
Faculty of Computer Science Chair of Compiler Construction

Bachelor Thesis

An MLIR-based compiler flow for
memristive-crossbar accelerators
Felix Reißmann
Born on: 8th May 2003 in GreizMatriculation number: 5003190

4th November 2024

First referee
Prof. Dr.-Ing. Jeronimo Castrillon
Second referee
Prof. Dr.-Ing. Diana Göhringer
Supervisor
Dr.-Ing. Asif Ali Khan

Statement of authorship

I hereby certify that I have authored this document entitled An MLIR-based compiler flow for
memristive-crossbar accelerators independently and without undue assistance from thirdparties. No other than the resources and references indicated in this document have beenused. I have marked both literal and accordingly adopted quotations as such. There were noadditional persons involved in the intellectual preparation of the present document. I amaware that violations of this declaration may lead to subsequent withdrawal of the academicdegree.
Dresden, 4th November 2024

Felix Reißmann

Faculty of Computer Science Chair of Compiler Construction

Abstract

Compute in memory accelerators promise excellent performance and energy efficiencycompared to traditional von Neumann architectures when it comes to data intensiveapplications. They aim to reduce the data movement bottleneck by performing computationsdirectly on the data where it is stored. While offloading computations to CIM devices comeswith time and energy savings, writing programs which take advantage of such accelerators isa time intensive, error-prone and manual process that requires a sufficient understandingof the underlying hardware.
This thesis presents a compilation flow using the Cinnamon compiler, which leverages theMLIR compiler infrastructure, to automatically recognize and offload operations which couldtake advantage of a memristive-crossbar accelerator. It is implemented in the Cinnamonproject, which is open source and available on GitHub. The compilation flow is explained stepby step, from a high-level PyTorch program down to the generated API calls to an acceleratorruntime library. Finally a performance and usability evaluation is conducted.

Zusammenfassung

Compute in Memory Beschleuniger versprechen eine hervorragende Leistung und Ener-gieeffizienz für datenintensive Anwendungen im Vergleich zu traditionellen von-Neumann-Architekturen. Sie zielen darauf ab, den Datenbewegungsengpass zu reduzieren, indemBerechnungen direkt am Speicherort der Daten durchgeführt werden. Während das Aus-lagern von Berechnungen auf CIM-Geräte mit Zeit- und Energieeinsparungen einhergeht,ist das Schreiben von Programmen, die von solchen Beschleunigern profitieren, ein zeit-aufwändiger, fehleranfälliger und manueller Prozess, der ein umfassendes Verständnis derzugrundeliegenden Hardware erfordert.
Diese Arbeit präsentiert einen Kompilationsfluss unter Verwendung des Cinnamon-Compilers,der die MLIR-Compilerinfrastruktur nutzt, um automatisch Operationen zu erkennen undauszulagern, die von einem memristiven Crossbar-Beschleunigern profitieren. Er ist imCinnamon-Projekt implementiert, welches Open Source auf GitHub verfügbar ist. Der Kom-pilationsfluss wird Schritt für Schritt von einem PyTorch-Programm bis zu den generiertenAPI-Aufrufen an eine Beschleuniger-Laufzeitbibliothek erläutert. Abschließend wird eineLeistungs- und Benutzerfreundlichkeitsbewertung des durchgeführt.

https://github.com/tud-ccc/Cinnamon
https://github.com/tud-ccc/Cinnamon

Acronyms

CIM Compute In Memory
CNM Compute Near Memory
CAM Content Addressable Memory
MLIR Multi-Level IntermediateRepresentation
LLVM Low Level Virtual Machine
API Application ProgrammingInterface

JIT Just In Time
IR Intermediate Representation
ASAP As Soon As Possible
xBar Crossbar
DAC Digital to Analog Converter
ADC Analog to Digital Converter
S&A Shift and Accumulate
S&H Sample and Hold

4

Contents

Abstract . 3

Zusammenfassung . 3

Acronyms . 4

1 Introduction . 71.1 Motivation and Goals . 71.2 Design Paradigms . 71.3 Compilation Flow Overview . 8
2 Frontend . 102.1 Converting PyTorch Models to Torchscript . 112.2 Converting Torchscript to the Torch Dialect 112.3 Additional Conversions in Torch-MLIR . 112.4 Working with Quantized Models . 12
3 Cinnamon . 133.1 Conversion from Torch to Cinm Dialect . 133.2 Tiling . 153.3 Conversion from Cinm to Cim Dialect . 153.4 Scheduling of Cim Dialect Operations . 163.5 Conversion from Cim to Memristor Dialect . 173.6 Conversion from Memristor to Func Dialect 193.7 Memristor Runtime Library . 19
4 Backend . 214.1 Lowering to LLVM IR . 214.2 Code Generation . 22
5 PyTorch Backend . 235.1 Compiling PyTorch Models . 245.2 Loading of Compiled PyTorch Models . 245.3 Forwarding Calls to the Compiled Model . 255.4 Running Inference on Compiled PyTorch Models 25

5

Contents

6 Usability Analysis and Evaluation . 276.1 Usability Analysis . 276.2 Simulator Architecture . 286.3 Benchmarking . 30
7 Epilogue . 327.1 Conclusion . 327.2 Outlook . 32

6

1 Introduction

This chapter aims to provide an overview of the full compilation flow structure, as well asits goals. Each of the following chapters will focus on a specific section of the conversionprocess.

1.1 Motivation and Goals

The compilation flow presented in this thesis aims to simplify the process of creatingapplications which utilize CIM or Compute Near Memory (CNM) devices. Specifically, the goalis to provide an easy-to-use interface for compiling PyTorch models in a way that offloadssuitable computations to a memristive-crossbar accelerator. This would significantly reducethe barrier to entry for developers who want to utilize these devices in their applications.Additionally, models compiled with this compilation flow should benefit from the energyefficiency and high throughput of memristive-crossbar accelerators. The flow should bemodular, in order to allow for easy extension and modification in the future. Extensibilityis especially important, since the field of memristive-crossbar accelerators is still rapidlyevolving and new devices with different characteristics are constantly being developed.

1.2 Design Paradigms

The MLIR compiler infrastructure is quickly becoming the de-facto standard for buildingcompilers targeting novel hardware architectures. This is due to its flexibility, extensibility anda large set of builtin functionality. The presented compilation flow also builds on top of thisinfrastructure, as it removes the need of designing a custom compiler from scratch. MLIRprovides all its functionality around a set of dialects, which are used to represent programsin different aspects as well as levels of abstraction. All dialects build upon a common syntax,making it possible to use multiple dialects in a single program. This enables the reuse ofexisting dialects in newly developed ones. For transformation within a dialect or conversionbetween dialects, MLIR provides a pass system. Passes usually focus on accomplishing asingle task, making them easy to understand and less error prone. The modularity in thedialects and passes, as well as the large library of builtins, makes MLIR a powerful tool forbuilding compilers. Third party projects like Torch-MLIR, which is also used in this compilationflow, provide further dialects and passes.

7

1 Introduction

1.3 Compilation Flow Overview

As the flow focuses on the compilation of PyTorch models, a frontend is needed to convertthe PyTorch model into an MLIR representation which is used during the majority of thecompilation process. This frontend is provided by the Torch-MLIR project and will bediscussed in detail in Chapter 2. All main conversions necessary for offloading computationsto CIM devices are provided by the Cinnamon compiler, for which additional dialects andpasses were developed as part of this thesis. The Cinnamon compiler aims to provide theinfrastructure needed, not just for targeting CIM devices, but also other novel hardwarearchitectures like CNM and Content Addressable Memory (CAM) devices. The conversions ofthe Cinnamon compiler are explored in Chapter 3. The final steps of the compilation, whichneed to produce executable binaries, are handled by the Low Level Virtual Machine (LLVM)project, which the MLIR project is part of. The LLVM based conversions are covered inChapter 4. Figure 1.1 shows a simplified overview of the complete compilation flow.

