
Efficient Accuracy Recovery in Approximate Neural Networks

by Systematic Error Modelling

Cecilia De la Parra
Robert Bosch GmbH

Renningen, Germany

cecilia.delaparra@de.bosch.com

Andre Guntoro
Robert Bosch GmbH

Renningen, Germany

andre.guntoro@de.bosch.com

Akash Kumar
Technische Universität Dresden

Dresden, Germany

akash.kumar@tu-dresden.de

ABSTRACT

Approximate Computing is a promising paradigm for mitigating

the computational demands of Deep Neural Networks (DNNs), by

leveraging DNN performance and area, throughput or power. The

DNN accuracy, affected by such approximations, can be then effec-

tively improved through retraining. In this paper, we present a novel

methodology for modelling the approximation error introduced by

approximate hardware in DNNs, which accelerates retraining and

achieves negligible accuracy loss. To this end, we implement the

behavioral simulation of several approximate multipliers and model

the error generated by such approximations on pre-trained DNNs

for image classification on CIFAR10 and ImageNet. Finally, we op-

timize the DNN parameters by applying our error model during

DNN retraining, to recover the accuracy lost due to approximations.

Experimental results demonstrate the efficiency of our proposed

method for accelerated retraining (11× faster for CIFAR10 and 8×

faster for ImageNet) for full DNN approximation, which allows us

to deploy approximate multipliers with energy savings of up to 36%

for 8-bit precision DNNs with an accuracy loss lower than 1%.

CCS CONCEPTS

• Computing methodologies→ Object recognition; Neural net-

works; • Hardware→ Power estimation and optimization.

KEYWORDS

approximate computing, approximation error model, deep neural

networks, DNN optimization

ACM Reference Format:

Cecilia De la Parra, Andre Guntoro, and Akash Kumar. 2021. Efficient

Accuracy Recovery in Approximate Neural Networks by Systematic Error

Modelling. In 26th Asia and South Pacific Design Automation Conference

(ASPDAC ’21), January 18–21, 2021, Tokyo, Japan. ACM, New York, NY, USA,

7 pages. https://doi.org/10.1145/3394885.3431533

1 INTRODUCTION

Deep Learning (DL) architectures have large computational de-

mands, which restrict their implementation in embedded systems.

Approximations at software and hardware can reduce such compu-

tational demands to allow an embedded implementation [18, 25, 26].

However, the approximation error must be compensated to avoid

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431533

accuracy losses and mantain the performance of the DL model.

Motivated by this, in the present work we simulate, analyze and

model the error introduced by approximate multipliers on DNNs,

to identify critical elements affected by approximations. Our pro-

posed approximation error model does not only help us to better

understand the approximation error on DNNs, but is also useful for

recovering the lost accuracy due to approximations, as we target

more critical elements identified by our error model. To compensate

the approximation error, DNN retraining is typically performed.

Using the behavioral simulation of approximate multipliers during

retraining is time consuming when compared with accurate DNN

training [3, 18]. On the other side, the use of our proposed model

has a very small time overhead and can be easily incorporated into

the DNN computation using available functions from any open

source library for machine learning, without the need of special-

ized operators for approximate multiplication. We demonstrate

through various experiments that our mathematical error model

allows fast and efficient approximate retraining, as the model is

obtained offline before retraining e.g. from simulation on CPU, us-

ing only a small percentage of input data. Furthermore, in various

cases, by training with our model we demonstrate better accuracy

recovery, compared to using the behavioral simulation and to other

state-of-the-art modelling approaches.

In summary, we make the following contributions:

• A thorough error analysis at the finest granularity, that is,

at each neuron, in quantized and approximated DNNs.

• We propose a mathematical model of the error introduced by

approximate multipliers in the DNN computation, to identify

the most critical elements affected by the approximation.

• We validate our proposed error model for approximate DNN

retraining to compensate the error introduced by approxi-

mate multipliers.

We perform extensive experiments with 10 different approximate

multipliers and 4 different DNN architectures, quantized to 8 bits,

for CIFAR-10 [11] and ImageNet [21]. Training approximate DNNs

with our error model leads to a reduced retraining time of up to 11

times compared to using the behavioral simulation of approximate

multipliers on a specialized, GPU-accelerated simulation frame-

work. We also demonstrate negligible accuracy loss using multipli-

ers with a Mean Relative Error (MRE) < 7% and energy savings of

up to 36%, compared to the accurate 8-bit implementation.

