single structure as shown in
Figure 5.

8

f

a b

c1

c2 c3

f

a b

c1

c2, c3
merge(c2, c3)

Figure 5: The e-graphs of Figure 4 in egg’s e-graph representation.

Dashed lines depict e-classes, while solid boxes depict e-nodes. Note that e-nodes’ children
(depicted by arrows) are e-classes instead of e-nodes, and thus e-nodes represent multiple
concrete terms. Namely, an e-node f(c1, ..., cn) represents a term f(t1, ..., tn), if the e-class
identified by ci represents term ti for each 1 ≤ i ≤ n. And an e-class represents a term t, if it
contains an e-node representing t.

E-Matching An immediate consequence of egg’s approach to e-graphs is that the substi-
tutions returned by e-matching map variables to e-class ids instead of ground terms. Thus,
we can no longer obtain a single ground term by applying a substitution to a pattern term.
As a result, e-matching on a pattern term p in egg yields not only a substitution σ but also
the e-class id of the e-class which represents the terms obtained by applying σ to p. For an
example, consider Figure 6a.

g

f

a b

c1

c2

c3

(a)

g

af b

c1

c2, c3
merge(c2, c3)

(b)

Figure 6: Examples for demonstrating e-matching in egg’s e-graphs.

Here, e-matching on pattern term g(f(x)) with variables {x} yields the substitution x *→ c3
and e-class id c1. As such, we cannot distinguish whether e-matching matched the ground term
g(f(a)) or g(f(b)), as terms are only considered up to equivalence.

Considering terms only up to equivalence also means that applying rewrites can yield loops
in the e-graph. For example, in Figure 6b we show the result of applying the rewrite f(x) = x
with variables {x} to the e-graph from Figure 6a. E-matching on f(x) yields the substitution
x *→ c3 and the e-class id c2. Continuing with the regular procedure for congruence closure
with e-matching, we merge the e-classes c2 and c3 and thus obtain the e-graph shown in
Figure 6b. The self-loop of c2 implies that the e-class represents the infinite set of terms
{a, b, f(a), f(b), f(f(a)), f(f(b)), ...}. Hence, egg can sometimes construct the full congruence
closure in a single step, when it would have required an infinite number of steps when using an
explicit term graph. A downside of this is that traversing an e-graph requires additional care
as it may not be acyclic.

9

E-Class Analysis In the context of equality saturation, we have established that a rewrite is
a pair of a trigger pattern and a callback which can perform operations on the e-graph using the
substitutions from e-matching on the pattern term. When substitutions yield ground terms,
we can obtain concrete syntactic information from them. For example, we can determine that
the term 1+2 is eligible for constant folding and use this in a rewrite which adds the term 3 to
the same e-class. As egg’s e-matching yields only e-class ids, we don’t have concrete syntactic
information. Instead, egg introduces the mechanism of e-class analysis for attaching semantic
information to e-classes. An e-class analysis operates over a domain D and associates a value
dc ∈ D with each e-class c. For example, we can implement constant folding as above using
an e-class analysis where D = N ∪ {⊥} which associates with each e-class c the value n ∈ N
if c represents a constant value n, and ⊥ if it does not represent a constant value. Thus,
if we e-match on the pattern x + y with variables {x, y} and obtain the e-class id c+ and a
substitution {x *→ cx, y *→ cy}, then we can check whether both dcx , dcy ∈ N and, if so, add
the constant dcx + dcy to the e-class identified by c+.

Defining a concrete e-class analysis requires two operations. The make operation constructs
the analysis value for a given e-class when it is initially constructed from a new e-node. The
join operation is used to determine the new analysis value when two e-classes are merged.
Notably, (D, join) needs to form a semilattice by join being associative, commutative and
idempotent. This is necessary to uphold the analysis invariant:

∀ c, dc = join {make(n) |n ∈M(c)}

It ensures that the analysis value of a given e-class is only a function of its e-nodes and does
not depend on the order in which it was computed or by which merges it has been derived.
From a more practical standpoint, ensuring these properties of join can help uncover cases
where the value of an e-class analysis is not actually invariant for all e-nodes in an e-class. For
example, a join operation for constant values, as in the example above, needs to decide how to
reconcile joining analysis values d1, d2 ∈ N where d1 ̸= d2. Intuitively, such a join should never
occur as it means that we are merging e-classes containing e-nodes with non-equal values. Yet,
in practice, unsound rewrites could lead to such a scenario, so join could decide to either crash
or apply an arbitrary function satisfying the semilattice laws like min or max .

E-class analyses are useful for two categories of rewrites which egg calls conditional and
dynamic rewrites. A conditional rewrite only takes effect if a given condition is met. This is
used in the example above, by performing constant folding only if dcx , dcy ∈ N. A dynamic
rewrite constructs its result based on the results of e-matching. In the example above, the
term dcx + dcy could only be constructed after cx and cy had become known. Conditional
and dynamic rewrites are instrumental in performing rewrites which are not expressible as
theorems of the form ∀x1, ..., xn : lhs = rhs .

3 Theorem Proving with Lean
In this section we introduce the Lean theorem prover and its underlying theory. This overview
is intentionally incomplete, as we focus on those aspects which are relevant for this thesis.

3.1 Introduction to Lean
Lean is an interactive theorem prover and functional programming language. As such, it
allows for creation and compilation of computer programs, while also enabling formalization of
mathematical statements and proofs about these programs or any other mathematical objects.
The seamless connection between these two aspects of Lean is achieved by its very expressive
type system. Most prominently, this type system includes dependent functions. These are
functions where the output type can depend on an input term. As an example, consider the
following definition of a function which takes a term a of some type α, and returns a list
containing the single element a:

10

def List.singleton : (α : Type) → (a : α) → List α := fun α a => [a]

We define the type of this function in curried form, as this is idiomatic and convenient in
Lean. As a syntactic convenience, it is common to use the equivalent form:

def List.singleton (α : Type) (a : α) : List α := [a]

Notably, this function takes the type α as a regular function argument. All subsequent
arguments, as well as the return type, can then refer to α. Thus, both a and the return type
List α depend on α. Dependent functions are especially prevalent in conjunction with inductive
types, which are Lean’s main mechanism for declaring new types:

inductive Vector (α : Type) : Nat → Type where
| nil : Vector α 0
| cons : α → (n : Nat) → Vector α n → Vector α (n + 1)

This inductive declaration states that for each type α and natural number n, Vectorα n is a
type (of lists of length n). Its first constructor Vector.nil constructs a list of length 0. The second
constructor Vector.cons takes a term of type α and a vector of a given length n and produces a
vector of length n+ 1. Thus, the type of vectors is parameterized8 by terms which are not types
(natural numbers in this example), which exceeds regular parametric polymorphism [Pie02].
Another common form of polymorphism in Lean are type classes [WB89, SO08]. Type classes
are similar to what would be called interfaces in Java or traits in Rust:

class Add (α : Type) where
add : α → α → α

instance : Add Nat where
add := Nat.add

instance : Add String where
add := String.append

#eval Add.add 40 2 -- 42
#eval Add.add "Le" "an" -- "Lean"

In this example, we declare a type class Add which requires conforming types α to provide an
add function. We then define instances of this type class for Nat and String. Lean stores these
instances in a lookup table. When we evaluate Add.add on the values 40 and 2, Lean’s type class
synthesis algorithm constructs an instance of type AddNat (in this case by simply finding it in
the lookup table). The values 40 and 2 are then passed to the add function of the synthesized
instance. Thus, the semantics of Add.add depend on the specific instance synthesized for the
given type. This is reflected in the type of Add.add, where the brackets around inst indicate
that it is a type class argument which will be inferred by type class synthesis:

Add.add (α : Type) [inst : Add α] (a1 a2 : α) : α

Type classes are frequently used in conjunction with notation declarations, such that any
conforming type inherits the notation. For example, Lean defines + notation for Add.add:

infix " + " => Add.add

#eval 40 + 2 -- 42
#eval "Le" + "an" -- "Lean"

Converting between notations based on type classes and their underlying functions will
require special care in our proof automation, and is covered in Section 4.5.

8We would say indexed in this concrete example.

11

Propositions and Proofs Lean’s type system is so expressive that it allows direct encoding
of mathematical objects including propositions and proofs:

def Nat.IsEven (n : Nat) : Prop :=
∃ m : Nat, n = 2 * m

theorem mul_even : ∀ (n k : Nat), IsEven n → IsEven (n * k) := by
intro n k �m, h�
exists m * k
rw [h, Nat.mul_assoc]

Here, we first define an “is even” predicate for natural numbers. Notably, the definition
has no computational interpretation as its return type is a proposition (Prop), not a boolean.
We then state and prove the theorem mul_even claiming that multiples of even numbers are
also even. The proof uses a sequence of proof tactics (intro, exists and rw) to discharge the
proof goal. Proof tactics are programs which run at compile time which we therefore call meta-
programs. Their job is to construct proof terms which Lean can check for correctness. They
are also the primary entry point for creating proof automation, as we will do in this thesis.

Compilation Steps In order to implement our own tactic-based proof automation, we need
to take a closer look at how Lean works under the hood. Lean is self-hosted and extensible by
design [Ull23], and thus its internals are rather accessible. Figure 7 shows how a Lean file is
compiled.

Lean File Syntax Objects Expr Objects Kernel

macro expansion meta-programs

Figure 7: Lean’s compilation pipeline.

Compilation starts by parsing a Lean file into terms of the Syntax type, representing a
parse tree. After a subsequent macro expansion step, the syntax objects are lowered (elabo-
rated) into terms of Lean’s expression type Expr. This type is central to meta-programming
in Lean. Most notably, Expr is compatible with Lean’s kernel which performs type checking.
Within this compilation pipeline, proof tactics can be implemented in multiple ways. One
is by transforming Syntax objects to other Syntax objects via macros. This is common for
light-weight tactics, which compose other tactics. More commonly, tactics are implemented as
meta-programs, which transform Expr objects to other Expr objects. These meta-programs can
build on a variety of monads provided by Lean which give access to important functionality
like type inference, type class synthesis, and unification.

3.2 Type Theory
The common currency in Lean meta-programs are Expr objects. These objects are terms of an
expression language which derives from the calculus of constructions (CoC) [CH88] – a higher-
order typed λ calculus. As some aspects of Lean’s type theory differ significantly from CoC,
we base the following exposition on the canonical reference for Lean’s type theory [Car19]. Its
terms are given by the following grammar:

e ::= x | e e | λx : e, e | ∀x : e, e | Uℓ where x are expression variables
ℓ ::= u | 0 | S ℓ | max (ℓ, ℓ) | imax (ℓ, ℓ) where u are universe variables

As expressions are terms of the expression language, we use the terms “term” and “expres-
sion” interchangeably throughout this thesis. An expression e can be a variable (x), a function
application (e e), a term- or type-level abstraction (λ and ∀), or a type universe (Uℓ) at given

12

universe level (ℓ). We call λ and ∀ binders and note that the type of the bound variable x can
itself be an expression.9 The type-level abstraction ∀x : e, e represents the type of dependent
functions. For nested dependent function types we write ∀(x1 ... xm : α) ... (z1 ... zn : ω), e in-
stead of ∀x1 : α, ..., ∀xm : α, ..., ∀z1 : ω, ..., ∀zn : ω, e. For example, the declaration List.singleton
from above has type ∀(α : U1)(a : α), Listα. The typing judgement α : U1 states that α is
itself a type. That is, type universes like U1 are types whose members are themselves types.
Thus, we can have sequences of typing judgements like 42 : N and N : U1. Subsequently, we
have the typing judgements U1 : U2, U2 : U3, etc. That is, there exists an infinite hierarchy of
type universes Uℓ, where the set of universe levels ℓ contains the standard encoding of natural
numbers in Peano arithmetic by 0 and S ℓ.10 These universes are non-cumulative, meaning
e : Um and m < n does not imply e : Un.11 Instead, there exist universe variables u which
allow definitions to be polymorphic over universe levels. An example of a universe polymorphic
definition is Lean’s List type, where the type (universe level) of Listα depends on the universe
of α. The level constructions max and imax are necessary for cases like the product type ×.
Given α : Uu and β : Uv, we have α×β : Umax(u,v). We do not consider universe levels in depth
in this thesis.

Regarding notation, we use the following conventions from here on out. Non-dependent
functions are sometimes written as e1 → e2 to mean ∀x : e1, e2, where e2 does not refer to x.
We use the wilcard character _ to omit terms when they are clear from context or otherwise
unimportant. And when the type of a bound variable is irrelevant, we simply drop it completely
and write λx, e instead of λx : _, e.

Curry-Howard Correspondence In the infinite hierarchy of type universes, U0 behaves
differently than all its successors. U0 is the universe of propositions, whereas all subsequent
universes contain types of “data”. To make sense of this, we need to consider how propositions
and proofs are represented according to the Curry-Howard correspondence. One of its key ideas
is that propositions are types and proofs are terms. That is, a proposition P is represented as a
type, and a proof p of P is a term of type P (also called an inhabitant of P). In terms of typing
judgements, this means that we have p : P and P : U0. Proving a proposition P thus amounts
to finding an inhabitant of the type P , and checking the correctness of a proof p reduces to
checking the typing judgement p : P . In Lean, type checking is performed by the kernel, and
the correctness of all theorems proven in Lean therefore only depends on the correctness of
the kernel. When proof tactics are used to prove a theorem, they construct proof terms which
are afterwards checked by the kernel. Thus, proof tactics cannot compromise soundness. A
notable caveat to this design is that the kernel can never check whether the proposition being
proven is the one intended by the user. That is, a malicious macro or elaborator can still trick
users into believing that a false statement was proven.

We have already seen two examples of propositions, without explicitly mentioning it: the ∀
and → types. From a computational perspective, they are the dependent and non-dependent
function types. Yet, under the Curry-Howard correspondence they have a logical interpretation
as universal quantification and implication. A proof of an implication P → Q is thus a
function which takes a proof of P and returns a proof of Q. This corresponds to the traditional
mathematical approach of “assuming” P to be true, and then proving Q. Other propositions
like P ∨ Q and P ∧ Q can be defined as the sum and product types of P and Q respectively.
These can both be defined as inductive types, where Prop denotes the type universe U0:
inductive Or (P : Prop) (Q : Prop) : Prop where

| left : P → Or P Q
| right : Q → Or P Q

inductive And (P : Prop) (Q : Prop) : Prop where
| intro : P → Q → And P Q
9Lean’s typing judgement ensures that this expression results in a type. So an expression like λx : 1 + 1, x

can never be well-typed.
10This hierarchy is needed, as T : T for any type T is inconsistent by Girard’s Paradox [Coq86].
11Coq is an example of a theorem prover that uses cumulative universes [Car19].

13

The structural correspondence between data types like × and propositions like And is
another facet of the Curry-Howard correspondence. Such correspondences even extend to
other logics and type theories like modal logic and modal type theory.

Inductive Types In CoC there are exactly two mechanisms for constructing types: ∀-types
and type universes.12 Inductive types are not part of CoC, but rather of the extended calculus
of inductive constructions [CP88]. As inductive types do not have explicit representations in
Lean’s expression language, we do not consider them in detail here. Instead, we give only an
intuition by considering how the type of natural numbers is represented:

inductive Nat : Type where
| zero : Nat
| succ : Nat → Nat

The inductive declaration of Nat introduces new axiomatic constant symbols for the type,
its constructors and its recursor, with the following typing judgements:

Nat : U1

Nat.zero : Nat

Nat.succ : Nat→ Nat

Nat.recu : ∀C : Nat→ Uu, (C Nat.zero)→ (∀n : Nat, C n→ C (Nat.succ n))→ ∀ t : Nat, C t

By their axiomatic nature, these symbols are uninterpreted. That is, they have no definitions
to unfold to. While constructors define introduction rules for the given type, recursors are
elimination rules. That is, they state how a term of a given inductive type can be destructured
into its components. The argument C is usually called the motive and determines what the
output type should be when calling the recursor. Subsequently, an argument matching the
motive type must be provided for each constructor of the inductive type. The semantics of
the recursor are then given by ι-reduction. Every inductive type has a ι-reduction rule which
provides the semantics of recursion (or induction) over a given inductive type. For Nat, ι-
reduction is defined by:

Nat.rec C af Nat.zero ≡ a

Nat.rec C af (Nat.succn) ≡ f n (Nat.rec C af n)

The symbol ≡ denotes definitional equality, which defines which expressions should be
considered equal without further proof. Thus, the definitional equality rules above ensure that
an expression like Nat.rec _ 42 _ Nat.zero is equal to 42 without further proof.

Definitional Equality The definitional equality relation ≡ is explicitly defined only in
Lean’s underlying theory. Yet, it is used in Lean whenever two terms are checked for equality
without proof. Such a notion is sometimes called judgmental equality. Definitional equality is
important for defining the (expected) semantics of expressions. For example, for the following
function f to be well-typed syntactic equality does not suffice:

def N := Nat
def f (n : N) : Nat := n

For f to be well-typed, the type of n must be “equal to” Nat. Under syntactic equality, this is
not the case as the type of n is N which is syntactically distinct from Nat. Yet, under definitional
equality we have N ≡ Nat. This holds by the definitional equality rule called δ-reduction, which
states that every definition is equal to its body. Other definitional equality rules include β-
reduction and η-reduction. We cover all (relevant) definitional equality rules in Section 4.4.
For a complete list, see [Car19]. Notably, Lean does not implement full definitional equality,

12Technically, CoC’s universe of all types ∗ is not itself a type, but in Lean Uℓ is.

14

as it is undecidable in general. Instead, it implements algorithmic definitional equality, which,
for example, is not transitive. Such differences between theory and implementation appear in
multiple contexts where the practical aspects of Lean are at odds with its theory. One case
where this requires further consideration is Lean’s expression language.

3.3 Expressions
Lean’s expression language lies at the heart of its underlying theory. At the same time, it is also
ubiquitous as Expr objects in meta-programs. Thus, the Expr type contains many constructs
which closely correspond to those found in the type theory. For example type universes (also
called sorts), function application, and term- and type-level abstraction:

inductive Expr where
| sort : Level → Expr
| app : Expr → Expr → Expr
| lam : Name → Expr → Expr → Expr
| forallE : Name → Expr → Expr → Expr
...

Yet, as Expr needs to be both ergonomic and performant it introduces differences to the
theoretical expression language. We consider these differences in the following sections.

Variables In Lean’s type theory, we take expression variables to be names from some ambient
set of variable names. In Expr, we use a locally nameless representation [Cha12]. That is,
bound variables are represented with De Bruijn indices, while free variables are represented
with names:

...
| bvar : Nat → Expr
| fvar : FVarId → Expr -- `FVarId` is a wrapper around `String`.

De Bruijn, or nameless, notation of variables identifies them by the distance to their parent
binder. For example, λx : α, x is represented by λα, 0̂ and λx : α,λy : β, x y by λα,λβ, 1̂ 0̂,
where n̂ denotes the variable with De Bruijn index n. In subsequent sections, we use both
named and nameless notation while sometimes omitting the types of bound variables, de-
pending on whether it is contextually relevant. When a variable does not have an associated
parent binder, as in λ1̂, we call it loose bound. In locally nameless representation, we avoid
loose bound variables by replacing them with named free variables. A named expression like
λx,λy, (a x)(b y) is thus represented as λλ(a 1̂)(b 0̂), where a and b are free variables. Note that
we cannot type check expressions containing free variables without additional context. This
context is provided in Lean by programming in a monad which tracks free variables and their
types while also ensuring unique naming.

Metavariables Metavariables are a special kind of variable which exist solely for the purpose
of meta-programming. They represent “holes” in levels and expressions:

...
| mvar : MVarId → Expr -- `MVarId` is a wrapper around `String`.

