
A Hybrid Scheduling Mechanism for
Multi-programming in Mixed-Criticality Systems

Mohammad Bawatna, Behnaz Ranjbar, and Akash Kumar
Chair for Processor Design, CFAED, Technische Universität Dresden, Dresden, Germany

{mohammed.bawatna, behnaz.ranjbar, akash.kumar}@tu-dresden.de

Abstract—In the last decade, the rapid evolution of the
Commercial-Off-The-Shelf (COTS) platforms led safety-critical
systems towards integrating tasks and applications with different
criticality levels in a shared hardware platform, i.e., Mixed-
Criticality Systems (MCS)s. Therefore, several scheduling algo-
rithms and approaches have been proposed upon a commonly
used model, i.e., Vestal’s model. However, consolidating software
functions onto shared processors cannot be implemented directly
in real-life applications and industrial systems while complying
with certification requirements. The existing scheduling ap-
proaches do not provide a simple solution for eliminating the
interference effect among the tasks with different criticality
levels on the shared processing resources. Moreover, the system
mode switch guarantees the timing constraints of the high-
criticality tasks throw the termination of the low-criticality tasks.
In this paper, we developed a new scheduling algorithm that
addresses these challenges based on the round-robin technique,
which improves the overall schedulability. We compared the
proposed algorithm against existing scheduling algorithms in
both academia and industry using extensive experiments to
evaluate it. Our results show improvements in the schedulability
from 0.8% to 14.0% and from 2.7% to 10.7% compared to the
conventional Earliest Deadline First with Virtual Deadline (EDF-
VD) and Fixed Priority Preemptive (FPP) scheduling approaches,
respectively.

Index Terms—Mixed-Criticality; Real-time; Round Robin
Scheduling; Earliest Deadline First Scheduling; Fixed Priority
Scheduling;

I. INTRODUCTION

SAFETY-CRITICAL systems play an essential role in many
industrial domains such as automotive systems, consumer

electronics, avionics, and defense systems. In these domains,
embedded software must pass a strict certification process
according to different criticality levels [1]. Integrating these
applications of different levels of criticality onto a shared hard-
ware platform while ensuring timeliness is the main goal for all
the research and publications in the field of Mixed-Criticality
Systems (MCS)s. Missing deadline for tasks in MCS has a
different impact that may cause catastrophic consequences.
The key mechanism to achieving this goal is by designing
an efficient scheduling algorithm. The scheduling problem
of MC systems has been intensively studied in recent years
(see Section II for a brief review). Most existing solutions
for scheduling are based on Vestal’s model [2] that we will
summarise below. Moreover, they disregard the fact that not
all task’s deadlines are equally critical, and these approaches
vary in complexity and accuracy as in [3]. As a result, these
scheduling approaches did not address the need for multi-
programming tasks isolation on the shared system resources.

This work is supported by a grant from Software Campus through the
German Federal Ministry of Education and Research, under the project SARA:
Safety-Aware Relocation of functions in a multi-core computer Architecture.

Vestal’s model. This model [2] assumes that the system has a
static set of sporadic tasks and several execution modes. Each
task is characterized by its deadline, period, criticality level,
and a set of estimated Worst-Case Execution Times (WCET)s.
As the mode of execution gets higher, the WCET is more
pessimistic. If any task overruns its execution time during the
run-time, the system must switch to a higher mode. As a result,
all tasks with low criticality level will be suspended.
MCSs challenges. In most MC systems, the timing correctness
of High-Criticality (HC) tasks is guaranteed at the expense
of Low-Criticality (LC) tasks though completely discarding
the LC tasks and dedicating the system resources for meeting
the timing constraints of HC tasks. Moreover, the limited
resources in most MCSs, such as the processing and memory
spaces in the integrated architecture become a bottleneck in
the architectural design for real-life applications. The second
challenge for the multi-programming in the MCS environment
is the system mode switch, which is triggered when a deadline
of HC task is missed. The system mode switch guarantees
the timing constraints for the HC tasks throw isolation from
the LC tasks. However, it causes the termination of the LC
tasks. Task isolation is an essential requirement in multi-
programming to avoid missing deadlines caused by data
movement that can block a shared resource or consume too
high processor execution time by LC task(s). Besides, the
failure of an LC task must be isolated from HC tasks, such
that they cannot delay the activities of each other as in [4].
Moreover, the increasing computational demand of the tasks
can delay each other due to contention on caches, memory,
and processing unit(s) resources. Eliminating the interference
effect is a challenge due to the uncertainty concerning the state
of the resources.

Motivation and contributions. In safety-critical domains,
tasks with different levels of criticality require careful design
and analysis, where the failures in an LC task affect one or
more HC tasks. As a result, there is a need for techniques that
guarantee the timing constraints and comply with certification
requirements that are derived from the industrial standards.
The existing scheduling approaches do not provide a simple
solution for the multi-programming challenges that share the
same system resources. Therefore, this paper aims to propose
an efficient scheduling mechanism based on the round-robin
technique to solve the challenges mentioned above while
keeping low complexity. The contributions achieved by this
work are stated as follows:

1) In this paper, we propose a scheduling mechanism that
eliminates the interference effect among tasks with dif-
ferent safety criticality levels based on the round-robin

https://cfaed.tu-dresden.de/pd-research/sara
https://cfaed.tu-dresden.de/pd-research/sara

technique. The task set is partitioned into two subsets:
HC and LC, each of which is assigned a part of the total
processor utilization (U). Based on the type of the tasks
at each of these two partitions, a scheduling algorithm is
then applied independently.

