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Approximate arithmetic operators, such as adders and multipliers, are increasingly used to satisfy the energy and performance
requirements of resource-constrained embedded systems. However, most of the available approximate operators have an application-
agnostic design methodology, and the efficacy of these operators can only be evaluated by employing them in the applications. Further,
the various available libraries of approximate operators do not share any standard approximation-induction policy to design new
operators according to an application’s accuracy and performance constraints. These limitations also hinder the utilization of machine
learning models to explore and determine approximate operators according to an application’s requirements. In this work, we present
a generic design methodology for implementing FPGA-based application-specific approximate arithmetic operators. Our proposed
technique utilizes lookup tables and carry-chains of FPGAs to implement approximate operators according to the input configurations.
For instance, for an M × N accurate multiplier utilizing 𝐾 lookup tables, our methodology utilizes 𝐾-bit configurations to design 2𝐾

approximate multipliers. We then utilize various machine learning models to evaluate and select configurations satisfying application
accuracy and performance constraints. We have evaluated our proposed methodology for three benchmark applications, i.e., biomedical
signal processing, image processing, and ANNs. We report more non-dominated approximate multipliers with better hypervolume
contribution than state-of-the-art designs for these benchmark applications with the proposed design methodology.
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1 INTRODUCTION

A large number of applications in the domain of signal processing, computer vision, and machine learning possess an
inherent error resilience [7]. These applications can produce acceptable quality results despite some inexactness in the
representation of their processed data and corresponding operations. Further, the error-tolerant computations in these
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Fig. 1. Application-level performance-accuracy analysis of utilizing approximate multipliers from [21] for three different applications
(a) ECG QRS peak detection (b) MLP for MNIST dataset classification (c) Gaussian image smoothing filter

applications are often the major contributors to their respective implementations’ overall resource utilization, latency,
and energy consumption [38]. For such applications, the approximate computing paradigm has emerged as a viable
solution for implementing high-performance and energy-efficient hardware accelerators. Approximate computing
methods bargain the computational accuracy of an application to achieve performance gains. These methods can be
applied at any layer of the computation stack [19].

Among these layers of approximation, circuit-level techniques have been a major focus of research for resource-
constrained embedded systems [10, 12, 15, 21–23, 28–30, 32, 34, 36]. However, the state-of-the-art approximate arithmetic
blocks have two main limitations:

1) These approximate blocks lack a consistent design methodology and have considered different strategies for
introducing approximations to obtain performance gains. For example, the authors of [36] and [32] have considered the
techniques of least-significant product bit truncation and elimination of carry propagation among product bits, respectively,
for designing 4 × 4 approximate multipliers for Field Programmable Gate Array (FPGA)-based systems. Further, for a
fixed 𝑛-bit operator, most of these blocks provide a fixed output accuracy and corresponding performance gain. For
example, compared to a 4 × 4 accurate multiplier, the works in [36] and [32] report a 63% and 25% reduction in the
resource utilization, respectively, and 0.55 and 0.072 degradation in the output (average relative error), respectively.
Therefore, to design a new approximate block with a modified accuracy-performance constraint, these techniques cannot
be utilized and calls for the exploration of some other approximation techniques. The modular design methodology, as
used in [29] and [15], of designing N × N approximate multipliers from 𝑁

2 approximate multipliers provide a limited
design space and may not be sufficient to satisfy the modified accuracy-performance constraint.

2) Most of the state-of-the-art approximate arithmetic operators are designed without considering an applica-
tion’s accuracy-performance constraints. The application agnostic-design methodology can result in approximate
operators which may not satisfy an application’s accuracy-performance constraints. For example, Figure 1 presents
the performance-accuracy analysis for three different applications1 using the approximate signed multipliers library
EvoApprox2 from [21, 23]. We have used the Power-Delay Product (PDP) and resource utilization for reporting the corre-
sponding performance of each application by implementing it on Xilinx UltraScale FPGA using Xilinx Vivado. For PDP,
the dynamic power is computed in 𝜇𝑊 , and the critical path delay (CPD) is reported in 𝑛𝑠 . Further, we have considered
1The reported accuracy metric in ECG application varies between 0 and 1 unlike for MNIST classification which varies between 0 and 100%.
2https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/8x8_signed
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Fig. 2. Proposed framework for AppAxO

the 6-input Lookup Tables to report resource utilization. Similarly, we have used Python-based models to report each
application’s output accuracy for various approximate multipliers. These results identify the approximate multipliers
which contribute to non-dominated hardware accelerators for each application. Figure 1(a) describes the hardware
accelerator results for the QRS peak detection in Electrocardiographic (ECG) signals. To report the application’s output
accuracy for various approximate multipliers, we have used the accuracy of the peak detection metric. The results show
that 9 different approximate multipliers (out of 13) contribute to non-dominated design points. Figure 1(b) shows
the implementation results of deploying the 13 approximate multipliers in the last layer of a lightweight Multilayer
Perceptron (MLP) to classify the Modified National Institute of Standards and Technology (MNIST) dataset [17]. The
application-agnostic design of the multipliers has resulted in only 4 non-dominated design points (accelerator designs).
As shown in Figure 1(c), this behavior is exacerbated in the implementation of the Gaussian Image Smoothing filter using
the approximate multipliers. The performance and the accuracy results (for 45 images) show that only two approximate
multipliers contribute to the non-dominated design points. Moreover, the application-level analysis also reveals that the
accurate multiplier 1KV8 from the ‘EvoApprox’ library [21, 23] does not contribute to any non-dominated accelerator
design point for any application.

Therefore it is necessary to define a generic and optimized design methodology that can generate application-specific
approximate operators satisfying its accuracy-performance constraints. Towards this end, we present AppAxO: a
methodology for designing application-specific approximate arithmetic operators for FPGAs-based systems in this work.
As shown in Figure 2, the proposed methodology involves circuit-level modeling and novel Design Space Exploration
(DSE) methods for fast design of approximate arithmetic operators that can leverage the inherent robustness of error-
tolerant applications. We have considered multipliers and adders as example operators to discuss our methodology and
present our results; however, the proposed methodology is generic and can be used for designing any soft logic-based

operators including dividers. Our proposed implementations utilize the 6-input Lookup table (LUT) and associated
carry chains of modern FPGAs building blocks. Our novel contributions include:

• A systematic methodology for approximate operators generation:We provide a systematic and generic methodology
for implementing approximate operators of arbitrary size for FPGA-based systems. Our methodology utilizes the
6-input LUTs and the associated carry chains of FPGAs to implement approximate operators according to input
configuration. For instance, the input configurations—a binary string—identify the LUTs, in an accurate operator
implementation, that should be disabled to realize a corresponding approximate operator. For an M × N accurate
multiplier, utilizing ‘K’ LUTs, our methodology provides 2𝐾 approximate multipliers with different accuracy and
performance parameters.
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• Application-specific multiplier configurations: We utilize a Multi-objective Bayesian Optimization (MBO)-based
exploration method to generate only those approximate multiplier configurations (a binary string) that satisfy
an application’s accuracy and performance constraints. Our proposed multiplier generation methodology uses
these configurations to implement the respective multipliers for the application.

• An efficient DSE methodology: We utilize various Machine Learning (ML) models to propose a genetic algorithm-
based DSE methodology. Our methodology deploys various ML models to explore the large design space of
individual multipliers and their utilization in various applications by estimating the behavioral accuracy and
corresponding performance gains.

The rest of the article is organized as follows. We provide a brief overview of the relevant background and related
works in Section 2. Section 3 describes the systematic modeling methodology used for designing arbitrary approximate
multipliers. The DSEmethods adopted for designing application-specific approximatemultipliers is described in Section 4.
In Section 5, the results from the experimental evaluation of the proposed framework are presented, followed by a
discussion on the scope of related future research in Section 6.

2 BACKGROUND AND RELATEDWORKS

2.1 Approximate Computing

Multiplication, being one of the computationally complex and intensively used instructions in various application
domains, has remained the focus of many recent approximate computing works [10, 14–16, 21–23, 26, 27, 29, 32–
36]. These works have utilized various techniques, such as truncation and the design of inexact hardware, to realize
approximate multipliers. However, most of these works have focused on proposing single designs of approximate
multipliers. For example, some works utilize various truncation techniques to produce an 𝑁 -bit output for an N × N
multiplier [14, 26]. Some works perform quantization (truncation) of the operands to employ an M ×M multiplier for
implementing an N × N multiplier where𝑀 < 𝑁 [13, 16]. Similarly, some works focus on approximating various sub-
operations of the final product computation. For example, the works in [15] and [29] have presented 2 × 2 approximate
unsigned multiplier blocks for ASICs. These designs are based on the simplified, and approximate Karnaugh maps to
reduce multiplication logic. The authors of [34] present 4 × 2 and 4 × 4 approximate unsigned multiplier designs for
FPGA-based systems. These designs utilize the truncation of least significant product bits and approximate addition of
generated partial products to reduce the total number of utilized LUTs. The authors of [36] have proposed approximate
radix-4 Booth-based approximate signed multipliers for FPGA-based systems. Their proposed technique deploys the
truncation of the least significant partial product bit in each generated partial product to compute the final product.
Further, they have also shown that utilizing an approximate M × M multiplier to implement a precision-reduced
approximate N × N multiplier, where𝑀 < 𝑁 , can significantly improve the overall performance of the multiplier. The
work in [21] utilizes various previously proposed approximate multipliers and adders to present a library of 8 × 8
approximate unsigned multipliers referred to as ‘EvoApprox’. In their follow-up work, the authors of [21] have extended
the EvoApprox library to include signed multipliers [23]. Considering 4 × 4 as an elementary module, the work in
[32] has proposed 3 different 4 × 4 approximate multiplier designs to propose a library of approximate multipliers for
FPGA-based systems. These approximate designs are based on the approximate and parallel generation of all product
bits. For this purpose, the carry propagation between the product bits is eliminated.

