
1

AxOTreeS: A Tree Search Approach to Synthesizing
FPGA-based Approximate Operators

SIVA SATYENDRA SAHOO, Interuniversity Microelectronics Centre (IMEC), Belgium
SALIM ULLAH, cfaed, Technische Universität Dresden, Germany
AKASH KUMAR, cfaed, Technische Universität Dresden, Germany

Approximate computing (AxC) provides the scope for achieving disproportionate gains in a system’s power,
performance, and area (PPA) metrics by leveraging an application’s inherent error-resilient behavior (BEHAV).
Trading computational accuracy for performance gains makes AxC an attractive proposition for implementing
computationally complex AI/ML-based applications on resource-constrained embedded systems. The growing
diversity of application domains using AI/ML has also led to the increasing usage of FPGA-based embedded
systems. However, implementing AxC for FPGAs has primarily been limited to the post-processing of ASIC-
optimized approximate operators (AxOs). This approach usually involves selecting from a set of AxOs that
have been optimized for a gate-based implementation in an ASIC. While such an approach does allow
leveraging existing knowledge of ASIC-based AxO design, it limits the scope for considering the challenges
and opportunities associated with FPGA’s LUT-based computation structures. Similarly, the few works
considering the LUT-based computing for AxO design use generic optimization approaches that do not allow
integrating problem-specific prior knowledge—empirical and/or statistical. To this end, we propose a novel
tree search-based approach to AxO synthesis for FPGAs. Specifically, we present a design methodology using
Monte Carlo Tree Search (MCTS)-based search tree traversal that allows the designer to integrate statistical
data, such as correlation, into the AxOs optimization. With the proposed methods, we report improvements
over standard MCTS algorithm-based results as well as improved hypervolume for both operator-level and
application-specific DSE, compared to state-of-the-art design methodologies.

CCS Concepts: • Hardware→ Circuit optimization; Hardware accelerators; Arithmetic and datapath
circuits; Software tools for EDA; • Computing methodologies→ Randomized search.

Additional Key Words and Phrases: Approximate Computing, Arithmetic Operator Design, Circuit Synthesis,
AI-based Exploration, Computer Arithmetic, Automated Hardware Design, Monte Carlo Tree Search

ACM Reference Format:
Siva Satyendra Sahoo, Salim Ullah, and Akash Kumar. 2023. AxOTreeS: A Tree Search Approach to Synthesizing
FPGA-based Approximate Operators .ACM Trans. Embedd. Comput. Syst. 1, 1, Article 1 (January 2023), 25 pages.
https://doi.org/10.1145/3609096

1 INTRODUCTION
Historically, embedded computing had primarily focused on the timeliness of systems rather than
computational complexity. However, with the growing diversity of application domains using

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems (CASES), 2023

Authors’ addresses: Siva Satyendra Sahoo, Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium, Siva.Satyendra.
Sahoo@imec.be; Salim Ullah, cfaed, Technische Universität Dresden , Dresden, Germany, salim.ullah@tu-dresden.de; Akash
Kumar, cfaed, Technische Universität Dresden , Dresden, Germany, akash.kumar@tu-dresden.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1539-9087/2023/1-ART1 $15.00
https://doi.org/10.1145/3609096

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

HTTPS://ORCID.ORG/0000-0002-2243-5350
HTTPS://ORCID.ORG/0000-0002-9774-9522
HTTPS://ORCID.ORG/0000-0001-7125-1737
https://doi.org/10.1145/3609096
https://orcid.org/0000-0002-2243-5350
https://orcid.org/0000-0002-9774-9522
https://orcid.org/0000-0001-7125-1737
https://orcid.org/0000-0001-7125-1737
https://doi.org/10.1145/3609096

1:2 Sahoo, Ullah and Kumar

0 00

lut_0 lut_1 lut_2 lut_3 lut_4 lut_5 lut_6 lut_7 lut_8 lut_9

−1
−0

.5
0

0.
5

1

PDPLUT
AVG_ABS_REL_ERR

Feature

Co
rr

el
at

io
n

co
ef

fi
ci

en
t

 (
Re

la
ti

ve
)

(a) Signed 4x4 Multiplier

00

lut_0 lut_1 lut_2 lut_3 lut_4 lut_5 lut_6 lut_7 lut_8 lut_9

−1
−0

.5
0

0.
5

1

PDPLUT
1-ACCURACY

Feature

Co
rr

el
at

io
n

co
ef

fi
ci

en
t

 (
Re

la
ti

ve
)