2) We improve the schedulability of LC tasks in High critical
mode (HI mode) by controlling the time slot of the overall
LC tasks during the run-time phase based on statistical
analysis of the response times. In this approach, the LC
tasks are still guaranteed some service in the HI mode.

3) We propose the task drop algorithm that minimizes the
effect of system mode switches on the LC tasks and
allows the maximum number of LC tasks to continue
running without being degraded.

Structure of the paper. The rest of this paper is structured
as follows. In Section II, the related work is discussed. Second,
in Section III, we explain the task model, assumptions used,
and a brief review of the algorithms that we used for the
comparison, which are Earliest Deadline First with Virtual
Deadline (EDF-VD) and Fixed Priority Preemptive (FPP).
Next, in Section IV, we will introduce our proposed algorithm.
After that, in Section V, we present the simulation results and
discuss the analysis. Future work and conclusions are offered
in Sections VI and VII.

II. RELATED WORKS

In the last decade, most of the MC scheduling algorithms
in the real-time community are based on a model proposed by
Vestal [2], which was briefly discussed in the introduction. In
this section, we will summarize the approaches that solve the
MC challenges on a single-core processor. Vestal discussed
in his model two system modes: Low critical (LO) and HI,
on a single-core processor. In this model, Vestal showed
that the Deadline Monotonic (DM) policy is not optimal for
MCSs. This model was extended to multiple system modes
as in [3]. In this paper, we discuss the MC preemptive
scheduling techniques on a single-core processor, such as FPP
scheduling [5] and EDF-VD [6]. In [7] and [5], the authors
studied the response times analysis for scheduling tasks with
two levels of criticality, LC and HC under the fixed-priorities.
In their work, if the system is in LO mode, LC WCETs are
used to determine the priorities. If the system mode changes
from LO to HI mode, the LC tasks are dropped and HC tasks
use another priority assignment. Moreover, they showed in
their study a method for FP assignment of periodic tasks with
more than two criticality levels. In [8], the authors presented
advanced analysis for the FP scheduling with various levels
of execution. In [9], the execution demands of MC systems
under EDF-VD scheduling systems was studied for the case
of two criticality levels. The authors proposed the demand
bound functions for the LO and the HI modes on a single-core
processor system. In [10], a similar technique called ECDF for
the case of two criticality levels was presented.

Although tasks isolation, which is one of the main subjects
in this paper, is an essential requirement in industrial MCSs,
most research focuses on schedulability and shared resource
management among the tasks. In contrast, these publications
did not discuss the data and fault isolation. Tasks isolation in
the field of MCS was discussed via two approaches: physical

and virtual isolation. In the first approach, the isolation is
performed by allocating unique hardware resources to tasks
with different criticality levels. However, due to the lack of
a hardware platform mainly designed for MCS, we could
find very little research work as in [11] and [12] that dis-
cussed the ability to implement this approach using TrustZone
technologies. In the second approach, which is well-known
by the MCS community, virtual separation is performed by
partitioned hardware using logical isolation (virtual machines
(VMs)), which allows running multiple software components
on the same hardware platform as in [13]. However, VMs
requires complicated resource management, which affects the
performance and predictability of the real-time system. On the
other hand, limited memory availability and unpredictability
issues are handled by existing memory reservation techniques
as in [14] and [15] . In section IV, we present a scheduling
mechanism that preserves the isolation among tasks on the
shared processing resources based on round-robin technique
and still guaranteed some service for the LC tasks in the HI
mode. The second challenge we addressed in this work is to
improve the schedulability of LC tasks in HI mode, which
was discussed in [16] by suggesting three approaches to keep
some LC tasks during the HI mode. The three approaches are:
to change the priority of LC tasks, to extend the periods of
LC tasks when the system mode changes to HI mode, and
to reduce the execution budget of LC tasks when the system
mode switches. The first two approaches are not suitable for
most of real-life applications which prefer an on-time result
with a degraded quality rather than a delayed result with a
perfect quality. In this work, we consider the third approach
which improves the schedulability of LC tasks by controlling
the ration between the HC and LC time slots as we will present
in section IV.

III. CONCEPTS, MODELS AND ASSUMPTIONS

In this section, we introduce the notations and models
and present the preliminary knowledge of the scheduling
algorithms that we used compared with priority-driven and
deadline-driven algorithms. The selected algorithms were the
FPP and the EDF-VD. Further terminology will be introduced
as it gets necessary along with this paper.

A set of related jobs which provide a function is called a
task. Tasks are classified into periodic, sporadic, and aperiodic
tasks. In periodic tasks, the jobs are always released at exact
points in time, where inter-arrival time)8 between any two
consecutive jobs is constant. Table I shows some simple
notation in the glossary below. In sporadic tasks, the jobs
are released periodically. However, each job arrives at an
unpredictable time, but at least)8 time units from the last
job of the same task. Aperiodic tasks are those tasks that have
no period of repetition.