As discussed in Section 1, these designs do not share a consistent design technique and follow an application-
agnostic methodology for designing approximate multipliers. The work presented in [22] has used a Cartesian Genetic
Manuscript submitted to ACM
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Table 1. Comparing related works

Article Platform Focus
Application

Specific Operators
Constraints for New Operators/DSE

Accuracy Resources Latency Power
P. Kulkarni [15] ASIC Single Multiplier ✗ ✗ ✗ ✗ ✗

S. Rehman [29] ASIC Single Multiplier + DSE ✗ ✓ ✓ ✗ ✓

S. Ullah [34] FPGA Two Multipliers ✗ ✗ ✗ ✗ ✗

S. Ullah [36] FPGA Single Multiplier + DSE ✗ ✓ ✓ ✗ ✗

V. Mrazek [21] ASIC Library of Multipliers and adders ✗ ✗ ✗ ✗ ✗

S. Ullah [32] FPGA Library of Multipliers ✗ ✗ ✗ ✗ ✗

V. Mrazek [22] ASIC Library of Multipliers + DSE ✓ ✓ ✓ ✗ ✗

V. Mrazek [20] ASIC DSE ✗ ✓ ✓ ✓ ✓

AppAxO FPGA Library of Multipliers + DSE ✓ ✓ ✓ ✓ ✓

Programming (CGP)-based technique to design unsigned approximate multipliers for Artificial Neural Network (ANN).
This technique utilizes a 2𝐷 array of 2-input logic gates to represent multipliers. The initial population for their
technique consists of 3 accurate and a few approximate unsigned multipliers. In each iteration of the CGP, a new set
of multipliers is generated according to a predefined approximation error 𝜖 . The multipliers’ efficacy is assessed by
deploying these multipliers in an ANN and evaluating the network’s output accuracy after retraining. Depending
upon the network’s output accuracy, the approximation error value 𝜖 can be adjusted for the next iteration of the CGP.
However, this technique does not consider multiplier performance parameters, such as critical path delay and dynamic
power, while generating new approximate multipliers. The output accuracy of the network is the only factor deciding
the generation of an approximate multiplier. Further, the generated approximate multipliers are unsigned, and separate
circuitry for calculating the product sign has been used to deploy ANNs.

2.2 DSE for Approximate Computing

The work presented in [22] generates new approximate unsigned multipliers during the DSE for ANNs. However,
some recent works have also utilized various machine learning techniques for performing application-specific DSE
on existing approximate arithmetic operators. For example, the authors of [20] have used various machine learning
models to perform an efficient DSE for Sobel filter considering approximate adders. In their proposed technique, the
non-feasible approximate adders (from an existing library of approximate adders) are filtered out by computing the
weighted mean error distance and hardware performance metrics of each approximate circuit. The feasible approximate
adders are then used to train machine learning models to estimate the behavioral accuracy and performance parameters
of the Sobel filter accelerator. The authors of [36] have also used Genetic Algorithms (GA)-based multi-objective design
space exploration for Gaussian smoothing filter. Utilizing a set of an accurate and an approximate multipliers, they have
used GA to find a feasible combination of multiplier types with a trade-off between output quality and LUT utilization.
The authors of [29] have also utilized a depth-first search-based methodology to perform architectural space exploration
for designing larger multipliers from 2 × 2 approximate multipliers. Their technique utilizes a weighted average of the
area and power to identify feasible design points.

Applications from different domains exhibit diverse error-tolerance for approximate arithmetic operators and hold
different output accuracy and performance (resources, latency, and power) requirements. However, the various related
state-of-the-art works, summarized in Table 1, do not offer a methodology for generating approximate operators
according to an application’s accuracy and performance constraints. To address the limitations of the state-of-the-art
works, we presentAppAxOmethodology to generate new approximate arithmetic operators according to an application’s
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Fig. 3. Combinational logic block of modern FPGAs: (a) 6-input LUT (b) 4-bit wide carry chain

accuracy and performance constraints. Towards this end, AppAxO utilizes various machine learning models to identify
feasible approximate operators for an input application efficiently. Our proposed methodology is generic and can
generate approximate circuits for any arithmetic operator which utilizes LUTs and carry chains for its implementation.
It should be noted that AppAxO focuses on circuit-level approximations only. Other optimization techniques, such as
exploring the impact of HLS directives and approximations across multiple layers of computation stack, are orthogonal
to our proposed work. These optimization techniques can be integrated with our proposed methodology.

3 MODELING APPROXIMATE ARITHMETIC OPERATORS

AppAxO proposes a systematic methodology for designing approximate arithmetic operators from the corresponding
accurate implementations of the operators. The accurate operators are implemented by utilizing the 6-input LUTs, and
the associate carry chains of FPGAs. For example, Figure 3 describes the structure of a 6-input LUT and a 4-bit wide
carry chain in a Configurable Logic Blocks (CLB) of an FPGA [37]. The 6-input LUT, shown in Figure 3(a), utilizes two
5-input LUTs to implement either two distinct 5-input combinational circuits or a single 6-input combinational circuit.
The functionality of a LUT is defined by providing it a 64-bit INIT value. The outputs of LUTs, 𝑂5 and 𝑂6, are also
used to control the associated carry chain in the CLB, as shown in Figure 3(b). The O5 and O6 signals are used as the
carry-generate and carry-propagate signals, respectively. The CLB also allows bypassing the 𝑂5 signal and providing
an external signal to the carry chain. The carry-out 𝐶𝑜𝑢𝑡 of a carry chain in a CLB can be interfaced with the 𝐶𝑖𝑛 of a
carry chain in another CLB. Each pair of a MUX and an XOR gate in the carry chain represents a carry chain cell. For
example, Figure 3(b) shows a 4-bit wide carry chain with four carry chain cells. In this work, we use accurate multipliers
and adders to present the AppAxO methodology for implementing approximate multipliers and adders. Specifically, we
enable better utilization of the FPGA resources (LUTs and carry chains), resulting in higher packing efficiency (CLB
utilization) than state-of-the-art works [27].

𝑃 = 𝑎𝑁−1𝑏𝑀−12𝑁+𝑀−2 +
𝑁−2∑︁
𝑛=0

𝑀−2∑︁
𝑚=0

𝑎𝑛𝑏𝑚2𝑛+𝑚 + 2𝑁−1
𝑀−2∑︁
𝑚=0

𝑎𝑁−1𝑏𝑚2𝑚 + 2𝑀−1
𝑁−2∑︁
𝑛=0

𝑏𝑀−1𝑎𝑛2𝑛

+ 2𝑁−1 + 2𝑀−1 + 2𝑁+𝑀−1
(1)
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3.1 Accurate Multiplier Design

We have used Baugh-Wooley’s multiplication algorithm [4] in this work to implement a signed multiplier. However,
the proposed methodology for approximation is equally applicable to other multiplication algorithms, such as Booth’s
algorithm used in [36]. Baugh-Wooley’s multiplication algorithm encodes the required sign extension logic in the
generated partial products. Equation 1 describes the multiplication algorithm for A𝑁−𝑏𝑖𝑡 ×B𝑀−𝑏𝑖𝑡 signed multiplication.
To identify the different types of LUTs configurations (INIT values) to encode Equation 1 and present the methodology,
we will consider an example of a 4 × 4 signed multiplier. Figure 4 shows the different partial product terms according to
Equation 1 for a 4 × 4 multiplier. The 1 in the figure shows the addition of 1’s at 2𝑁−1, 2𝑀−1 and 2𝑁+𝑀−1 locations
in the partial products. Utilizing the 6-input LUTs, we can generate and add the consecutive partial product terms
using a single LUT. For example, 𝐴1𝐵0 +𝐴0𝐵1 can be computed by a single LUT and a single cell of the carry chain. To
accommodate the different operations in Figure 4, Figure 5 shows the various types of LUT configurations required to
implement the 4 × 4 multiplier. The outputs of the LUTs, O5 and O6, are provided to the carry chains as carry-generate
and carry-propagate signals, respectively, to generate intermediate results. These intermediate results, along with the
two 1 , are added together to compute the final accurate product. The combinational logic implemented by each LUT
configuration is described in Figure 6. The work in [35] has also used a similar implementation for implementing an
accurate signed multiplier. However, that design utilizes 5 different types of LUT configurations for the multiplier
implementation.

3.2 Approximation Methodology

The proposed approximation methodology is based on disabling LUTs (and the corresponding carry chain cells) in the
accurate implementation to introduce approximations. For an M × N accurate multiplier, utilizing 𝐾 LUTs for partial
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Fig. 6. Configurations of LUTs to implement an accurate multiplier

products generation, we have used a 𝐾-bit string (referred to as input configuration) to address each LUT. A ′0′ at any
location in the 𝐾-bit string represents the disabling of the corresponding LUT. Disabling a LUT means that the LUT
will not contribute to producing the intermediate results. For this purpose, the carry-propagate signal3 (O6) for the
corresponding carry chain cell is fixed to constant ′1′. Since a disabled LUT will not contribute to intermediate results’
value, the carry-generate signal is provided by the external bypass signal, and it is fixed to constant ′0′. These settings
enable the respective carry-chain cell to forward the preceding carry without generating a new one. Further, the output
of the corresponding carry chain cell (output of XOR) gate is truncated to ′0′. These settings allow the synthesis tools
not to use a disabled LUT during the synthesis and implementation process. For example, Figure 7 shows the proposed
approximation methodology for the 4 × 4 multiplier for a 10-bit configuration string ′1011011001′. The LSBs ′11001′

addresses the LUTs in the upper row, and the MSBs ′10110′ identifies LUTs in the bottom row. For all the 0s in the
binary string, the corresponding LUTs have been disabled. For example, for the least significant position in the second
row, the O6 signal is fixed to ′1′; therefore, the respective carry chain cell forwards the carry-in to the next carry chain
cell. A bypass signal with the value ′0′ is used instead of the O5 signal to help the synthesis tool not use the respective
LUT. Further, the respective carry chain cell’s output is also truncated to ′0′ to show that the corresponding cell has
been disabled. Since an accurate 4 × 4 multiplier utilizes 10 LUTs for the partial product generation, therefore, the
proposed approximation methodology supports 210 approximate multipliers. Similarly, for an accurate 8 × 8 multiplier
utilizing 36-LUTs for partial product generation, AppAxO’s proposed approximation methodology provides 236 different
approximate multipliers with different accuracy and implementation performance metrics. It should be noted that the
proposed approximation methodology is automated, generic and scalable. Therefore, it can be utilized for implementing
approximate circuits for any arithmetic operator (of arbitrary bit-width) that utilizes LUTs and carry chains for its
implementation.

3.3 Approximate Adders

The utilization of the carry chains in FPGA logic slices facilitates the implementation of an 𝑁 -bit accurate adder using
only 𝑁 LUTs. Figure 8(a) represents the LUT mapping of an accurate unsigned 4-bit adder. For this purpose, the LUTs
compute the required carry-generate (O5) and carry-propagate (O6) signals from the corresponding two input bits
3Carry-propagate and carry-generate signals are shown in Figure 3.
Manuscript submitted to ACM
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‘1101’.

by performing logical ‘AND’ and ‘XOR’ operations on the input bits, respectively. The LUT configuration Type-IV
performs these operations in Figure 8(a). Further, to accommodate the overflows caused by adding two 𝑁 -bit numbers,
we produce an (𝑁 + 1)-bit output sum as shown in the figure. Utilizing the proposed AppAxO methodology, we use an
𝑁 -bit string to address each LUT in the accurate implementation. A ′0′ value at any position in the 𝑁 -bit string (input
configuration) denotes the disabling of the corresponding LUT and truncating the corresponding output generated by
the respective carry chain cell to ′0′. For instance, Figure 8(b) represents an approximate 4-bit adder implementation
for input configuration ′1101′. As discussed previously, to disable the LUT at the second least significant location, we
utilize the external bypass signal to provide a ′0′ as the carry-generate signal, and O6 provides a constant ′1′ as the
carry-propagate signal. For an 𝑁 -bit accurate adder, AppAxO provides 2𝑁 approximate adders with different accuracy
and implementation performance metrics.