Figure 1.1: Compilation flow overview
Each row of conversions in Figure 1.1 represents a different stage of the compilation flow. ThePyTorch model, which forms the input of the flow, is first compiled into torchscript usingthe PyTorch Just In Time (JIT) compilation. This torchscript representation of the modelis then converted to the torch MLIR dialect. The torch dialect as well as the conversionfrom torchscript are provided by the Torch-MLIR project. After these steps, the modelis in a form that can be used by tools built with the MLIR infrastructure. After the torchdialect, the compilation flow splits into two paths. The upper path is used for operationsthat can be offloaded to CIM devices. For this, the torch dialect representation is loweredby Cinnamon to the cinm dialect. This dialect is the main entrypoint dialect of Cinnamon andis used for representing operations that can be further lowered onto CIM or CNM devices.All operations which are not representable in the cinm dialect are lowered to the linalgdialect by passes provided by Torch-MLIR. The linalg representation is then lowered viathe scf and cf dialects to the llvm dialect by builtin MLIR passes.
All operations that were previously successfully converted to the cinm dialect are nowlowered via the cim dialect to the memristor dialect. During these conversions, furthertransformations are applied to reshape the operations into a form that can be executed onCIM devices. The memristor dialect is the target dialect for memristive-crossbar acceleratorsin Cinnamon and closely resembles API endpoints of runtime libraries for such CIM devices.As a final step in the Cinnamon based pipeline, all operations in the memristor dialect are

8

1 Introduction

converted to runtime API calls represented in the func dialect. The func dialect is a builtinMLIR dialect and can easily be lowered to the llvm dialect. At this point the split paths arerejoined as all operations are now represented in the llvm dialect.
The llvm dialect representation is then converted into LLVM Intermediate Representation (IR)and compiled into a shared object by mlir-translate and clang respectively, which aretools provided by the LLVM project. This is the final output of the compilation flow and canbe executed on a host machine. The shared object contains the compiled model as well asall necessary runtime library calls to the CIM device. The runtime library is not linked intothe shared object directly, as it is not part of the compilation flow itself, and needs to beprovided separately.

9

2 Frontend

In this chapter, the conversion of PyTorch models to torchscript and further to the torchMLIR dialect will be discussed. These conversions are also shown in the top row of Figure1.1.
The needed functionality is fully provided by the Torch-MLIR project. It can be invokedusing the torch_mlir Python module, as shown in Listing 2.1. The same torch_mlir API isalso wrapped in the cinnamonmodule as part of the Cinnamon PyTorch backend, which ispresented in Chapter 5. For completeness, a subset of steps happening under the hood inthe torch_mlirmodule are discussed in the following sections.

1 import torch
2 import torch_mlir
3

4 class Model(torch.nn.Module):
5 def __init__(self):
6 super(Model, self).__init__()
7

8 self.fc1 = torch.nn.Linear(5, 5)
9 self.fc2 = torch.nn.Linear(5, 10)

10 self.fc3 = torch.nn.Linear(10, 2)
11

12 def forward(self, x):
13 x = self.fc1(x)
14 x = self.fc2(x)
15 x = self.fc3(x)
16 return x
17

18 model = Model()
19 sample_input = torch.randn(5)
20

21 torch_mlir_representation = torch_mlir.compile(model, sample_input)

Listing 2.1: Conversion of a PyTorch model to the torch dialect using the torch_mlir Python module

10

2 Frontend

2.1 Converting PyTorch Models to Torchscript

The MLIR based tools provided by Torch-MLIR need an MLIR representation of the PyTorchmodel and as such cannot receive Python objects directly. Instead, themodel is first convertedto another intermediate representation named torchscript . It is part of PyTorch andused mainly used for model serialization, optimization and interoperability with other toolsand languages. As such, the compilation of PyTorch models to torchscript is providedby PyTorch itself and is easily invoked as shown on line 5 in Listing 2.2. The result of thisoperation is a torch.ScriptModule Python object, which is a wrapper around the generated
torchscript representation of the model.

1 import torch
2

3 model = Model() #torch.nn.Module, as seen in previous listing
4

5 script_module = torch.jit.script(model)

Listing 2.2: Conversion of a PyTorch model to torchscript

2.2 Converting Torchscript to the Torch Dialect

After the torch.ScriptModule has been created, the models forward function, which isthe function needed for inference, is traced. The tracing step is also built into PyTorch andreturns a graph of functions that are invoked when running the forward function. Thisgraph is then passed to a ModuleBuilder, which is part of Torch-MLIR and written in C++. Itconverts the graph into a raw MLIR representation, where each of the traced functions isdefined separately. Since the module is now encoded in MLIR, all further conversions canbe done using the MLIR infrastructure. As a final step, the forward function in the producedMLIR code is completely flattened by inlining all subfunctions, which results in a MLIR modulewith a single forward function defined.

2.3 Additional Conversions in Torch-MLIR

The Torch-MLIR project provides a range of further conversions which use the torch dialectas a starting point. The conversion from the torch dialect to the linalg dialect is used bythis compilation flow to lower operations that are not representable in the cinm dialect. Asthe linalg dialect is a MLIR builtin dialect, any further lowering towards the llvm dialectcan be achieved using builtin MLIR passes. Torch-MLIR also provides conversions to the
tosa dialect. TOSA stands for Tensor Operator Set Abstraction and is a dialect developedby the MLIR community to represent tensor operations. This dialect is currently unused bythe compilation flow, but conversions from it to cinmmight be implemented in the futureto allow for a bigger set of fontends to be used with the Cinnamon compiler. Additionalconversion passes are present, which can be used to convert a subset of torch operationsto the std or scf dialects.
Torch-MLIR also provides a large set of transformation passes. Some of them are used bythe compilation flow to canonicalize the MLIR code before further lowering to cinm. Othersmay be used to optimize, by inlining, fusing and decomposing operations.

11

2 Frontend

2.4 Working with Quantized Models

The conversion of PyTorch models to the torch dialect works for a wide range of PyTorchmodels. However, there are some limitations. Memristive-crossbar devices are only ableto execute matrix multiplications on integer values. Because of this, models trained withfloating point precision need to be converted to use integer operations. This process is calledquantization and is also provided by PyTorch. There are different strategies for quantization,but they all aim to reduce the value precision used by the model while keeping its predictionaccuracy as high as possible.
The tools used in the compilation flow are currently set up using the latest LLVM (and MLIR)release 19.1.3. The Torch-MLIR version, which is compatible with this release unfortunatelystill has an extremely limited support for quantized models. The support has steadilyimproved in the latest releases of Torch-MLIR. Additionally, newer versions of LLVM with amore extensive quant dialect promise to provide a more complete support. With the currentsetup, automatically quantized models are unusable in the compilation flow. However, it ispossible to manually quantize very small models which can be compiled successfully.
Manually quantizing amodel consists of creating a structural clone of the original model. Eachlayer is recreated manually by choosing and inserting the needed quantization operationsbefore the actual layer computation. The quantization is then undone on the result tensor.This process is very error prone and time consuming, but it is sufficient for small models asa proof of concept. Future versions of Torch-MLIR will hopefully allow for a more automatedquantization process and compilation of larger models.

12

3 Cinnamon

This chapter will focus on all conversions performed by the Cinnamon compiler. It providesa step by step examination of all intermediate dialects and performed transformation andlowering passes. This part of the compilation flow is represented by the second row ofconversions in Figure 1.1.