MCS Task Models. MCSs consist of two or more different
criticality levels. The tasks in MCSs are classified as HC
tasks and LC tasks. The classic dual-criticality system model
consists of a task set Γ that comprises a set of n tasks
{g1, ..., g=} that can be scheduled on a processing unit(s). The
dual-criticality system model is typically adopted in most of
the research works in MCSs, because it simplifies the problem
to more general cases.

TABLE I: The notation used in the models and assumptions

Ti Inter-arrival time. If task i is a periodic task, then Ti is the bound on the time between successive arrivals jobs of task i.
Ci The execution time required by task i on each release.
Di The deadline of task i, where D8 ≤)8 .
Ji The release jitter time, the time task i can spend waiting after arrival.
WCETi The worst case execution time required by task i on each release.
Ii Interference on task i, which is the time that higher priority tasks can prevent i from executing.
Bi The blocking time on task i which is the longest critical section of lower priority tasks.
Ri The worst-case response time for a task I. where '8 ≤ �8 for schedulable task.
hp(i) The set of tasks of higher priority than task i.
lp(i) The set of tasks of lower priority than task i.

In the dual-criticality system model, the system switches
between LO and HI modes. There is a mode for each criticality
level in the more general MCS model. Initially, HC and LC
tasks are scheduled in a shared processing unit(s) in LO mode.
In this mode, HC tasks have a lower execution demand. The
demand bound function (DBF) of each task is calculated to
determine the maximum required execution time of a task
g8. If a HC task overruns its lower execution demand, a
system switches its mode from LO to HI, where the HC
tasks have higher execution demand. Therefore, LC tasks must
be dropped to accommodate the HI mode workload. The
utilization (U) for the task set is computed as in Eq. (1),
where M and X are the system mode and tasks criticalities,
respectively as follows: " ∈ {!$, ��} and - ∈ {!�, ��}.

*-" =
∑
<8="

(
�-
8

)8
) (1)

Tasks can be either independent or dependent. Each task g8,
is characterized, as shown in Table I, by a ,��)8 where
,��)8 = {,��)!$

8
, ,��)��

8
}, a minimal inter-arrival

time)8 , a criticality level -8 , and a deadline �8 . In this work
we consider implicit deadlines where �8 =)8 . In the dual-
criticality system model, each LC task only has a ,��)!$,
and each HC task has a ,��)!$

8
and ,��)��

8
, where

,��)!$
8
≤WCET��

8
≤R8 ≤D8 ≤T8 .

In MCSs, there are two task models: the task demand model
and the task resource model. The operations in the MCS
models are summarized as follows: first, the MCS starts in LO
mode, where all tasks execute at the ,��)!$ to guarantee
their deadlines. If an LC task overruns its ,��)8 in the LO
mode, it must be dropped. Second, if any HC task overruns its
,��)8 , then the MCS switches its mode from LO to HI. LC
tasks are dropped in HI mode, and HC tasks must meet their
deadlines. When the MCS is in HI mode, the system mode
switch from HI to LO can be scheduled in the idle state.

Schedulability Test. A schedulabililty test is concerned
with verifying that no task misses its deadline under a specified
scheduling algorithm. A MCS is considered schedulable if the
worst-case response time '8 is not greater than the deadline �8
('8 ≤D8≤T8) for each g8 in Γ. In this section, we recapitulate
existing response-time analyses for FPP and EDV-VD schedul-
ing algorithms. We use hp(i) and lp(i) to denote respectively
the set of indices of tasks with priorities higher than, and lower
than that of task g8 .

A. FPP Schedulability analysis

Fixed-priority preemptive scheduling [5] ensures that the
highest priority task in the ready queue will execute first by a

system clock interrupt. However, the lower-priority tasks could
wait an indefinite amount of time. Therefore, the exact worst-
case response time is computed by Eq. (2).

'8 = �8 +
∑

9∈ℎ? (8)
('8
)9
) ∗ � 9 (2)

The first iteration starts with '8 = �8 . If the task is non-
schedulable, this equation ends with '8 > �8 . For periodic
tasks with deadlines equal to periods, the utilization bound of
FPP is at most 70% for large task sets.

B. EDF-VD Schedulability analysis

The EDF schedules the tasks according to their deadlines,
and it is an optimal scheduling algorithm for the independent
tasks on a single processor. For periodic tasks with deadlines
equal to periods, the utilization bound of EDF is 100% when
*-
"
≤ 1 as in Eq. (1). The EDF-VD [6] adapts EDF to MCS,

where the processor’s capacity is limited by shortening the HC
deadlines (virtual deadlines) while running in the LO mode.
The virtual deadlines are computed as �E

8
= G)8 where x is the

scaling factor with x ∈ (0, 1) for all HC tasks. The tasks are
schedulable by the EDF-VD technique if two conditions are
valid. Eq. (3) and Eq. (4) show these conditions as follows:

��!$ +
!�
!$ ≤ 1 (3)

*���� ≤ 1 (4)

For periodic tasks with deadlines equal to periods, the
utilization bound of EDF-VD is at most 75% as proposed by
Baruah et al. in [3]. The upper and lower bounds of the scaling
factor can be computed as shown in Eq. (5) and Eq. (6).