4 DSE FOR FPGA-BASED APPROXIMATE OPERATORS SYNTHESIS

4.1 Problem Statement

We can represent the implementation of any arbitrary arithmetic operator by the ordered tupleO𝑖 (𝑙0, 𝑙1, ..., 𝑙𝑙 , ..., 𝑙𝐿−1),∀𝑙𝑙 ∈
{0, 1}. The term 𝑙𝑙 represents whether the LUT corresponding to the operator’s accurate implementation is being used
or not and 𝐿 represents the total number of LUTs of the accurate implementation that may be removed to implement
approximation. So, the accurate implementation can be represented as O𝐴𝑐 (1, 1, ..., 1). Similarly, O = {O𝑖 } represents the
set of all possible implementations of the operator. We can abstract an arbitrary application’s behavior by a function S.
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Fig. 9. Proposed design space exploration methods for AppAxO

So the output of the application for a set of inputs can be abstracted as shown in Equation 2. The term 𝐸𝑟𝑟O𝑖 represents
the error in the applications behavior as a result of using an approximate operator O𝑖 compared to using the accurate
operator O𝐴𝑐 .

𝑂𝑢𝑡O𝑖 = S(O𝑖 , 𝐼𝑛𝑝𝑢𝑡𝑠)

𝑂𝑢𝑡O𝐴𝑐 = S(O𝐴𝑐 , 𝐼𝑛𝑝𝑢𝑡𝑠)

𝐸𝑟𝑟O𝑖 = 𝑂𝑢𝑡O𝐴𝑐 −𝑂𝑢𝑡O𝑖

(2)

Similarly, the accelerator’s hardware performance can be abstracted as a set of functions as shown in Equation 3. Given
this framework, the resulting optimization objective can be expressed as shown in Equation 4. Since we are concerned
with multi-objective optimization, we obtain a set of non-dominated design points, O𝑖 , that form the Pareto front.
Therefore, the solution can be represented as a set PF O = {O0,O1, ...O𝑃−1} representing 𝑃 number of operator design
configurations in the Pareto front.

𝑃𝑜𝑤𝑒𝑟 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 : WO𝑖 = H𝑊 (O𝑖 , 𝐼𝑛𝑝𝑢𝑡𝑠)

𝐿𝑈𝑇 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 : RO𝑖 = H𝑅 (O𝑖 )

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑃𝑎𝑡ℎ 𝐷𝑒𝑙𝑎𝑦 : CO𝑖 = H𝐶 (O𝑖 )

𝑃𝐷𝑃𝐿𝑈𝑇O𝑖 = WO𝑖 × RO𝑖 × CO𝑖

(3)

minimize
O𝑖 ∈O

(𝐸𝑟𝑟O𝑖 , 𝑃𝐷𝑃𝐿𝑈𝑇O𝑖 ) (4)

The proposed approximation methodology presents an opportunity for the designers to implement operators with
improved power, performance and area (PPA) if the application can tolerate the corresponding error profile of the
operator. As described in the previous section, for an 𝑁 -bit adder occupying only 𝑁 LUTs, AppAxO provides 2𝑁 different
approximate adders. For example, for 4-bit, 8-bit and 12-bit adders, AppAxO provides 24, 28, and 212 approximate adder
designs, respectively. Therefore, all approximate adders can be synthesized and implemented for an application due to
adders’ comparatively smaller design space. However, it can be noted that the proposed approximation methodology
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presents the designer with an exponentially increasing (with the bit-width of multiplier) number of approximate
multiplier choices to implement. For instance, the possible number of input configurations of the approximate multiplier
increases from 1024 to nearly 64 billion as we consider 8-bit multipliers instead of 4-bits. In order to search for
configurations that are appropriate for a given application, the designer can deploy a random search or generate
configurations from intuition. However, such approaches do not provide a generalized methodology for designing
application-specific approximate operators. Hence, to aid the designer in implementing the appropriate approximate
multiplier design, we present two DSE methods—AppAxO_MBO and AppAxO_ML—as shown in Figure 9. Both of the
proposed methods use the automated modeling and estimation methodology described in the previous section.

4.2 DSE using Bayesian Optimization

The left half of Figure 9 shows the various stages involved in Multi-objective Bayesian Optimization (MBO)-based
approach to finding the set of Pareto-front approximate operators — both for stand-alone operator designs as well as the
operator being used for any specific application. Contrary to randomized algorithm-based optimization methods such
as Simulated Annealing and GA, Bayesian optimization allows a more directed search that is particularly useful in case
of problems involving costly fitness function evaluations. As shown in Figure 9, the process involves three main stages.
Firstly, few randomly sampled initial configurations of approximate operators are generated. The Objective Function
evaluation involves true characterization of the corresponding operator, and/or the accelerator and the behavioral
accuracy of the application using the operator to obtain the design objectives for the initial samples. So, the Objective
function can be viewed as the equivalent of S, H𝑊 , H𝑅 and H𝐶 from Equation 2 and Equation 3. This set of initial
tuples: input configuration → design fitness, forms the training data for the second stage, where the Surrogate Function
generates a probabilistic prediction model. The probabilistic models are approximations of S,H𝑊 ,H𝑅 andH𝐶 and
their estimation accuracy should ideally improve with each iteration. In the third stage, the prediction model(s) is used
by the Acquisition Function to generate a set of candidate input configurations for the next iteration. As shown by the
dotted lines in Figure 9, each iteration involves these three stages with a fixed number of new input configurations
undergoing true characterization in each iteration.

It must be noted that MBO is an increasingly frequently used search method. With AppAxO_MBO we present a multi-
objective optimization method that uses the input configurations of the approximate operator as the design variables for
a bi-objective optimization problem. We use separate probabilistic models for each design objective—one that quantifies
the application/operator’s behavioral accuracy and the second quantifying the PPA design intent. The implementation
of the acquisition function involved generating a set of random input configurations, using the surrogate function to
predict their fitness, then ranking them according to their expected contribution to the Pareto-front hypervolume and
selecting a fixed number of top-ranked samples for the next iteration.

4.3 MOEA-based optimization

In addition to AppAxO_MBO, we present a Multi-Objective Evolutionary Algorithms (MOEA)-based approach to the
DSE problem of AppAxO. Specifically, we use GA for the bi-objective optimization problem. MOEA-based optimization
methods usually rely on low-cost fitness function evaluation and hence, a naive approach to implementing GA would
limit the usability in AppAxO to small designs with low synthesis time-cost. To this end, as shown in the right half
of Figure 9, we present AppAxO_ML, an ML-based DSE approach. We use an initial set of random samples to train
multiple ML models for predicting PPA and accuracy metrics of an application. The ML-based models are in turn used
during GA-based search to predict the Pareto-front design points, the Predicted Pareto Front (PPF). The collection of
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PPFs from each ML model are then evaluated and filtered to provide the Evaluated Pareto Front (EPF). The details of
the ML models used in AppAxO_ML are described in the next section. The encoding for GA involves:

• Individual: Each input configuration for the approximate multiplier forms an individual in the population.
• Crossover : We use two-point crossover for exchanging the configuration data of two randomly selected approxi-
mate multiplier configurations.

• Mutation: Single-point mutation was used for randomly altering the configuration of a randomly selected
configuration.

• Selection: We use a tournament selection method for choosing the configurations to be evaluated in the next
generation. We use a tournament size of 3 while selecting the best among those configurations for the next
generation.

4.4 ML for DSE

The true evaluation of the application’s behavioral accuracy (S) and the accelerator’s PPA metrics (H𝑊 , H𝑅 , and
H𝐶 ) can be a bottleneck in the randomized algorithms-based DSE methods for large design spaces. For instance, the
synthesis of the 8-bit accelerator for 2D-convolution of an image of size 128 × 128 can take up to 20 minutes on a
standard computer4. To this end, AppAxO utilizes ML-based prediction in the fitness evaluation of AppAxO_ML. In
this technique, we use the configuration vector that defines the position of the LUTs used in the approximate multiplier
as the input to the ML models. We use a separate model for each behavioral accuracy and PPA metric. The ML models
are then used to predict the accuracy, power, CPD, and LUT utilization for any arbitrary configuration. To evaluate the
efficacy of our models, we have used the fidelity metric. The fidelity metric denotes the relationship (=, <, >) between the
input configurations and their corresponding actual and predicted output values. The lower the Fidelity Error (FE), the
higher the correspondence between the predicted metric value the actual value. To further assess our models’ efficiency,
we also used the Mean Square Error (MSE) and Mean Absolute Error (MAE) of the models’ predictions. Equation 5
describe the computation of MSE and MAE values, respectively.

𝑀𝑆𝐸 = 1/𝑁 (
𝑁∑︁
𝑖=1

(𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑡𝑟𝑢𝑒 )2)

𝑀𝐴𝐸 = 1/𝑁 (
𝑁∑︁
𝑖=1

|𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑡𝑟𝑢𝑒 |)

(5)

The models listed below were used with their most widely used configurations. For training and testing our models,
we have used four datasets5 of 2060 configurations each. Each configuration shows the impact of a unique approximate
multiplier6 on the output accuracy and the corresponding performance metrics. Our model employs randomly chosen
80% configurations of the input dataset for training the model. The remaining 20% of the input dataset is used for testing
the trained model.

(1) Random Forest Regression (RFR): It is an ensemble learning-based supervised algorithm. The ensemble technique
utilizes multiple ML models for predictions. These predictions are then combined to make more accurate predictions

4For 8-bit arithmetic, our methodology can provide up to 236 approximate signed multipliers.
5One for multipliers and one for each application referred to in Figure 1
68 × 8 multipliers use a 36-bit string to represent LUTs for partial products generation as described in Section 3.2.
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Table 2. The ML models reporting the minimum error in terms of Mean Square Error (MSE), Mean Absolute Error (MAE) and Fidelity
Error (in %) for the three applications. ML models used: Random Forest Regression (RFR), Support Vector Regression (SVR), Stochastic
Gradient Descent (SGD), Gradient Boosting Regression (GBR), Decision Tree Regression (DTR), Multilayer Perceptron (MLP)

Metric Models with minimum MSE
(Train, Test)

Models with minimum MAE
(Train, Test)

Models with minimum
Fidelity Error (Train, Test)

Application ECG MNIST GS ECG MNIST GS ECG MNIST GS
App-specific
Accuracy RFR, RFR RFR, MLP RFR, MLP RFR, RFR RFR, RFR RFR, GBR RFR, RFR RFR, RFR RFR, GBR

CPD
(in nS) RFR, RFR RFR, RFR RFR, RFR RFR, RFR RFR, RFR RFR, GBR RFR, DTR RFR, GBR RFR, SGD

Power
(in uW) RFR, GBR RFR, GBR SGD, SGD RFR, GBR RFR, DTR SGD, SGD RFR, GBR SVR, RFR RFR, SGD

LUT
Utilization SGD, MLP SGD, SGD SGD, SGD MLP, MLP SGD, SGD SGD, SGD RFR, MLP RFR, SGD RFR, SGD

than a single ML model. It operates by constructing a multitude of decision trees at training time [18]. Each tree
draws a random sample from the original data set when generating its splits, adding an additional randomness
element that prevents overfitting of the model.

