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Abstract

Particle simulations are a cornerstone of modern scientific computing. Due to the high
computational demands of large-scale models, they are often run on heterogenous,
distributed systems. This work presents the particles dialect, a domain-specific MLIR
dialect for particles-only simulations, along with the conversion pipeline that translates it
to standard MLIR dialects. The pipeline targets both CPUs and CUDA GPUs and integrates
OpenFPM, a state-of-the-art C++ parallel computing library, using an automatically generated
runtime to enable Distributed-Memory Parallelism (DMP). Update and communication
operations required for DMP are inserted automatically using a placement strategy built
on specialized Data-Flow Analysis (DFA) variants. To evaluate the quality of the generated
code, an implementation of Molecular Dynamics (MD) based on the particles dialect
was benchmarked against equivalent C++ implementations using OpenFPM. On CPUs,
performance results are very close, suggesting we achieved high code quality for this target.
On CUDA GPUs, the performance is significantly lower than that of the reference, which is
expected given the early development stage of this backend. In addition to the particles
dialect, the work introduces several multi-level IR design concepts and patterns, which can
be adapted for use in other projects. A new general-purpose box dialect is also proposed,
which is designed to enable 1-to-N conversion.
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1 Introduction

Computer simulations have become an essential tool in scientific computing, enabling the
study of complex models beyond what is possible when relying only on analytical and
experimental methods. For this reason, numerical simulations are commonly regarded as
the "third pillar of science" [1]. A prominent class of simulation algorithms is particle methods,
with applications such as plasma physics [2], fluid simulations [3], and traffic simulations [4].

Particle methods are very versatile as they are capable of simulating discrete, continuous,
deterministic, as well as stochastic models. They work by simulating the behavior of particles,
which represent either discrete objects or discretization points of continuous fields. At
each time step, particles interact with each other within a neighborhood and evolve
independently [5]. To efficiently compute long-range interactions, particles may be combined
with a uniform Cartesian background mesh [6].

The computational demands of large-scale models often exceed the capabilities of
single machines. As a result, simulations are frequently executed on massively parallel
or heterogeneous hardware, such as High-Performance Computing (HPC) clusters. However,
developing software for HPC environments remains highly complex and time-consuming,.
Due to the complexity and a high entry barrier, the ability to implement programs for
modern supercomputer platforms is limited to a small group of people. The reduction of this
"knowledge gap" has become a key research focus in HPC [7]. General-purpose solutions
include programming language extensions such as OpenMP [8] and CUDA [9], and software
libraries like OpenMPI [10] and MPICH [11]. However, general-purpose solutions cannot
be universal and concise at the same time. Solutions with fine abstractions remain hard to
use, while those using coarse abstractions limit flexibility. By tailoring abstractions to specific
domains, solutions can strike a reasonable balance between conciseness and flexibility.
OpenFPM [12, 13] and OpenPME [14] are two such domain-specific solutions designed for
parallel particles-only and hybrid particle-mesh simulations.

OpenFPM is an open-source C++ framework, developed as the successor of the
discontinued Parallel Particle Mesh (PPM) library [15, 16]. It offers high-level abstractions for
particle sets and meshes and provides support for domain decomposition, dynamic load
balancing, ghost layer management, as well as cell list and Verlet list [17] implementations.
In terms of execution hardware, it supports both multi-core CPUs and CUDA GPUSs. By using
Template Meta-Programming (TMP), OpenFPM manages to remain flexible while at the same
time delivering high performance.
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OpenPME is a Problem Solving Environment (PSE) [18] that builds on top of OpenFPM,
offering both a Domain-Specific Language (DSL) and an Integrated Development Environment
(IDE). The DSL is lowered via a series of model-to-model transformations to C++ code that
uses OpenFPM. By hiding the distributed memory constructs and automatically placing
update and communication operations, OpenPME further narrows the knowledge gap.
Additionally, it detects common programming errors and provides easier-to-understand
error messages than those typically produced by the template-engines of C++ compilers. As
OpenFPM is the successor of the PPM library, OpenPME can be regarded as the successor
of the PPM Environment (PPME) [19], which is likewise PSE for particle simulations but
generates Fortran code targeting the PPM library instead.

In several cases, OpenPME can match or even exceed the performance of handwritten
OpenFPM code. However, in certain scenarios, its performance falls significantly behind.
This has been attributed to the generation of inefficient code and missing optimizations
such as loop fusion. OpenPME is implemented in JetBrains MPS [20], which primarily aims at
bridging the semantic gap between the domain expressed by the DSL and the underlying
implementation. Fine-grained optimizations are performed by the target language compiler,
which in this case is the C++ compiler. However, these compilers often fail to fully optimize the
occasionally suboptimal code generated by OpenPME. While JetBrains MPS could support
the implementation of certain optimizations, this work explores an alternative approach by
leveraging MLIR to replace a portion of OpenPME's lowering infrastructure.

MLIR [21] is a multi-level IR compiler framework that offers a modular approach to
building reusable and extensible compilers and compiler components. It aims to reduce
software fragmentation, connect existing compilers, and improve compilation flows for
heterogeneous systems. The framework provides an extensive infrastructure with common
compiler features, such as parsing and printing, location tracking, symbol tables, and pass
management. MLIR enables the construction of code generators, translators, and optimizers
across various abstraction levels, application domains, hardware targets, and execution
environments. Notably, in the context of computer simulations and HPC programming, it has
been used to develop a dialect for stencil computations [22], which was later used to unify
the code generation pipelines of two stencil-focused DSLs, Devito [23] and Psyclone [24] [25].

Motivated by the success of MLIR, in particular the stencil dialect, this work investigates
the use of MLIR for particles-only simulations, aiming to replace parts of the OpenPME
compilation pipeline with MLIR to improve the quality of the generated code, enable and
facilitate optimizations, and target heterogeneous systems. To this end, a new dialect named
particles was developed, along with a sophisticated lowering pipeline that generates code
for both CPUs and CUDA GPUs. To optimize performance, update and communication
operations are placed using a specifically designed Data-Flow Analysis (DFA) variant called
"staleness analysis", and loops are fused aggressively. The solution is tightly integrated with
OpenFPM to leverage its domain decomposition and dynamic load balancing features, as
well as its ghost layer management and neighbor list implementations.

To evaluate the quality of the code generation, Molecular Dynamics (MD) was implemented
using the particles dialect and compared to equivalent C++ implementations leveraging
OpenFPM. Comparisons were performed for both CPUs and CUDA GPUs. On the CPU,
the generated code did not reach the reference performance, but it came remarkably
close, with performance gaps as narrow as 0.5%-2.5%. On CUDA GPUs, the performance
was significantly lower than that of the reference and showed signs of rapid degradation
throughout a simulation. Considering the early development stage of this backend, however,



the results are nevertheless promising.

The remainder of this work is structured as follows: Chapter 2 discusses the relevant
background and related work. Chapter 3 introduces the motivation behind the project
and provides an overview of the compilation pipeline, the developed dialects, and the
transformation steps. Chapters 4 through 8 examine the MLIR transformation pipeline,
divided into four phases. Chapter 9 evaluates the quality of the code generation by comparing
the performance of the generated code against MD implementations done with OpenFPM.
Finally, Chapter 10 concludes the work with a summary, discussion of the limitations, and
suggestions for future research.






2 Background and Related Work

2.1 Particle Methods

Particle Methods Algorithms
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Figure 2.1: Particle methods concept map

Particle methods form a well-established class of algorithms for computer simulations [5].
Its basic concepts are visualized in Figure 2.1. All members of this class share five structural
features. Each algorithm operates on entities called "particles", each of which has a position
and a set of algorithm-specific properties. Computations are driven by two key functions:
"interact" and "evolve". The interact function models pairwise interactions between particles
within a "neighborhood". The evolve function updates each particle independently, operating
only on its position and properties. Together, the evolve and interact functions are part of a
"time step", which updates the state of the system as a whole.

The model simulated by a particle method algorithm determines all five components.
Models may represent discrete or continuous phenomena, with interactions that are either
stochastic or deterministic. In discrete models, particles correspond to the individual entities
of the model, such as atoms in a molecular dynamics simulation [26], or cars in traffic
simulations [4]. In continuous models, particles represent Lagrangian tracer or collocation
points [27, 28].

In many simulation scenarios, the particle interactions are limited to a finite range or
become negligible beyond a certain cutoff radius. Under these conditions, only the particles
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separated by distances equal to or less than the cutoff radius are considered neighbors.
For constant cutoff radii, two data structures are commonly used to identify the neighbors
of a particle: cell lists [6] and Verlet lists [17]. Cell lists partition the simulation domain
into (hyper)cubic cells with side lengths matching the cutoff radius, where each cell stores
the indices of the particles located within its bounds. Each particle only interacts with the
particles within the same or directly adjacent cells, trading the additional construction cost
for lower interaction costs. Although more efficient than computing the interactions between
all particles, this method includes significantly more neighbors than are actually within the
cutoff sphere. Verlet lists address this by storing for each particle a list containing the indices
of its neighbors. They are constructed using intermediate cell lists and commonly use a buffer
region or "skin" to avoid reconstruction every time the particles move. Although Verlet lists
incur less overhead during interactions, they come at increased memory and construction
costs. Due to the importance of neighborhood data structures, they remain an active field
of research, including work on adaptive-resolution neighbor lists [29].

In scenarios where the particle interactions are not limited to a finite range and do not
become negligible beyond a cutoff radius, a mesh may be used to improve the efficiency of
computing long-range interactions. For this purpose, the inter-particle forces are split into
two components: Long-range forces and short-range forces. For each particle, the short-
range component is calculated using particle-particle interactions within the cutoff radius
specified by the short-range forces, while the long-range component is calculated using the
mesh as an interpolation medium. This method is also called the Particle-Particle-Particle-
Mesh Method (P>M), as it combines the Particle-Particle (PP) and Particle-Mesh (PM) methods.

[6]

2.2 OpenFPM

The Open Framework for Particles and Meshes (OpenFPM) [12, 13] is an open source C++
library designed for both particles-only and hybrid particle-mesh simulations on shared-
memory and distributed-memory parallel architectures. It uses C++ TMP to define flexible,
template data structures that allow simulations in arbitrary dimensions with particles carrying
customizable properties. Through the use of TMP it also enables the configuration of the
memory layouts for many of these data structures, allowing them to be fine-tuned for
different requirements. To support DMP, OpenFPM provides custom memory allocators
and a dynamic load balancer that evenly distributes the particles across processes.

OpenFPM defines two data abstractions for n-dimensional computational domains: particle
sets and meshes. A computational domain is the n-dimensional hyperbox that defines
the simulation space. To enable parallelism, the computational domain is partitioned
into smaller subdomains, each of which is assigned to a process. Each process performs
computations only on the particles and mesh nodes within its own subdomain. The procedure
of partitioning the computational domain is called "domain decomposition". To ensure an
even parallelization of data and work, the particle positions must be taken into account
during this domain decomposition.

As particles move across inter-process boundaries, an initially optimized decomposition
gradually becomes less optimal. This results in an unbalanced distribution and increased
communication overhead. To address this, the domain decomposition must be updated
regularly. When particles move between subdomains, they must be transferred between
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the corresponding processes. The procedure that performs this transfer also transparently
updates the domain decomposition as needed.

At the edges of a subdomain, the particles and mesh nodes must interact with those of
its neighboring subdomains. To keep computations local, each subdomain is extended by
a ghost layer. A ghost layer is a thin region around a subdomain, with a width determined
by the interaction cutoff radius. These ghost layers are populated before performing any
interactions, every time the domain decomposition has changed.

In terms of neighbor lists, OpenFPM provides implementations for both cell lists and Verlet
lists. For cell lists, it supports several memory layouts that come with different memory cost
and access time trade-offs.

OpenFPM supports both multi-core CPUs and CUDA GPUs. Through the many abstractions
it provides, the differences between these hardware targets are largely hidden from the
programmer. A key component of these abstractions are its iterators. Iterators are small
data structures used to iterate over the particles or mesh nodes within a subdomain or
neighborhood. They hide the non-trivial memory layouts while also enabling cache friendly
visiting patterns.

The following OpenFPM classes are referenced in this work:

+ vector_dist Adistributed vector used to store the particles. Stores both the positions
and the properties of all particles as a struct of arrays (SoA).

+ CelllList_gen Acelllistimplementation for the CPU. Its memory layout can be configured
using a template parameter. In this work, only the Mem_fast configuration is used, which
utilizes a two-dimensional array to store the particle indices for each cell.

+ CelllList_gpu A host-side cell list implementation for CUDA GPUs.

+ Celllist_gpu_ker The device-side counterpart for the CelllList_gpu class.

* NN_gpu_it_box Adevice-sideiterator for iterating over the indices of a particle’s neighbors
stored by a CellList_gpu_ker.

Subdomain Interaction
Radius Ghost Layer
[

+

Particle Il
Movement /
—/

Figure 2.2: The effects of particle movements on the freshness of the domain decomposition, ghost layers, and
neighbor lists

Figure 2.2 illustrates how - by moving in and out of ghost layers and interaction radii, and
moving between subdomains - particle movements cause the domain decomposition, ghost
layers, and neighbor lists to become stale. Before these data structures can be used again,
they must be updated by the following functions:
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+ vector_dist.map Transfers particles that moved across process boundaries and updates
the domain decomposition.

+ vector_dist.ghost_get Populates each process's ghost layer. The fields (position and
properties) to retrieve are specified via a combination of template parameters and function
arguments.

+ vector_dist.update_cell_list Updates the cell list instance passed as function
argument.

These functions must be placed in the program at the correct position and because the
respective data structures depend on each other, in the correct order. Furthermore, to
minimize communication and computation overhead, they should only be placed where
necessary.

2.3 OpenPME

The Open Particle-Mesh Environment (OpenPME) [14] builds on top of OpenFPM and offers
both a DSL and an IDE. The DSL reduces implementation efforts and lowers the entry
barrier, making the framework accessible to more potential users than OpenFPM. It hides
many complexities of the OpenFPM library and automatically injects the calls to update
and communication functions, freeing the programmer of the burden to do so correctly.
Additionally, itimproves the development experience by providing easier to understand error
messages than those produced by the template-engines of C++ compilers. The OpenPME
DSL supports both, imperative and declarative programming. In declarative programming,
control flow structures, such as loops and conditional statements, are largely hidden from
the programmer. The DSL also enables equations to be expressed using mathematical
notations.

OpenPME uses JetBrains MPS [20] to define two metamodels. The first model captures
particle-mesh simulations and supports particles-only, mesh-only, and hybrid particle-mesh
simulations of both continuous and discrete models. The second metamodel represents
the C++ code that is compiled against OpenFPM. It is generated from the particle-mesh
model through a series of model-to-model transformations. These transformations enable
expression rewriting, the insertion of update and communication operations, and the
detection of programming mistakes. The refined and optimized C++ metamodel is used to
generate C++ code.

2.4 MLIR and xDSL

MLIR [21] is a multi-level IR compiler framework that offers a modular approach to
building reusable and extensible compilers and compiler components. Its goals include
mitigating software fragmentation, connecting existing compilers, and improving compilation
flows for heterogeneous systems. It provides an extensive infrastructure with common
compiler features, such as parsing and printing, location tracking, symbol tables, and pass
management. This section provides an overview of the MLIR IR and pass infrastructure. Refer
to the MLIR language reference [30] for further details.
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Applies O+ —» Rewriting Pattern | | IR }—Has —»{ Textual Representation |
l L ) Consists of
[ RewritingPass | Rewrites
Has Is
V" > Operand Terminat
Used as Q| OpErEn
Consists of SSAValue | o ORI contains 1+
0+ »[ Operation Definition |-Defines ' R .
i - Has o+ Ended by
0+»{Type Definition _ |-Defines Has 1+ Block
0+ »|ATiTIbULE Definfion |-Defines 4 Has 0+ Is Block Argument J«—Has O+
—1 >»{ Attribute Dictionary |
E——
Has 0+ Is

L1 >»{ Property Dictionary |

Attribute As values

Figure 2.3: SSA compiler concepts shared between MLIR and xDSL

%resl, %res2 = "op.code" (%op1, %op2) // Results, opcode, operands
<{"prop1" = 1 : index, "prop2" = 2 : index}> // Property dictionary
( // Start regions
{ // Start of region 1
rbb@(%argl : i64, %arg2: f32): // Block ID, block args with types
// In this work, omitted code segments are denoted by >>
>> Compute %retl and %ret2 from %argl and %arg2 // Block contents
"op.yield" (%retl, %ret2) : (i64, f32) -> () // Terminator operation
)3 // End of region 1
) // End of regions
{"attr1" = true, "attr2" = false} // Attribute dictionary
o (164, f32) -> (i64, f32) // Operand types, result types

Listing 2.1: MLIR's generic operation format

Operations Figure 2.3 illustrates the main concepts of MLIR. At its core lies the IR, which is
composed of one or more, potentially nested, operations. Operations are the semantic unit
in MLIR, everything from "instruction" to "function" to "module" is modeled as an operation.
Listing 2.1 exemplifies the generic operation format. Every operation can be expressed using
this generic format, even those that define a custom format (e.g., Listing 2.2 and Listing 2.3).
Each operation has an opcode, takes zero or more values as operands and produces zero or
more values as results. Values follow the Static Single-Assignment (SSA) form [31], represent
data at runtime, and have static types.

The meaning of an operation’s inputs and outputs is completely specific to the operation
itself. For instance, the arith.addi operation takes two integer values as operands and
returns the sum of the two. Despite using the same syntax, the arith.subi operation
performs subtraction, giving its operands and results entirely different meanings.

Every operation has a property dictionary and an attribute dictionary, both of which consist
of key-value pairs, with strings as names and attributes as values. They may be empty, in
which case they are omitted from the generic operation format. Properties and attributes
convey compile-time information about operations. Properties are always intrinsic to an
operation, whereas attributes may be used for storing extrinsic metadata. Typical use cases
for extrinsic information include marking operations that have been rewritten by a pass or
storing information for later passes.



2 Background and Related Work

%one = arith.constant 1 : index
%two = arith.constant 2 : index
%cond = arith.constant true
// Custom format:
%res = scf.if %cond -> (index) {
// True branch
scf.yield %one : index
} else {
// False branch
scf.yield %two : index

}

// %res has value of 1

// Generic format:
%res = "scf.if" (%cond) ({

// True branch

"scf.yield" %one : (index) -> ()
A

// False branch

"scf.yield" %two : (index) -> ()
) o (i1) -> index

Listing 2.2: scf.if example

// Custom format:
%res = scf.for (%step) = (%zero) to (%hundred) step (%one)
iter_args(%arg@ = %zero) -> (index) {
%retd® = arith.addi %arg@, %one : index
// Transfers control and data to next iteration if number of steps not reached
// Otherwise transfers control back to scf.for:
scf.yield %ret@ : index

}

/] %res has value of %hundred

// Generic format:

// from , to , step, inititalize iter_args

%res = "scf.for"(%zero, %hundred, %one, %zero) ({

// induction var, iter_args

bb@(%step : index, %argd : index):
%retd® = "arith.addi"(%arg@, %one) : (index, index) ->index
"scf.yield" (%ret@) : (index) -> ()

}) : (index, index, index, index) -> index

Listing 2.3: scf.for example

Regions and Blocks Operations may have zero or more regions, which provide the nesting
mechanism in MLIR. The semantics of a region are determined by the operation it is attached
to. For example, Listing 2.2 shows the scf.if operation, which has two regions: one for
the true branch and one for the false branch. The scf . for operation, as seen in Listing 2.3,
has one region that represents the loop body. A region comprises one or more blocks,
where each block contains a list of operations. The operations, in turn, may have regions
themselves, thereby enabling arbitrary nesting. The first block of a region is called entry
block and is always executed first.

Every block ends with a special terminator operation, which transfers control to another
block within the same region, called successor, or returns it to the operation enclosing
the region. While doing so, it can also transfer SSA values, thereby linking data flow with
control flow. Each scf.yield operation in Listing 2.2 transfers control back to its parent
scf.if operation, passing along the results of its branch, which are subsequently returned
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by the scf.if operation. Listing 2.3 shows an example of the scf.for operations, where
the scf.yield operation transfers data and control back to its scf. for parent operation
if the end condition is reached. Otherwise, it transfers them to the beginning of the same
block. All blocks of a region, linked by the successor relationship, form a Control-Flow Graph
(CFG).

Each block may have zero or more block arguments. Block arguments are regular SSA
values available within the block. The semantics of the block arguments are, again, defined
by the operation enclosing the block. The loop region of the scf. for operation shown in
Listing 2.3 has a single block. The first argument of this block is always of type index and
holds the loop induction variable. If a scf . for operation has "iter_args", which are arbitrary
values passed alongside the control flow, the block has one additional argument for each
iter_arg. In this work, all regions have a single block, the mention of which is often skipped.
Furthermore, the block arguments of a block within a single-block region are referred to as
region arguments.

Types and Attributes Each SSA value is associated with a type. Listing 2.4 shows a selection
of builtin types. If a value is the result of an operation, its type is defined by that operation.
If it is a block argument, the type is specified by the block. Types encode compile-time
information about values and are used for strict type checking. They can be parametrized,
with parameters being either attributes or other types. For example, the vector and memref
types have parameters for specifying the shape and element type. Types can also have
custom formats.

Attributes are very similar to types. They also have parameters that are either attributes
or types, and can have custom formats. The key difference is that they encode compile-time
information about operations instead of values.

// Integer types

i64, i32, 11, index

// Floating-point types

f64, 32

// Multi-dimensional SIMD vector type
vector<3xf64>

// Shaped reference to region of Memory
memref<3x?xf64>

Listing 2.4: Selection of builtin MLIR types

Dialects In MLIR, operations, types, and attributes are instances of definitions that provide
the syntactical and structural rules to which each instance must adhere. An operation
definition, for instance, defines the opcode, the number and types of operands and results,
the number of regions, the blocks within each region, the block arguments of each block, the
terminator operation of each block, the properties and intrinsic attributes, and potentially a
custom format. Additionally, it defines the overarching rules that tie all components together,
which are enforced via verification.

MLIR provides a set of built-in definitions that are always active, but does not constrain
the set of definitions. Instead, it manages them via dialects. A dialect is a logical grouping
of operation, type, and attribute definitions under a unique namespace (e.g., builtin, scf,
func). Each dialect encapsulates a concise concept into a small, manageable package. This
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approach of separating definitions is akin to separating program code into packages or
libraries. While every IR construct (operation, type, or attribute) belongs to exactly one dialect,
mixing dialects in the IR is explicitly supported. For example, in Listing 2.3, the scf and arith
dialects, as well as the index type from the builtin dialect coexist. This composability
increases reuse, extensibility and provides a high degree of flexibility. MLIR provides several
standard dialects, such as the scf dialect which encapsulates structured control flow, and
the func dialect, which encapsulates operations for declaring, defining, and calling functions.
The builtin dialect is always active and contains many commonly used constructs, such as
numeric types and attributes (e.g., 164, f64).

Pattern-Based Rewriting MLIR offers an extensible infrastructure for pattern-based
rewriting. Rewrite patterns match and modify operations in the IR by replacing, removing,
or transforming them as a whole or in parts. They can be applied at any level of nesting.
Patterns targeting the builtin.module operation, which is always the top-level operation,
can perform global transformations that affect more than one operation, such as loop fusion.

Patterns are grouped into transformation passes. Passes serve various purposes, ranging
from canonicalization and optimization to conversion. MLIR includes numerous passes. Some
implement general compiler transformations, such as Common Subexpression Elimination
(CSE) and Dead-Code Elimination (DCE), while others are dialect-specific. Conversion passes,
in this work also referred to as lowering passes, convert the operations, types, and attribute
of one dialect into those of others. These passes are essential for lowering the IR from
high-level dialects to low-level dialects.

The 11vm Dialect A very important low-level dialect is the 11vm dialect, which encapsulates
the LLVM IR [32]. An IR that only contains 11vm constructs, builtin types, and the builtin.
module operation, can be translated to LLVM IR. As such, the 11vm dialect often serves as
the final target for lowering pipelines. MLIR provides a wide variety of conversion patterns
for gradually lowering the integrated standard dialects to 11vm. When developing a new
dialect, it is therefore not necessary to lower it to 11vm directly. Instead, it can be lowered
to higher-level dialects that are easier to target, followed by the application of the required
integrated lowering passes to finish the conversion.

xDSL MLIR is designed for the development of production-grade compilers and is
implemented in C++. While this ensures high performance, it comes at the expense of
software simplicity, making it less suitable for prototyping. xDSL [33] is a sidekick framework
written in Python 3 that is specifically designed for prototyping and education. It interoperates
with MLIR by building on the same compiler concepts, such as SSA-based IR, dialects, pattern-
based rewriting, etc., and by using the same IR format. Broadly speaking, it can be viewed as
a Python-native reimplementation of MLIR. Its interoperability allows xDSL to be interleaved
with MLIR at any point in the compilation pipeline. All dialects and rewriting passes presented
in this work have been implemented using xDSL.

2.5 Related Work: MLIR in Scientific Computing

To the best of our knowledge, there exist no other efforts to develop an MLIR dialect
tailored to particles-only or hybrid particle-mesh simulations. Therefore, this section
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broadens the scope to the application of MLIR in scientific computing in general, while
excluding research that primarily focuses on machine learning, High-Level Synthesis (HLS),
or heterogeneous computing. With these criteria, three principal areas of research emerge:
stencil computations, tensor computations, and Fast Fourier Transforms (FFTs).

The most influential and most closely related work is the Open Earth Compiler, a DSL-
compiler for weather and climate simulations [22]. At the front and center of this compiler
lies the stencil dialect, which was designed to serve as a lowering target for various user-
facing stencil-oriented DSLs. To support both AMD and Nvidia GPUs, the researchers also
developed the gpu dialect to vendor-independently abstract the GPU execution model.
Features of this gpu dialect, which meanwhile has been integrated into MLIR and xDSL, are
used in this project.

Bisbas et al. ported the stencil dialect to xDSL, where they used it to unify the backend
compiler stacks of two stencil-focused DSLs, Devito [23] and Psyclone [24] [25]. They chose
the stencil dialect introduced by Gysi et al. [22], instead of an alternative dialect developed
by Essadki et al. [34], due to its domain-, problem-, and hardware-agnostic design. To support
DMP, the researchers also created the dmp dialect, which enables the exchange of rectangular
subsections of data between processes. Furthermore, for lowering this dialect, the mpi
dialect was implemented, integrating MPI's point-to-point and collective communication
mechanisms into MLIR. To bring stencil-computation to Field-Programmable Gate Arrays
(FPGASs), Rodriguez-Canal et al. developed the hls dialect, which mirrors the HLS features
provided by the AMD Xilinx Vitis tooling in a vendor-neutral manner [35].

Rink et al. introduced CFDLang, a target-agnostic DSL tailored for tensor operations
commonly found in Computational Fluid Dynamics (CFD) programs [36]. To complement
this DSL, the Tell imperative intermediate tensor language, designed for expressing typical
tensor kernels, was introduced [37]. It serves as an intermediate representation within the
CFDLang compiler stack. Later, the CFDLang compiler was reengineered to leverage MLIR as
backend [38]. As part of this redesign, both CFDLang and Tell were reimplemented as MLIR
dialects.

Discrete Fourier transforms are a crucial component in scientific computing. He et al.
introduced the fft dialect as part of their development of FFT¢, a domain-specific language
for FFTs [39]. With FFTc 2.0, the fft dialect was dropped. Instead, the standard 1inalg dialect
was extended with FFT-specific operations to simplify the formulation of FFT algorithms [40].
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3 Motivation and Overview

This chapter presents the underlying motivation for the presented work and provides an
overview of the compilation pipeline, with a focus on the newly developed MLIR dialects and
transformation steps. The first section identifies key issues and limitations of OpenPME's
currentlowering infrastructure, from which it derives a set of long-term objectives. Section 3.2
defines the set of short-term objectives that guided the development of the presented work.
Next, Section 3.3 introduces the full compilation stack, the most important part of which is
the MLIR lowering pipeline, which is outlined by Section 3.4.

3.1 Issues and Limitations of OpenPME and Long-Term
Objectives

OpenPME [14] aims to provide a DSL that enables users to create high-performance particle
simulations without requiring the expertise to write optimized C++ code that leverages
OpenFPM. To achieve this objective, it is essential that the lowering infrastructure, which
transforms the OpenPME DSL to C++, produces optimized code. Benchmarks have shown,
however, that, in some cases, the performance of the generated code significantly lags the
performance of handwritten OpenFPM code. In the mesh-only simulation Gray-Scott, for
example, the bulk access of mesh properties resulted in independent mesh loops, which were
not automatically merged. Furthermore, the logic for placing the communication and update
operations is too simplistic, resulting in additional communication and computation. The
resulting OpenPME implementation was on average 3.25 times slower than the handwritten
OpenFPM implementation, demonstrating the importance of high-quality code generation
and the role optimizations like loop fusion play in this process.

The generation of inefficient code and missed optimization opportunities are the first two
issues future versions of the lowering infrastructure must address. The third issue is the
limited number of hardware platforms that OpenPME currently supports. OpenFPM supports
both CPUs and CUDA GPUs, while OpenPME currently only supports CPUs. Furthermore,
in the future, new processing platforms such as FPGA, Compute Near-Memory (CNM) and
Compute In-Memory (CIM) may also need support. The forth issue concerns the limitations
imposed by JetBrains MPS, which is not integrated with other compilers and is not part of an
advancing compiler infrastructure such as MLIR. As a consequence, OpenPME in its current
form cannot benefit from the advancements modern compiler infrastructures have to offer.
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To summarize, future developments on the OpenPME lowering infrastructure must
improve on four key aspects:

1. Resolve the issue of generating inefficient code, which includes the too simplistic strategy
employed for placing communication and update operations.

2. Enable and implement crucial optimizations such as loop fusion.

3. Add support for CUDA GPUs and pave the way for future processing platforms, such as
FPGA, CIM, and CNM.

4. Integrate the infrastructure with a modern and evolving compiler infrastructure to benefit
from its advancements.

To address all four aspects, we decided to replace parts of the lowering infrastructure with
MLIR. Figure 3.1 depicts a conceptual overview of the re-engineered lowering infrastructure.
At present, the goal is to develop a new dialect, named openpme, to integrate the OpenPME
DSL into the MLIR ecosystem. The aspired openpme dialect should closely resemble the
OpenPME DSL to facilitate seamless integration.

OpenPME DSL

A 4
MLIR

Lowering
and
Optimization

Passes

scf vector memref

Figure 3.1: Updated OpenPME lowering infrastructure leveraging MLIR

3.2 Goals and Objectives of This Work

Although an openpme dialect is the long-term goal, it became evident early during develop-
ment that the foundation for it is lacking. While implementing the dialect itself was feasible,
lowering it to existing dialects posed too big of a task. This is due to the large conceptual
distance between the aspired openpme dialect and the existing dialects it has to be lowered
to. Consequently, the decision was made to develop the foundation from the bottom up by
incrementally building on top of existing dialects toward a possible future openpme dialect.
This build-up can happen in multiple ways:
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1. Extension: Develop a cut-down version of the openpme dialect and incrementally change
and extend it until it is transformed into the full openpme dialect.

2. Lowering: Develop a lower-level dialect that will later serve as part of the lowering pipeline
for the openpme dialect.

3. Supplementation: Develop a dialect that captures a part of the capabilities of OpenPME
and later supplement these capabilities using other dialects.

This list is not exhaustive, and at this stage, it is difficult to predict which development strategy
will ultimately prove effective. The immediate priority is to simply begin constructing, while
deferring the choice of strategy to the future.

The primary objective of this work is the development of particles, a specialized dialect
for particles-only simulation, along with the necessary transformation passes to lower it to
existing dialects. Early in development, it became apparent that addressing both particles
and meshes, as OpenPME does, would significantly exceed the scope of this work. Given
that the stencil dialect already encapsulates meshes, the decision was made to focus on
particles.

Despite the already exclusive focus on particles, the initial scope was further restrained
to cover only the fundamentals of particle simulations. Advanced capabilities, such as
dynamically removing particles during or after interactions, were excluded to maintain
feasibility. Thus, the initial iteration of the particles dialect will only cover the foundations
of particle simulations, with advanced features reserved for future developments.

The remainder of this section examines the requirements for the particles dialect and
its associated lowering pipeline, for which Table 3.1 provides an overview. While doing so, it
is important to distinguish between dialect and pipeline requirements. Even though both
are developed together and heavily influence each other during development, the lowering
pipeline is interchangeable and should therefore be considered an independent component.
All requirements are classified into three categories:

+ Functional requirements define specific capabilities that the dialect and the lowering
pipeline must support.

+ Non-functional requirements do not introduce any new functionality; instead, they address
critical aspects such as reusability and extensibility.

- Semi-functional requirements do not directly impact functionality, but are essential to the
project’s overall success. Their fulfillment is necessary for the project to be considered
functional.

3.2.1 Dialect Requirements

() Implement Base Capabilities for Particle Simulations While developing a fully featured
dialect for particle simulations is not the goal, the particles dialect must provide a set
of essential capabilities to qualify as a minimum viable product. The first iteration should
support the following core functionalities:

- Evolve: Iterate over all particles in a particle set while reading and updating their positions
and properties.

+ Interact: Iterate over all neighboring pairs in a set, computing pairwise interactions,
reducing the results of these interactions to the combined interaction results for each
particle and its neighbors, and storing the reduced results as position or properties.
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particles Dialect

Lowering Pipeline

Functional

() Implement base capabilities for
particle simulations

() Support parametrization of par-
ticle & particle set types

(1) Support DMP on CPUs & CUDA
GPUs

Automatically place update &
communication operations

(f5) Implement loop fusion

Non-Functional

@) Be general-purpose & target-
agnostic

(2 Facilitate extensibility
@3 Leverage OpenFPM

Semi-Functional

(1) Preserve all parallelism
(s2 Enable analysis & transforma-

(2 Enable integration with C++
(3 Deliver adequate performance

tion

Table 3.1: Requirements for the particles and the associated lowering pipeline

Both features imply several secondary requirements, including, but not limited to, the ability
to load and store particle data and the implementation of neighbor lists, such as cell lists.
These capabilities suffice to implement simple simulations such as MD.

(f2) Support Parametrization of Particle and Particle Set Types Particle simulations require
varying particle properties and operate in different dimensions. As such, the particles
dialect must enable parametrizing both the set of particle properties and the dimensionality.
Initially, basic scalar and vector types should be supported as property types. Furthermore,
the numeric type used for the position (e.g., float32, float64) should also be configurable,
as is the case in OpenPME and OpenFPM.

(1) Be General-Purpose and Target-Agnostic Two of MLIR's primary goals are to reduce
software fragmentation and connect existing compilers [21]. The particles dialect should
align with these objectives and, in the future, should allow compiler engineers to integrate
it into their own designs. To achieve this, the dialect must be general-purpose and target-
agnostic, remaining independent of OpenPME, OpenFPM, the processing hardware, as
well as the execution model (e.g., DMP, Simultaneous Multithreading (SMT)). Therefore, the
particles dialect should capture only the key concepts of the domain, shifting all target-
specific aspects to the lowering pipeline, which can be interchanged. This approach allows
developers to work with the dialect without being restricted to a specific framework or
compilation target and even gives them the freedom to develop their own lowering pipeline
if the existing one does not fit their requirements.

(s1) Preserve All Parallelism The particles dialect must preserve all possible parallelism.
This requirement is closely related to @), as both aim to enhance the particles dialect's
adaptability to different hardware and execution models. As a general-purpose and target-
agnostic dialect, it must avoid making any assumptions about how and where parallelism is
exploited. To achieve this, it is crucial to prevent the introduction of sequential constraints
to the IR structure, such as data dependencies that limit parallel computation. As a result,
decisions on parallelism exploitation are fully delegated to the lowering pipeline.
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(s2 Enable Analysis and Transformation As outlined in Section 2.2, distributed particle
simulations using OpenFPM depend on distributed data structures and communication,
which necessitate the correct placement of update and communication operations. To
ensure that these operations are placed only where necessary, the particles dialect must
enable the required analysis for informed placement decisions. Additionally, its design should
facilitate optimizations such as loop fusion.