*��
!$

1 −*!�
!$

≤ G (5)

G ≤
1 −*��

��

*!�
!$

(6)

IV. PROPOSED SCHEDULING ALGORITHM

This section introduces our scheduling mechanism, which
facilitates a computational design of MCSs, and isolates the
interference between the HC and LC tasks on the shared
processing resource. This approach is not only suitable for
different types of multi-programming with different character-
istics of tasks, but also allows the maximum number of LC
tasks to continue running during the HI mode.

To illustrate the proposed mechanism and the equations
from Eq. (7) to Eq. (10), we provide an example, as shown

TABLE II: Illustrative example for the proposed mechanism.

HC Tasks LC Tasks *��
!$

*!�
!$

���<0G �!�<0G *��
!$

G���<0G *!�
!$

G�!�<0G ���
!$

�!�
!$

1 g1 g2, g3 0.453 0.4 7 5 3.171 2 0.946 1
2 g2 g1, g3 0.686 0.167 7 6 4.802 1 0.833 1
3 g3 g1, g2 0.567 0.286 6 7 3.402 2 0.882 1
4 g2, g3 g1 0.4 0.453 5 7 2 3.171 1 0.946
5 g1, g3 g2 0.167 0.686 6 7 1 4.802 1 0.833
6 g1, g2 g3 0.286 0.567 7 6 2 3.402 1 0.882

Fig. 1: The maximum values of the HC and LC time slots in the proposed
mechanism.

in Table II. For simplicity, we consider the overhead by the
preemption, and the operating system is negligible.

lets consider three tasks g1, g2, and g3 which have implicit
deadlines. Let the deadline of g1 be �1 = 5, and its,��)1!$
= 2. Let the deadline of g2 be �2 = 6, and its execution time
be ,��)2!$ = 1. Let the deadline of g3 be �3 = 7, and
its execution time be ,��)3!$ = 2. Based on Eq. (1), the
utilization of the three tasks is 0.853. As shown in Table II,
there are six possible cases to divide these three tasks into HC
and LC.

The required time slot for running the HC tasks, as shown
in Eq. (7), depends on four variables which are: the utilization
of the HC tasks (*��

!$
), the maximum period in the HC task

set (���<0G), the LO window adjustment value for the HC tasks
(���), and the HI window adjusting value for the HC tasks
(U), where U is between 1 and U) �$!� .

)8<4(;>C�� = *
��
!$ ∗ �

��
<0G ∗ ��� ∗ U (7)

If the period for each task equals its deadline, then the
value of ��� is calculated as in Eq. (8), where

∑
��� is

the summation of the execution times for the HC tasks, and
V�� is a variable greater than zero which depends on the
number of HC tasks per set,

∑
��� , the average context

switch time, the minimum period in the HC task set, and the
selected scheduling algorithm for running the HC tasks.

��� =
V�� ∗

∑
���

*��
!$
∗ ���<0G

(8)

The increase in U value will provide the HC tasks with
more processing resources by slightly increasing the HC time
slot as shown in Figure 1. In section V, we will show by the
simulation results the effect of varying the variables U and V

during the run-time phase.
The required time slot for running the LC tasks, as shown in

Eq. (9), depends on three variables which are: the utilization
of the LC tasks (*!�

!$
), the maximum period in the LC task(s)

set (�!�<0G), and the LO window adjusting value for the LC
tasks (�!�).

)8<4(;>C!� = *
!�
!$ ∗ �

!�
<0G ∗ �!� (9)

If the period for each task equals its deadline, then the
value of �!� is calculated as in Eq. (10), where

∑
�!�

is the summation of the execution times for the LC tasks,
and V!� is a variable greater than zero that depends on the
number of LC tasks per set,

∑
�!� , the context switch time,

the minimum period in the LC task set, and the selected
scheduling algorithm to run the LC tasks. In this above
illustrative example, the values of V�� = V!� = 1.

�!� =
V!� ∗

∑
�!�

*!�
!$
∗ �!�<0G

(10)

On the LC tasks side, the required time slot for running the
LC tasks is upper limited by V!� = 1. Therefore, the increases
in the LC tasks execution times on the shared processing
units will not affect the overall performance, which is a major
challenge in the conventional algorithms. Figure 1 shows the
maximum values of the HC and LC time slots in the LO mode.
The values of V�� and V!� divide the overall time slots into
sub-time lots according to the request rates of the HC tasks as
shown in the same figure. During the run-time phase, the trade
off between improving the quality of LC tasks in the HI mode
and provide more resources for the HC tasks is controlled by
the LC time slot through statistical analysis of the response
times of the LC tasks. In this algorithm, we used the values
V�� and V!� to further divide the HC and LC time slot into
slices based on the periodicity of the HC tasks.

A. Pre-runtime Processing

As shown in Figure 2, the algorithm starts by partitioning
the tasks according to their criticalities into two groups: HC
and LC.