(2) Support Vector Regression (SVR): Compared to a simple linear regression, SVR allows the specification of an
acceptable error margin and tolerance of a model for the specified error margin [31]. However, SVR requires specific
calibrations of different features, which makes it less robust.

(3) Stochastic Gradient Descent (SGD): It is an optimization technique and is generally used in sparse ML problems.
The gradient of the loss is estimated (each sample at a time), and the model is updated accordingly with a decreasing
learning rate [6]. It is, however, very sensitive to feature scaling and requires tuning of several hyperparameters.

(4) Gradient Boosting Regression (GBR): In this technique, a predictive model is produced from an ensemble of weak
predictive models [11]. It is similar to RFR; however, the individual predictive models are combined at the start to
produce an output, whereas it is done at the end for RFR.

(5) Decision Tree Regression (DTR): These are a series of sequential steps designed to solve a problem and provide
probabilities, costs, or other consequences of making a particular decision. Smaller subsets are broken down from a
dataset while the associated decision tree is incrementally developed at the same time [3].

(6) Multilayer Perceptron (MLP): It is a class of feedforward ANN and uses backpropagation for training. MLP learns a
function between the input features and the output by using intermediate hidden layers [24].

The results of ML models giving the minimum error for each of the metrics across different applications have been
tabulated in Table 2. The processing time needed for the training and the average inference time for each configuration
is shown in Table 3. The inference time is averaged over the total time consumed in performing inference for the
complete dataset.

5 EXPERIMENTS AND RESULTS

5.1 Experiment Setup

We have implemented all presented multipliers in VHDL and synthesized them for the 7𝑉𝑋330𝑇 device of the Virtex-7
family (unless stated otherwise) using Xilinx Vivado 19.2. Our methodology implements each operator—adder and
multiplier—designmultiple times to obtain precise critical path delay and dynamic power consumption values. According
to the previous iteration’s critical path-slack, our tool flowmodifies the new critical path delay constraint in each iteration

Manuscript submitted to ACM



14 Ullah and Sahoo, et al.

Table 3. The execution time for training and inference on various ML models for different target metrics. All the timing values are
reported in milliseconds. The inference timing values are reported for a single data point averaged over the inference of the whole
training set (2060 points). ML models used: Random Forest Regression (RFR), Support Vector Regression (SVR), Stochastic Gradient
Descent (SGD), Gradient Boosting Regression (GBR), Multilayer Perceptron (MLP)

Application Target Metric
for ML Model

GBR MLP RFR SGD SVR
TRAIN INFER TRAIN INFER TRAIN INFER TRAIN INFER TRAIN INFER

ECG

Accuracy 2023.721 0.377 242.924 0.175 698.487 6.05 4.185 0.097 14.323 0.103
CPD 2060.872 0.403 708.342 0.244 751.05 7.214 6.456 0.097 225.132 0.179
Power 2131.917 1.215 4505.54 0.179 1010.047 8.782 24.82 0.096 241.39 0.219
LUTs 2154.619 0.403 3673.557 0.179 678.572 6.056 34.46 0.105 245.992 0.237

GS

Accuracy 2004.419 0.334 2857.172 0.177 706.297 5.789 12.686 0.096 262.942 0.186
CPD 2331.065 0.422 2614.81 0.186 706.558 6.391 33.315 0.128 221.338 0.19
Power 2259.041 0.463 4592.353 0.197 712.243 6.289 55.562 0.097 250.689 0.248
LUTs 2130.301 0.469 5095.321 0.198 708.136 5.961 40.898 0.105 237.082 0.219

MNIST

Accuracy 2033.754 0.42 4296.751 0.171 692.762 5.878 36.383 0.093 264.139 0.187
CPD 2127.168 0.588 2581.044 0.197 702.273 6.042 29.538 0.099 274.11 0.203
Power 2397.082 0.51 5140.923 0.186 925.009 7.447 116.668 0.121 272.108 0.22
LUTs 1993.787 0.342 4202.479 0.174 762.154 5.865 46.64 0.094 243.259 0.196

MULT 8 X 8

Average Absolute
Error 2158.514 0.329 4462.492 0.182 792.243 6.247 34.367 0.103 235.551 0.201

Average Absolute
Relative Error 2014.313 0.343 3820.165 0.169 689.845 6.253 31.939 0.098 258.572 0.215

CPD 2883.947 0.393 889.988 0.176 769.147 8.08 28.563 0.215 205.164 0.25
Power 2038.58 0.456 3105.816 0.178 693.654 5.665 9.651 0.1 232.453 0.2
LUTs 2185.196 0.51 4232.282 0.207 685.203 6.134 10.355 0.097 262.186 0.197

of the implementation. Using this characterization method, the accuracy and PPA estimation for each approximate 8× 8
multiplier configuration consumes nearly 3.55 minutes of processing time. The accelerators for the applications were
implemented using different high-level languages. For the calculation of the dynamic power of all implementations,
Vivado Simulator and Power Analyzer tools have been utilized. All applications have been implemented for Xilinx
Zynq UltraScale+ MPSoC (xczu3eg-sbva484-1-e device). All behavioral estimations were implemented in Python. The
ML-based modeling, and the MBO-based DSE methodology were implemented in Python using multiple packages,
including scikit-learn, TensorFlow [1], PyGMO [5]. All experiments were conducted on an HPC server with a single
AMD EPICTM processor with 24 cores and two PCIe Gen4 NVIDIA A100 Tensor-Core-GPUs, with 512GB of DDR4-
3200MHz main memory. In our current work, we focus on hardware performance as a result of using approximate
operators, and the analysis and mitigation of precision scaling-induced errors for any application are beyond the scope
of this work. The following applications were used in the experiments for demonstrating the effectiveness of AppAxO. It
must be noted that we have used homogeneous accelerator designs for each application. Therefore, all the approximate
multiplier designs used in any arbitrary accelerator use similar LUT configurations.

5.1.1 ECG Peak Detection. To represent the set of applications using one-dimensional convolution, we use the peak
detection of ECG signal on Physionet’s single-lead ECG dataset [8] using Pan–Tompkins algorithm [25] as the test
application. Pan-Tompkins algorithm consists of 5 stages – Low Pass Filtering, High Pass Filtering, Derivative Filtering,

Squaring, Moving Window and Peak Finder. For the current work, we explored the effect of approximate multipliers
in the low pass filter. We use accuracy, evaluated as the ratio of the True Positives and the sum of True Positives, False
Negatives and False Positives of the detected peaks, as the relevant behavioral metric for our current work. The behavioral
estimation for a single test case of ECG peak detection using 8 × 8 approximate multiplier configuration expends
Manuscript submitted to ACM



AppAxO: Designing Application-specific Approximate Operators for FPGA-based Embedded Systems 15

an average of 1.5 minutes of processing time. Similarly, the accelerator synthesis and implementation consume 1.73
minutes of processing time.

5.1.2 Gaussian Smoothing. We use Gaussian Smoothing (GS), a frequently used benchmark for representing the set of
2D convolution-based applications. In AppAxO, we implemented a 5 × 5 kernel, and the accelerator, implemented using
Vivado HLS, uses a line buffer, along with 25 multipliers. We use the average reduction in the Peak Signal-to-Noise
Ratio (PSNR) as the behavioral minimization objective. It represents the negative of the PSNR improvement using
GS with an approximate multiplier over 45 images. The behavioral estimation for a single test case of GS using 8 × 8
approximate multiplier configuration expends an average of 3.35 minutes of processing time. Similarly, the accelerator
synthesis and implementation consume 5.06 minutes of processing time.

5.1.3 MNIST digit Recognition. Image classification is a commonly used application for evaluating the efficacy of
various approximation techniques. We have used a lightweight MLP implemented in Python for the classification of the
MNIST Digit dataset [2, 9]. The MLP consists of two fully connected hidden layers having 100 and 32 nodes, respectively.
For this work, we have evaluated the efficacy of the various approximate multipliers by deploying them in the output
layer of the network for inference using 10, 000 test images. For this purpose, we have quantized the floating-point
trained weights and input activations of the last layer according to the multiplier size under consideration. To compute
the application’s performance metrics, we have implemented the last layer in Vivado HLS and evaluated for different
approximate multipliers. We shall refer to this application as MNIST in the discussion of the experiment results. The
behavioral estimation for a single test-case of MNIST using 8 × 8 approximate multiplier configuration expends an
average of 0.78 minutes of processing time. Similarly, the accelerator synthesis and implementation consumes 2.52
minutes processing time.

The approximation-aware DSE for both operator-level and application-level design involves finding multiple design
points that provide varying levels of behavioral (accuracy) and PPA trade-offs. For our current work, we use application-
specific accuracy metric and the product of PDP and LUT utilization as the two objectives. Consequently, the DSE
runs for the experiments involve multi-objective optimization (with two objectives). Therefore, we use hypervolume
of the Pareto-front and the number of non-dominated design points, two commonly used metrics for comparing
the results from different multi-objective optimization runs. The hypervolume indicator measures the significance
of the non-dominated design points by computing the volume of the dominated portion of the objective space. For
a two-objective problem, the hypervolume corresponds to the area between the non-dominated Pareto-front and a
reference point. For our current work, we aim at minimizing both the approximation induced error metric and PDP x
LUT. Hence, the reference point comprises of the maximum of both the metrics across all Pareto-front points under
consideration.