2 RELATEDWORK

In DNNs, approximations can be introduced at software and hard-

ware level. Software approximation approaches in DNNs include fil-

ter pruning [10, 15] and precision scaling [4, 13]. Hardware-focused

365

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan De la Parra et al.

approximation approaches include, among others, the approxima-

tion of adders and multipliers. We specifically target multipliers, as

these are the most power-consuming operators. These approxima-

tions can be introduced in some neurons (partial approximation),

or in all neurons of convolutional and fully-connected layers (full

approximation). Authors in [14, 18, 25, 26] focus on partial approx-

imation methods, with energy savings limited by the number of

approximated neurons. In this work, we focus on full DNN approx-

imation to increase energy savings, a similar approach to those

introduced in [9, 16, 22]. In [22], quantized weights are combined

with FP activations. Quantization of DNN weights and inputs to

8 and 12 bits respectively, in small DNN applications, is explored

in [16]. A more resource-efficient DNN training methodology for

small datasets such as MNIST [12] with approximate hardware

is presented in [9]. Within this context, we optimize the incorpo-

ration of approximate multipliers with higher energy savings on

DNN-based image recognition with more complex datasets such as

CIFAR10 and ImageNet.

In the field of approximation error modelling in DNNs, a stochas-

tic error model of fuzzy storage is introduced in [9], and authors

in [14] simulate the influence of approximate elements as additive

white Gaussian noise. In [6], the influence of approximate multi-

pliers in DNNs is simulated by Gaussian and Uniform distributed

noise characterized by the multiplier’s MRE. Training with the er-

ror model of approximate multipliers was explored in [5], where

a layer-wise model based on the multiplier’s MRE and standard

deviation was used. These proposed error models, however, lack

verification by simulation of the modelled elements. We extend this

state of the art by validating our proposed error model with the be-

havioral simulation of the corresponding approximate multipliers

implemented for DNN inference.

3 APPROXIMATING DEEP NEURAL
NETWORKS

DNNarchitectures comprise convolutional and fully-connected (FC)

layers, which perform weighted multiplication between inputs X
andweightsW , followed by the addition of a biasb, and a non-linear
activation function φ(·), such as a Rectified Linear Unit (ReLU).
We explore the incorporation of approximate multipliers in the

DNN computation. For this, we first quantize DNN weights and

activations from 32-bit floating-point (FP) values to 8 bits, as this

delivers acceptable accuracy without retraining. The quantization

is performed by (1), where Z̃ = round(Z/ΔZ), bw is the target

bitwidth and ΔZ is the quantization step size.

Zq =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2bw−1 × ΔZ if Z̃ ≤ −2bw−1

Z̃ × ΔZ if − 2bw−1 < Z̃ < 2bw−1 − 1

(2bw−1 − 1) × ΔZ if Z̃ ≥ 2bw−1 − 1

(1)

3.1 SMApprox Multipliers

Focused on FPGA applications, we select eight 8x8 multipliers from

the SMApprox library [24], which also includes Pareto-optimal

designs from other sources such as EvoApprox [17].

To obtain power-efficientmultipliers at Lookup Table (LUT) gran-

ularity, SMApprox multipliers take advantage of the eight 6-input

LUTs and an 8-bit long carry chain available at each configurable

Table 1: SMApprox 4×4b Base Approximate Multipliers

Metric
4x4 Design

0 1 2 3

LUTs 12 12 7 7

Latency [ns] 6.8 6.1 5.2 5.5

Power [mW] 198 180 192 192

MRE [%] 9 7.2 12.6 12.3

Table 2: SMApprox 8×8b Approximate Multipliers

Multiplier MRE[%] Power(W) Area [LUTs]

1100 2.1 0.221 64

2200 3.8 0.220 62

3300 3.6 0.220 62

1110 4.0 0.220 64

3330 6.4 0.219 59

2220 6.7 0.219 59

3333 13.6 0.216 54

2222 16.6 0.217 52

Xilinx Multiplier IP 0 0.344 64

logic block of latest versions of Xilinx FPGAs. To this end, four con-

secutive partial product rows are approximately mapped to 6-input

LUTs using three different designs. Each design results in a 4x4 ap-

proximate multiplier which can be used as building block for larger

multipliers: ’0’ represents the accurate design, and ’1,2,3’ indicate

the corresponding approximate 4x4 designs. Characteristics of each

4x4 base multiplier design are presented in Table 1 [24].