(b) LPF in ECG Peak Detection
Fig. 1. AxOTreeS Motivation

Artificial Intelligence (AI) and Machine Learning (ML), embedded computing increasingly demands
executing complex inference engines on resource-constrained systems. Therefore, embedded sys-
tems deployed for edge processing typically need to provide better Power-Performance-Area (PPA)
optimization while satisfying the applications’ behavioral requirements. To this end, multiple ongo-
ing research efforts, such as TinyML [31], aim to leverage the applications’ behavioral tolerances to
optimize the design choices at/across multiple layers of the system stack. Since inference engines
primarily use Multiply-Accumulate (MAC) operations extensively, a lot of such optimization effort
at the hardware layer has been focused on precision scaling of arithmetic operations [4]. It involves
reducing the number of bits used for representing the operands (weights and/or features), thereby
enabling the usage of lower bit-width operators with better PPA trade-offs. However, precision
scaling is a generic approach and has limited scope, in terms of the number of possible bit-widths,
for implementing application-specific optimizations at the hardware layer.
Consequently, there is an increasing focus on developing methods to exploit an application’s

output accuracy tolerances at a finer granularity. Approximate Computing (AxC) provides the scope
for achieving disproportionate gains in a system’s PPA by leveraging an application’s inherent
error-resilient behavior (BEHAV). AxC across multiple layers of the computation stack includes
methods such as loop skipping and data scaling [14]. While precision scaling can also be considered
a form of approximation, we will limit the term AxC to refer to methods that deliberately inject
errors into the computation by avoiding some form of processing. In the context of arithmetic
operations, AxC would, unlike low-precision operations, entail allowing some form of errors in
the output of the arithmetic operation. Such Approximate Operators (AxOs) can be implemented
for any bit-width operation and hence provide an additional Degree of Freedom (DoF) that can
complement traditional precision scaling. Additionally, AxOs present a much broader scope for
exploiting an application’s error tolerance. However, the design of such application-specific AxO
presents a highly complex Design Space Exploration (DSE) problem.
A major aspect of the DSE problem for AxOs involves the target hardware platform-specific

optimizations. While most of the related works in AxO design are focused on Application-specific
Integrated Circuits (ASICs), the static design nature of ASICs requires the implementation of an
accurate operator alongside the approximate version. On the other hand, with Field Programmable
Gate Arrays (FPGAs), different versions of the AxO can be implemented dynamically, including
the accurate version. The reconfigurability of FPGA-based hardware platforms has resulted in their
increasing usage in embedded systems, as they can cater to the diversity of application requirements
more effectively. However, designing novel AxOs for FPGAs has primarily been limited to the
post-processing of ASIC-optimized AxOs. While such an approach allows leveraging existing
knowledge and libraries of ASIC-based AxO designs, it limits the scope for leveraging FPGA’s
Look-Up Table (LUT)-based computation structures [38, 40, 41]. A more effective approach to DSE
for FPGA-based AxO requires novel operator models and related optimization methods than those

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

AxOTreeS: A Tree Search Approach to Synthesizing FPGA-based Approximate Operators 1:3

used for ASICs. More recently, various AxO models have been proposed for enabling FPGA-specific
optimizations [36]. Similarly, AI/ML-based DSE methods have also been proposed for synthesizing
novel AxOs for FPGAs [15, 25, 36]. However, most of the proposed DSE approaches are based on
generic search methods such as Genetic Algorithms (GA) and other randomized search algorithms
that do not allow integrating prior knowledge from empirical and/or statistical analysis.

