
ADAPTIVE: Agent-Based Learning for Bounding
Time in Mixed-Criticality Systems

Behnaz Ranjbar, Ali Hosseinghorban, and Akash Kumar, Senior Member, IEEE
Chair of Processor Design, CFAED, Technische Universität Dresden, Dresden, Germany

{behnaz.ranjbar, akash.kumar}@tu-dresden.de, ali.hosseinghorban1394@sharif.edu

Abstract—In Mixed-Criticality (MC) systems, the high Worst-
Case Execution Time (WCET) of a task is a pessimistic bound,
the maximum execution time of the task under all circumstances,
while the low WCET should be close to the actual execution time
of most instances of the task to improve utilization and Quality-of-
Service (QoS). Most MC systems consider a static low WCET for
each task which cannot adapt to dynamism at run-time. In this
regard, we consider the run-time behavior of tasks and propose
a learning-based approach that dynamically monitors the tasks’
execution times and adapts the low WCETs to determine the ideal
trade-off between mode-switches, utilization, and QoS. Based on
our observations on running embedded real-time benchmarks on a
real platform, the proposed scheme improves the QoS by 16.4%
on average while reducing the utilization waste by 17.7%, on
average, compared to state-of-the-art works.

Index Terms—Mixed-Criticality, Mode Switching Probability,
Machine Learning, Service Adaptation, WCET Analysis.

I. INTRODUCTION

Mixed-Criticality (MC) systems integrate a large number of
real-time tasks with different criticality levels onto a common
hardware platform to meet stringent requirements such as cost,
space, and timing [1]–[4]. Medical devices, automotive, and
avionics are the most common safety-critical applications,
evolving into MC systems [2], where the successful execution
of tasks with Higher-Criticality levels (HC tasks) must be guar-
anteed in all circumstances to prevent catastrophic damages,
while a higher number of Low-Criticality (LC) tasks should be
executed to improve service requirements (i.e., Quality-of-
Service (QoS)) and consequently, the processor utilization [3].

From the MC tasks’ execution times perspective, multiple
WCETs are determined corresponding to the multiple criticality
levels [1]–[5]. A well-known type of MC system is a dual-
criticality system (consisting of LC and HC tasks) in which
two WCETs (low (𝐶𝐿𝑂) and high (𝐶𝐻𝐼)) are determined. The
𝐶𝐻𝐼 of a task is a pessimistic bound, the maximum execution
time of the task under all circumstances. However, this bound
is high, and considering it to schedule the tasks leads to poor
processor utilization and QoS (i.e., fewer LC tasks can be
scheduled) [3]. To this end, MC systems consider a 𝐶𝐿𝑂 for
HC tasks that should be close to the actual execution time of
most task instances to improve utilization and QoS. At run-
time, the system starts its operation in low-criticality mode (LO
mode), and if the execution time of at least one HC task exceeds
its 𝐶𝐿𝑂, the system switches to the high-criticality mode (HI
mode). To guarantee the correct execution of HC tasks in HI
mode, 𝐶𝐻𝐼 are considered to schedule HC task. Since HC
tasks may execute longer in HI mode compared to LO mode,
the LC tasks are dropped/degraded to their minimum service
requirements to guarantee the correct execution of HC tasks
before their deadlines [2], [5], [6].

As can be realized, the low WCETs (𝐶𝐿𝑂) play an important
role in improving the MC system’s QoS. Determining the high

This work is supported by a grant from Software Campus through the
German Federal Ministry of Education and Research, under the project SARA:
Safety-Aware Relocation of functions in a multi-core computer Architecture.