In this work, we select 8x8 multipliers built with the aforemen-

tioned base multipliers. Note that each 8x8 approximate multiplier

requires four 4x4 base multipliers, and each can have a different

design. Thus, for example, a multiplier denoted by ’1100’ represents

a multiplier with two 4x4 multipliers of type 1 and two 4x4 multi-

pliers of type 0. Note also that the addition of partial products in

these 8x8 multipliers is kept accurate. The characteristics of the se-

lected multipliers are shown in Table 2, where the MRE is formally

computed by (2), where n = 2bitwidth−1. The Xilinx Multiplier IP

is the baseline in [24], and the highlighted multipliers belong to

the Pareto-front of energy-area. The remaining multipliers were

chosen due to their degree of approximation and small MRE.

MRE =
1

n × n

n∑
i=0

n∑
j=0

��(i × j)approx − (i × j)acc
��

max(1, |(i × j)acc |)
(2)

4 METHODOLOGY DESIGN

In this section, we present our design approach for approximation

error modelling. The analysis performed hereby is focused on ap-

proximate multipliers, however, this approach can be extended by

using other approximate elements, as long as the approximation

error introduced by such elements has parameterizable distribution

and finite variance and covariance. These requisites are further

explained in sub-section 4.2.

366

Efficient Accuracy Recovery in Approximate Neural Networks by Systematic Error Modelling ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Pre-trained DNN

Error Modelling DNN Retraining

Quantization and approximation

Error Measurement

Statistical analysis

Error model

Backpropagation i = i + 1

DNN = DNN+Error model

DNN accuracy = A0, i = 1

A0 − Ai > ε

Optimized DNN

Figure 1: Modelling the Approximation Error in DNNs

X

W1

f

f̃

Y1

Ỹ1

φ(·)

+

ϵ1

W2 f̃

f Y2

Ỹ2 +

ϵ2

...

- -

Figure 2: Approximation error measurement on a DNN

4.1 Design Approach

The error ϵ introduced by an approximate multiplier in a single
multiplication is of deterministic nature. However, if we now con-

sider the approximation error introduced in the computation of a

convolutional (3) or FC layer (4), the dependencies of ϵ increase
proportionally to the dimension and possible values of tensors X
andW , as illustrated in equations (3) and (4) respectively.

Ỹ (i, j) =
∑
m

∑
n

Xm,nWi−m, j−n + ϵXm,n,Wi−m, j−n
+ bi, j (3)

Ỹ (i, j) =
∑
n

Xi,nWn, j + ϵXi,n,Wn, j
+ bi, j (4)

Such complexity induces a non-deterministic behavior in ϵ . We
present in Fig. 1 our methodology to statistically model this error

on pre-trained and approximated DNNs. As input, we receive a

pre-trained DNN model with 32-bit FP parameters. This model is

then quantized to 8 bits, and a given approximate multiplier is in-

corporated in the DNN computation. Then, we perform a statistical

analysis of the error introduced by such approximation. As output

we obtain an error model for each DNN neuron.

This methodology can either be applied to heterogeneous ap-

proximation (more than one type of approximate multiplier) or to

homogeneous approximation, which is the focus of this work. Each

step of the error modelling methodology is detailed in the following

sub-sections.

For behavioral simulation of approximate multipliers in DNNs,

we use ProxSim [3]. The behavioral simulation of different approxi-

mate multipliers is hereby implemented with CUDA [19] for GPU

acceleration. As case study for modelling the approximation error,

we implement ALL-CNN [23].

−3 −2 −1 0 1 2 3

·105

0

1

2

3

·10−5

output value

d
en
si
ty

Probability distribution of DNN output neurons at each layer

output at layer 4

output at layer 5

output at layer 6

output at layer 7

Figure 3: Output distributions on ALL-CNN layers.

4.2 Statistical Analysis of the Approximation
Error

We measure the approximation error at the output feature map of

each layer. As quantization operations have negligible computa-

tional overhead, these do not require to be modelled and can be

instead accurately computed at each training step. Therefore, to

obtain a highly accurate model, the error is measured after quantiza-

tion of weights and activations, to avoid including the quantization

noise in our approximation error model. The error measurement is

performed as depicted in Fig. 2, where:

• f is the accurate operation between inputs and kernel, and

f̃ the approximate counterpart.

• Yl and Ỹl are the accurate and approximate output tensors
of the l-th layer.