To further highlight the importance of performing various types of statistical analysis of AxOs
and considering this knowledge in exploring feasible design points, we present an accuracy-
performance correlation analysis of various 4 × 4 signed approximate multipliers. This analysis is
based on the accurate signed multiplier implementation presented in [34], which utilizes 10 LUTs to
generate the partial products of a 4× 4multiplier. Based on the AxOs implementation methodology
of removing LUTs from an accurate implementation, as discussed in [36], we have utilized the
10 LUTs to implement 1024 different approximate designs. Fig. 1 shows the relative correlation
coefficient between the utilization of each of the 10 LUTs and the PPA and BEHAVmetrics. The LUTs,
𝑙𝑢𝑡_𝑥s correspond to those used in generating the partial products of the 4 × 4 multiplier. Fig. 1(a)
and Fig. 1(b) show the results for operator-level evaluation and an application-specific analysis
by utilizing the 1024 designs in the Low-pass Filter (LPF) implementation in Electrocardiogram
(ECG) [19], respectively. As expected, utilizing any particular LUT shows a positive correlation with
the PPA metric (PDPLUT1) and a negative correlation with the BEHAV (error) metric. Therefore,
not using the 𝑙𝑢𝑡_𝑥 in the implementation would cause more error (AVG_ABS_REL_ERR 2 for
the operator and (1-Accuracy)3 for ECG peak detection). However, the varying correlation metric
indicates the relative importance of each LUT in contributing to PPA and BEHAV metrics. Similarly,
the difference in the distribution of the correlation metrics in Fig. 1(a) and Fig. 1(b) indicates
changing relative importance from an operator-level to an application-level dependency. State-of-
the-art DSE approaches do not allow using such statistical patterns in the search methodology.
To this end, we propose a novel search methodology that allows the effective integration of such
LUT-wise significance in the DSE for FPGA-based AxOs. The related contributions include:
Contributions:

(1) We present a novel tree search-based approach to synthesizing new FPGA-based approximate
operators. Specifically, we model the DSE for signed approximate multipliers as a Tree
Traversal Problem (TTP) and use Monte Carlo Tree Search (MCTS) along with ML-based
estimation for generating Pareto-front AxO designs under given PPA and BEHAV constraints.

(2) We present problem-specific adaptations to the more general MCTS approach. Specifically,
we provide knobs to include statistical information regarding LUT usage in the TTP. We
report up to 1.6x better hypervolume than using general MCTS for tightly constrained design
problems.

(3) We present the results from the evaluation of the proposed methodology for both operator-
level and application-specific DSE. We report improved Pareto-front designs than state-of-
the-art approaches for both.

The rest of the article is organized as follows. Section 2 provides a brief overview of the back-
ground and related works pertaining to designing approximate operators. The problem statements,
including the operator model used in the current work and the DSE problem formulation, are
described in Section 3. Section 4 describes the proposed AxOTreeS methodology and includes a
brief background of MCTS. The experimental evaluation of the proposed methods is presented

1Power Delay Product × LUT utilization
2Average Absolute Relative Error
3Classification error

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:4 Sahoo, Ullah and Kumar

in Section 5. Section 6 concludes the article with a summary and a brief discussion of the scope for
related future work.

2 BACKGROUND AND RELATEDWORKS
2.1 Approximate Computing
The paradigm of Approximate Computing has emerged as a viable solution to satisfy the ever-
increasing computational and memory demands of modern applications ranging from data centers
to mobile devices and embedded systems at the edge. A common attribute of most of these applica-
tions is their inherent error resilience to inaccuracies in the data representation and intermediate
computations. The inherent error resilience of these applications enables them to produce multiple
feasible answers instead of one golden answer. For example, an audio processing application on
an embedded system can employ different encoders with various precisions to produce multiple
acceptable quality outputs. AxC exploits this error resilience to trade the output accuracy of an
application for performance gains. Recent related works have explored various approximation
techniques covering all layers of the computation stack [1, 5, 13, 14, 32, 39, 44].
Among the various computation layers for approximation, the architecture and circuit layers

have acquired the most significant attention for resource-constrained embedded systems. On the
architecture level, employing reduced precision arithmetic and storage has remained one of the most
commonly utilized techniques [6, 42, 44]. Similarly, using inaccurate (approximate) computational
units is one of the most effective techniques on the circuit layer. As MAC is one of the primary
operations in ML applications (inherently error-tolerant), most related works have focused on
proposing various approximate implementations for adders and multipliers [8, 9, 16, 18, 21, 24,
30, 33, 35, 38, 43]. These techniques mainly rely on either truncating parts of computation or
utilizing inaccurate computations to introduce deliberate approximations for performance gains.
For example, the works presented in [30, 43] have utilized multiple sub-adders to truncate the long
carry propagation chain in ASIC-optimized larger adders. These designs utilize multiple previous
bits to predict the input carry for each sub-adder. Similarly, the authors of [24] have utilized different
carry and sum prediction techniques to present a set of FPGA-optimized approximate adders.
Considering the higher computational complexity of multiplication operations, most related