0
0.1
0.2
0.3
0.4
0.5
0.6

1 41 81 121 161 201 241Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

Frame ID

0 5 10 15 20 25

Absolute Frequency(#)
0 5 10 15 20 25

0
0.5

1
1.5

2
2.5

1 101 201 301 401 501Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)
Frame ID

0 25 50 75 100

Absolute Frequency (#)
0 25 50 75 100

(a) Input video with few objects to
detect

0
0.1
0.2
0.3
0.4
0.5
0.6

1 41 81 121 161 201 241Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

Frame ID

0 5 10 15 20 25

Absolute Frequency(#)
0 5 10 15 20 25

0
0.5

1
1.5

2
2.5

1 101 201 301 401 501Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

Frame ID

0 25 50 75 100

Absolute Frequency (#)
0 25 50 75 100

Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

(b) Input video with few and many
objects to detect

Fig. 1: Execution time values for two different time recording videos as input
for Object Detection function during run-time and their time distribution. This
figure shows that both aspects of run-time and design-time behavior should be
considered in MC system design and task properties determination.

values for 𝐶𝐿𝑂s can minimize the mode switches but reduce the
processor utilization due to scheduling fewer tasks. On the other
hand, the utilization can be maximized by determining the
low values for 𝐶𝐿𝑂s, but with a high number of mode switches,
which is not desirable. Although there are many approaches like
what is presented in [7] and tools like OTAWA [8] to determine
the 𝐶𝐻𝐼 , there are few approaches for determining the 𝐶𝐿𝑂s
in MC systems. These few approaches [1], [3], [5], [6] analyze
the tasks at design-time, and set the constant WCETs for tasks
in LO mode, which remain unchanged during run-time. Such
static techniques can cause significant performance loss for LC
tasks or processor under-utilization if the 𝐶𝐿𝑂s are not close
to actual execution times. In general, the actual execution time
of tasks depends on their input values. Due to the spatial or
temporal correlation in the input data stream like video, the
execution times of the tasks are often temporally correlated.

Motivational Example: Fig. 1 shows the computational times
of the object detection function running on the ODROID XU4
board powered by ARM Cortex A7. Note that the object de-
tection function is one of the main functions in an autonomous
driving application – an MC system. For input, videos from
a road camera in the two different time slots, converted to
motion jpegs, are given to the function of detecting cars on
the road. The videos were recorded for a period of time when
it experienced both light and heavy traffic. Fig. 1 shows how
the computation times of detecting objects vary during run-
time. The computation time values in this function depend
on the number of objects to be detected. As we can see,
the times of multiple jpeg images are clustered due to the
temporal correlation between the subsequent inputs presented to
the application. For this example, static approaches such as the
one presented in [1], [3], [5] set the static 𝐶𝐿𝑂, considering
the execution time of the majority of instances. This static
WCET works fine for some time, but it may lead to frequent
mode switches when there are many objects to detect (e.g.,
heavy traffic) or poor utilization when there are few objects to
detect in this function (e.g., light traffic). As a result, propos-
ing an adaptive scheme to determine 𝐶𝐿𝑂 dynamically may
significantly improve the mode switches, QoS, and utilization.
Therefore, the system’s run-time behavior can be investigated

https://cfaed.tu-dresden.de/pd-research/sara
https://cfaed.tu-dresden.de/pd-research/sara

TABLE I: A brief overview on the state-of-the-art MC approaches.

Related Works Dynamic � !$ Design/Run Use of
QoS-Aware Adjustment Time ML

1 Baruah'12 [1], Liu'18 [5] � � X/� �
2 Ranjbar'21 [3] � X X /� �

3 Gu'16 [4], Gu'18 [11]
Hu'19 [12] � X � /X �

4 Su'16 [6] X � � /X �
5 Ranjbar'22 [13] X � � /X X
6 ADAPTIVE X X X /X X

by monitoring the execution times and adjusting� !$.
In this work1, we propose a novel learning-based run-time

scheme for determining� !$ to 1) effectively reduce the
system mode switches, 2) have high processor utilization and,
consequently, a high value of QoS, 3) guarantee the system to
be schedulable in each criticality level, 4) not be affected and
varied by sudden changes of execution times. To the best of
our knowledge, there is no method yet to determine� !$ of
MC tasks at run-time based on the behavioral system changes
while making a trade-off between the QoS and mode switches.

Contributions: The main contributions of this paper are:
� Presenting a novel adaptive scheme to analyze and obtain

the low WCETs (� !$) of MC tasks at run-time, and
manage the mode switching probability and QoS.