• ϵl is the tensor containing the approximation error at the
l-th layer.

4.2.1 Correlation Analysis. For obtaining the correlation between

outputs and appproximation error, we calculate the Pearson corre-

lation coefficient ρy,ϵ between output y and approximation error ϵ
at each neuron. For this, we assume that:

• The output of each neuron before any nonlinearity function

φ(·) can be approximated by a Normal distribution, char-
acterized by its mean μ and variance σ 2. This statement is
corroborated by the work in [7, 20], and holds for our case

study, as shown in Fig. 3.

• The approximation error has finite variance and covariance.

In a given DNN layer with a 3D output of size [H,W,Ch], the

correlation [ρy,ϵ]i, j,k between an output neuron yi, j,k and its cor-
responding approximation error ϵi, j,k is computed as follows:

[ρy,ϵ]i, j,k =
Cov(yi, j,k , ϵi, j,k)

σyi, j,k ,σϵi, j,k
, (5)

where i ∈ [1,H], j ∈ [1,W] and k ∈ [1,Ch]. In Table 3, the mean
value of ρ at some layers of ALL-CNN is given for different multi-

pliers. We observe a linear correlation between output and error

at diferent levels of significance. Following this, we propose to

build our neuron-wise error model based on correlated, normally

distributed stochastic signals, characterized by ρy,ϵ , the expected
approximation error value μϵ , and the standard deviation of the
approximation error σϵ .

367

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan De la Parra et al.

Table 3: ρy,ϵ in ALL-CNN

Multiplier
CNN layer

1st 3rd 5th 7th

2222 0.35 0.69 0.78 0.72

3333 0.41 0.70 0.79 0.71

2220 0.44 0.68 0.83 0.74

3330 0.45 0.70 0.82 0.73

−5,000 0
0

2

4

6

·10−4

P
ro
b
ab
il
it
y
d
en
si
ty

1st layer

−6000 0 6000
0

2

4

·10−4
2nd layer

−2,000 0 2,000
0

0.5

1

1.5

·10−3
3rd layer

[0,0]

[1,0]

[2,0]

[3,0]

[4,0]

(a) SMApprox 3330

−5,000 0 5,000
0

2

4

·10−4

P
ro
b
ab
il
it
y
d
en
si
ty

1st layer

−2,000 0 2,000
0

0.5

1

·10−3
2nd layer

−2,000 0 2,000
0

0.5

1

1.5

·10−3
3rd layer

(b) SMApprox 2222

Figure 4: Error distributions on first neurons on 1st-3rd lay-

ers of ALL-CNN. Labels indicate the neuron position in the

1st channel of the output tensor.

4.2.2 Generating the Approximation Error Signal. For a given DNN

layer, let us denote the output signal at neuron i, j,k as in (6), and
the target correlated error signal ϵi, j,k as in (7), where:

• a1,a2 are coefficients to be solved.
• s1 |i, j,k (t), s2 |i, j,k (t) are normally-distributed signals with
variance σ1 = σ2 = 1 and mean μ1 = μ2 = 0, and uncorre-
lated (ρs1,s2 = 0).

The signal s1 |i, j,k (t) is derived from the output of the corresponding

neuron i, j,k using p training samples, and the signal s2 |i, j,k (t) is
randomly drawn from its correspondent distribution.

yi, j,k (t) = μyi, j + σyi, j,k s1 |i, j,k (t) (6)

ϵ(t) = a1 |i, j,ks1 |i, j,k (t) + a2 |i, j,ks2 |i, j,k (t) + μϵi, j,k (7)

We denote the variance of ϵi, j,k as:

σ 2ϵi, j,k = E[ϵ2
i, j,k] − μ2ϵi, j,k (8)

With this, we solve a1 |i, j,k and a2 |i, j,k :

a1 |i, j,k = [ρy,ϵ]i, j,kσϵi, j,k (9)

a2 |i, j,k = σϵi, j,k

√
1 −

��[ρy,ϵ]i, j,k ��2 (10)

We then rewrite (7) as follows:

ϵθi, j,k (t) =σϵi, j,k ([ρy,ϵ]i, j,ks1 |i, j,k (t)+ (11)

s2 |i, j,k (t)

√
1 −

��[ρy,ϵ]i, j,k ��2) + μϵi, j,k
Our resulting model of the approximation error at a single neuron is

obtained from (11). The error tensor Ξθ (t) at a given convolutional
layer with H×W×Ch neurons is then computed as in (12), where:

• ρy,ϵ is a tensor of shape [H,W,Ch] containing the correlation
coefficient between output and error of each layer’s neuron.