works have proposed various approximate architectures for both ASIC- and FPGA-optimized
architectures. For instance, the authors of [9, 21] have utilized various truncation techniques
to produce 𝑀-bit output for an M × M ASIC-optimized multiplier. Similarly, some works, such
as [8], truncate the input operands to employ a smaller multiplier to implement a larger multiplier
for ASIC-based systems. Other works, such as [10, 26], perform functional approximation to
implement ASIC-optimized inaccurate 2 × 2 multipliers. The 2 × 2 multipliers are then utilized to
implement larger multipliers. For example, the authors of [16, 18] have utilized Cartesian Genetic
Programming (CGP) to present libraries of ASIC-optimized approximate adders and multipliers. In
their proposed technique, they utilize a set of accurate implementations of an operator and perform
multiple iterations of the CGP to generate corresponding approximate circuits. For this purpose, the
accurate circuits are represented using a string of integers, and a worst-case error-based objective
function is used to generate various approximate versions of a circuit. Considering the architectural
specifications of FPGAs, the works presented in [33, 35, 38] have utilized the LUTs and carry chains
of Xilinx FPGAs to propose various approximate multiplier architectures. The authors of [35] have
presented a 4× 4 approximate multiplier to implement higher-order multipliers. Similarly, the work
presented in [33] utilizes three different designs of FPGA-optimized approximate 4×4multipliers to
implement a higher-order approximate multipliers library. However, this work does not provide an
intelligent DSE mechanism for identifying design points that provide better accuracy-performance

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

AxOTreeS: A Tree Search Approach to Synthesizing FPGA-based Approximate Operators 1:5

Table 1. Comparing related works

Related Work EvoApprox [16, 18] autoAx [15] ApproxFPGA [23] [29] [38] AppAxO [36] SyFAxO-GeN [25] AxOTreeS

LUT-level
Optimization ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Application-specific
Design Search ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓

Automated
Search ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓

ML-based
Estimation ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Directed
Search ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

trade-offs. The authors of [38] have utilized radix-4 Booth’s algorithm to present an approximate
signed multiplier implementation. In their proposed implementation, the authors initially focus
on efficiently utilizing the 6-input LUTs and the associated carry chains to propose a resource-
efficient implementation of the signed multiplier. Furthermore, to reduce the critical path delay and
dynamic power consumption of the implementation, the authors employ truncation of selected
partial produce bits in each partial product row. To improve the output accuracy of the approximate
multiplier, the authors include functional approximation by selectively changing the functionality
of a few LUTs in each partial product row. However, such manual optimization techniques are
time-consuming for designing and implementing an approximate operator with different specified
accuracy-performance constraints.

2.2 DSE for Approximate Operators
Some recent works, such as [16, 18, 33], provide libraries consisting of hundreds of approximate
versions of an operator with varying accuracy-performance trade-offs. Therefore, in many cases,
it is necessary to identify feasible operator implementations that can satisfy an application’s
overall accuracy-performance constraints. Table 1 provides an overview of some of the related
frameworks for performing design space exploration of approximate operators. Each row in the
table specifies a certain aspect or method used in the DSEmethodology for each of these frameworks.
For example, the work presented in [18] utilizes a worst-error-based objective to identify ASIC-
optimized feasible design points. Another similar work proposed in [29] focuses on identifying the
largest sub-circuit that can be removed from an accurate implementation to produce an approximate
version that complies with the provided accuracy constraints. For this purpose, this work formulates
sub-circuit identification as a binary tree exploration problem. It employs various techniques to
assign weights to all nodes in the original netlist to compute the accuracy impact of removing
a set of nodes. However, these works do not include the generation of approximate operators
while considering application-level accuracy and performance constraints. Furthermore, these
works do not employ ML-based fast estimators to predict the accuracy and performance metrics
of the generated design points, and therefore may not be feasible for accelerator-level DSE that
involves long characterization times. The authors of [17] have used CGP to design ASIC-optimized
unsigned approximate multipliers for Artificial Neural Networks (ANNs). However, this work has
not considered the performance metrics, such as dynamic power consumption, while generating
the new designs. The work presented in [15] utilizes the approximate operators from [18] to
present a framework for application-specific DSE for approximate adders. Similarly, the authors
of [23] employ various ML models to identify feasible ASIC-based operators for implementing
them on FPGA-based systems. In this work, the various ML models are initially trained using a
dataset including the performance values of implementing ASIC operators (from [18]) for FPGAs.
In the testing and estimation phase, the authors use the trained models to infer the FPGA-based