3.1 Conversion from Torch to Cinm Dialect

The cinm dialect is the main entrypoint dialect of Cinnamon. It provides a wide range ofoperations which may be available on specific CIM and CNM devices. The subset of cinmoperations used by the compilation flow is shown in Table 3.1.
Operation signature Description
cinm.compute -> %result Scoped block operation containingpotentially multiple cinm.ops
cinm.yield %result Terminator operation of cinm.compute
cinm.op.gemm %lhs %rhs -> %result General matrix-matrix multiplication
cinm.op.gemv %lhs %rhs -> %result General matrix-vector multiplication

Table 3.1: Relevant cinm operations

Cinnamon provides a conversion pass from the torch dialect to the cinm dialect. This passis responsible for lowering all torch operations that are planned to be offloaded to cinm.An example torch dialect input is shown in Listing 3.1. Currently only torch operationsrepresenting matrix-matrix and matrix-vector multiplications are considered for lowering.When the compilation flow is extended to support targets other than memristive-crossbardevices, additional operations may be considered as well.
For this input, the conversion pass will lower only the torch.aten.mm operations on lines11 and 15 in Listing 3.1. All other operations will be left unchanged. For each loweredoperation, a new cinm.compute block is created. This block contains the cinm equivalentfor the replaced torch operation. It is terminated by cinm.yield, which can be thought ofas returning the result to the outside region. An example of the generated operations toreplace the first torch.aten.mm on line 11 in Listing 3.1 is shown in Listing 3.2.

13

3 Cinnamon

1 module attributes {torch.debug_module_name = "Model"} {
2 func.func @forward(%arg0: !torch.vtensor<[1,5],!torch.qint16>) ->

↪→ !torch.vtensor<[1,2],!torch.qint16> {
3 // constants and model parameters defined above:
4 // %int0 : !torch.int; %int1 : !torch.int
5 // %b0 : !torch.vtensor<[3],!torch.qint16>
6 // %w0 : !torch.vtensor<[3,5],!torch.qint16>
7 // %b1 : !torch.vtensor<[2],!torch.qint16>
8 // %w1 : !torch.vtensor<[2,3],!torch.qint16>
9

10 %tw0 = torch.aten.transpose.int %w0, %int0, %int1 : ... ->
↪→ !torch.vtensor<[5,3],!torch.qint16>

11 %m0 = torch.aten.mm %arg0, %tw0 : ... -> !torch.vtensor<[1,3],!torch.qint16>
12 %r0 = torch.aten.add.Tensor %m0, %b0, %int1 : ... ->

↪→ !torch.vtensor<[1,3],!torch.qint16>
13

14 %tw1 = torch.aten.transpose.int %w1, %int0, %int1 : ... ->
↪→ !torch.vtensor<[3,2],!torch.qint16>

15 %m1 = torch.aten.mm %r0, %tw1 : ... -> !torch.vtensor<[1,2],!torch.qint16>
16 %r1 = torch.aten.add.Tensor %m1, %b1, %int1 : ... ->

↪→ !torch.vtensor<[1,2],!torch.qint16>
17 return %r1 : !torch.vtensor<[1,2],!torch.qint16>
18 }
19 }

Listing 3.1: Two layer dense model represented in the torch dialect
1 %barg0 = torch_c.to_builtin_tensor %arg0 : ... -> tensor<1x5xi16>
2 %btw0 = torch_c.to_builtin_tensor %tw0 : ... -> tensor<5x3xi16>
3 %bm0 = cinm.compute -> tensor<1x3xi16> {
4 %br0 = cinm.op.gemm %barg0, %btw0 : (...) -> tensor<1x3xi16>
5 cinm.yield %br0 : tensor<1x3xi16>
6 }
7 %m0 = torch_c.from_builtin_tensor %bm0 : ... ->

↪→ !torch.vtensor<[1,3],!torch.qint16>

Listing 3.2: Replacement operations for torch.aten.mm

The torch dialect uses the value tensor type !torch.vtensor for all its operations. It isequivalent to the MLIR builtin tensor type but uses value semantics instead of referencesemantics. This simplifies the analysis of operations during the conversion process from
torchscript to the torch dialect, which was discussed in Section 2.1. Cinnamon usesthe builtin tensor type for all its operations. This means that all tensors used by cinmoperations need to be cast to the builtin tensor type. Similarly, all tensors generated by
cinm operations need to be cast back to the !torch.vtensor type to remain compatible.The inserted cast operations can be seen in Listing 3.2 on lines 1, 2 and 7. The placement ofthe cast operations in the MLIR code is important. They always need to be inserted at thepoint where the argument to the respective cast operation was produced. If the placementis not correct, subsequent passes will fail to remove redundant casts between the types,which will cause further lowering down the line to fail.

14

3 Cinnamon

3.2 Tiling

Once all offloadable operations have been lowered to the cinm dialect, a tiling pass needs tobe performed. Similarly to other CIM and CNM devices, memristive-crossbar devices have alimited size of computational units. This means that the matrix sizes of the operands need tobe limited to fit onto the device crossbars. The tiling pass is responsible for splitting up anymatrix multiplication into multiple smaller multiplications if necessary. For this purpose, thetiling pass receives potentially tiered sizing information for the specific device that is targetedby the operation. This is needed as the pass is written in a way that it can be used for alldevice types supported by Cinnamon, not just devices with a single tier of computationalunits. The multiple sub-results produced by the split matrix multiplication are combinedafterwards to recreate the original result.
This means that after the tiling pass has been applied, the original operation may now beplaced in a loop, where on each iteration one sub-operation will be executed. Depending onhow many crossbars are available on the target device, these operations may be able toexecuted in parallel. In order for this to be possible, the loop needs to be unrolled and theresulting multiple compute blocks need to be fused into a single compute block. This hascurrently not been implemented in Cinnamon, but should be considered in the future toallow for optimal use of all device resources. The downstream cim and memristor dialects, aswell as associated passes, are already set up in a way to allow multiple concurrent operationsto be dispatched and awaited.
Once the tiling pass has been successfully applied, it is guaranteed that all operations canbe executed on the target device, and further lowering may proceed.

3.3 Conversion from Cinm to Cim Dialect

For CIM device targets, the next pass lowers the cinm ttcinm dialeccim the cim dialect. The
cim dialect is the main dialect for all CIM devices, and as such only provides the subsetof operations that can be executed on them. Additionally it introduces explicit resourceacquisition and release. For each cim operation, the to be used device and crossbar have tobe specified. The dialect also changes the semantics of each operation to be asynchronous.This means that the operations themselves only represent computation dispatch, whilethe cim.barrier operation is used to synchronize and await the computation results. Thisasynchronicity is needed to model multiple concurrent computations on the device. The
cim.barrier operation also allows for different scheduling strategies to be enforced on thecomputation graph, allowing optimal use of all device resources. This is further explored inSection 3.4. A full list of all cim operations is shown in Table 3.2.
During the conversion, the nesting of operations into a compute block is removed. Thescope of the computation is now defined implicitly by the cim.acquire_device and
cim.release_device operations. This allows for further flexibility when inserting othercomputations, unrelated to those on the CIM device, between the cim operation dispatchesand cim.barrier operations. This may be beneficial for performance as it allows for betterutilization of the host CPU while the CIM device is busy. The result of lowering the operationsin Listing 3.2 to the cim dialect is shown in Listing 3.3.