3.2.2 Lowering Pipeline Requirements

(3) Target DMP on CPUs and CUDA GPUs  As outlined in dialect requirement (1), the dialect
should remain entirely target-agnostic, delegating all decisions regarding the processing
hardware and execution model to the lowering pipeline. Consequently, the lowering pipeline
must be capable of generating efficient code for multiple different targets. The initial
implementation should prioritize the support for CPUs and CUDA GPUs, integrated with
DMP to ensure full scalability in HPC cluster environments.

Automatically Place Update and Communication Operations Update and communica-
tion operations should be automatically inserted during lowering, relieving the programmer
of the responsibility to place them correctly. In fact, because the particles dialect is target-
agnostic, it does not even define any such operations. The placement should rely on careful
analysis, as established by dialect requirement (s2), instead of simple rules to avoid unneces-
sary communicating and computation.

(f5) Implement Loop Fusion Section 3.1 highlights the importance of optimizations such
as loop fusion. To avoid encountering the same issues as OpenPME, the particles dialect
must support the implementation of key optimization passes. Evaluating whether the dialect
really enables these optimizations, however, is challenging. Therefore, the lowering pipeline
should implement loop fusion to empirically validate that the dialect facilitates essential
optimizations.

(2 Facilitate Extensibility  While the initial implementation will only support CPUs and CUDA
GPUs, it should establish a foundation for integrating additional hardware targets in the
future. Similarly, while only cell lists will be supported in the first version, additional neighbor
lists, such as Verlet lists, should be incorporable later. As a non-functional requirement,
extensibility cannot be directly measured, but remains an important design consideration
during development. To achieve extensibility, the focus should be on developing reusable
dialects that streamline the lowering process while isolating target-specific components
into separate dialects and passes. Furthermore, transformation passes targeting multiple
hardware targets should be designed for extensibility.

@3 Leverage OpenFPM OpenFPM provides optimized implementations of shared data
structures and efficient communication mechanisms while also offering a high degree of
flexibility. Instead of developing these complex features from scratch, the lowering pipeline
should aim at incorporating OpenFPM to take full advantage of its existing capabilities. This
approach is essential, as implementing the required functionality in MLIR would severely
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exceed the scope of this work. In future versions, OpenFPM may be phased out if required
or if a more suitable alternative emerges.

(s2 Enable Integration With C++ In line with requirement @3, the lowering pipeline must
support the integration of MLIR with C++ to utilize OpenFPM's capabilities. This presents a
significant challenge, as MLIR currently does not natively support the use of C++ objects or
classes, especially templated ones, which are extensively used by OpenFPM. Additionally,
modern C++ standards, like C++17, enforce specific optimizations, such as copy elision [41],
which prohibit passing instances of aggregate types by value between functions. This
complicates the exchange of complex data between MLIR and C++ because in MLIR aggregate
data is typically passed by value and the standard lowering pipeline does not replicate the C++
optimizations. To address this issue, an effective mechanism for communicating aggregate
data structures between MLIR and C++ must be developed. The solution should be general-
purpose and reusable to ensure broad applicability. Beyond leveraging OpenFPM, this also
allows falling back to C++ where necessary. This is important since MLIR provides significantly
less functionality than C++, as it lacks access to its extensive ecosystem of libraries. Limiting
the programmers to using only MLIR would therefore severely limit the usability of the
particles dialect.

(3 Deliver Adequate Performance Achieving all other objectives becomes irrelevant
if the fully compiled simulations fail to deliver adequate performance. The resulting
particle simulations should achieve similar performance to equivalent C++ implementations
leveraging OpenFPM.

3.3 Full Compilation Stack

Figure 3.2 illustrates the full compilation stack. At least two files must be implemented: a C++
file and an MLIR file. The C++ file is responsible for initializing all OpenFPM data structures,
but may also contain additional functionality such as loading and storing checkpoints
and providing terminal output. Meanwhile, the MLIR file encapsulates the simulation logic,
including particle interactions, evolution steps, and time stepping procedures. While both
files can have arbitrary names, they are referred to as startup.cpp/.cuand simulation.
mlir for simplicity. When targeting CUDA GPUs, the C++ file uses the . cu extension, whereas
the .cpp extension is used for targeting CPUs. Control is transferred between both files via
function calls and simple storage structs that are passed by reference. While the compilation
pipeline supports multiple C++ files, this section assumes a single-file approach for clarity.

Step (1): Lowering MLIR to LLVM IR The first step in the compilation process is lowering
the MLIR code to LLVM IR. This involves progressively lowering the particles dialect to
standard dialects (e.g., scf, func), followed by further lowering these dialects using integrated
conversion passes. During this process, two runtime files are created (Step (19). For CUDA
GPUs, the runtime must be compiled to llvm bitcode and reintegrated into the MLIR lowering
pipeline (Step (ip). The final output, simulation.11, contains the host-side LLVM IR code
and, when targeting CUDA, the compiled device code as a binary blob.
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Y
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Figure 3.2: Full compilation stack. Dotted lines lined with hollow arrow tips represent inclusion. Dashed lines
with solid arrow tips represent optional steps that are only executed when targeting CUDA GPUs. Solid lines
with arrow tips represent transformation steps.

Step (9: Generating Runtime Files As part of lowering the particles dialect to standard
dialects, a runtime is generated. The primary purpose of this runtime is to act as a bridge
between MLIR and C++/OpenFPM, enabling the use of OpenFPM'’s data and procedures
within MLIR. Two runtime files are created: a header file and a source file. While their names
and paths are configurable, they are referred to as runtime.h and runtime.cpp/.cu for
simplicity. The header file declares all runtime functions and defines all required data types,
including fully parametrized OpenFPM template classes and storage structs. The source
file (runtime.cpp/ . cu) defines all runtime functions declared by the header. Since it relies
on the data types defined in the header file, it includes runtime .h. The header file is also
typically included in startup.cpp/.cu.

Step (p: Compiling and Reintegrating CUDA Device Code Into the MLIR Lowering Pipeline
When targeting CUDA GPUs, the device code in runtime.cu must be compiled and
reintegrated into the lowering pipeline. This is because all CUDA device code must be
compiled and linked before simulation.mlir can be fully lowered to LLVM IR. For CPUs, all
object files can simply be linked during the final compilation stage.

Step (2): Compiling Everything Into Object Files With the runtime files generated and
simulation.mlir lowered to LLVM IR, the next step is to compile all components into object
files:

+ .cpp files are compiled using mpic++ with either clang++ or g++ as the base compiler.

+ .cufiles are compiled with nvce.

+ .11 files are either directly compiled into an object file using clang++, or first compiled
into assembly using 11c and then compiled into an object file with g++.
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Step (3): Linking In the final step, all object files are linked together to produce the
executable. Device and host code are linked separately beforehand to facilitate link-time
optimization.

3.4 MLIR Lowering Pipeline

This section provides an overview of the MLIR lowering pipeline, focusing on the dialects and
transformation passes developed to lower the particles dialect to standard dialects while
enabling DMP and integrating OpenFPM. Whether CPUs or CUDA GPUs are targeted does
not significantly affect the overall lowering pipeline, with each hardware target requiring only
slight adaptions. Figure 3.3 illustrates the involved key dialects and transformation steps.
Fach number denotes a step, with each step representing one more combined passes. The
pipeline begins with the particles dialect and concludes with standard dialects, meaning
after all steps have been performed, only standard dialects remain in the IR. Lowering these
dialects is not covered in this work, as passes integrated into MLIR are used to complete
their conversion. Appendix A.2 provides a complete overview of the passes comprising the
lowering pipeline.

-

A \ \ A A

arith scf func vector memref

Figure 3.3: MLIR lowering pipeline

The particles Dialect The particles dialect encapsulates particle simulations. Its IR
constructs are centered around iterating over particle sets and neighboring particle pairs,
as well as modifying the particles within these sets. As outlined in Section 3.2, its objective
is to be general-purpose and target-agnostic. It therefore does not contain any DMP or
OpenFPM-specific IR constructs.

The particles_dist Dialect Theparticles_dist dialectisa specialization of particles.
A specialization dialect adapts a "root" dialect to a specific target, e.g. hardware or execution
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model, by adopting and extending its IR constructs while also introducing new ones. This
enables the introduction of target-specific operations, types, and attributes and the adaption
of existing ones while ensuring that the base dialect remains general-purpose and target-
agnostic. The particles_dist dialect adapts particles to DMP while also enabling the
integration of OpenFPM. Furthermore, it introduces the concept of neighbor lists.

Step (1): Specialization of particles to particles_dist The first step in lowering the
particles dialectis to replace each particles operation, type, or attribute in the IR with
its particles_dist counterpart. This process eliminates the particles dialect from the IR.

Step (2): Optimizations Since many optimizations require target-specific information, they
can only be performed after specialization. The current set of optimizations focuses on
aggressive loop fusion for different loop-like operations.

Step (3): Placement of Update and Communication Operations Update and communica-
tion operations are inserted where necessary, leveraging several specifically developed DFA
variants to guide the placement.

Step (@): Runtime Generation The fourth step involves creating the runtime. Runtime
generation must occur after Step (3), as the presence of specific update and communication
operations in the IR dictates which runtime functions must be created.

Neighbor List Dialects The particles_dist dialect introduces the concept of neighbor
lists. Rather than incorporating all supported neighbor lists directly into particles_
dist, however, each kind is encapsulated within its own separate companion dialect of
particles_dist. Two neighbor list dialects have been developed. The cell_list dialect s,
as the name suggests, a dialect encapsulating cell lists. The 1local_domain dialect, on the
other hand, does not represent a conventional neighbor list. Instead, it treats all particles
within the same local subdomain as neighbors. Both dialects inherit from a common
neighbor_1list dialect.

Step (5): Lowering particles_dist and Its neighbor_list Companion Dialects Once
all additive, generative, and optimizing passes have been completed, the process of lowering
particles_dist and its neighbor_list companion dialects is performed. Because the
particles_dist and its neighbor list dialects are closely intertwined, they must be lowered
in a combined process.

The box Dialect The particles_dist dialect and its companion dialects define complex
types that must be converted into aggregate types such as !11lvm.struct. The !11lvm.
struct type, however, imposes several restrictions that make it cumbersome to use. To
address this, the box dialect introduces a more flexible aggregate type: 'box.box. It also
introduces a storage type, !box.storage, to support loading and storing !box.box values.
Most significantly, however, the box dialect comes with a set of expansion and elimination
passes that enable 1-to-N conversion. 1-to-N conversion is the process of replacing an
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aggregate type or value with its constituent elements, which is crucial for enabling subsequent
optimizations.

Step (6): Lowering the !'box.storage Type and the box.load and box.store Operations
To store a !'box.box value, it must be converted into an ! 11vm.struct during storage and
transfer. This conversion is automatically performed while lowering the load and store
operations of the box dialect. During this process, !'box.storage types are also converted.
All other box operations and types are not lowered and remain in the IR.

Step (7): Expanding and Eliminating the !'box.box Type and Associated Operations Al
'box.box types and values are replaced by their constituent elements via a series of
expansion and elimination passes. This eliminates all remaining box operations.

The memwrap Dialect The memwrap dialect provides convenient wrappers around load and
store operations from the memref and vector dialects. Its main purpose is to enable the
elimination of redundant store operations that store unchanged particle values.

Step (®): Eliminating Redundant memwrap Store Operations Redundant memwrap store
operations are eliminated.

Step (9): Lowering memwrap Operations The memwrap operations that were not eliminated
are lowered. After this step, only types and operations from the standard dialects remain in
the IR.

Phases The steps outlined in this section are consolidated into four phases, as shown in
Table 3.2. The following chapters individually discuss these phases.

Phase Steps Description Chapter
Phase 1 O Input and Specialization 4
Phase 2 @B Target-Specific Transformations | 5
Phase 3 @ (® Lowering particles_dist 7
Phase 4 GIVIBIO) Lowering box and memwrap 8

Table 3.2: Phases of the MLIR lowering pipeline
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builtin, arith, scf, vector, func, math
builtin, arith, scf, vector, func, math
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particles.apply operations All particles constructs have
have been inlined been replaced by their
particles_dist counterparts

Figure 4.1: Phase 1 takes the unmodified IR as input and has two steps. The first step (overall step (0)) inlines
functions referenced by particles.apply operations. The second step (overall step (1)) specializes particles
to particles_dist.

Phase 1 focuses on three dialects, as well as the relations and transformations between
them: The particles dialect, which captures the domain of particle simulations; the
particles_dist dialect, which is a specialization of the former to DMP and OpenFPM; and
the particles_base dialect, which forms the basis for the other two. The first section of this
chapter introduces the concepts of abstract dialects, dialect inheritance, and specialization
dialects, which form the foundation of the three implemented dialects. Next, Section 4.2
focuses on the approaches used to enable robust and efficient code analysis, necessary for
optimizations like loop fusion and the informed placement of update and communication
operations. Section 4.3 introduces the abstract base dialect particles_base. Afterwards,
its inheriting dialects, particles and particles_dist, are described in Section 4.4. Finally,
Section 4.5 discusses the transformation passes depicted in Figure 4.1.

4.1 Dialect Extension Methods

4.1.1 The Concepts of Abstract Dialects and Dialect Inheritance

The realization of the concepts presented in this section are very specific to the multi-level
IR framework used to implement the dialects and their definitions. As xDSL was almost
exclusively used in this work, this section focuses only on this framework. However, the basic
concept of mapping dialect inheritance to class inheritance is transferable to MLIR.
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As outlined in Section 2.4, dialects are collections of operation, type, and attribute
definitions. An abstract dialect consists exclusively of abstract definitions, and a dialect is said
toinherit from an abstract dialect if it inherits all of its definitions. In xDSL, operation, type, and
attribute definitions are implemented as Python classes that use specific decorators, such as
@irdl_op_definitionand @irdl_attr_definition. An abstract definition is a definition
class that is missing its decorator. In addition to being unfinished, these definition classes
may be abstract, generic, or even parametrized metaclasses. Inheriting from an abstract
definition directly corresponds to extending the unfinished definition class and finishing its
implementation, which at the very least involves specifying the name of the construct and
adding the corresponding decorator. An abstract definition can specify anything a normal
definition can. For example, abstract operation definitions can specify operands, results,
regions, properties, traits, and verification requirements. The inheriting definition retains all
elements of the base definition while also being able to introduce new components such as
additional operands and results.

Abstract IR construct definitions are not a new concept and are already utilized in both
xDSL and MLIR. Abstract operation definitions are commonly used when multiple operations
share the same or a highly similar syntax. For example, binary floating-point operations
such as arith.addf, arith.mulf, arith.subf, and arith.divf all share the same syntax.
Instead of redundantly implementing each operation definition separately, it is more efficient
to define one abstract base definition that these operations inherit from. Abstract dialects
simply take this approach and apply it to all operation, type, and attribute definitions of a
dialect.

Abstract dialects are useful when two or more dialects represent similar or hierarchical
concepts and therefore share a significant portion of their IR structure. For example,
the dialects cell_list and local_domain, introduced later in this work, both represent
neighbor lists and are used to iterate over the neighbor indices of a particle. Although
internally these neighbor lists work differently, the dialects share a highly similar syntax,
differing only in the parameters of a single type. This makes them ideal candidates for
dialect inheritance. Introducing the abstract base dialect neighbor_1list, which contains
all common operations and types, reduces code duplication and improves maintainability.
Furthermore, it also facilitates adding new neighbor list dialects in the future, such as a
dialect for Verlet lists.

Dialects can have internal dependencies between their operations, types and attributes.
When a dialect inherits from an abstract dialect that has internal dependencies, these
dependencies must be internalized by the inheriting dialect. For example, as visualized in
Figure 4.2, the abstract neighbor_list.for_all_neighbor_indices operation takes an
operand of type Ineighbor_1list.1list, whichitselfis an abstract type definition of the same
dialect. When the cell_list dialect inherits all construct definitions from neighbor_1list,
it also inherits these operation and type definitions. However, in its case, the operand must
be of the subtype cell_list.list. This adaption requires class parametrization. In the
case of xDSL, this is achieved by using generic metaclasses.

4.1.2 The Concept of Specialization Dialects

Simply speaking, a specialization dialect is a copy of another dialect, referred to as "root",
tailored to one or more specific targets. A target can be, for example, a processing platform,
such as FPGA or CIM, or an execution model, such as DMP. The specialization dialect clones all

26



4.1 Dialect Extension Methods

v

«abstract» cell list
neighbor_list -
Internal use dlenpfgrrwgaeln%siees Internal use
dependenc dependenc

P y must be adopted P y
list < list

Figure 4.2: Adoption of internal dependencies during dialect inheritance. neighbor_list has internal
dependencies. Inheriting dialects, such as cell_list, must adopt these internal dependencies.

operations, types, and attribute definitions of the root dialect, potentially extends them, and
optionally introduces new ones. Operation definitions can be extended by adding operands,
results, properties, regions, traits and verification steps. Similarly, types and attributes are
extending by integrating additional parameters and verification requirements.

Dialect specialization and dialect inheritance are closely related, as both serve as forms of
dialect extension. However, they differ in one crucial aspect: a specialization dialect does not
inherit from its root dialect and the root dialect itself is not abstract but rather a fully realized
dialect. This also means that the definitions of the specialization dialect do not inherit the
IR construct definitions of the root dialect, since those are also fully realized. Instead, the
specialization dialect copies the construct definitions of the root dialect and extends the
copies.

The distinction between dialect specialization and dialect inheritance arises primarily from
limitations of the underlying xDSL implementation. As discussed in Section 4.1.1, IR construct
definition classes use specific decorators, and it is not possible to extend classes that have
such a decorator. Furthermore, internal use dependencies within an abstract base dialect
are handled via parametrized metaclasses, which also makes it impossible for that dialect
to be fully realized. Consequently, there is no "is a" relationship between a root dialect and
its specialization dialect, whereas such a relationship does exist between an abstract base
dialect and its inheriting dialect.

In contrast to its root dialect, a specialization dialect is not intended to be targeted
directly foreign transformation passes or lowering tools. Instead, it serves as part of the
lowering infrastructure that lowers the target-agnostic root dialect to the targets of the
specialization dialect. A key step in this process is the specialization pass, which completely
replaces all constructs of the root dialect with their specialized counterparts. During or after
this replacement step, target-specific information can be derived, operations placed, and
transformations performed. The combination of root and specialization dialects together
with a specialization pass allows the root dialect to remain target-agnostic and re-usable,
while also enabling the integration of essential targeting-dependent elements.

As discussed in Section 3.2, the particles dialect should remain general-purpose and
target-agnostic. The lowering pipeline, however, targets DMP while also integrating OpenFPM.
This requires extending the constructs of the particles dialect with target-specific elements,
such as OpenFPM- and DMP-specific operation-properties, or type-parameters. It also
necessitates the introduction of entirely new operations, such as communication and
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update operations. Including these target-specific elements in the particles dialect would
violate its objective to remain target-agnostic. As a solution, the particles_dist dialect
was introduced as a specialization of particles. It contains all operations and types of the
particles dialect, while also integrating DMP and OpenFPM specific elements.

Dialect inheritance can be utilized to implement dialect specialization. By extracting all IR
construct definitions of the root dialect into an abstract base dialect, both, the root dialect and
the specialization dialect, can inherit these definitions. For example, as illustrated in Figure 4.3,
both particles and particles_dist inherit from the abstract dialect, particles_base,
which contains all shared definitions. This approach minimizes code duplication, thus
improving maintainability. It also increases extensibility, as it facilitates the introduction
of future specialization dialects. For example, it might be necessary to specialize particles
to a specific hardware platform in the future, such as FPGA. Instead of re-implementing
everything from the particles dialect, these new dialects can simply extend particles_
base.

«abstract»
particles_base

Only specify operation,
type, and attribute names Target-specific adaptions

particles < p— particles_dist
pecializes

Figure 4.3: Relationships between particles_base, particles, and particles_dist

4.2 Enabling Robust Code Analysis

Section 3.2 lists multiple short-term objectives necessitating that the IR structure of the
particles dialect, and consequently also its root dialect particles_base, enables robust
analysis. This section introduces two concepts that are applied to the type representing
particle sets, !particles_base.set, and the operations acting on it to facilitate the
placement of update and communication operations and optimizations such as loop fusion.

4.2.1 Fake Value Semantics and Modification Graphs

Memory Semantics  In this work, the term "memory semantics" refers to the combination of
types that represent memory locations and operations that act on such types by loading data
from or storing data in these locations, or by modifying the memory in-place. For example,
the memref type is a reference to a region of memory. Using operations like memref . load
and memref .store, data can be read from or written to the referenced region. Copying a
memref value does not duplicate the memory contents; instead, it creates another reference
to the same region. Furthermore, acting on a memref value, through operations such as
memref.store, does not preserve the previous memory contents, which are overwritten
and cannot be recovered.
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Value Semantics The term "value semantics", in this work, refers to the combination of
types that represent copyable data and operations that act on such types by producing
modified copies while fully preserving the original values. For example, the 111vm.struct
type can be modified using 11vm. insertvalue operations. Applying such an operation to an
11lvm.struct value produces a new !11vm.struct value, while leaving the original struct
unchanged and available for further use.

Def-Use Relation In MLIR, value semantics offer a significant advantage over memory
semantics: they enable simpler and more reliable analysis by naturally forming def-use
relationships. Under this relationship, operation B relates to operation A if B uses one of the
results produced by A as input. Similarly, operation B relates to block argument A if B uses A
as input.

Construction of Modification Graphs for Types With Value Semantics Def-use relation-
ships can be used to construct modification graphs. Modification graphs trace the modifica-
tions of a value from its origin to its final uses. Figure 4.4 shows an example of a modification
graph for an '11vm.struct value. The nodes within a modification graph represent either
operations (e.g., (0)) or block arguments (e.g., (1)). Two nodes, A and B, are connected via a
directed edge if:

+ Neither A nor B are control-flow parent operations (i.e., not scf.if or scf.for)and B uses
the output of A as input, with the output of a block argument being the block argument
itself (e.g., () — @), @ — Q).

+ Bisaniter_argofan scf.for operation and uses the output of A as an initial value (e.g.,
@ — Q@)

+ Aisan scf.yield operation, and B uses the corresponding output of A's parent operation
asinput (e.g, @ — D 0D — ().

+ Alis an scf.yield operation associated with an scf.for parent, and B is an iter_arg
block argument (e.g., (1) — (D) of that parent.

Neither scf.if nor scf.for operations appear in modification graphs, however, their
associated scf.yield operations and block arguments do.

Difference to Control-Flow Graphs Even though modification graphs look similar to CFGs,
there are some distinct differences. A branch in a CFG indicates diverging control flow,
whereas a branch in a modification graph indicates that two operations use the same value
as input. This may result from diverging control flow, as is the case with (6) and (8), but may
also occur within the same basic block, as illustrated by (2) and (). Furthermore, CFGs have
a single sink that represents the end of the program flow, whereas modification graphs can
have multiple sinks, where each sink represents the use of a value that does not result in a
modified output (e.g., (10)). However, these uses can coincide with the end of the program flow
(e.g (12). Similarly, CFGs have a single source that represents the start of the program flow.
While modification graphs also have a single source, this source represents the program
point where the modified value originates. The origin of a value can coincide with the start
of program flow, for example if it is a block argument of a func . func operation, but does
not have to (e.g., (0)).
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I'struct = !1llvm.struct<(index, index)>
func.func @foo() {
%0 = 1llvm.mlir.undef : !struct // @

%9 = scf.for %step = %zero to %stop step %step

iter_args(%1 = %0) -> (!struct) { /] 1
%2 = 1lvm.insertvalue %one, %1[0] : !struct /2
%3 = 1lvm.insertvalue %two, %2[1] : !struct // 3
%4 = 1lvm.insertvalue %two, %1[0] : !struct /] 4
%5 = scf.if %cond -> (!struct) { // 5
%6 = 1llvm.insertvalue %one, %4[1] : !struct // 6
scf.yield %6 : !struct /17
} else {
%7 = 1llvm.insertvalue %two, %4[1] : !struct // 8
scf.yield %7 : !struct // 9
}
%8 = llvm.extractvalue %3[0] : !struct // 10
scf.yield %5 // 11
}
return %9 : !struct /] 12

Figure 4.4: Modifying structs in MLIR and corresponding modification graph

Construction of Modification Graphs for Types With Memory Semantics Constructing
modification graphs for types with memory semantics is significantly more difficult, as it
cannot be directly derived from def-use relationships and must instead be inferred through
more sophisticated methods. Furthermore, a single memory region may have multiple
references, and at compile time it is often unclear whether two references point to the
same or different regions. This uncertainty further increases the complexity of constructing
modification graphs for types with memory semantics.

Particle Sets Have True Memory Semantics Particle sets are far too large to be treated as
values. Modifying the particles of a set, therefore, does not produce a new set with modified
copies of the original particles. Instead, all particles are all stored in memory and modified
in-place. This implies that, in practice, particle sets exhibit memory semantics. However,
as discussed in the previous paragraph, memory semantics significantly complicate the
construction of modification graphs. Analysis of particle set modification graphs is essential
for subsequent transformations, such as loop fusion and the placement of update and
communication operations.

Fake Value Semantics To enable the construction of modification graphs for particle sets,
fake value semantics were introduced for the !particles_base.set type. Like true value
semantics, operations acting on !particles_base.set types take a value as input and
produce a new value of the same type as output. However, unlike real value semantics, the
previous !particles_base.set value is not preserved and cannot be reused. The original
set is still available as SSA value, but it must not be used again as it has been modified.
Essentially, operations acting on !particles_base.set values consume a reference to a
particle set, modify the set in-place, and return a new reference to the same set, which
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must be used by the next operation. This allows the !particles_base.set type to exploit
the advantages of value semantics, while using memory semantics under the hood. The
approach of wrapping memory references with value-semantics was heavily inspired by the
Istencil.temp type of the stencil dialect [22].

Further Advantages of Fake Value Semantics In addition to leveraging the advantages
of true value semantics, fake value semantics offer further benefits. They enable a hybrid
approach where some values are buffered and directly available as SSA values, while the
majority of the data remains in memory and is accessed via references. For example, the
size of a particle set is buffered this way and thus can be used at any time without first
needing to retrieve it from memory. Additionally, fake value semantics allow transient state
to be associated with the memory reference(s) they wrap. Section 5.2.3 discusses staleness
analysis and staleness tracking. Staleness tracking uses boolean flags to track the staleness
state of certain data structure associated with a particle set. These staleness flags have no
persistence and are lost when the corresponding !particles_base.set isno longer in use,
and are therefore considered transient state.

4.2.2 Single-Source Single-Sink Modification Graphs

Single-source single-sink modification graphs are modification graphs with additional
restrictions that make them more suitable for analysis. In this work, these restrictions are
partly enforced through syntactic constraints, and partly through the particles_base. |
loop operation, which, besides modeling a time stepping loop, serves as a container for all
computations involving particle sets. This enables the particles_base.loop operation to
enforce global constraints that are difficult to enforce using only the operations acting on
Iparticles_base.set values, such as verifying that a !particles_base.set value is never
used twice.
The following restrictions are imposed:

1. The only origin of !particles_base.set values is the first argument of particles_
base. loop regions.

2. All non-terminator operations that act on !particles_base.set values must consume
exactly one set value and return exactly one new set, even if they do not modify any
data. This differs from, for instance, the '11vm.struct type, where operations such as
11vm.extractvalue do not produce a new !11vm.struct value.

3. Each scf.if operation can return at most one !particles_base.set value, and both
regions of such an scf.if operation must use the same !particles_base.set value as
input for their computations.

4. For each particles_base.loop region, the modification graph of !particles_base.
set values inside must form a Directed Acyclic Graph (DAG) with a single source (the
Iparticles_base.set region argument) and a single sink (the particles_base.next
terminator operation). Loops acting on particle sets, such as those modeled by scf . for,
are currently not supported.

Figure 4.5 shows an example of a modification graph where all restrictions are upheld.
Modification graphs that adhere to all restrictions guarantee that no outdated !particles_|
base.set values are used. Under these constraints, reusing a !particles_base.set value
would require that another particle set value remains unused, which in turn creates
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Figure 4.5: Left: region of a particles.loop operation. Right: corresponding modification graph.

a sink other than the particles_base.next operation. This does not imply that every
Iparticles_base.set value must have exactly one use, as multiple uses are still possible in
the presence of scf.if operations (e.g., node (1)). However, due to restriction 3, branches
in the modification graph fully coincide with control flow branches, and multiple uses arising
from such branches do not constitute reuse.

In addition to facilitating verification, single-source single-sink modification graphs have
another advantage: They are essentially CFGs that capture only the operations modifying the
Iparticles_base.set value provided as region argument. This enables them to be used
for DFA.

To facilitate the construction and analysis of the modification graph, all definitions
of operations that act on !particles_base.set values must implement the Particle
SetConsumerProducer interface. This interface requires each operation to provide two
information: the !particles_base.set value it consumes, and the particle set result it
produces.

4.3 The particles_base Dialect

As outlined in Section 4.1.2, the particles_base dialect forms the abstract basis for
both the particles and particles_dist dialects. Because the particles_base dialectis
abstract, its operations, types, and attributes cannot appear in the IR and therefore do not
require names. Nonetheless, for clarity, its constructs are assigned names using the prefix
particles_base.
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4.3.1 Types
The !particles_base.set Type

The I'particles_base.set typerepresents aloaded particle set. As explained in Section 4.2.1,
this type and its associated operations employ fake value semantics to facilitate the con-
struction of modification graphs, as well as to buffer values and maintain transient state.

Example:

Ibaseset = !particles_base.set<
-1 : index, // size
64, // position_type
3 : index, // dimensionality
{ // properties
"velocity" = vector<3xf64>,
"force" = vector<3xf64>

}

>

Listing 4.1: !particles_base.set example (! baseset)

Parameters The !particles_base.set type has four parameters:

+ size: An index attribute that specifies the size of the particle set. It must either be a
positive integer or -1. A value of -1 indicates that the size of the particle set is dynamic and
may change during execution.

+ position_type: The numeric type used for positions. Accepted types are currently limited
to f64 or f32.

- dimensionality: An index attribute that specifies the spatial dimensionality of the
computational domain.

* properties: A dictionary attribute mapping particle property names to their types.
Accepted property types are currently limited to scalars and single-rank vector types.

The 'particles_base.set type only contains parameters required for validation and code
generation. Parameters currently not used for these purposes, such as boundary conditions,
which define how the particles should behave at the edges of the computational domain or
even the size of the computational domain itself, were intentionally excluded.

The !particles_base.storage Type

The 'particles_base.storage type represents an unloaded particle set that, together with
its operations, employs memory semantics. As a result, it is not associated with any transient
state or buffered values, but simply holds the necessary references required to work with
a particle set and its associated data structures, such as neighbor lists. It expects a single
parameter of type !particles_base.set, indicating the particle set type it stores.

Example:
I'basestorage = !particles_base.storage<!baseset>

Listing 4.2: !particles_base.storage example (! basestorage)

33



4 Phase 1: Input and Specialization

Integration with C++ Section 3.2 lists integration with C++ as a semi-function requirement
62. This necessitates the ability to pass particle sets between C++ and MLIR. Passing a
Iparticles_base.set with allits buffers and transient state would make the corresponding
C++ data structure very large and unwieldy, while also exposing the internal state of the
particle set to C++, which may not always be desired. Furthermore, as outlined in the same
section, passing or returning structs between MLIR and C++ must be done by reference. The
Iparticles_base.storage type addresses this by lowering to a simple pointer to a struct
containing the references to all integrated OpenFPM instances.

The !particles_base.particle Type

The !particles_base.particle type represents a particle. Together with its associated
operations, it employs value semantics. Whether these value semantics are real or
fake is determined by the implementation and chosen during lowering. For example, a
Iparticles_base.particle value may represent a set of buffered values that have real
value semantics or may wrap a reference to a particle using fake value semantics. In the
context of this work, the value semantics are real. Note that this does not imply that particles
are copied each time they are modified, but rather that, in their buffered state, they exhibit
value semantics. The !particles_base.particle type has a subset of the parameters of
the !'particles_base.set type: position_type, dimensionality, and properties.

Example:
Ibaseparticle = !particles_base.particle<
fe4, // position_type
3 : index, // dimensionality
{ // properties
"velocity" = vector<3xf64>,
"force" = vector<3xf64>
}

>

Listing 4.3: 'particles_base.particle example (!baseparticle)

4.3.2 Operations
The particles_base.loop Operation

The particles_base.loop operation represents a time-stepping loop with an initialization
phase. It has two regions: one for initialization and one for the main loop. It takes a
Iparticles_base.storage value asinput, transparently loadsitinto a !particles_base.
set and passes it to the initialization region. From the initialization region, the initialized
particle set is then passed to the time-stepping region, where it is propagated from iteration
to iteration until the loop terminates.
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Example:

%iter_arg_result = "particles_base.loop" (%storage,
%init_steps,
%upper_bound_steps,
%iter_arg)
({"0(%set : !baseset, %step : index, %iter_arg@ : f64): // initialization region
>> Initialize %set -> %initialized_set
>> Update %iter_argd -> %initialized_iter_arg
"particles_base.next" (%initialized_set,
%initialized_iter_arg): (!baseset, f64) -> ()

Yo
{"0(%set : !'baseset, %step : index, %iter_arg@ : f64): // time-stepping region
>> Update %set -> %updated_set
>> Update %iter_argd -> %updated_iter_arg
"particles_base.next" (%updated_set,
%updated_iter_arg): (!'baseset, f64) -> ()
}) : (!basestorage, index, index, f64) -> (f64) // Returns final values of iter_args

Listing 4.4: particles_base.loop example

Operands The particles_dist.loop operation has four operands. The last operand,
iter_args, is variadic and also determines the results of the operations. The operands are
expected in the following order:

+ storage: The !particles_base.storage value to be loaded and passed onto the
initialization region.

+ init_steps: An index value specifying the initial time step count.

* upper_bound_steps: An index value specifying the non-inclusive upper limit for the
number of time steps. The actual number of time steps executed will be init_steps
- upper_bound_steps.

+ iter_args: A variadic set of values that are passed alongside the particle set, similar to
iter_args of the scf.for operation. The results of the particles_base.loop operation
hold the final values of the iter_args.

Additional Purposes Other than modeling a time-stepping loop, the particles_base.
loop operation has two additional purposes. The first purpose, as outlined in Section 4.2.2,
is to enforce the correct usage of !particles_base.set values by ensuring its regions
form single-source single-sink modification graphs for their !particles_base.set region
arguments. The second purpose is to transparently switch from the memory semantics
employed by the !particles_base.storage type onthe outside to the fake value semantics
employed by the !particles_base.set type on the inside. Since this is the only way to load
a !particles_base.set, the particles_base.loop operation naturally acts as a container
for particle computations.

The particles_base.next Operation

The particles_base.next operation terminates all particles_base.loop regions and has
two operands. The set operand takes the !particles_base.set value to be passed from
the initialization region to the first iteration, or from one iteration to the next. The variadic
iter_args operand takes a set of values to propagate alongside the particle set.
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Example:
"particles_base.next"(%set, %iter_arg): (!baseset, f64) -> ()

Listing 4.5: particles_base.next example

The particles_base.foreach Operation

The particles_base.foreach operation has a single region, which is executed exactly once
for each particle in the given particle set. Whether these executions happen in parallel or
sequentially is up to the implementation. Each particle is transparently loaded at the start
and stored at the end of the region. In between, each particle can be modified.

Example:

%evolved = "particles_base.foreach" (%set) ({
"Q(%particle : !baseparticle):

>> Modify %particle -> %updated_particle

"particles_base.yield" (%updated_particle) : (!baseparticle) -> ()
}) : ('baseset) -> !baseset

Listing 4.6: particles_base.foreach example

Within a particles_base.foreach region, operations with side effects are forbidden.
This ensures that there are no unforeseen data dependencies and all executions are fully
isolated from each other.

The particles_base.for_all_neighbors Operation

The particles_base.for_all_neighbors operation has a single region that is executed
once for every pair of neighboring particles. Within this region, pairwise interaction results
between a particle and its neighbor can be calculated. Each pairwise interaction can have
multiple results, which are yielded using the particles_base.yield operation. For each
particle, the results from interacting with all its neighbors will be transparently reduced and
then stored on the particle. The definition of what constitutes a neighborhood is intentionally
left vague. Inheriting dialects must add this information themselves by, for example, adding
properties.