5.2 Accuracy-Performance Analysis of Approximate Adders

For an adder utilizing 𝑁 LUTs and corresponding carry chain elements, our proposed approximation methodology
generates 2𝑁 approximate adder designs. The adder having input configuration 2𝑁 − 1 utilizes all LUTs, and it is an
accurate adder. For example, for a 4−bit and 12−bit adder, our methodology generates 24 and 212 different approximate
adders, respectively. For example, Figure 10 compares the hardware performance metrics and accuracy of the AppAxO-
generated fifteen 4-bit approximate adders. Please note that we do not synthesize hardware for configuration ′0000′ (all
LUTs disabled). For assessing the performance of the designs, we have used the PDP × LUT metric to incorporate all
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Fig. 10. Accuracy and performance comparison of AppAxO-generated 4-bit unsigned adders. The power and CPD are in 𝜇𝑊 and 𝑛𝑠 ,
respectively.

design metrics. A smaller value of 𝑃𝐷𝑃 × 𝐿𝑈𝑇 represents a circuit with better performance. Similarly, we have used
three different error metrics for accuracy evaluation of the individual adders, i.e., Average Absolute Error, Average
Absolute Relative Error, and Error Probability. Equation 6, Equation 7, and Equation 8 define these error metrics,
respectively. Figure 10(a) shows that a total of 5 design configurations (‘1111′, ‘1110′, ‘1101′, ‘1100′, and ‘1000′) lie
on the Pareto front. The non-dominated adder configuration ‘1111′ utilizes all four LUTs and is an accurate adder.
Moreover, all non-dominated design points have the most significant LUT enabled. An interesting design point is the
adder configuration ‘1000′, which utilizes only a single LUT. Figure 10(b) compares the average absolute relative error
and 𝑃𝐷𝑃 × 𝐿𝑈𝑇 of the fifteen design points. The analysis returns the same five non-dominated designs as described in
Figure 10(a). The analysis in Figure 10(c) shows a total of 12 non-dominated design points. These points also include
four non-dominated design points from Figure 10(a).

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =

∑
∀𝑖𝑛𝑝𝑢𝑡𝑠 |𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑟𝑒𝑠𝑢𝑙𝑡 −𝐴𝑝𝑝𝑟𝑜𝑥𝑟𝑒𝑠𝑢𝑙𝑡 |

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑖𝑛𝑝𝑢𝑡𝑠
(6)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 =

∑
∀𝑖𝑛𝑝𝑢𝑡𝑠 |𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑟𝑒𝑠𝑢𝑙𝑡−𝐴𝑝𝑝𝑟𝑜𝑥𝑟𝑒𝑠𝑢𝑙𝑡

𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑟𝑒𝑠𝑢𝑙𝑡
|

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑖𝑛𝑝𝑢𝑡𝑠
(7)

𝐸𝑟𝑟𝑜𝑟 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑖𝑛𝑝𝑢𝑡𝑠 𝑓 𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝐴𝑝𝑝𝑟𝑜𝑥𝑟𝑒𝑠𝑢𝑙𝑡 ≠ 𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑟𝑒𝑠𝑢𝑙𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑖𝑛𝑝𝑢𝑡𝑠
× 100 (8)

Figure 11 further elaborates the trade-offs between accuracy and individual performance metrics of the fifteen 4-bit
approximate adders. Figure 11(a) has four non-dominated design points with 4, 3, 2, and 1 utilized LUT(s), respectively.
These design points correspond to configurations ′1111′,′ 1110′,′ 1100′, and ′1000′ and they produce average absolute
error values of 0, 1, 3, and 7, respectively. All of these designs are also part of the non-dominated design points in
Figure 10(a). Figure 11(b) shows six non-dominated design points, including the configurations ′1111′,′ 1110′, and
′1100′. Similarly, the non-dominated design points in Figure 11(c) also include configurations ′1111′,′ 1110′,′ 1100′, and
′1000′. The non-dominated design point ′1101′ in Figure 10(a) is also a non-dominated design point in the error-power
analysis in Figure 11(c).
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Fig. 11. Comparing hardware performance and Average absolute error of AppAxO-generated 4-bit unsigned adders. (a) LUT utilization
(b) Critical path delay (in 𝑛𝑠) (c) Power dissipation (in 𝜇𝑊 )

5.3 Accuracy-Performance Analysis of Approximate Multipliers

For a multiplier utilizing 𝐾 LUTs for partial product generation, our proposed approximation methodology generates
2𝐾 different approximate multipliers. The multiplier having input configuration 2𝐾 − 1 utilizes all LUTs, and it is an
accurate multiplier . For example, for a 4 × 4 and an 8 × 8 multiplier, our methodology generates 210 and 236 different
approximate multipliers, respectively.

5.3.1 Multiplier-level Analysis: To evaluate the efficacy of the generated multipliers, Figure 12 presents an accuracy-
performance analysis of all the 4 × 4 generated multipliers. For the analysis, we have excluded multiplier configuration
′0000000000′, which disables all the LUTs in the partial product generation stage7. For evaluating the performance of
the multipliers, we have used the PDP × LUT metric. Figure 12(a) analyzes the average absolute error and PDP × LUT
metric of all 1023 multipliers. The analysis shows that a total of 38 multiplier designs lie on the Pareto front. The
non-dominated multiplier configuration ′1023′ (binary value ′1111111111′) utilizes all ten LUTs for partial products
generation and produces 0 average absolute error. Most of the non-dominated design points have LUTs enabled at
most significant locations. An interesting observation is the non-dominated multiplier designs that enable only a single
LUT for partial product generation. For example, non-dominated multiplier designs with configurations 2, 4, 8, 1, and
512 enable only a single LUT for their partial products. Designs 1 and 512 have the binary configuration ′0000000001′

and ′1000000000′ respectively. Design 1 utilizes only the least significant LUT in the first partial product row, and
design 512 deploys only the most significant LUT in the second row of partial products. Design 512 has a lower average
absolute error and higher PDP × LUT than design 1.

Figure 12(b) presents the Pareto analysis of the 1023 design points for PDP× LUT and average absolute relative error
metrics. Compared to the non-dominated designs in Figure 12(a), average absolute relative error introduces five new
multipliers to the set of Pareto designs. Similarly, the comparison in Figure 12(c) shows a total of 20 non-dominated
multipliers out of 1023 designs. These points also include 11 new multiplier designs, which were dominated in the other
two plots. However, the generated approximate multipliers’ application-specific efficacy cannot be determined from the
accuracy-performance analysis of individual multipliers. For this purpose, either the generated approximate multipliers

7The mapping of multiplier configuration (a binary string) to LUTs is described in Figure 7.
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Fig. 12. Accuracy-performance analysis of AppAxO generated 4 × 4 approximate multipliers. The power and CPD are in 𝜇𝑊 and 𝑛𝑠 ,
respectively.
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Fig. 13. Comparing hardware performance and Average absolute error of AppAxO-generated 4 × 4 signed multipliers. (a) LUT
utilization (b) Critical path delay (in 𝑛𝑠) (c) Power dissipation (in 𝜇𝑊 )

should be exhaustively utilized in an application’s implementation, or some machine learning-based intelligent models
should be used to estimate the potential efficiency of the various multipliers.

Figure 13 further elaborates the trade-offs between accuracy and individual performance metrics of the 1023 4 × 4
approximate multipliers. These results also include the implementation of a binary adder to add the generated partial
products to compute the final product. For example, the non-dominated design configuration ′1111111111′ in Figure 13
employs 10 LUTs for partial products generation and 6 LUTs for the binary adder to utilize a total of 16 LUTs to
compute the final product. The accuracy-performance analysis in Figure 13 reveals that the non-dominated multiplier
configurations producing low average absolute error values have most of the LUTs enabled in the significant partial
product row. For example, multiplier configuration ′1111111111′ is an accurate multiplier (with 0 average absolute error)
is a non-dominated design point in all three sub-figures in Figure 13. Similarly, multiplier configuration ′1111111110′—
least significant LUT in the least significant partial product row disabled—is the non-dominate design point having the
second-lowest average absolute error value (0.25) in Figure 13(a) and Figure 13(b). The non-dominated design point
having the second-lowest average absolute error in Figure 13(c) is ′1111011111′—least significant LUT in the significant
Manuscript submitted to ACM
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Fig. 14. Accuracy-performance analysis of approximate 4 × 4 multipliers in three different applications. The power and CPD are in
𝜇𝑊 and 𝑛𝑠 , respectively.

partial product row disabled. Both of these configurations, ′1111111110′ and ′1111011111′, are also non-dominated
design points in Figure 12(a).

5.3.2 Application-level Analysis of Approximate 4× 4Multipliers: Figure 14 shows the utilization of all 4× 4 approximate
multipliers8 in three different applications. The output accuracy of each application has been computed by utilizing
the multipliers’ behavioral models in the high-level implementation of each application. Similarly, the performance
metric (PDP × LUT) has been computed by utilizing the multipliers’ VHDL implementation in the accelerator of each
application. Figure 14(a) shows the accuracy-performance analysis of the ECG application. A total of 12 different
approximate multipliers-based designs are non-dominated design points with different accuracy and performance
parameters. Six designs among these non-dominated designs utilize multipliers which were among dominated points in
Figure 12. It is interesting to note that the accurate multiplier-based accelerator is not among the non-dominated design
points. The ECG application’s inherent error-tolerance significantly masks the approximations-generated errors and
removes the accurate multiplier-based design from the set of Pareto points. The approximate multiplier with binary
configuration ′1111011111′ (decimal value 1007) produces the highest output accuracy. Moreover, the application-specific
accuracy-performance analysis can reveal highly efficient multipliers for that application. For example, approximate
multipliers with configuration values 16, 128, and 512 utilize a single LUT for partial product generation; however, their
corresponding accelerators are among non-dominated design points. Figure 14(b) and Figure 14(c) show the utilization
of the approximate multipliers for the Gaussian Smoothing filter and MNIST dataset classification MLP respectively.
For both applications, a total of 13 different approximate multipliers-based designs lie on the Pareto fronts. Further,
for both applications, the accurate multiplier-based designs are not among the non-dominated accelerator designs.
Similar to the ECG application’s error-resilience, the Gaussian Smoothing Filter and the MNIST classification expose
multipliers that utilize only a single LUT for partial product generation. For example, for the Gaussian Smoothing
filter, approximate multipliers with configuration values 1, 4, and 16 generate non-dominated design points. These
application-specific accuracy-performance analyses augment the need for designing approximate multipliers according
to application accuracy-performance requirements. We have also evaluated the efficacy of the AppAxO methodology
for 8 × 8 multipliers using various ML models. These results are described in the following subsections.

8Excluding multiplier configuration with binary value ′0000000000′
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Fig. 15. Comparison of DSE results from AppAxO_MBO against that from initial random samples.

5.4 AppAxO_MBO

To show the effectiveness of the MBO-based exploration, we compared the Pareto-front obtained by AppAxO_MBO
starting with 100 random samples to that obtained by the initial random samples in the search for 8 × 8 approximate
multipliers. The DSE run configuration includes – 200 iterations with 1000 acquisition samples and 10 true evaluations
per iteration. It must be noted that the true evaluations include actual synthesis and implementation of the multipliers
accelerators along with Python-based behavioral estimation for each configuration. As a result, the processing time for
each DSE run consumed nearly a week of processing time. Figure 15 shows the results in the search for stand-alone
multipliers and that for the 3 test applications. The bar plots in each sub-figure show the comparison of the hypervolume
and the labels on top of each bar shows the number of points in the corresponding Pareto-fronts. As seen on the
figure, the MBO-based DSE resulted in improved hypervolume for all cases, with maximum benefits observed for ECG.
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Fig. 16. Fidelity Error in the ML models for different performance metrics of 8 × 8 multipliers. (a) Average Absolute Relative Error (b)
Average Absolute Error (c) CPD (in nS) (d) Power (in uW) (e) LUT Utilization

However, the MBO-based search results in a large number of points being synthesized, many of which are not on the
Pareto-front.