Metavariables are useful for constructing expressions incrementally, as is done during elab-
oration and in (proof) tactic mode. Given a metavariable ?m and an expression e, e can be
assigned to ?m, which records the assignment in a monadic context. Any expression containing
?m can then instantiate its metavariables, which replaces ?m with e. For example, let a be the
expression λx, ?mx. If we assign λy, y to ?m and instantiate all metavariables in a, then we
get λx, (λy, y)x.

15

Extensions In [Car19], the expression language of Lean’s type theory is extended by named
constants and let-expressions. These constructs are also present in Expr:

...
| const : Name → List Level → Expr
| letE : Name → Expr → Expr → Expr → Expr

Named constants, also called definitions, are tracked by a global context. That is, an
expression like Expr.const Nat.add [] represents the function Nat.add, but requires a global con-
text to resolve its type and body. The list of levels holds the universe variables for universe
polymorphic definitions. The constructor for let-expressions like letx := 5; x + x allows fac-
toring out sub-expressions. While this can also be achieved by λ-expressions in some cases,
let-expressions cannot always be replaced by λ-expressions. They can always be eliminated
though, by substituting the variable into the body.

Internalizations As the Expr type needs to be performant, Lean introduces two internal-
izations to it. These are constructs which could be represented by other constructors, but are
explicitly represented for efficiency:

...
| lit : Literal → Expr
| proj : Name → Nat → Expr → Expr

A literal is either a natural number or a string, which would otherwise need to be represented
(inefficiently) as a sequence of applications of Nat.succ and List.cons respectively. Internalized
literals allow the Lean kernel to work with machine-native representations of natural numbers
and strings, making common operations much more efficient. The internalization for structure
projections solves a problem with the size of automatically generated functions for structure
types. Structure types are syntactic sugar for inductive types with a single constructor. That
is, the following definitions are the same:

structure Point where
x : Nat
y : Nat

inductive Point where
| mk : (x : Nat) → (y : Nat) → Point

For structure types, Lean automatically generates projections, which map from the structure
type to its fields:

#check Point.x -- Point → Nat
#check Point.y -- Point → Nat

Using a naive encoding, each projection has a body of size O(n) where n is the number
of fields in the structure. With internalized structure projections, this is reduced to O(1) by
adding projections as a primitive notion in the expression language. In Expr, this is reflected
by representing applications of projections like Point.x p as Expr.proj Point x p. More details on
internalization are given in [Ull23].

3.4 Equational Reasoning
Equational reasoning is a common mode of reasoning in mathematical proofs. Given the goal
of proving an equation a = z, one proves a sequence of equations a = b = ... = y = z. In
this section, we briefly consider different tools and methods for equational reasoning in Lean.
Underlying all of these methods are the properties of equality as being an equivalence relation
which is a congruence with respect to all functions.13 In Lean, these properties are a result of
the recursor of the inductive equality type Eq, of which we consider the non-dependent version:

13We will see that the latter is not completely true for Lean’s equality type Eq.

16

Eq.ndrec : ∀(α : Uu)(a : α)(C : α→ Uu), (C a)→ ∀(b : α)(h : a = b), C b

This recursor provides a substitution principle for equality. Namely, given a term of type
C a and a proof of a = b, we obtain a term of type C b. For example, given x : N and a proof
h1 : p x, we can prove p y from h2 : x = y as Eq.ndrec Nx p h1 y h2. Clearly, using the recursor
for actual equational reasoning would be extremely laborious. Thus, as a first simplification,
Lean provides a general congruence theorem for equality, proven from Eq.ndrec:

congr : ∀(α : Uu)(β : Uv)(f1 f2 : α→ β)(a1 a2 : α), (f1 = f2)→ (a1 = a2)→ f1 a1 = f2 a2

Based on this, we can prove p x = p y from h : x = y as congr_ _ p p x y (Eq.refl p)h,
where Eq.refl p proves p = p. Notably, this congruence theorem only works for non-dependent
functions. That is, the output type β of f1 and f2 does not depend on the input term of type
α. In fact, a dependent version of this theorem only holds when the arguments a1 and a2 are
definitionally equal:

congrFun : ∀(α : Uu)(β : α→ Uv)(f1 f2 : ∀x : α, β x)(a : α), (f1 = f2)→ f1 a = f2 a

Generalizing this to a1 and a2 with a1 = a2 is not possible. It would not even be clear
what the statement of the theorem should be, as then the types of f1 a1 and f2 a2 are not
definitionally equal, and thus cannot be related by Eq. The lack of a general dependent
congruence theorem impacts proof reconstruction as explained in Section 4.6.

The rw Tactic Congruence theorems are powerful tools for equational reasoning with proof
terms, but are too unwieldy for practical use. Thus, Lean provides the rw proof tactic for
rewriting terms using given equations. Notably, these equations can be universally quantified,
and the tactic tries to match them against (sub-)terms appearing in the proof goal. For
example, let h1 : ∀x : N, x + 0 = x and h2 : ∀(x y : N), x + y = y + x. Then the proof goal
2 + (z + 0) = z + 2 can be solved by rw [h1, h2]. For this, rw first matches h1 against z + 0,
creates the specialized proof term h1 z : z + 0 = z and uses congruence to turn the proof goal
into 2 + z = z + 2. Then, it matches h2 against 2 + z, creates the specialized proof term
h2 2 z : 2 + z = z + 2 and completes the proof by transitivity of equality.14 Thus, the tactic
performs the steps which we intuitively expect from “applying a rewrite”, without having
to worry about matching quantified equations to (sub-)expressions or applying congruence
theorems. While rw “just works” most of the time, the tactic can easily get stuck if the given
equations are provided in the wrong order. For example, the proof goal (2 + z) + 0 = z + 2
fails if we switch the order or equations to rw [h2, h1]. In that case, rw first applies h2 and
rewrites the goal to 0 + (2 + z) = z + 2. Thus, h1 cannot be applied anymore, and the proof
remains incomplete. This problem is akin to the phase ordering problem in that applying a
rewrite (destructively) can block the applicability of subsequent rewrites. Another problem
arises from the fact that equations are only applied from left to right. That is, given equations
hy : x = y and hz : x = z, the goal y = z cannot be solved by rw [hy, hz], as x does not appear
in the proof goal, and thus neither equation matches. This can only be resolved by explicitly
providing the directions in which equations should be applied, as in rw [←hy, hz].

The simp Tactic Lean’s simplification tactic simp is much more sophisticated than the rw
tactic, but is limited by similar problems. It also applies equations only from left to right,
but in a different order than rw. Namely, simp tries to match any of the given equations
against the proof goal, starting from the most deeply nested expression. It then keeps applying
equations in this way until none apply. This does not fix the phase ordering problem though,
as trying to prove 2 + z + 0 = z + 2 from simp only [h1, h2] (with h1 and h2 as above) yields
the incomplete proof goal 0 + z + 2 = z + 2 after applying h1 twice. Using a theorem such

14Technically, it uses modus ponens (Eq.mp and Eq.mpr) to chain the equalities.

17

as commutativity (like h1) with simp is generally a bad idea as it breaks expected semantics.
The simp tactic, as its name suggests, expects given equations to simplify expressions from left
to right. What exactly constitutes “simplification” is up to convention, but generally excludes
theorems like commutativity or associativity. A good reason for imposing these semantics, is
that simp implements a term rewriting system (TRS), and restricting the chosen equations can
make the TRS confluent [BN98]. A TRS is a set of directed (quantified) equations l → r,
where l is not a variable. Given terms x and y, we write x → y to denote that there exists
some rewrite in the TRS mapping x to y, and we write x

∗−→ y do denote that y is reachable
from x by applying finitely many rewrites from the given TRS. A TRS R is called confluent,
if ∀x, y1, y2 : (x

∗−→ y1) ∧ (x
∗−→ y2) → ∃z : (y1

∗−→ z) ∧ (y2
∗−→ z). That is, any terms derived

from a given term can be further reduced to the same term. This property is useful for proving
equalities of terms with normal forms. A term y is a normal form of term x, if x

∗−→ y and
∀z, y ̸→ z. Depending on the TRS, a term may or may not have a normal form. If it does, and
the TRS is confluent, then we can apply rewrites in any order and be assured that we will reach
the same normal form. That is, equalities can be proven by mindlessly applying rewrites until
a normal form is reached on both sides. While the equations given to simp do not generally
form a confluent TRS, they can be made “more confluent” by enforcing certain normal forms
of the terms appearing in equations (informally called simp normal form for simp). Thus,
simp has a much better chance of proving goals than rw. Another significant benefit of simp
over rw is its premise selection. The rw tactic rewrites based only on equations passed to it
explicitly. The simp tactic, on the other hand, can access a set of simp lemmas marked by the
user. At the time of writing, Lean’s largest library mathlib contains more than 30,000 simp
lemmas. Determining which of these lemmas to apply by brute force is thus infeasible. Instead,
the lemmas are indexed in a discrimination tree data structure [McC92], which can efficiently
determine which indexed terms may unify with a given term. Thus, at every step, the simp
tactic can efficiently select from a large pool of lemmas to apply to the proof goal.

Other Tactics The rw and simp tactics are ubiquitous in Lean proofs. Yet, as the need for
better proof automation is ever present, more involved tactics for equational reasoning have
emerged. We briefly highlight two of them here.

The cc tactic solves equality goals using congruence closure based on e-graphs. The notion
of e-graphs is that of [NO80], instead of [WNW+21]. Notably, cc can handle heterogeneous
equality – a form of equality, where the types of the related terms do not have to be definitionally
equal. Lean has a corresponding type for this called HEq. It permits a congruence theorem
on function arguments for dependent functions, as long as the functions are definitionally
equal and the arguments satisfy standard homogeneous equality. For dependent functions with
a bounded number of arguments, [SdM16] shows a more general congruence theorem where
functions need only satisfy homogeneous equality and arguments only heterogeneous equality.
The cc tactic employs the approach shown in [SdM16], while also exploiting features specific
to Lean’s type theory, like injectivity of inductive type constructors.

The rewrite_search tactic takes an entirely more practical approach to solving equality
goals. It tries to find a list of equations e1, ..., en such that rw[e1, ..., en] solves the proof
goal. Its search space consists of all equational theorems proven up to the point of the tactic’s
invocation. To choose which equation to apply next, rewrite_search performs a best-first search
which minimizes the Levenshtein distance [CH69] of the string-representations of the equation
and the proof goal.

In the rest of this thesis, we develop yet another tactic suited for equational reasoning, with
the hope of improving upon or filling gaps in the current state of proof automation.

18

4 Equality Saturation Tactic
In this section, we develop a proof tactic for equational reasoning in Lean, based on equality
saturation with egg. We start with a high-level overview of the tactic’s components and
their interactions. Subsequently, we add techniques for expanding the tactic’s feature set and
improving its soundness. In particular, a variety of methods are required to bridge the gap
between Lean’s expression semantics and the syntactic nature of e-graphs. When describing
these methods, we try to avoid implementation details and give definitions instead of code
where possible. A full implementation of the proof tactic is available at https://github.com/
marcusrossel/lean-egg.

4.1 Overview
Proofs in Lean are seldom written as explicit proof terms. Instead, they are built by calling
a sequence of proof tactics, which construct the relevant proof terms. Thus, we implement
proof automation for equational reasoning as a tactic egg [eqn1, eqn2, ...], which solves proof
goals of the form lhs = rhs by using egg to find a sequence of rewrites which transform lhs to
rhs . Figure 8 shows a simplified outline of the inner workings of this tactic. The setup is both
based on and extends the tactic described in [KGB+24].

egg Tactic
Goal Equation

Equational Theorems

Goal Expressions

Rewrites

egg

ExplanationProof

Figure 8: Simplified overview of the egg proof tactic.

When the egg tactic is called, we first obtain the current proof goal and elaborate given
equational theorems. We then check that the proof goal is in fact of the form lhs = rhs and
that all given equations are (universally quantified) equalities.15 If these conditions are not
met, the egg tactic is not suited for the proof task and aborts. If the conditions are met, both
the goal and the equations are encoded into an expression language used in egg. Notably,
this turns equations into pattern terms used for rewrites. The encoding step produces strings
which are passed to the egg Rust library via Lean’s and Rust’s foreign function interface to C.
In Rust, we parse the given strings into objects native to egg, add the goal expressions to an
e-graph, and run equality saturation with the given rewrites on that e-graph. When equality
saturation completes, we check whether the expressions for lhs and rhs are represented by the
same e-class. If they are, egg has proven the required equality, and we generate a corresponding
explanation. The explanation is returned to Lean, where we then try to construct a proof term
corresponding to the explanation. If this succeeds, we complete the tactic call successfully. If
any of these steps fails, we fail the tactic call.

Turning the explanation from egg into a proof in Lean is of particular importance, as it
ensures that neither egg, nor our tactic can introduce unsoundness. Any invalid proof term
will simply not be accepted by Lean. This constraint creates an interesting trade-off between
soundness and completeness in our tactic. As our tactic does not need to focus on maintaining
soundness, we can use unsound techniques with the goal of increasing the completeness of our
tactic. That is, we can use techniques which work most of the time for many cases instead
of all the time for fewer cases. However, we cannot completely ignore soundness either, as
unsound techniques can in fact reduce completeness by shadowing correct proofs which may
have otherwise been discovered by sound techniques.

15We also support the propositional equivalence relation ↔.

19

https://github.com/marcusrossel/lean-egg
https://github.com/marcusrossel/lean-egg

4.2 Representations in egg
To connect Lean and egg, we first need to decide how terms are communicated between these
systems. That is, we need a common expression language. Lean already has such a language
with its Expr type. In egg, the term language can be chosen freely. We therefore take Expr to
be the common language and encode it relatively directly in egg as shown in Figure 9. While
this approach roughly matches the one in [KGB+24], they encoded the language generically as
S-expressions, whereas we directly match the constructors of our egg expression language to
those in Expr.

define_language! {
pub enum LeanExpr {

// Primitives:
Nat(u64),
Str(String),

// Encoding of expressions:
"bvar" = BVar(Id), // (Nat)
"fvar" = FVar(Id), // (Nat)
"mvar" = MVar(Id), // (Nat)
"sort" = Sort(Id), // (<level>)
"const" = Const(Box<[Id]>), // (Str, <level>*)
"app" = App([Id; 2]), // (<expr>, <expr>)
"λ" = Lam([Id; 2]), // (<expr>, <expr>)
"∀" = Forall([Id; 2]), // (<expr>, <expr>)
"lit" = Lit(Id), // (Nat | Str)

// Encoding of universe levels:
"uvar" = UVar(Id), // (Nat)
"param" = Param(Id), // (Str)
"succ" = Succ(Id), // (<level>)
"max" = Max([Id; 2]), // (<level>, <level>)
"imax" = IMax([Id; 2]), // (<level>, <level>)

}
}

Figure 9: Encoding of Lean’s expression language in egg.

As egg needs to be able to parse terms of this language from strings, most constructors
have corresponding string labels. The unlabeled constructors Nat and Str, act as primitive
constructors which recognize terms of the underlying type directly. Labeled constructors, like
BVar, can only specify how many children they expect, but not of which type. Thus, in a case
like Lit, we implicitly expect the child to be a Nat or a Str without being able to encode this
explicitly. While this means that ill-formed terms like (lit (bvar 0)) are technically valid terms
of the language, this is not a problem in practice as we only ever provide well-formed terms to
egg. Another side effect of egg’s language mechanism is that we need to specify the language
of universe levels as part of the expression language, instead of it being separate. Minding
these technicalities, the given language is a relatively direct translations of Lean’s Expr type
with the following minor adjustments:

• The proj and letE constructors aren’t encoded as they are eliminated during preprocessing
in Lean. This is discussed in more detail in Section 4.4.

• Free variable and metavariable identifiers are encoded as integers instead of string names.
Lean represents these identifiers as wrappers over unique names of the form _uniq.idx .
Thus, we simply encode the identifiers by their integer index.

• We don’t encode Level.zero directly, but use Nat(0) for that instead.

20

Rewrites Based on the encoding of Expr in egg, equations from Lean are represented as
rewrites with a pattern expression for each side of the equality. For example, an equation like
∀x : N, x = x+0 is represented as the rewrite ?7 ⇔ app (app (constNat.add) ?7) (constNat.zero),
where ?7 denotes the pattern variable corresponding to x. The arrow ⇔ indicates that the
rewrite is applicable in both directions. That is, it technically constitutes two rewrites where
each side is the trigger pattern for one of the rewrites. The applicable directions of a rewrite
are determined in the preprocessing phase in Lean. Namely, when we encode an equation into
a rewrite, we first instantiate all quantified variables with fresh metavariables. For example,
the above theorem is turned into the Lean expression ?x = ?x+0, where ?x is a metavariable.
These metavariables are encoded as pattern variables in the corresponding rewrite. Thus, to
determine the applicable directions of the rewrite, we compute the directions in which the
metavariables of the instantiated equation satisfy the ⊇ relation. In the example above, both
sides of the rewrite contain only ?x, so the rewrite is applicable in both directions. In the
theorem ∀x, x · 0 = 0, we can only apply the forward direction, as the quantified variable
only appears on the left. A class of theorems which cannot be applied in any direction are
those stating that a given type α is a subsingleton, which is a type satisfying the equation
∀(x y : α), x = y. Here, the variables do not satisfy ⊇ in either direction.

Metavariables Metavariables are special expressions in that they need to be encoded dif-
ferently depending on the use case of their parent term. When a metavariable appears as
part of an equation, it needs to be encoded as a pattern variable. However, when a metavari-
able appears in the proof goal, it is encoded using the explicit mvar and uvar constructors
(for expression and universe level metavariables, respectively). That is, it is treated as an
opaque constant. Proof goals contain metavariables when their type is not fully known. A
typical source of this is applying transitivity of equality during a proof. This turns a goal like
1 + 1 = 2 into the goals 1 + 1 =?m and ?m = 2 with metavariable ?m. We can’t sensibly
assign ?m in egg, as this would require us to choose what the proof goal should be. Thus, we
treat the metavariable as a constant which is left unassigned by our proof procedure.

Unfortunately, the given dichotomy between a metavariable appearing either in an equation
or the proof goal is a false one. Equations may contain metavariables which do not correspond
to quantified variables. Thus, to decide how to encode a metavariable, we actually check
whether it is ambient. A metavariable is ambient if it existed (was present in Lean’s metavari-
able context) before the egg tactic was invoked. Metavariables contained in the proof goal are
then always ambient, while the fresh metavariables introduced when instantiating equations
can never be ambient. A metavariable is then treated as a constant, if and only if it is ambient.

The chosen expression representation in egg is easy to encode from Lean expressions and
can easily be turned back into Lean expressions during proof reconstruction. Yet, it introduces
challenges when used in e-graphs. The fundamental problem is that Lean expression have
associated semantics which is not captured in their syntax. First, there are binders which
make it impossible to reason about expressions locally. Second, Lean’s notion of definitional
equality requires certain syntactically distinct expressions to be interchangeable. And third,
Lean’s meta-programming contexts track various information, like the types of expressions,
and the bodies of definitions, which are not available during equality saturation. Bridging
these gaps between syntax and semantics motivates many of the subsequent sections.

We note here that other approaches to encoding could be beneficial. For example, the lean-
auto16 project implements a procedure for converting between Lean expressions and a simpler
type theory. Using such a procedure to simplify the expressions used in egg may eliminate
some of the problems encountered in subsequent sections. Another simpler approach may
be to restrict ourselves to a fragment of the expression language as in the encoding of Coq
expressions considered in [Bou23].

16https://github.com/leanprover-community/lean-auto

21

https://github.com/leanprover-community/lean-auto

4.3 Binders in E-Graphs
Using λ calculus in e-graphs is notoriously difficult due to the presence of binders. Binders make
it necessary to consider expressions in context instead of purely syntactically. For example,
when using de Bruijn indices, the expression 1̂ refers to a loose bound variable in λ1̂, but to a
bound variable in λλ1̂. The problem persists when using named variables where x refers to a
free variable in λy, x, but to a bound variable in λx, x. In this section, we consider three classes
of problems resulting from direct representation of bound variables in e-graphs and show how
we approach them in the egg proof tactic.