15

3 Cinnamon

Operation signature Description
cim.acquire_device -> %deviceId Acquire a device
cim.acquire_crossbar %deviceId Acquire a crossbar on the
-> %xbarId specified device

cim.op.gemm %xbarId %lhs %rhs General matrix-matrix multiplication
-> %future

cim.op.gemv %xbarId %lhs %rhs General matrix-vector multiplication
-> %future

cim.barrier %future Await results of computation associatedwith the future
cim.release_crossbar %xbarId Release the specified crossbar
cim.release_device %deviceId Release the specified device

Table 3.2: Relevant cim operations
1 %barg0 = torch_c.to_builtin_tensor %arg0 : ... -> tensor<1x5xi16>
2 %btw0 = torch_c.to_builtin_tensor %tw0 : ... -> tensor<5x3xi16>
3 %dev = cim.acquire_device -> !cim.deviceId
4 %xbar = cim.acquire_crossbar %dev : ... -> !cim.crossbarId
5 %fut0 = cim.op.gemm %xbar, %barg0, %btw0 : ... -> !cim.future<1x3xi16>
6 %bm0 = cim.barrier %fut0 : !cim.future<1x3xi16> -> tensor<1x3xi16>
7 cim.release_crossbar %xbar : !cim.crossbarId
8 cim.release_device %dev : !cim.deviceId
9 %m0 = torch_c.from_builtin_tensor %bm0 : ... ->

↪→ !torch.vtensor<[1,3],!torch.qint16>

Listing 3.3: Replacement operations for cinm.op.gemm in the cim dialect

3.4 Scheduling of Cim Dialect Operations

As the cim dialect introduced explicit resource handling, all operations need to bescheduled onto the available computational resources. In the case of memristive-crossbardevices, the information regarding available crossbars was attached to the cinm.computeoperation during the tiling pass. This information was then reattached to the generated
cim.acquire_device operation during the lowering to the cim dialect.
Scheduling of cim operations can be performed by a range of scheduling passes, whichimplement different scheduling strategies. These passes built on top of a modular schedulingframework for side-effect free operations provided by Cinnamon. The scheduling frameworkallows for easy implementation of new scheduling strategies based on operation dependencygraphs and available computational resources. The resulting modularity allows for use casespecific scheduling problems to reuse existing scheduling strategies.
When implementing a scheduling pass using the scheduling framework, a set of hooks forthe scheduling driver need to be specified. They are listed in Table 3.3.
The hooks are designed to be as generic as possible, making the scheduling framework usablefor a wide range of operation scheduling problems. The rescheduleOperationFilter,
operationScheduler and barrierInserter hooks are implemented specifically for the
cim scheduling passes. They are trivial to implement, often only requiring one line of code.The schedulingStrategy hook is themost important hook and is responsible for generatingthe operation schedule. Any of the reusable scheduling strategies can be used as a functor

16

3 Cinnamon

Hook name Description
rescheduleOperationFilter A predicate for filtering which operations will beconsidered for rescheduling. For cim schedulingpasses this includes all cim.op operations.
schedulingStrategy A chosen scheduling strategy in form of a functorwhich accepts a dependency graph and number ofcomputation resources and returns an operationscheduling. The operation scheduling describeswhen each operation should be dispatched andawaited.
operationScheduler A function which when supplied with an operationand a resource reschedules the operation onto theresource. Any changes to the position of theoperation in the program will be handled by thescheduling driver and do not need to beimplemented.
barrierInserter A function which returns an awaiting operation linkedto the passed operation. The returned operation willbe inserted at the correct position by thescheduling driver.

Table 3.3: Scheduling framework hooks

for this hook. The scheduling strategies are implemented as separate classes and can beeasily extended or replaced.
To invoke the scheduling driver, two parameters in addition to the hooks need to be specified.The first parameter is a list of scheduling roots, from which the operation dependency graphwill be generated. The second parameter is a list of available computational resources. Forthe cim scheduling passes, both of these parameters are generated by another sharedfunction. It analyzes the implicit computation block marked by the cim.acquire_device and
cim.release_device operations and finds all values generated by cim tttcim operationswhich are escaping the block. These values represent the scheduling roots. It also insertsadditional cim.acquire_crossbar operations for each crossbar available on the device.The results of these operations are then passed as the available computational resources tothe scheduling driver. During these preparations, all cim.barrier operations are removedfrom the program in preparation for rescheduling. The collected information is forwardedto the scheduling driver, which will handle the scheduling of all cim operations. Listing 3.4shows the simple and modular implementation of a cim scheduling pass.

3.5 Conversion from Cim to Memristor Dialect

The memristor dialect is the target dialect for all memristive-crossbar devices as it modelscommon runtime API calls. A list of all memristor operations is shown in Table 3.4.
The lowering pass from the cim tttcim tttcim to memristor dialect converts all cim operationsto their memristor counterparts. The cim.acquire_device and cim.acquire_crossbaroperations are replaced by integer values representing the device and crossbar id.Additionally, operations to bufferize all tensor operands into memrefs are inserted. This isin preparation for the final conversion to the func dialect, which will generate runtime API

17

3 Cinnamon

1 // Scheduler used for this pass
2 using Scheduler = cinm::utils::scheduling::AsapScheduler<Value>;
3

4 // Remove all barriers, find roots, get available crossbars
5 auto [crossbars, roots] = prepareForScheduling(acquireDeviceOp, rewriter);
6 Scheduler<Value> scheduler{crossbars};
7

8 // Define modular scheduling hooks
9 cinm::utils::scheduling::SchedulingHooks<Value> hooks{

10 .rescheduleOperationFilter = isCimOp,
11 .schedulingStrategy = scheduler, // simplified
12 .operationScheduler = scheduleCimOpOnCrossbar,
13 .barrierInserter = insertBarrierForCimOpResult};
14

15 // Run the scheduling
16 cinm::utils::scheduling::applyScheduling(rewriter, roots, hooks);

Listing 3.4: As Soon As Possible (ASAP) scheduling pass implementation for cim dialect
Operation signature Description
memristor.write_to_crossbar %xbarId %rhs Write operand to crossbar
memristor.gemm %xbarId %lhs %result General matrix-matrix multiplication
memristor.gevm %xbarId %lhs %result General vector-matrix multiplication
memristor.barrier %xbarId Wait for computation to finish

Table 3.4: Relevant memristor operations

calls that have no representation of the tensor type. The generated memref operands arerepresentable by data pointers and associated sizing information. The bufferization alsorequires, that the space for computation results needs to be allocated explicitly before thecomputation is dispatched. All allocation and bufferization operations are provided bythe bufferization dialect, which is a builtin MLIR dialect. The result of lowering Listing 3.3to the memristor dialect is shown in Listing 3.5.
1 %barg0 = torch_c.to_builtin_tensor %arg0 : ... -> tensor<1x5xi16>
2 %btw0 = torch_c.to_builtin_tensor %tw0 : ... -> tensor<5x3xi16>
3 %xbar = arith.constant 0 : i32
4 %res = bufferization.alloc_tensor() : tensor<1x3xi16>
5 %lhsb = bufferization.to_memref %barg0 : memref<1x5xi16>
6 %rhsb = bufferization.to_memref %btw0 : memref<5x3xi16>
7 %resb = bufferization.to_memref %res : memref<1x3xi16>
8 memristor.write_to_crossbar %c0_i32, %rhsb : i32, memref<5x3xi16>
9 memristor.gemm %xbar, %lhsb, %resb : i32, memref<1x5xi16>, memref<1x3xi16>

10 memristor.barrier %xbar : i32
11 %m0 = torch_c.from_builtin_tensor %res : ... ->

↪→ !torch.vtensor<[1,3],!torch.qint16>

Listing 3.5: Example of cim tttcim operations lomemristor emristor dialect

In preparation for the final conversion to the func dialect, all memristor operations have alibrary call name attached to them. This name encodes the type of operation, as well as theinteger type of the operands. The library call name will be used as the symbol name for theruntime API call references when converting to the func dialect.