5.5 ML Modeling

We see the performance of the ML models described in Section 4.4 on the following metrics:

(1) 8 x 8 Multiplier Performance Metrics (Figure 16) - We see that test FE for average absolute relative error metric
is lowest for MLP at 0.91%, followed by GBR and RFR. The test MSE and MAE are also lowest for MLP regressor,
with each being 0.52 and 0.50, respectively. For CPD, we see the test-FE scores are lowest for SGD at 16.41%, with
test-MSE of 0.017 and test-MAE of 0.10 being the lowest for SVR. For Power and LUTs estimations, MLP gives a
good performance with test-FE of 2.95%, test MSE of 753.81, and test-MAE of 21.99 for power values. SGD offers the
best test-FE of 2.62%, and SVR provides a good test-MSE of 0.81 and test-MAE of 0.71 for LUTs.

(2) ECG Performance Metrics - We see that test Fidelity Error of Accuracy is the lowest for RFR at 3.86%. The test-MSE
and test-MAE are also lowest for RFR, with each of them being 0.00041 and 0.01, respectively. For CPD, we see the
test-FE is lowest for DTR at 23.23%, test-MSE lowest for RFR of 0.02, and test-MAE for RFR of 0.13. GBR gives low
test-FE for Power at 4.56%. The lowest test-MSE of 1585410.54, and the lowest test-MAE of 922.17, are observed for
GBR. For LUTs, a good performance is observed with MLP with test-FE of 2.85%, test-MSE as 105.93, and 8.21 as
test-MAE.

(3) MNIST Performance Metrics - We see that test Fidelity Error of Accuracy is the lowest for RFR at 6.30%. The
test-MSE is lowest for MLP at 2.53, and test-MAE with RFR at 0.71 is the lowest. For CPD, we see the test-FE is
lowest for GBR at 20.31%, and test-MSE and test-MAE are lowest for RFR at 0.45 and 0.52, respectively. RFR gives
low test-FE for Power at 17.75%. The lowest test-MSE of 12.30 is observed for GBR, and the lowest test-MAE of
2.23 is observed for DTR. For LUTs, a good performance is observed with SGD with test-FE of 2.89%, test-MSE as
1415.29, and 29.9 as test-MAE.

(4) GS Performance Metrics - We see that test FE of Accuracy is the lowest for GBR at 2.94%. The test-MSE is lowest
for MLP at 0.25, and test-MAE is lowest for GBR at 0.34. For CPD, we see the test-FE is lowest for SGD at 17.40%
with test-MSE of 0.04 with RFR, and test-MAE is lowest for GBR at 0.15. SGD gives low test-FE for Power at 3.17%.
The lowest test-MSE of 83177.84 and the lowest test-MAE of 230.61 are observed for SGD. For LUTs, the best
performance is observed with SGD with test-FE of 2.89% test-MSE as 601.65 and 19.70 as test-MAE.
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Table 4. Processing time (in minutes and seconds) for running GA-based DSE using the ML models for the fitness estimation

Application PPA Behavioral GBR MLP RFR SELECT SGD SVR
ECG PDP x LUT 1 - Accuracy 3m18s 1m27s 55m12s 14m51s 0m43s 1m31s

MNIST PDP x LUT 100 - Accuracy 3m47s 1m29s 54m23s 27m16s 0m43s 1m42s

GS PDP x LUT Average PSNR
Reduction 3m22s 1m27s 54m13s 1m24s 0m43s 1m42s

MULT 8 × 8 PDP x LUT Average Absolute
Error 6m34s 2m19s 94m34s 15m48s 0m56s 2m39s

MULT 8 × 8 PDP x LUT Average Absolute
Relative Error 5m51s 2m19s 96m6s 15m57s 0m58s 2m41s

Table 5. DSE-level evaluation of ML models. The number of design points in the Predicted Pareto Front (PPF) and Evaluated Pareto
Front (EPF) are reported for the DSE runs for six experiments.

Application Objectives GBR MLP RFR SGD SVR SELECT
PPA Behavioraal PPF EPF PPF EPF PPF EPF PPF EPF PPF EPF PPF EPF

ECG PDP x LUT 1 - Accuracy 30 11 34 10 19 10 87 15 37 13 27 10
MNIST PDP x LUT 100 - Accuracy 39 13 15 9 31 11 43 10 28 8 17 8

GS PDP x LUT Average PSNR
Reduction 32 10 34 13 39 13 14 10 49 9 17 11

MULT 8 × 8 PDP x LUT Average Absolute
Relative Error 25 17 29 20 35 22 22 13 32 16 27 21

MULT 8 × 8 PDP x LUT Average Absolute
Error 28 21 7 4 46 28 30 20 30 15 27 20

Based on the above discussion, it can be concluded that different ML models provide varying levels of accuracy in
predicting the performance metrics of an application. Further, as shown in Table 3, the inference time for each model
can vary across a wide range. The designer can make a decision, regarding the choice of ML model to use for DSE,
based on these two factors – accuracy and processing (inference) time. As we shall show next, collecting the results
from DSE runs with varying types of ML models provides the best Pareto-front for each application. However, in a
time-constrained scenario, using a selection of ML models (based on their fidelity error performance) can provide
results that are close to the results collected from multiple DSE runs using varying models.

5.6 DSE using ML Models

The ML models described in the earlier section were used in the GA-based DSE for 8 × 8 approximate multipliers. The
experiments included six sets of DSE runs. Five experiments involved using each of the ML across every performance
metric prediction. The sixth experiment, SELECT, involved choosing the model with the lowest fidelity test error for
each performance metric. DTR experiments are not reported since all evaluated points using DTR were reported as
Pareto-front points. Table 4 shows the processing time for executing the GA-based DSE using the ML models for
fitness evaluation across all the experiments. The GA-specific configurations for the DSE experiment include: 200
generations with starting population of 1000 samples, mutation and cross-over probability of 0.04 and 0.8, respectively,
and tournament-based selection with a tournament size of three.

Each of the DSE experiments resulted in a Predicted Pareto Front (PPF), where the metrics correspond to that
obtained using ML-based predictions. Then, the set of approximate multiplier configurations from each PPF were
evaluated with actual hardware synthesis and behavioral testing, followed by Pareto-front determination with the
Manuscript submitted to ACM
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Fig. 17. Comparison of the accuracy of the prediction of Pareto-front design points predicted by the ML models for ECG. Models:
Gradient Boosting Regression (GBR), Multilayer Perceptron (MLP), Random Forest Regression (RFR), Stochastic Gradient Descent
(SGD), Support Vector Regression (SVR), SELECT: Uses the model with the lowest Testing Fidelity Error for each metric.

actual metrics to obtain the Evaluated Pareto Front (EPF). Table 5 shows the number of points in PPF and EPF of each
experiment. As expected, not all points in PPF translated to actual Pareto-front design points in the EPF. Figure 17
shows the EPF (Evaluated) and the PPF (Predicted) for the experiments with ECG for all six sets of experiments. RFR
and SELECT show the closest match between the PPF and the EPF.

To evaluate the quality of results with each model, we show the EPFs along with a combination of the EPF (All) for
the experiments in Figure 18. The numbers in the parenthesis of each label correspond to the contribution of each model
to the combined Pareto-front. The hypervolume of all the models, along with the combined results (ALL), is shown
in Figure 19, for different application and multiplier DSE experiments. It can be observed that ideally, the combination
of results from each of the ML models along with the selective model assignment (SELECT) results in the highest quality
of results.

Figure 20 shows the comparison of the Pareto-front of the designs obtained from three different ways. AppAxO_RND
denotes the set of 2048 randomly generated design configurations for the approximate multiplier. Additionally, 12
configurations denoting corner-case designs were added to AppAxO_RND to generate the set of 2060 design points,
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Fig. 18. Evaluated Pareto Front (EPF) for the design space exploration results for 8 × 8 multiplier and different applications using ML
models. ‘All’ refers to the combined Pareto-front.

AppAxO_TRN, that were used for the training of the ML models. One of the corner-case designs is the configuration
′111111111111111111111111111111111111′, where all LUTs are enabled for the multiplier. The remaining 11 corner-
case configurations were selected intuitively from the insight of the application-level analysis of 4 × 4 multipliers.
For example, the application-level analysis of 4 × 4 multipliers had a few non-dominated design points where only
a single LUT was enabled for the deployed multiplier. Therefore, for AppAxO_TRN, we had selected such 8 × 8
multiplier configurations where only one, two, or three LUTs were enabled (either at the most significant or least
significant locations). For example, the 8 × 8 multiplier configurations ′100000000000000000000000000000000000′ and
′000000000000000000000000000000000001′ are two such configurations with one LUT enabled at the most significant
and least significant locations, respectively.

Finally, AppAxO_ML denotes the set of design points generated using the proposed ML-based DSE. The design points
for AppAxO_ML includes the collection of predicted Pareto-front points from the DSE runs corresponding to GBR, MLP,
RFR, SGD, SVR and SELECT. It can be observed that in all cases, the ML-based DSE results in higher hypervolume and
more number of Pareto-front points. The combined Pareto-fronts included 9, 4, 3, 2 design points with AppAxO_RND,
14, 6, 7 and 3 design points with AppAxO_TRN, and 25, 16, 13 and 19 design points with AppAxO_ML for MULT 8 × 8,
ECG, MNIST and GS respectively.
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Fig. 19. Comparison of the hypervolume for the design space exploration results for 8 × 8 multiplier and different applications using
ML models. ‘ALL’ refers to the hypervolume of the combined Pareto-front. (a) MULT 8× 8 with Average Absolute Error as the accuracy
metric (b) MULT 8 × 8 with Average Absolute Relative Error as the accuracy metric (c) ECG (d) MNIST (e) GS

It can be observed that in some cases (MULT and MNIST), AppAxO_ML did not result in significant improvements
over AppAxO_TRN. In both these cases, the intuitively added corner-case design points sufficed in providing the
requisite accuracy-performance trade-offs. However, in other cases, AppAxO_ML succeeded in providing considerably
better Pareto-front design points. Therefore, AppAxO_ML can aid the designer in searching for design points, beyond
the more generic corner-case designs, that exploit the application’s inherent error-tolerance. Moreover, unlike in the
case of AppAxO_MBO (Figure 15), the candidate solutions generated by AppAxO_ML for true characterization are
closer to the final Pareto-front.