• σϵ and μϵ are tensors of shape [H,W,Ch] containing the sta-
tistical moments of the approximation error at each neuron.

• S1(t) is a tensor derived from the output neurons of the

corresponding layer.

• S2(t) is a tensor formed by H×W×Ch random signals drawn

from the same distribution as s2 |i, j,k .

Ξθ (t) = σϵ (ρy,ϵS1(t) + S2(t)

√
1 −

��ρy,ϵ ��2) + μϵ (12)

In case of computing the neuron-wise error model of FC layers,

the error is obtained with (12) as well. However, σϵ , ρy,ϵ , μϵ , and
Ξθ (t) are matrices instead of 3D tensors. Values of ρy,ϵ ,σϵ and μϵ
are computed offline using p training data samples, while signals
S1(t) and S2(t) are drawn at runtime. The resulting error Ξθ (t) at a
given layer is then added to the layer’s output as depicted in Fig. 5.

This is performed for all approximated layers.

4.3 DNN Retraining with approximations

The main goal of modelling the approximation error Ξθ , is to im-
prove approximate DNN retraining, performed as in Fig. 1 Approx-

imate DNNs are retrained using Stochastic Gradient Descent (SGD)

methods. In this work, Straight-Through-Gradients [1] are imple-

mented as in (13) to estimate the gradient of layers approximated

with the behavioral simulation.

Δw = −η
∂C

∂w
� −η

∂C

∂Ỹ

∂Y

∂w
(13)

For approximate DNN retraining applying our error model, we

use the already existing gradient definitions for all operations that

comprise Ξθ . The gradient is decomposed as follows:

∂C

∂w
=
∂C

∂Ỹ

[
∂Y

∂w
+
∂Ξθ
∂w

]
(14)

where:
∂Ξθ
∂w
= σϵρy,ϵ

∂S1(t)

∂w
(15)

Thus, the influence of our error model in Δw is proportional to

σϵρy,ϵ . Typically, in a single neuron, [ρy,ϵ]i, j,k � σϵi, j,k (see Fig.
4). Therefore, σϵi, j,k indicates the contribution of the noise model
to the gradient computation.

Y1 + φ(·) Y2 + φ(·) ... Yn + φ(·) Ỹ

Ξθ,1 Ξθ,2 Ξθ,n

Figure 5: The obtained errormodel is added to eachNN layer

before the activation function.

368

Efficient Accuracy Recovery in Approximate Neural Networks by Systematic Error Modelling ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Table 4: Evaluated DNNs

DNN Dataset FP acc. 8b acc. #MAC ops.

ResNet8

CIFAR10

85.77 84.61 12M

ResNet14 89.53 89.20 27M

ALL-CNN 89.13 89.03 281M

ResNet18 65.88 65.15 1,826M

A small variance σϵi, j,k can lead to an improvement in the DNN
generalization because it provides some regularization [2], and

therefore this delivers better results than training with the behav-

ioral simulation. On the other hand, a large variance, correlated

to a large MRE, can result in a sub-optimal convergence, which

decreases the overall accuracy of the approximated DNN. We fur-

ther analyze the effects of the approximation error variance in

sub-section 5.2.

5 EVALUATION

We now present the evaluation results of our approximation error

model applied for approximate DNN retraining. We compare the

obtained results with:

• Behavioral simulation.

• The proposed error model from [5]: in each DNN layer, an

auxiliary tensor Err is drawn from a Gaussian distribution

characterized by the multiplier’s MRE and standard devia-

tion. The layer’s output is computed by (16), where � denotes

element-wise multiplication. We subsequently refer to this

model as baseline model.

Y = (X ∗ (W � Err)) + b (16)

• Additive white Gaussian noise added to the output of each

layer. This noise is characterized by the Signal to Noise Ratio

(SNR in dB), of the approximation error w.r.t. the accurate

output, as proposed in [14].

All experiments were performed using an Nvidia GTX 1080 Ti

and Tensorflow. We evaluate our approximation error model using

two Residual Networks (ResNet) [8] for image classification with

CIFAR-10, one simple convolutional arquitecture, the ALL-CNN

[23], also for image classification with CIFAR-10, and ResNet18 for

large-scale image classification with ImageNet. The characteristics

of all evaluated DNNs are presented in Table 4.