18

3 Cinnamon

3.6 Conversion from Memristor to Func Dialect

This final lowering pass converts all memristor operations to runtime API calls modeled in the
func dialect, which is a builtin MLIR dialect. For each memristor operation, a correspondingruntime function declaration is generated. The symbol names are the library call namesattached to the memristor operations. Parameter types are derived from the operandtypes of the memristor operations. Notably, all memrefs are converted to dynamically sized
memrefs, as multiple operations of the same type, but with differently sized operands willuse the same API endpoint. All function declarations needed for Listing 3.5 are shown inListing 3.6.

1 func.func nested @memristor_write_to_crossbar_i16(i32, memref<?x?xi16>)
2 func.func nested @memristor_gemm_i16(i32, memref<?x?xi16>, memref<?x?xi16>)
3 func.func nested @memristor_barrier(i32)

Listing 3.6: Function declarations for memristor operations

3.7 Memristor Runtime Library

The lowering pass from memristor to func has created calls to runtime API functions.These functions need to be implemented in a runtime library which is then linked to thefinal executable. The runtime library needs to provide the actual implementation of theAPI calls. This can be achieved by forwarding the calls to a third party implementation ordevice driver. For testing and validation purposes, Cinnamon provides a simple runtimelibrary implementation, which can execute all operations directly on the host CPU orconditionally forward them to a memristive-crossbar simulator written in C++. Furtherdetails regarding the simulator can be found in Chapter 6. This section will focus on theinterface implementation of the runtime library in C.
After the output of the previous steps has been successfully lowered to the llvm dialect,as will be discussed in Chapter 4, the function definitions from Listing 3.6 will have beenconverted into a C compatible form as shown in Listing 3.7.
Mainly, all of the 2d memref parameters will have been converted to 7 parameters each:

• The base pointer to the start of the memory region referenced into by the memref.• The data pointer to the actual start of the data for this memref.• An integer with the offset of the first element in the data pointer.• The number of elements in the first dimension.• The number of elements in the second dimension.• The stride of the first dimension.• The stride of the second dimension.
The conversion of 1d memrefs used by the memref_gevm operation is analogous, resulting in5 parameters.
All interface functions in the runtime library will match the signatures shown in Listing 3.7.The first step in each of the interface functions is to repackage the multiple memref relatedparameters back into a structured form. Afterwards, in the case of the runtime libraryincluded in Cinnamon, these repackaged arguments are passed to a templated C++ function

19

3 Cinnamon

1 llvm.func @memristor_write_to_crossbar_i16(i32, !llvm.ptr, !llvm.ptr, i64, i64,
↪→ i64, i64, i64)

2 llvm.func @memristor_gemm_i16(i32, !llvm.ptr, !llvm.ptr, i64, i64, i64, i64,
↪→ i64, !llvm.ptr, !llvm.ptr, i64, i64, i64, i64, i64)

3 llvm.func @memristor_barrier(i32)

Listing 3.7: Memristor runtime library function definitions

for each operation. This removes the need for a separate implementation for each integertype.
To further avoid two implementation for matrix-matrix and matrix-vector multiplication, the
memristor_gevm function just repackages the vector argument into a matrix. This allows thevector-matrix multiplication to be implemented in terms of the matrix-matrix multiplication.The result is then repackaged back into its vector form. Importantly this does not requireany expensive copying of data, but only modification of memrefmetadata. The templated
memref_gemm function performs the actual computation and writes the result back intothe result memref. In both cases the memristor_write_to_crossbar operation is used towrite the second operand into a crossbar buffer beforehand, from which it is retrievedduring computation. As this runtime library implementation is currently single-threaded, the
memristor_barrier operation is a no-op.
Before each computation, the library checks if the memristive-crossbar simulator discussedin Section 6.2 is available. If so, the computation is forwarded to the simulator instead ofbeing executed on the host CPU. This allows for easy testing, of and with the simulator.

20

4 Backend

The output of the pipeline discussed in Chapter 3 is still MLIR code and as such not directlyexecutable. This chapter will discuss the conversions shown in row 3 and 4 in Figure 1.1,which are needed to lower the MLIR code produced by Cinnamon and Torch-MLIR to LLVMIR and compile further into a shared object.

4.1 Lowering to LLVM IR

In order for any code generation using the LLVM compiler infrastructure to take place, theprogram has to be fully converted to the llvm dialect. At the current point in the compilationflow, the output of the Cinnamon pipeline includes operations from the bufferization, memref,
arith and func dialects. Additionally, all operations that bypassed the Cinnamon pipelineare still a mix of torch and func dialects.
To allow further conversions to use builtinMLIR passes, the torchdialect has to be completelyremoved from the program. This is done by applying a set of passes which, among otherthings, convert all torch operations to the linalg dialect as well as replacing all torch typeswith builtin types. If these passes succeed, the torch dialect will no longer be present in theprogram. Although now no longer in the torch dialect, all operations which bypassed theCinnamon pipeline are still represented at a higher level of abstraction than the operationsthat went through it. To bring all operations to a similar level, next, multiple bufferizationand canonicalization passes are applied. These passes will remove the tensor type fromthe program and replace it with memref types. The argument and return types of the
forward function will now also becomememrefs. During the canonicalization passes, the nowredundant tensor casts introduced by the torch to cinm conversion will also be removed.Next, the linalg dialect is lowered, first to the scf dialect and then further to the cf dialect.This will bring all operations to a similarly low level of abstraction. The arith, func and cfdialects can now be converted to the llvm dialect. Finally, also the memref dialect is convertedto llvm, again changing the signature of the main inference function to a format similar tothe one discussed in Section 3.7. As a final preparation step for the export to LLVM IR, acanonicalization pass is applied to remove any remaining redundant operations. Additionallythe reconcile-unrealized-casts and llvm-legalize-for-export passes are applied toremove any remaining unsupported operations and to legalize the program for export toLLVM IR. If all of the mentioned passes succeed, the program is now ready for export.

21

4 Backend

4.2 Code Generation

For the conversion from the llvmMLIR dialect to LLVM IR, the mlir-translate tool, providedby the LLVMproject, is used. This tool is able to convert between the slightly different syntaxesof the llvm MLIR dialect and the LLVM IR. After invoking mlir-translate and generatingLLVM IR, the clang compiler is used to compile the LLVM IR into a shared object. As shownin Figure 1.1, the shared object is the final product of the compilation flow. Running inferenceusing this compiled PyTorch model will be discussed in Chapter 5.

22

5 PyTorch Backend

To make the compilation flow usable directly from Python, without manually invoking allthe steps discussed in the previous chapters, the Cinnamon project also includes a Pythonmodule. This module provides, similarly to the torch_mlir module from Torch-MLIR, aneasy-to-use, high level interface to the compilation flow. The process of compiling, loadingand running inference on a PyTorch model using the cinnamon Python module is shown inListing 5.1.
1 import torch
2 from cinnamon.torch_backend.cinm import CinmBackend
3

4 class Model(torch.nn.Module):
5 def __init__(self):
6 super(Model, self).__init__()
7

8 self.fc1 = torch.nn.Linear(5, 5)
9 self.fc2 = torch.nn.Linear(5, 10)

10 self.fc3 = torch.nn.Linear(10, 2)
11

12 def forward(self, x):
13 x = self.fc1(x)
14 x = self.fc2(x)
15 x = self.fc3(x)
16 return x
17

18 model = Model()
19 sample_input = torch.randn(5)
20

21 backend = CinmBackend()
22

23 compiled_model = backend.compile(model, sample_input)
24 model_invoker = backend.load(compiled_model)

Listing 5.1: Example of compiling, loading and running inference on a PyTorch model using the CinnamonPyTorch backend

23

5 PyTorch Backend

5.1 Compiling PyTorch Models

The cinnamon Pythonmodule provides a CinmBackend class which can be used to invoke thefull compilation flow from Python. The class has a compilemethod as seen in Listing 5.1 line21, which takes a module and a sample input tensor as arguments. Internally, the module willfirst be converted into a torch dialect MLIR representation using the torch_mlir.compilefunction discussed in Chapter 2. An analysis pass then extracts the signatures of all functionsdefined in the torch dialect MLIR code. This information is laster required for loading thecompiled model back into Python.
The CinmBackend class currently defines a static pass pipeline for the lowering, which targetsmemristive-crossbar accelerators. This pipeline together with the MLIR representation ofthe PyTorch model is then passed to the Cinnamon pass runner. The pass runner applies allpasses in the order specified by the pipeline. This results in the MLIR code being lowered tothe llvm dialect as discussed in Chapter 3 and Chapter 4. Next the mlir-translate toolas well as clang are invoked to convert the llvm MLIR code to LLVM IR, and compile into ashared object. The shared object and the previously extracted signatures are then packagedinto a CompiledModel Python object and returned to the user.