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:6 Sahoo, Ullah and Kumar

performance values for a given hardware description of the operator. However, this work, along
with [15, 16, 18], does not focus on performing any FPGA-specific LUT-level optimizations to
improve the implementation of the operator. They rely on the library of ASIC-optimized operators
as the power set of operators that can be implemented on FPGAs. This limits the scope of application-
specific optimizations that be explored during DSE. Further, limiting the exploration to the library of
existing implementations, typically a few hundred designs, does not warrant ML-based estimators
and can be evaluated exhaustively.

The authors of [38] have used GA to identify feasible operator implementations (accurate and ap-
proximate) for a Gaussian image smoothing application. However, this work focuses on identifying
the combination of feasible operators from a comparatively smaller set of approximate implemen-
tations and does not consider the PPA metrics, such as power and the resulting accelerator’s logic
delay, during DSE. The framework presented in [36] leverages various ML models and GA-based
multi-objective optimization technique to implement application-specific FPGA-optimized approxi-
mate versions of accurate operators. The operator model proposed in [36] uses a binary string to
address the LUTs in the accurate implementation of an operator, and the corresponding approximate
versions of the operator are generated by removing targeted LUTs. The ML models employed in
this framework act as surrogate functions to estimate the accuracy-performance metrics for a given
approximate operator configuration. An improved model that integrates two multiplier algorithms,
Booth and Baugh-Wooley, has also been presented recently [37]. However, the proposed approach
uses only the implicit search directions, derived during the metaheuristics-based randomized search
of GA, to find novel approximate implementations. The work presented in [25] has used Generative
Adversarial Networks (GANs) to identify operator configurations satisfying provided accuracy-
performance constraints. However, the proposed approach uses a fairly open-loop approach where
the newly explored designs are not used for improving the subsequent search.
Summary: As shown in Table 1, in general, the works related to DSE for FPGA-based AxOs can be
categorized broadly into – 1) the ones that follow the selection approach which involves leveraging
ASIC-optimized logic [15, 23] and, 2) the ones that perform LUT-level optimization for synthesizing
novel AxOs that may differ logically from ASIC optimized ones [25, 33, 36, 38]. The FPGA-specific
synthesis approaches can further be categorized into works that use handcrafted optimizations
resulting in one or two novel designs [38] and those using automated search methods to generate a
library of operators [25, 33, 36]. Works such asAppAxO [36] and SyFAxO-GeN [25] essentially aim to
automate the approach proposed in [38]. This involves identifying the top power consuming LUTs
and selecting a subset of the LUTs for removal from the optimized accurate implementation while
providing the best PPA-BEHAV trade-offs. They, along with [15, 23], use ML-based PPA and BEHAV
metrics estimation and, rely on the search algorithm to decipher the operator/application-specific
PPA-error trade-offs provided by each LUT, in order to find the optimal approximate configuration
(LUT usage). They do not provide any methods of explicitly directing the related search towards
design points with better trade-offs. The search directions are implicitly derived from the iterative
search algorithm such as GA [36], random sampling [15], or sampling with generative models [25].
The characterization data of the sampled approximation configurations is limited to just designing
regression models for predicting PPA and BEHAV metrics. Since the iterative search algorithm
determines the PPA-BEHAV trade-offs from predictive models, that are primarily designed for
fitness evaluation of each approximate configuration,we posit that the search process can be improved
with information derived from statistical/empirical analysis of design characterization data and using
the resulting LUT-wise significance . To this end, we propose AxOTreeS, a methodology that allows
the integration of the results of such analyses.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

AxOTreeS: A Tree Search Approach to Synthesizing FPGA-based Approximate Operators 1:7

LUT

A1B1

LUT

A2B2

LUT

A0B0

O5O6O5O6O5O6
0

S0S1S2Cout

A
c
c
u
r
a
t
e

A
p
p
r
o
x
i
m
a
t
e

selective

LUT removal

LUT

A1B1

LUT

A2B2

LUT

A0B0

O5O6O5O5O6
0

0O6=1

0
S0S1S2Cout

Fig. 2. Approximating a 3 − 𝑏𝑖𝑡 unsigned adder design. Selective removal of LUTs results in approximate
implementations of the AxOs. The unused LUTs can be utilized by other components of the designs.