With this variety of CNNs, we aim to demonstrate that our

model works with simple sequential architectures (ALL-CNN) as

well as with more complex ones (ResNets) for classification tasks

of different complexity.

5.1 Model Runtime

We evaluate the acceleration of approximate DNN retraining with

our error model, w.r.t. retraining using the behavioral simulation.

This means, less training time and better accuracy in the same

number of epochs, where epoch is understood as a complete forward

and backward pass of the training dataset on a DNN. We retrain

the DNN parameters by injecting our error model as in Fig. 5. By

doing so, when compared to the behavioral simulation we achieve:

Table 5: DNN retraining - Execution time per epoch

DNN ResNet8 ResNet14 ALL-CNN ResNet18

Behavioral sim. 118s 198s 627s 17,101s

Error model 51s 57s 59s 2085s

Table 6: Overhead of modelling the DNN approximation er-

ror for a given approximate multiplier

DNN ResNet8 ResNet14 ALL-CNN ResNet18

Duration 8s 13s 15s 48s

W.r.t training time 16% 23% 25% 3%

Table 7: Cross-evaluation of approximation error model

retrained Accuracies ALL-CNN[%] Accuracies ResNet8[%]

model 8b-quant 1110 3330 2222 FP 1110 3330 2222

8b-quant 89.03 88.64 88.41 85.71 84.61 82.68 80.42 54.41

1110 89.00 88.88 88.63 85.91 84.60 85.48 83.11 59.74

3330 88.66 88.76 88.87 85.99 83.96 84.48 84.23 65.31

2222 88.23 88.49 88.39 86.58 80.21 80.83 79.20 67.96

• A training up to 11× faster when retraining the evaluated

CNNs with CIFAR-10 for accuracy recovery.

• Training time 8.2× faster when retraining ResNet18 for large-

scale classification with ImageNet.

The obtained results are reported in Table 5, given a batch size

of 64 images for all experiments. These results show that the im-

provement in execution time is proportional to the number of MAC

ops. and DNN layers. Furthermore, in Table 6, we present the time

required for modelling the approximation error of one given multi-

plier, which represents a small overhead compared to the total time

required for DNN retraining.

5.2 Model Quality for DNN Retraining

5.2.1 Optimization of DNNs for CIFAR10. Following recent works

[18, 22], we propose an accuracy degradation limit ε of 1% with re-

spect to the quantized 8-bit accuracy after retraining. We retrain the

original DNNs quantized to 8 bits and approximated with each mul-

tiplier from Table 2. In this retraining stage, we apply the methods

described at the beginning of this section.

We use SGD with momentum of 0.9, a learning rate (lr) of 1e − 4
and a batch size of 64 samples over 5 epochs. For a fair and accurate

comparison, in all experiments the final DNN accuracy is computed

with the behavioral simulation only. In Figs. 6a and 6b, we present

the results of retraining with our proposed model, as well as with

the baseline model and with additive Gaussian noise. We perform

this comparison with ResNet8 and ResNet14. Our approximation

error model delivers the best results, and we are able to reach our

proposed tolerance and even surpass the original 8-bit accuracy in

6 out of 8 cases.

In Figs. 7a, 7b and 7c, we present the comparison of training

with our proposed approximation error model and training with

the behavioral simulation, using ResNet8, ResNet14 and ALL-CNN

respectively.We also use ε = 1%. For multipliers withMRE < 7%, we
reach slightly better accuracy by using our error model, compared

369

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan De la Parra et al.

110
0

220
0

330
0

111
0

222
0

333
0

222
2

333
3

60

70

80

90

SMApprox Multipliers

D
N
N
ac
cu
ra
ci
es
[%
]

Accuracies of ResNet8

before training

after training with:

our error model

additive Gaussian noise

baseline model

8b-accuracy

accuracy tolerance

(a) ResNet8-CIFAR10

110
0

220
0

330
0

111
0

222
0

333
0

222
2

333
3

60

70

80

90

SMApprox Multipliers

D
N
N
ac
cu
ra
ci
es
[%
]

Accuracies of ResNet14

before training

after training with:

our error model

additive Gaussian noise

baseline model

8b-accuracy

accuracy tolerance

(b) ResNet14-CIFAR10

Figure 6: Comparison of different approximation errormod-

els for DNN retraining.

to retraining with the behavioral simulation (from 0.06% to 0.41%

improvement in ResNet8 and from 0.02% to 0.14% in ResNet14). This

thanks to the regularization effect of the model (see sub-section

4.3), as the error variance is proportional to the MRE. We also

surpass ε in all evaluated cases. For multipliers with MRE > 7%,

we also achieve accuracy improvement, but ε is never reached.
The behavioral simulation delivers better accuracy than our error

model because of the larger noise variance introduced by it during

retraining.