5.2 Loading of Compiled PyTorch Models

The CompiledModel object produced by the previous step provides functionality for savingand loading itself to and from disk. This may be useful in cases where the compiled modelis distributed rather than the original PyTorch model. Or in cases where recompiling themodel is not desired.
In order for the compiled model to become useable, it has to be loaded and made accessiblefrom Python. This functionality is provided by the load method of the CinmBackend classas seen on line 22 in Listing 5.1. The loadmethod takes the CompiledModel object as anargument and returns a textttModelInvoker object. This object aims to provide a similarinterface to the original PyTorch model, in order to make the transition from the PyTorchmodel to the compiled model as seamless as possible. The load method internally justforwards the CompiledModel object to the ModelInvoker constructor along with a list ofpaths to runtime libraries. An example of such a runtime library is the memristor runtimepresented in Section 3.7.
The ModelInvoker constructor then first loads the specified runtimes into the Pythonenvironment. This is done using the dll loader provided by the standard ctypes module.After loading all runtimes, the shared object stored in the CompiledModel can also loaded.As the ModelInvoker should provide a similar interface to the original PyTorch model, it alsoneeds to have the relevant functions. Using the list of extracted signatures, which is alsostored in the CompiledModel, the ModelInvoker object creates wrappers for all functionsdefined in the shared object and registers them as methods of itself. The structure of thewrapper functions will be discussed in Section 5.3. After all functions have been wrapped,the ModelInvoker object is returned to the user.

24

5 PyTorch Backend

5.3 Forwarding Calls to the Compiled Model

During the lowering process of the PyTorch model, the required parameters to the forwardfunctions were converted from the original PyTorch tensors first to memref types and thento a set of pointers and integers. As such, the interface cannot directly be used with PyTorchtensors anymore. In order to hide this complexity from the user, each function in the sharedobject is wrapped by the ModelInvoker object.
The createdwrapper functions need to perform twomain tasks. First, they need to convert thepassed arguments to the format expected by the function in the shared object. Second, theyneed to provide the storage for the result tensor which is passed to the function in the sameway as the other arguments, but requires some additional handling after the function hasbeen invoked. During the lowering described in Section 5.1, the llvm-request-c-wrapperspass was run. This pass resulted in the creation of C interface wrappers in the shared object.These wrappers take memref arguments as pointers to a memref descriptor structure insteadof the set of pointers and integers. This allows for cleaner code in the Python wrapperfunctions.
To achieve task one, each tensor argument needs to be converted to a memref descriptorstructure. This is done by first enforcing the tensor to be contiguous in memory and thenextracting the data pointer, the sizes and the strides of the tensor. These are written tothe memref descriptor structure expected by the requested C wrappers. The structure iscreated with a C compatible layout by using the ctypes module. Finally pointers to thecreated structures are passed to the function in the shared object.
The first step for the second task is to create a result tensor with the same shape anddata type as the expected return type from the original PyTorch model. This information islooked up in the extracted signatures. The created result tensor is then converted to thememref descriptor structure in the same way as the input tensors. After the function hasbeen invoked with all generated arguments, the result tensor may not have been writtento directly. In some rare cases, an optimization may have caused the data pointer in the
memref descriptor structure to be updated, instead of the data it originally pointed to. Thischange would not be reflected in the Python result tensor object. If this is detected, the dataat the changed pointers is copied back into the result tensor. Finally, it is returned to theuser.
Although the Torch-MLIR compilation currently only compiles the models forward function,which is needed for inference, the compilation and loading process in the cinnamonmoduleis already designed to support multiple functions, should this become necessary in thefuture. Additionally, only argument of the tensor type are allowed during the Torch-MLIRcompilation. The wrapper functions in the ModelInvoker object however are designed tosupport wrapping of any parameter type, as long as a wrapper object was registered forit. This allows for easy extension of the compilation flow to support additional types ofparameters in the future.

5.4 Running Inference on Compiled PyTorch Models

The ModelInvoker object returned by the load method provides a similar interface tothe original PyTorch model. This means that the user can call the forwardmethod of the
ModelInvoker object with the same arguments as the original PyTorch model. As discussedin the previous section, the ModelInvoker will then handle all necessary conversions and

25

5 PyTorch Backend

invoke the underlying function in the shared object. The result tensor is then returned tothe user in the same format as the original PyTorch model would have returned it.
Other operations than inference, notably training are not supported by the ModelInvokerobject. This is due to the fact that the compiled model does not include the necessaryoperations for training, such as backpropagation. Additionally, any changes to themodel, suchas modifying weights, are not possible. The compiled model is a static representation of themodel at the time of compilation and cannot be changed afterwards without recompiling.

26

6 Usability Analysis and Evaluation

This chapter will evaluate the usability of the compilation flow and provide some bench-marking results based on a simulated memristive-crossbar accelerator. An evaluation onactual hardware is not possible at this time, as no memristive-crossbar accelerator is cur-rently available. The simulator is based on a existing hardware architecture and resultingperformance numbers should be indicative of what can be expected on actual hardware.

6.1 Usability Analysis

Because the compilation flow is built on top of the MLIR compiler infrastructure, it ishighly modular in nature. Extending it with alternative frontends only requires adding aconversion from the frontends intermediate representation to the cinm MLIR dialect usedas an entrypoint for the Cinnamon compiler. Conversion passes at this level mostly consistof one-to-one mappings of operations to the cinm dialect. In some cases the addition of newconversion passes may not even be necessary, as already supported dialects may be usedas a stepping stone to the cinm dialect. The same is true for adding support for additionaltarget devices. The memristor dialect provides a solid foundation for new backend dialectsto be built on top of. For some devices, the operations may even be directly mappable to thedevice’s runtime library calls. Writing a runtime library like discussed in Section 3.7, whichforwards the calls to the device’s runtime would be sufficient in this case. The Cinnamoncompiler is built with this kind of extensibility in mind and offers good usability to developerswho want to extend the compilation flow.
The PyTorch backend discussed in Chapter 5 provides a high level interface to the compilationflow. It abstracts away the details of the compilation and loading of the compiled model.Because the end user only needs to provide a PyTorch model and a sample input tensor forthe compilation to work, the process should be easily integrable into existing projects. Oncethe model has been compiled, the ModelInvoker object provides a similar interface to theoriginal PyTorch model. This allows for simple substitution of the original model with thecompiled model. The use of the compilation and loading functionality only requires minimalchanges to the existing codebase. A major roadblock for the usability of the end user is thelack of support for quantized models, as discussed in Section 2.4. This is a limitation whichis expected to be resolved by future releases of the Torch-MLIR project. When this is thecase, no additional changes to the rest of the compilation flow should be necessary. Thequantized models will be able to be compiled in the same way as already described. Because

27

6 Usability Analysis and Evaluation

of this, being only a temporary roadblock, the overall usability of the compilation flow for theuser can still be considered high.