3 PROBLEM FORMULATION
3.1 Operator Model
For the current article, we use an operator model similar to that proposed in [36] and also used
in [25]. Accordingly, any FPGA-based arithmetic operator can be represented by an ordered tuple
O𝑖 (𝑙0, 𝑙1, ..., 𝑙𝑙 , ..., 𝑙𝐿−1),∀𝑙𝑙 ∈ {0, 1}. The term 𝑙𝑙 represents whether the LUT corresponding to the
operator’s accurate implementation is being used or not and 𝐿 represents the total number of LUTs
of the accurate implementation that may be removed to implement approximation. Removing a
LUT from the accurate implementation means that the target LUT does not receive any inputs
and does not contribute to the computations. So, the accurate implementation can be represented
as O𝐴𝑐 (1, 1, ..., 1). For instance, the accurate implementation of the 3-bit unsigned adder, shown
in Fig. 2, is represented by the tuple (1,1,1). Similarly, O = {O𝑖 } represents the set of all possible
implementations of the operator. Therefore, the set O for the adder shown in the figure is { (0,0,0),
(0,0,1), (0,1,0),(0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)}. The approximate implementation in the figure
corresponds to the tuple (1,0,1). In this operator modeling and implementation technique, removing
a LUT will always result in a 0 value assigned to the output bit. For example, for approximate adder
configuration (1,0,1), output bit S1 is assigned a constant value of 0. Furthermore, the associated
carry chain element of a LUT removed from the computation is employed only to forward the
preceding carry-out signal to the following carry chain element. An arbitrary operator/application’s
behavior can be abstracted by a function S. So, the operator/application output for a set of inputs
can be outlined as shown in Eq. (1). The term 𝐸𝑟𝑟O𝑖 represents the error in the operator/application’s
behavior as a result of using an approximate operator O𝑖 compared to using the accurate operator
O𝐴𝑐 . Similarly, the operator/accelerator’s hardware performance can be abstracted as a set of
functions as shown in Eq. (2). Similar to S, the functionsH𝑊 ,H𝑈 andH𝐶 abstract the physical
characterization-based estimates for power dissipation, LUT utilization, and Critical Path Delay
(CPD) of any arbitrary approximate operator O𝑖 respectively.

𝑂𝑢𝑡O𝑖 = S(O𝑖 , 𝐼𝑛𝑝𝑢𝑡𝑠); 𝑂𝑢𝑡O𝐴𝑐
= S(O𝐴𝑐 , 𝐼𝑛𝑝𝑢𝑡𝑠)

𝐸𝑟𝑟O𝑖 = 𝑂𝑢𝑡O𝐴𝑐
−𝑂𝑢𝑡O𝑖

(1)

𝑃𝑜𝑤𝑒𝑟 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 : WO𝑖 = H𝑊 (O𝑖 , 𝐼𝑛𝑝𝑢𝑡𝑠)
𝐿𝑈𝑇 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 : UO𝑖 = H𝑈 (O𝑖)

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑃𝑎𝑡ℎ 𝐷𝑒𝑙𝑎𝑦 : CO𝑖 = H𝐶 (O𝑖)
𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑙𝑎𝑦 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 : 𝑃𝐷𝑃O𝑖 =WO𝑖 × CO𝑖

𝑃𝐷𝑃𝐿𝑈𝑇O𝑖 =WO𝑖 ×UO𝑖 × CO𝑖

(2)

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:8 Sahoo, Ullah and Kumar

PPA BEHAV

VPF
Configs

1 0 1 10 1

1 0 1 10 1

Operator Model
(Section 3.1)

Approximate
Configurations

Feature
Importance Estimators

MCTS-based Design
Space Exploration
(Section 4.3, 4.4)

Novel
Configs

G
en

er
al

 M
C

T
S

Im
p

o
rt

an
ce

aw

ar
e

M
C

T
S

Pareto
Filtering

PPF
Configs

Design Implementation & Characterization

Statistical Analysis
(Section 4.1)