5.2.2 Optimization of ResNet18 for ImageNet. We retrain the quan-

tized and approximated ResNet18 using each multiplier from Table

2 with an MRE <7%, as multipliers with larger MRE introduce very

large accuracy degradations in this network. We use SGD with a lr

of 1e − 4, and a batch size of 64. ImageNet is substantially larger
than CIFAR10, therefore we retrain only with 20% of the training

data for 2 epochs. As reported in Fig. 8, we are able to surpass the

accuracy degradation limit ε = 1% in 4 out of 6 evaluated cases.

Note that we use the full validation dataset for our evaluations.

The presented results show that our error model allows faster

DNN retraining in case of implementing approximate multipliers

with small and moderate MRE. Furthermore, our model achieves

better accuracy in these cases because the controlled and targeted

additive noise from our model acts as an additional regularizer to

110
0

220
0

330
0

111
0

222
0

333
0

222
2

333
3

60

70

80

90

SMApprox Multipliers

D
N
N
ac
cu
ra
ci
es
[%
]

Accuracies of ResNet8

before retraining

after retraining w/error model

after retraining w/behavioral simulation

8b-accuracy

accuracy tolerance

(a) ResNet8-CIFAR10

110
0

220
0

330
0

111
0

222
0

333
0

222
2

333
3

60

70

80

90

SMApprox Multipliers

D
N
N
ac
cu
ra
ci
es
[%
]

Accuracies of ResNet14

before retraining

after retraining w/error model

after retraining w/behavioral simulation

8b-accuracy

accuracy tolerance

(b) ResNet14-CIFAR10

110
0

220
0

330
0

111
0

222
0

333
0

222
2

333
3

84

86

88

90

SMApprox Multipliers

D
N
N
ac
cu
ra
ci
es
[%
]

Accuracies of ALL_CNN

before retraining

after retraining w/error model

after retraining w/behavioral simulation

8b-accuracy

accuracy tolerance

(c) ALL-CNN-CIFAR10

Figure 7: DNN accuracies after retraining with behavioral

simulation vs. retraining with error model - CIFAR10.

the original cost function [2]. Given the obtained accuracies after

retraining, by using our methodology we can deploy multipliers

such as SMApprox 3330, with energy savings of up to 36% with a

strict accuracy tolerance of 1%.

370

Efficient Accuracy Recovery in Approximate Neural Networks by Systematic Error Modelling ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

110
0

220
0

330
0

111
0

222
0

333
0

50

55

60

65

SMApprox Multipliers

D
N
N
ac
cu
ra
ci
es
[%
]

Accuracies of ResNet18

before retraining

after retraining
w/error model

after retraining
w/behavioral
simulation

8b-accuracy

accuracy
tolerance

Figure 8: ResNet18-ImageNet

Figure 9: Accuracies of retrained DNNs with behavioral sim-

ulation vs. error model - ImageNet.

5.2.3 Characteristic approximation error noise. To corroborate that

our error model differs from uncorrelated additive Gaussian noise,

we use our retrained ALL-CNN and ResNet8 with the error models

of SMApprox 2222, 1110 and 3330 to perform cross-evaluation. For

this, we use the corresponding retrained DNN with the first mul-

tiplier to perform inference using the second and third multiplier

and vice versa. Our results, presented in Table 7, show that our

error model trains the DNN specifically for the error introduced by

the corresponding multiplier and therefore results in significant im-

provement only for that approximate element, and causes accuracy

degradation otherwise.

6 SUMMARY AND CONCLUSIONS

In this work, we present a novel methodology to model the effects

of approximate multipliers in DNNs. Our proposed approximation

error model is verified by simulation on several DNNs for medium

and large-scale image classification. This error model allows for ap-

proximate DNN computation and retraining using already available

operators from any machine learning framework, as it can be ob-

tained offline from any edge device or other simulation source. We

implement our error model to accelerate approximate DNN retrain-

ing, achieving up to to 11× faster retraining for DNNs for image

classification with CIFAR10 and 8.2× faster for image classification

with ImageNet, compared to retraining with the behavioral simula-

tion. Moreover, we are able to reach an accuracy loss of less than

1%, outperforming other state-of-the-art error models. Through

this retraining step, we attain full DNN approximation for medium

and large-scale image recognition. With the obtained results, not

only an extended insight in the error introduced by approximate

multipliers was gained, but this work shall further allow significant

energy savings by deploying such approximate arithmetic circuits

on dedicated hardware accelerators for more complex DNNs.