5.7 Proposed Approximate Operators

5.7.1 Approximate Adders. To evaluate the efficacy of the AppAxO’s modeling of approach for generating approximate
arithmetic operators, Figure 21 compares the hardware performance metrics and accuracy of AppAxO-generated 12-bit
approximate unsigned adders with the 32 unsigned designs of the ApproxFPGAs library [27]. For a fair comparison, we
have re-synthesized and re-implemented all the 12-bit approximate adders of ApproxFPGAs9. For a 12-bit accurate adder,
AppAxO generates a total of 4095 corresponding approximate adders. For assessing the performance of the designs, we
have used the 𝑃𝐷𝑃 × 𝐿𝑈𝑇 metric to incorporate all design metrics. The Pareto front analysis in Figure 21 shows that
AppAxO-generated designs have more hypervolume contribution for all comparisons. For example, Figure 21(a) shows
that AppAxO-generated non-dominated points have 1.11% more hypervolume contribution than the ApproxFPGAs
non-dominated design points. Further, the numbers on the hypervolume bar show the individual non-dominated design
points of each library. For example, the Pareto front analysis of only the AppAxO designs in Figure 21(a) shows a total
of 47 non-dominated design points. Similarly, the Pareto front analysis of ApproxFPGAs provides 14 non-dominated
design points. These results validate the efficacy of the AppAxO methodology in generating new approximate designs
that can be selected according to an application’s accuracy and performance requirements.

Further, the LUTs and carry chains specific approximation methodology of AppAxO enable better packing efficiency
of the FPGA resources (CLB utilization) than ApproxFPGAs [27]. For example, to compare the packing efficiency of
AppAxO generated 8-bit adders with the 8-bit designs of ApproxFPGAs, we implemented two different versions of a
9Available at https://github.com/ehw-fit/approx-fpgas
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Fig. 20. Comparison of DSE results from AppAxO_ML against that from randomly generated points (AppAxO_RND) and design
points used for training and testing of the ML models (AppAxO_TRN). Additional points synthesized, based on the Pareto-front
points reported by AppAxO_ML, for each case: (a) 115 (b) 216 (c) 154 (d) 146

400-bit vector-adder utilizing 50 instances of 8-bit adders. In the first version, we utilized accurate adders, and in the
second version, we utilized adders having comparable accuracy. Further, we have utilized a Virtex UltraScale FPGA for
these experiments to accommodate a large number of inputs and outputs of the vector-adder. Compared to a Virtex-7
FPGA, the UltraScale FPGA provides an 8-bit wide carry-chain in a CLB10. The results of these experiments are shown
in Table 6. As can be observed that for both experiments, AppAxO generated adders provide better packing efficiency
10The utilization of a different FPGA architecture also shows the efficacy of our proposed framework for different FPGA architectures.

Manuscript submitted to ACM



AppAxO: Designing Application-specific Approximate Operators for FPGA-based Embedded Systems 27

0 25 50 75 100
Probability of Error(in %)

0
25
50
75

100
125
150
175
200
225

PD
P 

x 
LU

T

1e2

ApproxFPGAs(Pareto)
AppAxO(Pareto)
Combined Pareto

ApproxFPGAs(All)
AppAxO(All)

1.15

1.20

1.25

Hy
pe

rv
ol

um
e

1e6

14
47

(a)

0 1000 2000 3000
Average Absolute Error

0
25
50
75

100
125
150
175
200
225

PD
P 

x 
LU

T

1e2

ApproxFPGAs(Pareto)
AppAxO(Pareto)
Combined Pareto

ApproxFPGAs(All)
AppAxO(All)

7.0

7.2

7.4

7.6

7.8

Hy
pe

rv
ol

um
e

1e7

168

(b)

0.0 0.2 0.4 0.6 0.8
Average Absolute Relative Error

0
25
50
75

100
125
150
175
200
225

PD
P 

x 
LU

T

1e2

ApproxFPGAs(Pareto)
AppAxO(Pareto)
Combined Pareto

ApproxFPGAs(All)
AppAxO(All)

185

190

195

200

205

Hy
pe

rv
ol

um
e

1e2

168

(c)

Fig. 21. Accuracy and performance comparison of AppAxO-generated unsigned adders with the approximate adders from ApproxFP-
GAs [27]

Table 6. Comparison of packing efficiency for implementing a vector-adder using 8-bit adders provided by AppAxO and ApproxFP-
GAs [27]

Design Adder Single Adder LUTs Average Absolute Error Vector-Adder LUTs CLB Utilization
AppAxO Adder_255 8 0.0 400 50

ApproxFPGAs add8u_0FP 8 0.0 400 137
AppAxO Adder_063 6 3.0 300 50

ApproxFPGAs add8u_0B1 5 2.8 250 91

by utilizing a fewer number of CLBs. Similar efficacy of AppAxO generated designs is observed in comparison to other
designs of ApproxFPGAs.

5.7.2 Proposed Approximate Multipliers. The resulting design points obtained from all explorations related to AppAxO,
AppAxO_TRN, AppAxO_MBO and AppAxO_ML, were compared with the multipliers proposed in EvoApprox. A total
of 3987 8 × 8 multiplier design configurations were characterized for stand-alone and application-specific performance
estimation. Figure 22 shows the comparison of the Pareto front obtained for standalone multipliers and approximate
multipliers used in the three test applications. It can be observed that the hypervolume of AppAxO is lower than that
of EvoApprox in the stand-alone multipliers. However, in the search for application-specific multipliers, we report
considerable improvements with AppAxO for all three applications. If we consider the combination of EvoApprox and
AppAxO, we observed 10, 18, and 20 Pareto-front points with AppAxO compared to 8, 1, and 1 points with EvoApprox
for ECG, MNIST, and GS, respectively. Figure 23 shows the comparison of the behavioral accuracy and the accelerator’s
performance, each metric considered separately, for AppAxO and EvoApprox multipliers implemented for ECG. The
AppAxO-generated multipliers show better quality Pareto-front design points across all the three metrics. For LUT
utilization, the combine Pareto-front included 14 design points with 4 and 10 points from EvoApprox and AppAxO
respectively. Similarly, for CPD and power dissipation the combined Pareto front had 14 (EvoApprox: 3, AppAxO: 11)
and 17 (EvoApprox: 8, AppAxO: 9) design points. It must be noted that although we show the results for each accelerator
metric separately, the optimization problem used to generate these points was still based on the minimization of
𝑃𝐷𝑃 × 𝐿𝑈𝑇 .
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Fig. 22. Comparison of the proposed multipliers in EvoApprox [21] to that of AppAxO. The design points for AppAxO were obtained
obtained across different exploration methods including randomized search, AppAxO_MBO and AppAxO_ML.

6 CONCLUSION

Most state-of-the-art approximate arithmetic operators follow an application-agnostic design methodology. These
operators do not have a generic approximation methodology to implement new approximate designs for an application’s
changing accuracy and performance requirements. We address these limitations in this paper by presenting the AppAxO
methodology. AppAxO presents a generic methodology for designing approximate operators according to an input
configuration defined by an application. The configuration defines the number of active LUTs involved in partial
product generation. For this purpose, AppAxO utilizes an MBO-based technique that produces only those multiplier
configurations which can satisfy an application’s accuracy and performance constraints. Our methodology also deploys
various ML models to use GA to explore the large design space of individual multipliers and their utilization in various
applications by estimating the behavioral accuracy and corresponding performance gains. Compared to state-of-the-art
Manuscript submitted to ACM
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Fig. 23. Comparing accelerator performance and behavioral accuracy of using EvoApprox and AppAxO-generated 8 × 8 signed
multipliers for ECG. (a) LUT utilization (b) Critical path delay (in 𝑛𝑠) (c) Power dissipation (in 𝜇𝑊 )

approximate multipliers, AppAxO generates non-dominated design points with more hypervolume contribution for
various applications. AppAxO methodology is generic and can be applied to any arithmetic circuit utilizing LUTs and
the carry chains for its implementation.

By defining a LUT-like building block for ASIC-based systems, AppAxO can be extended to design approximate
arithmetic operators for ASICs. To this end, one of the possible solutions is to utilize binary strings to address the
various utilized gates in a standard cell-based design. The actual values of the different bit fields in the binary string
will denote the activation/deactivation of particular gates. One of the potential challenges in this approach is handling
the connections between various gates in the case of a deactivated intermediate gate. Another approach for utilizing
AppAxO methodology for designing ASIC-based application-specific approximate operators can be utilizing standard
cell gates to implement small computational units. A computational unit will represent the functionality of an FPGA-
based LUT and carry-chain cell. These computational units can be utilized to implement various circuits. However,
a single 6-input LUT in an FPGA can represent any 6-input combinational function. Therefore, in this approach, a
designer may need to implement a large number of computational units to represent the circuit under test. Further,
a single gate in a standard cell library can have different architectures for performance, area, and power tradeoffs.
The availability of various gate architectures can further increase the overall complexity of designing ASIC-based
application-specific approximate operators.

7 ACKNOWLEDGMENTS

This work is supported by the German Research Foundation (DFG) funded Project ReAp under Grant 380524764.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, AndyDavis, JeffreyDean,Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,Michael Isard,

et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16). 265–283.

[2] Anonymous. 2021. MNIST-cnn. https://github.com/integeruser/MNIST-cnn
[3] Chidanand Apté and Sholom Weiss. 1997. Data mining with decision trees and decision rules. Future generation computer systems 13, 2-3 (1997),

197–210.
[4] Charles R Baugh and Bruce A Wooley. 1973. A two’s complement parallel array multiplication algorithm. IEEE Transactions on computers 100, 12

(1973), 1045–1047.

Manuscript submitted to ACM

https://github.com/integeruser/MNIST-cnn


30 Ullah and Sahoo, et al.

[5] Francesco Biscani and Dario Izzo. 2020. A parallel global multiobjective framework for optimization: pagmo. Journal of Open Source Software 5, 53
(2020), 2338. https://doi.org/10.21105/joss.02338

[6] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010. Springer, 177–186.
[7] Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghunathan. 2013. Analysis and Characterization of Inherent Application

Resilience for Approximate Computing. In Proceedings of the 50th Annual Design Automation Conference (Austin, Texas) (DAC ’13). Association for
Computing Machinery, New York, NY, USA, Article 113, 9 pages. https://doi.org/10.1145/2463209.2488873

[8] Gari D Clifford, Chengyu Liu, Benjamin Moody, Li-wei H. Lehman, Ikaro Silva, Qiao Li, A E Johnson, and Roger G. Mark. 2017. AF classification
from a short single lead ECG recording: The PhysioNet/computing in cardiology challenge 2017. In 2017 Computing in Cardiology (CinC). 1–4.
https://doi.org/10.22489/CinC.2017.065-469

[9] Li Deng. 2012. The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Processing Magazine
29, 6 (2012), 141–142.