4.3.1 Invalid Matching
When applying a rewrite of the form lhs ⇒ rhs , the first step is e-matching on lhs . This yields
a substitution σ which maps every pattern variable in lhs to an e-class. When lhs contains a
pattern variable ?x whose associated e-class σ(?x) represents an expression containing loose
bound variables, two problematic scenarios can occur.

1. ?x appears under multiple different binders in lhs .

2. ?x appears at binder depth d in lhs , but σ(?x) represents an expression containing a
loose bound variable with index b < d.

In both cases we say that an invalid match has occurred. An example of Problem 1 occurs
when the pattern term λ(λ ?x) ?x is matched against λ(λ 0̂) 0̂. Here, ?x is matched against 0̂,
but 0̂ refers to different variables for the respective occurrences of ?x. An example of Problem 2
occurs when the rewrite (λ ?x) 1⇒ ?x is applied to (λ 0̂) 1, which produces the non-equivalent
term 0̂. The reason this fails is that the given rewrite is valid only when ?x is not bound. As
?x appears under one binder in the trigger pattern, any matched variable with index < 1 is
bound in the context of the trigger pattern, and therefore invalid. We can see why matching a
bound variable is invalid, by considering the form of the theorem which generated the rewrite.
All pattern variables in a rewrite correspond to quantified variables in a theorem, leading to
∀x, (λy, x)1 = x. This theorem cannot possibly be applied with x := y, as y is not in scope
when x is defined. This reasoning applies to any theorem and thus any rewrite generated from
a theorem.

Solution We fix invalid matching in egg by turning all rewrites into conditional rewrites,
and blocking any rewrite initiated by an invalid match. This is achieved in egg by providing a
custom applier17 for rewrites, which is a hook into egg’s rewriting system. When a rewrite with
a custom applier has its trigger pattern matched, the substitution resulting from e-matching
is passed to the applier. The applier then runs a user-defined function which also has access to
(and can mutate) the e-graph, as well as the trigger pattern. Thus, to block invalid matches,
we use a custom applier which performs a depth-first traversal of the trigger pattern while
tracking four variables:

• pos: the current position in the pattern term. A position is represented as a sequence of
indices which describe how to traverse nodes starting at a given root node. Each index
dictates which child of a node to visit.

• depth: the binder depth at the current position. This starts at 0 and is incremented
when visiting the body of a binder.

• par : the position of the latest parent binder of the current node.

• pars : a partial map of visited variables to their parent binder position.
17Appliers are egg’s terminology for what we called “callbacks” for rewrites in previous sections.

22

Additionally, we write dvar (c) to denote the set of loose bound variables visible from e-class
c, as defined in the next paragraph. Based on this, we detect an invalid match, if and only if
one of the following conditions holds.

1. An already visited variable ?x with dvar (σ(?x)) ̸= ∅ has pars(?x) ̸= par . That is, the
latest parent binder position of ?x does not match the parent binder position of a previous
occurrence of ?x.

2. A variable ?x with b ∈ dvar (σ(?x)) appears at a position where b < depth.

These two conditions correspond precisely to the problematic scenarios described above.
Thus, if either one of them is satisfied during the traversal, we abort a rewrite.

Loose Bound Variable Analysis We implement dvar efficiently, using an e-class analysis.
A given bound variable index b is contained in the analysis value dvar (c) of e-class c, if there
is some expression represented by c which contains a loose bound variable whose index is b at
c when adjusted for binder depth. To define this analysis, we first need to introduce an e-class
analysis for natural number constants. The analysis value dN(c) tracks whether c contains an
e-node which is a natural number (that is, an instance of the Nat constructor in our expression
language in egg). The domain of this analysis is N ∪ {⊥} with the following make and join:

make(n) :=

{
x if n = Nat(x)

⊥ otherwise
join(d1, d2) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ if d1 = d2 = ⊥
d1 if d2 = ⊥
d2 if d1 = ⊥
max (d1, d2) otherwise

We note that the choice of max is an arbitrary choice of function satisfying the semilattice
laws. The reason being that if we join e-classes with d1, d2 ∈ N and d1 ̸= d2, then we cannot
sensibly choose an analysis value. In fact, in such a case we know that an unsound rewrite has
occurred. Based on dN, we define dvar over domain P(N) with the following make and join:

make(n) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{dN(b)} if n = BVar(b)

dvar (fn) ∪ dvar (arg) if n = App(fn, arg)

dvar (ty)∪ ↓dvar (bd) if n = Lam(ty, bd)

dvar (ty)∪ ↓dvar (bd) if n = Forall(ty, bd)

∅ otherwise

join := ∪

For BVar(b) we can assume dN(b) ∈ N as b must be of the form Nat(_) in well-formed
expressions. We write ↓S := {i | i + 1 ∈ S} for the function which down-shifts all indices
in a given set and removes those which fall below 0. We perform down-shifting whenever
we encounter a binder. This implies that the set dvar (c) of a given e-class c always contains
the indices of loose bound variables as they are called at the binder depth of c. For variable
index 0 this implies deletion, as the bound variable 0̂ is never visible outside its immediate
parent binder. As an example, if we assume e-class c to represent the expression λλ 0̂λ 4̂ 5̂,
then dvar (c) = {1, 2}, as the bound variables 4̂ and 5̂ are called 1̂ and 2̂ outside the outermost
binder, while the bound variable 0̂ is not visible there.

4.3.2 Variable Rebinding
When performing a substitution like s := t[x *→ e], loose bound variables occurring in e can
turn into bound variables in s by being placed under a binder in t. This is called invalid capture
of loose bound variables in e by binders in t. Invalid capture is problematic as it breaks the
expected semantics of substitution. For example, if we apply the rewrite ?x ⇒ (λ ?x) 1 to
the expression λ 0̂ by matching ?x against 0̂, we get the incorrect result λ(λ 0̂) 1, by invalid
capture of 0̂. The reverse problem of variables being “uncaptured” can only occur when t

23

itself already contains loose bound variables. As such, this problem is usually not considered
in the context of λ calculus, but can occur in the context of e-graphs where rewrites do not
distinguish between open and closed terms.18 An example of “uncapturing” occurs if we apply
the rewrite λ(λ ?x) 0 ⇒ λ ?x to the open term λ(λ 4̂) 0, which yields the non-equivalent term
λ 4̂. Here, 4̂ would need to be shifted to 3̂ to retain its semantics.

Both of these problems can be solved by having every rewrite be a dynamic rewrite which
checks whether a given matched pattern variable refers to loose bound variables, and if so,
shifts them as needed. The required shift for an occurrence of a variable ?x in a rewrite
lhs ⇒ rhs is determined by the binder depth of ?x in lhs and rhs . Let depth lhs(?x) denote
the binder depth of ?x in lhs , and depthrhs,p(?x) denote the binder depth of an occurrence of
?x in rhs at position p. Then any occurrence of ?x in rhs at position p needs to be shifted
by depth lhs(?x)− depthrhs,p(?x). Note that depth lhs(?x) is well-defined even when ?x appears
multiple times in lhs , as long as we ensure valid matches. In fact, in our implementation,
we pre-compute depth lhs(?x) for each variable ?x in lhs during the check for invalid matches
described in the previous section. As such, we always need to check for invalid matches before
we can perform the index correction described below.

Index Correction We correct the loose bound variable indices for each pattern variable
occurrence in rhs as follows. Let σ be the substitution resulting from e-matching on lhs , and
let ↕o denote a function which shifts the indices of loose bound variables in a given e-class by
an offset of o. We construct a shifted substitution σ and shifted pattern term rhs , such that
rhs introduces new pattern variables for different occurrences of the same pattern variable in
rhs , and σ extends σ such that these new pattern variables map to e-classes with the corrected
loose bound variable indices. More precisely, we construct σ and rhs such that:

1. σ ⊆ σ, meaning we have σ(?x) = σ(?x) for all ?x ∈ dom(σ).

2. For each occurrence of pattern variable ?x in rhs at binder depth d with dvar (σ(?x)) ̸= ∅,
rhs replaces that occurrence with a fresh variable ?xd.

3. For each ?xd ∈ rhs , let σ(?xd) = ↕o (σ(?x)) with o = depth lhs(?x)− d.

This construction is implemented by a depth-first traversal of rhs , which tracks the cur-
rent binder depth. To then apply the rewrite lhs ⇒ rhs with index correction, we merge
the e-classes of σ′(lhs) and σ′(rhs).19 We note that shifting the bound variables in e-classes
corresponding to variables in rhs can be performed in a more direct manner than shown here.
We only use the approach of constructing a shifted substitution, as it allows us to use egg’s
union_instantiations function for merging the final e-classes. This function merges the e-classes
of given pattern expressions under a given substitution while, crucially, preserving explanation
information. Using egg’s union or union_trusted functions to merge e-classes directly does not
preserve the information required to generate correct explanations. Preservation of explanation
information is, in fact, an issue which we have yet to solve for the e-classes shifting function ↕o.
The implementation of ↕o is non-trivial and relies on the more general mechanism of e-class
substitution, as covered in the following section.

4.3.3 E-Class Substitution
Substitution is commonly one of the first operators which is defined for a λ calculus, as it
underpins other constructs like β-reduction. In a de Bruijn representation of λ-expressions, a
substitution t[n *→ s] replaces all occurrences of variable n̂ in t by s. A concise definition of
this (for untyped λ calculus) as given in [Pie02] is shown below. Notably, the index n and the
indices of variables in s need to be increased as we visit binders (the latter is handled by ↑1):

18A term is open if it contains free (or loose bound) variables, and closed if it does not.
19As dom(σ) = vars(lhs) and σ ⊆ σ, we get σ′(lhs) = σ′(lhs).

24

b̂[n *→ s] :=

{
s if b = n

b̂ otherwise
(λ t)[n *→ s] := λ t[n+ 1 *→ ↑1(s)]

(t1 t2)[n *→ s] := t1[n *→ s] t2[n *→ s]

In the context of e-graphs, substitution cannot be defined this easily and is in fact no-
toriously difficult. We cannot simply apply the given substitution function, as e-graphs do
not contain concrete expressions. Instead, we must consider how to perform substitution on
e-nodes and e-classes. Multiple different approaches have been developed for this:

1. Make substitution an explicit constructor of the expression language and introduce
rewrites which encode its semantics with respect to other constructors, as described
in [WNW+21].20

2. Perform substitution by extracting a single expression e from the target e-class and
performing substitution on e before adding it back into the e-graph, as described in
[Kœh22].

3. Traverse the subgraph of the target e-class and construct an equivalent subgraph where
all relevant e-nodes are substituted.

Approach (1) introduces subtleties with respect to correctly handling rewrite rules and
makes scaling harder by increasing the number of nodes in the e-graph [Kœh22]. Approach (2)
compromises completeness by potentially never extracting all represented expressions of a given
e-class, and thus missing potential substitutions. Approach (3) has the highest implementation
cost and requires explicit handling of explanations, which is implicit in the other approaches.
Yet, in the context of our proof tactic, we use (3) as it offers better completeness than (2) and
avoids the increase in nodes of (1).

For a traversal-based approach to e-class substitution, we define the substitution function
subst as follows. Let σ : N × N → expr be a substitution mapping from a variable index and
binder depth to term of our egg expression language. Let g be an e-graph containing an e-class
c. Then subst(g, c,σ) extends g with an e-class s such that for every expression e represented
by c, s represents σ′(e). We use σ′ to denote the lifting of σ to apply to expressions with the
binder depth being derived starting at c. As an example of using subst, we define the variable
shifting function ↕o from the previous section as follows (while assuming the e-graph g is known
from context):

↕o (c) := subst(g, c,σ±(o))

σ±(offset)(idx , depth) :=

{
BVar(Nat(idx + offset)) if idx > depth

BVar(Nat(idx)) otherwise

The substitution σ±(o) offsets a given variable index idx by a given amount offset , if idx is a
loose bound variable (if idx > depth). Otherwise, it simply returns an expression representing
a bound variable with index idx . Thus, according to the intended behavior of subst, ↕o (c)
extends the e-graph g with a new e-class which represents the same expressions as c, except
that all loose bound variables are replaced by variables whose indices are shifted by o. The
subst function can therefore loosely be understood as a function which lifts a given substitution
function σ over bound variable indices, to a function over e-classes.

20An improvement to this approach is given in Optimizing Beta Reduction in E-Graphs at EGRAPHS 2023.

25

E-Graph Traversal Our approach for implementing subst(g, c,σ) is to traverse the subgraph
of the target e-class c, and construct an equivalent subgraph where all relevant e-nodes are
substituted according to the substitution σ. Traversing an e-graph rooted at a given e-class c
entails two kinds of traversal. First, we must traverse all e-nodes in c and, second, we must
traverse all child e-classes of each e-node. For this, we use a recursive depth-first traversal which
additionally iterates over each e-node of a given e-class on visit, as sketched in Figure 10.

Figure 10: Example of a depth-first traversal over e-classes and e-nodes.

As e-graphs can contain cycles, we make sure to avoid infinite recursion by remembering
which e-classes have already been visited. Additionally, we track the current binder depth of
an e-class relative to c, as this information is required by the substitution function σ. While
traversing the e-graph, we construct substitutes for each visited e-class and e-node. A substitute
for a given e-class c containing e-nodes n1, ..., nk is a new e-class which contains exactly the
substitutes for e-nodes n1, ..., nk. For a leaf e-node n, like a bound variable or named constant,
constructing the substitute is simple. If n is a bound variable with index i at binder depth d,
we obtain the substitute by σ(i, d). If n is not a bound variable, it remains as it. Difficulties
only arise once we try to construct substitutes for e-nodes with children: function applications,
λ-abstractions and ∀-abstractions. Namely, if an e-node n has child e-classes c1, ..., cm, then
in order to construct the substitute of n we first need to construct the substitute e-classes
s1, ..., sm for c1, ..., cm. However, as e-graphs can contain cycles, the construction of some si
may itself depend on the substitute of n. That is, we can have cyclic dependencies. The way in
which these cyclic dependencies are resolved is one of the key aspects of traversal-based e-class
substitution algorithms.

Breaking Cyclic Dependencies A cyclic dependency occurs when an e-class c contains an
e-node n, which (transitively) contains c as a child. When such a dependency exists, we cannot
construct a substitute s for c, as this depends on constructing a substitute for n, which itself
requires s. Luckily, there are two properties of e-graphs which allow us to escape this cycle.
First, the substituted e-class s does not have to be constructed “all at once”. That is, during
our substitution algorithm, we can first construct an incomplete version of s, and then add the
necessary substitute e-nodes as they become available. This results in the following intuitive
approach for breaking cyclic dependencies. Let sub be a partial map from e-class ids to e-class
ids of substitute e-classes. That is, when a substitute e-class s for c is created, we record c *→ s
in sub. Then, to construct the substitute of an e-node n, check if sub(ci) = si (for some si)
for each child ci of n. If this is the case, use si as the ith child in the substitute e-node for
n. Otherwise, if sub(ci) is not defined, create an empty e-class si, add ci *→ si to sub, and
use si as the ith child in the substitute e-node for n. Thus, any cyclic dependency between c
and n is resolved by first creating an empty e-class s for c upon visiting n. Unfortunately, egg

26

does not allow the creation empty e-classes.21 As a simple workaround, Rudi Schneider has
implemented a version of this approach which adds a constructor for placeholder expressions
to the expression language and uses it to construct pseudo-empty e-classes by populating them
with unique placeholder e-nodes. While this allows for an elegant implementation of e-class
substitution, it has similar downsides as an explicit constructor for substitution (Approach
1). To avoid such a workaround, our implementation of e-class substitution uses an approach
similar to data driven scheduling in process networks [Par95]. When visiting an e-node, we
postpone the construction of its substitute until substitute e-classes are available for each of
its children. Thus, substitute e-nodes and e-classes are potentially constructed in an order
which does not follow the depth-first traversal order. Crucially, the correctness (specifically
the termination) of this approach relies on what we call the Cycle Breaking Property of e-
graphs: Every cycle in an e-graph contains at least one e-class which contains at least one
e-node n where each child e-class of n is either (1) the root of an acyclic subgraph or (2) the
root of a subgraph satisfying the Cycle Breaking Property. Intuitively, this corresponds to
the fact that an e-graph can never contain an e-class which does not represent any (finite)
term. This property ensures that the construction of a substitute e-node cannot be postponed
indefinitely. This is because if an e-node n satisfies case (1), then its substituted children will
always be constructed without being postponed, so the construction of the substitute for n
will not be postponed. If it satisfies case (2), then by induction its substituted children will
eventually be constructed, thus allowing the substitute of n to be constructed.

Data Driven Scheduling Based on the Cycle Breaking Property, we use a data driven
scheduling approach for our substitution algorithm. In this section, we describe how we imple-
ment it in the context of a depth-first traversal over an e-graph. The procedure relies on the
following variables:

• wip: The set of visited e-classes in the depth-first traversal.

• sub: A partial map which maps a given e-class to its corresponding substituted e-class.

• todo: A partial map from postponed e-nodes to the e-class from which it originated.

• wait : A map from postponed e-nodes to the number of children they are waiting on.

• deps: A partial map from e-classes to the postponed e-nodes waiting on the given e-class.

These variables are used for data driven scheduling as follows. Let c be an e-class containing
an e-node n which has child e-classes c1, ..., ck. To construct a substitute for n, we try to
construct substitutes for all c1, ..., ck. If sub(ci) = si for some si, then ci already has a
substitute. Otherwise, if ci ∈ wip, then we have a dependency cycle and we call ci pending. If
ci ̸∈ wip, then we have not yet visited ci, so we recursively call our substitution procedure on
ci. If this procedure returns some e-class si, then this is the substitute for ci. Otherwise, if the
procedure was unable to construct a substitute for ci, then we also have a dependency cycle,
and again call ci pending. Thus, by iterating over all children of n, we obtain a subset P of
children which are pending. If P = ∅, then the substitute of n can be immediately constructed.
Otherwise, the construction of n’s substitute has to be postponed. For this we add the entry
n *→ c to the map todo of postponed e-nodes, we add an entry n *→ |P | to the wait map, and for
each ci ∈ P , we add n to ci’s entry in the map deps of dependencies. Thus, we have registered
n as waiting on |P | many children with the deps map indicating which children are missing.
Afterwards, we proceed to the next e-node in c, according to our depth-first traversal over e-
graphs. If all e-nodes in an e-class are postponed, the substitution on the e-class returns with
an indication that it is pending. The reason we store information about postponed e-nodes
across different maps is that it allows us to efficiently track the progress on its dependencies.
Namely, let p be one of the pending children of e-node n. Then, when a substitute s for p

21This is understandable from a mathematical standpoint, as equivalence classes should form a partition and
can therefore not be empty. Accordingly, the developers of egg do not intend to add empty e-classes to egg.

27

is created, we update the maps as follows. First, we add an entry p *→ s to the substitution
map sub. Next, we obtain the set W := deps(p) of e-nodes which are waiting on a substitute
for p. For each e-node w ∈ W we decrease wait(w) by 1, indicating that w is waiting on one
fewer child (namely p). If this causes the count to become 0, then a substitute for w can be
constructed. In particular, we know that for each child ci of w, sub(ci) is defined. Thus, we
construct the substitute e-node sw for w using the children sub(c1), ..., sub(ck). Now, if there
already exists a substitute e-class s for w’s e-class of origin todo(w), then we simply add sw to
s. Otherwise, if there does not yet exist a substitute e-class s for todo(w), then we construct
it by adding the e-node sw to the e-graph, which yields an e-class. This is precisely the point
where we are avoiding the necessity for empty e-classes, as we have waited to construct s until
some substitute e-node was available for its construction. As constructing this new e-class
might enable other substitute e-nodes to be constructed, the described procedure is recursive.
That is, constructing a single substitute e-class can allow all postponed e-nodes in a given
dependency cycle to be transitively resolved.