In this work, we consider two types of tasks: independent
and dependent tasks. For the independent HC tasks, we
selected the EDF-VD which is deadline-driven scheduling
algorithm. For the dependent HC tasks, we selected the FPP
which is a priority-driven scheduling algorithm. The selection
was based on the most widely known in the academic and
industrial fields. During the pre-runtime pahse, if an LC task
has an input to an HC task, then it is added to the HC task list.
After determining the HC and LC tasks sets, a utilization test
based on Eq. (1) is performed. The processor time is divided
into two parts, where a round-robin mechanism is used to
switch between the two subgroups. The time slots for each
portion are calculated based on the utilization of each group,
as shown in Eq. (7) and Eq. (9).

A scheduling algorithm is then applied to each of these two
partitions independently, and the tasks in each division can

Fig. 2: Flowchart for the pre-runtime processing.

run if they have not used up their assigned time slot. For the
independent tasks, the summation of both HC and LC tasks
utilization should not exceed 0.75, as was proved in [3]. For
the dependent tasks, the summation of both HC and LC tasks
utilization should not exceed 0.7, as was proved in [17]. The
proposed technique does not require modifying the selected
scheduling algorithm within a partition.

B. Runtime Dispatching
During the runtime phase, as shown in Algorithm 1, if a

HC task missed its deadline in line 3, then the first step to
providing the HC tasks with more processing resources is by
increment U in line 5, which will slightly increase the HC time
slot.

If the value of U reaches its threshold, then Algorithm 1 will
call the task drop procedure (Algorithm 2) in line 8, which
will drop (at least) one LC task depending on the HC tasks
execution demands. After calling the task drop, the required
time for the HC tasks to continue running without missing
deadlines is first computer using Eq. (1) in line 2 in Algorithm
2. Then the LC tasks will be sorted in line 4, based on their
importance. If all the LC tasks have the same importance, then
the selection will be based on the execution times of the LC
tasks.

If the execution demands for the HC tasks was increased
for a short period of time, the LC tasks will be reactivated,
as shown in the lines from 14 to 23 in Algorithm 1, based on
the average response times of the HC and LC task sets.

V. EXPERIMENTAL EVALUATION

This section evaluates the benefits and drawbacks of the
proposed approach introduced in Section IV by performing

Algorithm 1 Runtime
Input: *!" and *�" (HC tasks), *!" (LC tasks)

1: while (true) do
2: . for each g8 in HC tasks list
3: . . if '8 > �8 then – Deadline is missed
4: . . . if U�� < U) ℎA4Bℎ>;3 then
5: increment U��
6: Update HC timeslot
7: . . . else
8: Call TaskDrop function
9: Update HC timeslot

10: Update LC timeslot
11: Update LC Tasks
12: . . . end if
13: . end for
14: . for each g8 in HC tasks list
15: . . if avg(�8 − '8) >)ℎA4B�� then
16: . . . if U�� > 1 then
17: decrement U��
18: . . . else
19: re-activate a LC task
20: calculate U��
21: . . . end if
22: . . end if
23: . end for
24: end while

Algorithm 2 Task drop
Input: *!" and *�" (HC tasks), *!" (LC tasks)
Input: g8 (missed deadline)
Output: Updated *!" and *�" (HC tasks), *!" (LC tasks)

1: procedure TASKDROP()
2: Calculate *B of)0B:8 – Required space
3: Check LC portion
4: Sort ;8BC by importance
5: for each)0B: 9 in ;8BC
6: . Calculate * 9 of)0B: 9
7: . Drop)0B: 9
8: . if * 9 ≥UB then
9: . Update *!" and *�" (HC tasks), *!" (LC tasks)

10: . end if
11: end for
12: return *!" and *�" (HC tasks), *!" (LC tasks)
13: end procedure

extensive simulation and comparing the results with other
state-of-the-art scheduling algorithms from the literature in [5]
and [6]. For comparing our proposed mechanism with the
priority-driven (i.e., FPP) in [5] and deadline-driven (i.e., EDF-
VD) in [6] algorithms. As mentioned in section II, the EDF-
VD is an adaption of EDF to MC systems and its proved to be
the most optimal scheduling algorithm for the independent MC
tasks, while the FPP scheduling algorithm is the widely used
to schedule the dependent tasks in the real-life applications
and industry-based scenarios.

We generated 10000 task sets for each utilization value. The
WCETs ranges in the generated test data were in [30:500]ms.
The UUniFast algorithm [18] was used to generate valid
utilization values for each task in a set, and a log-uniform
distribution approach proposed in [19] was used to create a
random arrival jitter for the tasks in [0:100] ms. Each data-
point of the curves shown below was obtained by randomly
generating 10000 task sets and testing each for schedulability
according to the corresponding algorithms and their upper

Fig. 3: The number of schedulable task sets versus utilization for ten tasks
per set is compared with the conventional EDF-VD, and FPP scheduling
algorithms on the same randomly generated task sets after dropping LC tasks.

bounds in section III. The default task set size was 10, and the
task deadlines were implicit �8 =)8 . Tasks priorities range
in [0:9], where the first five values are for HC tasks. The
priorities of each task set were randomly assigned to the tasks
to represent the industry-based scenarios. Tasks were placed
in queues according to their arrival times. In this comparison,
the impact of the number of HC tasks and a varying increase
in the tasks execution demand is investigated.