� Proposing a learning-based mechanism, calledADAP-
TIVE, to design an adaptive MC system, and improve its
timing behaviour at run-time.

� Presenting a dynamic QoS-aware scheduling algorithm
to improve the results' quality at run-time based on the
system changes, while guaranteeing the minimum service
of LC tasks, even in the HI mode.

The rest of this paper is organized as follows. In Sections II
and III, we provide an overview of related works, and the MC
task and system operational models, respectively. The proposed
scheme is explained in Section IV. Then, we analyze the
experiments and conclude in Sections V, and VI, respectively.

II. RELATED WORKS

In the last decade, a signi�cant number of papers have been
published in MC system design and task scheduling. Burns
and Davis [2] provided a comprehensive study in this �eld;
however, in this section, we mostly focus on the works with the
objectives of dynamic QoS improvement and WCET analysis
at both design- and run-time, which are summarized in Table I.

Many recent papers have designed the MC systems by setting
the � !$ at design-time which is not changing during the run-
time (row 1 of Table I). As an example, in [1], [5], [10], the
� !$ s are set as a percentage of� � � s. These estimations are not
accurate since WCET and actual execution times do not always
have a linear relationship. In addition to this, researchers in [3]
have recently proposed an approach to determine the� !$ s
theoretically by using Chebyshev's theorem (row 2). In this
paper, the author assumed that the inputs are random. However,
in many applications which interact with the environment, the
input remains the same for a while. So, since their approach
is static, it cannot adapt to actual execution times at run-time.
Besides, a few studies such as [4], [11], [12] (row 3) have
focused on determining the� !$ s at run-time, based on their
overall processing requirements and actual execution times.
However, the goal of these methods is to postpone the mode
switches for a long time while only guaranteeing a minimum
QoS for LC tasks.

1An extended abstract of this article has been published in Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2023, with the title
`Motivating Agent-Based Learning for Bounding Time in Mixed-Criticality
Systems' [9].

Some works such as [6], [13] (row 4) have considered the
� !$ as a percentage of� � � and improved the QoS at run-
time by exploiting the accumulated dynamic slack generated
by early completion of HC tasks. Since the dynamic slack is
considered as a wrapper task with a deadline [6] and cannot be
used anytime, these approaches do not use system utilization
optimally to improve the QoS.

Therefore, a run-time system investigation and WCET anal-
ysis of MC tasks is needed to improve the con�dence in WCET
values, service adaptation, and utilization [2]. In this work,
we propose an adaptive scheme based on machine-learning
techniques to not just analyze the WCETs in LO mode but also
monitor and control the system's behavior at run-time to make
an ideal trade-off between processor utilization, QoS, and mode
switches with the assumptions made during static analysis.

III. M IXED-CRITICALITY TASK MODEL

We consider real-time MC applications consisting of pe-
riodic independent tasks, executed on a preemptive uni-
processor. Analogous to [1], [3], [5], [10], a dual-criticality
system is considered, in which a number of independent MC
tasksf g1– g2– •••– g=g are executed. Each taskg8 is characterized
as f Z8– � !$

8 – � � �
8 – � 8–)8g, where:

� Z8 denotes the criticality level ofg8 (Z8 2 f !�– �� g)
� � !$ ¹ � � º

8 denotes the WCET ofg8 in the LO (HI) mode
� � 8 and) 8 denote the deadline and period ofg8, respectively,

where� 8 =) 8 in this article, analogous to [3], [5], [10]
In these MC systems, analogous to most of MC works, for

each HC task,� !$
8 � � � �

8 . Since we use the task utilization
values to check the MC task schedulability on processor, the
utilization of taskg8 at criticality mode LO (HI) is de�ned as