Caveats The described substitution procedure is a slight simplification of the actual imple-
mentation.22 For example, proper handling of binder depth is ignored. When binder depth is
considered, a given e-class may have multiple substitutes which correspond to the given e-class
at different binder depths. This can have the effect of creating many copies of a given e-class,
when the e-class is contained in a cycle with a binder. However, the most notable simplification
is in the description of how we add substitute e-nodes to the e-graph. Namely, we stated that
when a substitute e-node is created and a corresponding substitute e-class already exists, we
simply add the e-node to the e-class. In actuality, we avoid adding any e-nodes to any existing
e-classes. Doing so could cause non-termination by continuous construction and subsequent
traversal of substitute e-nodes. Thus, instead of adding new e-nodes to existing e-classes in the
e-graph, we simply record which e-nodes should be added to which e-classes. Once traversal
completes, we process the recorded e-nodes and add them to their target e-classes.23 While
this approach does not affect the correctness of the substitution algorithm, we currently do not
propagate explanation information correctly in this final step. As a result, rewrites involving
substitution (like for β- and η-reduction in Section 4.4.4) can produce broken explanations,
which causes our proof tactic to fail during proof reconstruction. While we believe this problem
to be solvable without major changes to the substitution algorithm, we have yet to resolve it.

4.3.4 Bound Variable Aliasing
Of the three classes of problems resulting from direct representation of bound variables in
e-graphs, bound variable aliasing is the most deep-rooted. An example of aliasing is shown in
the e-graph in Figure 11a. It represents two root terms λN, 0+ 0̂ and λB,¬0̂, where B denotes
the type of Booleans.

22https://github.com/marcusrossel/lean-egg/blob/main/Rust/src/subst.rs
23Thanks to Rudi Schneider for this approach.

28

https://github.com/marcusrossel/lean-egg/blob/main/Rust/src/subst.rs

λ

+N

0 0̂

B ¬

λ λ

N B

+ 0̂

¬

λ

0

0+ ?x ⇒ ?x

(a) (b)
Figure 11: Examples of bound variable aliasing (a), and ill-typed terms by aliasing (b).

As each e-node can be contained in at most one e-class, the e-node for the bound variable 0̂
is shared by both λ-expressions. This can cause issues when the e-node for 0̂ becomes equivalent
to other expressions. For example, consider the application of the rewrite 0+ ?x⇒ ?x as shown
in Figure 11b. This rewrite only applies to the term in the λ-expression over N, and merges
the e-classes of 0 + 0̂ and 0̂. However, as 0̂ is also referenced by the λ-expression over B, this
merge affects which terms are represented by the entirely unrelated e-class of ¬0̂. Specifically,
it now also represents the ill-typed expression ¬(0 + 0̂).

The problem of bound variable aliasing cannot be solved by techniques like dynamic rewrit-
ing, as it is rooted in the very representation of e-graphs. Each e-node in an e-class can be
contained in at most one e-class, and thus, syntactically equal bound variables must be shared.
Our only option is therefore to change the representation of bound variables, such that different
variables are syntactically distinct. However, this is not possible in general, as e-graphs can
contain cycles and would therefore require representing infinitely many syntactically distinct
bound variables. Additionally, such an approach would greatly reduce the value of using an
e-graph, by creating syntactically distinct copies of semantically equivalent terms.

A novel technique for approaching this problem is introduced in [SKS24] by means of slotted
e-graphs. Slotted e-graphs modify the concept of an e-graph to include binders and variables
as first-class citizens. E-classes can then be parameterized over variables which need to be
instantiated by any parent e-node which wants to refer to the given e-class. Thus, naming
of variables becomes local and aliasing is not possible. Unfortunately, this work is still at an
early stage and does not have a practical implementation which includes explanations. Thus,
in our proof tactic, we resort to a different approach, which is to simply accept that bound
variable aliasing is a potential source of unsoundness during equality saturation. Recall that
this does not compromise the soundness of our tactic, as the Lean kernel will not accept an
invalid proof produced by egg. Thus, any problems due to bound variable aliasing manifest in
a failure during proof reconstruction. We are, however, currently not aware of any examples
where proof reconstruction fails do to this issue. Therefore, we believe bound variable aliasing
to be of little concern in practice.

4.4 Definitional Equalities
When Lean checks whether two expressions should be considered equal without proof, it uses
the definitional equality relation ≡. For example, (λx, x + 0) 1 = 1 holds without proof, as
both sides are definitionally equal. In an e-graph, two expressions are equal without proof only
if they are syntactically equal. Thus, the previous equality is not provable without rewrites.
These differing notions of equality require consideration, as they affect what we can and cannot
prove during equality saturation. For example, we might not identify a goal as being proven,
simply because we could only reach a term which was definitionally but not syntactically equal

29

to the goal. Further, we might fail to apply a rewrite when its trigger pattern matches a term
only definitionally, but not syntactically. For example, the equation (λ l, l+1) l1 = (λ l, l+1) l2
does not suffice to prove l1 + 1 = l2 + 1 in an e-graph, as it does not match any goal term
syntactically. To overcome these differences, we employ various techniques which allow egg to
convert between different definitionally equal representations of the same expression. Some of
the rules of definitional equality are already intrinsic to the way e-graphs work in conjunction
with our encoding of Lean expressions in egg. Namely, those which express that definitional
equality is an equivalence relation which is a congruence with respect to application, abstraction
and quantification given below. The relation Γ ⊢ e : α denotes that e has type α in the context
Γ, where a context is a list of typing judgements. To express that a context contains a specific
typing judgement a : b, we write Γ, a : b.

Γ ⊢ e : α
Γ ⊢ e ≡ e

refl Γ ⊢ e1 ≡ e2
Γ ⊢ e2 ≡ e2

symm Γ ⊢ e1 ≡ e2 Γ ⊢ e2 ≡ e3
Γ ⊢ e1 ≡ e3

trans

Γ ⊢ α1 ≡ α2 Γ, 0̂ : α1 ⊢ e1 ≡ α2

Γ ⊢ λα1, e1 ≡ λα2, e2
congrλ

Γ ⊢ α1 ≡ α2 Γ, 0̂ : α1 ⊢ e1 ≡ α2

Γ ⊢ ∀α1, e1 ≡ ∀α2, e2
congr∀

Γ ⊢ e1 ≡ e′1 Γ ⊢ e2 ≡ e′2
Γ ⊢ e1 e2 ≡ e′1 e

′
2

cgrapp

Other forms of definitional equality, and the techniques used to implement them, are out-
lined in the following sections.

4.4.1 Normalization
Some definitional equalities can be implemented by eliminating their associated syntactic con-
structs from all expressions – that is, by partially normalizing expressions. The most prominent
syntactic construct we eliminate in this way are let-expressions, which have the following syntax
and definitional equality rule:

e ::= ... | letx : e := e; e

Γ ⊢ ex : α Γ ⊢ e[x *→ ex] : β

Γ ⊢ (letx : α := ex; e) ≡ e[x *→ ex]
(ζ)

The definitional equality rule ζ shows how we can eliminate let-expressions. Namely, by
substituting its variable x by its value ex in the body e. This is called ζ-reduction, and is one
of the normalization steps we perform on all expressions before they are encoded to egg. Thus,
the expression language in egg does not even have a construct for let-expressions, and we do not
need to consider their definitional equality rules. Note that while ζ-reduction can theoretically
lead to an exponential size increase of the reduced expression, this is not a problem in practice
as it is uncommon to have deeply nested let-expressions where each variable appears multiple
times – especially as part of a theorem statement.

Another case of eliminating syntactic constructs regards Lean’s internalized structure pro-
jections. Recall that structure projections are functions which map a member of a structure
type to one of its fields. For efficiency, Lean defines an internalized construct for them:

e ::= ... | πP
i e

Γ ⊢ πP
i e1 ≡ πP

i e2
Γ ⊢ e1 ≡ e2

Γ ⊢ πP
i (cP b1 ... bn) : α

Γ ⊢ πP
i (cP b1 ... bn) ≡ bi

Given a structure type P and a member e : P , the application of the structure projection
for the ith field of P is written πP

i e. The first associated definitional equality rules state that
≡ is a congruence with respect to structure projections. The second rule states that apply-
ing the ith structure projection to an element cP b1 ... bn, where cP is the constructor of P ,
yields precisely the ith argument bi. As applying the naive encoding of structure projections
(via recursors) yields the same behavior, naive and internalized structure projections are def-
initionally equal. When encoding expressions to egg, we therefore eliminate all occurrences
of internalized structure projections by replacing them with their recursor-based counterpart.
This again means that the language encoded in egg does not have a construct for internalized
structure projections, and we do not need to consider their definitional equality rules.

30

4.4.2 Proof Irrelevance
The definitional equality rule for proof irrelevance states that all proofs of the same proposition
are definitionally equal:

Γ ⊢ p : U0 Γ ⊢ h1 : p Γ ⊢ h2 : p

Γ ⊢ h1 ≡ h2

For example, we can prove the proposition ∃n : N, n > 0 with infinitely many different
choices of n. Yet, all proofs of the proposition are considered definitionally equal. For our
proof tactic, this rule is relevant when the proof goal or an equation contains proof terms. A
common case of this are safe array accesses written as arr[i]′h, where arr is an array, i is an
index into the array, and h is a proof of i < as.size. A proof goal like arr[i]′h1 = arr[i]′h2 should
be provable, as h1 ≡ h2 by proof irrelevance. To achieve proof irrelevance in egg, we erase proof
terms in our encoding and replace them with their types. For this, we introduce a special proof
constructor to the expression language with which we wrap the type (the proposition) of the
proof, instead of the proof term itself. Thus, different proofs h1 and h2 of the same proposition
p are encoded syntactically equally as proof p, where p denotes the encoding of p. The proofs
in the safe array access expression from above are therefore both encoded as proof i < arr.size.
This makes the proof of arr[i]′h1 = arr[i]′h2 immediate, as both sides of the equation have the
same encoded syntax. While this approach to proof irrelevance is easily implemented during
encoding, it comes at a cost during proof reconstruction. Namely, as we erase the proof terms
in our encoding, we need to find a way to reintroduce them during proof reconstruction. This
is discussed in Section 4.6.

4.4.3 Natural Number Literals
Natural number literals are one of Lean’s internalizations which also benefits our encoding
in egg. Normally, natural numbers are represented as applications of the zero and succ con-
structors of the Nat type. As this results in a unary encoding, even moderately large natural
numbers result in enormous expressions of the form app (constNat.succ)(...(constNat.zero)).
Thus, Lean introduces an explicit representation of natural number literals in its expression
language:

e ::= ... | ln where n ∈ N Γ ⊢ l0 ≡ zero Γ ⊢ ln+1 ≡ succ ln

A natural number like 42 is then efficiently represented as l42 , or equivalently, lit (.natVal 42)
as a term of Expr. We use this same encoding in our expression language in egg to reap the
same efficiency benefits. Yet, as a result, we have to implement the definitional equality rules
for natural number literals. These rules state that literals are definitionally equal to their unary
representations. The first rule can simply be expressed as the rewrite (lit 0)⇔ (const Nat.zero).
The second rule, on the other hand, cannot be expressed as a simple rewrite, as the result of
the rewrite is determined based on the value of the literal that was matched. That is, we need
to use a dynamic rewrite in conjunction with an e-class analysis. Based on the e-class analysis
dN for natural numbers defined in Section 4.3.1, we implement the forward direction of the
second definitional equality rule using the trigger pattern (lit ?n) and an e-matching callback
which performs the following steps.

1. Given the substitution σ resulting from e-matching, obtain the e-class c := σ(?n) of
pattern variable ?n.

2. Obtain the analysis value dN(c) which we can assume not to be ⊥.24

3. If dN(c) = 0, then the rewrite is not applicable, and we leave the e-graph unchanged.
Otherwise, add the expression app (const Nat.succ) (lit dN(c)−1) to the trigger’s e-class.

24The reason is that terms coming from Lean must always have a natural number value under a lit constructor,
and this is preserved under rewrites.

31

The backward direction of the definitional equality rule is very similar with pattern term
app (const Nat.succ) (lit ?n) being the trigger. The callback only differs in Step 3 where we
unconditionally add the expression lit dN(c) + 1 to the e-graph.

It is important that we implement rewrites both for the forward and the backward direc-
tions of these definitional equality rules. The backward direction suffices to ensure provability
of equivalence of terms in the e-graph which are equal up to definitional equality of natural
number literals. Yet, we also need the forward direction to ensure that rewrites can ap-
ply, despite varying representations of natural numbers. For example, a rewrite of the form
app (constNat.succ) ?x⇒ y does not apply to lit 5. This is solved by first expanding lit 5 to
app (constNat.succ) (lit 4) using the forward direction of the second definitional equality rule.
Unfortunately, this sort of expansion introduces the problem of blowing up the number of
nodes in an e-graph by unfolding natural numbers to their unary representation. In practice
this has not been an issue, as theorems tend not to contain large natural number constants.
Yet, it is easy to construct examples which demonstrate this blowup. In the future, we hope
to find a way to bound the depth of this expansion.

Computations In addition to efficient representation of natural numbers, Lean also in-
ternalizes rules for certain computations on natural numbers. This allows theorems like
123 · 456 = 56088 to be proven simply by Lean’s kernel computing whether both sides eval-
uate to the same value. Without an internalization, the kernel would need to unfold the
definitions of multiplication (and subsequently addition) to check the equality, which quickly
becomes infeasible for larger numbers. Formally, these internalized computations are defined
by definitional equality rules of the form:

Γ ⊢ Nat.add ln lm ≡ ln+m Γ ⊢ Nat.mul ln lm ≡ ln·m ...

Among others, the set of internalized computations includes addition, subtraction, mul-
tiplication, exponentiation, and division. We implement rules for them following a similar
approach as for natural number literal conversion.

4.4.4 β- and η-Reduction
The definitional equality rules β and η establish relationships between application, abstraction
and substitution.

Γ, 0̂ : α ⊢ e : β Γ ⊢ e0 : α

Γ ⊢ (λα, e) e0 ≡ e[0̂ *→ e0]
(β)

Γ ⊢ e : (∀α,β)
Γ ⊢ (λα, e 0̂) ≡ e

(η)

The β-rule states that application of a λ-expression corresponds to substitution. The η-rule
allows us to remove unnecessary abstraction around an expression. Note that η requires e to
be well-typed, independent of the type of 0̂. That is, the context of the typing judgement
Γ ⊢ e : (∀α,β) does not have to contain a judgement 0̂ : α. This can only be satisfied if e does
not refer to 0̂, which is an important precondition as otherwise e would contain a loose bound
variable after η-reduction.

Directionality Both the β- and η-rule induce bidirectional rewrites. However, we only
consider the forward direction for each. That is, we neither perform η-expansion by adding
an abstraction around an expression, nor any kind of reverse β-reduction. Adding such rules
would entail unnecessary blowup of the e-graph as, for example, η-expansion applies to any
expression. However, restricting ourselves to the forward direction means that we need to
take some care to ensure that rewrites can apply even when we cannot β- or η-expand the
expressions they should match. For example, consider the equation (λ l, l+1) l1 = (λ l, l+1) l2
and the goal l1 + 1 = l2 + 1. Even with β- and η-reduction rules, egg cannot solve this goal.
The reason being that β- and η-reduction can only be applied to terms in the e-graph, but not
to terms appearing in rewrites. As such, the given example gets stuck because the terms in
the goal are more reduced than the terms in the equation. If we instead assume l1 +1 = l2 +1

32

to be a given equation and (λ l, l + 1) l1 = (λ l, l + 1) l2 the proof goal, we can easily apply
β-reduction to the goal terms and then solve the goal with the given equation. To work around
this limitation, we always add expressions to the e-graph in their least β- and η-reduced form,
but encode rewrites in their most β- and η-reduced form. We achieve this by performing β- and
η-reduction on expression appearing in equations during normalization (as in Section 4.4.1).

Shifting and Substitution When working with de Bruijn indices, both β- and η-reduction
necessitate shifting indices of loose bound variables. Given an expression λ e 0̂, the η-reduced
e is only equivalent if all loose bound variables in e are shifted down by 1. This is necessary
as we remove one binder above e. For example, λ 2̂ (λ 0̂ 2̂) 0̂ η-reduces to 1̂ (λ 0̂ 1̂). β-reduction
is similar in that given an expression (λ f) e, the reduced f [0̂ *→ e] also requires shifting all
loose bound variables in f down by 1, as we again remove one binder above f . Additionally,
all loose bound variables in e need to be shifted up by the number of binders appearing
above the corresponding occurrence of 0̂ in f . This is necessary to compensate for the fact
that we are potentially adding binders above e. For example, (λ (λ 0̂ 1̂) 0̂ 3̂)(λ 0̂ 1̂ 2̂) β-reduces
to (λ 0̂ (λ 0̂ 2̂ 3̂)) (λ 0̂ 1̂ 2̂) 2̂. We implement this shifting and substitution based on the e-class
substitution function subst from Section 4.3.3. Thus, β- and η-reduction are defined entirely
based on the choice of substitution functions σ:

eta(g, c) := subst(g, c,σ±(−1))
beta(g, c, arg) := subst(g, c,σβ(arg))

σβ(arg)(idx , depth) :=

⎧
⎪⎨

⎪⎩

BVar(Nat(idx − 1)) if idx > depth

BVar(Nat(idx)) if idx < depth

subst(g, arg ,σ±(depth)) if idx = depth

By σ± we denote the function for shifting indices of loose bound variables defined in Sec-
tion 4.3.3. That is, eta(g, c) adds an e-class to g which is equal to c except that all loose
bound variables’ indices are shifted down by one. beta(g, c, arg) adds an e-class to g which is
equal to c except that all variables corresponding to the top-level variable 0̂ are replaced by
an appropriately shifted version of arg . The shifting of arg is itself achieved by using subst.25

The dynamic rewrite for β-reduction in egg then proceeds as follows. Given the trigger pattern
app (λ ?t ?b) ?a, let the result of e-matching be a substitution containing ?b *→ b and ?a *→ a
with e being the e-class corresponding to the entire trigger pattern. Then, obtain the shifted
e-class s := beta(g, b, a) and finally merge s and e in g. The dynamic rewrite for η-reduction
is very similar. Given the trigger pattern λ ?t (app ?f (bvar 0)), let the result of e-matching be
a substitution containing ?f *→ f with e being the e-class corresponding to the entire trigger
pattern. Then, obtain the shifted e-class s := eta(g, f) and finally merge s and e in g. Notably,
to match the semantics of η-reduction we need to restrict this procedure to only be performed
when f does not refer to variable 0̂. That is, we check whether 0 ∈ dvar (f), and if so, abort the
rewrite. A downside of this approach is that expressions which would be eligible for η-reduction
are blocked from reduction if they are equivalent to an expression referring to 0̂.

4.4.5 Remaining Rules
We have covered approaches for handling the most important, but not all, definitional equality
rules. In this section, we briefly cover the remaining rules and consider how they might be
implemented, or why they should not be.

Universe Levels We have largely omitted universe levels in this thesis, as they tend not to
cause problems in our tactic. For those cases where they do, we have taken the approach of
subsequently implementing definitional rules which solve the issues at hand. Currently, these
rules are the following:

25This last case in σβ returns an e-class instead of just a single expression. This does not match our definition
of a substitution, but subst can easily be adapted to handle this, too.

33

max (ℓ1, ℓ2) ≡ max (ℓ2, ℓ1)

max (S ℓ1, S ℓ2) ≡ Smax (ℓ1, ℓ2)

imax (ℓ, 0) ≡ 0

imax (ℓ1, S ℓ2) ≡ max (ℓ1, S ℓ2)

We choose this incomplete approach as full definitional equality of universe levels is based
on an inequality relation defined by 15 rules [Car19]. It is not immediately clear to us what a
complete corresponding set of equalities should look like.