Example:

%interacted = "particles_base.for_all_neighbors" (%set)

<{
"with_self" = false,
"reduction_kinds" = [#particles_base.reduction_kind<add>],
"write_targets" = ["force"]

}>

({"0(%particle : !baseparticle, %neighbor : !baseparticle):

>> Calculate the %force that %neighbor exhibits on %particle
"particles_base.yield" (%force) : (vector<3xf64>) -> ()
}) : ('baseset) -> (!baseset)

Listing 4.7: particles_base.for_all_neighbors example

Properties The particles_base.for_all_neighbors operation requires the following
properties:
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- with_self: A boolean attribute specifying whether a particle should be considered its
own neighbor and interact with itself.

+ reduction_kinds: An array attribute specifying how each pairwise interaction result
should be reduced. Currently, the only supported reduction kind is #particles_base.
reduction_kind<add>, which indicates summation. Reductions are performed for each
result index independently. Therefore, if each pairwise interaction has two results,
reduction_kinds must also contain two corresponding entries.

* write_targets: An array attribute, with each entry specifying where the reduced
interaction result with the same index should be stored on the particle. Each entry must
be either "pos" or the name of a particle property.

Limitations of Data Dependencies As with the particles_base.foreach operation,
operations with side effects are forbidden within a particles_base.for_all_neighbors
region. Additionally, this region must not contain any data dependencies between particles,
as these would constitute data races. For example, a particles_base.get_property
operation cannot read the particle property X from a neighbor while the same property is a
write_target. This constitutes a data race unless all pairwise interactions are performed
before the reduced interaction results are stored on the particles. However, this would
require implicitly buffering the reduced values, which is currently not supported. The
particles_base.for_all_neighbors operation ensures that no such data dependencies
exist during verification.

The particles_base.yield Operation

The particles_base.yield operation terminates the regions of both the particles_|
base.foreach and particles_base.for_all_neighbors operations. When used in a
particles_base.foreach region, it yields the modified particle, whereas when used to
terminateaparticles_base.for_all_neighborsregion,ityields the results of the pairwise
interaction.

Example:

// Inside a particles_base.foreach it yields the modified particle
"particles_base.yield" (%udpated_particle) : (!baseparticle) -> ()

// Inside a particles_base.for_all_neighbors operation
// it yields the results of a pairwise interaction

"particles_base.yield" (%force) : (vector<3xf64>) -> ()

Listing 4.8: particles_base.yield example

The particles_base.get_position and particles_base.set_position Operations

Theparticles_base.set_position operation retrieves the position of the given !particles_
base.particle value and returns it as vector. The particles_base.set_position oper-
ation overwrites the position of the given particle with the provided vector and returns the
modified !particles_base.particle.
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Example:

// Get position:

%pos = "particles_base.get_position"(%particle) : (!baseparticle) -> vector<3xf64>
// Modify position:
%updated_particle = "particles_base.set_position"(%particle, %new_pos)

(!'baseparticle, vector<3xf64>) -> !baseparticle

Listing 4.9: particles_base.get_position and particles_base.set_position example

The particles_base.get_property and particles_base.set_property Operations

The particles_base.get_property operation retrieves the specified particle property of
the given !particles_base.particle value and returns it. The particles_base.set_
property operation overwrites the specified particle property of the given particle with
the provided value and returns the modified !particles_base.particle. Which particle
property to retrieve or modify is specified via the property operation property, which takes
the form of a string attribute.

Example:

// Retrieve force value:
%force = "particles_base.get_property"(%particle) <{"property" = "force"}>
: (!baseparticle) -> vector<3xf64>
// Modify force value:
%updated_particle = "particles_base.set_property"(%particle, %new_force)
<{"property" = "force"}>
(!'baseparticle, vector<3xfé64>) -> l!baseparticle

Listing 4.10: particles_base.get_property and particles_base.set_property example

The particles_base.apply Operation

The particles_base.apply operation enables outlining particles_base.foreach and
particles_base.for_all_neighborsoperationsfromparticles_base.loopregionsinto
standalone func . func functions. Simply speaking, it is a special func.call operation that is
always inlined. To adhere to the restrictions imposed on operations actingon !particles_
base.set values, detailed in Section 4.2.2, it always takes one !particles_base.set value
as input and returns one !particles_base.set value as output.
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Example:

// Function definition in builtin.module:
func.func @evolve(%set : !baseset, %deltat : f64) -> !baseset {
// Initialize constants and such:
%zero = arith.constant 0 : index
// Single use of %set argument:
%evolved_set = "particles_base.foreach" (%set) ({
// Evolve particle set
}) : (!'baseset) -> !baseset
// Immediately return result:
func.return %evolved_set : !baseset

}

// Inside of particles_base.loop operation:
%evolved_set = "particles_base.apply" (%set, %deltat) <{"func" = @evolve}>
: (!baseset, f64) -> !baseset

Listing 4.11: particles_base.apply example

Restrictions on the Referenced Function To satisfy the constraints imposed on the
particles_base.apply operation, the referenced func.func operation must have a body
and must accept a !particles_base.set value as the first argument, with all other
arguments being of other types. The function must also return a single !particles_
base.set type. The region argument representing the !particles_base.set function
argument must have a single use, by either a particles_base.foreach or particles_
base.for_all_neighbors operation, the result of which must be immediately returned.
Other operations are permitted before the use of the !particles_base.set argument. For
example, to initialize constants.

The particles_base.call Operation

The particles_base.call operation enables calling func.func functions that accept a
Iparticles_base.storage value as the first argument from within particles_base. |
loop regions. As previously explained, one of the purposes of the particles_base.loop
operation is to switch from the memory semantics employed by the !particles_base. |
storage type on the outside to the fake value semantics employed by the !particles_
base.set type on the inside. To call a function that accepts a !particles_base.storage as
the first argument, the particles_base.call operation reverses this switch by storing its
Iparticles_base.set operand back into the !particles_base.storage it was originally
loaded from and passing the storage (which is essentially a pointer) to the referenced
function. After the function returns, the !particles_base.set is reloaded from the same
storage and returned. During this process, the buffered values and transient state associated
with the particle set are preserved.
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Example:

// External function declaration in builtin.module:

func.func private @batch_done(%storage : !basestorage,
%context : !1lvm.ptr,
%step : index) -> ()

// Inside of particles_base.loop region:
%result = "particles_base.call" (%set, %context, %step) <{"func" = @batch_done}>
: (!baseset, !llvm.ptr, index) -> !baseset

Listing 4.12: particles_base.call example

Integration with C++ Section 3.2 identifies integration with C++ as a key semi-functional
requirement. The !particles_base.storage type already facilitates this by excluding all
buffers and transient state and lowering to a simple pointer that can be passed to and
from C++ functions. The particles_base.call operation further assists this integration by
enabling calls to C++ functions from within particles_base. loop regions. This is important
for enabling features like checkpointing and terminal output during time stepping, which
currently must be implemented in C++.

4.4 Subdialects of particles_base

4.41 The particles Dialect

The particlesdialectis a subdialect of particles_base, inheriting all its attribute, type, and
operation definitions. It does not extend any of the IR constructs, but simply adopts them as
they are, effectively only replacing the particles_base prefix with particles. Unlike the
particles_base dialect, however, it is not abstract and does appear in the IR.

4.4.2 The particles_dist Dialect

The particles_dist dialect specializes the particles dialect to DMP and OpenFPM. Like
particles,itis also a subdialect of particles_base. However, unlike particles, it extends
many of the inherited operation and type definitions while also introducing new operations
and an attribute. In this section, only the extensions to the inherited types and operations
and the newly introduced attribute are discussed. The new operations are separated into
two parts and introduced during later phases. DMP-specific operations are presented in
Phase 2 (Chapter 5), whereas internal operations, which include those designed to integrate
OpenFPM, are discussed in Phase 3 (Chapter 7). The particles_dist dialect also introduces
the concept of neighbor lists. However, instead of integrating all neighbor lists directly, they
are encapsulated within their own companion dialects, which are also introduced in Chapter 6.
Whereas the particles dialect did not make any assumptions about the execution model,
particles_dist assumes a Single Program, Multiple Data (SPMD) execution model.

40



4.4 Subdialects of particles_base

The !particles_dist.set Type

The !particles_dist.set type represents a loaded distributed particle set. Similarly to
a vector_dist instance from OpenFPM, which it essentially wraps, each !particles_
dist.set value maintains only the particles within a subdomain, including ghost particles.
In addition to wrapping a vector_dist instance, each !particles_dist.set value may
also wrap a set of neighbor lists. To this end, the !particles_dist.set type extends
Iparticles_base.set byintroducing a fourth parameter, neighbor_1lists, which specifies
the list of neighbor list types associated with the particle set. This enables !particles_
dist.set types to be linked to multiple neighbor lists, such as two cell lists with different
cutoff radii. Because the subdomain sizes in a distributed particle set always fluctuate, the
size parameter must always be -1.

Example:
ldistset = !particles_dist.set<
-1 : index, // size (must always be -1)
64, // position_type
3 : index, // dimensionality
{ // properties
"velocity" = vector<3xf64>,
"force" = vector<3xf64>
Yo

[ // neighbor_lists
lcell_list.list<f64, 3 : index, 0.3 : f64>
]

Listing 4.13: Iparticles_dist.set example (!distset)

The particles_dist.for_all_neighbors Operation

Theparticles_dist.for_all_neighborsoperationextendsparticles_base.for_all_,
neighbors by adding DMP-specific properties, as well as two additional optional regions.

Example:

%interacted = "particles_dist.for_all_neighbors" (%set)
<
{
"with_self" = false,
"reduction_kinds" = [#particles_dist.reduction_kind<add>],
"write_targets" = ["force"],
"neighbor_list_kind" = #particles_dist.neighbor_list_kind<cell_list>, // NEW
"max_distance" = 0.3 : f64 // NEW
3>
({"(%particle : !distparticle): // NEW: pre-interaction region
>> Modify particle before interactions: %particle -> %updated_particle
"particles_dist.yield" (%updated_particle) : (!distparticle) -> ()
Y
{"2(%particle : !distparticle): // NEW: post-interaction region
>> Modify particle after interactions: %particle -> %updated_particle
"particles_dist.yield" (%updated_particle) : (!distparticle) -> ()
Yo
{"3(%particle : !distparticle, %neighbor : !distparticle): // interaction region
>> Calculate the %force that %neighbor exhibits on %particle
"particles_dist.yield" (%force) : (vector<3xf64>) -> ()
}) : (!'distset) -> (!distset)

Listing 4.14: particles_dist.for_all_neighbors example
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Additional Properties The properties introduced by the particles_dist.for_all_,
neighbors operation specify which neighbor list to use to iterate over the indices of a
particle’s neighbors, and must therefore match one of the neighbor list types associated
with the 'particles_dist.set type it operates on:

* neighbor_list_kind: A #particles_dist.neighbor_list_kind attribute that specifies
the kind of neighbor list to use. The #particles_dist.neighbor_list_kind enum
attribute currently supports two values, cell_1list and local_domain, which correspond
to the neighbor list dialects of the same name.

+ max_distance: A float attribute that specifies the maximum distance between two
neighbors. This property is only required if neighbor_list_kind is set to cell_list
and specifies the cutoff radius/cell size used for the cell list.

Additional Regions The particles_dist.for_all_neighbors operation introduces two
additional regions. The pre-interaction region is executed once for each particle before
it interacts with its neighbors. The post-interaction region is executed once for each
particle after it has interacted with its neighbors. Both regions are optional and have been
introduced to enable fusing particles_dist.for_all_neighborsand particles_dist.
foreach operations, as detailed later in Section 5.1.2. As is the case with its particles.for_
all_neighbors counterpart, data dependencies between particles are illegal, as these would
lead to data races. To avoid such situations, the particles_dist.for_all_neighbors
operation also verifies that the pre- and post-interaction regions do not introduce any
inter-particle data dependencies.

The particles_dist.call Operation

The particles_dist.call operation extends particles_base.call by introducing addi-
tional properties to enable staleness analysis and staleness tracking. The details regarding
these mechanisms and the associated data structures are explained later in Section 5.2.3

Example:

%result = "particles_dist.call" (%set, %context, %step)
<{
"func" = @batch_done,
"requires_up_to_date" = ["map"], // NEW
"updates" = ["ghost(pos)"], // NEW
"makes_stale" = [] // NEW

+>

: (!distset, !llvm.ptr, index) -> !distset

Listing 4.15: particles_dist.call example

Additional Properties The particles_dist.call operation introduces four additional
properties:

* requires_up_to_date: An optional array attribute specifying the data structures that
must be up-to-date before the function is called.

+ updates: An optional array attribute specifying the data structures that are updated by
the called function.
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- makes_stale: An optional array attribute specifying the data structures that are made
stale during the execution of the function.

+ uses_staleness_flags: An optional unit attribute indicating that the called function
dynamically tracks the staleness of the data structures.

A particles_dist.call operation must either provide the first three properties to enable
static staleness analysis or must have the fourth, uses_staleness_flags, to indicate that it
makes use of dynamic staleness tracking.

4.5 Specialization of particles to particles_dist

The first step in the MLIR lowering pipeline is specializing the particles dialect to
particles_dist. Two passes make up this step: a preparatory pass, particles-inline-
apply-funcs, and the actual specialization pass particles-dist-specialize-particles.

4.5.1 The particles-inline-apply-funcs Pass

Theparticles-inline-apply-funcs passinlinesthe functionsreferenced by particles.
apply operations. Because of the constraints each particles.apply operation imposes on
its function, inlining the function's body preserves the single-source single-sink modification
graph of the particles.loop region itis inserted in.

4.5.2 The particles-dist-specialize-particles Pass

The particles-dist-specialize-particles pass fully replaces all particles attributes,
types, and operations in the IR with their particles_dist counterparts. This specialization
step is mostly straightforward, since most particles_dist IR constructs do not extend their
particles counterparts in any way. However, the operations particles_dist.call and
particles_dist.for_all_neighborsrequire additional properties and the !particles_
dist.set type requires an additional parameter.

This presents a Catch-22. On one hand, the particles dialect deliberately avoids
incorporating any target-specific components. On the other hand, the particles_dist
dialect requires target-specific information, and because it is not targeted directly, but only
emitted through specialization, this information must already be present in the IR. To solve
this Catch-22, the attribute dictionaries of the affected operations are used. As described in
Section 2.4, the attribute dictionary of an operation may contain extrinsic data, which is not
verified by the operation. By storing target-specific properties required by particles_dist
operations in the attribute dictionaries of their particles counterparts, these entries can
simply be promoted to properties during specialization. For instance, for the specialization
to succeed, each particles.for_all_neighbors operation mustinclude the neighbor_|
list_kind and, if required, the max_distance attribute within their attribute dictionaries.
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Example:

%interacted = "particles.for_all_neighbors" (%set)
<{ // Property dictionary
"with_self" = false,

"reduction_kinds" = [#particles.reduction_kind<add>],
"write_targets" = ["force"]

}>

({*0(%particle : !particle, %neighbor : !particle):

>> Calculate the %force that %neighbor exhibits on %particle
"particles.yield" (%force) : (vector<3xfé4>) -> ()

1)

{ // Attribute dictionary holding target-specific entries:
"neighbor_list_kind" = #particles_dist.neighbor_list_kind<cell_list>,
"max_distance" = 0.3 : f64

} oo (!set) -> (!set)

is transformed into:

%interacted = "particles_dist.for_all_neighbors" (%set)

<{ // Property dictionary (attributes have become properties):
"with_self" = false,
"reduction_kinds" = [#particles_dist.reduction_kind<add>],
"write_targets" = ["force"],
"neighbor_list_kind" = #particles_dist.neighbor_list_kind<cell_list>,
"max_distance" = 0.3 : fé4

>

({"0(%particle : !distparticle, %neighbor : !distparticle):
>> Calculate the %force that %neighbor exhibits on %particle
"particles_dist.yield" (%force) : (vector<3xf64>) -> ()

}) : ('distset) -> (!distset)

Listing 4.16: Specialization of particles.for_all_neighbors via particles-dist-specialize-particles

As outlined in Section 4.4.2, the !particles_dist.set type extends its particles
counterpart by adding a neighbor_lists parameter. Unlike operation properties, this
parameter cannot be provided via attribute dictionaries, as types do not have these. However,
in this case it also is not necessary. Instead of requiring that this parameter is somehow
provided, it is derived from the neighbor_list_kind and max_distance attributes found
on all particles.for_all_neighbors operations in the IR.

Example:

Iparticles_base.set<

-1 : index,

fe4,

3 @ index,

{
"velocity" = vector<3xf64>,
"force" = vector<3xf64>

}

>

is transformed into:
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Iparticles_dist.set<

-1 : index,

64,

3 : index,

{
"velocity" = vector<3xf64>,
"force" = vector<3xf64>

Vo

[
// All particles.for_all_neighbors operations used
// "neighbor_list_kind" = #particles_dist.neighbor_list_kind<cell_list>
// and "max_distance" = "max_distance" = 0.3 : 64
lcell list.list<f64, 3 : index, 0.3 : 64>
]

Listing 4.17: Specialization of !particles.set via particles-dist-specialize-particles
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5 Phase 2: Target-Specific
Transformations

builtin, arith, scf, vector,
func, math

All particles constructs have
been replaced by their
particles_dist counterparts

builtin, arith, scf, vector, builtin, arith, scf, vector,
func, math func, math

O WS

for_all_neighbors and foreach Update and communication
operations have been fused operations have been placed

Figure 5.1: Phase 2 uses the output of phase 1 as input and has two steps. The first step fuses mergeable
particles_dist.foreach and particles_dist.for_all_neighbors operations. The second step places
update and communication operations.

Phase 2 is dedicated to target-specific transformations applied to the operations defined
by the particles_dist dialect. As depicted in Figure 5.1, it is split into two steps. Each
section of this chapter discusses one of these steps. The first section describes the
fusion of particles_dist.for_all_neighborsandparticles_dist.foreach operations.
Section 5.2 introduces the DMP-specific operations defined by the particles_dist dialect,
which includes update and communication operations, and explains the analysis techniques
and placement strategies used to insert these operations into the IR.

5.1 Fusion of particles_dist.for_all_neighbors and
particles_dist.foreach Operations

Among the operations defined by the particles_dist dialect, the particles_dist.
foreachandparticles_dist.for_all_neighbors operations are of particular interest for
optimization, as most computation are performed within these two. Two optimization passes
targeting these operations have been developed: The particles-dist-fuse-foreach-ops
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pass, which fuses adjacent particles_dist.foreach operations, and the particles-
dist-fuse-for-all-neighbors-ops-with-foreach-ops pass, which fuses particles_
dist.foreach and particles_dist.for_all_neighbors operations.

Optimizations are applied after specialization for two reasons. First, the choice of
optimizations and their aggressiveness heavily depends on the lowering target. Second, the
fusion of particles_dist.foreachand particles_dist.for_all_neighbors operations
is made possible by the pre- and post-interaction regions introduced by the particles_
dist.for_all_neighbors operation. The particles.for_all_neighbors operation does
not have these regions, as it avoids making assumption about the strategy employed to visit
neighboring pairs. For example, all neighboring pairs could be visited in parallel, in which
case pre-/post-interaction regions would not make any sense.

In the case of the particles_dist.for_all_neighbors operation, it is known how it will
be lowered and, consequently, also how neighboring pairs will be visited. When targeting
CUDA GPUs, all individual particles will be visited in parallel, while for each particle its
neighbors will be visited in sequence. In the case of CPUs, all individual particles will be
visited sequentially, as will the neighbors for each particle. The visiting strategies for the
individual particles match those of the particles_dist.foreach operation, which also visits
all particles in parallel for CUDA GPUs and sequentially for CPUs. This is even made explicit
by lowering each particles_dist.for_all_neighbors operationto a particles_dist.
foreach operation with a region that iterates over all neighbor indices and computes the
interaction results. Within this region, the pre-interaction region is simply inlined before
iterating over all neighbor indices, while the post-interaction region is inlined afterward.

5.1.1 The particles-dist-fuse-foreach-ops Pass

Theparticles-dist-fuse-foreach-ops passaggressively fusesparticles_dist.foreach
operations. Since each operation avoids data dependencies between executions of its region,

two consecutive particles_dist.foreach operations can always be fused without creating

any new data dependencies. The pass has three levels of aggression, with higher levels

allowing for more code duplication:

* aggression>=1: Directly consecutive particles_dist.foreach operations are fused,
which does not result in any code duplication.

* aggression>=2:particles_dist.foreachoperationsare copied/moved into the branches
of directly adjacent scf . if operations if this enables further fusion. As visualized by Fig-
ure 5.2, this introduces code duplication, since each foreach operation that is moved
must be copied/moved into both branches. Both upwards and downwards directions are
supported:

- Upwards: foreach operations directly after scf.if operations are copied/moved to the
end of the scf.if regions.

- Downwards: foreach operations directly before scf.if operations are copied/moved
to the beginning of the scf.1if regions.

* aggression>=3: particles_dist.foreach operations are moved from the end of
particles_dist.loop time-stepping regions to the beginning if this enables further
fusion. As illustrated by Figure 5.3, this requires substantial rewriting and introduces
a significant amount of code duplication. Moving an operation from the end of the time-
stepping region to the start does not alter the behavior of the intermediate iterations, but
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Figure 5.2: particles-dist-fuse-foreach-ops with aggression level 2
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Figure 5.3: particles-dist-fuse-foreach-ops with aggression level 3

it does affect the first and last iterations, for which the original behavior must be preserved.
Achieving this requires the introduction of an scf . if operation at the beginning to ensure
the first iteration behaves as if the operation had not been moved. Likewise, during the
final iteration, the moved particles_dist.foreach operation must be executed as if it

has not been moved to the front, requiring the introduction of an scf.if operation at the
end of the region.

5.1.2 The particles-dist-fuse-for-all-neighbors-ops-with-foreach-ops

Pass

Theparticles-dist-fuse-for-all-neighbors-ops-with-foreach-ops passaggressively
fuses particles_dist.foreach operations with the pre- and post-interaction regions of ad-
jacent particles_dist.for_all_neighbors. Unlike two consecutive foreach operations,
consecutive for_all_neighbors and foreach operations cannot always be fused. As previ-
ously explained, the particles_dist.for_all_neighbors operation visits all particles in
parallel on CUDA GPUs and sequentially on CPUs, while always iterating over each particle’s
neighbors sequentially. As usual, data dependencies between particles must be avoided,
as these would lead to data races. This means, that the pre- and post-interaction regions
cannot modify any field that is accessed from the neighbor in the interaction region. For
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Read: foreaMcgdiﬂEd. for_all_neighbors
velocity velocity
force Read: Modified:
velocity velocity
f
for_all_neighbors oree
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Write targets = ['force"] write_targets = ["force"] >

Figure 5.4: Fusing particles_dist.for_all_neighbors with particles_dist.foreach

example, if the position of a particle is modified in the pre-interaction region and read
from the neighbors in the interaction region, the position of each neighbor depends on
whether it has already been visited (and had its pre-interaction region executed) or not.
Data dependencies within a particle are allowed, meaning that the pre- and post-interaction
regions can modify fields that are read from the center particle in the interaction region and
vice versa. Figure 5.4 illustrates an example where fusion does not lead to any illegal data
dependencies, whereas Figure 5.5 shows a scenario where fusion would lead to illegal data
dependencies.

Like the particles-dist-fuse-foreach-ops pass, the particles-dist-fuse-for-
all-neighbors-ops-with-foreach-ops pass also has three levels of aggression, control-
ling the amount of code duplication allowed during fusion:

* aggression>=1: Directly consecutive operations are fused, introducing no code duplica-
tion.

* aggression>=2: particles_dist.for_all_neighbors operations are moved into the
branches of scf.if operations if this enables further fusion. Again, both upwards and
downwards directions are supported.

*+ aggression>=3: particles_dist.for_all_neighbors operations are moved from the
end of the time-stepping region of particles_dist.loop operations to the front if this
enables further fusion.

Currently, only for_all_neighbors operations are moved. Future versions of this pass may
also move foreach operations.

5.2 Enabling Distributed Memory Parallelism

5.2.1 particles_dist Update and Communication Operations

To enable DMP, the particles_dist dialect introduces dedicated operations for inter-
process communication and for updating process-local data structures. Every update and
communication operation has two variants: a normal variant and a "maybe" variant. Figure 5.6
illustrates the reason for this: control flow branches can lead to situations where it is not
possible to make optimal update or communication decisions based purely on compile-time
information. To address this, dynamic staleness tracking was introduced, which uses runtime
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Figure 5.5: lllegal data dependency between pre-interaction region and interaction region in particles_dist. |
for_all_neighbors.

flags to track the staleness of the domain decomposition (abbreviated as "map"), each field
in the ghosts layers, and each neighbor list. The mentioned "maybe" wrappers integrate
these staleness flags. Each of these wrappers executes the wrapped operation only if the
corresponding staleness flags are true.

O,

Makes map
stale

Updates map
that might e e
not be needed

Updates map
that might not

Requires fresh
be stale

map

Figure 5.6: Need for staleness tracking

The particles_dist.map and particles_dist.maybe_map Operations

The particles_dist.map operation always updates the domain decomposition and
corresponds to the map function of the vector_dist class from OpenFPM. The particles_
dist.maybe_map operation only does so if the runtime flag tracking the staleness of the
domain decomposition is set to true. Regardless of whether the domain decomposition is
updated, it is guaranteed to be fresh afterward.
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Example:

// Always recomputes the domain decomposition:
%updated_set = "particles_dist.map"(%set) : (!distset) -> !distset

// Recomputes the domain decomposition if the corresponding staleness flag is set to true:
%updated_set = "particles_dist.maybe_map"(%set) : (!'distset) -> !distset

Listing 5.1: particles_dist.map and particles_dist.maybe_map example

The particles_dist.ghost_get and particles_dist.maybe_ghost_get Operations

The particles_dist.ghost_get operation populates the ghost layers of the given particle
set for the specified fields. It corresponds to the vector_dist.ghost_get function. The
fields to retrieve are listed in the fields_to_get operation property. Each entry of this
array attribute must be either "pos" or the name of a particle property. The buffers holding
the ghost values are deleted whenever new values are retrieved, so fetching a new set of
fields makes all other fields unavailable. The particles_dist.maybe_ghost_get operation
adds the operation property fields_to_check to specify the fields to check for staleness.
It populates the ghost layers for all fields in fields_to_get if at least one staleness flag
for a field in fields_to_check is set to true. Section 5.2.6 explains the rationale for this
distinction.

Example:

// Retrieves the positions and the velocities of the ghost particles:
%updated_set = "particles_dist.ghost_get" (%set)
<{"fields_to_get" = ["pos", "velocity"]}> : (!distset) -> !distset

// Retrieves the positions and the velocities of the ghost particles
// 1f the positions are not up-to-date:
%updated_set = "particles_dist.maybe_ghost_get" (%set)
<{"fields_to_check" = ["pos"]
"fields_to_get" = ["pos", "velocity"] }> : (!distset) -> !distset

Listing 5.2: particles_dist.ghost_get and particles_dist.maybe_ghost_get example

The particles_dist.update_neighbor_list and
particles_dist.maybe_update_neighbor_list Operations

The particles_dist.update_neighbor_list operation updates the specified neighbor
list associated with the given particle set. In the case of cell lists, it corresponds to
the vector_dist.update_cell_list function. Which neighbor list to update is specified
via the index property. The index refers to the position of the neighbor list in the
neighbor_lists parameter of the !particles_dist.set type. The particles_dist.
maybe_update_neighbor_list operation performs the update only if the staleness flag
associated with the neighbor list is set to true. In either case, the specified neighbor list is
guaranteed to be up-to-date afterwards.
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Example:

// Updates the neighbor list at the first position

// of the neighbor_1list parameter of !distset:

%updated_set = "particles_dist.update_neighbor_list"(%set) <{"index" = @ : index}>
. (!distset) -> !distset

// Updates the neighbor list if its associated staleness flag is set to :
%updated_set = "particles_dist.maybe_update_neighbor_list"(%set)
<{"index" = 0 : index}> : (!distset) -> !distset

Listing 5.3: particles_dist.update_neighbor_list and particles_dist.maybe_update_neighbor_list
example

5.2.2 Placement Strategy

Between the data structures, managed by the operations introduced in the previous section,
intricate freshness requirements and staleness implications exist that dictate the order in
which they must appear in the IR and, consequently, the order in which their placement
passes must be executed.

Freshness Requirements

+ The particles_dist.ghost_get operation requires an up-to-date domain decomposi-
tion to retrieve the fields for the correct ghost particles, as the domain decomposition
affects which particles are in the ghost layers.

+ The particles_dist.update_neighbor_1list operationrequires that the position values
of the ghost particles are present and up-to-date, as these particles are included when
updating a neighbor list. It therefore also indirectly requires a fresh domain decomposition.

+ The particles_dist.map operation requires no other data structures to be up-to-date,
although this may change in the future when symmetric interactions and ghost-put
functionality are introduced.

+ Any operation accessing the fields of ghost particles requires that the ghost layers are
fresh for these fields. Transitively, it also requires a fresh domain decomposition.

+ Any operation requiring an up-to-date neighbor list also requires that the domain
decomposition is fresh.

Staleness Implications

+ Any operation that modifies particle properties makes the ghost layers stale for these
properties.

+ Any operation that modifies particle positions makes the domain decomposition, and
therefore also all other data structures, stale.

* Regarding ghost layers, OpenFPM introduces additional staleness implication by deleting
all buffered ghost values every time new fields are retrieved. As a consequence, updating
the ghost layers for a set of fields makes it stale for all other fields.

Placement Strategy From the freshness requirements and staleness implications, the
following three-step placement strategy was derived:
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1. Place particles_dist.update_neighbor_list operations in front of operations that
require a fresh neighbor list, but not in front of those where it is already fresh or expected
to be fresh.

2. Insert particles_dist.ghost_get operations in front of operations that depend on
fresh values in the ghost layers, which includes particles_dist.update_neighbor_
list operations. Again, do not place them in front of operations where the ghost layers
are already fresh or expected to be fresh. Furthermore, to reduce the communication
overhead, the number of particles_dist.ghost_get executions should be minimized
by bundling the required ghost fields of multiple operations together.

3. Place particles_dist.map operations in front of operations that require an up-to-date
domain decomposition - which includes particles_dist.ghost_get and particles_
dist.update_neighbor_list operations - but not in front of those where it is already
fresh or expected to be fresh.

A new variant of DFA, referred to as staleness analysis, was developed, which takes all these
intricacies into account and supports the correct and optimized placement of all three
operation types.

5.2.3 Staleness Analysis

Staleness analysis is a Data-Flow Analysis (DFA) variant that was specifically developed to
determine for each node ina !particles_dist.set single-source single-sink modification
graph which data structures associated with the particle set are stale. As detailed in
Section 4.2.2, each single-source single-sink modification graph is also a CFG that focuses
only on operations that act on particle sets. DFA has been used in the other works for
identifying and eliminating stale data references and to generate SPMD code for distributed
memory systems [42, 43].

Two variants of staleness analysis have been developed: potential and full. Potential
staleness analysis determines for each node which data structures might be stale and works
similar to the reaching definitions analysis. Rather than identifying which definitions may
reach a node, however, it tracks which data structures might reach a node in a stale state.
Full staleness analysis determines for each node which data structures are definitely stale
and is comparable to the available expressions analysis.

Staleness States Both variants of staleness analysis utilize individual staleness states for
each relevant data structure. Operations in the modification graph may kill or generates these
states. An operation kills a state if it updates the data structure associated with the staleness
state, and generates a state if it makes the data structure stale. For instance, a particles_
dist.foreach operation that modifies particle positions generates the map state, which
corresponds to the domain decomposition. Because all other data structures depend on a
fresh domain decomposition, it also generates all other staleness states. Conversely, the
particles_dist.map and particles_dist.maybe_map operations kill the map state, as the
domain decomposition is guaranteed to be up-to-date afterward. The following staleness
states have been defined:

+ map: Refers to the domain decomposition.
+ ghost(field): Refers to the ghost layers for the given field, which must either be pos
or the name of a particle property.
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* neighbor_list(index): Refers to the neighbor list with the specified index.

ParticlesDistSetConsumerProducer Interface For all variants of staleness analysis, it
is essential to know for each operation that acts on !particles_dist.set values which
staleness states it generates and which it kills. Furthermore, during placement, it is necessary
to know for each operation the data structures it requires to be fresh. This can be generalized
by asking for every operation and every data structure X, where X may refer to map, any
ghost(field), or any neighbor_list(index):

+ Does the operation definitely make X stale?

+ Does the operation potentially make X stale?

+ Does the operation definitely update X?

- Does the operation potentially update X?

- Does the operation require X to be up-to-date?

All of these questions are encapsulated in the Pythoninterface ParticlesDistSetConsumer
Producer, which extends the interface ParticleSetConsumerProducer introduced in Sec-
tion 4.2.2. This interface must be implemented by all operations that act on !particles_
dist.set values. From its functions, the GEN and KILL sets of each operation can be derived.
For example, if an operation potentially makes the domain decomposition stale, it generates
the map state during potential staleness analysis. However, for it to also generate the map
state during full staleness analysis, it must definitely make the domain decomposition stale.
Potential cases always include definitive ones: if an operation definitely makes X stale, it also
qualifies as potentially making X stale.

Unique Challenges of the particles_dist.call Operation The particles_dist.call
operation poses a unique challenge. For many operations, implementing the Particles
DistSetConsumerProducer interface is straightforward and requires no analysis. The
operations particles_dist.foreach and particles_dist.for_all_neighbors must
first analyze their regions to determine which fields are read or modified, but this information
is readily available in the IR. However, the particles_dist.call operation cannot analyze
the functions it invokes, since these functions don't have to follow an analyzable structure
or may be external and therefore inaccessible. As a result, it cannot derive any staleness
information. Without staleness information, the worst case must be assumed to ensure the
correctness of the program: everything is required fresh before the call and everything is
stale after the function returns. While this approach may be acceptable for infrequently called
functions, for those invoked every time step the overhead would be excessive, especially since
the function may not even access or modify anything. To address this, the particles_dist.
call operation extends its particles.call counterpart with four optional new operation
properties: requires_up_to_date, updates, makes_stale, and uses_staleness_flags
(See Listing 4.15). The properties requires_up_to_date, updates, and makes_stale must
all be array attributes with string entries. The entries must follow the same naming scheme
as the staleness states (e.g., map, ghost(pos)). The uses_staleness_flags property is a
unit attribute, meaning it is either present or not. There are three valid combinations of
these properties:

1. None are present: The worst-case scenario is assumed. All requires-up-to-date and makes-
stale functions of the ParticlesDistSetConsumerProducer interface return true.
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2. The three array properties requires_up_to_date, updates, and makes_stale are
present: The values are interpreted as definite answers. For example, if map is listed
under makes_stale, the function definitely makes the domain decomposition stale.

3. Only the uses_staleness_flags property is present: A reference is passed to the called
function as the last argument. The reference points to a struct containing all boolean flags
used for staleness tracking. This allows the function to read and update the staleness
flags as needed. Consequently, the particles_dist.call operation returns true for all
potential staleness and update queries, while all definite ones and all requires-up-to-date
queries return false.

Differences between Initialization and Time-Stepping Regions The initialization and
time-stepping regions of the particles_dist.loop operation must be treated differently.
Determining which data structures are stale at the beginning of the initialization region is
not possible. Consequently, all data structures are assumed to be stale. In DFA terminology,
this means that the !particles_dist.set region argument generates all staleness states.
By contrast, the !particles_dist.set argument of the interaction region generates no
staleness states. Instead, the time-stepping region is analyzed under the assumption that
no data structures are passed from the initialization region to the first iteration that are
stale but are required to be fresh. To ensure this, liveness analysis is applied to the time-
stepping region. Liveness analysis identifies, for each node in the modification graph, the
data structures that are required to be fresh after the node, before they are either updated
or made stale. Any data structure that is live at the entry node of the time-stepping region
is required fresh by the particles_dist.next operation of the initialization region. As
a final difference between both regions, to account for the loop structure of the time-
stepping region, a back edge is added from the node representing the particles_dist. |
next operation (the sink) to the node for the !particles_dist.set region argument (the
source).