D!$
8 =

� !$
8
) 8

(D� �
8 =

� � �
8
) 8

).
Initially, the system starts its operation in LO mode, where

all HC tasks and LC tasks must be executed successfully before
their deadlines. In this mode, if the execution time of at least
one HC task exceeds its� !$, the system switches to the HI
mode. In this HI mode, the LC tasks are dropped/degraded to
their minimum service requirements to guarantee the correct
execution of HC tasks before their deadlines. If there is no
ready HC task in the processor's queue, the system switches
back safely to LO mode [1], [3], [5]. From the perspective
of LC tasks' service adaptation, the QoS can be adjusted by
controlling the rate of LC tasks' execution, i.e., the tasks'
periods. In general, the system should release and execute the
LC tasks by considering their actual period to improve the QoS
and functionality with high precision of outputs [6]. The QoS

is de�ned as
=B2�3

!�
=<0G

!�
[13], [14], where=B2�3

!� and =<0G
!� are the

number of LC tasks, that can be scheduled, and the number
of all LC tasks in the system, respectively. Note that=<0G

!�
corresponds to the state that all LC tasks can regularly release
with their actual period. Therefore, the minimum QoS can be
employed by releasing the LC tasks with a larger period.

IV. PROPOSEDMETHOD: ADAPTIVE
The goal of the proposed scheme is to improve QoS as

the system utilization while reducing the number of mode
switches ("(��) at run-time. The� !$ values of HC tasks
have a crucial role in improving the system objectives. There-
fore it is a challenge to set� !$ for each HC task to draw
a trade-off between the objectives: system utilization and the
number of mode switches. To address the challenge, we monitor
the run-time execution times of HC tasks and adapt their� !$

at run-time to achieve a higher QoS while having fewer mode

switches based on the variation in execution times due to the
input and environmental changes. Fig. 2 shows an overview
of ADAPTIVE, which consists of design- and run-time phases.
Here, the task schedulability must be guaranteed at both phases,
and the� !$ adaptation is done at run-time. In the following,
we explain them in detail.

A. Design-Time Exploration
To analyze and schedule the HC and LC tasks in the system,

�rst, the WCETs, required by the tasks must be obtained. Here,
the � � � of HC tasks are computed by using the OTAWA
tool [8], which provides a safe and conservative execution time-
bound. The WCETs of LC tasks can also be determined by
using the OTAWA. In addition, to obtain the initial� !$, we
run the benchmarks with various data set inputs and set the
maximum value of these actual execution times, as� !$ for
each HC task. These analyzed data have been used to check
the task schedulability by the Utility Checker Unit, which is
shown in the design-time phase of Fig. 2.

In this paper, the existing MC scheduling technique, EDF-
VD [1], [3], [5] (which has been used in many studies in the last
decade), is applied. However, the proposed scheme is applicable
to any scheduling algorithm. If* :

; denotes total utilization of
tasks with the same criticality level; (; 2 f !�– �� g) in the

mode: (: 2 f !$– � � g), where* :
; =

Í
82f !�–�� g

� :
8

) 8
, Eq. (1)

must be satis�ed to guarantee schedulability by EDF-VD. This
equation presents the necessary and suf�cient conditions to
guarantee the task schedulability in both LO and HI modes and
meeting the deadlines, even if the system switches to the HI
mode [5], [14]. The utilization (*"�) which is the maximum
value of two phrases shown in Eq. (1), must be always less than
one in EDF-VD, which is checked by Utility Checker Unit.

* !$
�� ¸ * !$

!� � 1 & * � �
�� ¸ * � �

!� ¸
* !$

�� � ¹ * !$
!� � * � �

!� º

1 � * !$
!�

� 1

(1)
B. Run-Time Adaptation

The crucial research questions that should be addressed in the
run-time phase are: 1) How to vary� !$ of HC tasks with no
adverse effect on meeting the other tasks' deadlines, 2) How to
design a scheme for determining the� !$ at run-time, to not be
affected and varied by sudden changes of execution times, 3)
How to design a scheme with low timing overheads during run-
time to have no impact on task scheduling and deadline misses,
4) What are the best� !$ for the tasks to effectively keep the
system away from mode switching while having high processor
utilization and consequently, a high QoS value. Following the
above questions, machine learning techniques can effectively
help to design an adaptive MC system to make a reasonable
trade-off between the objectives according to environmental
changes (i.e., input values variation).