ι-Reduction ι-reduction is the definitional equality rule which encodes the semantics of
applying an inductive type’s recursor. For example, ι-reduction for Nat is defined by:

Nat.rec C af Nat.zero ≡ a

Nat.rec C af (Nat.succn) ≡ f n (Nat.rec C af n)

Adding such rules as rewrites might help with rewriting on match-expressions, which ulti-
mately reduce to recursor applications. A problem with this approach is that match-expressions
tend not to elaborate directly to recursor applications, but instead to generated intermediate
definitions. Thus, we would also need to add unfolding rewrites for all intermediate defini-
tions. Additionally, adding these rules for every inductive type appearing in the proof goal or
an equation may explode the number of rewrites. Notably, the simp tactic supports ι-reduction
which warrants further investigation into its approach in the future.

δ-Reduction δ-reduction states that definitions (or global constants) are definitionally equal
to their bodies. That is, if we define f : N → N := λn, n · n, then we get f ≡ λn : N, n · n.
Implementing full δ-reduction in egg is neither easy nor desirable. The most straightforward
approach would be to add a δ-reduction rewrite for every global constant which may possibly
appear during equality saturation. These constants can be collected by traversing the proof
goal and every given equation. However, once we add the δ-reduction rewrites to our rewrite
set, we then also need to repeat the process on those newly added rewrites. This process would
reach a fixed point, as there can only exist finitely many global constants. The major problem
with this approach is that it would likely blow up the set of rewrites. And even if the set of
rewrites remains manageable, it is generally not desirable to just unfold all definitions during
equality saturation, as this quickly blows up the e-graph. Instead, we generally assume that
if a definition requires unfolding, then an equation will be explicitly provided for this by the
user. While this assumption holds naturally for most definitions, there are certain classes of
definitions for which unfolding is expected. Namely, those relating to type classes. Thus, we
treat type classes specially, as covered in Section 4.5.

4.5 Type Classes
Type classes are a concept which is at odds with the syntactic nature of e-graphs, as they
create syntactic uniformity for context-dependent semantics. For example, recall the Add type
class from Section 3:

class Add (α : Type) where
add : α → α → α

instance : Add Nat where add := Nat.add
instance : Add String where add := String.append

#eval Add.add 40 2 -- 42
#eval Add.add "Le" "an" -- "Lean"

34

The syntactically equal calls to Add.add have different semantics depending on the types of
the provided arguments. In the first case Add.add, reduces to Nat.add, while in the second case
it reduces to String.append. This polymorphism is achieved by means of type class synthesis.
That is, the type of Add.add is ∀ (α : Type) [inst : Addα], α→ α→ α where [inst : Addα]
is an argument which is automatically synthesized by Lean, and applying Add.add ends up
applying inst.add. However, this polymorphism does not immediately pose a problem when
it comes to syntactic rewriting. While both calls to Add.add look the same on the surface,
they actually elaborate to syntactically distinct expressions which reference the synthesized
type class instance explicitly. For example, when Add.add is applied to natural numbers it
elaborates to:

(app (const `Add.add [Level.zero]) (const `Nat [])) (const `instAddNat [])

Here, the synthesized instance instAddNat appears explicitly. Thus, even in an e-graph,
there is no ambiguity about occurrences of Add.add. Problems only arise once we consider
the underlying semantics of type class instances. For example, the expression Add.add 40 2
cannot be rewritten in an e-graph using the equation ∀(x y : Nat), Nat.addx y = Nat.add y x,
as Nat.add does not correspond to Add.add syntactically. As a user, this is rather unintuitive
as we tend to treat Add.addx y and Nat.addx y as “the same” – and rightfully so, as they
are definitionally equal by δ-, β- and η-reduction. Thus, when it comes to type classes, there
exists an expectation that Lean and its proof tactics transparently handle syntactic differences.
To overcome these differences in syntax, we automatically generate equations for converting
between different representations involving type classes.

4.5.1 Projection Reduction
To seamlessly convert between uses of type classes and their underlying semantics, we specif-
ically need to convert between applications of type class projections (often shortened to “pro-
jection” below) and their underlying definition contained in type class instances. The notion
of a type class projection is the same as a structure projection. This is because type classes are
just structure types with an associated tag.26 For example, the Add.add function from above
is a type class projection. The type signatures of projections have a specific layout. Given
a type class T with type parameters τ1, ..., τn and a field p of T with type α1 → ... → αn,
the projection T.p has type ∀(τ1)...(τn)[T τ1...τn],α1 → ... → αn. Thus, an application of a
projection T.p can only sensibly be reduced (unfolded), if it contains at least n+1 arguments.
This is because the n+1st argument is the type class instance argument, which determines the
semantics underlying the application of the projection. For example, in the case of Add.add
on natural numbers, it is the type class instance argument which tells us that the under-
lying function is Nat.add. Thus, the equation which captures this reduction of Add.add is
Add.add Nat = Nat.add. We make use of the structured type signature of projections in the
following procedure for generating equations for projection reductions. In the egg tactic, we
run this procedure for all expressions appearing in the proof goal and given equations.

Equation Generation The basic idea for generating projection reductions is to check a given
expression e for reducible sub-expressions of the form f a1 ... an, where f is a projection. For
this, we traverse e in depth-first order while tracking a list of arguments args when traversing
function applications. That is, if e is an application f a, we traverse f with args := a :: args .
In contrast, if we traverse a function argument, or the domain or body of a binder, we reset
args := []. Thus, when we reach the head f of a function application f a1 ... an, we have
exactly args = [a1, ..., an]. If the head expression f is a global constant (an Expr.const), we
check whether it is a type class projection. If it is not, we continue the depth-first search. If
f is a type class projection, we obtain the number t of type parameters of the associated type
class. If n ≥ t+1, we know that the application f a1 ... an can sensibly be reduced as at+1 must

26This is not actually true in Lean at the time of writing. Yet, very few type classes are not structures, and
there are proposals to disallow non-structure type classes.

35

be the type class instance argument for the projection f . We therefore compute a reduction
r of f a1 ... at+1 which unfolds the field corresponding to projection f in at+1 by means of
Lean’s meta-programming API. We only consider the first t + 1 arguments, as this yields a
more general reduction equation than including the arguments at+2, ..., an. Note that we said
that we compute a reduction instead of the reduction, as it is sometimes possible to compute
multiple reductions r1, ..., rk. This is possible when a reduction itself yields an application
of a projection. An example of this is Lean’s heterogeneous addition type class projection
HAdd.hAdd, which may first reduce to an application of Add.add. Thus, given the expression
f a1 ... an we generate a sequence of reduction equations f a1 ... at+1 = r1, ..., rk−1 = rk.
Notably, the proof for each of these equations is simply reflexivity of equality, as the involved
expressions are all definitionally equal. We also note that the described procedure is a slight
simplification of the actual implementation, which requires special handling of bound variables
and metavariables.

4.5.2 Specialization
Reductions for type class projections can be generated only when then type class instance
arguments are baked into the expressions. That is, for expressions like Add.add 40 2, where
type class synthesis constructs an instance of type AddNat during elaboration. Yet, there exist
many theorems where the type class instance cannot be synthesized during elaboration, as
the theorem is itself parameterized over the type class instance. Common examples of such
theorems come from algebra, as algebraic structures are nicely formalized as type classes. For
example, we can define a semigroup as:
class Semigroup (G : Type) extends Mul G where

mul_assoc : ∀ a b c : G, (a * b) * c = a * (b * c)

That is, a semigroup structure for a given carrier type G has a binary operation ∗ which
is associative. The multiplication operator mul is inherited by extending the Mul type class,
which also defines the corresponding ∗ notation. The full type of mul_assoc looks as follows:
∀ (G : Type) [self : Semigroup G] (a b c : G) :

mul G (toMul G self) (mul G (toMul G self) a b) c =
mul G (toMul G self) a (mul G (toMul G self) b c)

The function toMul : (G : Type)→ SemigroupG→ MulG casts the type class instance self of
type SemigroupG to an instance of type MulG, such that it can be used with mul. The theorem
mul_assoc can thus be applied for any type for which a semigroup structure is provided.
However, the syntactic structure of the theorem means that, in an e-graph, it only applies to
expressions where multiplication has the syntactic form mul_ (toMul_ _). This is generally
not the case for expressions involving concrete semigroups. For example, if we assume Nat to
have a semigroup instance, then for a, b, c of type Nat we cannot prove (a∗ b)∗ c = a∗ (b∗ c) by
mul_assoc in egg. The problem is that the goal equality does not have a form which matches
mul_assoc, as the multiplication type class instance instMulNat for Nat does not have the form
toMul_ _ required by mul_assoc:
mul Nat instMulNat (mul Nat instMulNat a b) c =
mul Nat instMulNat a (mul Nat instMulNat b c)

This incompatibility is one of the major hurdles we face when using type classes with syn-
tactic rewrites. Namely, even with automatic generation of type class projection reductions, we
cannot know that we should generate a reduction like toMulNat instSemigroupNat = instMulNat,
as is not clear that the semigroup carrier type G will be matched against Nat until equality
saturation has already started. In an attempt to generate such reductions before equality sat-
uration has started, we use heuristic approaches. We assume that rewrites will generally be
applied to expressions whose types we are already aware of beforehand. Using this assump-
tion, we can generate type class specializations of equations. That is, versions of equations
where otherwise generic type class instance arguments are assigned concrete instances. These
specializations come in two forms for achieving different goals.

36

Goal Type Specialization Goal type specialization aims to solve the problem established
in the previous paragraph. For this, we choose the heuristic approach of assuming that rewrites
will generally be applied to expressions whose type matches the type of the proof goal. Thus,
given an equation e which is parameterized over type class instances, we try to generate a
corresponding equation e⊢ which is applicable to terms of the proof goal’s type T . Let lhs = rhs
be the statement of e with all quantified variables instantiated as metavariables. Then, we first
generate the type specialized equation eT by unifying both type(lhs) and type(rhs) with T ,
where we denote by type a function which maps an expression to its type. Given the theorem
mul_assoc from above, and assuming the goal type to be Nat, this step results in a theorem of
the following form with the type of ?self being SemigroupNat:

mul Nat (toMul Nat ?self) (mul Nat (toMul Nat self) ?a b) ?c =
mul Nat (toMul Nat ?self) ?a (mul Nat (toMul Nat self) ?b ?c)

Next, to generate the specialized equation e⊢, we try to replace all type class metavariables
in eT with concrete instances. For efficiency, we first check the local context for an appropriate
instance, but otherwise resort to type class synthesis. Performing this step turns the previous
example into a theorem of the form:

mul Nat (toMul Nat instSemigroupNat) (mul Nat (toMul Nat instSemigroupNat) ?a ?b) ?c =
mul Nat (toMul Nat instSemigroupNat) ?a (mul Nat (toMul Nat instSemigroupNat) ?b ?c)

Thus, we obtain a theorem which is no longer parameterized over the type class instance ar-
gument ?self, as this argument could be synthesized under the assumption that the result type
is Nat. Note that this theorem is still not syntactically applicable to a proof goal of the form
(a∗b)∗c = a∗(b∗c) for a, b, c of type Nat, as multiplication is still expressed as mul_ (toMul_ _)
instead of instMulNat. However, this type class specialized equation is now amenable to projec-
tion reduction, which generates the missing equation toMulNat instSemigroupNat = instMulNat.
Thus, the theorem over natural numbers can be proven in egg by first rewriting all occurrences
of instMulNat to toMulNat instSemigroupNat, and subsequently applying either the equation
mul_assoc, or our type class specialization thereof.

As the previous example shows, type class specialization and projection reduction work in
conjunction. The specialization enabled a projection reduction which was necessary to apply
the specialized theorem. Thus, in our proof tactic, we run specialization and projection reduc-
tion in a loop until a fixed point is reached. That is, the equations generated by specialization
are passed to the procedure for projection reduction, and vice versa. A finite fixed point must
always be reached as both procedures produce “smaller equations” according to suitably chosen
metrics. Namely, specialization always reduces the number of type class metavariables, while
projection reduction decreases the “depth” of the referenced type classes, where we consider
type class T1 to be deeper than type class T2, if T2 was defined before T1.27

Direction Specialization Direction specialization is another form of type class specializa-
tion. It enables equations to be applied in directions in which they did not originally apply.
Recall that a given equation lhs = rhs , where quantified variables are instantiated as metavari-
ables, is only applicable in those directions where the metavariables satisfy the ⊇ relation. For
example, ?n · 0 = 0 is only applicable in the forward direction, as the metavariables in ?n · 0
are a superset of the metavariables in 0, but not vice versa. For equations involving type class
instances, the set of applicable directions is sometimes smaller than expected. Take, for exam-
ple, the following axiom of groups: x · 1 = x. Intuitively, this equation should be applicable
in both directions, as the only quantified variable x appears on both sides. Yet, in a standard
formalization of groups as a type class, the equation has the following type and is thus only
applicable in the forward direction:

∀ (G : Type) [self : Group G] (x : G), mul G (toMul G self) x 1 = x
27Thus, T2 cannot possibly reduce to anything referencing T1.

37

The principal reason for this theorem only being applicable in the forward direction is that
the left side contains a multiplication which relies on a type class instance self : GroupG, which
does not appear on the right side. This is problematic, as a rewrite from x to x · 1 should be
possible, and is a well-known “trick” in algebraic reasoning. It is thus important to extend the
applicable directions of the equation to include the backward direction. For this, we use the
following procedure.

Given an equation e which is parameterized over type class instances, we try to generate
corresponding equations e⇒ and e⇐ which are applicable in the forward and backward direc-
tions respectively. In the following, we consider only the procedure for generating e⇒ with the
reverse direction being analogous. Let lhs = rhs be the statement of e with all quantified vari-
ables instantiated by metavariables. Then, we compute the set B⇒ := tcvars(rhs)\ tcvars(lhs)
of type class metavariables which are blocking e from being applicable in the forward direction,
where tcvars maps an expression to its contained non-ambient metavariables whose type is a
type class. If B⇒ = ∅, then either e is already applicable in the forward direction, or the reason
for this direction being blocked does not relate to type class instances. In that case, we do not
generate a specialization for this direction. Otherwise, if B⇒ ̸= ∅, we generate a specialization
rhs1 of rhs by trying to assign all metavariables in B⇒. For this, we first consider instances
in the local context, and if none apply, try assignment by type class synthesis. This step may
entail the assignment of metavariables which are not type classes instances. For example, if we
assign an instance of type GroupNat to a metavariable ?g of type Group ?G, then both ?g and
?G will be assigned. The assignment of metavariables which are not type class instances can
in turn enable synthesis of other type class metavariables. Thus, we generate specializations
rhs1, ..., rhsn until we reach a fixed point. A fixed point must be reached, as the number of
assigned metavariables decreases on every iteration. From rhsn, we construct the specialized
equation e⇒ := lhs = rhsn. This equation holds definitionally, and is thus proven by reflexivity
of equality. Finally, we check whether the constructed e⇒ is in fact applicable in the forward
direction, and if not, discard it.

Applying direction specialization to the equation x · 1 = x from above can yield different
results depending on context. If the equation is to be applied in a proof over general groups,
then the local context must contain a type G and an instance inst : GroupG. In that case, the
specialization yields a theorem of the form ∀x : G, mulG (toMul G inst)x 1 = x, which can be
applied in both directions. If, instead, the equation is to be applied in a proof for a concrete
group like Q, then direction specialization fails, as the local context need not necessarily contain
an instance of type GroupQ. In this case, goal type specialization is necessary, and yields an
equation which is applicable in both directions.

4.6 Proof Reconstruction
Up to this point, this thesis has only considered preprocessing of expressions and equations in
Lean, as well as techniques for improving the applicability of rewrites in egg. In this section,
we take a look at what happens after equality saturation completes. That is, how the result
of equality saturation is communicated back to Lean, such that Lean accepts the result as a
proof. This process, called proof reconstruction, involves generating an explanation in egg, and
turning that explanation into a proof term in Lean. We motivate our current approach to
proof reconstruction by showing which approaches did not work along the way.

4.6.1 Explanation Construction
When equality saturation completes, the immediate result is simply an e-graph – no more, no
less. However, from this e-graph we can extract various information depending on our use case.
In the context of our proof tactic, the goal of equality saturation is to prove the equivalence
of two given expressions lhs and rhs . Thus, when equality saturation completes, we check
whether the e-class ids for lhs and rhs are equal, which implies the desired equivalence. If
this check is successful, we ask egg to generate an explanation for the equivalence. As covered
in Section 2.5, explanations from congruence closure are generally DAGs. Yet, they can be

38

flattened into a sequence of sequential rewrite steps. An example of a flat explanation proving
x = x+ (0 + 0) is shown in Figure 12.

(fvar 42)

(Rewrite ⇐ add0 (app (app (const Nat.add) (fvar 42)) (const Nat.zero)))

(app (app (const Nat.add) (fvar 42)) (Rewrite ⇐ add0 (app (app (const Nat.add) (const Nat.zero)) (const Nat.zero))))

Figure 12: Flat explanation proving x = x+ (0 + 0).

The first line corresponds to the left-hand side (x) of the equality to be proven. Every sub-
sequent line consists of a term containing a Rewrite with the name of the rewrite rule (add0),
the direction in which it was applied (⇐), and the position at which it was applied within
the resulting term. The final term therefore represents the right-hand side (x + (0 + 0)) of
the equality. We pass a string representation of such an explanation back to Lean where we
construct a native explanation representation from it. This native representation is also a
sequence of expressions, but now of Lean’s Expr type. Parsing Exprs from our egg expression
representation is almost immediate, with two caveats. First, free variables and metavariables
need to be reconstructed from their integer index, which is trivial. Second, and more impor-
tantly, erased proofs are constructed as metavariables whose type is the proposition contained
in the erased proof expression. That is, the erased proof term still needs to be specified, which
will occur in later steps. Each expression e in the native explanation representation has the
following data associated with it: the uniquely identifying name of the rewrite r which leads to
e, the direction in which r was applied, and the position within e at which r was applied. The
position is represented by Lean’s SubExpr.Pos type, which locates a position within an expres-
sion as a sequence of “coordinates” describing which child of a sub-expression to visit, starting
at the root expression. Sub-expression positions do not translate to universe levels, which is
why we do not record a position for rewrites on them. Luckily, any rewrite on universe levels
must necessarily be one of our definitional equality rules over universe levels (Section 4.4.5)
which do not require a rewrite position during proof generation.

One piece of information which is notably absent in our explanation representation is the
assignment of quantified variables in rewrites. That is, if we have a rewrite from e1 to e2 using
the equation ∀(x y : N), x + y = y + x, then the explanation does not explicitly state what x
and y are supposed to be. Instead, the only indication of the required variable assignment are
e1 and e2. For example, if e2 is 2+ 3, then the quantified variables of the previous rewrite can
be inferred as x := 2 and y := 3. Thus, one important task during proof generation will be
to determine this assignment. This is a notable difference compared to the tactic prototype of
[KGB+24], where the assignment is computed in Rust using a different approach.

4.6.2 Proof Generation
In Lean, proving a theorem means finding a term whose type is the proposition to be proven.
That is, if we want to prove a goal of the form lhs = rhs , we need to find an expression e of
type lhs = rhs . We use the explanation steps obtained in the previous section to build such a
proof expression step by step. We start with the most straightforward approach, and refine it
subsequently as we determine insufficiencies.

Recursor-Based Generation Let e1, e2 and e3 be the expressions at three consecutive
steps in an explanation, with r1, r2, p1 and p2 being the respective equations and positions
used to rewrite from one step to the next. As a first attempt at proof generation for e1 = e3,
we follow the procedure sketched in Figure 13.

39

e1 ε ρ1 = ε ρ2 e2 ε′ ρ′1 = ε′ ρ′2 e3

s1 : ρ1 = ρ2 s2 : ρ′1 = ρ′2

r1 : ∀ (x1)...(xm), a = b r2 : ∀ (y1)...(yn), c = d

e1 = e3

substitution
(by equality recursor)

specialization
(by unification)

transitivity

Figure 13: Recursor-based proof generation for two steps of an explanation.