ACKNOWLEDGMENTS

This work was funded by the ECSEL Joint Undertaking project

TEMPO, in collaboration with the European Union’s Horizon 2020

Research and Innovation Program and National Authorities, under

grant agreement No. 826655.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, et al. 2015. TensorFlow: Large-Scale

Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/
[2] Chris M. Bishop. 1995. Training with Noise is Equivalent to Tikhonov Regular-

ization. Neural Comput. (1995).
[3] C. De la Parra, A. Guntoro, and A. Kumar. 2020. ProxSim: GPU-based Simulation

Framework for Cross-Layer Approximate DNN Optimization. In DATE ’20.
[4] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.

2015. Deep Learning with Limited Numerical Precision. ICML ’15 (2015).
[5] I. Hammad et al. 2019. Deep Learning Training with Simulated Approximate

Multipliers. In ROBIO.
[6] Issam Hammad and Kamal El-Sankary. 2018. Impact of Approximate Multipliers

on VGG Deep Learning Network. IEEE Access (2018).
[7] Song Han et al. 2016. Deep Compression: Compressing Deep Neural Network

with Pruning, Trained Quantization and Huffman Coding. In ICLR ’16.
[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual

Learning for Image Recognition. CVPR ’15 (2015).
[9] Xin He et al. 2018. AxTrain: Hardware-Oriented Neural Network Training for

Approximate Inference. ISLPED ’18 (2018).
[10] Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel Pruning for Accelerating

Very Deep Neural Networks. ICCV ’17 (2017).
[11] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.

University of Toronto (2009).
[12] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database. (2010).

http://yann.lecun.com/exdb/mnist/
[13] Darryl Dexu Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. 2016. Fixed

Point Quantization of Deep Convolutional Networks. ICML ’16 (2016).
[14] M.A.Hanif et al. 2018. Error resilience analysis for systematically employing

approximate computing in convolutional neural networks. DATE ’18 (2018).
[15] Alberto Marchisio, Muhammad Hanif, Maurizio Martina, and Muhammad

Shafique. [n.d.].
[16] Vojtech Mrazek et al. 2016. Design of Power-efficient Approximate Multipliers

for Approximate Artificial Neural Networks. In ICCAD ’16.
[17] Vojtěch Mrázek, Radek Hrbáček, Zdeněk Vašíček, and Lukáš Sekanina. 2017.

EvoApprox8B: Library of Approximate Adders and Multipliers for Circuit Design
and Benchmarking of Approximation Methods. In DATE ’17.

[18] Vojtech Mrazek, Zdenek Vasícek, Lukás Sekanina, Muhammad Abdullah Hanif,
and Muhammad Shafique. 2019. ALWANN: Automatic Layer-Wise Approxi-
mation of Deep Neural Network Accelerators without Retraining. ICCAD ’19

(2019).
[19] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable

Parallel Programming with CUDA. Queue (2008).
[20] E. Park, J. Ahn, and S. Yoo. 2017. Weighted-Entropy-Based Quantization for Deep

Neural Networks. In CVPR ’17.
[21] Olga Russakovsky et al. 2015. ImageNet Large Scale Visual Recognition Challenge.

IJCV ’15 (2015).
[22] Syed Shakib Sarwar et al. 2018. Energy-Efficient Neural Computing with Ap-

proximate Multipliers. J. Emerg. Technol. Comput. Syst. (2018).
[23] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Ried-

miller. 2014. Striving for Simplicity: The All Convolutional Net. (2014).
[24] Salim Ullah, Sanjeev Sripadraj Murthy, and Akash Kumar. 2018. SMApproxLib:

Library of FPGA-based Approximate Multipliers. In DAC ’18.
[25] Swagath Venkataramani et al. 2014. AxNN: Energy-efficient neuromorphic

systems using approximate computing. ISLPED ’14 (2014).
[26] Qian Zhang et al. 2015. ApproxANN: An Approximate Computing Framework

for Artificial Neural Network. In DATE ’15.

371

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