Random Sampling

Application Objectives & Constraints

Fig. 3. AxOTreeS Methodology

3.2 Design Space Exploration
The constrained search problem, with behavioral accuracy (BEHAV) and/or PPA constraints, is
shown in Eq. (3), where 𝐵𝑀𝐴𝑋 and 𝑃𝑀𝐴𝑋 refer to the BEHAV (error) and PPA metric constraints
respectively. Eq. (3) represents a typical multi-objective optimization problem with the goal of
finding design solutions that minimize two objectives. A variety of methods are adopted by different
optimization tools to achieve the minimization of more than one metric. They include but are not
limited to, minimizing a weighted sum of the objectives, solving multiple problems that constrain
one objective and minimize the other, minimizing for one objective and then using the solution to
minimize the other, etc. For the current article, we use hypervolume metrics obtained by the PPA
and BEHAV metric of each design point as the single metric that is used to drive the optimization. It
must be noted that the same DSE methodology to search for feasible Pareto-optimal solutions may
deploy any of these methods of multi-objective optimization. While Eq. (3) represents the traditional
approach opted for this optimization problem, we propose to include LUT-wise significance in the
optimization. Therefore, the corresponding objective is shown in Eq. (4), where the set FL encodes
the importance for each LUT being explored in the design, in terms of its impact on the PPA and
BEHAV metrics.

minimize
O𝑖 ∈O

(𝐵𝐸𝐻𝐴𝑉 O𝑖 , 𝑃𝑃𝐴O𝑖)

𝑠 .𝑡 . 𝐵𝐸𝐻𝐴𝑉 O𝑖 ≤ 𝐵𝑀𝐴𝑋 𝑎𝑛𝑑 𝑃𝑃𝐴O𝑖 ≤ 𝑃𝑀𝐴𝑋

(3)

minimize
O𝑖 ∈O

((𝐵𝐸𝐻𝐴𝑉 O𝑖 , 𝑃𝑃𝐴O𝑖) | FL) (4)

4 AXOTREES
The various aspects of AxOTreeS are shown in Fig. 3. Similar colored arrows indicate the infor-
mation/data flow for each sub-process in the methodology. For instance, Random Sampling uses
the operator model to generate the approximate configurations that serve as the training set for
the models. The designs corresponding to the selected approximate configurations are then imple-
mented, both as standalone operators and as part of applications/accelerators and characterized to
generate the PPA and BEHAV data. Statistical Analysis involves using the characterization data for
generating the ML-based fitness function estimators and LUT-wise significance metrics such as

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

AxOTreeS: A Tree Search Approach to Synthesizing FPGA-based Approximate Operators 1:9

correlation coefficients and feature importance in the ML-based regression models. The ML-based
estimators and the LUT-wise significance metrics are used by the MCTS-based DSE, along with the
application-specific PPA and BEHAV constraints, to provide a set of Pareto-front design points.
This Pareto-front, referred to as Pseudo Pareto-front (PPF), is based on the metrics predicted by the
regression models, and the corresponding designs are then characterized to generate the Validated
Pareto-front (VPF) approximate design configurations. The primary contributions, as highlighted
in the figure, include modeling the DSE for FPGA-based AxOs as a Tree Traversal Problem (TTP)
and enabling integrating LUT-wise significance into the search algorithm. Each of these aspects of
AxOTreeS is explained next.

4.1 Statistical Analysis
4.1.1 Estimator design. The statistical estimation of LUT-wise significance metrics and ML-based
estimator design form an integral part of the proposed AxOTreeS methodology. While the proposed
MCTS-based search methods (described in Sections 4.3 and 4.4) allow the integration of prior
knowledge, the requisite problem-specific information is obtained during the statistical analysis.
For this purpose, we characterized ∼ 2000 randomly generated approximate signed 8 × 8 multiplier
designs with the Baugh-Wooley multiplier’s operator model. The characterized dataset was used
within an AutoML [22] tool to explore various types of ML-based regression models. The models
with the lowest Root Mean Squared Error (RMSE) errors were chosen for the estimator modeling.
While training the selected estimators, both RMSE and R2 scores across the training and testing
datasets were considered. Trained models with similar R2 scores for both the training and testing
datasets were used in the methodology. Mathematically, the ML-based estimators can be abstracted
as approximators of true characterization, as shown in Eq. (5). Each PPA and BEHAV metric can be
abstracted as a predictive function, characterized by the training dataset and the ML algorithm.
Therefore, each of the functions (abstracting physical characterization) in Eq. (2) can be abstracted
into its ML-based counterpart as shown in Eq. (5).