We start by proving e1 = e2. We know that e1 and e2 must differ only at position p1. That
is, exactly where the explanation claims the rewrite r1 to have occurred. Thus, if ε1 and ε2 are
functions which take an expression and place it at position p1 in e1 and e2 respectively, then
ε1 = ε2. We therefore refer to this function simply as ε. Then, if ρ1 is the sub-expression of e1
at position p1, and ρ2 is the sub-expression of e2 at position p1, we get e1 = ε ρ1 and e2 = ε ρ2.
To prove the equality of ε ρ1 and ε ρ2, we first prove ρ1 = ρ2. This should be simple as the
explanation tells us that this must precisely be the result of equation r1 : ∀ (x1)...(xm), a = b.
The only problem is that we do not know how r1 should be specialized (how its quantified
variables should be assigned) in order to obtain the required proof term. Luckily, the required
specialization is completely determined by ρ1 and ρ2. By instantiating r1’s quantified variables
with metavariables and then unifying ρ1 with a and ρ2 with b, we obtain a specialization s1 of
r1 which proves ρ1 = ρ2.28 Based on the specialization s1, we prove ε ρ1 = ε ρ2 by using the
substitution principle of equality. That is, its recursor:

Eq.ndrec : ∀(α : Uu)(x : α)(C : α→ Uu), (C x)→ ∀(y : α)(h : x = y), C y

The crux in applying the recursor is constructing the correct motive C. As the result C y
should have the form ε ρ1 = ε y, we let C := λy, ε ρ1 = ε y. Thus, we get a proof of ε ρ1 = ε ρ2
by Eq.ndrec_ ρ1 C (Eq.refl (ε ρ1)) ρ2 s1. The same approach can then be used to prove e2 = e3
based on a different ε′ for the position p2, and the equation r2. Finally, to prove e1 = e3 we
combine the previous proofs by applying transitivity of equality.

Two cases of this procedure need to be considered separately. First, we noted in the
previous section that rewrites on universe levels do not have a corresponding sub-expression
position, but do not require one as the rewrite can only be a result of definitional equality.
This only works, because we treat rewrites by definitional equality differently in our proof
generation. Namely, given explanation expressions e1 and e2, where e2 follows from some
definitional equality rewrite on e1, we construct a proof of e1 = e2 directly by unifying e1 and
e2 and constructing the proof term Eq.refl e1.29 This works, because definitional equality is a
congruence with respect to all expression constructors. That is, if ρ1 ≡ ρ2, then necessarily
ε ρ1 ≡ ε ρ2. In the future, we hope to skip these proofs by reflexivity altogether, to reduce
proof size. Yet, we are currently unsure whether this may cause problems due to a lack of
transitivity in Lean’s algorithmic definitional equality.

28Thanks to Mario Carneiro for this approach.
29We could have just as well chosen Eq.refl e2.

40

The second case that needs to be considered separately is that of erased proofs terms. These
terms are represented by metavariables where the type is known. In order to reconstruct the
actual proof term, we need to resort to information contained in the proof goal and equations.
If the left-hand side lhs of the proof goal contains a proof term, then the first explanation
expression e1 must contain a corresponding metavariable for the erased proof. To assign this
metavariable, we begin the proof generation procedure by unifying lhs with e1. Thus, e1
no longer contains proof erasure metavariables. This property is preserved under definitional
equality rewrites from ei to ei+1, as we unify ei and ei+1 for such rewrites. For non-definitional
rewrites, proof erasure actually breaks the property of ei and ei+1 being representable as ε ρi
and ε ρi+1, as they may require different εs. This is because ei’s ε may contain proof terms
for which ei+1’s ε only contains a metavariable. Thus, to propagate proof terms from ei to
ei+1, we simply choose to represent ei+1 using ei’s ε in the motive of the equality recursor. For
proof terms contained in ρi, instead of ε, a similar logic applies. The main difference is that
the proof term does not originate from the proof goal, but instead from the equation used to
rewrite ρi.

Binder-Compatible Generation A major caveat of recursor-based proof generation is
that it cannot handle rewriting under binders. The problem is that if e2 is constructed from
e1 by rewriting with equation r under a binder, then it is not possible to assign the quantified
variables in r by unification with the relevant sub-expressions in e1 and e2. Namely, let
e1 := ε ρ1 and e2 := ε ρ2, where ρ1 and ρ2 appear under a binder. Then the bound variables
in ρ1 are not the same bound variables as those in ρ2, as they originate from different binders.
This is reflected in the fact that Lean’s locally nameless representation represents them with
different free variables. Thus, even if ρ1 and ρ2 were syntactically identical, they would not
unify, as the free variables are distinct. To solve this problem, we need a way to refer to “the”
bound variable of two different expressions. This is possible using the theorem of function
extensionality:30

funext : ∀(α : Uu)(β : α→ Uv)(f g : ∀x : α,β x), (∀x, f x = g x)→ f = g

It states that any two functions f and g which agree on all inputs are equal. We use this
to fix our proof generation procedure as follows. Let e1 and e2 be as above with p1 being
the position at which rewrite r1 was applied. Then we prove e1 = e2 step by step while
simultaneously traversing e1 and e2 towards position p1. We denote by s1 and s2 the head
symbols of sub-expressions of e1 and e2 encountered during the traversal. If ever s1 ̸= s2, then
an error has occurred, and we abort the proof reconstruction.31 When s1 = s2 = Expr.app
applied to functions f1 and f2 and arguments a1 and a2, we apply the theorem of congruence
congr and are thus left to prove f1 = f2 and a1 = a2. We prove the equality of those sub-
expressions which do not need to be traversed to reach position p1 by reflexivity of equality,
as they must be syntactically equal by our assumption that e1 and e2 differ only at position
p1. When s1 = s2 = Expr.lam with bound variables x1 and x2, and bodies b1 and b2, we apply
function extensionality and are thus left to prove ∀y, (λx1, b1) y = (λx2, b2) y. By introducing
y and β-reducing both λ-expressions, the proof goal becomes b1[x1 *→ y] = b2[x2 *→ y]. Thus,
both bodies of the λ-expressions refer to the same free variable y. When s1 = s2 = Expr.forallE,
we use the same approach as for Expr.lam, but use the theorem forall_congr which lifts function
extensionality to the type level. We repeat this traversal until we reach position p1, at which
point we proceed to specialize the rewrite r1 by unification as in the recursor-based approach.
As any bound variables appearing in e1 and e2 now correspond to the same free variables, this
unification also succeeds for rewrites under binders. A downside of this approach is that the
proof terms can be much larger than those generated by the recursor-based proof generation,
as the size of the proof term now corresponds to the size of the expressions e1 and e2.

30While this is a theorem (instead of an axiom) in Lean, it does not follow from the definition of equality,
but is instead proven from an axiom for the existence of quotients.

31Special care needs to be taken when encountering proof erasure metavariables, which are resolved by
intermittent unification.

41

Mathlib-based Generation The attentive reader will have noticed that the use of congru-
ence theorems in the binder-compatible proof generation brings with it an important caveat:
we cannot rewrite in the arguments to dependent function types. Recall from Section 3.4 that
for regular (homogeneous) equality, a congruence theorem for f a = g b is only possible when
f and g are non-dependent, or a and b are definitionally equal. A common example where
neither is the case is when using the ite function which underlies if-then-else expressions:

ite : ∀(α : Uu)(c : U0)[h : Decidable c],α→ α→ α

An expression like if (IsEven n) then n else 0 is syntactic sugar for ite Nat (IsEven n) n 0. Note
that the conditional expression c is not a boolean, but a proposition. In order to have a
computational interpretation of ite, this proposition needs to be decidable. This is ensured
by requiring the type class instance h of type Decidable c. However, as a result, the type of
the argument h depends on the conditional proposition c. Thus, if we try to generate a proof
for a rewrite from if (IsEven 2) then 2 else 0 to the equivalent if True then 2 else 0, we will try to
apply congruence for a dependent function and fail. At the time of writing, we do not have
a full understanding of how to solve this problem. Thus, we resort to engineering our way to
an acceptable solution. That is, we copy about 500 lines of code from the implementation of
congruence quotations in the mathlib library:

“While in simple cases it might be possible to use [regular congruence theorems],
congruence quotations are more general, since for example [a given function] could
have implicit arguments, complicated dependent types, and subsingleton instance
arguments such as Decidable [...].”32

We spare the reader from a description of how we use congruence quotations for our proof
generation, as this is purely an implementation detail. However, we note that the overarch-
ing proof generation procedure still follows that of Figure 13, and we only swap the use of
the equality recursor for the congruence quotation mechanism. While congruence quotations
expand the capabilities of our proof generation procedure, they are not a silver bullet. For
example, our tactic can still not generate a proof for the rewrite from if (IsEven 2) then 2 else 0
to if True then 2 else 0. If we attempt the same rewrite using the rw tactic, it also fails stat-
ing that the “motive is not type correct”. That is, it tried to rewrite only IsEven 2 to True,
which yields an if-then-else expression which is not well-typed as the instance h still has type
Decidable (IsEven 2). Interestingly, if we attempt the same rewrite with simp, it succeeds. It
does so by using the special congruence theorem ite_congr:

ite_congr : ∀(x y u v : α)(s : Decidable b)[Decidable c],

b = c→ (c→ x = u)→ (¬c→ y = v)→ ite b x y = ite c u v

This congruence theorem includes the crucial replacement of the instance of type Decidable b
with the correct instance of type Decidable c, which is obtained by type class synthesis. There
exist a variety of specialized congruence theorems like this, which are tagged with an @[congr]
tag. The simp tactic has a mechanism for using these theorems when need be. Thus, in the
future, we hope to use more of the existing infrastructure of simp for our proof generation.

4.7 Conditional Rewriting
In previous sections, we introduced various techniques for syntactic rewriting of expression
using equational theorems. Some of these techniques aimed at improving the soundness of
applying rewrites (as in Section 4.3). Others, namely the extensions for handling definitional
equality and type classes, improved the completeness of our proof tactic. In this section, we
introduce another extension which allows our tactic to use conditional equations for rewriting.
While conditional rewriting is also supported by the simp tactic, our approach to conditional
rewriting in e-graphs is new to the best of our knowledge.

32https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/TermCongr.html#
congr-congruence-quotations

42

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/TermCongr.html#congr-congruence-quotations
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/TermCongr.html#congr-congruence-quotations

4.7.1 Conditional Equations
Intuitively, a conditional equation is an equation which depends on preconditions. As such,
it should only be applied when the preconditions are satisfied. For example, a theorem like
∀n, n ̸= 0 → n

n = 1 is a conditional equation where the body n
n = 1 should only be applied if

the condition n ̸= 0 is satisfied. However, it is not easy to pinpoint what exactly constitutes
a precondition. In [BN98], a conditional identity is a formula s1 = t1 ∧ ... ∧ sn = tn → s = t.
This matches the definition used for conditional rewrites in [Bou23]. For our purposes, this
is too strict of a definition as it requires preconditions to be equalities. Instead, we want
conditional equations to be of the form ∀(x1)...(xn), lhs = rhs , where x1, ..., xn are arbitrary
preconditions and quantified variables in lhs = rhs . This makes it difficult to determine which
xi are preconditions and which are “basic” quantified variables. We use the following approach.

Let X := {x1, ..., xn}, and let B := vars(lhs) ∪ vars(rhs), where vars returns the set of
variables contained in an expression. Then, as a first approximation, we could define the
set P of preconditions by P := X \ B. The reason being that any xi ∈ B will be assigned
by e-matching during rewriting, and thus does not need to be satisfied before the rewrite is
applied. Therefore, any xi ∈ P remains unassigned during e-matching and must be provided
as a precondition to the rewrite. This definition of preconditions works for ∀n, n ̸= 0→ n

n = 1,
which we shall write as ∀(n : N)(h : n ̸= 0), n

n = 1. Here, we get P := {h}, as h does not
appear in the equation’s body, whereas n does. However, an example where this definition of
preconditions fails is the equation ∀(α : Type)(l : Listα), l = l. Here, α is determined to be a
precondition, as it does not appear in the body expression l = l. This is, of course, undesirable
as α is completely determined by the type of l and can thus be inferred from the term assigned
to l. Thus, in the egg tactic we also consider type information when determining the set of
preconditions. Namely, we define P := {x ∈ X \ B | ! b ∈ B, x ∈ vars(type(b))}. Using this
criterion, we do not consider α to be a precondition in the previous example, as l appears in
the equation body and α appears in the type of l. Another, rather constructed, example where
this approach correctly determines the set of preconditions is Fix.fix in the following:

class Fix (α : Type) where
fix : ∀ (f : α → α) (a : α), f a = a

Here we define the Fix type class with requires any conforming type α to satisfy the prop-
erty that every a : α has to be a fixed point under any f : α→ α. The type of Fix.fix is
∀(α : Type)[self : Fixα](f : α→ α)(a : α) : f a = a. By our precondition criteria, we correctly
determine that self is the only precondition. Notably, the type of self is not a proposition.
That is, our precondition selection is not restricted to propositions.

While the given criteria for preconditions have worked well in practice so far, they are still
fundamentally incomplete. The defining characteristic of a precondition p to an equation e
should be that assigning the variables in e does not allow us to infer a value for p. Unfortunately,
we do not currently know how to determine whether such a condition is satisfied. However,
a potential improvement over our current procedure could be to compute the set of variables
appearing in other variables’ types up to a fixed point, instead of just for one step.

A more practical restriction that we currently need to impose on conditional equations is
that we do not allow unbound preconditions. We call a precondition p of an equation e unbound,
if e-matching on e does not yield a substitution which entirely resolves the type of p. That is,
if vars(type(p)) \ vars(e) ̸= ∅. An example of this is Fix.fix from above. Here, the type Fixα of
the precondition self refers to the variable α, yet α does not appear explicitly in the body of the
equation. As a result, e-matching on the body does not yield an assignment for the variable α.
Thus, we cannot resolve the type Fixα during equality saturation, even though it is possible
by type inference in Lean. However, as we will see in the following section, our conditional
rewriting procedure needs to be able to resolve the types of preconditions during equality
saturation, and can therefore not handle unbound preconditions. In contrast, a conditional
equation like ∀n, n ̸= 0 → n

n = 1 does not have unbound preconditions, as e-matching on the
body determines n, which determines the type of the precondition n ̸= 0. Supporting unbound
preconditions is not unreasonable, and we have ideas for how to achieve this in the future.

43

4.7.2 Rewriting Procedure
In this section, we give an overview of the steps required for rewriting with conditional equa-
tions. We start at the invocation of the egg tactic. When using a conditional equation like h,
one can (and should) also provide terms which satisfy its preconditions (x ∧ y). We call such
terms facts and provide them after the list of equations as follows:

example (f : x ∧ y) (h : x ∧ y → 1 = 2) : 1 = 2 := by
egg [h; f]

We encode the types of these facts just as any other expression, and pass them to egg along
with the rewrites and proof goal. In egg, we add each fact to the e-graph and thus obtain
associated e-class ids f1, ..., fk. Thus, for the e-classes identified by f1, ..., fk we can assume
their contained terms to be inhabited (that is, proven, in the case of propositions). We make
use of this when applying conditional equations as dynamic rewrites, as follows. Let e be a
conditional equation with preconditions p1, ..., pn, and body lhs = rhs , which is applicable in
the forward direction. Then, we let the trigger pattern for e’s rewrite be lhs , as usual. When lhs
is matched during e-matching with resulting substitution σ, we need to ensure that p1, ..., pn are
satisfied before we apply the rewrite. For this, we first need to assign the variables contained
in p1, ..., pn by applying the substitution σ. That is, we turn a parameterized precondition
like ?n > 0 into a specific one like 5 > 0 (assuming σ(?n) = 5). Notably, applying the
substitution to the preconditions does not yield concrete terms for each precondition, but only
e-class ids ϕ1, ...,ϕn. Thus, to check whether each condition pi is satisfied, we check whether its
corresponding e-class id ϕi is contained in the set of fact e-class ids f1, ..., fk.33 If all conditions
are satisfied, the rewrite can proceed as usual. Otherwise, the rewrite is not applied.

A useful side effect of this approach to conditional rewriting is that we add the facts to the
e-graph, and can therefore also apply rewrites to them. That is, we can prove examples like
the following:

example (f : p) (h1 : p = q) (h2 : q → (p = r)) : p = r := by
egg [h1, h2; f]

Here, the only fact is f of type p. When egg gets called, p is added to the e-graph which
yields some e-class id ϕ. However, the only rewrite which can solve the proof goal is h2, which
has a precondition of type q. Thus, if equality saturation tries to apply h2 immediately, it does
not succeed as the precondition is not satisfied, as q is not contained in a fact e-class. However,
the rewrite h1 can be applied to p, which adds q to the e-class ϕ. Thus, h2 can subsequently
be applied as its precondition q is now part of a fact e-class.

While we get this behavior for free in egg, it comes at a cost during proof reconstruction.
Namely, explanations involving rewritten facts require constructing subproofs of equivalences
between facts, as discussed in the following section.

4.7.3 Proof Reconstruction
When generating proofs for explanations containing rewrites of non-conditional equations, we
determine the assignment of an equation’s quantified variables by unification with the target
(sub-)expressions. For conditional rewrites, this same approach works to determine the assign-
ment of its quantified variables, yet not its preconditions. Instead, to obtain an assignment for
preconditions, we have to record which fact was used for which precondition during equality
saturation. As each rewrite has an associated name which can be dynamically assigned in
dynamic rewrites, we record an assignment for preconditions by storing unique identifiers for
the used facts in the names rewrites. For example, let an equation with name r have precon-
ditions p1 and p2. Also, let v1 and v2 be unique identifiers for facts with corresponding e-class
ids ϕ1 and ϕ2. If the rewrite for r successfully satisfies its preconditions p1 and p2 by their
membership in ϕ1 and ϕ2, then we set the name of the rewrite in the resulting explanation

33More specifically, we need to check whether there exists an fj whose canonicalized id matches the given ϕi.

44

to rv1v2. We can then use this information during proof reconstruction, as follows. Let the
explanation produced by egg show that expressions e1 and e2 are equal by application of rv1v2,
where the rewrite named r has the body lhs = rhs , and v1 and v2 are the identifiers of facts
f1 and f2. We first assign the quantified variables of r as usual by unification of e1 with lhs
and e2 with rhs . Thus, all variables of r except p1 and p2 are assigned or inferred. By the
name rv1v2 of the rewrite step, we know that p1 was satisfied by f1 and p2 was satisfied by
f2. Thus, to assign each precondition pi, we try unification with the corresponding fact fi.
If unification succeeds, the precondition is successfully proven. If unification fails, this means
that the precondition was proven in egg by some fact equivalent to fi, but not fi itself. That
is, by some fact gi which was obtained by rewriting on fi. To obtain a proof of gi, we need
to establish a proof of fi = gi and then use modus ponens with fi. Luckily, we know that
fi and gi must be in the same e-class, as fi was recorded as the proof of pi in the rewrite’s
name. Thus, we can obtain a proof of fi = gi by querying the e-graph for an explanation of
this equivalence, and subsequently calling proof reconstruction on the resulting explanation.
As such, proof reconstruction with conditional equations is recursive.