Figure 3 shows the baselines for the comparison with our
proposed algorithm. In this figure, the number of schedulable
task sets versus the utilization is simulated using the conven-
tional EDF-VD (solid lines) and FPP (dashes lines) algorithms.
The percentage of HC tasks in each task set was 60%, and
we increased the execution demands for the HC tasks to
50%. The maximum value to increase the execution demands
for the HC tasks was 66.6%. The task set is considered to
be schedulable in the conventional approaches if there is no
missed deadline for all of the HC tasks. The red curves in
Figure 3 (solid and dot lines) are fully implemented based on
the EDF-VD and the FPP scheduling algorithms, and we refer
to [6] and [5] for the proof of it. As the value of the utilization
increase, the total number of scheduable task sets decreases
due to the preemption cost, which is higher in the case of
the FPP scheduling algorithm. The generated task sets, before
increasing the execution demands for the HC tasks, were fully
scheduable by the EDF-VD algorithm for all the utilization
values. We didn’t plot it in this graph for the sake of brevity.
However, after increasing the execution demands for the HC
tasks with 50%, the number of scheduable task sets decreases
when the utilization values increase. This is due to the increase
in the ratio of �8/)8 for the HC tasks. The FPP algorithm (red
dots line) shows a decrease in the total number of scheduable
task sets when the value of the utilization increase, even before
increasing the HC tasks execution demands. This is due to the
algorithm’s preemption cost. As shown in Figure 3, for both
EDF-VD and FPP algorithms, the number of schedulable task
sets will increase as the percentage of LC tasks drops. The
percentage of tasks dropped was increased from 0% up to
100%, which means that all the four LC tasks in the set are
dropped.

Fig. 4: The number of schedulable task sets versus utilization, without
dropping LC tasks, when V�� = V!� = 0.1 and U = 9, 12, and 15.

A. Deadline-driven scheduling algorithm at HC portion
This section evaluates the proposed mechanism when se-

lecting the EDF-VD algorithm to schedule the HC tasks and
the round-robin RR algorithm to schedule the LC tasks. As
mentioned before, the proposed mechanism does not require
changing the selected algorithm that schedule the tasks in each
portion. Since all the tasks in the HC portion are HC tasks,
the tasks are scheduled according to EDF. Figure 4 shows
the simulation results when increasing the value of U from 9
to 15, which increases the number of schedulable task sets by
increasing the overall HC time slot of the HC tasks. Compared
with the conventional EDF-VD, the proposed mechanism
shows better results when the percentage of HC tasks per set
is below 100%, i.e., 60%. If the percentage of the HC tasks
increase towards the pure HC tasks, then the task set is not
considered as a MC task set. To show the effect of increasing
U on the total number of scheduable task sets, we calculated
the HC and LC time slots, based on Eq. (7) and Eq. (9),
before increasing the execution demands for the HC task. After
increasing the HC tasks execusion demands, which means
increasing the utilization ratios �8/)8 by 50#, the increase in U
value provides the HC portion with more processing resources
through increasing the HC time slot. In Figure 4, when U at
the utilization value of 0.9 equal 9, the proposed mechanism
shows -17.8% in the number of schedulable task sets compared
with the conventional approach. After increasing U to 15,
the proposed approach shows 5.3% better results than the
conventional approach. If the HC tasks per set increase, i.e.,
more than 90%, the proposed mechanism will compare to the
chosen scheduling algorithm.

If the value of U reaches its threshold, then LC task(s)
should be dropped based on the increase in the execution
demands of the HC tasks. After dropping LC tasks, i.e., 25%,
the value of U will be reset, i.e., starts from 1. As shown in
Figure 5, if the percentage of dropping LC tasks increases from
25% to 75%, the proposed mechanism shows slightly better
results than the conventional approach with 4.2%, 2.3%, and
0.8% when the utilization value equal 0.9, respectively.

In Table III, we listed the average response times '0E6 and
the waiting times in the queues &0E6 for both the conventional
EDF-VD scheduling algorithm and the proposed mechanism
for the simulation results shown in Figure 5. As the percentage
of dropping the LC tasks increase, both the '0E6 and &0E6
decrease. The challenge of having the same scheduling algo-

TABLE III: The average response times ('0E6) and the waiting times at the queues (&0E6) for the simulation results presented in Figure 4 are listed in this
table.

Conventional Proposed
Drop% '��0E6 '!�0E6 &��0E6 &!�0E6 '��0E6 '!�0E6 &��0E6 &!�0E6

0% 1559.8 233.17 1149.3 178.63 1626.4 537.04 1216.3 482.41
25% 1374.4 105.51 988.05 75.594 1415.6 312.29 1030.4 282.85
50% 1157.8 34.713 799.10 21.941 1209.2 152.47 852.44 139.74
75% 941.69 6.80 616.27 0 1003.7 44.040 679.75 40.366

100% 734.52 0 448.42 0 792.63 0 507.62 0

Fig. 5: Comparison between the conventional EDF-VD and the proposed
mechanism after dropping LC tasks.

Fig. 6: The number of schedulable task sets versus utilization, without
dropping LC tasks, when V�� = V!� = 0.15 and U = 3, 6, and 9.

rithm for both HC and LC tasks in the conventional approaches
allows the LC tasks to take more of the processor utilization
when they exceed their execution demands, which directly
affects the HC tasks. In the proposed approach, we solved
this challenge by fixing the upper bound of the LC time slot
and dynamically changing the HC time slot as shown in Figure
1.