6.2 Simulator Architecture

In order to evaluate the performance and energy efficiency of the compiled models, asimulator implemented. It is designed to be close enough to existing hardware to providemeaningful results. The simulator is written in C++ with SystemC for the hardware simulation.An overview of the simulated architecture is shown in Figure 6.2.

Figure 6.1: Simulated memristive-crossbar accelerator architecture with mapping of Am×n · Bn×p = Cm×p.Indices i and [b] denote time multiplexing and bit slicing steps respectively. Used value types are assumed to fitin two bit slices.
Figure 6.1 shows the structure of a typical memristive-crossbar accelerator. In order toperformmatrix multiplications, both input matrices need to bemapped onto the hardware.
In this simulator the left hand side matrix, designated with A in Figure 6.1, is mappedto the input lines entering the crossbar from the left. As these lines are laid out in onedimension, only one row of the matrix is mapped to them at a time. This results in a timemultiplexedmapping of thematrix. Additionally, the values in the respectivematrix rows needto be converted to analog voltage levels in order for the computation to be performed byhardware. This is achieved by a digital to analog converter. Because of hardware complexityand imperfections in analog circuitry, they cannot directly reproduce the resolution of theinput values. The Digital to Analog Converter (DAC)s in the simulator are modeled to have aresolution of 2 bits. In extreme hardware configurations, the use of a DAC may be skippedcompletely resulting in a one bit resolution. Because of this resolution limit, an additionaltime multiplexing step is used where only two bits of the input value are sent at a time. The

28

6 Usability Analysis and Evaluation

two levels of multiplexing just described are represented by the multiplexer block, positionedbefore the DACs in Figure 6.1. All effects of multiplexing the left hand side matrix are thenreverted after the Analog to Digital Converter (ADC) conversion by the second multiplexer.This is achieved by shifting the bits back to their original position and writing the results intothe correct location in the output matrix, designated with C in Figure 6.1.
The right hand side matrix, B, is mapped to the crossbar array. The simulator models acrossbar with size 128x128. Because the memristors are arranged in a 2d structure, thefull matrix can be mapped at once. Similarly to the DACs for the left hand side matrix, theconductances of the memristors in the crossbar are also limited in resolution, because ofdifferences in the physical material as well as of drifting over time. The memristors in thesimulator are modeled to have a resolution of 2 bits. The bit slicing for the memristors isachieved spatially, bymapping bit slices to neighboring crossbar columns. Spatial multiplexingis used in order to keep calculation times to a minimum. The multiplexing is undone bythe shift-accumulate unit after the ADC conversion. On some hardware architectures, it ispossible to disable crossbar columns which remain unused in order to save energy. This isnot modeled in the simulator.
The way thematrices aremapped onto the hardware allows the dot product of the respectiverows and columns, which is the basic operation used during matrix multiplication, to becomputed completely analog. The multiplication is performed according to Ohm’s law. With
U being the voltage representing a value from the left hand side matrix and G being theconductance representing a value from the right hand side, the result is calculated as I = U ·G.The addition is then performed according to Kirchhoff’s current law, as the currents fromall memristors in a column add up to produce the result. The result is then held steadyduring ADC conversion by the sample and hold units and converted back to a digital value.After all effects of multiplexing are undone, this results in a full matrix multiplication beingperformed.

Figure 6.2: Simulator architecture
To model the architecture shown in Figure 6.1, the simulator is split into four maincomponents, which can be seen in Figure 6.2. The first component is the sender. It isresponsible for sequentially sending the bit-sliced rows of the left hand side matrix asvoltages to the two crossbars which are connected. These are needed because the simulatoruses differential encoding for the conductances. When using differential encoding, valuesfrom the right hand side matrix are encoded as the difference between correspondingconductances in both crossbars. For some memristor technologies this solves the problemof representing a zero conductance. It also reduces the effects of drift in the memristors, as it

29

6 Usability Analysis and Evaluation

is expected to be similar in both crossbars and therefore cancels out during the subtraction.Additionally, differential encoding allows the representation of negative values, which is notcurrently used in the simulator. Both crossbars compute the dot product according to Ohm’slaw and Kirchhoff’s current law as discussed above using their respective conductance values.They also perform the analog to digital conversion as well as the shift-accumulate operations.The results of the crossbars are then sent to the subtractor component. This componentrecombines the two results by subtracting them from each other, thereby decoding thedifferential encoding. The final result is then sent to the receiver component. It undoes thetwo layers of time multiplexing introduced by the sender and writes the result to the outputmatrix.
The simulator is set up to directly receive binary representations of the input matrices.It can dynamically accept a range of integer widths and matrix sizes, using a fully typeerased representation internally. In order to simplify testing and benchmarking, an additionalwrapper executable was implemented which creates a unix domain socket on the filesystem.The runtime library discussed in Section 3.7 checks for the existence of this socket andsends the input matrices to the simulator if it is found. The wrapper then executes thesimulator and sends the result back to the runtime library. The simulator not only returns theoutput matrix to the wrapper on its invocation, but also collects and sends back performancemetrics. Based on these metrics, estimates of performance and energy efficiency can bemade.

6.3 Benchmarking

This section will present the results of a limited benchmarking run, aimed at demonstratingthe performance and energy efficiency benefits of memristive-crossbar devices. Thebenchmarking was performed on a simulated accelerator described in Section 6.2. Memristorand driving parameters were chosen to similar values as are found in existing hardware. Anoverview of all accelerator parameters is shown in Table 6.1.
Parameter Value
Crossbar size 128x128DAC resolution 2 bitsMemristor resolution 2 bitsClock frequency 1 GHzMemristor range 10 kΩ to 40 kΩMaximum crossbar input voltage 0.2 VConductance encoding Differential, parallelized

Table 6.1: Simulated architecture parameters

As performance analysis is not the main topic of this thesis, the benchmark consists of onlya single matrix multiplication. It is sized to completely fill the simulated crossbar and is assuch representative of a typical workload for previously tiled large matrix multiplications.The specific parameters of the matrix multiplication are shown in Table 6.2.
The runtime of only the computation pipeline, presented in Figure 6.1, was simulated tobe 85 ns. It is comprised of 6 cycles, 1 ns each, which are needed to fill the pipeline andproduce the first 2 bit slice of the result, as well as the following 79 cycles which completethe computations for the remaining 79 slices. The full computation latency is comprised ofthis runtime, together with the transfer latency as well as the write latency generated while

30

6 Usability Analysis and Evaluation

Parameter Value
Lhs matrix size 10x128Rhs matrix size 128x16Integer width 16 bitValue range uniform random, full 16 bit range

Table 6.2: Benchmark parameters

setting up the memristor conductances. With the completely filled crossbars in this example,a total of 32768 memristor writes have to be performed. Values for the additional latenciesare highly dependent on the hardware architecture and the memristor technology beingused and are not provided here.
Estimation of energy consumption is equally dependent on the specific hardware architectureand memristor technology. With the assumed values for the memristor range and inputvoltage, the simulator estimates the energy consumption of purely the crossbar during thefull computation to be about 1750 pJ. Additionally, the energy consumption of the DACs,ADCs, digital logic and memristor writes have to be taken into account. A paper presentingthe OCC compiler [Sie+22] provides some estimates for the energy consumption of thesecomponents in Table II from Chapter V. Please note that the experimental setup used in thepaper is different from the one used here and that shown values might not scale linearlywith the crossbar size.
As a comparison, the same matrix multiplication was performed on a CPU with a singlethreaded loop based matrix multiplication implementation written in C++. The benchmarkingenvironment is described in Table 6.3.