4.8 Guidance
As an automated procedure, equality saturation has limitations with respect to the (sizes
of) problems it can solve. In [KGB+24], these limitations are investigated for the use cases of
program optimization and equational reasoning. Their results point to “a general characteristic
of equality saturation: either a successful rewrite sequence is found relatively quickly, or,
computational costs explode.” That is, long sequences of rewrites tend to be infeasible as the
size of the e-graph grows too quickly. This is problematic for two reasons. First, it makes
equality saturation fragile in the sense that slight changes to the initial conditions can cause
the procedure to fail its objective. For example, adding a single equation in a call to the
egg tactic sometimes causes equality saturation to time out by a significant margin. Second,
the rapid growth of an e-graph makes it very difficult to comprehend why a given run of
equality saturation failed. Thus, when the procedure times out, it tends to be difficult to
meaningfully debug the failure. Both of these problems can be addressed by reducing the
length of runs of equality saturation. To achieve this, [KGB+24] introduces the notion of
guided equality saturation. The basic idea of guided equality saturation is simple. Instead
of trying to rewrite from term t1 to tn in a single run of equality saturation, we introduce
intermediate goals t2, ..., tn−1 called guides. We then only perform equality saturation from
each ti to ti+1, thus replacing a single long run of equality saturation with multiple short runs
as shown in Figure 14.34

Figure 14: Depiction of guided equality saturation from [KGB+24].

The major trade-off of this approach is that the guides are not automatically inferred, but
must be provided by the user. This is, however, a very acceptable trade-off in the context
of interactive theorem proving, as proof construction usually involves many manual steps.

34A similar idea is used in the field of constraint satisfaction problems, where a single search over n nodes
is split into multiple searches with n1, ..., nk nodes each by tree decomposition. This reduces the runtime from
O(dn) to O(dn1 + ...+ dnk).

45

Thus, if a difficult proof goal is not solved automatically by equality saturation, users can
specify increasingly easily attainable proof goals by using guides, until the procedure succeeds.
Notably, in the context of interactive theorem proving, specifying guides is equivalent to simply
splitting the proof into multiple steps. Take, for example, the following theorem over groups
where g1, ..., g5 denote the axioms of groups:
example [Group G] (a b : G) : a−1 * (a * b) = b := by

egg [g1, g2, g3, g4, g5]

If this call to the egg tactic were to time out, we could instead perform guided equality
saturation by introducing intermediate proof steps:
example [Group G] (a b : G) : a−1 * (a * b) = b := by

calc a−1 * (a * b)
_ = 1 * b := by egg [g1, g2, g3, g4, g5]
_ = b := by egg [g1, g2, g3, g4, g5]

The purpose of the calc tactic is to enable stepwise reasoning over transitive relations with a
natural syntax, where each step must be justified by a proof provided after the :=. Notably, for
guided equality saturation, every step is proven by the same call egg [g1, g2, g3, g4, g5]. Thus,
we extend the syntax of our egg tactic to more naturally support guided equality saturation:
egg calc [g1, g2, g3, g4, g5]

a−1 * (a * b)
_ = 1 * b
_ = b

When additional equations are required for single steps, they can be provided by writing
with [eqn1, ...] on the relevant line.

Guide Terms When the expressions involved in equality saturation get large, specifying
guides can be quite tedious and even error-prone. Moreover, large guide terms can detract
from the essential insight provided by the guide, which may only come from a small subterm.
As an example, consider the following theorem over groups:
example [Group G] (a : G) : a−1−1 = a := by

egg calc [g1, g2, g3, g4, g5]
a−1−1

_ = a−1−1 * (a−1 * a)
_ = a

The essential insight in the guide (a−1)−1 ∗ (a−1 ∗ a) is the fact that we can write 1 as
a−1 ∗ a. Yet, we have to embed this insight into a guide which must be a proper intermediate
step for guided equality saturation. It would be much more convenient to provide only the
relevant subterm, especially when the expressions are larger. Moreover, we may not know
exactly what a complete guide should look like, except for the fact that it should contain
a−1 ∗ a. To solve these problems, [KGB+24] introduces the notion of sketch guides. Sketch
guides are incomplete guide expressions which classify families of terms according to a given
sketch language. For example, the sketch guide contains(a−1 ∗ a) describes the family of terms
containing a−1 ∗ a as a subterm. While we do not implement sketch guides directly, we take
inspiration from them for a related approach in the egg tactic. We allow users to specify guide
terms which are added to the e-graph before equality saturation. This is particularly useful
when the provided guide terms would have not otherwise been reachable by rewriting. For
example, the group axioms do not allow equality saturation to rewrite from 1 to a−1 ∗ a, as the
corresponding group axiom only applies in the reverse direction. Yet, adding the guide term
a−1 ∗ a to the e-graph allows equality saturation to rewrite from a−1 ∗ a to 1, and thus solve
the previous theorem:
example [Group G] (a : G) : a−1−1 = a := by

egg [g1, g2, g3, g4, g5] using a−1 * a

46

5 Evaluation
To show that our proof tactic is reasonably proficient at equational reasoning, we consider
multiple examples of using the tactic with more and less constructed proof goals. In Section 5.1
we follow the evaluation performed for the original prototype of this proof tactic in [KGB+24].
For the sake of clarity, we refer to our tactic as egg, and the tactic prototype from [KGB+24]
as ges (guided equality saturation). The evaluation of ges includes three non-trivial use cases
for which we show significant improvements with egg. In Section 5.2, we show the results of
running our tactic on an additional test suite based on Lean’s batteries and mathlib libraries.
As ges is intended as a proof of concept, instead of a practically applicable tool, many test
cases which egg can handle are either unsupported by ges, or fail for trivial technical reasons.
Therefore, we do not investigate failing test cases for ges in any detail. When we provide
timing information for tactic calls, these are rough estimates. As the egg tactic is by no means
optimized for speed, they are only intended to show general trends.

5.1 Comparison to Tactic Prototype
The evaluation of ges in [KGB+24] consists of test cases for three mathematical subjects:
groups, rings, and the binomial coefficient. We evaluate our tactic both on a set of identical
and of similar test cases. This is because the tests for ges tend to formalize the required
algebraic structures in a way which is tailored to syntactic rewriting – thus, enabling ges
to succeed. In contrast, our test cases for egg use a more idiomatic formalization of these
structures, at the cost of a resulting increase in difficulty. Appendix A includes a table of all
results in this section.

Group Theory The evaluation in [KGB+24] starts with test cases on groups, as they allow
for non-trivial equational reasoning while also allowing for a relatively self-contained formal-
ization. We choose a natural formalization of groups as type classes:

class One (α) where one : α

instance [One α] : OfNat α 1 where ofNat := One.one

class Inv (α : Type u) where
inv : α → α

postfix:max "−1" => Inv.inv

class Group (α) extends One α, Inv α, Mul α where
mul_assoc (a b c : α) : (a * b) * c = a * (b * c)
one_mul (a : α) : 1 * a = a
mul_one (a : α) : a * 1 = a
inv_mul_self (a : α) : a−1 * a = 1
mul_inv_self (a : α) : a * a−1 = 1

We define a group structure over a type α as having a distinguished 1 element, an inverse
function −1 and a multiplication ∗, which satisfy the listed group axioms. Based on these
axioms, we prove the following five theorems, which assume [Group G] and (a b : G):

1. theorem inv_mul_cancel_left : a−1 * (a * b) = b

2. theorem mul_inv_cancel_left : a * (a−1 * b) = b

3. theorem inv_one : (1 : G)−1 = 1

4. theorem inv_mul : (a * b)−1 = b−1 * a−1

5. theorem inv_inv : a−1−1 = a

47

For our formalization of groups, ges cannot prove any of the stated theorems – the main
problem being that ges cannot handle type classes. Thus, we compare our results from egg to
the results of running ges on the simpler formalization of groups used for [KGB+24]. Qual-
itatively, our results for egg match those for ges, with unguided equality saturation solving
Theorems 1-3, and guidance being required for Theorems 4 and 5. More specifically, given the
group axioms, egg manages to prove Theorems 1-3 in under 50ms each. Theorems 4 and 5
cannot be solved directly, as their proofs require the “creative step” of multiplying by a term
which reduces to 1, like a · a−1. Thus, we prove these theorems using guide terms:

theorem inv_mul [Group G] (a b : G) : (a * b)−1 = b−1 * a−1 := by
egg [/-group axioms-/] using b−1 * a−1 * (a * b) * (a * b)−1

theorem inv_inv [Group G] (a : G) : a−1−1 = a := by
egg [/-group axioms-/] using a−1 * a

Our tactic takes under 2s and 250ms, respectively, to solve these theorems. Notably, if we
reduce the guide term for inv_mul to just a−1 ∗ (a ∗ b) ∗ (a ∗ b)−1, the call takes twice as
long at about 4s. This exemplifies how slight changes to initial conditions can have a significant
effect when dealing with the rapid growth of e-graphs during equality saturation.

Freshman’s Dream As a slightly more challenging test scenario, ges is evaluated on two
theorems about commutative semirings of characteristic 2. That is, commutative semirings
with the property ∀x, x+ x = 0. We implement this algebraic structure in a similar fashion to
groups, and thus omit the implementation here. The tests for ges again use a definition which
is better suited for syntactic rewriting. The characteristic property of these semirings allows
for the following case of a theorem called the freshman’s dream: (x+ y)2 = x2 + y2. For ges,
this theorem is proven with three intermediate steps in less than 600ms:
(x + y)^2 = (x + y) * (x + y)

_ = x * (x + y) + y * (x + y)
_ = x^2 + x * y + y * x + y^2
_ = x^2 + y^2

Without guides, the same theorem takes ges around 4min [KGB+24]. In contrast, without
guides our tactic proves the theorem in under 600ms. However, if we prove the theorem using
the same guides as shown above, we actually increase the required time to 11s. The culprit is
the proof step from x · (x + y) + y · (x + y) to x2 + x · y + y · x + y2. While all other proof
steps are solved by egg with less than 10 rewrites, this step generates an explanation with over
300 (mostly nonsensical) rewrites. Simply removing this intermediate step reduces the total
time back to 500ms. This highlights a practical issue with guided equality saturation. Guides
which correspond to obvious steps in human reasoning may be “counterintuitive to egg” for
completely opaque reasons.

As an example of a more involved theorem, ges is also tested against the analogous theorem
for power 3: (x+y)3 = x3+x·y2+x2 ·y+y3. The unguided version takes over 20 minutes, while
using a total of 5 guides reduces the time to under 1s [KGB+24]. Our tactic takes about 6s to
prove this theorem without guides. Additionally, the single guide term (x+y)·(x+y) suffices to
reduce the time to under 1s. This reduction in runtime again highlights the practical challenges
of using guided equality saturation. It is entirely unclear to us why the term (x+ y) · (x+ y)
allows egg to find a proof significantly faster. As such, coming up with relevant guide terms is
currently more of an art than a science. This result corresponds to the findings in [KGB+24],
where the authors show that a single well-chosen guide can have a much greater impact on
runtime than multiple poorly chosen guides.

Binomial Coefficient As a final example of using guided equality saturation, [KGB+24]
considers a proof about binomial coefficients from [Rot06]. The theorem states that for all
n, r ∈ N with r ≤ n, we have

(n
r

)
= n!

r!(n−r)! . At the heart of this theorem lies the following
sequence of equations:

48

n!

(r − 1)!(n− r + 1)!
+

n!

r!(n− r)!

=
n!

(r − 1)!(n− r)!
(

1

n− r + 1
+

1

r
)

=
n!

(r − 1)!(n− r)!
(
r + n− r + 1

r(n− r + 1)
)

=
n!

(r − 1)!(n− r)!
(

n+ 1

r(n− r + 1)
)

=
(n+ 1)!

r!(n+ r − 1)!

The ges tactic does not manage to prove these equations. A primary reason for this is
the necessity for conditional rewriting, which is not supported by ges. Using guided equality
saturation with egg, we can formalize a proof of these equations as follows:
egg calc [add_comm, sub_add_cancel, mul_comm, mul_assoc, Gamma_add_one; h4, h5, h6]

(n¡ / ((r - 1)¡ * (n - r + 1)¡) + n¡ / (r ¡ * (n - r)¡))
_ = n¡ / ((r - 1)¡ * (n - r)¡) * (1 / (n - r + 1) + 1 / r)

with [div_mul_eq_div_mul_one_div, left_distrib (R := Real)]
_ = n¡ / ((r - 1)¡ * (n - r)¡) * ((r + n - r + 1) / (r * (n - r + 1)))

with [_root_.add_div, mul_div_mul_left, mul_one]
_ = n¡ / ((r - 1)¡ * (n - r)¡) * ((n + 1) / (r * (n - r + 1)))

with [sub_add_eq_add_sub]
_ = (n + 1)¡ / (r¡ * (n + 1 - r)¡)

with [sub_add_eq_add_sub, _root_.div_mul_div_comm]

Since the given equations do not hold for N, we reason over their corresponding terms in
R. We thus have to use the Γ function which generalizes the factorial function and satisfies
Γ(n+1) = n! for all n ∈ N. To retain visual similarity to the equations in [Rot06], we write n¡
for Γ(n+ 1). Minding these technicalities, our proof steps correspond precisely to the steps of
[Rot06] above. Notably, the required conditional rewriting is enabled by the given facts h4, h5
and h6, which are proven separately:
h4 : (n : R) - r + 1 ̸= 0
h5 : (r : R) ̸= 0
h6 : (n : R) + 1 ̸= 0

Given these guides and facts, our tactic solves the goal in less than 12s. However, this
setup is again very fragile. For example, moving the lemma sub_add_eq_add_sub from the
last two steps into the shared set of rewrites (at the top) causes the second step to time out.
Additionally, a major caveat of the current approach to conditional rewriting is that one must
determine beforehand which preconditions are required to enable the necessary rewrites. This
is counter to the goal of our tactic, which is to not have to figure out which exact rewrites need
to be performed. Thus, we have implemented a prototype of an extension to our tactic, which
does not require the preconditions as inputs, but instead produces the necessary preconditions
as subgoals to be solved after calling egg. Using this approach, egg produces the following
subgoals for the example above:
(n : R) + 1 - r ̸= 0
(r : R) ̸= 0
(n : R) + 1 ̸= 0
(n : R) ̸= 0

These preconditions are all provable and almost entirely correspond to the manually pro-
vided preconditions h4, h5 and h6. However, when using this approach, the second equational
reasoning step fails.35 Thus, the technique is currently unreliable, which we hope to improve
in the future.

35We believe the reason to be related to the fact that facts can have a similar effect as guide terms, as they
are added to the e-graph before equality saturation.

49

5.2 Library Tests
The test cases of [KGB+24] provide meaningful insight into the potential of proof tactics
based on equality saturation, as well as their fundamental shortcomings. However, they do
not meaningfully indicate how well these tactics perform “in the wild”, as test cases can
be tweaked until they succeed. In this section, we cover a much broader spectrum of test
cases. Unfortunately, obtaining a large number of test cases is not trivial, as we are not
aware of any benchmarks for equational rewriting. A similar issue is mentioned in [LF23]
when testing Lean’s prominent aesop proof tactic. The authors resort to testing their tactic
against hand-picked theorems from the mathlib library [mC20], which at the time of writing has
amassed over 150,000 theorems.36 Thus, we also test egg against theorems from mathlib, and
additionally consider Lean’s extended standard library batteries. However, instead of hand-
picking theorems, we automatically construct suitable test cases from theorems which use the
simp tactic. By using Lean’s meta-programming capabilities, we override the simp tactic such
that it calls egg instead. In particular, we only override calls to simp only, which is a variant
of simp which uses only those equations which are explicitly provided to it at the call site. We
also make sure that the calls are terminal (they are the final step in a given proof), and that
they are solving proof goals of the form lhs = rhs or lhs ↔ rhs . These criteria, and others
which we omit here, serve to filter those calls to simp only which should be solvable by egg.
Using this approach, we obtain over 2,000 test cases against which we evaluate egg. By setting
a 10s time limit for equality saturation and disabling some or all of the techniques developed
throughout this thesis, we obtain the results shown in Figure 15. For a complete table of
results, see Appendix B.

P
er

ce
nt

ag
e

of
 T

es
t

C
as

es

0 %

25 %

50 %

75 %

100 %

No Techniques Only Type Class
Techniques

All Except Type
Class Techniques

All Techniques

13.0 %
9.0 %

3.6 %2.3 %

22.6 %39.4 %
56.3 %

68.1 %

51.9 %
41.9 %38.6 %

28.5 %

Success Failure by Saturation Failure by Timeout

Failure in Proof
Reconstruction

Broken Explanation
by β- or η-Reduction

Miscellaneous
Errors

Figure 15: Results of evaluating egg on simp onlys in mathlib and batteries.

Successful test cases are those where egg manages to prove the proof goal. Applying all
techniques discussed in this thesis, we succeed on about half of all test cases, which is a clear
improvement over disabling these techniques. We also considered techniques for type classes
(Section 4.5) separately, as we assumed them to have a rather large impact. This seems to hold
up, as they increase the success rate by about 10%, whereas all other techniques add 13.5%.

36See https://leanprover-community.github.io/mathlib_stats.html.

50

https://leanprover-community.github.io/mathlib_stats.html

Failing Tests For tests cases where egg fails to prove the goal, we distinguish whether
equality saturation saturated, or timed out. Tests which fail by saturation indicate that egg
lacks techniques for applying given equations, as a successful proof by simp only implies that
the given equations must suffice to prove the goal. As the proportion of failure by saturation
significantly decreases as we apply more techniques (from 68.1% to 22.6%), we can deduce that
adding more techniques successfully contributes to the applicability of equations. Tests which
fail by timeout are harder to interpret. They can again indicate that egg lacks techniques for
applying given equations, yet is able to apply enough equations to not saturate. That is, failure
by timeout can be thought of as “one step better” than failure by saturation, but not good
enough for a successful test. The other interpretation of failure by timeout is simply that the
e-graph grew too quickly during equality saturation, and that failure was not caused by our
tactic’s lack of capability. However, we can virtually entirely rule out this latter interpretation.
By collecting timing information, we found that 99.7% of all successful test cases completed
equality saturation in less than one second. Thus, it is highly unlikely that a test which fails by
timeout did so only because it did not have enough time. Instead, it is much more likely that
egg was able to apply enough equations to not saturate, but was not capable enough to prove
the goal. For example, given five equations, it may have been able to apply four of them, while
not being able to apply the fifth due to missing definitional equality rules. This conclusion
about failures by timeout allows for the following interpretation of their distribution in our
results. As applying more techniques increases the number of applicable equations, the number
of failures by saturation decreases in part because tests succeed, but also because more test
cases become failing by timeout. Thus, the increase in applied techniques also sees an increase
in failures by timeout (from 2.3% to 13%).

Other categories of failures are of a more technical nature. In some tests, egg finds an expla-
nation, but our tactic fails to construct a proof from it. In this case, we have a failure in proof
reconstruction. A significant portion of these failures result from β- and η-reduction, as they
rely on our e-class substitution algorithm, which often produces broken explanations. We thus
separate these failures involving β- and η-reduction from other failures in proof reconstruction,
which indicate either a lack of capability or a presence of bugs in our proof reconstruction.
About 2% of test cases make up the latter category, showing that our tactic is quite effective
at turning explanations into proofs. The category of Miscellaneous Errors covers failures which
we attribute to bugs in our implementation, the biggest source being stack overflows in our
e-class substitution algorithm. As e-class substitution (virtually) does not occur in the first
two test runs, they do not show these kinds of failures.

Caveats Our testing approach covers a large number of test cases which range across a
variety of mathematical fields. However, by the nature of how simp only tends to be used, each
test involves only a relatively small number of equations as shown in Figure 16.

P
er

ce
nt

ag
e

of
 T

es
ts

0 %

10 %

20 %

30 %

40 %

Number of Given Equations (∅ 4.3)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.1 %0.0 %0.0 %0.0 %0.0 %0.1 %0.1 %0.5 %0.6 %1.5 %
4.7 %

8.5 %

21.7 %

25.8 %

36.3 %

0.1 %0.0 %

Figure 16: Distribution of the number of equations occurring in simp only tests.

51

Consequently, we cannot deduce whether our results are representative when a larger num-
ber of equations is used. For example, as mentioned above, 99.7% of all successful test cases
complete in less than one second. Yet, anecdotally, tests involving more equations can take
a couple of seconds to complete. A similar case can be made for the sizes of explanations
produced by egg for successful test cases, as shown in Figure 17.