Potential Staleness Analysis In potential staleness analysis, the IN set of a node contains
the staleness states for all data structures that are potentially stale before the corresponding
operation, while the OUT set contains the states for all data structures that are potentially
stale afterward. To join the OUT sets of all predecessors, the union operator is used. This
reflects that a data structure is potentially stale after two or more merging control flow
branches if it is potentially stale at the end of at least one of them.

IN[n] = U OUT[p], OUT[n] = (IN[n] — KILL[n]) U GEN[n]
pepred(n)

with:

+ KILL[n]: All staleness states whose associated data structures are definitely updated by
node n. Additionally, all states whose data structures are required up-to-date by node n.
Including these states reduces the importance of the visiting order during placement. For
example, it prevents inserting a particles_dist.map operation between two operations
that both require an up-to-date domain decomposition in the case where the second one
is visited before the first. Unless, of course, the first operation makes map stale.
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+ GEN([n]: All staleness states associated with data structures that are potentially made stale
by node n. If the node is the !'particles_dist.set argument of the initialization region,
all staleness states.

Full Staleness Analysis In full staleness analysis, the IN set of a node contains the staleness
states for all data structures that are definitely stale before the corresponding operation,
while the OUT set contains the states for all data structures that are definitely stale afterward.
To join the OUT sets of all predecessors, the intersection operator is used. This reflects that
a data structure is definitely stale after two or more merging control flow branches if it is
definitely stale at the end of all of them.

IN[n] = m OUT[p], OUT[n] = (IN[n] — KILL[n]) U GEN[n]
pepred(n)

with:

+ KILL[n]: All staleness states whose associated data structures are definitely updated or
required to be up-to-date by node n. Additionally, all states whose data structures are
potentially updated by the operation, since these are no longer definitely stale afterwards.

* GENIn]: All staleness states associated with data structures that are definitely made stale
by the operation. If the node is the !particles_dist.set argument of the initialization
region, all staleness states.

Example Figure 5.7 illustrates both potential staleness analysis and full staleness analysis
for the domain decomposition applied to the same graph. Together, both analysis results
enable determining where the corresponding update operations must be placed. In the
shown example, a particles_dist.maybe_map operation must be inserted in front of the
for_all_neighbors operations, as the domain decomposition is required fresh at this node,
is potentially stale, but not definitely so.

(Mgt updste

map
[scfyield | [scyield | (scfyield]  (scfyield | | [schyield)  [schyield ]
\/
[ for_all_neigbors JRequires fresh [ for_all_neigbors ]
map
(oreatn Jskes map

Figure 5.7: Left: Modification graph with staleness triggers and freshness requirements. Middle: Full staleness
analysis for domain decomposition. Right: Potential staleness analysis for domain decomposition. Colored nodes
have map in their IN set.
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5.2.4 The particles-dist-place-update-neighbor-list-ops Pass

The particles-dist-place-update-neighbor-1list-ops pass places particles_dist.
update_neighbor_list and particles_dist.maybe_update_neighbor_list operations
inside each particles_dist.loop region. To determine where to insert these operations,
full and potential staleness analyses are utilized, exclusively tracking the staleness of neighbor
lists. Algorithm 1 is used to place the operations in both the initialization and time-stepping
regions. After the algorithm was executed on both regions, liveness analysis is applied to
the time-stepping region to determine which neighbor lists need to be updated before
being passed from the initialization region to the time-stepping region. As with the staleness
analysis, this liveness analysis is limited to neighbor lists.

Algorithm 1 Placing particles_dist.update_neighbor_list and particles_dist.
maybe_update_neighbor_list operations

Input: Region R
1: while first iteration or changes done in last iteration do

2: perform potential staleness analysis on R

3: perform full staleness analysis on R

4 for all operations op € R do

5: if not op requires up-to-date neighbor lists then

6: _continue

7: RF «+ neighbor lists required fresh by op

8: PS « neighbor lists that are potentially stale at op

9: DS « neighbor lists that are definitely stale at op
10: NU <~ DSNRF > neighbor lists that need to be updated
11 MU <+ (PSNRF)\ NU > neighbor lists that may need to be updated
12: if NU # (0 or MU # () then

13: for all neighbor lists € NU do

14: ~ place particles_dist.update_neighbor_list operation before op

15: for all neighbor lists € MU do

16 L place particles_dist.maybe_update_neighbor_list operation before

op
17 | break

5.2.5 The particles-dist-convert-maybe-ops-to-if-stale Pass

Theparticles-dist-convert-maybe-ops-to-if-stale passreplacesallparticles_dist.
maybe_X operations with explicit if-stale-then-X constructs. To support this transformation,
the particles_dist dialect defines three helper operations:

+ particles_dist.get_map_stale Returns true if the domain decomposition is stale.

+ particles_dist.get_ghosts_stale Returnstrue ifthe ghostlayers are stale for at least
one of the fields listed in its fields property.

* particles_dist.get_neighbor_list_stale Returns true if the neighbor list with the
specified index is stale.

This pass must be executed after each placement pass so that the next placement pass can
correctly insert its operations inside the generated scf . if regions. It must also be run after
the final placement pass to lower the remaining particles_dist.maybe_X operations.
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Example:

%updated_set = "particles_dist.maybe_ghost_get" (%set)
<{"fields_to_check" = ["pos"]
"fields_to_get" = ["pos", "velocity"]}>
: (!distset) -> !distset
is transformed into:

%setd, %pos_stale = "particles_dist.get_ghosts_stale"(%set)
<{"fields" = ["pos"]}>
: (!distset) -> (!distset, iT)

%updated_set = scf.if %pos_stale -> (!distset) {
// Ghost layers stale for positions => retrieve ghosts:
%updated_set@ = "particles_dist.ghost_get"(%set®)
<{"fields_to_get" = ["pos", "velocity"]}>
: (!distset) -> !distset
scf.yield %updated_set@ : !distset
} else {
scf.yield %set@ : !distset

Listing 5.4: Conversion of particles_dist.maybe_ghost_get via
particles-dist-convert-maybe-ops-to-if-stale

5.2.6 The particles-dist-place-ghost-get-ops Pass

Theparticles-dist-place-ghost-get-opspassplacesparticles_dist.ghost_getand
particles_dist.maybe_ghost_get operations inside each particles_dist.loop region.
Like particles-dist-place-update-neighbor-1list-ops, this pass also utilized staleness
and liveness analysis to locate insertion points. The placement of ghost_get operations must
follow the placement of particles_dist.update_neighbor_1list operations, asthose also
require up-to-date ghost layers.

The Issue of Visiting Order Compared to placing update_neighbor_list operations,
placing ghost_get operations involves additional challenges. particles_dist.ghost_get
operations make the ghost layers stale for all fields not fetched, as all buffered ghost values
are deleted when new ones are retrieved. Furthermore, to avoid redundant communication,
the fields retrieved should be bundled together as much as possible. As a result, the visiting
order of the operations in the time-stepping region during placement is critical. For example,
Figure 5.8 illustrates a scenario where an operation requiring ghost (force) to be up-to-date
is indirectly followed by another operation that requires a fresh ghost (pos). If the operation
at the end of the loop is visited first, both fields can be bundled into one particles_dist.
ghost_get placed before it. If the operation at the beginning of the loop is visited first, a
particles_dist.ghost_get is inserted before it, fetching ghost(pos). When the other
operation is visited later, a combined retrieval of force and pos is no longer possible.

Bundling Fields to Retrieve Using Liveness Analysis To determine which fields can be
bundled together when populating the ghost layers, liveness analysis over sets of fields is
employed. A set is live if every field it contains is live, and a field is live at a given node if
its ghost values are used before they are refetched or made stale. Individual field liveness
is not relevant, as operations accessing fields on ghost particles need all accessed fields
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%set

[ ghost_get [pos] ] [ i J
. v for_all_neigbors
f Il nei Requires .
[ or_all_neigbors Jghost(pos) [ for_all_neigbors J v
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Makes all
ghosts stale v
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Figure 5.8: Issue of visiting order when placing particles_dist.ghost_get operations. Left: Modification graph
before placement of particles_dist.ghost_get operations. Middle: Inserted ghost_get if the particles_|
dist.for_all_neighbors operation at the beginning of the loop was visited first. Right: Inserted ghost_get if
the for_all_neighbors operation at the end of the loop was visited first.

up-to-date. As such, if any accessed field is missing or stale, all fields must be retrieved. To
capture both definite and potential usage, two variants of liveness analysis - full and potential
- were implemented, with the only difference between these two variants being their join
function. Potential liveness analysis employs the union operation to reflect how a set of fields
is potentially live before a control flow branch if it is potentially live at the beginning of at
least one outgoing branch. Conversely, full liveness analysis uses the intersection operation
to reflect how a set of fields is definitely live before a control flow branch if it is definitely live
at the beginning of all outgoing branches.

Bundling Strategies The particles-dist-place-ghost-get-ops passimplements two
bundling strategies, which are specified via the strategy pass option:

+ optimistic: When a particles_dist.ghost_get or particles_dist.maybe_ghost_
get operation is inserted, all fields in potentially live sets are also retrieved.
* balanced: All fields in definitely live sets are retrieved.

Mitigating the Issue of Visiting Order To mitigate the visiting-order issue, two adjustments
were made to the placement algorithm, as seen in Algorithm 2. First, the traversal of the
time-stepping region starts at a strategically chosen point and not at the region argument.
An optimal starting point is after an operation that makes all fields in the ghost layers stale.
If no such an operation exists, traversal starts after the operation that makes the most fields
stale. When the end of the time-stepping region is reached during traversal, it continues
at the beginning, until the starting point is encountered again. Because the initialization
region is not executed in a loop and everything is assumed to be stale at the start, the region
argument is always chosen as the starting point.

Second, only potential staleness analysis is utilized, and in cases where it is not certain
whether any ghost values must be fetched, only particles_dist.maybe_ghost_get
operations are placed. This approach prevents scenarios where a suboptimal particles_
dist.ghost_get operation is inserted that would have been made redundant if its
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predecessor had been visited first, as illustrated in Figure 5.8. By using only maybe_ghost_|
get, suboptimally placed operations are simply skipped during runtime. To facilitate this,
the particles_dist.maybe_ghost_get operation has two properties: fields_to_check,
which lists the ghost fields to check for staleness, and fields_to_get, which specifies the
fields to retrieve if any checked field is stale. fields_to_check is used to specify the ghost
fields that must be fresh after the operation, while fields_to_get also contains the fields
that should be fetched alongside in anticipation of subsequent operations. After Algorithm 2
was executed on both regions, liveness analysis is applied to the time-stepping region to
determine which ghost fields need to be retrieved at the end of the initialization region.

Algorithm 2 Placing particles_dist.ghost_get and particles_dist.maybe_ghost_get
operations

Input: Region R, Bundling Strategy BS
1. while first iteration or changes done in last iteration do

2: perform potential staleness analysis on R

3: find a good starting point sp in R

4: for all operations op € R starting at sp do

5: if not op requires fields in ghost layers then

6: _continue

7: RF « fields in ghost layers required fresh by op

8: PS «+ potentially stale fields in ghost layers at op

9 MU < PSNRF > fields that may need to be updated
10: if MU # () then
11 if BS = BALANCED then
12: perform full liveness analysis on R
13: LS «+ definitely live sets before op
14: else if BS = OPTIMISTIC then
15: perform potential liveness analysis on R
16: L LS « potentially live sets before op
17: LF + |JLS > live fields
18: if pred(op) makes any field in RF definitely stale or R = initialization region

hen
19: f place particles_dist.ghost_get updating LF before op
20: else
21: place particles_dist.maybe_ghost_get checking RF and updating LF
L before op

22. | break

5.2.7 The particles-dist-place-map-ops Pass

The particles-dist-place-map-ops pass places particles_dist.map and particles_
dist.maybe_map operations inside each particles_dist.loop region. This pass is the
simplest of all placement passes, as it only tracks the staleness of the domain decomposition.
It must be executed after all particles_dist.update_neighbor_list and particles_
dist.ghost_get operations have been placed, since these also require an up-to-date
domain decomposition. Operations are inserted into both regions of the particles_dist. |
loop operation using Algorithm 3. As usual, after executing this algorithm on both regions,
liveness analysis is used on the time-stepping region to place the necessary particles_|
dist.map operations at the end of the initialization region.
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Algorithm 3 Placing particles_dist.map and particles_dist.maybe_map operations

Input: Region R
1. while first iteration or changes done in last iteration do

2: perform potential staleness analysis on R

3: perform full staleness analysis on R

4 for all operations op € R do

5: if not op requires up-to-date domain decomposition then
6: ~ continue

7: fs + domain decomposition is fully stale at op

8: ps < domain decomposition is potentially stale at op

o: if fsthen
10: place particles_dist.map operation before op
11 break
12: else if ps then
13: L place particles_dist.maybe_map operation before op
14 break

5.2.8 The particles-dist-place-set-stale-ops Pass

The particles-dist-place-set-stale-ops pass inserts, if needed, particles_dist.
set_X_stale operations inside particles_dist.loop regions after operations that alter
the staleness state of a data structure. The particles_dist dialect defines three such
operations:

+ particles_dist.set_map_stale Sets the staleness flag for the domain decomposition
to the provided value.

+ particles_dist.set_ghosts_stale Sets the staleness flags for a specified list of ghost
fields to the provided values.

+ particles_dist.set_neighbor_list_stale Sets the staleness flag for the neighbor
list with the specified index to the provided value.

Operations are only placed if necessary to avoid cluttering the IR. For example, placing
particles_dist.set_map_stale operations inside the regions of a particles_dist.
loop is only necessary if a particles_dist.get_map_stale operation is present in one
of both regions, or if one of them contains a particles_dist.call operation with the
uses_staleness_flags property.

Example:
%updated_set = "particles_dist.ghost_get"(%set)

<{"fields_to_get" = ["pos", "velocity"]}>
: (!distset) -> !distset

is transformed into:
updated_set® = "particles_dist.ghost_get"(%set)

<{"fields_to_get" = ["pos", "velocity"]}>
: (!distset) -> !distset
updated_set = "particles_dist.set_ghosts_stale"(%set)
<{"fields" ["pos", "velocity", "force"],
"values" [false, false, true]}>

: (!distset) -> !distset

Listing 5.5: Placement of particles_dist.set_ghosts_stale operations via
particles-dist-place-set-stale-ops
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6 Interlude: Support Dialects and
Integrating MLIR With OpenFPM

This interlude chapter introduces the main support dialects developed to facilitate the
lowering of the particles_dist dialect. It also explains the conceptual framework for
integrating MLIR with OpenFPM via a runtime.

The first section describes the challenges one has to face when lowering complex types,
the concept of 1-to-N conversion, and the box dialect that was developed to tackle the former
while facilitating the latter. Next, Section 6.2 explains how MLIR is integrated with OpenFPM
and C++ via storage structs and runtime functions. Section 6.3 introduces the concept of
companion dialects together with the implemented neighbor list dialects. Finally, Section 6.4
discusses how loads and stores of particle values are optimized using the memwrap dialect.

6.1 Enabling the Lowering of Complex Types and 1-to-N
Conversion

Of the types introduced so far, the Iparticles_dist.set and !particles_dist.particle
types each combine multiple elements of different types and must therefore be lowered to
an aggregate type. The !'11vm.struct type offered by the 11vm dialect is the only suitable
integrated candidate. However, this type is highly restrictive, as it only supports a limited
selection of builtin and 11vm types as elements. As a result, it cannot be directly applied in
cases where element types are not natively supported, which includes index and memref,
two very frequently used types.

This restriction can be circumvented by pre-lowering the unsupported types to supported
ones, and using the lowered types instead of the original ones as elements. For example, as
illustrated by Listing 6.1, the index type must be lowered to its corresponding signless integer
type (e.g., 132 or 164, depending on the platform), whereas the memref type must be lowered
to its corresponding !'11vm.struct type. When using this approach, extracting values of
types that needed to be converted or inserting them into an ! 11vm.struct requires the use
of builtin.unrealized_conversion_cast operations to convert between pre-lowered
and original types, as exemplified by Listing 6.1. This approach is very tedious but works
reasonably well for standard types where the conversion patterns are readily available.
However, it falls short for more complex and non-standard types.
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// Illegal struct type:
'1lvm.struct<(

i64, // Allowed
index, // Not allowed
memref<3x?xf64> // Not allowed

)>

// Corresponding legal struct type:

Imystruct = !1lvm.struct<(
ie4,
i64, // Pre-lowered index
struct<(ptr,ptr,i64, array<2xi64>,array<2xi64>)> // Pre-lowered memref

)>

// Extracting a value of a type that needed to be converted:

// Extract !llvm.struct<(ptr,ptr,i64,array<2xi64>,array<2xi64>)> entry:

%memref_struct = llvm.extractvalue %struct[2] : !mystruct

// Convert back to original type:

%memref = builtin.unrealized_conversion_cast %memref_struct
I11lvm.struct<(ptr,ptr,164,array<2xi64>,array<2xi64>)> to memref<3x?xf64>

Listing 6.1: Pre-lowering unsupported element types of an ! 11vm.struct type and extracting values of types
that needed to be converted

To avoid pre-lowering unsupported element types and constantly converting between
the pre-lowered and original types, the box dialect was developed. At the core of the box
dialect lies the !box.box type, which functions similarly to a literal '11vm.struct. It also
supports nesting and the extraction and insertion of elements. Unlike the '11vm.struct
type, however, the !box.box type does not restrict the types of its elements and natively
supports both index and memref. To store and load boxes, the box dialect also defines the
Ibox.storage type, which is essentially a typed pointer to a region of memory for storing a
Ibox.box value as !'11lvm.struct. When a !'box.box value is stored as ! 11vm.struct, the
index and memref types are automatically converted into their ! 11vm.struct-compatible
types.

Beyond providing a generic struct-like type without the cumbersome restrictions of
I11vm.struct, the box dialect introduces several rewriting passes that enable 1-to-N
conversion by replacing all 'box.box values and types with their constituent elements. The
expansion and shortcutting strategy, and the passes implementing its steps, are discussed
later in Section 8.2. 1-to-N conversion offers two advantages. First, it eliminates the need to
explicitly lower every !box.box type, which effectively makes it compatible with all element
types, even those that cannot be converted into 11vm-compatible types. As explained, this
applies only when a !'box.box type is never loaded or stored, as in these cases, the box
must be converted into an !'11vm.struct. Second, operating on individual values is often
preferable to operating on aggregate values, as many transformations, including many
optimizations, are easier to implement for individual values. For example, constant folding
becomes significantly more challenging when the constants are inserted into structs between
their definition and subsequent use. This affects many of the passes integrated into MLIR
and xDSL.
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6.1 Enabling the Lowering of Complex Types and 1-to-N Conversion

6.1.1 The box Dialect
The !'box.box Type

The !box.box type is a struct-like aggregate type. It has a single dense array attribute
parameter that holds the element types. Like '11vm.struct, it supports nesting.

Example:
'mybox@ = !box.box<|
index, // Allowed, unlike in !1lvm.struct
Ibox .box<[ // Nested box:
memref<3x?xf64> // Allowed, unlike in !1lvm.struct

1>

1>

Listing 6.2: ! box.box example (! mybox@)

The !'box.storage Type

The !box.storage type, along with its associated allocation, load, and store operations,
enables loading and storing of !'box.box values. To store or load a !box.box value, it must
be converted into an !11vm.struct. The ability to store boxes as structs is essential for
enabling the exchange of complex data between MLIR and C++. The !box.storage type
has a single parameter indicating the ''box.box type it stores. When the !box.box type is
lowered to an !'11vm.struct during storage and transfer, index elements are automatically
converted into unsigned integers, and memrefs into ! 11vm.structs.

Example:

// Stores !mybox@ value:
'box.storage<[ 'mybox@]>

// .. and corresponds to a !llvm.ptr to:
11vm.struct<(
i64, // Automatically converted index
struct<( // Nested box:
struct<(ptr,ptr,164,array<2xi64>,array<2xi64>)> // Automatically converted memref

)>
)>

Listing 6.3: 'box.storage example

The box.insert and box.extract Operations

The box.insert operation inserts the provided value into the given !box.box argument
at the position specified by the indices property and returns the updated box. The box. |
extract operation extracts the value at the position specified by the indices property from
the given !box.box operand and returns it. For both operations, the indices property must
be an integer array, with left-to-right values mapping to outer-to-inner indices. Inserting and
extracting !box.box values is supported.
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Example:
'mybox1 = !box.box<[ // indices:
index, // @
I'box.box<[ /] 1
64, // 1,0
32 /] 1,1
1>1>

// Insert %value at 1,0 into given %box:

%updated_box@ = "box.insert"(%box, %value) <{"indices" = [1 : i64, © : 164]}>
('mybox1, f64) -> (!mybox1)

>> Modify %updated_box® -> %updated_box1

// Extract updated value at 1,0:

%updated_value = "box.extract"(%updated_box1) <{"indices" = [1 : i64, @ : 164]}>
: (!'mybox1) -> (f64)

Listing 6.4: box.insert and box.extract example (!mybox1)

The box.undef Operation

The box.undef operation creates an undefined !box.box value of the specified return type.
Before an entry can be extracted from the created box, it must be inserted. Furthermore,
before a !'box.box can be stored, all entries must be defined. This prevents the extraction
and subsequent use of uninitialized entries, while also eliminating the need to implicitly
initialize them.

Example:

%box = "box.undef"() : () -> !mybox1

Listing 6.5: box .undef example

The box.1load and box.store Operations

The box.load operation loads the !box.box value stored at the location specified by the
provided !box.storage operand and returns it. Internally, this operation first loads the
I11vm.struct that corresponds to the !box.box type using 11vm.load and then converts
it into a !'box.box value. The box.store operation stores the given !box.box operand
at the location specified by the provided !box.storage argument. Under the hood, this
operation first converts the 'box.box value into an ! 11vm. struct and then stores the struct
using 11vm.store. The !'box.box type must be convertible to ! 11vm.struct at the time of
lowering any of these operations. During lowering, any index or memref element types are
transparently converted into their ' 11vm.struct-compatible types.

Example:

Imystoragel = !box.storage<!mybox>

// Load box from given %storage:

%box = "box.load"(%storage) : (!mystoragel) -> (!mybox1)

>> Modify %box -> %updated_box

// Store updated box:

"box.store" (%updated_box, %storage) : (!'mybox, !mystoragel) -> ()

Listing 6.6: box.load and box.store example (!mystoragel)
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The box.alloca Operation

The box.alloca operation dynamically allocates memory on the stack for the !'box.box
stored by the specified !box.storage return type. Internally, the box.alloca operation
uses 11vm.alloca to allocate memory for the corresponding !11vm.struct.

Example:
%storage = "box.alloca"() : () -> (!mystoragel)

Listing 6.7: box .alloca example

The box.pack and box.unpack Operations

The box . pack operationinserts all provided values into a new !box . box value of the specified
return type and returns it. The types of the inserted values must match the element types
of the returned !'box.box type. Nested !box.box return types are supported, but their
constituent values must be provided individually. The box.unpack operation recursively
extracts all entries from the provided !box.box value and returns them.

Example:

// Extract all individual entries in the order in which they appear in !mybox1:
%0, %1_0, %1_1 = "box.unpack"(%box) : (!mybox1) -> (index, f64, f32)

// Provide values for indices (1), (1,0), and (1,1):

%new_box = "box.pack"(%0, %1_0, %1_1) : (index, f64, f32) -> Imybox1

Listing 6.8: box . pack and box.unpack example

6.2 Integrating MLIR With OpenFPM

The integration of MLIR with OpenFPM, and more generally C++, is essential to enable
the use of OpenFPM data structures and procedures, which form the backbone of the
particles_dist dialect, handling complex tasks such as domain decomposition, ghost
layer synchronization, and cell list updates.

Exchanging Data and Control via Non-member Functions Integrating C++ with MLIR
hinges on the transfer of data and control, which is most directly achieved using non-member
functions. To avoid name mangling during the compilation of the C++ code, these functions
are always declared extern "C" and in the global namespace, as shown by Listing 6.9. This
ensures that C++ functions can be invoked from MLIR using their names, and vice versa.

Exchanging Data via Shared Types To use a C++ data structure directly within MLIR, it
must have a corresponding MLIR type. At the time of writing, we are not aware of any native
MLIR support for C++ classes or object instances, making their integration non-trivial and
effort-intensive. Consequently, data exchanges between MLIR and C++ are largely restricted
to numeric data types (132, 164, f32, f64, etc.), structs (! 11vm.struct) arrays (! 11vm.array),
and pointers (! 11vm.ptr).
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// C++

// Declare MLIR function:

extern "C" void md(ParticleSet *, size_t, size_t, double);

// Define C++ function:

extern "C" void batch_done(ParticleSet *set, size_t step) {
/]

}

// MLIR

// Declare C++ function:

func.func private @batch_done(%storage : !storage, %step : index) -> ()

// Define MLIR function:

func.func @md(%storage : !storage, %num_steps: index, %batch_size : index, %deltat: f64)

{

// Perform calculations using particles.loop, call @batch_done after every batch

}

Listing 6.9: Matching function declaration in MLIR and C++

Passing Aggregate Types By Reference As outlined in Section 3.2, specific C++ optimiza-
tions prohibit passing aggregate types such as structs, arrays, or vectors by value. To cir-
cumvent this issue, such types are never passed by value between MLIR and C++, but are
always passed by reference. While obtaining a reference to a struct or array in C++ is straight-
forward, this is not the case in MLIR. In MLIR structs, arrays, and vectors are SSA values,
which are not directly associated with a memory region. Passing such values by reference
therefore requires either dynamically allocating buffers for each function call or maintaining
pre-allocated communication buffers for reuse, to store the value before passing a pointer
to the buffer to the invoked function. This work uses the latter approach.

Integrating OpenFPM Data and Procedures via Runtime Functions As already discussed,
OpenFPM classes and their instances cannot be used directly within MLIR because they lack
the corresponding MLIR types. Since direct integration is not possible, indirect methods
are employed to invoke member-functions and access object data. To invoke a member-
function of an object from within MLIR, a reference (! 11vm.ptr) to the object is passed to
a non-member wrapper function implemented in C++, as illustrated in Listings 6.10. This
function then internally invokes the desired member-function. Similarly, access to object
data is also handled through non-member C++ functions that extract the data from the
object reference, convert it into an MLIR compatible format, and return it. This approach
reduces integration efforts to only those components of OpenFPM types that are needed
directly within MLIR and allows choosing a format that compatible with both C++ and MLIR.

// C++ runtime
extern "C" void map(my_vector_dist *vd) {

vd->map() ;
}
// MLIR
// Reference to vector_dist object is key component of a !particles_dist.set
%vector_dist_ptr = "particles_dist.get_vector_dist"(%set) : (!distset) -> !llvm.ptr

func.call @map(%vector_dist_ptr) : (!1lvm.ptr) -> ()

Listing 6.10: Invoking vector_dist.map member-function from MLIR
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Internals Structs and Extraction Functions Often, several individual data components
from an OpenFPM object are needed for direct use within MLIR. To avoid defining numerous
separate extraction functions, these components are grouped together into structs, which
are then used to retrieve all components at once. For instance, the components required
from a vector_dist object are:

+ The local size, excluding ghost particles
+ The local size, including ghost particles
+ The memrefs for the particle positions and particle properties

The first two values are needed to iterate over all particles, with or without ghosts, while
the memref values are required to directly access their positions and properties within
MLIR. Listing 6.11 shows the corresponding ParticlesSetInternals struct. To populate
this struct, the C++ extraction function named update_internals is called from MLIR. This
function takes a reference to the vector_dist object and a pointer to a ParticlesSet
Internals struct as arguments, extracts all required data from the vector_dist object,
converts it to MLIR compatible types, and writes it into the struct. In MLIR, once the extraction
functions returns, the struct is loaded from the communication buffer and its values are
extracted. As detailed in Section 4.2.1, the !particles_dist.set type employs fake value
semantics, which enables buffering data as SSA values for direct use. The values extracted
from the ParticlesSetInternals struct are buffered in this manner and are referred to
as "internals", hence the name of the struct and the extraction function.

struct ParticleSetInternals {
size_t size_local;
size_t size_local_with_ghost;
Memref<double, 2> pos;
struct {
MemRef<double, 2> velocity;
MemRef<double, 2> force;
} properties;

}i

Listing 6.11: ParticleSetInternals struct example

with:
template <typename ElementType, size_t Rank> struct MemRef ({
ElementType *allocatedPtr;
ElementType *alignedPtr;
size_t offset;
size_t sizes[Rank];
size_t strides[Rank];

Listing 6.12: MemRef struct

The particles_dist.update_internals Operation Invoking the extraction function,
loading the struct from the communication buffer, extracting the internals, and storing
theminthe !particles_dist.set value are all handled by the particles_dist.update_
internals operation. It also updates the internals of all data structures associated with
the particle set. For instance, if the particle set is associated with a cell list, its internals are
updated using the same strategy.
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Example:

// Before: Operations such as particles_dist.get_local_size may return stale values
// Updates internals of particle set and associated neighbor lists:

%set® = "particles_dist.update_internals"(%set) : (!distset) -> !distset

// Afterward: Operations such as particles_dist.get_local_size return fresh values

Listing 6.13: particles_dist.update_internals example

Integrating Particle Data From vector_dist As discussed, memrefs are used for directly
accessing particle positions and particle properties within MLIR. To transfer amemref between
MLIR and C++, it is converted into a struct containing the memory location and the layout
parameters of the memref, as shown in Listing 6.12. The memref type is MLIR-native and not
used by the vector_dist class, and thus cannot be directly extracted. However, both the
memref type and the vector_dist template class are sufficiently flexible that their memory
layouts can be matched. The memory layout of memrefs is configurable using offsets, sizes,
and strides, while the layout employed by the vector_dist class is controllable using the
memory_traits_inte and memory_traits_lin memory configurations, together with the
Point and aggregate types. memory_traits_inte specifies an interleaved memory layout,
whereas memory_traits_lin leads to a linear memory layout.

Shared Memory Layouts Figure 6.1 depicts the shared memory layouts and the corre-
sponding vector_dist and memref types. The positions are stored interleaved, with all x, v,
and z coordinates being stored in consecutive arrays, resulting in a column-major memory
layout. For each property, the x, y, and z entries of each particle are stored consecutively,
resulting in two-dimensional arrays with row-major memory layouts. This layout was cho-
sen because it was the easiest to integrate into MLIR while also providing decent spatial
locality. A memory layout where the positions are also stored row-major is, because of limita-
tions imposed by the vector_dist class, not possible without significant re-implementation
efforts.
vector_dist<3, double,

aggregate<Point<3, double>, Point<3, double>>,
memory_traits_inte>

vector_dist
openfpm: :vector<
aggregate<Point<3, double>,
Point<3, double>>,
memory_traits_inte>
Positions Properties
velocity force

openfpm: :vector<
Point<3, double>,
memory_traits_inte>

memref<3xNxf64> memref<Nx3xf64> memref<Nx3xf64>

Figure 6.1: Shared memory layout between MLIR and OpenFPM
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6.3 Neighbor List Dialects

Integrating the details of each neighbor list into the particles_dist dialect and its lowering
passes may have been feasible. However, each neighbor list is sufficiently complex, while also
being nearly self-contained, to warrant its own dialect. Because these dialects must be tightly
integrated with particles_dist, they are not fully standalone. Instead, they constitute as
special type of dialect, referred to as "companion dialect".

Two neighbor list dialects have been developed: cell_list and local_domain. The
cell_list dialectis, as the name suggests, a dialect for cell lists. The 1ocal_domain dialect,
on the other hand, does not represent a conventional neighbor list. Instead, it considers all
particles within a subdomain, including ghost particles, as neighbors.

Both dialects share a highly similar syntax. In fact, their syntax is so similar that their
commonalities were extracted into the abstract base dialect neighbor_1list, from which
both dialects inherit.

6.3.1 The Concept of Companion Dialects

A companion dialect complements another dialect, referred to as "leader", and exists
only in conjunction with it. Using companion dialects enhances modularity and clarity by
encapsulating distinct sub-concepts into separate dialects that would otherwise have to be
integrated into the leader dialect. The alternative approach of integrating the functionality of
all companion dialects directly into their leader dialect would risk making it overly complex,
less modular, and harder to maintain, while diminishing its conceptual distinctness. Ultimately,
using a companion dialect is primarily a stylistic choice rather than a technical necessity.

Dependencies between leader and companion dialects  The benefits gained by employing
a companion dialect come at the cost of increased lowering complexity. Just as a sub-
concept cannot be fully separated from its super-concept, a companion dialect and its
leader dialect are inherently linked due to dependencies between their operations, types
and attributes. The left side of Figure 6.2 illustrates these inter-dialect dependencies, which
can be categorized as follows:

"Use" dependencies:

- Operations of one dialect use types of the other as operand or result types.
+ Operations of one dialect use attributes of the other as intrinsic attributes or properties.
+ Types and attributes of one dialect use types or attributes of the other as parameters.

"Lowering" dependencies:

+ Lowering an operation of one dialect introduces operations, types, or attributes of the
other.
+ Lowering a type or attribute of one dialect introduces types or attributes of the other.

Example Theparticles_dist.for_all_neighbors operationreliesonthecell_list.
for_all_neighbor_indices operation to iterate over the indices of a particle's neighbors.
To this end, the for_all_neighbor_indices operation is introduced when lowering the
for_all_neighbors operation. As illustrated by the right side of Figure 6.2, this constitutes
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a lowering dependency. The for_all_neighbor_indices operation, in turn, requires an
operand of type !particles_dist.particle to specify the particle over whose neighbors'
indices to iterate. This constitutes a use dependency. Lowering the for_all_neighbor_|
indices operation introduces a particles_dist.get_position operation, as the position
of a particle is used to compute the ID of the cell it resides in, constituting another lowering
dependency.

> Leader particles_dist
Use _ Types / Attributes article

Dependency A . 4[ il A A T ]
‘/l : : 1 1
,)\ : ! === === === - = !

—> v| 4 v R Z y R

Dependency
Companion cell_list

Figure 6.2: Left: Dependencies between a companion dialect and its leader. Right: Example of dependencies
between particles_dist and cell_list.

Two-Step Interleaved Tick-Tock Strategy The left side of Figure 6.2 may suggest circular
lowering dependencies between the leader dialect and its companions, which would
make lowering impossible. However, the right side clarifies that there are no actual
circular dependencies, but rather dependency trees that lead from one dialect to another.
Nevertheless, a leader dialect must always be lowered alongside its companion dialects,
either by lowering everything in a single pass, or by lowering all dialects using a "two-step tick-
tock" strategy. In this work, the latter approach was selected as it provides higher modularity
and better maintainability. The two-step tick-tock method consists of two steps, where each
step is further divided into two alternating phases: a "tick" phase and a "tock" phase.

Step 1: Lower Operations The first step involves converting the operations. During a
"tick" phase, the operations of the leader dialect are lowered, while during a "tock" phase, the
operations of the companion dialects are lowered. The total number of individual tick and
tock steps required corresponds to the length of the longest lowering dependency chain
plus the final lowering step. For example, in the case of the cel1_list and particles_dist
dialects, the longest lowering dependency chain is two, meaning that after tick-tock-tick, all
operations are lowered.

Step 2: Lower Types The second step involves converting attributes and types, which
may also be performed in several alternating tick and tock phases if necessary. This must be
done after lowering the operations because the operations and their conversion patterns
depend on the presence of the non-lowered attributes and types.

Companion Dialects vs. Specialization Dialects Section 4.1.2 introduces the concept of
specialization dialects. Companion dialects can sometimes serve as a viable alternative
to specialization dialects. However, while companion dialects enable the introduction of
additional IR constructs, they do not permit the extension of existing ones. The particles_
dist dialect could therefore not have been a companion dialect of the particles dialect.
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6.3.2 The neighbor_list Dialect

The neighbor_list dialect serves as an abstract base dialect for both cell_list and
local_domain and all future neighbor list dialects. At the center of this dialect and its
subdialects is the neighbor_list.for_all_neighbor_indices operation, which iterates
over the indices of a particle’s neighbors. Enabling this operation is the primary purpose of
all other operations and types defined by this dialect.

The 'neighbor_list.list Type

The 'neighbor_list.list type represents aloaded neighbor list. Like !particles_base.
set and its subtypes, it also employs fake value semantics. It has no parameters, as its
subtypes do not share a common set of parameters.