Parameter Value
CPU Intel(R) Core(TM) i7-8550U4 cores, 8 threads1.8 GHz base clock, 4.0 GHz boost clockCompilation setup Clang 19.1.1 with -O3 optimization flag

Table 6.3: CPU setup

The computation was performed using a warm cache and averaged a runtime of 16.24 us.This shows the large performance benefits of memristive-crossbar devices over traditionalcomputing architectures. The energy consumption of the CPU was not measured, as thiswould require extensive instrumentation. However, it can be assumed to be significantlyhigher than the energy consumption of the accelerator.

31

7 Epilogue

7.1 Conclusion

This thesis presented an end-to-end compilation flow for memristive-crossbar accelerators.To make the process more accessible a Python package was developed, which providesa high-level interface to the compilation flow. The package allows for easy compilation,loading, and running of inference on compiled PyTorch models. The compilation flow wasevaluated based on its usability and performance. The results show, that the compilation flowis highly modular and extensible. The PyTorch backend provides a high-level interface to thecompilation flow, making it easy to integrate into existing projects. Additionally, a simulator ofa existing memristive-crossbar accelerator architecture was developed to provide validationof correctness as well as evaluation of performance and energy efficiency.

7.2 Outlook

The Cinnamon compiler already supports code generation for CNM devices. Because ofthis, the presented compilation flow can be extended to support CNM devices as well.Future additions might also include support for CAM devices, which opens up a large set ofoffloading possibilities.
The PyTorch frontend is currently the only frontend supported by the compilation flow.Additional frontends supporting machine learning frameworks like ONNX and TensorFlowwould further increase the usability and accessibility of the compilation flow. Import of someONNX and TensorFlow models is already possible through conversions built into PyTorchand Torch-MLIR as well as other third-party tools.
Furthermore, the implementation of optimization passes in the various dialects of theCinnamon compiler would be beneficial. Some optimization opportunities, like loop unrollingand compute block fusion, were already mentioned in this thesis. A range of otheroptimization passes are certainly possible and could improve the performance, especially oflarge compiled models.
Currently, the main roadblock for the compilation flow is the lack of support for automaticallyquantized models in Torch-MLIR. This limitation will most likely be resolved in the near future,as the support has already steadily improved during the writing of this thesis.

32

Acknowledgements

I would like to express my sincere gratitude to my main supervisor, Dr.-Ing. Asif Ali Khan, forhis guidance and support throughout the duration of my thesis. His expertise and insightfulfeedback have been invaluable in shaping the direction and quality of this work. I am alsodeeply thankful to Clément Fournier and Hamid Farzaneh for their continuous assistanceand willingness to discuss various aspects of the project. Their contributions have beencrucial to the successful completion of this thesis.
I extend my heartfelt thanks to Prof. Dr.-Ing. Jeronimo Castrillon and Prof. Dr.-Ing. DianaGöhringer for kindly agreeing to serve as the referees for my thesis.
Thank you all for your contributions and support.

33

Bibliography

[He+20] Wangxin He et al. “2-Bit-Per-Cell RRAM-Based In-Memory Computing for Area-/Energy-Efficient Deep Learning”. In: IEEE Solid-State Circuits Letters 3 (2020),pp. 194–197. DOI: 10.1109/LSSC.2020.3010795.
[Jia+21] Yanhai Jiang et al. “HARNS: High-level Architectural Model of RRAM basedComputing-in-memory NPU”. In: 2021 IEEE International Conference on Integrated

Circuits, Technologies and Applications (ICTA). 2021, pp. 35–36. DOI: 10.1109/ICTA53157.2021.9661827.
[Lat+21] Chris Lattner et al. “MLIR: Scaling Compiler Infrastructure for Domain SpecificComputation”. In: 2021 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). 2021, pp. 2–14. DOI: 10.1109/CGO51591.2021.9370308.
[Qu+21] Songyun Qu et al. “ASBP: Automatic Structured Bit-Pruning for RRAM-based NNAccelerator”. In: 2021 58th ACM/IEEE Design Automation Conference (DAC). 2021,pp. 745–750. DOI: 10.1109/DAC18074.2021.9586105.
[Yu+21] Shimeng Yu et al. “RRAM for Compute-in-Memory: From Inference to Training”. In:

IEEE Transactions on Circuits and Systems I: Regular Papers 68.7 (2021), pp. 2753–2765. DOI: 10.1109/TCSI.2021.3072200.
[Sie+22] Adam Siemieniuk et al. “OCC: An Automated End-to-End Machine Learning Opti-mizing Compiler for Computing-In-Memory”. In: IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 41.6 (2022), pp. 1674–1686. DOI:10.1109/TCAD.2021.3101464.
[Diw+23] Sumit Diware et al. “Accurate and Energy-Efficient Bit-Slicing for RRAM-BasedNeural Networks”. In: IEEE Transactions on Emerging Topics in Computational

Intelligence 7.1 (2023), pp. 164–177. DOI: 10.1109/TETCI.2022.3191397.
[FSR24] M. Fritscher, S. Singh, and T. et al. Rizzi. “A flexible and fast digital twin for RRAMsystems applied for training resilient neural networks”. In: Scientific Reports 14(2024), p. 23695. DOI: 10.1038/s41598-024-73439-z. URL: https://doi.org/10.1038/s41598-024-73439-z.
[Kum+24] Ashwani Kumar et al. “Energy Efficient Implementation of MVMOperations UsingFilament-Free Bulk RRAM Array”. In: 2024 Neuro Inspired Computational Elements

Conference (NICE). 2024, pp. 1–5. DOI: 10.1109/NICE61972.2024.10549369.

34

https://doi.org/10.1109/LSSC.2020.3010795
https://doi.org/10.1109/ICTA53157.2021.9661827
https://doi.org/10.1109/ICTA53157.2021.9661827
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/DAC18074.2021.9586105
https://doi.org/10.1109/TCSI.2021.3072200
https://doi.org/10.1109/TCAD.2021.3101464
https://doi.org/10.1109/TETCI.2022.3191397
https://doi.org/10.1038/s41598-024-73439-z
https://doi.org/10.1038/s41598-024-73439-z
https://doi.org/10.1038/s41598-024-73439-z
https://doi.org/10.1109/NICE61972.2024.10549369

Bibliography

[Kha+25] Asif Ali Khan et al. “CINM (Cinnamon): A Compilation Infrastructure for Het-erogeneous Compute In-Memory and Compute Near-Memory Paradigms”. In:
Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’25). ASPLOS ’25. Rotter-dam, The Netherlands: Association for Computing Machinery, Mar. 2025.

35

	Title page
	Abstract
	Zusammenfassung
	Acronyms
	Contents
	Introduction
	Motivation and Goals
	Design Paradigms
	Compilation Flow Overview

	Frontend
	Converting PyTorch Models to Torchscript
	Converting Torchscript to the Torch Dialect
	Additional Conversions in Torch-MLIR
	Working with Quantized Models

	Cinnamon
	Conversion from Torch to Cinm Dialect
	Tiling
	Conversion from Cinm to Cim Dialect
	Scheduling of Cim Dialect Operations
	Conversion from Cim to Memristor Dialect
	Conversion from Memristor to Func Dialect
	Memristor Runtime Library

	Backend
	Lowering to LLVM IR
	Code Generation

	PyTorch Backend
	Compiling PyTorch Models
	Loading of Compiled PyTorch Models
	Forwarding Calls to the Compiled Model
	Running Inference on Compiled PyTorch Models

	Usability Analysis and Evaluation
	Usability Analysis
	Simulator Architecture
	Benchmarking

	Epilogue
	Conclusion
	Outlook