P
er

ce
nt

ag
e

of
 S

uc
ce

ss
fu

l T
es

ts

0 %

5 %

10 %

15 %

20 %

25 %

Number of Explanation Steps (∅ 4.1)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

0.1 %0.0 %0.0 %0.0 %0.0 %0.0 %0.0 %0.0 %0.1 %0.1 %0.0 %0.1 %0.2 %0.2 %0.3 %0.0 %0.1 %0.1 %0.3 %0.4 %0.3 %0.2 %
0.6 %0.4 %

1.5 %
0.6 %

1.7 %1.5 %

2.6 %
3.0 %

4.9 %

12.5 %
12.1 %

19.3 %

12.8 %

24.3 %

Figure 17: Distribution of the length of explanations for successful simp only tests.

While this distribution suggests that explanations tend to be small, with a bound at 35
steps, we have encountered explanations with hundreds of steps for tests like those in Sec-
tion 5.1. We believe that these short test durations and explanation sizes also skew the timing
distribution shown in Figure 18.

0ms 81ms

26.7%12.6%60.7%

Preprocessing Equality Saturation Proof Reconstruction

Figure 18: Average timing distribution of phases of the egg tactic in the average successful
simp only test.

These averages suggest that preprocessing is a major bottleneck in our tactic. However, as
this preprocessing metric includes the parsing and elaboration steps performed by Lean, it also
measures a baseline of overhead which we expect to decrease for calls with more equations. A
similar argument can be made for proof reconstruction, though our anecdotal evidence suggest
that the time required for proof reconstruction can vary widely depending on how short of an
explanation egg finds.

An additional caveat of our test setup is that the unique capabilities of equality saturation
are not tested, as all tests are solvable by simp only, and thus by greedy rewriting. Also, our ap-
proach to conditional rewriting (Section 4.7) is not covered by these test at all. This is because
simp only does not separate its list of equations from the list of facts, which means that we
cannot simply transform such calls into calls to egg. While the latter problem may be solvable,
addressing the former problem requires constructing a test suite for equality saturation.

52

6 Conclusion
This thesis develops a practically applicable proof tactic for equational reasoning in Lean, by
combining various techniques for enabling effective rewriting of Lean expressions in e-graphs.
We improve upon the previous work of [KGB+24] by addressing the problems of definitional
equality and binders in e-graphs. We also enable new capabilities such as rewriting under
binders and conditional rewriting, which require more sophisticated forms of proof reconstruc-
tion. Figure 19 summarizes our work, and extends the simplified view of Figure 8.

egg Tactic Proof Goal

Guide Terms

Equations

Facts

Type Class
Projection Reduction

Goal Type & Direction
Specialization

Rewrites

Normalization

Proof Erasure & Encoding

β-Reduction

η-Reduction

Universe Defeqs

N-Literal Conversions

+ Match Validity Checking
+ Variable Index Correction
+ Precondition Checking

Equality
Saturation

E-Graph
Proof Reconstruction by
· Extended Congruence
· Rewrite Specialization
· Precondition Subproofs

Explanation

Proof

Figure 19: Complete overview of the egg proof tactic, color coded by preprocessing in Lean,
equality saturation in egg, and proof reconstruction in Lean.

We address different forms of definitional equality in the preprocessing phase by normal-
ization (Section 4.4.1), proof erasure (Section 4.4.2), and type class projection reduction and
specialization (Section 4.5). In the egg backend, we additionally consider β- and η-reduction
(Section 4.4.4), as well as natural number literals (Section 4.4.3). To fix the problems of using
binders in e-graphs, we validate e-matching results (Section 4.3.1) and correct the indices of
captured variables (Section 4.3.2). As multiple techniques require substitution, we develop
an algorithm for substitution on e-classes (Section 4.3.3). Notably, this algorithm does not
currently support proper handling of explanations, making the associated techniques very un-
reliable. During proof reconstruction, we rely on an existing implementation for congruence
quotations, which allows us to rewrite under binders and dependent functions. We also extend
the procedure with recursive subproof generation for conditional rewriting (Section 4.7). Fi-
nally, we address the notion of guided equality saturation with a syntactic calc extension of our
tactic, and a notion of guide terms (Section 4.8). Our results show that while we outperform
the tactic prototype of [KGB+24] on qualitative tests, we can also solve a decent number of
existing equational goals “blindly” (Section 5). In particular, we find that the above tech-
niques significantly contribute to our tactic’s success rate. However, we also find that using
egg can be fragile and hard to debug, as equality saturation is a rather opaque technique and
e-graphs do not scale nicely. While we are aware of various implementation problems and
inefficiencies in our tactic, we expect to solve these in subsequent work. As such, we hope egg
to be useful and appealing to the broader Lean community. The tactic is openly developed at
https://github.com/marcusrossel/lean-egg.

53

https://github.com/marcusrossel/lean-egg

Future Work Throughout this thesis we have at various points mentioned opportunities
for improvements to our proof tactic. We gather these points here, and mention additional
avenues for future work.

The most pressing item is fixing the propagation of explanation information during e-class
substitution (Section 4.3.3). This would fix broken explanations involving β- and η-reduction,
which currently account for a non-negligible number of failing test cases. Additionally, substi-
tution is currently implemented as a recursive function, which comes at a cost for runtime and
memory. It should therefore be replaced by an iterative implementation.

As many of the challenges in this thesis stem from using Lean’s expression language in
e-graphs, it may be worthwhile to reduce these expressions to a simpler language via the lean-
auto project. Alternatively, advancements in slotted e-graphs [SKS24] may solve some these
problems in the long run. As a more immediate measure, we can add type ascriptions to
encoded expressions. This solves problems introduced by equations like ∀u : Unit, u = unit,
which cause egg to immediately solve any goal with an invalid explanation.

An existing project which uses egg (that is, the library, not our tactic) is the convex
optimization modeling framework CvxLean [BFMA23]. Our proof tactic does not currently
suffice to satisfy the use cases of this project, as it requires more fine-grained control of egg,
for example, for e-class analyses and extraction. A useful extension to our tactic is therefore to
provide a more general interface between Lean and egg. As a first step towards an improved
interface, we intend to remove the currently explicit interface via C, by using the lean_sys37

library for interfacing directly with Lean from Rust. A second necessary step is to allow for
non-terminal calls to egg. That is, calls which do not entirely solve the current proof goal, but
instead exit with a remaining subgoal when the goal cannot be proven (like rw and simp). The
crux of non-terminal calls is to determine what the resulting proof goal should be. For this, it
could be useful to introduce a mechanism similar to sketch-satisfying extraction in [KGB+24],
by allowing the user to sketch desirable subgoals.

As a restricted form of non-terminal calls to egg, we have considered generating subgoals
for preconditions used by egg for conditional rewriting in Section 5.1. While this mechanism
is almost entirely implemented, it requires refinement by, for example, collapsing equivalent
subgoals. It is also currently open whether this mechanism is practically useful, as egg may
tend to generate unprovable subgoals.

As calls to egg can take multiple seconds, which is rather long for interactive proof tactics, it
is desirable to retain the resulting proof, and not rerun the tactic each time a file is recompiled.
While there are multiple options for this, an interesting one is the calcify38 project, which
turns proofs by rw and simp into proofs by small-step equational reasoning with calc. We hope
to easily adjust the project’s implementation to work with egg, which may become easier by
adjusting our proof generation to use simp’s infrastructure. A potential problem with persisting
proofs in this way is that egg sometimes produces proofs with hundreds of steps.

Finally, Andrés Goens has already implemented an extension to our tactic which allows
theorems to be tagged with @[egg], which builds up an index of theorems to be used by egg. We
intend to extend this mechanism with categorization of theorems into named groups, such that
a call like egg/ring would call egg with all theorems tagged with @[egg ring]. This is equivalent
to the mechanism of simp sets for simp, yet bears the superior name of egg baskets suggested
by Johan Commelin. We think that egg baskets could be extremely useful for user-definable,
ad-hoc proof automation. As immediate future work, we therefore intend to investigate the
viability of imitating existing tactics such as ring and zify using egg with egg baskets. We
expect this to require some form of premise selection [BKPU16], as to not overwhelm egg with
too many rewrites.

37https://github.com/digama0/lean-sys
38https://github.com/nomeata/lean-calcify

54

https://github.com/digama0/lean-sys
https://github.com/nomeata/lean-calcify

A Results of Comparison to Tactic Prototype
The following table summarizes the results of Section 5.1, where we compare our egg tactic to
the ges prototype from [KGB+24]. Failed test cases are marked with ✗. When results are cited
from [KGB+24], we mark them with ∗. For tests involving algebraic structures we distinguish
between “idiomatic” and “simplified” versions. The former define algebraic structures using
type classes, while the latter use the formalizations of [KGB+24]. We note that the results
of the simplified version of freshman’s dream for egg are somewhat unintuitive, as we faced
difficulties reconstructing these test cases.

Test egg ges

Groups (Idiomatic)

Theorem 1 50ms ✗

Theorem 2 50ms ✗

Theorem 3 50ms ✗

Theorem 4 2s (1 good guide)
4s (1 bad guide) ✗

Theorem 5 250ms (1 guide) ✗

Groups (Simplified)

Theorem 1 30ms 400ms

Theorem 2 30ms 400ms

Theorem 3 10ms 100ms

Theorem 4 200ms (1 good guide)
200ms (1 bad guide) 2s (4 guides)

Theorem 5 100ms (1 guide) 600ms (1 guide)

Freshman’s Dream (Idiomatic)

(x+ y)2 600ms ✗

(x+ y)3
1s (1 guide)
6s (unguided) ✗

Freshman’s Dream (Simplified)

(x+ y)2 700ms (1 guide) 600ms (3 guides)
4min (unguided) ∗

(x+ y)3 800ms (1 guide) 1s (5 guides)
20min (unguided) ∗

Binomial Coefficient

Binomial Coefficient 12s (3 guides) ✗

55

B Results of Library Tests
The following table contains the data underlying the results of Figure 15. The number of test
cases decreases as we introduce more techniques, as this causes tests to take longer on average
and increases the number of stack overflows by e-class substitution, which had to be fixed
manually.

Outcome No Techniques
Only

Type Class
Techniques

All Except
Type Class
Techniques

All Techniques

Total Number
of Tests 4017 3424 2410 2123

Success 1145 (28.5%) 1320 (38.6%) 1010 (41.9%) 1101 (51.9%)
Failure by
Saturation 2736 (68.1%) 1928 (56.3%) 949 (39.4%) 480 (22.6%)

Failure by
Timeout 93 (2.3%) 124 (3.6%) 217 (9.0%) 277 (13.0%)

Failure in Proof
Reconstruction 40 (1.0%) 49 (1.4%) 41 (1.7%) 47 (2.2%)

Broken Explanation
by β- or η-Reduction 0 (0.0%) 0 (0.0%) 39 (1.6%) 67 (3.2%)

Miscellaneous
Errors 3 (0.1%) 3 (0.1%) 154 (6.4%) 151 (7.1%)

56

References
[AGG61] Bruce W Arden, Bernard A Galler, and Robert M Graham. An algorithm for

equivalence declarations. Communications of the ACM, 4(7):310–314, 1961.

[BBN11] Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow. Automatic
proof and disproof in isabelle/hol. In Frontiers of Combining Systems: 8th Inter-
national Symposium, FroCoS 2011, Saarbrücken, Germany, October 5-7, 2011.
Proceedings 8, pages 12–27. Springer, 2011.

[BCM20] Kevin Buzzard, Johan Commelin, and Patrick Massot. Formalising perfectoid
spaces. In Proceedings of the 9th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2020, page 299–312, New York, NY, USA,
2020. Association for Computing Machinery.

[BFMA23] Alexander Bentkamp, Ramon Fernández Mir, and Jeremy Avigad. Verified reduc-
tions for optimization. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 74–92. Springer, 2023.

[BKPU16] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C Paulson, and Josef
Urban. Hammering towards qed. Journal of Formalized Reasoning, 9(1):101–148,
2016.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
university press, 1998.

[Bou23] Thomas Bourgeat. Specification and verification of sequential machines in rule-
based hardware languages. Massachusetts Institute of Technology, 2023.

[Car19] Mario Carneiro. The Type Theory of Lean. Master’s thesis, 2019.

[CH69] Lorenzo Calabi and WE Hartnett. Some general results of coding theory with
applications to the study of codes for the correction of synchronization errors.
Information and Control, 15(3):242, 1969.

[CH88] Thierry Coquand and Gerard Huet. The calculus of constructions. Information
and Computation, 76:95–120, 1988.

[Cha12] Arthur Charguéraud. The locally nameless representation. Journal of automated
reasoning, 49:363–408, 2012.

[Coq86] Thierry Coquand. An analysis of girard’s paradox. 1986.

[CP88] Thierry Coquand and Christine Paulin. Inductively defined types. In International
Conference on Computer Logic, pages 50–66. Springer, 1988.

[dB68] NG de Bruijn. Automath: a language for mathematics. 1968.

[DMB07] Leonardo De Moura and Nikolaj Bjørner. Efficient e-matching for smt solvers.
In Automated Deduction–CADE-21: 21st International Conference on Automated
Deduction Bremen, Germany, July 17-20, 2007 Proceedings 21, pages 183–198.
Springer, 2007.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Interna-
tional conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. J. ACM, 52(3):365–473, may 2005.

[FCW+22] Oliver Flatt, Samuel Coward, Max Willsey, Zachary Tatlock, and Pavel
Panchekha. Small proofs from congruence closure. In 2022 Formal Methods in
Computer-Aided Design (FMCAD), pages 75–83. IEEE, 2022.

[FV22] Zoltán Fülöp and Heiko Vogler. Weighted tree automata – may it be a little more?
arXiv preprint arXiv:2212.05529, page 40, 2022.

[GF64] Bernard A Galler and Michael J Fisher. An improved equivalence algorithm.
Communications of the ACM, 7(5):301–303, 1964.

[Gor00] Mike Gordon. From lcf to hol: a short history. 2000.

[HUW14] John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem
proving. In Computational Logic, volume 9, pages 135–214, 2014.

[KGB+24] Thomas Kœhler, Andrés Goens, Siddharth Bhat, Tobias Grosser, Phil Trinder,
and Michel Steuwer. Guided equality saturation. Proceedings of the ACM on
Programming Languages, 8(POPL):1727–1758, 2024.

[Knu97] Donald E Knuth. The Art of Computer Programming: Fundamental Algorithms,
volume 1. Addison-Wesley Professional, 1997.

[Kœh22] Thomas Kœhler. A domain-extensible compiler with controllable automation of
optimisations. PhD thesis, University of Glasgow, 2022.

[Lam99] Leslie Lamport. Specifying concurrent systems with tla+. Calculational System
Design, pages 183–247, 1999.

[LF23] Jannis Limperg and Asta Halkjær From. Aesop: White-box best-first proof search
for lean. In Proceedings of the 12th ACM SIGPLAN International Conference on
Certified Programs and Proofs, pages 253–266, 2023.

[Mas21] Patrick Massot. Why formalize mathematics, 2021.

[mC20] The mathlib Community. The lean mathematical library. In Proceedings of the
9th ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2020, page 367–381, New York, NY, USA, 2020. Association for Computing
Machinery.

[McC92] William McCune. Experiments with discrimination-tree indexing and path index-
ing for term retrieval. Journal of automated reasoning, 9(2):147–167, 1992.

[MŁK08] Michał Moskal, Jakub Łopuszański, and Joseph R Kiniry. E-matching for fun and
profit. Electronic Notes in Theoretical Computer Science, 198(2):19–35, 2008.

[Nel80] Charles Gregory Nelson. Techniques for Program Verification. Phd thesis, Stan-
ford University, 1980.

[NO80] Greg Nelson and Derek C Oppen. Fast decision procedures based on congruence
closure. Journal of the ACM (JACM), 27(2):356–364, 1980.

[NO05] Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence closure. In
International Conference on Rewriting Techniques and Applications, pages 453–
468. Springer, 2005.

[Par95] Thomas Martyn Parks. Bounded scheduling of process networks. PhD thesis, 1995.

[Pie02] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

[PS23] Patrick Massot Peter Scholze, Johan Commelin. Blueprint for the Liquid Tensor
Experiment. https://leanprover-community.github.io/liquid/, 2023.

https://leanprover-community.github.io/liquid/

[Rin24] Talia Ringer. Proofs and conversations. 2024.

[Rot06] Joseph J Rotman. A first course in abstract algebra: with applications. 2006.

[SdM16] Daniel Selsam and Leonardo de Moura. Congruence closure in intensional type
theory. In Automated Reasoning: 8th International Joint Conference, IJCAR
2016, Coimbra, Portugal, June 27–July 2, 2016, Proceedings 8, pages 99–115.
Springer, 2016.

[SKS24] Rudi Schneider, Thomas Kœhler, and Michel Steuwer. Slotted e-graphs. 2024.

[SO08] Matthieu Sozeau and Nicolas Oury. First-class type classes. In International
Conference on Theorem Proving in Higher Order Logics, pages 278–293. Springer,
2008.

[Tar75] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM (JACM), 22(2):215–225, 1975.

[TSTL09] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality satura-
tion: a new approach to optimization. In Proceedings of the 36th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
264–276, 2009.

[TT23] Yaël Dillies Terence Tao. A digitisation of the proof of the Polynomial Freiman-
Ruzsa Conjecture in Lean 4. https://teorth.github.io/pfr/, 2023.

[Ull23] Sebastian Andreas Ullrich. An Extensible Theorem Proving Frontend. PhD thesis,
Dissertation, Karlsruhe, Karlsruher Institut für Technologie (KIT), 2023, 2023.

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 60–76, 1989.

[WNW+21] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tat-
lock, and Pavel Panchekha. Egg: Fast and extensible equality saturation. Pro-
ceedings of the ACM on Programming Languages, 5(POPL):1–29, 2021.

[ZWWT21] Yihong Zhang, Yisu Remy Wang, Max Willsey, and Zachary Tatlock. Relational
e-matching. arXiv preprint arXiv:2108.02290, 2021.

https://teorth.github.io/pfr/

Acknowledgements
First and foremost I would like to thank Andrés for continuously taking an interest in my work
throughout the last couple of years, while quite significantly guiding what that work is actually
about, and nudging me to take some opportunities which I would not otherwise have. Our
exchanges always make the process fun and interesting, even during laborious work like writing
theses. I would also like to thank Jeronimo for repeatedly supporting my work and fostering
a diverse range of research topics. I shall set out into the world as a CCC evangelist for it.
I would also like to thank Rudi Schneider for our one meeting which basically lead to all of
Section 4.3. On a broader scale, I would like to thank the Lean and egg communities for their
amazing support. It still baffles me how virtually any question is addressed so persistently
and quickly. In particular, I would like to thank Oliver Flatt for taking the time to discuss
explanations, and Mario Carneiro and Kyle Miller for having the patience to dive into rather
specific Lean-related topics.

	Introduction
	Equality Saturation with egg
	Equivalence Closure with Union-Finds
	Congruence Closure with E-Graphs
	E-Matching
	Equality Saturation
	Explanations
	The egg Library

	Theorem Proving with Lean
	Introduction to Lean
	Type Theory
	Expressions
	Equational Reasoning

	Equality Saturation Tactic
	Overview
	Representations in egg
	Binders in E-Graphs
	Invalid Matching
	Variable Rebinding
	E-Class Substitution
	Bound Variable Aliasing

	Definitional Equalities
	Normalization
	Proof Irrelevance
	Natural Number Literals
	- and -Reduction
	Remaining Rules

	Type Classes
	Projection Reduction
	Specialization

	Proof Reconstruction
	Explanation Construction
	Proof Generation

	Conditional Rewriting
	Conditional Equations
	Rewriting Procedure
	Proof Reconstruction

	Guidance

	Evaluation
	Comparison to Tactic Prototype
	Library Tests

	Conclusion
	Results of Comparison to Tactic Prototype
	Results of Library Tests
	References