The !'neighbor_list.storage Type

The I'neighbor_list.storage typerepresentsan unloaded neighborlist. Like !particles_
base.storage and its subtypes, it employs memory semantics and is thus not associated
with any transient state or buffered values. Instead, it represents a pointer to a region of
memory that holds the necessary reference(s) to load a 'neighbor_list.list. It expects a
single 'neighbor_list.list type parameter, indicating the neighbor list it stores.

The neighbor_list.for_all_neighbor_indices Operation

The neighbor_list.for_all_neighbor_indices operation iterates over the neighboring
indices of the given !particles_dist.particle value using the provided !neighbor_
list.1list. Its primary role is to support the lowering of particles_dist.for_all_
neighbors operations, with which it shares a similar syntax. It has one region that
defines the computations to be performed. This region is executed exactly once for each
neighbor index and is terminated using a neighbor_list.yield operation that yields the
results of the computation. Whether this region is executed sequentially or in parallel
for all neighbor indices is up to the implementation. Like the particles_dist.for_all_,
neighbors operation, the neighbor_list.for_all_neighbor_indices operation also has
reduction_kindsandwith_self properties, controllingthe same aspects. After all neighbor
indices have been visited, it returns the reduced interaction results.

Example:
%combined_force = "neighbor_list.for_all_neighbor_indices"(%neighbor_1list,
%particle)
<{"with_self" = false,
"reduction_kinds" = [#particles_dist.reduction_kind<add>]}>

({"(%neighbor_index : index):
// The first operation typically loads %neighbor using its %neighbor_index:
%neighbor = "particles_dist.load_particle"(%set, %neighbor_index)

: (!distset, index) -> !distparticle
>> Calculate the %force that %neighbor exhibits on %particle
"neighbor_list.yield" (%force) : (vector<3xf64>) -> ()

}) : ('neighbor_list.list, !distparticle) -> (vector<3xf64>)
// %combined_force holds reduced interaction results

Listing 6.14: neighbor_list.for_all_neighbor_indices example
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The neighbor_list.yield Operation

The neighbor_list.yield operation is used to terminate the region of neighbor_
list.for_all_neighbor_indices operations. It takes a variadic number of operands,
representing the computational results of the region it terminates.

Example:
"neighbor_list.yield"(%force) : (vector<3xfé64>) -> ()

Listing 6.15: neighbor_list.yield example

The neighbor_list.update Operation

The neighbor_list.update operation updates the given !neighbor_list.list value
using the provided !particles_dist.set operand and returns the updated neighbor list.
It is introduced when lowering the particles_dist.update_neighbor_list operation.

Example:

%updated_list = "neighbor_list.update" (%neighbor_list, %set)
: (!neighbor_list.list, !distset) -> !neighbor_list.list

Listing 6.16: neighbor_list.update example

The neighbor_list.update_internals Operation

The neighbor_list.update_internals operation updates the internals of the given
'neighbor_list.1list argument and returns the updated value. It is introduced when
lowering the particles_dist.update_internals operation, which is also responsible for
updating the internals of all associated data structures, like neighbor lists.

Example:

%updated_list = "neighbor_list.update_internals"(%neighbor_list)
: (!'neighbor_list.list) -> !neighbor_list.list

Listing 6.17: neighbor_list.update example

The neighbor_list.undef Operation

The neighbor_list.undef operation creates an undefined !'neighbor_list.1list value
of the specified return type. The returned value must be fully initialized before being used in
aneighbor_list.for_all_neighbor_indices operation.

Example:
%uninitialized_list = "neighbor_list.undef"() : () -> !neighbor_list.list

Listing 6.18: neighbor_list.undef example

The neighbor_list.load and neighbor_list.store Operations

The neighbor_list.load operation loads the reference(s) to the OpenFPM data structure(s)
stored by the given I'neighbor_list.storage (if there are any) and incorporates them
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into the provided !'neighbor_list.1list value. Conversely, the neighbor_list.store
operation stores the references integrated by the given 'neighbor_list.1list value at
the provided 'neighbor_list.storage location.

Example:

Ilist_storage = !neighbor_list.storage<neighbor_list.list>

// Load reference(s) to OpenFPM objects stored by %storage:
%loaded_list = "neighbor_list.load" (%storage, %uninitialized_list)

: (!list_storage, !'neighbor_list.list) -> !neighbor_list.list
>> Modify %loaded_list -> %modified_list
// Store references of the %modified_list back in %storage:
"neighbor_list.store"(%modified_list, %storage):(!neighbor_list.list, !list_storage) -> ()

Listing 6.19: neighbor_list.load and neighbor_list.store example

The neighbor_list.alloca_buffers Operation

As explained in Section 6.2, passing structs by reference between MLIR and C++ requires pre-
allocated communication buffers. The neighbor_1list.alloca_buffers operation allocates
the buffers necessary for carrying out runtime calls on the stack and inserts the references
to the allocated memory regions into the given !neighbor_list.1list value.

Example:

%list_with_allocated_buffers = "neighbor_list.alloca_buffers"(%list)
: (!neighbor_list.list) -> !'neighbor_list.list

Listing 6.20: neighbor_list.load example

6.3.3 The local_domain Dialect

The local_domain dialect is a subdialect of neighbor_1list, inheriting all its type and
operation definitions. It does not extend any of these definitions, but simply adopts them as
they are, essentially replacing the neighbor_1list prefix with local_domain. The local_
domain neighbor list treats all particles within the same local subdomain, including ghost
particles, as neighbors. Although this definition of a neighborhood is a simplistic, it is both
practical and easy to implement.

6.3.4 The cell_list Dialect

Like local_domain, the cell_list dialectis also a subdialect of neighbor_1ist, inheriting
allits type and operation definitions. As the name implies, it encapsulates cell lists. Depending
on the hardware target, it either integrates the CelllList_gen class from OpenFPM,
specifically the one with the Mem_fast memory type, or the CelllList_gpu class. It adopts
most types and operations of the neighbor_1list dialect without any adaption. Only the
lcell_list.list type extends its base type.

The tcell_list.list Type The lcell_list.list type extendsthe !neighbor_list.
list type by defining three additional parameters. The first parameter, position_
type, specifies the numeric type used for the positions, while the second parameter,
dimensionality, defines the dimensionality of the computational domain. Both must match
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the corresponding parameters of the Iparticles_dist.set type they interact with. The
third parameter, cutoff_radius, specifies the cutoff radius of the interaction, from which
the size of the cells is derived.

Example:

lcelllist = lcell_list.list<
64, // position_type
3 @ index, // dimensionality
0.3 : fée4 // cutoff_radius

Listing 6.21: 'cell_list.list example

6.4 Eliminating Redundant Stores of Particle Values

The particles_dist.foreach operation transparently loads the !particles_dist.
particle region argument before each execution of its region and transparently stores
the yielded value afterward. Internally, before entering the region, it loads all the fields that
make up a particle from their respective memrefs and inserts them into the !particles_
dist.particle region argument. Conversely, after exiting the region, when storing a yielded
particle, it extracts all its fields and stores them back into their respective memrefs. This
introduces potentially redundant store operations. A store operation is redundant if it stores
a value back at the location it was loaded from. In the absence of data dependencies, such
store operations can be removed.

6.4.1 The memwrap Dialect

The memwrap dialect together with the memwrap-eliminate-redundant-store-ops pass
were developed to eliminate redundant stores in the guaranteed absence of data dependen-
cies. The memwrap dialect wraps load and store operations from both the memref and vector
dialects, while the memwrap-eliminate-redundant-store-ops pass identifies redundant
memwrap store operations and removes them. Additionally, the memwrap dialect streamlines
loading and storing of single-ranked vectors from two-ranked memrefs with either row-major
or column-major memory layouts.

The memwrap.load and memwrap.store Operations

The memwrap.load operation wraps the memref.load operation, while memwrap.store
wraps the memref . store operation. Both operations have identical syntaxes to their memref
counterparts, essentially replacing the memref prefix with memwrap.

Example:

%value = "memwrap.load" (%memref, %index) : (memref<?xf64>, index) -> f64
"memwrap.store" (%value, %memref, %index) : (f64, memref<?xf64>, index) -> ()

Listing 6.22: memwrap . load and memwrap . store example
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The memwrap.load_vector and memwrap.store_vector Operations

The memwrap . load_vector operation loads a single-ranked vector from the provided two-
ranked memref. An index operand specifies the position of the vector to load. Additionally,
the operation accepts an optional memref_transposed unit attribute property, which acts
as a flag to indicate whether the memref is transposed, i.e., uses a column-major memory
layout. When the memref_transposed flag is absent, the index operand specifies the row
to load. If present, it specifies the column. This property was introduced to streamline the
loading and storing of particle positions, the memref of which uses a column-major memory
layout (see Figure 6.1).

Example:

// Properties use ROW-MAJOR memory layout:
// %force_memref = | (x0 y0@ z0) |

// | (x1 y1 z1) |

// \ o |

/1 | (XN yN zN) |

// Force of particle with index 1 is stored as second ROW.
// Returns (x1 y1 z1):
%force = "memwrap.load_vector" (%force_memref, %one)
(memref<3x?xf64>, index) -> vector<3xf64>

// Position memref uses COLUMN-MAJOR memory layout:

// %pos_memref = | (x0 x1 ... xN)
// | (yo y1 ... yN) |
// | (z0 z1 ... zN)

// Position of particle with index 1 is stored as second COLUMN.

// Returns (x1 y1 z1):

%pos = "memwrap.load_vector"(%pos_memref, %one) <{"memref_transposed"}>
(memref<?x3xf64>, index) -> vector<3xf64>

Listing 6.23: memwrap . load_vector example

The memwrap.store_vector operation stores a single-ranked vector operand at the
provided position in the given two-ranked memref. Like the memwrap . load_vector operation,
the position is specified via an index operand, and the memory layout is specified via a
memref_transposed property.

Example:

// %force_memref = | (x0 y@ z0) |
/1 I (x1 y1 z1) |
/] \ |
/7 | (XN yN zN) |

// Replaces x1 y1 z1:
"memwrap.store_vector" (%force, %force_memref, %one)
(vector<3xf64>, memref<3x?xf64>, index) -> ()

// %pos_memref = | (x0 x1 ... xN)
/1 | (yo y1 ... yN) |
// | (z0 z1 ... zN) |

// Replaces x1 y1 z1:
"memwrap.store_vector" (%position, %pos_memref, %one) <{"memref_transposed"}>
(memref<?x3xf64>, index) -> vector<3xf64>

Listing 6.24: memwrap . load_vector example
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builtin, arith, scf, vector, builtin, arith, scf, vector, builtin, arith, scf, vector,
func, math func, math func, math

Update and communication particles_dist.update_internals
operations have been placed operations were placed and

runtime functions declared

Operations from particles_dist

builtin, arith, scf, vector, and companion dialects
func, math were lowered

|
©2)

Types from particles_dist
and companion dialects
were lowered

Figure 7.1: Phase 3 uses the output of phase 2 as input and has two steps. This first step (overall step (@)
generates the runtime and places particles_dist.update_internals operations. The second step (overall
step (&) converts the particles_dist dialect and its cell_list and local_domain companion dialects. It is
split into two sub-steps; the first one converts the operations, while the second one converts the types.

Phase 3 focuses on the passes that generate the runtime and lower the particles_dist
dialect and its neighbor_1list companion dialects. The first section of this chapter covers
the insertion of particles_dist.update_internals operations and the generation of the
runtime. Next, Section 7.1 introduces the internal operations defined by the particles_
dist dialect to support the lowering process. Finally, Section 7.3 describes the conversion
passes that lower the particles_dist and its neighbor list companion dialects.
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7.1 Pre-Lowering Steps

7.1.1 The particles-dist-place-update-internals-ops Pass

Theparticles-dist-place-update-internals-opspassinsertsparticles_dist.update_,
internals operations before any operation that requires fresh internals. Operations such as
particles_dist.foreach and particles_dist.for_all_neighbors require them up-to-
date, whereas operations such as particles_dist.map make them stale. Because updating
these internals is relatively inexpensive, no staleness analysis is performed. Instead, the pass
simply places a particles_dist.update_internals operation before any operation that
needs them fresh. Consequently, this pass must be executed only once to avoid redundant
insertions.

Example:

%evolved_set = "particles.foreach_dist"(%set) ({
// Evolve particle set

}) : ('distset) -> !distset

is transformed into:

%set@ = "particles_dist.update_internals"(%set) : (!distset) -> !distset
%evolved_set = "particles.foreach" (%set@) ({

// Evolve particle set
}) : ('distset) -> !distset

Listing 7.1: Insertion of particles_dist.update_internals operations via
particles-dist-place-update-internals-ops

7.1.2 The particles-dist-generate-runtime Pass

The particles-dist-generate-runtime pass generates two runtime files: a header file
and a source file. The header defines all structs exchanged between MLIR and C++. This
includes the MemRef struct shown in Listing 6.12 as well as the structs used for extracting
internals, such as ParticleSetInternals from Listing 6.11. It also defines the struct used
to pass the staleness flags to C++ functions invoked by particles_dist.call operations
with the uses_staleness_flags property. The !particles_dist.storage type lowers to
a pointer to a struct containing all necessary references to integrate a vector_dist instance
along with all its associated neighbor lists. This struct, an example of which is shown in
Listing 7.2, is also defined in the header. In addition to defining structs for exchanging data,
the header includes fully specified definitions of all OpenFPM template classes in use. For
instance, the my_vector_dist and my_cell_list typesin Listing 7.2 are fully parametrized
vector_dist and CelllList_gen/CelllList_gpu template classes, respectively.

struct ParticleSet ({
my_vector_dist *vd;
struct {

my_cell_list *cell_list_0;
} neighbor_lists;

ti

Listing 7.2: ParticleSet struct example

Other than defining types, the header also declares all necessary functions for extracting
internals, as well as wrapper functions for invoking member functions of OpenFPM objects
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(see Section 6.2). The definition of these functions are located in the source file. Both files
are generated using a mixture of template files and code generation.

The functions and types to define or declare are derived from the particles_dist types
and operations present in the IR. Therefore, the particles-dist-generate-runtime pass
must run after all update and communication operation have been placed.

In addition to generating the header and source files, the particles-dist-generate-
runtime pass also declares all C++ runtime function as func. func operations within the
MLIR file. These declarations are needed later for converting operations that lower to runtime
calls.

The particles-dist-generate-runtime pass is configured using four options:

* header-file: Output path for the generated header file.

+ source-file: Output path for the generated source file.

* header-file-include-path: Include path for including the header within the source file.
+ target: The hardware target, which must either be cpu or cuda.

As indicated by the target option, this pass marks the point where the lowering pipeline
begins to differentiate between hardware targets. Based on the specified target, different
runtime functions and type definitions are generated. For example, when targeting the cpu
the CellList_gen class with the Mem_fast memory type is used as cell list implementation,
whereas for cuda the CelllList_gpu class is used. Similarly, the vector_dist class is
instantiated with different Memory parameters, with HeapMemory being used for cpu, and
CudaMemory being used for cuda. For the cuda target, device runtime functions are also
emitted.

7.2 particles_dist Internal Operations

The particles_dist dialect defines several internal operations that are only introduced
during lowering. They are typically converted immediately after being introduced and
therefore usually never appear in the IR. Defining these operations instead of directly
emitting the lowered code has two advantages. First, it modularizes the conversion process
and facilitates reuse. It also helps when troubleshooting individual conversion patterns by
keeping the changes done by each conversion pattern manageable. Second, it enables
integration testing, which relies on the access to internal operations and data structures.
Internal operations can be broadly grouped into two categories: data operations and memory
operations.

Data Operations

Data operations primarily handle the insertion and extraction of elements from both
Iparticles_dist.set and !particles_dist.particle values. All of these operations
lower to box operations.

- particles_dist.undef: Creates an undefined Iparticles_dist.set value.

* particles_dist.get_index: Extracts and returns the index of the provided particle.

+ particles_dist.get_local_size: Extracts and returns the number of particles in the
subdomain represented by the given !particles_dist.set value. The with_ghost
property specifies whether to include the number of ghost particles.
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* particles_dist.get_neighbor_list: Extracts and returns the neighbor list of the
specified return type from the given !particles_dist.set value.

* particles_dist.get_storage:Each !particles_dist.setvalueholdsa !particles_
dist.storage, typically the one it was loaded from. This operation extracts and returns
this value from the given !particles_dist.set.

+ particles_dist.set_storage: Inserts the given !particles_dist.storage value into
the provided !particles_dist.set argument.

*+ particles_dist.get_memref: Extracts and returnsthe memref for the specified field from
the provided !particles_dist.set operand. The field is specified by the field string
property, which must be either "pos" or the name of a particle property.

* particles_dist.get_vector_dist: Extracts and returns the reference to the vector_
dist instance integrated by the provided !particles_dist.set value.

Memory Operations

Memory operations handle allocating buffers and loading and storing of !particles_
dist.set and !particles_dist.particle values.

* particles_dist.alloca_buffers: Allocates the communication buffers for the given
Iparticles_dist.set value on the stack and inserts the references to these buffers into
the !particles_dist.set operand.

*+ particles_dist.load: Loads the references to the OpenFPM instances to be integrated
by the given !particles_dist.set value from the provided !particles_dist.storage
argument and inserts them into the !particles_dist.set value.

+ particles_dist.store: Stores the references to the OpenFPM instances integrated by
the given !particles_dist.set value at the provided !particles_dist.storage.

* particles_dist.load_particle: Loads the !particles_dist.particle with the pro-
vided index from the given !particles_dist.set argument and returns it.

+ particles_dist.store_particle: Stores the given !particles_dist.particle value
in the provided !particles_dist.set operand at the given index.

7.3 Lowering particles_dist and neighbor_list Dialects

After generating the runtime, the lowering process can begin. The particles_dist dialect
and its cell_list and local_domain companion dialects must be lowered using the two-
step tick-tock process introduced in Section 6.3.1. Each phase of this process consists of the
following passes:

+ Step 1: Lower Operations

- tick: particles-dist-convert-ops
- tock: local-domain-convert-ops with either cell-list-convert-ops-to-cpu Or
cell-list-convert-ops-to-cuda
+ Step 2: Lower Types

- tick: particles-dist-convert-types
- tock: local-domain-convert-types with either cell-list-convert-types-to-cpu
or cell-list-convert-types-to-cuda
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The type conversion passes, while being executed after the operation conversion passes,
are presented first. Knowing how each type is lowered is crucial for understanding how the
operations are converted, as the lowered operations must act on the lowered types.

7.3.1 The particles-dist-convert-types Pass
The particles-dist-convert-types passconvertsall types of the particles_dist dialect
to !'box.box or !'box.storage types.

Conversion of the !particles_dist.particle Type

The !particles_dist.particle type is lowered to a nested !box.box type with three
entries: The index of the particle, the position as vector, and another !'box.box that holds
all particle properties.

Example:
ldistparticle = !particles_dist.particle<
f64, // position_type
3 : index, // dimensionality
{ // properties
"velocity" = vector<3xf64>, // velocity
"force" = vector<3xf64> // force
}

>

is transformed into:

Iparticlebox = !box.box<[
index, // index
vector<3xf64>, // position
I'box.box<[ // properties
vector<3xfé64>, // velocity
vector<3xf64> // force

1>

1>

Listing 7.3: Conversion of !particles_dist.particle via particles-dist-convert-types (!particlebox)

Conversion of the !particles_dist.set Type

Like the particles_dist.particle type, the !particles_dist.set type is also lowered
to a nested !box.box type, as shown in Listing 7.4. The resulting 'box.box contains five
nested boxes, each with a distinct purpose.

Example:
ldistset = !particles_dist.set<
-1 : index, // size
64, // position_type
3 : index, // dimensionality
{ // properties
"velocity" = vector<3xf64>,
"force" = vector<3xf64>
Vo
[lcell_list.list<f64, 3 : index, 0.3 : f64>] // neighbor_lists

>

is transformed into:
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I'setbox = !box.box<[
I'storage_box,
I'neighbor_lists_box,
I'staleness_box,
linternals_box,
Ibuffers_box

Listing 7.4: Conversion of !particles_dist.set via particles-dist-convert-types (!setbox)

Storage Box The first box is referred to as "storage box". It contains the references to
the OpenFPM instances integrated by the !particles_dist.set value, and corresponds to
the box stored by the matching !particles_dist.storage type. When stored as !11vm.
struct, it matches the ParticleSet struct from Listing 7.2.

Example:

// Contains all references to OpenFPM data structures integrated by the particle set:
I'storage_box = !box.box<|
11lvm.ptr, // Pointer to vector_dist
Ibox .box<| // Neighbor list storages:
lcell_list.storage<
lcell_list.list<f64, 3 : index, 0.3 : f64>>
1>

1>

Listing 7.5: Particle set storage box (! storage_box)

Neighbor Lists Box The second box is called "neighbor lists box" and holds all neighbor
lists. First, in their non-lowered !cell_list.list or !local_domain.list form, and later
as their lowered types.

Example:

// Contains all neighbor lists:

Ineighbor_lists_box = !box.box<[

lcell_list.list<f64, 3 : index, 0.3 : f64>
1>

Listing 7.6: Particle set neighbor lists box

Staleness Box The third box is named "staleness box". It holds the flags used for dynamic
staleness tracking. As explained in Section 5.2.2, it contains one boolean entry for the domain
decomposition, one for each field in the ghost layers, and one for each neighbor list.

Example:

// Contains staleness flags for all data structures associated with the particle set:
I'staleness_box = !box.box<[

it, // Domain decomposition
'box.box<[i1, 11, i1]>, // Ghosts (position, velocity, force)
Ibox .box<[11]> // Neighbor lists (cell list)

1>

Listing 7.7: Particle set staleness box (! staleness_box)

84



7.3 Lowering particles_dist and neighbor_1list Dialects

Internals Box The fourth box is called "internals box" and contains all internals of the
Iparticles_dist.set value. Its entries correspond to the contents of the ParticleSet
Internals struct shown in Listing 6.11.

Example:

// Contains all internals (Values needed to integrate a vector_dist instance into MLIR):
linternals_box = !box.box<|

index, // Size without ghost
index, // Size with ghost
memref<3x?xf64>, // position memref
Ibox .box<[ // Property memrefs:
memref<?x3xf64>, // velocity memref
memref<?x3xf64> // force memref

1>
Listing 7.8: Particle set internals box

Buffers Box The last box is referred to as "buffers box". As discussed in Section 6.2, to
pass structs between MLIR and C++ by reference, communication buffers are required. To
avoid allocating new buffers for every function call, buffers are pre-allocated once on the
stack, and their references are stored in this box for reuse. No communication buffer is
allocated for the storage box. Instead, the reference from which the particle set was loaded
is re-used as communication buffer.

Example:
// Contains pointers to buffers for storing boxes as structs
lbuffers_box = !box.box<|
Ibox.storage<!storage_box>, // Reference from which the storage box was loaded from

Ibox.storage<!internals_box>, // Communication buffer for the internals box
Ibox.storage<!staleness_box> // Communication buffer for the staleness box

1>

Listing 7.9: Particle set buffers box

Conversion of the !particles_dist.storage Type

The !particles_dist.storage type is lowered to a !box.storage type, which stores the
storage box detailed in the previous section.

Example:

ldiststorage = !particles_dist.storage<!distset>

is transformed into:

I'box.storage<!storage_box>

Listing 7.10: Conversion of !particles_dist.storage via particles-dist-convert-types

7.3.2 The particles-dist-convert-ops Pass

Theparticles-dist-convert-opspassconvertsallparticles_dist operations. It hastwo
pass options: target and is-final-conversion. The target option specifies the hardware
target, accepting either cpu or cuda. The hardware target affects only the conversion of
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particles_dist.foreach operations. All other operation conversions are target-agnostic.
The is-final-conversion option indicates whether the pass is used for the final lowering
phase of the two-step interleaved tick-tock process introduced in Section 6.3.1. When set to
true, conversions that usually introduce operations from the local_domain or cell_list
dialect raise errors instead.

Conversion of particles_dist.for_all_neighbors Operations

Each particles_dist.for_all_neighbors operation is converted into a particles_
dist.foreach containing a for_all_neighbor_indices operation from the appropriate
neighbor list dialect. At the start of the for_all_neighbor_indices region, the neighbor
particle is loaded from its index using a particles_dist.load_particle operation. The
particle argument of the foreach region, together with the loaded neighbor, replace
the center particle and neighbor particle arguments of the original interaction region,
which is inlined into the for_all_neighbor_indices region. Following the for_all_,
neighbor_indices operation, the reduced results are inserted into the center particle
via particles_dist.set_propertyandparticles_dist.set_position operations.Ifthe
for_all_neighbors operation has a pre-interaction region, it is inlined before the for_
all_neighbor_indices operation, while the post-interaction region is inlined after the
insertion of the reduced results.

Example:

%interacted = "particles_dist.for_all_neighbors" (%set)
<
{
"with_self" = false,
"reduction_kinds" = [#particles_dist.reduction_kind<add>],
"write_targets" = ["force"],
"neighbor_list_kind" = #particles_dist.neighbor_list_kind<cell_list>,
"max_distance" = 0.3 : f64
3>
({1 (%particle : !distparticle): // pre-interaction region
>> Modify particle before interactions: %particle -> %updated_particle
"particles_dist.yield" (%updated_particle) : (!distparticle) -> ()
Yo
{"2(%particle : !distparticle): // post-interaction region
>> Modify particle after interactions: %particle -> %updated_particle
"particles_dist.yield" (%updated_particle) : (!distparticle) -> ()
Yo
{*"3(%particle : !distparticle, %neighbor : !distparticle): // interaction region
>> Calculate the %force that %neighbor exhibits on %particle
"particles_dist.yield" (%force) : (vector<3xf64>) -> ()
}) : ('distset) -> !distset

is transformed into:
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%cell_list = "particles_dist.get_neighbor_list"(%set) : (!distset) -> l!celllist
%interacted = "particles_dist.foreach" (%set)
({1 (%particle : !distparticle):
>> Inlined pre-interaction region modifying %particle -> %updated_particle®
// Interaction:

%combined_force = "cell_list.for_all_neighbor_indices"(%cell_list, %updated_particled)
<{"with_self" = false,
"reduction_kinds" = [#particles_dist.reduction_kind<add>]}>

({"2(%neighbor_index: index):
// Load neighbor:
%neighbor = "particles_dist.load_particle"(%set, %neighbor_index)
(!distset, index) -> !distparticle
>> Calculate %force that %neighbor exibits on %updated_particle®
"cell_list.yield"(%force) : (vector<3xfé64>) -> ()
}) : ('celllist) -> vector<3xf64>
// Insert reduced interaction results into center particle
%updated_particlel = "particles_dist.set_property" (%updated_particle@, %combined_force)
{"property" = "force"}

(!distparticle, vector<3xf64>) -> !distparticle
>> Inlined post-interaction region modifying %updated_particlel -> %updated_particle2
"particles_dist.yield" (%updated_particle2) : (!distparticle) -> ()

}) : (!'distset) -> !distset

Listing 7.11: Conversion of particles_dist.for_all_neighbors via particles-dist-convert-ops

Conversion of particles_dist.foreach Operations

Each particles_dist.foreach operation is converted into an scf.parallel operation
that iterates over all particle indices within a subdomain, excluding ghost particles. At the
start of the scf.parallel region, each particle is loaded from its index using a particles_
dist.load_particle operation, while the updated particle is stored at the end with a
particles_dist.store_particle operation. In between, the region of the particles_
dist.foreach operation is inlined.

Example:

%evolved = "particles_dist.foreach" (%set)
({1 (%particle : !distparticle):

>> Update %particle -> %updated_particle

"particles_dist.yield" (%updated_particle) : (!distparticle) -> ()
}) : ('distset) -> !distset

is transformed into:

%zero = arith.constant 0 : index
%size = "particles_dist.get_local_size"(%set) <{with_ghost = false}> : (!distset) -> index
%one = arith.constant 1 : index
scf.parallel (%index) = (%zero) to (%size) step (%one) {
// Load %particle:
%particle = "particles_dist.load_particle" (%set, %index)
(!'distset, index) -> !distparticle
>> Update %particle -> %updated_particle
// Store %updated_particle:
"particles_dist.store_particle" (%set, %updated_particle, %index)
(!distset, !distparticle, index) -> ()
scf.reduce

Listing 7.12: Conversion of particles_dist.foreach via particles-dist-convert-ops

If the target pass option of the particles-dist-convert-ops pass is cpu, no further
rewriting is performed. If the target is cuda, the resulting one-dimensional scf.parallel
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operation (Listing 7.12) is further transformed into a two-dimensional scf.parallel
(Listing 7.13), with the first dimension being mapped to the block 1D and the second dimension
to the thread ID. Within the region of the new scf.parallel operation, the particle index
is calculated from both IDs, replacing the index argument of the original scf.parallel
region. If the particle index is within bounds, the original scf.parallel region is executed;
otherwise, no calculations are performed. Furthermore, a "mapping" attribute is added
to the new scf.parallel operation. This attribute is later used by the built-in convert- |
parallel-loops-to-gpu pass to convert the scf.parallel operation to a gpu.launch
operation. For the block size, a constant value of 512 is used.

Example:

%block_size = arith.constant 512 : index
%num_blocks = arith.ceildivui %to, %block_size : index
scf.parallel
(%block_idx , %thread_idx) = (%zero, %zero)
to (%num_blocks, %block_size)
step (%one, %one)
{
// Calculate particle index from block ID and thread ID:
%block_start = arith.muli %block_idx, %block_size : index
%index = arith.addi %block_start, %thread_idx : index
// Execute original region if particle %index is within bounds
%within_bounds = arith.cmpi ult %index, %size : index
scf.if %within_bounds {
// Original scf.parallel body
} else {}
scf.reduce
} {"mapping" = [
#gpu . loop_dim_map<
processor = block_x,
map = (d@) -> (do),
bound = (do) -> (d@)>,
#gpu . loop_dim_map<
processor = thread_x,
map = (d@) -> (do),
bound = (d@) -> (do)>]}

Listing 7.13: Final result of converting particles_dist.foreach via particles-dist-convert-ops targeting
cuda

Conversion of particles_dist.load_particle and particles_dist.store_particle
Operations

As outlined in Section 6.2, particle positions and properties are stored in separate memrefs.
Loading a !particles_dist.particle involves loading its position and property values
from those memrefs using its index. Conversely, after modifying a !particles_dist.
particle, its updated position and property values must be written back to the appropriate
memory locations.

Each particles_dist.load_particle operation is lowered to a series of memwrap.
load and memwrap.load_vector operations, which retrieve the position and each property
value associated with the particle. The loaded values are then packed into a !box.box of
the corresponding type (Listing 7.3). Conversely, each particles_dist.store_particle
operation is converted into a box . unpack operation, followed by a series of memwrap . store
and memwrap . store_vector operations, which store the particle’s individual values. The
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position memref has a column-major layout, meaning it is effectively transposed. Because of
this, the memwrap . load_vector and memwrap.store_vector operations for the positions
have the memref_transposed property present.

Example:

%particle = "particles_dist.load_particle" (%set, %index)
(!'distset, index) -> !distparticle

is transformed into:

%setbox = builtin.unrealized_conversion_cast %set : (!distset) to !setbox

>> Extract all memrefs from %setbox -> %pos_memref, %vel_memref, %force_memref
// Extract position and property values:

%pos = "memwrap.load_vector"(%pos_memref, %index) <{"memref_transposed"}>
(memref<3x?xf64>, index, index) -> vector<3xf64>

%vel = "memwrap.load_vector"(%vel_memref, %index)
(memref<?x3xf64>, index, index) -> vector<3xf64>

%force = "memwrap.load_vector" (%force_memref, %index)

(memref<?x3xf64>, index, index) -> vector<3xf64>
// Pack values into a box and convert to !particles_dist.set type:

%particlebox = "box.pack"(%index, %pos, %vel, %force)
(index, vector<3xf64>, vector<3xf64>, vector<3xfé64>) -> lparticlebox
%particle = "builtin.unrealized_conversion_cast"(%particlebox)

(!'particlebox) -> !distparticle

Listing 7.14: Conversion of particles_dist.load_particle via particles-dist-convert-ops

Conversion of Update and Communication Operations

As outlined in Section 6.2, the particles_dist.map and particles_dist.ghost_get
operations are converted into runtime calls. The required function declarations were inserted
during the particles-dist-generate-runtime pass (Section 7.1.2). Each particles_
dist.update_neighbor_list operation is lowered to either a cell_list.update or a
local_domain.update operation, based on the type of the updated neighbor list.

Example:

%updated_set@ = "particles_dist.map"(%set) : (!'distset) -> !distset
%updated_set1 = "particles_dist.ghost_get"(%updated_set@) <{"fields_to_get" = ["pos"]}>
(!'distset) -> !distset
%updated_set2 = "particles_dist.update_neighbor_list"(%updated_set1)
<{"index" = @ : index}> : (!distset) -> !distset

is transformed into:
// Converted particles_dist.map:
%vector_dist@ = "particles_dist.get_vector_dist"(%set) : (!distset) -> !llvm.ptr
func.call @map(%vector_dist®) : (!1lvm.ptr) -> ()
// (Replace %updated_set® with %set)
// Converted particles_dist.ghost_get:
%vector_distl = "particles_dist.get_vector_dist"(%set) : (!distset) -> !llvm.ptr
func.call @ghost_get_pos(%vector_dist1) : (!1lvm.ptr) -> ()
// (Replace %updated_set1 with %set)
// Converted particles_dist.update_neighbor_list:
%cell_list = "particles_dist.get_neighbor_list"(%set) : (!distset) -> l!celllist
%updated_cell_list = "cell_list.update"(%cell_list, %set)

(!'celllist, !distset) -> !celllist
%updated_set2= "particles_dist.set_neighbor_list"(%set, %updated_cell_list)

(!'distset, !'celllist) -> !distset

Listing 7.15: Conversion of particles_dist update and communication operations via
particles-dist-convert-ops
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Conversion of particles_dist.update_internals Operations

Section 6.2 explains the concept of internals together with the strategy for updating them
using runtime calls. It also introduces the ParticleSetInternals struct (Listing 6.11) used
for transferring the internals of !particles_dist.set values. As described in Section 7.3.1,
the internals box (Listing 7.8) of the lowered !particles_dist.set type corresponds to the
ParticleSetInternals struct. To update the internals, the pointer to the communication
buffer for this box, together with a reference to the integrated vector_dist instance, is
passed to the update_internals runtime function. After the function returns, the internals
box is loaded from the buffer and is inserted back into the lowered !particles_dist.set
box.

When updating the internals of a !particles_dist.set value, the internals of all
associated neighbor lists must also be updated. This is achieved by extracting each neighbor
list, updating its internals using the corresponding neighbor_list.update_internals
operations, and reinserting it.