[10] Zahra Ebrahimi, Salim Ullah, and Akash Kumar. 2020. SIMDive: Approximate SIMD Soft Multiplier-Divider for FPGAs with Tunable Accuracy. In
Proceedings of the 2020 on Great Lakes Symposium on VLSI (Virtual Event, China) (GLSVLSI ’20). Association for Computing Machinery, New York,
NY, USA, 151–156. https://doi.org/10.1145/3386263.3406907

[11] Jerome H Friedman. 2002. Stochastic gradient boosting. Computational statistics & data analysis 38, 4 (2002), 367–378.
[12] Vaibhav Gupta, Debabrata Mohapatra, Anand Raghunathan, and Kaushik Roy. 2013. Low-Power Digital Signal Processing Using Approximate Adders.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32, 1 (2013), 124–137. https://doi.org/10.1109/TCAD.2012.2217962
[13] Soheil Hashemi, R Iris Bahar, and Sherief Reda. 2015. DRUM: A dynamic range unbiased multiplier for approximate applications. In 2015 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD). IEEE, 418–425.
[14] Hou-Jen Ko and Shen-Fu Hsiao. 2011. Design and Application of Faithfully Rounded and Truncated Multipliers With Combined Deletion, Reduction,

Truncation, and Rounding. IEEE Transactions on Circuits and Systems II: Express Briefs 58, 5 (2011), 304–308. https://doi.org/10.1109/TCSII.2011.2148970
[15] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. 2011. Trading Accuracy for Power with an Underdesigned Multiplier Architecture. In 2011 24th

Internatioal Conference on VLSI Design. 346–351. https://doi.org/10.1109/VLSID.2011.51
[16] Khaing Yin Kyaw,Wang Ling Goh, and Kiat Seng Yeo. 2010. Low-power high-speed multiplier for error-tolerant application. In 2010 IEEE international

conference of electron devices and solid-state circuits (EDSSC). IEEE, 1–4.
[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11

(1998), 2278–2324. https://doi.org/10.1109/5.726791
[18] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by randomForest. R news 2, 3 (2002), 18–22.
[19] Sparsh Mittal. 2016. A Survey of Techniques for Approximate Computing. ACM Comput. Surv. 48, 4, Article 62 (March 2016), 33 pages. https:

//doi.org/10.1145/2893356
[20] Vojtech Mrazek, Muhammad Abdullah Hanif, Zdenek Vasicek, Lukas Sekanina, and Muhammad Shafique. 2019. AutoAx: An Automatic Design

Space Exploration and Circuit Building Methodology Utilizing Libraries of Approximate Components. In Proceedings of the 56th Annual Design
Automation Conference 2019 (Las Vegas, NV, USA) (DAC ’19). Association for Computing Machinery, New York, NY, USA, Article 123, 6 pages.
https://doi.org/10.1145/3316781.3317781

[21] Vojtech Mrazek, Radek Hrbacek, Zdenek Vasicek, and Lukas Sekanina. 2017. EvoApprox8b: Library of Approximate Adders and Multipliers for
Circuit Design and Benchmarking of Approximation Methods. In Design, Automation Test in Europe Conference Exhibition (DATE), 2017. 258–261.
https://doi.org/10.23919/DATE.2017.7926993

[22] Vojtech Mrazek, Syed Shakib Sarwar, Lukas Sekanina, Zdenek Vasicek, and Kaushik Roy. 2016. Design of Power-Efficient Approximate Multipliers
for Approximate Artificial Neural Networks. In Proceedings of the 35th International Conference on Computer-Aided Design (Austin, Texas) (ICCAD
’16). Association for Computing Machinery, New York, NY, USA, Article 81, 7 pages. https://doi.org/10.1145/2966986.2967021

[23] Vojtech Mrazek, Lukas Sekanina, and Zdenek Vasicek. 2020. Libraries of Approximate Circuits: Automated Design and Application in CNN
Accelerators. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 10, 4 (2020), 406–418. https://doi.org/10.1109/JETCAS.2020.3032495

[24] Fionn Murtagh. 1991. Multilayer perceptrons for classification and regression. Neurocomputing 2, 5-6 (1991), 183–197.
[25] Jiapu Pan and Willis J. Tompkins. 1985. A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering BME-32, 3 (1985),

230–236. https://doi.org/10.1109/TBME.1985.325532
[26] Nicola Petra, Davide De Caro, Valeria Garofalo, Ettore Napoli, and Antonio G. M. Strollo. 2010. Truncated Binary Multipliers With Variable

Correction and Minimum Mean Square Error. IEEE Transactions on Circuits and Systems I: Regular Papers 57, 6 (2010), 1312–1325. https:
//doi.org/10.1109/TCSI.2009.2033536

[27] Bharath Srinivas Prabakaran, Vojtech Mrazek, Zdenek Vasicek, Lukas Sekanina, and Muhammad Shafique. 2020. ApproxFPGAs: Embracing
ASIC-Based Approximate Arithmetic Components for FPGA-Based Systems. In 2020 57th ACM/IEEE Design Automation Conference (DAC). https:
//doi.org/10.1109/DAC18072.2020.9218533

[28] Bharath Srinivas Prabakaran, Semeen Rehman, Muhammad Abdullah Hanif, Salim Ullah, Ghazal Mazaheri, Akash Kumar, and Muhammad Shafique.
2018. DeMAS: An efficient design methodology for building approximate adders for FPGA-based systems. In 2018 Design, Automation Test in Europe
Conference Exhibition (DATE). 917–920. https://doi.org/10.23919/DATE.2018.8342140

[29] Semeen Rehman, Walaa El-Harouni, Muhammad Shafique, Akash Kumar, Jorg Henkel, and Jörg Henkel. 2016. Architectural-space exploration of
approximate multipliers. In 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–8. https://doi.org/10.1145/2966986.2967005

Manuscript submitted to ACM

https://doi.org/10.21105/joss.02338
https://doi.org/10.1145/2463209.2488873
https://doi.org/10.22489/CinC.2017.065-469
https://doi.org/10.1145/3386263.3406907
https://doi.org/10.1109/TCAD.2012.2217962
https://doi.org/10.1109/TCSII.2011.2148970
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/2893356
https://doi.org/10.1145/2893356
https://doi.org/10.1145/3316781.3317781
https://doi.org/10.23919/DATE.2017.7926993
https://doi.org/10.1145/2966986.2967021
https://doi.org/10.1109/JETCAS.2020.3032495
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1109/TCSI.2009.2033536
https://doi.org/10.1109/TCSI.2009.2033536
https://doi.org/10.1109/DAC18072.2020.9218533
https://doi.org/10.1109/DAC18072.2020.9218533
https://doi.org/10.23919/DATE.2018.8342140
https://doi.org/10.1145/2966986.2967005


AppAxO: Designing Application-specific Approximate Operators for FPGA-based Embedded Systems 31

[30] Muhammad Shafique, Waqas Ahmad, Rehan Hafiz, and Jörg Henkel. 2015. A Low Latency Generic Accuracy Configurable Adder. In Proceedings of
the 52nd Annual Design Automation Conference (San Francisco, California) (DAC ’15). Association for Computing Machinery, New York, NY, USA,
Article 86, 6 pages. https://doi.org/10.1145/2744769.2744778

[31] Alex J Smola and Bernhard Schölkopf. 2004. A tutorial on support vector regression. Statistics and computing 14, 3 (2004), 199–222.
[32] Salim Ullah, Sanjeev Sripadraj Murthy, and Akash Kumar. 2018. SMApproxlib: Library of FPGA-Based Approximate Multipliers. In Proceedings of

the 55th Annual Design Automation Conference (San Francisco, California) (DAC ’18). Association for Computing Machinery, New York, NY, USA,
Article 157, 6 pages. https://doi.org/10.1145/3195970.3196115

[33] Salim Ullah, Tuan Duy Anh Nguyen, and Akash Kumar. 2021. Energy-Efficient Low-Latency Signed Multiplier for FPGA-Based Hardware
Accelerators. IEEE Embedded Systems Letters 13, 2 (jun 2021), 41–44. https://doi.org/10.1109/les.2020.2995053

[34] Salim Ullah, Semeen Rehman, Bharath Srinivas Prabakaran, Florian Kriebel, Muhammad Abdullah Hanif, Muhammad Shafique, and Akash Kumar.
2018. Area-Optimized Low-Latency Approximate Multipliers for FPGA-Based Hardware Accelerators. In Proceedings of the 55th Annual Design
Automation Conference (San Francisco, California) (DAC ’18). Association for Computing Machinery, New York, NY, USA, Article 159, 6 pages.
https://doi.org/10.1145/3195970.3195996

[35] Salim Ullah, Semeen Rehman, Muhammad Shafique, and Akash Kumar. 2021. High-Performance Accurate and Approximate Multipliers for
FPGA-based Hardware Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2021), 1–1. https://doi.org/10.
1109/TCAD.2021.3056337

[36] Salim Ullah, Hendrik Schmidl, Siva Satyendra Sahoo, Semeen Rehman, and Akash Kumar. 2021. Area-Optimized Accurate and Approximate Softcore
Signed Multiplier Architectures. IEEE Trans. Comput. 70, 3 (2021), 384–392. https://doi.org/10.1109/TC.2020.2988404

[37] Xilinx. 2017. UltraScale Architecture Configurable Logic Block.
[38] Amir Yazdanbakhsh, Divya Mahajan, Hadi Esmaeilzadeh, and Pejman Lotfi-Kamran. 2017. AxBench: A Multiplatform Benchmark Suite for

Approximate Computing. IEEE Design Test 34, 2 (2017), 60–68. https://doi.org/10.1109/MDAT.2016.2630270

Manuscript submitted to ACM

https://doi.org/10.1145/2744769.2744778
https://doi.org/10.1145/3195970.3196115
https://doi.org/10.1109/les.2020.2995053
https://doi.org/10.1145/3195970.3195996
https://doi.org/10.1109/TCAD.2021.3056337
https://doi.org/10.1109/TCAD.2021.3056337
https://doi.org/10.1109/TC.2020.2988404
https://doi.org/10.1109/MDAT.2016.2630270

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Approximate Computing
	2.2 DSE for Approximate Computing

	3 Modeling Approximate Arithmetic Operators
	3.1 Accurate Multiplier Design
	3.2 Approximation Methodology
	3.3 Approximate Adders

	4 DSE for FPGA-based Approximate Operators Synthesis
	4.1 Problem Statement
	4.2 DSE using Bayesian Optimization
	4.3 MOEA-based optimization
	4.4 ML for DSE

	5 Experiments and Results
	5.1 Experiment Setup
	5.2 Accuracy-Performance Analysis of Approximate Adders
	5.3 Accuracy-Performance Analysis of Approximate Multipliers
	5.4 AppAxO_MBO
	5.5 ML Modeling
	5.6 DSE using ML Models
	5.7 Proposed Approximate Operators

	6 Conclusion
	7 Acknowledgments
	References