At run-time, MC tasks are executed on the platform, con-
trolled by MC Task Scheduler Unit on the OS, shown in Fig. 2.
The system monitors the tasks from two aspects:
1) Each task execution �nishes or not: The actual execution

times are stored in the case of complete execution. Besides,
in the case of task overrun, the system switches to HI mode,
and MC Task Scheduler Unit executes HC tasks by con-
sidering their� � � and LC tasks with their&>(<8=. The
Processor Queue Checker Unit keeps track of the processor
queue when the system can switch back to LO mode.

2) The system reaches the task set hyper-period or not: At the
end of each hyper-period, the agent starts its operation by
employing the data like actual execution times, the number

Fig. 2: An overview of design-time and run-time phases in ADAPTIVE.

of mode switches, and the QoS of LC tasks in the last hyper-
period. Based on these historical data, the agent outputs are
the new� !$ values of HC tasks, used in the next hyper-
period. Since the utilization of HC tasks in LO mode would
be changed by updating� !$ s, the new virtual deadlines (to
be used in the EDF-VD algorithm) are determined by the
Virtual-Deadline Update Unit.

Hence, the learning process is separate from the task sched-
uler, and we do not use learning techniques for task scheduling.
The EDF-VD schedulability formulae are checked for each
WCET change (at the end of each hyper-period). Although this
time is in the order of̀ Seconds and can be negligible, we count
this time as part of learning time. This timing overhead is con-
sidered as a task with the WCET equal to the maximum timing
overhead to ensure it does not impact other tasks' deadlines.
This learning overhead is reported in Section V-A. We describe
below how the agent is designed to update the� !$.

1) Learning-Based System Properties Improvement: Rein-
forcement Learning (RL) could be applied to systems with con-
siderable dynamism through trial-and-error. By using historical
data and learning from past events, it can improve performance
based on dynamic changes [15]. The Q-learning/SARSA tech-
nique, which is recently used in many applications, such as
robotics, and Unmanned Aerial Vehicles, uses the RL to per-
form the run-time management of the system properties. This
technique is a value-based algorithm that iteratively collects the
current system state and determines the next action to change
the state. The process is repeated until meeting the prede�ned
criterion or objectives are no longer signi�cantly improved.

RL technique consists of the three main components [15]:
1) a discrete set of States= f B1– B2– •••– B; g, 2) a discrete set
of Actions = f 01– 02– •••– 0: g, and 3) reward function' "� .
To reach the favorable reward, the technique learns a lookup
table (i.e., Q-table) with (BC– 0C) pairs (0C 2 Actions andBC 2
States). The states and actions determine the rows and columns
of the Q-table of the learning-based algorithm, respectively
(shown in Fig. 2). As mentioned, a value-based algorithm
is utilized, represented with& ¹BC– 0Cº in the Q-table, and
determines the quality of the action taken at the particular
state. In every iteration, the Q-values are updated based on
the corresponding computed reward according to Eq. 2, which
is based on the SARSA technique, one of the RL methods for
objective improvement [16].

& ¹BC– 0Cº = & ¹BC– 0Cº ¸ U¹' "� ¸ W&¹BÇ 1– 0Ç 1º � & ¹BC– 0Cºº
(2)

BC, and0C represent the state and action of the system at timeC,
respectively.BÇ 1 and0Ç 1 also indicate their values at timet+1.
The U (0 Ÿ U � 1) determines the learning rate of overriding
the old data in the table by the new acquired data.' "� is the

	Introduction
	Related Works
	Mixed-Criticality Task Model
	Proposed Method: ADAPTIVE
	Design-Time Exploration
	Run-Time Adaptation
	Learning-Based System Properties Improvement
	Algorithm

	Experiments
	Investigating Timing And Memory Overheads of ML Tech.
	Evaluation With Real Application Model
	Evaluation With Synthetic Task Sets

	Conclusion and Future Work
	References