Example:

%updated_set = "particles_dist.update_internals"(%set) : (!distset) -> !distset

is transformed into:

// Need !particles_dist.set as !box.box:
%setbox = builtin.unrealized_conversion_cast %set : (!distset) to !setbox
// Prepare and execute "update_internals" function call:
%vector_dist = "particles_dist.get_vector_dist"(%set) : !distset -> !1llvm.ptr
%internals_box_buffer = "box.extract"(%setbox) <{"indices" = [4 : 164, 1 : i64]}>
(!setbox) -> !box.storage<!internals_box>
func.call @update_internals(%vector_dist, %internals_box_buffer)
(!11lvm.ptr, !box.storage<!internals_box>) -> ()
// Load updated internals and insert them back into the box:

%updated_internals = "box.load"(%internals_box_buffer)
('box.storage<!internals_box>) -> !internals_box
%setbox@ = "box.insert"(%setbox, %updated_internals) <{"indices" = [3 : i64]}>

(!'setbox, !'internals_box) -> !setbox
// Also update all internals of all neighbor lists:
%cell_list = "particles_dist.get_neighbor_list"(%set) : (!distset) -> lcelllist
%updated_cell_list = "cell_list.update_internals"(%cell_list) : (!celllist) -> !celllist
%setbox1 = "box.insert"(%setbox@, %updated_cell_list) <{"indices" = [1 : i64, @ : i64]}>
(!setbox, !'celllist) -> !setbox
// Convert !box.box back to original !particles_dist.set type:
%updated_set = builtin.unrealized_conversion_cast %setbox1 : !setbox to !distset

Listing 7.16: Conversion of particles_dist.update_internals via particles-dist-convert-ops

Conversion of particles_dist.loop Operations

Each particles_dist.loop operation is converted into an scf.for operation contain-
ing the time-stepping region, with the initialization region inlined before the loop. Prior to
initialization, the !particles_dist.set valueis created via a particles_dist.undef oper-
ation, and its buffers are allocated using particles_dist.alloca_buffers. Afterward, itis
loaded with particles_dist.load, and its storage location is recorded using particles_|
dist.set_storage for later use. Finally, its internals are updated with a particles_dist. |
update_internals operation. After the scf. for operation, the particle set is stored using
aparticles_dist.store.
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Example:
"particles_dist.loop" (%storage,

%zero,

%num_steps)
({*0(%uninitialized_set : !distset, %step : index):

>> Initialize %uninitialized_set -> %initialized_set

"particles.next" (%initialized_set) : (!distset) -> ()
Y
{M(%set : !distset, %step : index):

>> Update %set -> %updated_set

"particles.next" (%updated_set): (!distset) -> ()
}) : ('diststorage, index, index) -> ()

is transformed into:
%set® = "particles_dist.undef"() : () -> !distset

%setl = "particles_dist.alloca_buffers"(%set@) : (!distset) -> !distset
%set2 = "particles_dist.set_storage"(%setl1, %storage)
('distset, !diststorage) -> !distset
%set3 = "particles_dist.load"(%storage, %set2) : (!diststorage, !distset) -> !distset
%uninitialized_set = "particles_dist.update_internals"(%set3) : (!distset) -> !distset

>> Initialize %uninitialized_set -> %initialized_set
%finished_set = scf.for (%step) = (%zero) to (%num_steps) step (%one)
iter_args(%set = %initialized_set) -> !distset(
>> Update %set -> %updated_set
"scf.yield" (%updated_set) : (!distset) -> ()
)

"particles_dist.store" (%finished_set, %storage) : (!distset, !diststorage) -> ()

Listing 7.17: Conversion of particles_dist.loop via particles-dist-convert-ops

Conversion of Internal Operations

Getter and setter operations are lowered to box.extract and box.insert operations, while
each particles_dist.undef operation is converted into a box.undef.

Example:
%uninitialized_set = "particles_dist.undef"() -> !distset
%pos = "particles_dist.get_position"(%set): (!particle) -> vector<3xf64>

%updated_set = "particles_dist.set_map_stale"(%set) <{"staleness_value" = true}>
(!'distset) -> !distset

is transformed into:
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// Converted particles_dist.undef:
%uninitialized_set_box = "box.undef"() -> !setbox
%uninitialized_set = builtin.unrealized_conversion_cast %setbox
(!'setbox) to !distset

// Converted particles_dist.get_position:

%particle_box = "builtin.unrealized_conversion_cast" (%box)
(!'distparticle) -> !particlebox
%pos = "box.extract"(%particle_box) <{"indices" = [1 : 164]}>

(!'particle_box) -> vector<3xf64>

// Converted particles_dist.set_map_stale:

%setbox = builtin.unrealized_conversion_cast %set : (!distset) to !setbox

%staleness_value = arith.constant true

%setbox = "box.insert"(%set, %staleness_value) <{"indices" = [2 : 164, 0 : i64]}>
(!distset_box, 11) -> !distset_box

%updated_set = builtin.unrealized_conversion_cast %setbox : (!setbox) to !'distset

Listing 7.18: Conversion of particles_dist getter and setter operations via particles-dist-convert-ops

Each particles_dist.alloca_buffers operationisloweredto a box.alloca operation,
allocating memory for the internals box and the staleness box. A buffer for the storage box is
not allocated, since the buffer from which it was originally loaded is reused to store the box.
When allocating the buffers for a !particles_dist.set value, the buffers for the associated
neighbor lists are also allocated using the appropriate neighbor_list.alloca_buffers
operations.

Example:

%updated_set = "particles_dist.alloca_buffers"(%set) : (!distset) -> !distset

is transformed into:

%setbox = builtin.unrealized_conversion_cast %set : !distset to !setbox

// Allocate buffers for all boxes/structs communicated between MLIR and C++:

%storage_box_buffer = "box.alloca"() : () -> !box.storage<!storage_box>

%setbox@ = "box.insert"(%setbox, %storage_box_buffer) <{"indices" = [4 : i64, 1 : i64]}>
(!setbox, !'box.storage<!storage_box>) -> !setbox

%staleness_box_buffer = "box.alloca"() : () -> !'box.storage<!staleness_box>

%setbox1 = "box.insert"(%setbox@, %staleness_box_buffer) <{"indices" = [4 : 164, 2 : i64]}>

(!setbox, !box.storage<!staleness_box>) -> !setbox
// Allocate buffers for all neighbor lists:
%celllist = "box.extract"(%setbox1) <{"indices" = [1 : 164, 0 : i64]}>
(!setbox) -> lcelllist
%celllist@ = "cell_list.alloca_buffers"(%celllist) : (!celllist) -> !celllist

%setbox2 = "box.insert"(%setbox1, %celllist®) <{"indices" = [1 : i64, @ : 164]}>
(!setbox, !celllist) -> !setbox
%updated_set = builtin.unrealized_conversion_cast %setbox?2 : !setbox to !distset

Listing 7.19: Conversion of particles_dist.alloca_buffersvia particles-dist-convert-ops

Each particles_dist.load operation is converted into a box.load operation that loads
the storage box, followed by a box.insert operation that inserts it into the !box.box
representing the lowered !particles_dist.set. Furthermore, all associated neighbor lists
are also loaded using the appropriate neighbor_list.load operations. Conversely, the
particles_dist.store operation is lowered to a box.store operation that stores the
storage box, followed by a series of neighbor_1list.store operations storing all associated
neighbor lists.
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Example:

"particles_dist.store"(%set, %storage) : (!distset, !diststorage) -> ()

is transformed into:

%setbox = builtin.unrealized_conversion_cast %set : !distset to !setbox
%storageboxstorage = builtin.unrealized_conversion_cast %storage
ldiststorage to !box.storage<!storage_box>
// Store the storage box:
%storagebox = "box.extract"(%setbox) <{"indices" = [0 : i64]}> : (!setbox) -> !storage_box
"box.store" (%storagebox, %storageboxstorage)
(!'storage_box, !'box.storage<!storage_box>) -> ()
// Store all neighbor lists:

%cellliststorage = "box.extract"(%setbox) <{"indices" = [0 : i64, 1 : i64, @ : 164]}>
(!setbox) -> lcell_list.storage<!celllist>
%celllist = "box.extract"(%setbox) <{"indices" = [1 : i64, @ : i64]}>

(!'setbox) -> lcelllist
"cell_list.store"(%celllist, %cellliststorage)
('celllist, !cell_list.storage<!celllist>) -> ()

Listing 7.20: Conversion of particles_dist.store via particles-dist-convert-ops

7.3.3 The local-domain-convert-types Pass

The local-domain-convert-types pass converts the !local_domain.list and !local_
domain.storage types. Because the local_domain dialect defines a neighborhood as all
particles within the same subdomain, it only needs the size of a subdomain to iterate over
a particle’s neighboring indices. The 'local_domain.list type is therefore lowered to an
index type that holds this value.

The 'local_domain.list type does not integrate an OpenFPM object and must neither
be stored nor loaded. As a result, the !local_domain.storage type serves no practical
purpose. However, it serves a structural purpose. Because it is an element of the storage box
introduced in Section 7.3.1, it must be converted into a placeholder type. The straightforward
approach is to lower it also to index.

Example:

l'local_domain.list

local_domain.storage<!local_domain.list>

is transformed into:

// Converted !local_domain.list:
index // Number of particles in the local subdomain, including ghosts

// Converted !local_domain.storage<!local_domain.list>:
index // Placeholder value, has no practical use

Listing 7.21: Conversion of local_domain types via local-domain-convert-types

7.3.4 The local-domain-convert-ops Pass

The local-domain-convert-ops pass lowers all local_domain operations. Because the
local_domain dialect uses a very simple notion of a neighborhood, converting most of its
operations is straightforward. Several operations exist only because they were inherited
from the neighbor_1list dialect and fulfill no practical purpose. These operations, which
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include local_domain.load, local_domain.store, local_domain.alloca_buffers, and
local_domain.update_internals, are simply eliminated during conversion.

Conversion of local_domain.update Operations

The local_domain.update operation is converted into a runtime call that retrieves the size
of the local subdomain, including the ghost particles. The returned index value then replaces
the 'local_domain.list operand.

Example:

%updated_list = "local_domain.update"(%list, %set) : (!local_domain.list) -> !'local_domain.list

is transformed into:

%vector_dist_ptr = "particles_dist.get_vector_dist"(%set) : (!distset) -> !llvm.ptr
%num_particles = func.call @get_size_local_with_ghost(%vector_dist_ptr)

: (!'11lvm.ptr) -> index
%updated_list = unrealized_conversion_cast %num_particles : index to !local_domain.list

Listing 7.22: Conversion of local_domain.update via local-domain-convert-ops

Conversion of local_domain.for_all_neighbor_indices Operations

Each local_domain.for_all_neighbor_indicesoperationisloweredtoanscf.parallel
operation that iterates over all particle indices in a subdomain. To terminate the scf. |
parallel region, each reduction_kinds entry of the for_all_neighbor_indices opera-
tion is transformed into an scf. reduce operation that performs the specified reduction.
If the with_self property of the for_all_neighbor_indices operation is set to true, the
original for_all_neighbor_indices region is directly inlined at the beginning of the scf. |
parallel region. If the with_self property is set to false, the for_all_neighbor_indices
region becomes the true region of an scf . 1f operation that takes its place instead. The true
region is executed if the particle index and the neighbor index do not match. The false region
is executed in case they match and yields a neutral value for each entry in reduction_kinds.

Example:
%combined_force = "local_domain.for_all_neighbor_indices"(%list, %particle)
<{"with_self" = false,
"reduction_kinds" = [#particles_dist.reduction_kind<add>]}>

({*1(%neighbor_index : index):
>> Use %particle and %neighbor_index to calculate %force
"local_domain.yield"(%force) : (vector<3xf64>) -> ()

}) : ('local_domain.list, !distparticle) -> vector<3xf64>

is transformed into:
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// Neutral force for initialization and skipping self:
%zero_force = arith.constant dense<0.0> : vector<3xf64>
// Need !local_domain.list converted into index:
%local_size = unrealized_conversion_cast %list : !local_domain.list to index
%combined_force = scf.parallel (%neighbor_index) = (%zero) to (%local_size)
step (%one) init (%zero_force) -> vector<3xf64>
{
%particle_index = "particles_dist.get_index"(%particle) : (!distparticle) -> index
%not_self = arith.cmpi ne, %particle_index, %neighbor_index : index
%force_or_neutral = scf.if %not_self -> (vector<3xfé64>) {
>> Use %particle and %neighbor_index to calculate %force
scf.yield %force : vector<3xf64>
} else {
// Return neutral value for each reduction kind:
scf.yield %zero_force : vector<3xf64>
}
// Reduce all pairwise interaction results:
scf.reduce(%force_or_neutral : vector<3xf64>) {
rQ(%forced: vector<3xf64>, %forcel: vector<3xf64>):
%result = arith.addf %force@, %forcel : vector<3xf64>
scf.reduce.return %result : vector<3xf64>

Listing 7.23: Conversion of local_domain.for_all_neighbor_indices via local-domain-convert-ops

7.3.5 The cell-list-convert-types-to-cpu Pass

The cell-list-convert-types-to-cpu pass converts the lcell_list.listand !cell_
list.storage types to box types targeting CPUs. The Icell_list.storage type is lowered
to an opaque !11vm.ptr that points to the integrated CelllList_gen instance. The !cell_
list.list typeis converted into a !box.box with three entries. The first entry is an opaque
I11vm.ptr that holds a reference to the integrated CelllList_gen object. The second entry
is a 'box.box, referred to as "cell list CPU internals box". Analogous to the internals box of a
converted !particles_dist.set, it contains the values required to access the data stored
by the wrapped CelllList_gen instance directly within MLIR. The third entry of the converted
lcell_list.list type is a !box.storage that holds a reference to the communication
buffer for the cell list CPU internals box.

Example:

lcelllist = !cell_list.list<
fe4, // position_type
3 : index, // dimensionality
0.3 : fée4> // cutoff_radius

lcellliststorage = !cell_list.storage<!cell_list>

is transformed into:
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// Converted !celllist

Ibox.box<|
'1lvm.ptr, // Points to integrated CelllList_gen instance
Icl_cpu_internals_box, // Cell list CPU internals box
I'box.storage<!cl_cpu_internals_box> // Com. buffer for cell list CPU internals box

1>

// Converted !cellliststorage:
11vm.ptr

Listing 7.24: Conversion of !cell_list.list and !cell_list.storage via
cell-list-convert-types-to-cpu

As shown in Listing 7.25, the cell list CPU internals box has nine entries:

+ The first entry (cell_list) is a memref of rank two, holding index values. The first
dimension of this memref corresponds to the ID of a cell, and the second to the particle
index within a cell. Given a cell ID and the number of particles in the cell, this memref is
used to iterate over the indices of all particles located inside that cell.

+ The second entry (c1_n) is a single-ranked memref that stores the number of particles
within each cell as index.

+ The third entry (NNc_Full) is also a single-ranked memref holding index values. It contains
offset values that are used to calculate the IDs of all directly adjacent cells, given the ID of
the cell in the center.

+ The remaining six entries define the geometry of the cell list. Given a particle, these values
are used to calculate the ID of the cell containing that particle from its position.

lcl_cpu_internals_box = !box.box<|
memref<?x?xindex>, // cell_list
memref<?xindex>, // cl_n
memref<?xindex>, // NNc_Full
Ibox.box<[f64, f64, f64]>, /.
Ibox.box<[f64, f64, f64]>, /..

Ibox.box<[index, index, index]>, // ...
Ibox.box<[index, index, index]>, // cell list geometry
Ibox.box<[index, index, index]>, // ...
Ibox.box<[index, index, index]> /..

Listing 7.25: Cell list CPU internals box

7.3.6 The cell-list-convert-ops-to-cpu Pass

The cell-list-convert-ops-to-cpu pass converts all cell_list operations, targeting
CPUs as processing hardware. The cell_list.load, cell_list.store, cell_list.
alloca_buffers, cell_list.undef, and cell_list.update_internals operations are
converted following the same approaches used for converting their particles_dist
counterparts. Each cell_list.update operation is converted into a runtime call, similar to
the particles_dist.map and particles_dist.ghost_get operations.

Conversion of cell_list.for_all_neighbor_indices Operations

Each cell_list.for_all_neighbor_indices operation is converted into two nested
scf.parallel operations, with one operation inside the other. The outer scf.parallel
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operation iterates over the IDs of all cells surrounding the given particle. This includes the cell
containing the particle itself and all cells directly adjacent to it. Before entering the outer loop,
the ID of the cell containing the given particle is calculated using the particle’s position along
with the last six geometry-defining entries of the cell list CPU internals box (see Listing 7.25).
Within the outer scf.parallel region, each cell's ID is calculated using the ID of the cell
in the center and its offset stored in the NNc_Full internals box entry. Before entering the
inner loop, the number of particles in the cell is loaded from the c1_n internals entry.

The inner scf.parallel operation iterates over the indices of all particles within the
cell whose 1D was calculated. It uses the cell ID, together with a particle-in-cell induction
variable, which goes from zero to the number of particles in that cell, to retrieve the index of a
neighbor from the cell_list internals box entry. The remainder of the inner scf.parallel
region looks identical to the scf.parallel region of a converted local_domain.for_all_,
neighbor_indices operation (Listing 7.23)

Example:
%combined_force = "cell_list.for_all_neighbor_indices"(%cell_list, %particle)
<{"with_self" = false,
"reduction_kinds" = [#particles_dist.reduction_kind<add>]}>

({" (%neighbor_index : index):
>> Use %particle and %neighbor_index to calculate %force
"cell_list.yield"(%force) : (vector<3xfé4>) -> ()

}) ¢ ('celllist, !distparticle) -> vector<3xf64>

is transformed into:

>> Calculate ID of the cell containing %particle using its position and the last six
>> entries of the cell list CPU internals box -> %cell_id
// Neutral force for initialization and skipping self:
%zero_force = arith.constant dense<@.0> : vector<3xf64>
%num_surrounding_cells = arith.constant 27 : index // 3”D, with D=3
// Iterate over surrounding cells:
%combined_force = scf.parallel (%cell) in (%zero) to (%num_surrounding_cells)
step (%one) init (%zero_force) {
>> Retrieve %cell_id_offset from NNc_Full memref (internals) using %cell as index
%cell_id = arith.addi %cell, %cell_id_offset : index
>> Retrieve %num_particles_in_cell from cl_n memref (internals) using %cell_id as index
// Iterate over particle indices in cell:
%cmbnd_force_for_cell = scf.parallel (%particle_in_cell) in
(%zero) to (%num_particles_in_cell)
step (%one) init (%zero_force) {
>> Retrieve %neighbor_index from cell_list memref (internals)
>> using %cell_id and %particle_in_cell as indices

// Remainder of body mirrors scf.parallel region
// of lowered local_domain.for_all_neighbor_indices

}

scf.reduce(%cmbnd_force_for_cell : index) {

M (%force@: vector<3xf64>, %forcel: vector<3xfé4>):
%result = arith.addf %force®, %forcel : vector<3xfé64>
scf.reduce.return %result : vector<3xf64>

Listing 7.26: Conversion of cell_list.for_all_neighbor_indices via cell-list-convert-ops-to-cpu
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7.3.7 The cell-list-convert-types-to-cuda Pass

Thecell-list-convert-types-to-cudapassconvertsallcell_list typestargeting CUDA
GPUs. As for CPUs, the 'cell_list.storage type is lowered to an opaque !11lvm.ptr that
references the integrated CelllList_gpu instance. The conversion of the 'cell_list.list
type also follows the same approach used for CPUs, resulting in a !box.box with three
entries. The main difference lies in the contents of the second entry, the "cell list GPU
internals box".

The Celllist_gpu classis not as tightly integrated into MLIR as the CelllList_gen class.
Rather than accessing its data directly within MLIR, Cel1llList_gpu_ker and NN_gpu_it_box
instances are used to iterate over the indices of a particle’s neighbors. Their usage within
MLIR mirrors their usage in C++.

The first entry of the internals box is an opaque ! 11vm.ptr pointingto a CellList_gpu_
ker instance in device memory that corresponds to the integrated CelllList_gpu object
in host memory. The second entry is of type index and holds the size of a NN_gpu_it_box
object in bytes. This value is required to allocate stack memory for NN_gpu_it_box instances.

Example:

lcl_gpu_internals_box = !box.box<|
111lvm.ptr, // Pointer to Celllist_gpu_ker
index // sizeof (NN_gpu_it_box)

1>

Listing 7.27: Cell list GPU internals box

7.3.8 The cell-list-convert-ops-to-cuda Pass

The cell-1list-convert-ops-to-cuda pass lowers all cell_list operations, targeting
CUDA GPUs as processing hardware. As outlined in Section 7.3.7, the CelllList_gpu class
wrapped by the cell_list.list type is not yet fully integrated into MLIR. Instead, an
NN_gpu_it_box iterator instance, combined with device runtime calls, is used to iterate over
the indices of a particle’s neighbors. Integrating complex data structures like cell lists into
MLIR requires considerable time and effort, which was simply not available. Although the
partially integrated solution cannot fully exploit the advantages of MLIR, and is expected to
deliver worse performance, it nevertheless provides full functionality. Furthermore, it offers
a practical foundation for a fully integrated solution, where runtime function calls can be
progressively replaced with direct data accesses and computations performed within MLIR.

Except for the cell_list.for_all_neighbor_indices operation, the conversation
strategies of all operations follow the same approaches used by the cell-1list-convert-
ops-to-cpu pass.

Conversion of cell_list.for_all_neighbor_indices Operations

Each cell_list.for_all_neighbor_indices operation is lowered to an scf.while op-
eration that utilizes a NN_gpu_it_box iterator instance to iterate over the indices of the
given particle’s neighbors. The NN_gpu_it_box instance is allocated on the stack and then
initialized in-place via a device runtime call using the reference to the CellList_gpu_ker
instance from the internals box. Since the scf.while operation is not terminated by an
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scf.reduce operation, the pairwise interaction results are continuously reduced, with each

iteration passing the reduced results to the next.

The NN_gpu_it_box iterator is used via the device runtime function get_next. This
function takes a pointer to the NN_gpu_1it_box instance to access its isNext and get member
functions and to increment its counter. The function returns either the index of the next
neighbor or -1 if no more neighbor indices are left. If the with_self property of the for_|
all_neighbor_indices operation is set to false, the get_next function is re-invoked when

the neighbor index matches the center particle’s index.
Example:

%combined_force = "cell_list.for_all_neighbor_indices"(%cell_list, %particle)
<{"with_self" = false,

"reduction_kinds" = [#particles_dist.reduction_kind<add>]}>

({" (%neighbor_index : index):
>> Use %particle and %neighbor_index to calculate %force
"cell_list.yield"(%force) : (vector<3xf64>) -> ()

}) : ('celllist, !distparticle) -> vector<3xf64>

is transformed into:

>> Extract sizeof(NN_gpu_it_box) from internals box -> %size_of_nn_gpu_it_box
// Allocate stack memory for NN_gpu_it_box instance:
%nNn_gpu_it_box_ptr = "llvm.alloca" (%size_of_nn_gpu_it_box)

<{"elem_type" = i8}> : (i64) -> !1llvm.ptr

>> Use runtime call to construct NN_gpu_it_box in-place for %particle at %nn_gpu_it_box_ptr

%particle_index = "particles_dist.get_index"(%particle) : ('distparticle) -> index

// Iterate over all neighbors indices of %particle using %nn_gpu_it_box_ptr:
%total_combined_force, %last_index = scf.while (%combined_force = %zero_force)

(vector<3xf64>) -> (vector<3xf64>,

{

// Get next neighbor index by using device runtime call:
%next = func.call @get_next(%nn_gpu_it_box_ptr) : (!1lvm.ptr) -> index
// Skip self:
%is_self = arith.cmpi eq, %next, %particle_index : index
%neighbor_index = scf.if %is_self -> (index) {
%nextnext = func.call @get_next(%nn_gpu_it_box_ptr) : (!1llvm.ptr) -> index
scf.yield %nextnext : index
} else {
scf.yield %next : index
}
// @get_next returns -1 when NN_gpu_it_box.hasNext() returns false
%not_done = arith.cmpi ne, %neighbor_index, %minus_one : index

scf.condition(%not_done) %combined_force, %neighbor_index : vector<3xf64>, index

} do {
@ (%combined_force: vector<3xf64>, %neighbor_index: index):
>> Use %particle and %neighbor_index to calculate %force
// Continuously reduce interaction results:
%new_combined_force = arith.addf %combined_force, %force : vector<3xf64>
scf.yield %new_combined_force : vector<3xf64>

}

Listing 7.28: cell_list.for_all_neighbor_indices after applying cell-1list-convert-ops-to-cuda

index)
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Figure 8.1: Phase 4 uses the output of phase 3 as input and consists of four steps. This first step (overall step
(®) converts the !box . storage type and its associated operations to the 11vm dialect. During the second step
(overall step (7)), all 'box.box types and values are eliminated, as well as all remaining box operations, via 1-to-N
conversion. In the third step (overall step (8), redundant memwrap load operations are removed. Finally, step
four (overall step (9)), converts any remaining memwrap operations to memref and vector operations.

Phase 4 focuses on transformation passes applied to the box and memwrap dialects, which
are the only non-standard dialects remaining in the IR at the beginning of this phase. The first
section of this chapter covers the pass that lowers the !box . storage type and its associated
operations to the 11vm dialect. Next, Section 8.2 describes the passes that eliminate all
I'box . box types and values, as well as all related operations, via expansion and shortcutting
to achieve 1-to-N conversion. Section 8.3 discusses the pass that eliminates redundant
memwrap load operations. Finally, Section 8.4 explains the pass that converts the remaining
memwrap operations to memref and vector.
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8.1 The box-convert-storage-to-11 Pass

The box-convert-storage-to-11 pass converts the 'box.storage type, together with the
box.load, box.store, and box.alloca operations, to 11vm. Each !'box.storage type is
converted into an opaque !1lvm.ptr. The !'box.box types in the IR are not converted.
However, as outlined in Section 6.1.1, during storage and transfer they are converted into
1lvm.structs.

Conversion of the !box.box Type During Storage and Transfer

To be able to convert a 'box.box type to an !'11vm.struct, all its element types must either
be natively supported as !11vm.struct element types or must be convertible. Convertible
typesinclude 'box.box, !box.storage, index,andmemref. All lbox.box and !'box.storage
types are recursively converted into their corresponding 11vm types. This means that nested
'box .box types resultin nested ! 11vm.structs. Each index entry is converted into the type
specified by the index_type pass option. This option accepts only signless integer types (e.g.,
132, 164). All memrefs element types are converted into !11vm.structs. Listing 8.2 shows
the 111vm.struct a memref type is converted into. It matches the MemRef struct shown in
Listing 6.12.

Example:

'boxtype = !box.box<[
index,
Ibox.box<|
memref<?x3xf64>
1>

1>,

is transformed into:
I'structtype = !l1lvm.struct<(
i64,
I11lvm.struct<(
Imemref2dstruct
)>
)>

Listing 8.1: Conversion of !'box.box during storage and transfer via box-convert-storage-to-11

with:

// Struct for a two-ranked memref:

'memref2dstruct = !1lvm.struct<(
'11lvm.ptr, // allocated_ptr
1lvm.ptr, // aligned_ptr
i64, // offset
I1lvm.array<2xi64>, // sizes
I11lvm.array<2xi64> // strides

)>

Listing 8.2: Two-ranked memref converted into ! 11vm.struct. Corresponds to MemRef C++ struct shown in
Listing 6.12.

Conversion of box.store and box.load Operations

A !box.box value that is stored via a box.store operation is unpacked using box.
unpack, and its individual entries are inserted into a new !'11vm.struct, the type of which
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corresponds to the lowered !'box.box type. During this process, !box.storage, index, and
memref values are cast to their converted types using builtin.unrealized_conversion_
cast operations. Once all entries have been inserted into the newly created struct, the
resulting value is stored using 11vm.store. The box.load operation simply reverses this
process.

Example:

"box.store" (%box, %storage) : (!'boxtype, !box.storage<!boxtype>) -> ()

is transformed into:

// Recursively unpack %box:
%index, %memref = "box.unpack"(%box) : (!boxtype) -> (index, memref<?x3xf64>)
%struct® = 1lvm.mlir.undef : !structtype

// Convert index to i64 and insert:
%index_converted = builtin.unrealized_conversion_cast %size : index to i64
%structl = 1llvm.insertvalue %index_converted, %struct@[@] : !structtype

// Convert memref to !llvm.struct and insert:
%memref_converted = builtin.unrealized_conversion_cast %memref

. memref<3x?xf64> to !memref2dstruct
%struct2 = 1lvm.insertvalue %memref_converted, %struct1[1, @] : !structtype

// Store struct:
%ptr = builtin.unrealized_conversion_cast %storage : !box.storage<!boxtype> to !llvm.ptr
1lvm.store %struct2, %ptr : !structtype, !llvm.ptr

Listing 8.3: Conversion of box . store via box-convert-storage-to-11

8.2 1-to-N Conversion of !box.box Values and Type via
Expansion and Shortcutting

Rather than being converted, the 'box.box type and its associated operations are eliminated
through a series of expansion passes followed by a final shortcutting pass. Collectively,
these passes replace each !'box.box value or type with its constituent elements, while also
eliminating all remaining box operations. Although the box-shortcut-extract-ops pass
is executed last, it is presented first because its mechanism clarifies the objectives of the
expansion passes.

8.2.1 The box-shortcut-extract-ops Pass

The box-shortcut-extract-ops pass finds for each box.extract operation the corre-
sponding box.insert operation, removes the extract, and replaces its result with the
inserted value. It expects the following preconditions to be satisfied:

1. Of the box dialect, only the box.undef, box.insert, and box.extract operations remain
in the IR.

2. All box.insert and box.extract operations extract or insert individual entries, never
'box .box values.

3. !box.box values are not used as operands of operations other than box.insert or
box.extract.
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4. Except for the box.undef and box.insert operations, no other operation returns a
'box .box value.
5. No block arguments of type !box.box exist.

Due to the value semantics of the !box.box type and the listed conditions, each
box.extract operation forms the tail of a def-use chain that originates at a box.
undef, where each intermediate chain link is a box.insert operation. During the box-
shortcut-extract-ops pass, the def-use chain of every box . extract operation is traversed
backwards, while its indices are compared with the indices of each visited box.insert
operation. When encountering a box . insert operation with matching indices, the box. |
extract operation is eliminated and its result is replaced with the inserted value. After
all box.extract operations are eliminated, the remaining box.insert and box.undef
operations are automatically removed during the next DCE pass.

Example:
'mybox = !box.box<[index, !box.box<[f64, f32]>]>

%ins® = arith.constant 1 : index
%ins1_0 = arith.constant 1 : f64

%box = "box.undef" : () -> !mybox

// Insert values into box:

%box@ = "box.insert"(%box, %ins@) <{"indices" = [0 : i64]}> : (!mybox, index) -> !mybox
%box1 = "box.insert"(%box@8, %ins1_0) <{"indices" = [1 : i64, 0 : i64]}>

('mybox, f64) -> Imybox
// Extract values from box:
%extrd = "box.extract"(%box1) <{"indices" = [0 : i64]}> : (!'mybox) -> index
%extr1_0 = "box.extract"'(%box1) <{"indices" = [1 : i64, @ : i64]}> : (!'mybox) -> f64
// Use extract values:
"dummy.op" (%extre, %extr1_0) : (index, i64) -> ()

gets shortcut to:

%ins@ = arith.constant 1 : index

%ins1_0 = arith.constant 1 : f64

%box = "box.undef" : () -> !mybox

// Insert values into box:

%box@ = "box.insert"(%box, %ins@) <{"indices" = [0 : i64]}> : (!mybox, index) -> !mybox
%box1 = "box.insert"(%box@, %ins1_0) <{"indices" = [1 : i64, @ : i64]}>

('mybox, f64) -> !mybox
// Use inserted values instead of extracted ones:
"dummy.op" (%ins@, %ins1_0) : (index, 164) -> ()

Listing 8.4: Shortcutting of box .extract operations via box-shortcut-extract-ops (!mybox)

and once all box.extract operations are eliminated, the box.insert operations are
removed during the next DCE pass:

%ins® = arith.constant 1 : index
%ins1_0 = arith.constant 1 : f64
"dummy.op” (%ins@, %ins1_.0) : (index, i64) -> ()

Listing 8.5: Elimination of unused box.extract and box.undef operations after applying
box-shortcut-extract-ops

Reasons for Pass Failures

When traversing the def-use chain of a box.extract operation, reaching the box.undef
operation at the origin causes the box-shortcut-extract-ops pass to fail. As exemplified
in Listing 8.6, provided all preconditions are met, encountering a box.undef operation
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indicates that the value extracted by the box.extract operation was never inserted. This,
in turn, implies the use of an undefined value, making failure the correct outcome.

%ins® = arith.constant 1 : index

%box = "box.undef" : () -> !mybox

%box@ = "box.insert"(%box, %ins@) <{"indices" = [0 : 164]}> : (!mybox, index) -> !mybox
%extre = "box.extract"(%box@) <{"indices" = [0 : i64]}> : ('mybox) -> index

// Fails because no entry was ever inserted at 1,0:

%extr1_0 = "box.extract"(%box@) <{"indices" = [1 : i64, © : i64]}> : (!'mybox) -> f64

Listing 8.6: Failure of box-shortcut-extract-ops because of a missing inserted value

The box-shortcut-extract-ops pass also fails if any precondition is violated. For
example, as shown in Listing 8.7, if an operation other than a box.undef or box.insert
returns a !box.box value, the pass fails when encountering this operation during the
traversal of the def-use chain. The same happens when the def-use chain originates at
a block argument. If a 'box.box value is used as an operand by an operation other than
box.insert or box.extract, the pass does not directly fail during traversal, but it will fail to
eliminate the box dialect from the IR. As illustrated by Listing 8.8, in cases where a box. |
insert operation inserts a !'box.box value rather than an individual entry, matching the
indices fails if a box .extract operation extracts an element of that box.

To prevent these situations and to guarantee that all preconditions are satisfied, the IR is
prepared through several expansion passes, as discussed in the following sections.

%box = "dummy.op"() : () -> !mybox

// Extraction fails because !box.box def-use chain originates at illegal operation
%extr@ = "box.extract"'(%box) <{"indices" = [0 : i64]}> : (!mybox) -> index

%extr1_0 = "box.extract"(%box) <{"indices" = [1 : 164, 0 : i64]}> : (!mybox) -> f64

Listing 8.7: Failure of box-shortcut-extract-ops caused by an operation other than box.insert or
box.extract returning a !box.box

%ins® = arith.constant 1 : index
%ins1_0 = arith.constant 1 : f64
%box = "box.undef" : () -> !mybox
%inner_box = "box.undef" : () -> !box.box<[f64, f32]>
>> Insert entries into %inner_box -> %inner_box2
// Insert inner_box2 into box:
%box@ = "box.insert"(%box, %inner_box) <{"indices" = [1 : i64]}>
© (!'mybox, !box.box<[f64, f32]>) -> !mybox
// Fails because no direct indices match is found:
%extr1_0 = "box.extract"'(%box1) <{"indices" = [1 : i64, @ : 164]}> : (!'mybox) -> f64

Listing 8.8: Failure of box-shortcut-extract-ops caused by the insertion of a !box.box value

8.2.2 General Strategy for Expanding !box.box Values and Types

Expansion refers to the process of rewriting operations by replacing all box.box operands,
results, and block arguments with their individual elements. While each expansion pass
targets different operations, they all employ the same rewriting strategy explained in this
section.
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Expansion of !'box.box Operands

If an operation uses a !'box.box value as an operand, it is rewritten to use its constituent
values instead. The individual values are obtained by disassembling the 'box.box value
using a box.unpack operation.

Example:

"dummy.op" (%box) : !mybox -> ()
is transformed into:

%vald, %vall_0, %vall_1 = "box.unpack" (%box) : (!mybox) -> (index, f64, f32)
"dummy.op" (%val@, %vall_@, %vall_1) -> ()

Listing 8.9: Expansion of !box.box operands

Expansion of !'box.box Region Arguments

If a region has a !'box.box region argument, its owning operation is rewritten to replace
the argument with multiple arguments, each corresponding to one of the box’s individual
elements. At the beginning of the region, the individual arguments are reassembled into
a 'box.box of the original argument type using a box . pack operation. The resulting value
then replaces the original region argument.

Example:

"dummy.op" (){

AM{%arg : !mybox}: // !box.box region argument
"dummy.yield" (%arg) -> ()

o 0O -=>0

is transformed into:

"dummy.op" (){
A {%arg0: index, %argl1_@ : f64, %arg1_1 : f32}: // Arg types match element types of !mybox

// Reassemble individual arguments into value of original !mybox type:
%arg = "box.pack"(%arg@, %arg1_0, %argi_1) : (index, f64, f32) -> Imybox
“dummy.yield" (%arg) -> ()

Fo0 >0

Listing 8.10: Expansion of !box.box region arguments

Expansion of !'box.box Results

If an operation has a box . box result, it is rewritten to replace the result with multiple results,
each corresponding to one of the box’s individual elements. Immediately after the rewritten
operation, the individual results are packed into a !box.box of the original result type.
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Example:

// 'box.box result:
%res = "dummy.op"() -> (!mybox)

is transformed into:

// !'box.box result was replaced by individual entries:

%resd, %res1_0, %res1_1 = "dummy.op"() : () -> (index, f64, f32)

// Reassemble entries back into original !box.box value:

%res = "box.pack"(%res@, %res1_0, %resi_1) : (index, f64, f32) -> !mybox

Listing 8.11: Expansion of !box.box results

Combining Expansion

It is very common for the operand types, region argument types, and return types of an
operation to be linked. Moreover, the operand types of a region’s terminator operation are
frequently connected to the result types of their parent operation or to the region argument
types of other regions. In the presence of such dependencies, all linked !box.box values
and types must be expanded together in a single rewriting step.