B. Priority-driven scheduling algorithm at HC portion
We evaluated the FPP algorithm (FPP-HC) to schedule the

HC tasks and the round-robin algorithm RR to schedule the LC
tasks. Figure 6 shows the simulation results when increasing
the value of U from 3 to 9, which increases the number of
schedulable task sets by increasing the overall HC time slot.
In Figure 6, when U at the utilization value of 0.5 equal 3, the
proposed mechanism shows -8.9% in the number of schedula-
ble task sets compared with the conventional approach. After
increasing U to 9, the proposed approach shows 10.7% better
results than the conventional approach.

Figure 7 compares the conventional FPP scheduling al-
gorithm and the proposed approach by running the FPP

Fig. 7: Comparison between the conventional FPP and the proposed algorithm
after dropping LC tasks.

scheduling algorithm on the HC portion with increasing the
percentage of dropping in LC tasks when U equal 9. As shown
in Figure 7, if the percentage of dropping LC tasks increases
from 25% to 100%, the proposed mechanism shows better
results than the conventional approach with 3.8%, 2.7%, 7.1%,
and 6.5% when the utilization value equal 0.6, respectively.

VI. ISSUES AND FUTURE WORKS

The proposed approach was evaluated by extensive simula-
tion on synthetic data with medium percentages of HC tasks
per task set. We showed that the proposed mechanism has
better results than the conventional approaches to guarantee
the achievement of the deadlines for the HC tasks. However,
increasing the percentage of HC tasks to its upper limit, i.e.,
100% per task set is not considered as a MC challenge. The
values of the LC time slot kept below its maximum limit in
all the conducted experiments. Decreasing the LC time slot
without dropping one or more of the LC tasks will increase the
average response times for all the LC tasks, and this decrease
can be achieved by making the variable V!� less than the
variable V�� . In this work, we controlled both V�� and V!�
values between zero and one to guarantee the deadlines for
the periodic HC tasks and at the same time to provide the LC
tasks with the best average of response times. Table IV shows
that the values of U and V should be determined during the run
time, especially when handling situations where the number
of tasks per set is not fixed. Moreover, the values of U and
V depends on the utilization of the task set, the number of
tasks per set, and the average execution times of the tasks. We
postpone a discussion regarding how our proposed mechanism
generalize to more than ten tasks per set and with different non
preemptive scheduling approaches to an extended paper which
is currently under preparation. The total number of context
switches, which added by the proposed mechanism, depends
on the execution demands for the tasks in the generated data
set as shown in Table IV.

TABLE IV: The comparison between conventional FPP and the proposed algorithm at HC and LC portions using the FPP scheduling algorithm at the HC
portion and round-robin RR scheduling algorithm at the LC portion while dropping LC tasks. The number of schedulable HC tasks per utilization ((2ℎ��),
the average response times ('0E6), the waiting times at the queues (&0E6), and the average context switch per utilization (�-�;6) for U equal 12, and
V�� = V!� = 0.05. �-�;6 determines the additional overhead that is added by the presented mechanism. U is the utilization value, #tasks is the number of
tasks per set, and �A0=64 is the minimum and maximum values of the execution times for the generated tasks in the data set. In the conventional approach,
(2ℎ�� determines the number of task sets without a deadline missing for all the HC tasks.

Conventional Proposed
#tasks U �A0=64 '��0E6 '!�0E6 &��0E6 &!�0E6 (2ℎ�� '��0E6 '!�0E6 &��0E6 &!�0E6 �-�;6 (2ℎ��

10 0.5 100-400 1587 477 1200 426 7562 2272 531 1886 480 377 8975
20 0.5 100-400 2994 936 2606 886 6240 4014 994 3625 944 375 6629
30 0.5 100-400 4408 1393 4020 1344 5176 4737 1450 4348 1399 375 4356
10 0.7 100-400 1572 490 1186 437 4408 2291 537 1903 485 379 4261
20 0.7 100-400 2983 947 2595 896 2746 3968 998 3582 947 374 2749
30 0.7 100-400 4401 1400 4013 1350 1687 4731 1449 4342 1398 374 1090
10 0.5 500-1000 4741 1447 3579 1292 9299 7444 1583 6284 1427 1127 9177
20 0.5 500-1000 8967 2844 7801 2692 9153 11332 3025 10166 2872 1125 9030
30 0.5 500-1000 13239 4184 12071 4035 9054 14139 4381 12971 4231 1124 8245
10 0.7 500-1000 4755 1421 3591 1267 5081 7461 1585 6299 1428 1129 3752
20 0.7 500-1000 9009 2808 7841 2657 4158 11386 3036 10219 2883 1126 3592
30 0.7 500-1000 13235 4207 12066 4057 3324 14115 4422 12949 4270 1124 2170

Presently, the proposed mechanism dynamically update the
values of U and V to guarantee the minimum misses of
deadlines for the HC tasks on a single processor and the
best average response times for the LC tasks. This process
increment and decrements U, together with dropping and
reactivating the LC tasks. An implementation of the proposed
mechanism on a real platform is in progress. It is worth to
mention that the cost of preemption for the selected algorithm
to schedule the HC tasks affects the values of U and V. Our
results shows that the the EDF-HC is better than the FPP-HC
due to the preemption cost for for the same utilization’s value.