Example:

// Operand types, region argument types, return types, and yielded types are all linked:
%res = "dummy.op" (%box){

MA{%arg : !'mybox}:

"dummy.yield" (%arg) : ('mybox) -> ()
} o (!'mybox) -> (!mybox)

is transformed into:

// Perform expansion of all linked elements together:
// Expand operand of "dummy.op":
%vald, %vall_0, %vall_1 = "box.unpack" (%box) : (!mybox) -> (index, f64, f32)
%resd, %res1_0, %res1_1 = "dummy.op"(%val@, %vall_0, %vall_1){
M{%arg@ : index, %argl1_0 : f64, %argl_1 : f32}: // Expanded region argument
// Pack expanded block argument:
%arg = "box.pack"(%arg@, %arg1_0, %argi_1) : (index, f64, f32) -> !mybox
// Expand operand of "dummy.yield":
%yieldo, %yield1_@, %yield1_1 = "box.unpack" (%arg) : (!mybox) -> (index, f64, f32)
"dummy.yield" (%yield®, %yield1_0, %yield1_1) : (index, f64, f32) -> ()
} : (index, f64, f32) -> (index, f64, f32) // Unpacked results
// Pack expanded result:
%res = "box.pack"(%res@, %res1_0, %resi_1) : (index, f64, f32) -> !mybox

Listing 8.12: Combined expansion of operands, block arguments, and results

8.2.3 The box-expand-func Pass

The box-expand-func pass expands all ' box.box values and typesin func.funcand func. |
call operations. Both operation-types must be rewritten in a single pass to maintain the
validity of the IR. Each func.call operation is rewritten by expanding all 'box.box operands
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and results. Meanwhile, each func.func operation is rewritten by expanding its !box. |
box region arguments and the !box.box operands of its func.return operation. Because
a func. func operation’s function-type is linked to its region argument and func.return
operand types, the function-type is also updated.

Example:

func.func @foo(%arg: !'mybox) -> !mybox {
>> Modify %arg -> %modified_box
return %modified_box : !mybox

}
%returned_box = func.call @foo(%box) : (!mybox) -> !mybox

is transformed into:
// Expanded func.func:
func.func @foo(%arg® : index, %arg1_0 : f64, %argl_1 : f32) -> (index, f64, f32)
{
%arg = "box.pack"(%arg@, %arg1_0, %argli_1) : (index, f64, f32) -> !mybox
>> Modify %arg -> %modified_box
%ret@, %ret1_@, %ret1_1 = "box.unpack" (%modified_box) : (!mybox) -> (index, f64, f32)
return %ret@, %ret1_0, %retil_1

}

// Expanded func.call:
%vald, %vall_0, %vall_1 = "box.unpack" (%box) : (!mybox) -> (index, f64, f32)
%resd, %res1_0, %res1_1 = func.call @foo(%val®, %vall_0, %vall_1)

(index, f64, f32) -> (index, f64, f32)
%returned_box = "box.pack"(%res@, %res1_0, %resl1_1) : (index, f64, f32) -> Imybox

Listing 8.13: Expansion of func. func and func.call via box-expand-func

8.2.4 The box-expand-scf-if Pass

The box-expand-scf-1if pass expands all 'box.box types and values in scf.if operations.
Each operation is rewritten by simultaneously expanding its !box . box results and the box
operands of its scf.yield operations.

Example:

%res = scf.if %condition -> (!mybox) {
>> Compute %true_box

scf.yield %true_box : !mybox
} else {

>> Compute %false_box

scf.yield %false_box : !mybox

}
is transformed into:
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%res@, %res1_0, %res1_1 = scf.if %condition -> (index, f64, f32) {
>> Compute %true_box
// Expand yield operand:
%yieldd, %yield1_0, %yield1_1 = "box.unpack" (%true_box) : (!mybox) -> (index, f64, f32)
scf.yield %yieldd, %yield1_0, %yield1_1 : (index, f64, f32)
} else {
>> Compute %false_box
// Expand yield operand:
%yieldd, %yield1_0, %yield1_1 = "box.unpack" (%false_box) : (!mybox) -> (index, f64, f32)
scf.yield %yield@, %yield1_0, %yield1_1 : (index, f64, f32)

}
// Pack expanded result:
%res = "box.pack"(%res@, %res1_0, %resi_1) : (index, f64, f32) -> Imybox

Listing 8.14: Expansion of scf.if via box-expand-scf-if

8.2.5 The box-expand-scf-for Pass

The box-expand-scf-for pass expands all !box.box types and values in scf.for opera-
tions. Each operation is rewritten by expanding its !box.box iter_args operands, while
simultaneously expanding all linked region arguments and results.

Example:

%res = scf.for (%iteration) = (%zero) to (%stop) step (%one)
iter_args(%arg = %box) -> (!mybox) {
>> Modify %arg -> %modified_box
scf.yield %modified_box : !mybox

}

is transformed into:

// Expand iter_args argument:
%vald, %vall_0, %vall_1 = "box.unpack" (%box) : (!mybox) -> (index, f64, f32)
%res@, %resl_o, %res1_1 = scf.for (%iteration) = (%zero) to %(stop) step (%one)
iter_args(%arg@ = %val@, %argl_0 = %vall_0, %argl_1 = %vall_1)
-> (index, f64, f32) {
// Pack expanded block argument:
%arg = "box.pack"(%arg@, %arg1_0, %argi_1) : (index, f64, f32) -> !mybox
>> Modify %arg -> %modified_box
// Expand yield operand:
%y1d@, %yld1_8, %yld1_1 = "box.unpack" (%modified_box) : (!mybox) -> (index, f64, f32)
scf.yield %ylde, %yld1_0, %yld1_1 : (index, f64, f32)

}
// Pack expanded result:
%res = "box.pack"(%res@, %resi_0, %resi_1) : (index, f64, f32) -> !mybox

Listing 8.15: Expansion of scf. for via box-expand-scf-for

8.2.6 The box-expand-box-ops Pass

The box-expand-box-ops pass rewrites all box . insert, box.pack, box.extract, and box. |
unpack operations to box.insert and box.extract operations only handling individual
elements. It must be executed last, after all other expansion passes, as those typically
introduce box.unpack and box . pack operations.

Each box.insert operation that inserts a !box.box value is replaced by a box.unpack
operation that disassembles the inserted !box.box, followed by a series of box.insert
operations that insert each entry individually. Conversely, each box.extract operation that
extracts a !box.box entry is replaced by multiple box .extract operations that extract the
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individual values of the extracted box, followed by a box . pack operation that reassembles
them into a box of the original return type.

Example:
%res = "box.insert"(%box, %inner_box) <{"indices" = [1 : 164]}>
: ('mybox, !box.box<[f64, f32]>) -> !mybox

is transformed into:
%vall_0, %vall_1 = "box.unpack" (%innerbox) : (!box.box<[f64, f32]>) -> (f64, f32)

%res@ = "box.insert"(%box, %vall_0) <{"indices" = [1 : 164, 0 : i64]}>
: (!'mybox, f64) -> Imybox
%res = "box.insert"(%box, %vall_1) <{"indices" = [1 : i64, 1 : i164]}>

: (!mybox, f32) -> !mybox
Listing 8.16: Expansion box.insert via box-expand-box-ops

Each box.pack operation is replaced by a box.undef operation, followed by a series of
box.insert operations that insert the individual entries into the newly created !box.box.
Conversely, each box.unpack operation is replaced by multiple box.extract operations
that extract all entries individually.

Example:

%vald, %vall_0, %vall_1 = "box.unpack" (%box) : (!mybox) -> (index, f64, f32)

is transformed into:

%vald = "box.extract"(%box) <{"indices" = [ @ : i64]}> : !mybox -> index
%vall_0 = "box.extract"(%box) <{"indices" = [1 : i64, © : i64]}> : !mybox -> f64
%vall_1 = "box.extract"(%box) <{"indices" = [1 : 164, 1 : i64]}> : !mybox -> 32

Listing 8.17: Expansion box . unpack via box-expand-box-ops
This pass is the final expansion pass. After its execution, only box.undef, as well as box. |

insert and box.extract operations handling individual values, remain in the IR.

8.3 The memwrap-eliminate-redundant-store-ops Pass

Thememwrap-eliminate-redundant-store-opspassremovesmemwrap.storeandmemwrap. |
store_vector operations that store values at the same memory locations they were previ-
ously loaded from. Operations from the memwrap dialect are only introduced when lower-
ing particles_dist.load_particle and particles_dist.store_particle operations.
These, in turn, are only emitted during the conversion of particles_dist.foreach and
particles_dist.for_all_neighbors operations (See Section 7.3.2). Great care was taken
to avoid all data dependencies between particles within the foreachand for_all_neighbors
operations. In the absence of data dependencies, if a value is stored back at the same mem-
ory location it was loaded from, the store operation has no effect and can be removed. The
memwrap-eliminate-redundant-store-ops pass exploits this fact and removes all such
memwrap load operations. Any resulting memwrap . load or memwrap . load_vector operations
with unused results are eliminated during a subsequent DCE pass.
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Example:

// (Types have been removed to improve readability)

// Converted particles_dist.load_particle:

%pos = "memwrap.load_vector"(%pos_memref, %particle_index) <{"memref_transposed"}>
%velocity = "memwrap.load_vector"(%velocity_memref, %particle_index)

%force = "memwrap.load_vector" (%force_memref, %particle_index)

// Modify velocity and position:
%new_velocity = math.fma %half_delta_t, %force, %velocity
%new_pos = math.fma %delta_t, %new_velocity, %pos

// Converted particles_dist.store_particle:

"memwrap.store_vector" (%new_pos, %pos_memref, %particle_index) <{"memref_transposed"}>
"memwrap.store_vector" (%new_velocity, %velocity_memref, %particle_index)

// Stores unmodified force back where it was loaded from:
"memwrap.store_vector" (%force, %force_memref, %particle_index)

is transformed into:

%pos = "memwrap.load_vector"(%pos_memref, %particle_index) <{"memref_transposed"}>
%velocity = "memwrap.load_vector"(%velocity_memref, %particle_index)
%force = "memwrap.load_vector" (%force_memref, %particle_index)

// Modify velocity and position:
%new_velocity = math.fma %half_delta_t, %force, %velocity
%new_pos = math.fma %delta_t, %new_velocity, %pos

"memwrap.store_vector" (%new_pos, %pos_memref, %particle_index) <{"memref_transposed"}>
"memwrap.store_vector" (%new_velocity, %velocity_memref, %particle_index)
// Store operation for force was eliminated

Listing 8.18: Elimination of a redundant memwrap . store_vector operation during the
memwrap-eliminate-redundant-store-ops pass

This simple yet effective pass demonstrates the power that results from the use of the
box dialect. If structs had been used for lowering the !particles_dist.particle type,
this pass would need to be significantly more complex, as it would require analyzing the
modification graph of the particle struct to determine which entries are never modified and
therefore must not be stored.

8.4 The convert-memwrap-to-memref-vector Pass

The convert-memwrap-to-memref-vector pass converts all memwrap operations to oper-
ations from the memref and vector dialects. Each memwrap . load operation is converted
one-to-one to amemref . load operation. Similarly, each memwrap . store operation is lowered
to amemref.store. Allmemwrap.load_vector operations without the memref_transposed
property are converted into vector . load operations, while allmemwrap . store_vector with-
out memref_transposed are lowered to vector.store operations.

Initially, memwrap.load_vector and memwrap.store_vector operations with memref_
transposed were converted into vector.transfer_read and vector.transfer_write
operations, respectively. However, the integrated convert-vector-to-scf pass, which
lowers the vector.transfer_read and vector.transfer_write operations, introduced
memref.alloca operations, which frequently caused out-of-memory errors. To prevent
this issue, each memwrap . load_vector operation with the memref_transposed property is
instead converted into a series of memref . load operations, each loading a single element
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of the vector. Afterward, the loaded values are assembled into the resulting vector value.
The memwrap . store_vector operation reverses this process, disassembling a vector into
its elements and then storing each scalar individually.

Example:

// %pos_memref = | (x@ [x1] x2 x3 ...) |
/1 | (yo [y1] y2 y3 ...) |
// | (z0 [z1] z2 z3 ...) |

// Extract (x1, y1, z1):
%pos = "memwrap.load_vector" (%pos_memref, %one) <{"memref_transposed"}>
(memref<3x?xf64>, index) -> vector<3xf64>

is transformed into:

// %pos_memref = | (x@ [x1] x2 x3 ...) |
// | (ye [y1] y2 y3 ...) |
// | (z0 [z1] z2 z3 ...) |

// Extract x1, y1, and z1 individually

%x = memref.load %pos_memref[%zero, %one] : memref<3x?xf64>
%y = memref.load %pos_memref[%one, %one] : memref<3x?xf64>
%z = memref.load %pos_memref[%two, %one] : memref<3x?xf64>

// Insert all elements into one vector
%zero_vector = arith.constant dense<0.0> : vector<3xf64>

%posB® = vector.insertelement %x, %zero_vector[%zero : index] : vector<3xf64>
%posT = vector.insertelement %y, %pos@[%one : index] : vector<3xf64>
%pos = vector.insertelement %z, %posl[%two : index] : vector<3xf64>

Listing 8.19: Conversion of memwrap . load_vector with memref_transposed via
convert-memwrap-to-memref-vector

This pass marks the end of the particles lowering pipeline. Afterward, only standard
dialects remain in the IR.
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9 Evaluation

9.1 Benchmarking Setup

To evaluate the performance of the code generated by the compilation pipeline presented
in this work, Molecular Dynamics [26] was implemented in MLIR using the particles dialect
and compared against C++ implementations leveraging OpenFPM. For this purpose, two MD
examples, one for CPUs and one for CUDA GPUSs, provided by OpenFPM were adapted to
closely mirror the MLIR code, which itself was based on these examples. Appendix A.1T shows
the MLIR code used for both hardware targets. Mirroring involved using the same vector_ |
dist memory layout, identical cell list implementations, and placing the communication and
update operations at the same locations in the C++ code as they were placed automatically
in the MLIR code. Since the automatic insertion of communication and update operations
resulted in an optimal placement, this did not decrease the performance of the C++
implementations. Additionally, all loop fusion optimizations were disabled while lowering the
MLIR code.

To verify that the C++ and MLIR implementations match, particle positions and properties
were compared after each batch of 100 time steps. To this end, for both CPUs and CUDA
GPUs, the MLIR and C++ implementations were combined into a single executable that
executed batches using both implementations in an alternating fashion. Across all variants,
the third batch was the earliest when the maximum difference of a field value exceeded 1e-3.
Separate tests indicate that these deviations may stem from differences in floating-point
behavior between the MLIR-generated code and the code generated by the C++ compilers.
Exactly matching the results of the computations proved challenging and was ultimately
abandoned. In addition to directly matching the fields, the energy of both simulations was
calculated and compared after each batch.

The original plan was to perform the benchmarks in an HPC environment. However,
even after several days of troubleshooting and experimenting with numerous compiler
combinations, it was not possible to get the project fully up and running. This highlights
one of the greatest limitations of this work: its large number of dependencies. In particular,
OpenFPM has many dependencies of its own and appears to require very specific compiler
versions.

Due to these issues, the benchmarks were conducted within the development environ-
ment, using a Docker container on a single machine. The system was equipped with an AMD
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Ryzen Threadripper 3960X (24 cores/48 threads), 64GB of RAM, and an NVIDIA GeForce RTX
3090 with 24GB of VRAM. Since the focus of the evaluation is not the absolute performance
of the MLIR implementation but the relative differences between implementations, all of
which were executed within the same environment, the comparisons still provide valuable
insights into possible future improvements by highlighting specific limitations in our current
implementation. Identifying these limitations is crucial for improving the performance of
future versions through better code generation and specific optimization strategies.

9.2 Benchmarking Molecular Dynamics on a Multi-Core CPU

The CPU executable, combining both the MLIR and C++ implementation, was built twice:
once using the GNU Compiler Collection (GCC) (version 9.4.0) and once using Clang (version
18.1.8). For the GCC variant, the LLVM IR output from lowering pipeline was first translated
to assembly using 11c, then compiled with g++ to an object file, and finally linked with the
rest of the program also compiled with g++. In the Clang variant, the LLVM IR code was
directly compiled to an object file using clang++, which was then linked with the rest of the
code compiled with the same compiler. This approach resulted in two executables and four
simulation variants: a binary combining both the MLIR and C++ reference implementation,
compiled and linked with either the GCC or Clang toolkit.

Each simulation consisted of 1000 time steps, divided into ten batches with 100 time steps
each. For every parameter (number of particles or number of processes) three simulation
runs were conducted. The first two batches of each run were excluded from the results, as
they consistently exhibited significantly lower runtimes across all simulation versions and
parameter combinations. Including them would have rendered the error bars meaningless.
Particles were initially arranged on a grid. We suspect that this initial grid layout caused a
warm-up phase, and once the particles had moved sufficiently, the benefits of the grid layout
were lost and the performance stabilized. To test this hypothesis, three simulations were
run with particle positions initialized at random. No warm-up phase was observed in this
case, supporting the hypothesis.

Figure 9.1 shows the average time required to complete a batch for different particle
counts, while Figure 9.2 shows the average batch time across different process counts. Given
three runs and eight included batches per run, each bar represents 24 measurements.
The plots on the left display absolute measurements, while the plots on the right show the
average batch runtimes normalized against the C++ reference implementation compiled
with GCC. All implementations scaled well with both the number of particles and the number
of processes.

Across all benchmark cases, the fastest variant was the C++ reference implementation
compiled with GCC, with all other variants taking 0.5%-5.5% longer. The second-fastest
implementation was the reference compiled using Clang, which was on average 0.5%-2%
slower than the one compiled with GCC. The MLIR implementation compiled with Clang
came in third, being 0.5%-2.5% slower than the GCC reference. The slowest implementation
was always the MLIR version compiled with GCC, which was on average between 4.5% and
5.5% slower than the reference.

Except for 1000 particles using a single process, the normalized performance gap between
the GCC reference implementation and both MLIR variants widened with decreased per-
process particle counts. We hypothesized that there may be a constant overhead involved
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Figure 9.1: Performance comparison on CPU between C++ reference and MLIR implementations for different
particle counts. Left: Average runtime required to complete a batch consisting of 100 time steps, with 10 batches
per run across three simulation runs. Right: Average batch runtime normalized against the GCC reference
implementation. Error bars correspond to the standard deviation. The first two batches of each run were
excluded to ensure meaningful error bars.
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Figure 9.2: Performance comparison on CPU between C++ reference and MLIR implementations for different
process counts, executed with 64,000 particles. Left: Average runtime required to complete a batch consisting of
100 time steps, with 10 batches per run across three simulation runs. Right: Average batch runtime normalized
against the GCC reference implementation. Error bars correspond to the standard deviation. The first two
batches of each run were excluded to ensure meaningful error bars.

in the MLIR implementations, which becomes more impactful when fewer particles are
assigned to each process. However, running simulations with only a single particle resulted
in differences of less than 1e-3 seconds between all four implementation variants. The
observed performance gap therefore is unlikely to stem from the integration of update and
communication operations, or from the additionally required particles_dist.update_
internals operations. Notably, the same widening of the performance gap with decreased
per-process particle counts was also observed for the Clang reference implementation.
The causes for the performance differences and the observed trends have not yet been
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identified. However, numerous experiments conducted during development and result
verification showed that minuscule changes in the particles_dist.for_all_neighbors
region, and the C++ reference code it mirrors, can have significant performance impacts.
We suspect that this is because the interaction code, which dominates the runtime, is very
short but executed countless times per batch. Therefore, even small differences, such as a
single additional jump in the compiled assembly code, can significantly impact simulation
performance. We suspect that this effect, mixed with other factors such as cache misses and
branch prediction, can result in performance variability that is hard to attribute to specific
causes.

To illustrate this, the check that skips a neighbor if it is not within the cutoff radius during
interaction, was temporarily disabled for all implementations. This has the following effects:
Everything surrounding the interaction logic remains the same, including the code iterating
over all particles and neighbor indices. Because the positions of the particle and its neighbor
are required during interaction, this also does not eliminate any load operations. However,
the interaction logic now contains at least one less branch, and on average performs 6.5
times the number of calculations (ratio between the volumes of a cube with side length 3
and a sphere with radius 1).

Figure 9.3 shows the results for the adapted simulations, using a single process and
varying particle counts. In this scenario, the Clang reference implementation had by far the
worst performance, followed by the MLIR implementation compiled with GCC. The MLIR
implementation compiled with Clang came in second. Compared to the GCC reference
implementation, the performance gaps of all other variants increased from 0.5%-5.5% to
6.5%-14.5%. Furthermore, new trends emerged. For instance, the performance gap between
the MLIR implementation compiled with Clang and the one compiled with GCC seemed to
decrease for higher particle counts. Notably in this experiment is the large performance gap
between both reference implementations. Constant factors, such as Link-Time Optimization
(LTO), were ruled out by the experiment using a single particle. The performance gap may
be due to differences in the optimization or code generation strategies between the g++
and clang++ compilers.

As a conclusion, performance varies widely across different simulation codes and compiler
combinations. We suspect that this stems from small differences in the compiled interaction
code. Because it is generally very short but executed over and over, small differences can
cause significant performance variations. Overall, the generated code performs closely to
the reference, suggesting that its quality is already high. However, more examples need
to be implemented and benchmarked, and the differences must be investigated further,
before drawing any definitive conclusions.

9.3 Benchmarking Molecular Dynamics on a CUDA GPU

To build the CUDA executable, a toolchain combining clang++, 11c, g++, and nvcc (version
V11.3.109.) was employed. Section 3.3 outlines that lowering the MLIR code for CUDA GPUs
requires compiling the device code of the runtime source file to LLVM bitcode using clang++
and then reintroducing the result into the lowering pipeline, where it is then linked with the
device code of the MLIR file. The final output of the pipeline was translated to assembly with
11c and the remainder of the built steps were performed using g++ and nvcc. To enable
LTO, device and host code were compiled and linked separately.
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Figure 9.3: Performance comparison on CPU between C++ reference and MLIR implementations for different
particle counts, executed with one process. The check that skips a neighbor if it is not within the cutoff radius
was disabled. Left: Average runtime required to complete a batch consisting of 100 time steps, with 10 batches
per run across three simulation runs. Right: Average batch runtime normalized against the GCC reference
implementation. Error bars correspond to the standard deviation.
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Figure 9.4: CUDA: Deterioration of the MLIR performance throughout a simulation with one million particles
comparedtothe C++reference implementation. Left: Execution time in seconds per batch of 100 time steps. Right:
Batch times normalized against the C++ reference implementation. The MLIR performance rapidly deteriorated
throughout the simulation.

Figure 9.4 presents the batch runtimes observed during a single simulation run with one
million particles, executing using a single process. Each batch consisted of 100 time steps. The
relative runtime of the MLIR implementation increased throughout the simulation. It started
at around 300% and rapidly grew to over 700%. While the C++ reference implementation
also showed signs of performance deterioration, the impact was not as pronounced.

Numerous checks were performed to investigate the observed performance deterioration.
The code was checked multiple times to ensure that the calculations matched. Potential
memory leaks were also examined, but no issues were found. While the energy fluctuations
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differed slightly between implementations, the values generally stayed within a one percent
of each other.

The current hypothesis is that the observed performance degradation stems from the
lowering pipeline generating code that is poorly aligned with the Single Instruction, Multiple
Threads (SIMT) execution model of CUDA GPUs. In particular, we suspect that lowering
the cell_list.for_all_neighbor_indices operation results in an excessive number of
control flow branches. This is, at least in part, caused by the integration of the CelllList_
gpu_ker and NN_gpu_it_box classes through runtime calls. The get_next runtime function,
for instance, which retrieves the index of the next neighbor, contains an if-else block which
could be eliminated through direct integration. The MLIR code iterating over all neighbor
indices is also suspected to result in more control flow branches than necessary. Due to the
lock-step execution of threads - where all threads must execute the same instruction path -
a higher number of control flow branches can significantly degrade performance.

We suspect that at the beginning of a simulation, when particles are still arranged in a grid,
threads generally follow the same control flow paths and the performance impact is less
pronounced. However, as particles move, the benefits of the initial grid layout diminish, and
threads become increasingly distributed across different basic blocks. The more blocks a
program uses, the more lock-steps each thread spends being masked. Therefore, programs
with more blocks are suspected to deteriorate faster as particles move.

To investigate this hypothesis, three experiments were conducted. First, particles were
initialized at random positions. This resulted in an initial runtime of around 108 seconds per
batch for the MLIR implementation, and 31 seconds for the C++ implementation. Both values
are significantly higher than the initial times observed with a grid layout. Unfortunately, the
performance degradation could not be measured, as the random particle layout proved
unstable and the parameter controlling the force needed to be tuned down.

In the second experiment, a regular grid layout was used again, but with an additional
force multiplier of 1e-5 to slow down particle movements. This resulted in no observable
performance deterioration for either implementation. Combined with the results of the first
experiment, this suggests that the observed performance degradation is likely caused by
particle movements.

In the third experiment, the check that skips a neighbor if it is not within the cutoff radius
during the interaction was again disabled. This increases the total interactions that need to
be computed by a factor of 6.5, but at the same time reduces the number of control flow
branches in the interaction code. Figure 9.5 shows the results of a simulation with one million
particles. While a performance deterioration of the MLIR implementation still occurred, it was
much less pronounced and more consistent with the C++ baseline. Notably, the performance
of the MLIR implementation at the first batch was also over 25% faster without the check
than with it. In contrast, the C++ version suffered from a performance decrease of over 40%.
These observations reinforce the hypothesis that the observed performance degradation
for the MLIR implementation is due to too many control flow branches.

Figure 9.6 shows a performance comparison between the C++ reference and MLIR
implementation with varying particle counts using a single process. Due to the observed
performance deterioration throughout a simulation, only the mean execution time of the
first batch across five runs was measured. Notably, the performance gap increased with
higher particle counts, indicating further issues to investigate. Because the benchmarks
were performed on a single machine with a single GPU, benchmarks with more than one
process were omitted.
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Figure 9.5: CUDA: Deterioration of the MLIR performance throughout a simulation with one million particles
compared to the C++ reference implementation. The code that checks whether a neighbor is within the cutoff
radius was disabled. Left: Execution time in seconds per batch of 100 time steps. Right: Batch times normalized
against the C++ reference implementation. As shown in the plot on the right, the MLIR performance deteriorated
throughout the simulation, but much slower than with the vicinity check enabled.

20

S ll

125000.0 1000000 3375000.0 8000000 125000.0 1000000 3375000.0 8000000
Number of Particles Number of Particles

{- W= MLIR
120 4 M= Reference

100

80

60

40

Avg. Batch Timeins

Normalized Avg. Batch Time in %

Figure 9.6: CUDA: Performance comparison between the C++ reference and MLIR implementation for different
particle counts, executed using one process. Left: Mean execution times of the first batch across five runs. Right:
Mean execution times normalized against the C++ reference implementation. Error bars correspond to the
standard deviation.

Benchmark results on the CUDA GPU suggest that the generated code is currently of low
quality, with multiple issues requiring further investigation and future fixes. Experiments
indicate that the number of control flow branches may play a significant role in the observed
performance gap and rapid deterioration. However, the current cell lists integration using
device runtime calls is only a preliminary solution, with a full integration still on the horizon.
Furthermore, the CUDA hardware target is the most recent addition to the lowering pipeline
and was implemented in a matter of weeks, including example implementation, integration
testing, debugging, and troubleshooting. Towards the end, no time was left to optimize the
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code generation. We therefore do not see these results as discouraging, but rather as an
insightful snapshot in an ongoing effort.

9.4 Benchmarking the Impact of Loop Fusion

To evaluate the impact of the particles-dist-fuse-foreach-ops and particles-
dist-fuse-for-all-neighbors-ops-with-foreach-ops optimization passes, the MLIR
implementations of MD were benchmarked twice, once with loop fusion enabled and once
without. Enabling these passes resulted in the fusion of a particles_dist.for_all_
neighbors and aparticles_dist.foreach operation. The for_all_neighbors operation
computed the force exerted on a particle by its neighbor based on their relative positions.
The immediately following foreach operation updated the velocity of each particle using the
force exerted on it. Fusing both operations into one particles_dist.for_all_neighbors
operation eliminated one load operation per particle: the load of the force within the foreach
operation that was fused into the for_all_neighbors.

Not Fused (Clang)
Fused (Clang)
Not Fused (GCC)

Fused (GCCQ)

15 17 19 21
Avg. Batch Timeins

Figure 9.7: CPU: Performance comparison between MLIR builds with and without loop fusion. Each bar shows the
average execution time for a batch of 100 time steps, averaged over three simulation runs with ten batches each.
Simulations were conducted using one process and 64,000 particles. The first two batches of each simulation
were excluded to keep the error bars meaningful (see Section 9.2).

Figure 9.7 presents the results of enabling loop fusion for the CPU. Simulations were
conducted with 64,000 particles using one process. Contrary to expectations, enabling
loop fusion led to performance degradation rather than improvement. We suspect that,
even though the fusion of the foreach operation into the for_all_neighbors operation
eliminated a loop and one load operation per particle, the original foreach operation was
very well suited for optimizations such as unrolling, pipelining, and speculative execution.
Furthermore, in its original form, the foreach operation may have benefitted more from the
memory locality between the fields of consecutively visited particles. The inlined foreach
code may no longer benefit from all these factors. Also, because the velocity is loaded early
in the fused loop but only used after neighbor interactions, it possibly increased the chance
of cache misses.

Figure 9.8 shows the results for the CUDA GPU. The benchmarks were conducted with
one million particles using one process. Because of the performance deterioration observed
in Section 9.3, the average runtime of the first batch across five runs is displayed. Loop
fusion resulted in a performance increase of over 45%. It may be tempting to attribute this
improvement to the elimination of the foreach operation, or to the removal of the load
operation. However, separate measurements show that the contribution of the removed
foreach operation to the total batch time is less than 0.02 seconds and therefore significantly
smaller than the observed performance gain. We see no clear explanation as to why this
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Not Fused

Avg. Batch Timeins

Figure 9.8: CUDA: Performance comparison between MLIR builds with and without loop fusion. Each bar shows
the average execution time for the first batch of 100 time steps, averaged over five simulation runs. Simulations
were conducted using one process and one million particles.

performance increase was observed. However, we suspect that it plays into the issues
observed in Section 9.3.

9.5 Evaluation of Benchmark Results

The benchmark results presented in this chapter must be interpreted within the proper
context. For one, the comparisons were made against OpenFPM, a highly optimized, state-
of-the-art framework for particle simulations. As such, the performance baseline was
exceptionally high from the outset. We consider achieving results close to the reference
implementations as a significant accomplishment, and as an indication that the generated
code is optimized. Thus, we view the CPU results, while not definitive, as very promising.
More examples must be implemented and evaluated to gain a better understanding.

For CUDA GPUs, the benchmarks indicate that the generated code currently is of low
quality. We suggest improving the code generation and cell list integration before any further
in-depth benchmarks.

While the benchmark results on the impact of loop fusion look promising for CUDA GPUSs,
it is still too early to draw any meaningful conclusion, since the causes of the performance
gains remain unclear and may be entangled with the issues identified for the CUDA target.

In summary, the CPU results are encouraging, whereas the CUDA GPU results indicate
that there is substantial work to do.

In the future, while investigating the performance differences and the observed degrada-
tion on CUDA GPUs, additional profiling tools such perf or NVIDIA Nsight should be used to
gain deeper insights. Other metrics, such as the number of basic blocks, cache-misses, and
memory accesses should also be included in the comparisons.
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10.1 Summary

This work presents particles, an MLIR dialect designed for particles-only simulations. It
is paired with a custom lowering infrastructure targeting both multi-core CPUs and CUDA
GPUs, and supports DMP by integrating OpenFPM.

The particles dialect is designed to be target-agnostic and general-purpose, and thus
does notinclude any DMP or OpenFPM specific elements. A notable feature of the particles
dialect is the use of fake values semantics for its !particles.set type. These fake value
semantics behave like real value semantics but use memory semantics under the hood. Their
use facilitates the construction of modification graphs via def-use relationships. Furthermore,
they enable maintaining transient state and the buffering of internal data.

The particles_dist dialect adapts particles to DMP while also integrating OpenFPM.
As a specialization dialect, it adapts all IR construct definitions from the particles dialect,
extends those where necessary, and introduces additional constructs of its own. Because
both dialects share a significant portion of their IR structure, both extend the same abstract
base dialect particles_base. Akeyearly stepinthe lowering pipelineisthe particles_dist
specialization pass, which involves replacing all particles constructs with their particles_
dist counterparts.

Following specialization, target-specific transformations are applied. These include the
fusion of particles_dist.foreachandparticles_dist.for_all_neighbors operations,
as well as the automatic insertion of update and communication operations required for
DMP. To guide the placement of these operations, a specialized DFA variant, called staleness
analysis, was developed. This analysis determines where in the program each data structure
is definitely or potentially stale. Combined with liveness analysis, it enables well-informed
placement decisions. Where compile-time analysis is insufficient, staleness tracking is used
to defer update and communication decisions to the execution time. To enable DFA, the
particles.loop operation and its particles_dist counterparts leverage the fake value
semantics employed by the !particles.set type. By ensuring that all modification graphs
over !particles.set values form a DAG with a single-source and a single single-sink, their
edges align with the control flow and the graphs can thus be used for DFA.

To facilitate optimized lowering of the particles_dist dialect, several support dialects
were developed. Each type of neighbor list is encapsulated in a companion dialect
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of particles_dist. Two such dialects currently exist: the local_domain dialect, which
considers all particles in a subdomain as neighbors, and the cell_list dialect, which
integrates cell lists. Because both dialects share the same syntax, both extend the same
abstract base dialect neighbor_list.

To support the lowering of complex types and to enable 1-to-N conversion, the box dialect
was created. At the core of this dialect lies the 'box.box type, which closely resembles the
I11vm.struct type but without the strict element type constraints.

To eliminate redundant stores of particle values, the memwrap dialect was developed. It
facilitates the removal of store operations that store values at the same location they were
loaded from. In the guaranteed absence of data dependencies, such stores can safely be
removed.

Before lowering the particles_dist dialect, the runtime is generated, forming a bridge
between MLIR and C++. The runtime defines simple MLIR-compatible structs that enable
exchange of data between MLIR and C++. Additionally, it provides non-member functions
that enable the invocation of member functions and the extraction of data from C++ objects.
In particular, these runtime functions enable the integration of update and communication
operations implemented by OpenFPM.

Because the particles_dist and its neighbor list companion dialects are so closely
intertwined, they are lowered in a two-step tick-tock process. In this process, all operations
are lowered first, followed by the types, alternating between lowering the constructs of the
leader dialects and its companions. The hardware target, either CPUs or CUDA GPUs, has
little impact on the conversion patterns for particles_dist operations. Only the scf.
parallel operations, generated from lowering particles_dist.foreach operations, are
further modified when targeting CUDA GPUs by mapping their iterations to threads and
blocks.

On CPUs, the cell_1ist dialect fully integrates the CelllList_gen class from OpenFPM,
directly accessing its internal data. For CUDA GPUs, a full integration was not possible within
the time constraints. Instead, the CelllList_gpu class is integrated using device runtime
calls that rely on the NN_gpu_it_box iterator class.

Duringthe lowering of the particles_dist dialect and its companion neighbor list dialects,
constructs from the box and the memwrap dialects are introduced. Each ! box.box value that
is stored in or loaded from a !box.storage, is converted into an !11vm.struct during
storage and transfer. Afterward, all !box.box types and values are eliminated via a series of
expansion passes and a final shortcutting step, replacing all 'box . box types and values with
their constituent elements. Finally, redundant memwrap load operations are eliminated, and
the remaining memwrap operations are lowered.

Deploying the project on an HPC system for benchmarking proved to be challenging
because of build issues. Due to time restrains, the benchmarks were performed on a single
machine within a Docker container. The quality of the generated code for both hardware
targets was evaluated by comparing their performances to equivalent C++ reference
implementations of MD.

On the CPU, relative performances varied widely between different interaction codes and
compiler combinations. Overall, benchmarks suggest that the MLIR implementation comes
close to the consistently fasted reference implementation compiled with GCC, suggesting
high code quality.

On CUDA GPUs, the MLIR implementation exhibited rapid performance deterioration over
the course of an ongoing simulation run relative to the reference implementation compiled
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with nvece. The current hypothesis is that this is due to the lack of a full integration of the cell
list, and the presence of too many control flow branches in the interaction code. Simulations
with higher particles counts exhibited higher performance gaps. The performance of the
MLIR implementation did not come close to the reference. Overall, the results indicate that
the generated code has room for improvement and that further work is required to enhance
its performance and robustness.

To assess the impact of the implemented loop fusion transformations, the MLIR code
was compiled twice: once with loop fusion disabled and once with it enabled. On the CPU,
enabling loop fusion significantly decreased performance. In contrast, on CUDA GPUSs, loop
fusion resulted in a performance increase over 45%. However, the causes of the performance
gain could not be identified and are suspected to be entangled with existing issues with the
CUDA target.

10.2 Conclusion

In conclusion, the introduced particles dialect, together with its sophisticated lowering
pipeline, represents a substantial step forward in accelerating particle simulations through
MLIR. The generated code achieves performance close to the reference implementation
on CPUs, indicating a high code quality. For CUDA GPUs, benchmarks suggest substantial
room for improvement. The range of introduced capabilities presents a solid foundation for
future work. The ability to target both, CPUs and CUDA GPUs, combined with DMP, from a
nearly target-agnostic IR is a major accomplishment. Furthermore, the automatic placement
of update and communication operations based on careful code analysis represents a
significant improvement over the simple placement rules used by OpenPME.

In addition to widely opening the door for future research on particle simulation using
MLIR, this work also advances the field of multi-level IR engineering by introducing a range
of concepts and design patterns that can guide future MLIR engineers. The concepts of
dialect inheritance, dialect specialization, companion dialects, fake value semantics, and
single-source single-sink modification graphs are not specific to particle simulations and
can be adopted by any compiler engineer facing similar challenges. In particular, the box
dialect is highly versatile and applicable to almost any situation where complex types must
be lowered to aggregate types. Finally, this work also serves as an instructive case study for
integrating MLIR with existing C++ frameworks.

10.3 Limitations and Future Work

Placement of Update and Communication Operations The placement algorithms
described in Section 5.2 do not always yield optimal placements. For example, if an operation
within a branch makes a data structure stale, and that data structure is required fresh right
after the scf.if operation, the ideal placement of the update operation would be directly
after the stale-inducing operation within the branch. However, the current implementation
inserts a particles_dist.maybe_X operation after the branch, in front of the operation
that requires the data structure to be fresh. Future versions of the placement algorithms
could benefit from greater foresight by making more extensive use of liveness analysis to
determine better placements.

125



10 Discussion

Furthermore, the placement algorithm inserting ghost get operations relies heavily on
particles_dist.maybe_ghost_get operations to work around the visiting order issue. In
the future, this algorithm could, through the use of more sophisticated analysis techniques,
eliminate the issue of visiting order without deferring the majority of the decision to the
execution time.

To assess the quality of the automatic placements, a qualitative analysis should be
conducted. Test cases can be constructed using the particles_dist.call operation and
its associated updates, requires_up_to_date, makes_stale, and uses_staleness_flags
properties. The placement passes should then be applied to these test cases, and the results
analyzed. Possible evaluation methods could be comparing the automatic placements to
optimal placements or those performed manually by a human.

Storing and Loading Particle Values Eliminating redundant stores of particle values is
limited to compile-time decision-making. The memwrap dialect and its elimination pass fail
in scenarios where runtime-information is necessary to make optimal store decisions.
For example, even if a field is only modified under specific conditions (e.g., for certain
particle types) the value for the field is always stored, regardless of whether it was modified.
An implementation utilizing runtime flags, similar to the staleness flags used for the
Iparticles_dist.set type, could address this limitation by tracking whether a field value
has been modified. Using these flags, the decision to store a field can be deferred to the
execution time when an optimal decision is not possible during compile-time.

A runtime flag approach could benefit the loads as well. Currently, any field potentially
used within a particles_dist.foreach or particles_dist.for_all_neighbors region
is loaded at the start of the region. Consequently, if a field is only required in specific cases
(e.g., for particles within the interaction radius), it is still always loaded. Runtime flags tracking
whether a field has already loaded would enable on-demand loading.

How this change would impact performance must be analyzed before proceeding with the
implementation. This is especially important for the CUDA GPU target, where the excessive
number of control flow branches is already suspected to be the main cause of current
performance issues.

Dependency Issues A major limitation of this work is its extensive set of dependencies,
the negative impact of which was observed during benchmarking (Chapter 9). The project
depends on OpenFPM version 5.0.0, which at the time of writing is the newest available
version on GitHub. This version is only compatible with CUDA up to version 11.4, which in turn
restricts the range of usable Clang and GCC versions. However, even when using supported
compiler versions, builds often failed unpredictably. Throughout development, build failures
were frequent and many days of development were lost to resolving these issues. Sometimes
a dependency of OpenFPM did not build successfully, sometimes OpenFPM failed to build,
and at other times, compiling or linking the simulations itself failed where it previously
succeeded. Ultimately, only a narrow set of compiler version combinations was found to
be able to compile and link everything. Although it is nearly impossible to determine what
problems were the result of inexperience and were caused by user error, this fragility still
represents a major potential hurdle for all users with a similar level of expertise as the author
of this work.
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The restriction to a small set of compiler version combinations is particularly problematic
on HPC systems, where the user is not in full control over the environment. Combined
with the requirements of other dependencies, the intersection of available compilers and
supported compilers can quickly become empty. The long-term goal of making particle
simulations more accessible via a DSL or a problem-solving environment cannot succeed if
building the toolchain requires several days of troubleshooting and the help of an expert.
Reducing the number of build issues, for example by providing dependable build scripts,
reducing the number of dependencies, or via extensive documentation, is critical for the
long-term success of this project. To assist new users, a Dockerfile is already included in the
project.

Further Benchmarks Benchmarking was constraint by the limited available time and
had to be cut short. Additionally, a considerable portion of the available time was spent
on investigating and verifying the various issues and unexpected result found during
benchmarking. For this reason, only one example, MD, was benchmarked, using only cell
list as neighbor list implementation. To further evaluate the performance of the generated
code, more benchmarks must be performed, and more examples must be implemented.
Currently, the project implements two additional artificial benchmarks.

A "dry run" benchmark was implemented to isolate the performance with which
the particles.foreach operation iterates over the particles in a subdomain and the
particles.for_all_neighbors operation iterates over all neighboring pairs. It performs
no computations within each region and instead invokes a function containing only a NOP
assembly instruction to avoid the elimination of the loops. By excluding computations, this
benchmark focuses purely on the performance of the iteration mechanics without mixing
in arithmetic performance. Although the total execution time is important from a practical
perspective, optimizing the performance of the computations within the regions of both
operations is arguably the responsibility of built-in MLIR passes and the LLVM compiler.

Another artificial benchmark, "load store", also performs no meaningful computation.
Its purpose is to isolate the performance of loading and storing particle values and the
reduction of pairwise interaction results. In this benchmark, a foreach operation loads the
force of each particle, adds 1 to every component (to prevent optimization into a memcpy),
and stores it as velocity. Similarly, a for_all_neighbors operation loads the position of a
neighbor and directly yields it as the pair-wise interaction result, storing the reduced result
as force.

Although these artificial benchmarks were prepared for the CPU, time constraints
prevented the full execution, verification, and evaluation of the results. In the future, these
benchmarks should be revisited and also ported to CUDA GPUs. Furthermore, to gain
a more accurate view of the practical performance, more real-world examples, such as
Particle Strength Exchange or Smoothed-Particle Hydrodynamics should be implemented
and benchmarked. Lastly, benchmarks should be performed outside a container, on an HPC
system with multiple nodes, using larger particle sets and over longer time periods.

Customizable Memory Layout To reduce development efforts, a fixed memory layout
was chosen for the !particles_dist.set type and its associated vector_dist class. In
the future, the memory layout should be made customizable, as it is in OpenFPM. This
customizability could be achieved through various mechanisms. One option is to add a
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dictionary attribute to the !particles.set type to supply the memory layout information
for specialization. Alternatively, the memory layout could be attached to the builtin.module
operation or supplied via a pass option to the specialization pass.

Compatibility with OpenMP  The convert-scf-to-openmp pass converts scf.parallel
loops to OpenMP parallel constructs. In the context of this work, it offers an effective method
for integrating DMP with SMT. Using it would allow reducing the number of subdomains
the computational domain is divided into, while still utilizing multiple CPU cores per node.
Unfortunately, the current lowering pipeline seems to be incompatible with this pass, failing
with an error.

Optional Results of Iteration Operations The particles.foreach operation currently
returns only one result: the !particles.set value representing the updated particle set.
By adding an optional variadic result along with an associated reduction kinds property, as
seenintheneighbor_list.for_all_neighbor_indices operation, the foreach operation
could perform additional calculations. For example, it could be used to compute the total
kinetic energy or the total impulse of all particles. Similarly, an optional variadic result along
with another reduction kinds property could be introduced for the for_all_neighbors
operation. This could be utilized, for instance, to calculate the total potential energy of the
system.

Optimize Generated CUDA Code The code generation by for CUDA GPUs needs to be
optimized. A key priority should be the full integration of the Cel1lList_gpu_ker class, which
would reduce the number of control flow branches, eliminate the required 11vm.alloca
operation, and remove all device runtime calls. Additionally, rather than relying on the
scf dialect when lowering the cell_list.for_all_neighbor_indices operation, it may
be beneficial to directly emit code using operations from the cf (low-level control flow)
dialect. This would allow precise control over the basic blocks and control flow branches,
which is crucial for reducing their number. Finally, the check that determines whether a
neighbor is within the cutoff sphere could be integrated directly into the particles.for_
all_neighborsorparticles_dist.for_all_neighbors operations. Doing so would allow
performing this check in the most optimal way, potentially using branchless programming.
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A Appendix

A.1 Molecular Dynamics Code

// Floating point precision

If = f64

// Dimensionality of the space the simulation is happening in
#dims = 3 : index

#neighbor_list = #particles_dist.neighbor_list_kind<cell_list>
// Type of vector used for position, velocity and force
lvector = vector<3x!f>

// property names

#force = "force"
#velocity = "velocity"
// Mapping property names to types
#properties = { "velocity" = !vector, "force" = !vector}
#max_distance = 0.3 : If
// Combining everything into !particles.set and !particles.particle types
Iset = !particles.set<?, !f, #dims, #properties>
'particle = !particles.particle<!f, #dims, #properties>
#add = #particles.reduction_kind<add>
I'storage = !particles.storage<!set>
module {

func.func private @batch_done(%storage : !storage,

%context : !1lvm.ptr,
%step : index) -> ()

func.func @calc_forces(

%set : l!set,
%sigmal2 : !'f,
%sigma6b : !f,
%r_cut2 : If,
%ignore_r_cut : i1
) -> lset {
%zero = arith.constant 0.0 : !f
%zero_vector = "vector.broadcast"(%zero) : (!f) -> lvector
%minus_one = arith.constant -1 : If
%minus_sigma6 = arith.mulf %minus_one, %sigma6 : !f
%two = arith.constant 2.0 : !f
%twentyfour = arith.constant 24.0 : !f
%interacted = "particles.for_all_neighbors" (%set)

<{"with_self" = false,
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"write_targets”
"reduction_kind
({r0(%particle

%pos_particle
%pos_neighbor

%delta_pos =

// double rn
%delta_pos_sq

%rn = vector.
%within_range
// Use this w
// better to

// %perform_i

%result = scf

= ["force"],
s" = [#add]}>
Iparticle, %neighbor : !particle):

= "particles.get_position" (%particle) : (!particle) -> !vector
= "particles.get_position" (%neighbor) : (!particle) -> !vector

arith.subf %pos_particle, %pos_neighbor : !vector

= norm2(r);

uared = arith.mulf %delta_pos, %delta_pos : !vector
reduction <add>, %delta_pos_squared : !vector into !f
= arith.cmpf ole, %rn, %r_cut2 : !f

ith care, it seems to affect the performance quite a lot,
comment out the code:
nteraction = arith.ori %within_range, %ignore_r_cut : i1

.if %within_range -> (!vector) {

%rn_pow2 = arith.mulf %rn, %rn : If

%rn_powd = arith.mulf %rn_pow2, %rn_pow2 : !'f

%rn_pow6 = arith.mulf %rn_pow4, %rn_pow2 : !'f

%rn_pow7 = arith.mulf %rn_pow6, %rn : !f

// Point<3,double> f = 24.0%(2.0 *sigmal2 / (rn*rn*rn*rn*rn*rnxrn)
// - sigma6 / (rn*rn*xrn*rn)) * r;

// sigmal2 / (rn*rn*rn*rn*rn*rn*rn)

%force_0 = arith.divf %sigmal2, %rn_pow7 : !'f

// - sigmaé / (rn*rn*rn*rn)

%force_1 = arith.divf %minus_sigma6, %rn_pow4 : !f

// 2.0 *sigmal2 / (rn*rn*rn*rn*rn*rn*rn) - sigma6 / (rn*rn*rn*rn)
%force_2 = "math.fma"(%two, %force_0, %force_1) : (!'f, !f, If) -> If
/] 24.0%(2.0 *sigmal2 / (rn*rn*rn*rn*rn*rn*rn) - sigma6 / (rn*rn*rn*rn))
%force_3 = arith.mulf %twentyfour, %force_2 : !f

%force_3_broadcast = "vector.broadcast"(%force_3) : (!f) -> !vector
%final_force = "arith.mulf" (%force_3_broadcast, %delta_pos)

scf.yield %
} else {

scf.yield %
}

"particles.yi

}) {"neighbor_1lis
"max_distance
"inside-unrol
"outside-unro

func.return %inte
} // @calc_forces

// Makesw @calc_for
func.func @calc_for
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(!'vector, !vector) -> l!vector
final_force : !vector

zero_vector : !vector

eld" (%result) : (!vector) -> ()

t_kind" = #neighbor_list,

" = #max_distance,

1-factor" = 4 : i32,

11-factor" = 4 : i32} : (!set) -> (!set)

racted : !set

ces accessible from C++:

ces_mlir(%storage : !storage,
%sigmal2 : !f,
%sigma6 : !f,
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%r_cut2 : I!f,
%ignore_r_cut : i1) -> () {

%zero_index = arith.constant 0 : index

"particles.loop" (%storage,
%zero_index,
%zero_index)
({"0(%set_0 : !set,
%step : index):

%set_1 = "particles.apply" (%set_0,

%sigmal2,

%sigmab,

%r_cut2,

%ignore_r_cut)

{"func" = @calc_forces}

('set, !f, If, If, i1) -> Iset
"particles.next" (%set_1) : (!set) -> ()
Yo
{"0(%set : !set, %step : index): "particles.next"(%set): (!set) -> ()}

) : (!storage, index, index) -> ()

func.return
} // @calc_forces_mlir

// Verlet time-stepping: first evolve step

//
// while (it3.isNext())
/1A
// auto p = it3.get();
/]
/! // here we calculate v(tn + 0.5)
// vd.template getProp<velocity>(p)[@] += 0.5*dt*vd.template getProp<force>(p)[0];
// vd.template getProp<velocity>(p)[1] += @.5*dt*vd.template getProp<force>(p)[1];
/! vd.template getProp<velocity>(p)[2] += @.5*dt*vd.template getProp<force>(p)[2];
//
// // here we calculate x(tn + 1)
/! vd.getPos(p)[@] += vd.template getProp<velocity>(p)[0]*dt;
// vd.getPos(p)[1] += vd.template getProp<velocity>(p)[1]*dt;
// vd.getPos(p)[2] += vd.template getProp<velocity>(p)[2]*dt;
//
// ++1t3;
/] }
func.func @evolve_0(
%set : lset,
%deltat : If
) -> Iset {

%half = arith.constant 0.5 : If
%half_deltat = arith.mulf %deltat, %half : If

%deltat_vector = "vector.broadcast"(%deltat) : (!f) -> !vector
%half_deltat_vector = "vector.broadcast"(%half_deltat) : (!f) -> lvector

%evolved = "particles.foreach"( %set) ({
"Q( %particle : !particle):

%force = "particles.get_property"(%particle) {"property" = #force}
(!'particle) -> !vector
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}

//
fu

}

//
//
/!
//
//
//
//
//
//
//
//
/!
//
fu
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%0ld_vel = "particles.get_property" (%particle) {"property" = #velocity}
(!'particle) -> !vector

%new_vel = "math.fma"(%half_deltat_vector, %force, %old_vel)
( !'vector, !vector, !vector) -> !vector

%updated_particle_@ = "particles.set_property"(%particle, %new_vel)
{"property" = #velocity}

(!'particle, !vector) -> !particle

%pos = "particles.get_position" (%particle)
(!'particle) -> !vector

%new_pos = "math.fma"(%deltat_vector, %new_vel, %pos)
( !vector, !vector, !vector) -> lvector

%updated_particle_1 = "particles.set_position"(%updated_particle_0, %new_pos)
(!'particle, !vector) -> !particle

"particles.yield" (%updated_particle_1) : (!particle) -> ()
}) {"unroll-factor" = 4 : i32} : (!set) -> !set

func.return %evolved : !set
// @evolve_0

Makes @evovle_0 accessible from C++:
nc.func @evolve B_mlir(%storage : !storage, %deltat : !f) -> () {

%zero_index = arith.constant 0 : index
"particles.loop" (%storage,
%zero_index,
%zero_index)
({"0(%set_0 : !'set,

%step : index):

%set_1 = "particles.apply" (%set_0, %deltat) <{"func" = @evolve_0}>
('set, !f) -> Iset

"particles.next" (%set_1) : (!set) -> ()

Y
{"0(%set : !set, %step : index): "particles.next"(%set): ('set) -> ()}
) (!'storage, index, index) -> ()

func.return

Verlet time-stepping: second evolve step
while (it4.isNext())
{
auto p = it4.get();
// here we calculate v(tn + 1)
vd.template getProp<velocity>(p)[@] += 0.5*dt*vd.template getProp<force>(p)[0];
vd.template getProp<velocity>(p)[1 } += 0.5*dt*vd.template getProp<force>(p)[1];
vd.template getProp<velocity>(p)[2] += @.5*dt*vd.template getProp<force>(p)[2];
++it4;
}
nc.func @evolve_1(%set : !set, %deltat : !f) -> Iset {
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%half = arith.constant 0.5 : !f
%half_deltat = arith.mulf %deltat, %half : !f
%half_deltat_vector = "vector.broadcast"(%half_deltat) : (!f) -> lvector

%evolved = "particles.foreach"( %set) ({
rQ( %particle : !particle):

%force = "particles.get_property"(%particle) {"property" = #force}
(!'particle) -> !vector

%0ld_vel = "particles.get_property" (%particle) {"property" = #velocity}
(!'particle) -> !vector

%new_vel = "math.fma"(%half_deltat_vector, %force, %old_vel)
( !vector, !vector, !vector) -> lvector

%updated_particle_@ = "particles.set_property"(%particle, %new_vel)
{"property" = #velocity}
(!'particle, !vector) -> !particle

"particles.yield" (%updated_particle_0) : (!particle) -> ()
}) {"unroll-factor" = 4 : i32} : (!set) -> !Iset

func.return %evolved : !set
} // @evolve_1

// Makes @evovle_1 accessible from C++:
func.func @evolve_1_mlir(%storage : !storage, %deltat : !f) -> () {

%zero_index = arith.constant 0 : index

"particles.loop" (%storage,
%zero_index,
%zero_index)
({"0(%set_0 : !set,
%step : index):

%set_1 = "particles.apply" (%set_0, %deltat) {"func" = @evolve_1}
(!'set, If) -> Iset

"particles.next" (%set_1) : (!set) -> ()

b
{"0(%set : !set, %step : index): "particles.next"(%set): (!set) -> ()}
) : (!storage, index, index) -> ()

func.return
} // @evolve_1_mlir

func.func @md(%context : !1lvm.ptr,
%storage : !storage,
%sigmal2 : !f,
%sigma6 : !f,
%r_cut2 : If,

%ignore_r_cut: 1T,
%num_steps: index,
%batch_size : index,
%deltat: !f) {

%zero = arith.constant 0.0 : If

%minus_one = arith.constant -1 : !If
%zero_index = arith.constant © : index

147



A Appendix

"particles.loop" (%storage,
%zero_index,
%num_steps)

(
// initialization region:
{"0(%set_0 : !set, %step : index):
%interacted_set = "particles.apply" (%set_0,
%sigmal2,
%sigmab,
%r_cut2,
%ignore_r_cut)
{"func" = @calc_forces}
('set, !f, !'f, If, i1) -> Iset
"particles.next" (%interacted_set)
© (!set) -> ()
Vo
// time-stepping region:
{"0(%set_0 : !set, %step : index):

// Print after every batch
%step_mod = arith.remsi %step, %batch_size: index

%should_print = arith.cmpi eq, %step_mod, %zero_index

%set_after_print= "scf.if" (%should_print)

index

(1.

({
%result = "particles.call" (%set_0, %context, %step)
<{"func" = @batch_done}>
{"requires_up_to_date" =
"updates" = [],
"makes_stale" = []}
(!'set, !'1lvm.ptr, index) -> !set
scf.yield %result : !set
Yo
scf.yield %set_0 : !set

}) o (i1) -> Iset

// Verlet time stepping

%evolved_0_set = "particles.apply" (%set_after_print, %deltat)
{"func" = @evolve_0}
('set, !f) -> lIset

%interacted_set = "particles.apply" (%evolved_0_set,

%sigmal2,

%sigmab,

%r_cut2,

%ignore_r_cut)

{"func" = @calc_forces}

(!'set, !f, I'f, If, i1) -> lset
%evolved_1_set = "particles.apply" (%interacted_set, %deltat)
{"func" = @evolve_1}

('set, !f) -> lIset

"particles.next" (%evolved_1_set)
:('set) -> ()
}) : (!storage, index, index) -> () // particles.loop

func.return
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} // @md

} // builtin.module

A.2 Lowering Pipeline

Expected defined:

VERBOSE_LOWERING : either YES or NO

LOOP_FUSION : either YES or NO

BASE : file base. E.g., md for md.mlir

MLIR_OPT : mlir-opt program

OPENPME_MLIR_OPT : openpme-mlir-opt program

HW_TARGET : cpu or cuda

LOG_RUNTIME_CALLS: either true or false

GPU_MODULE_TO_BINARY_LINK: Whitespace-separated list of 1llvm bitcode files that should
be linked with MLIR device code during the --gpu-module-to-binary pass

H O R R HHHH

MLIR_OPT ?= mlir-opt

OPENPME_XDSL_OPT ?= openpme-xdsl-opt

OPENPME_MLIR_OPT ?= $(abspath S$(WORKSPACE_DIR)/openpme_mlir/build/bin/openpme-mlir-opt)
LOOP_FUSION ?= NO

PRECIOUS_MLIR = \
01_%-particles-inline-apply-funcs.mlir \
02 _%-particles-dist-specialize-particles.mlir \
03_%-particles-dist-fused.mlir \
04 _%-particles-dist-place-update-and-communication-ops.mlir \
06_%-particles-dist-generate-runtime.mlir \
05-1_%-convert-operations.mlir \
05-2_%-convert-types.mlir \
05-3_%-cse.mlir \
06_%-box-convert-storage-to-11.mlir \
07-1_%-box-expand.mlir \
07-2_%-box-shortcut-extract-ops.mlir \
08_%-memwrap-eliminate-redundant-load-ops.mlir \
09_%-convert-memwrap-to-memref-vector.mlir \
21_%-target-hardware.mlir \
22 _%-optimized.mlir \
99_%.mlir \
99_%.11 \
99_%.asm \
S (GPU_MODULE_TO_BINARY_LINK)

ifeq (S(VERBOSE_LOWERING),YES)

CAT_RESULT = @[ -s S@ ] && cat $S@
PRINT_IR_BEFORE_ALL = --mlir-print-ir-before-all
else

CAT_RESULT =

PRINT_IR_BEFORE_ALL =

endif

# xdsl-opt outputs empty files, even when the pass fails.

# It's better when there are no empty files as this allows restarting the build pipeline,
# without having to manually delete the empty file.

REMOVE_IF_FAILED = (rm -f S@ && false)

ifeq (S(HW_TARGET),cpu)
RUNTIME = runtime.cpp

else ifeq (S(HW_TARGET),cuda)
RUNTIME = runtime.cu

else
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S(error Unsupported hardware target S(HW_TARGET))
endif

01_%-particles-inline-apply-funcs.mlir: %.mlir
$(OPENPME_XDSL_OPT) \
--print-op-generic \
--passes \
\
particles-inline-apply-funcs \
\
S< -0 S@ 2> >(tee S@.err >&2) |
S(CAT_RESULT)

S(REMOVE_IF_FAILED)

02_%-particles-dist-specialize-particles.mlir: @1_%-particles-inline-apply-funcs.mlir
S(OPENPME_XDSL_OPT) \
--print-op-generic \
--passes \
\
particles-dist-specialize-particles \
\
S< -0 S@ 2> >(tee S@.err >82) |
S(CAT_RESULT)

$(REMOVE_IF_FAILED)

ifeq (S(LOOP_FUSION), YES)

03_%-particles-dist-fused.mlir: ©2_%-particles-dist-specialize-particles.mlir
S(OPENPME_XDSL_OPT) \
--print-op-generic \
--passes \
\
particles-dist-fuse-foreach-ops{aggression=1},\
particles-dist-fuse-for-all-neighbors-ops-with-foreach-ops{aggression=1},\
particles-dist-fuse-foreach-ops{aggression=2},\
particles-dist-fuse-for-all-neighbors-ops-with-foreach-ops{aggression=2},\
particles-dist-fuse-foreach-ops{aggression=3},\
particles-dist-fuse-for-all-neighbors-ops-with-foreach-ops{aggression=3} \
\
S§< -0 S@ 2> >(tee S@.err >&2) || S(REMOVE_IF_FAILED)
S(CAT_RESULT)

else

03_%-particles-dist-fused.mlir: 02_%-particles-dist-specialize-particles.mlir
cp $< So

endif

04_%-particles-dist-place-update-and-communication-ops.mlir: 03_%-particles-dist-fused.mlir
# The order is important here
# Need to convert the maybe ops to if-stale construct so that the consequent passes can
# place the required ops inside.
# E.g. place a (maybe-)map op in front of a ghost_get op

S(OPENPME_XDSL_OPT) \

--print-op-generic \

--passes \

\

particles-dist-place-update-neighbor-list-ops, \

particles-dist-convert-maybe-ops-to-if-stale, \

canonicalize, \

particles-dist-place-ghost-get-ops, \

particles-dist-convert-maybe-ops-to-if-stale, \

canonicalize, \

particles-dist-place-map-ops, \

particles-dist-convert-maybe-ops-to-if-stale, \
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canonicalize, \

particles-dist-place-set-stale-ops \

\

S§< -0 S@ 2> >(tee S@.err >&2) || S(REMOVE_IF_FAILED)
S(CAT_RESULT)

runtime.h S$(RUNTIME) 06_S(BASE)-particles-dist-generate-runtime.mlir: |
04_S(BASE)-particles-dist-place-update-and-communication-ops.mlir

$(OPENPME _XDSL _OPT) \

--print-op-generic \

--passes \

\

particles-dist-place-update-internals-ops, \

particles-dist-generate-runtime{header-file=\"runtime.h\"\ |
source-file=\"$(RUNTIME)\"\ |
header-file-include-path=\"runtime.h\"\ |
target=8(HW_TARGET)\ |
log-runtime-calls=$(LOG_RUNTIME_CALLS)} \

\

S§< -0 S@ 2> >(tee S@.err >&2) || S(REMOVE_IF_FAILED)

S(CAT_RESULT)

05-1_%-convert-operations.mlir: 06_%-particles-dist-generate-runtime.mlir
$(OPENPME_XDSL_OPT) \
--print-op-generic \
--passes \
\
particles-dist-convert-ops{target=S(HW_TARGET)\ is-final-conversion=false},\
local-domain-convert-ops, \
cell-list-convert-ops-to-S(HW_TARGET), \
particles-dist-convert-ops{target=S(HW_TARGET)\ is-final-conversion=true},\
reconcile-unrealized-casts \
\
S§< -0 S@ 2> >(tee S@.err >&2) || S(REMOVE_IF_FAILED)
S(CAT_RESULT)

05-2_%-convert-types.mlir: 05-1_%-convert-operations.mlir
S(OPENPME_XDSL_OPT) \
--print-op-generic \
--passes \
\
particles-dist-convert-types,\
local-domain-convert-types, \
cell-list-convert-types-to-S(HW_TARGET),\
reconcile-unrealized-casts \
\
S§< -0 S@ 2> >(tee S@.err >&2) || S(REMOVE_IF_FAILED)
S(CAT_RESULT)

05-3_%-cse.mlir: 05-2_%-convert-types.mlir
# Previous pass usually introduces a lot of box.extract ops that can be eliminated with CSE
S(OPENPME_MLIR_OPT) \
-allow-unregistered-dialect \
--mlir-print-op-generic \
--canonicalize \
--cse \
S< -0 S@ 2> >(tee S@.err >&2)
S(CAT_RESULT)

06_%-box-convert-storage-to-11.mlir: ©05-3_%-cse.mlir
S(OPENPME_XDSL_OPT) \
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--print-op-generic \

--passes \

\

box-convert-storage-to-11,\
reconcile-unrealized-casts \

\

S< -0 S@ 2> >(tee S@.err >82) |
S(CAT_RESULT)

$(REMOVE_IF_FAILED)

07-1_%-box-expand.mlir: 06_%-box-convert-storage-to-11.mlir
S(OPENPME_XDSL_OPT) \
--print-op-generic \
--passes \
\
box-expand-func, \
box-expand-scf-for, \
box-expand-scf-if,\
box-expand-box-ops \
\
S§< -0 S@ 2> >(tee S@.err >82) |
S(CAT_RESULT)

$(REMOVE_IF_FAILED)

07-2_%-box-shortcut-extract-ops.mlir: 07-1_%-box-expand.mlir
S(OPENPME_XDSL_OPT) \
--print-op-generic \
--passes \
\
box-shortcut-extract-ops, \
canonicalize \
\
S< -0 S@ 2> >(tee S@.err >82) |
S(CAT_RESULT)

$(REMOVE_IF_FAILED)

08_%-memwrap-eliminate-redundant-load-ops.mlir: 87-2_%-box-shortcut-extract-ops.mlir
S(OPENPME_XDSL_OPT) \
--print-op-generic \
--passes \
\
memwrap-eliminate-redundant-load-ops, \
canonicalize \
\
S§< -0 S@ 2> >(tee S@.err >&2) || S(REMOVE_IF_FAILED)
S(CAT_RESULT)

09_%-convert-memwrap-to-memref-vector.mlir: 08_%-memwrap-eliminate-redundant-load-ops.mlir
S(OPENPME_XDSL_OPT) \
--print-op-generic \

--passes \

\

convert-memwrap-to-memref-vector \
\

$< -0 $@ 2> >(tee S@.err >8&2) || $(REMOVE_IF_FAILED)
S(CAT_RESULT)

21_%-target-hardware.mlir: 09_%-convert-memwrap-to-memref-vector.mlir
# Do some target specific passes before final optimizations and lowering steps.
ifeq (S(HW_TARGET), cpu)
# For cpu target: convert all scf.parallel to scf.for and host arith.addf since conversion
# from scf.parallel to cf seems to result in some very inefficient code
S(OPENPME_XDSL_OPT) \
--print-op-generic \
--passes \
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\
scf-convert-parallel-to-for{only_convert_annotated=false},\
hoist-arith-addf-into-scf-if \
\
S§< -0 S@ 2> >(tee S@.err >&2) || S(REMOVE_IF_FAILED)
S(CAT_RESULT)
else ifeq (S(HW_TARGET), cuda)
# For cuda target: convert mapped scf.parallel ops to gpu.launch ops
# May also benefit from hoisting arith.addf into scf.if
S(OPENPME_XDSL_OPT) \
--print-op-generic \
--passes \
\
hoist-arith-addf-into-scf-if \
$<\
[\
S(OPENPME_MLIR_OPT) \
--mlir-print-ir-after-failure \
S(PRINT_IR_BEFORE_ALL) \
--convert-parallel-loops-to-gpu \
\
-0 $@ 2> >(tee S@.err >8&2) || S(REMOVE_IF_FAILED)
S(CAT_RESULT)
else
S(error Unsupported hardware target S(HW_TARGET))
endif

# Target specific optimizations
ifeq (S(HW_TARGET), cpu)
# Nothing for now
TARGET_SPECIFIC_OPTIMIZATIONS =
else ifeq (S(HW_TARGET), cuda)
# Nothing for now
TARGET_SPECIFIC_OPTIMIZATIONS =
else
S(error Unsupported hardware target S(HW_TARGET))
endif

22 _%-optimized.mlir: 21_%-target-hardware.mlir
# Do some optimizations before lowering
S(OPENPME_MLIR_OPT) \
--mlir-print-ir-after-failure \
S(PRINT_IR_BEFORE_ALL) \
--canonicalize \
--cse \
--reconcile-unrealized-casts \
S(TARGET_SPECIFIC_OPTIMIZATIONS) \
--canonicalize \
--cse \
--reconcile-unrealized-casts \
--symbol-dce \
--math-uplift-to-fma \
--buffer-loop-hoisting \
--buffer-hoisting \

A.2 Lowering Pipeline

--unroll-scf-for-by-attribute-or-default="annotate=true unroll-factor-default=1" \

--canonicalize \

--cse \
--reconcile-unrealized-casts \
S< -0 S@ 2> >(tee S@.err >&2)
S(CAT_RESULT)

# Target specific lowering passes
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ifeq (S(HW_TARGET), cpu)
# For cpu target: Do nothing
TARGET_SPECIFIC_LOWERING =
BC_FILES =
else ifeq (S(HW_TARGET), cuda)
ifneq (S(GPU_MODULE_TO_BINARY_LINK),)
WHITESPACE = S$(subst ,, )
COMMA =,
BC_FILES_COMMA_SEPARATED = |
runtime-cuda.bc, $(subst S(WHITESPACE), S(COMMA), S(GPU_MODULE_TO_BINARY_LINK))
BC_FILES = runtime-cuda.bc $(GPU_MODULE_TO_BINARY_LINK)
else
BC_FILES_COMMA_SEPARATED = runtime-cuda.bc
BC_FILES = runtime-cuda.bc
endif

# Outline kernels and lower gpu module ops to binary
# Very similar to "--gpu-lower-to-nvvm-pipeline" (GPUToNVVMPipeline.cpp),
# excluding the host pipeline which isn't necessary
TARGET_SPECIFIC_LOWERING = \

--gpu-kernel-outlining \

--nvvm-attach-target="0=3 chip=$(CUDA_ARCH) |

features=+ptx73 1=$(BC_FILES_COMMA_SEPARATED)" \

--convert-gpu-to-nvvm \

--canonicalize \

--cse \

--reconcile-unrealized-casts \

--gpu-to-11lvm \

--gpu-module-to-binary \

--canonicalize \

--cse \

--reconcile-unrealized-casts
else

S(error Unsupported hardware target S(HW_TARGET))
endif

99_%.mlir: 22_%-optimized.mlir $(BC_FILES)
# Very similar to "--test-lower-to-1lvm" (TestLowerTolLLVM.cpp)
# (Removed linalg and affine conversion passes)
$(MLIR_OPT) \
--mlir-print-ir-after-failure \
S(PRINT_IR_BEFORE_ALL) \
--convert-vector-to-scf \
--convert-scf-to-cf \
--canonicalize \
--cse \
--convert-vector-to-11lvm \
--convert-math-to-11lvm \
--arith-expand \
--expand-strided-metadata \
--lower-affine \
--finalize-memref-to-11vm \
--convert-func-to-11lvm \
--convert-index-to-11lvm \
--reconcile-unrealized-casts \
--canonicalize \
--cse \
S(TARGET_SPECIFIC_LOWERING) \
S< -0 S@ 2> >(tee S@.err >&2)
$(CAT_RESULT)

clean-mlir-files:
@if [ "S(BASE)" = "" ]; then \
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echo "ERROR: Expected BASE to be defined in Makefile" \
exit 1; \

fi

rm -f [0-9][0-9]_S(BASE)*.mlir [0-9][0-9]_S(BASE)*.mlir.err
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