VII. CONCLUSION

This paper proposed a new approach for scheduling the
Mixed-Criticality (MC) tasks on a single processor based on
the round-robin technique. Initially, tasks are divided into two
partitions: HC and LC, where each partition is assigned a
time slot on a portion of the total processor utilization. In
each partition, tasks start to run for their optimistic WCETs;
if one or more HC tasks in the HC partition run over its
optimistic,��)!� , then an increase in the HC time slots will
provide the HC portion with the required resources. Therefore,
the proposed mechanism considered more than two levels of
the criticality system. In each time slot, tasks are scheduled
by a selected algorithm based on the dependencies of the
tasks without modifying the chosen algorithm. We evaluated
the EDF-VD on the HC task as a deadline-driven algorithm
and the FPP as a priority-driven algorithm. In both cases,
we scheduled the LC tasks using the round-robin technique.
To evaluate the proposed approach, we conducted a large set
of experiments, and we showed that the proposed approach
has better results in the total number of schedulable tasks
per utilization value. As the execution demands of HC tasks
increase, the proposed mechanism can provide better results
by decreasing the LC time slot and increasing the HC time
slot to its upper bound, where the total processor utilization
is given to the HC tasks.

REFERENCES

[1] S. Baruah, “Mixed-criticality scheduling theory: Scope, promise, and
limitations,” IEEE Design & Test, vol. 35, no. 2, pp. 31–37, 2018.

[2] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance,” in Proc. of IEEE International
Real-Time Systems Symposium (RTSS), 2007, pp. 239–243.

[3] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department
of Computer Science, University of York, Tech. Rep, pp. 1–97, 2022.

[4] Y. Li, M. Danish, and R. West, “Quest-v: A virtualized multikernel for
high-confidence systems,” 2011.

[5] S. Baruah, A. Burns, and R. Davis, “An extended fixed priority scheme
for mixed criticality systems,” in ReTiMiCS, RTCSA, L. George and
G. Lipari, Eds., 2013, pp. 18–24.

[6] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, “The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems,” in Proc. of
Euromicro Conference on Real-Time Systems (ECRTS), 2012, pp. 145–
154.

[7] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for
mixed criticality systems,” in Proc. of IEEE Real-Time Systems Sym-
posium (RTSS), 2011, pp. 34–43.

[8] Y. Chen, K. G. Shin, and H. Xiong, “Generalizing fixed-priority schedul-
ing for better schedulability in mixed-criticality systems,” Information
Processing Letters, vol. 116, no. 8, pp. 508–512, 2016.

[9] P. Ekberg and W. Yi, “Outstanding paper award: Bounding and shaping
the demand of mixed-criticality sporadic tasks,” in Proc. of Euromicro
Conference on Real-Time Systems (ECRTS), 2012, pp. 135–144.

[10] A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic
tasks on one processor,” in Proc. of IEEE Real-Time Systems Sympo-
sium (RTSS), 2013, pp. 78–87.

[11] P. Dong, A. Burns, Z. Jiang, and X. Liao, “Tzdks: A new trustzone-
based dual-criticality system with balanced performance,” in Proc. of
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2018, pp. 59–64.

[12] S. Pinto, J. Pereira, T. Gomes, A. Tavares, and J. Cabral, “Ltzvisor:
Trustzone is the key,” in Proc. of Euromicro Conference on Real-Time
Systems (ECRTS), 2017.

[13] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on
concepts, taxonomy and associated security issues,” in 2010 Second
International Conference on Computer and Network Technology, 2010,
pp. 222–226.

[14] F. Farshchi, P. K. Valsan, R. Mancuso, and H. Yun, “Deterministic
Memory Abstraction and Supporting Multicore System Architecture,”
in Proc. of Euromicro Conference on Real-Time Systems (ECRTS), ser.
Leibniz International Proceedings in Informatics (LIPIcs), S. Altmeyer,
Ed., vol. 106. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2018, pp. 1:1–1:25.

[15] M. Chisholm, N. Kim, S. Tang, N. Otterness, J. H. Anderson, F. D.
Smith, and D. E. Porter, “Supporting mode changes while providing
hardware isolation in mixed-criticality multicore systems,” in Proc. of
International Conference on Real-Time Networks and Systems (RTNS).
New York, NY, USA: ACM, 2017, p. 58–67.

[16] A. Burns and S. Baruah, “Towards a more practical model for mixed
criticality systems,” in Proc. WMC, RTSS, 2013, pp. 1–6.

[17] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, p. 46–61,
1973.

[18] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” vol. 30, no. 1–2, p. 129–154, 2005.

[19] P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis of
multiprocessor tasksets,” in Proc. of International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WA-
TERS), 2010, pp. 6–11.

	Introduction
	Related Works
	Concepts, Models and Assumptions
	FPP Schedulability analysis
	EDF-VD Schedulability analysis

	Proposed Scheduling Algorithm
	Pre-runtime Processing
	Runtime Dispatching

	Experimental Evaluation
	Deadline-driven scheduling algorithm at HC portion
	Priority-driven scheduling algorithm at HC portion

	Issues and Future Works
	Conclusion
	References