𝑃𝑃𝐴 𝑀𝑒𝑡𝑟𝑖𝑐 : 𝑃𝑃𝐴O𝑖 ≈ 𝑃𝑀𝐿 (O𝑖)
𝐵𝐸𝐻𝐴𝑉 𝑀𝑒𝑡𝑟𝑖𝑐 : 𝐵𝐸𝐻𝐴𝑉 O𝑖 ≈ �̂�𝑀𝐿 (O𝑖)

𝑆𝑜 :

H𝑊 (O𝑖 , 𝐼𝑛𝑝𝑢𝑡𝑠) ≈ Ĥ𝑊 (O𝑖 ,W𝑀𝐿 (𝑇𝑅𝐴𝐼𝑁))

H𝑈 (O𝑖) ≈ Ĥ𝑈 (O𝑖 ,U𝑀𝐿 (𝑇𝑅𝐴𝐼𝑁))

H𝐶 (O𝑖) ≈ Ĥ𝐶 (O𝑖 , C𝑀𝐿 (𝑇𝑅𝐴𝐼𝑁))
H𝑊 (O𝑖 , 𝐼𝑛𝑝𝑢𝑡𝑠) × H𝐶 (O𝑖) ≈ ˆ𝑃𝐷𝑃 (O𝑖 , 𝑃𝐷𝑃𝑀𝐿 (𝑇𝑅𝐴𝐼𝑁))

H𝑊 (O𝑖 , 𝐼𝑛𝑝𝑢𝑡𝑠) × H𝐶 (O𝑖) × H𝑈 (O𝑖) ≈ ˆ𝑃𝐷𝑃𝐿𝑈𝑇 (O𝑖 , 𝑃𝐷𝑃𝐿𝑈𝑇𝑀𝐿 (𝑇𝑅𝐴𝐼𝑁))

(5)

4.1.2 LUT-wise significance . The trained ML models for the PPA and BEHAV metric provide fast
surrogates of the fitness function and have been used extensively in DSE problem solving both for
AxOs and in general. However, in AxOTreeS we use the ML models additionally for extracting
LUT-wise significance metrics. We compute the global SHapley Additive exPlanations (SHAP)
values for each LUT and normalize the values across the features to obtain each LUT’s relative
importance in determining the PPA and BEHAV metric. SHAP [12] is a mathematical method, based
on game theory, to provide explanations for each prediction (local) and to compute the importance
of each feature for predictions (global). SHAP is being used extensively in explainable AI and
can be used in AI-based Electronic Design Automation (EDA) to improve related search methods.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:10 Sahoo, Ullah and Kumar

INFEASOPTIMALFEAS

(a) Search tree (b) Breadth First Search (c) Depth First Search (d) Heuristics-based Search
Fig. 4. Tree Traversal methods

Additionally, we also compute to correlation coefficient between the LUTs and the metrics from true
characterization data. The SHAP values and the correlation coefficient can be used in AxOTreeS to
improve the MCTS-based search algorithm. Eq. (6) and (7) show two ways of generating the overall
LUT-wise significance metrics, FL , that is used in the optimization problem shown in Eq. (2). It
involves using either the maxima or a weighted sum of the PPA, 𝑓𝑙 (𝑃𝑃𝐴) , and BEHAV, 𝑓𝑙 (𝐵𝐸𝐻𝐴𝑉) ,
metrics for each LUT 𝑙 .

F𝑚𝑎𝑥𝑙 :𝑚𝑎𝑥 (𝑓𝑙 (𝑃𝑃𝐴) , 𝑓𝑙 (𝐵𝐸𝐻𝐴𝑉))
FL = {F𝑚𝑎𝑥𝑙 } ∀𝑙 ∈ {0, 1, ..., 𝐿 − 1}

(6)

F𝑤𝑠𝑢𝑚𝑙 : 𝑤𝑃𝑃𝐴 × 𝑓𝑙 (𝑃𝑃𝐴) + (1 −𝑤𝑃𝑃𝐴) × 𝑓𝑙 (𝐵𝐸𝐻𝐴𝑉)
FL = {F𝑤𝑠𝑢𝑚𝑙 } ∀𝑙 ∈ {0, 1, ..., 𝐿 − 1}

(7)

4.2 Monte Carlo Tree Search
A Tree Traversal Problem (TTP) usually involves modeling the problem as a sequence of decisions
and searching for the leaf node that fulfills the problem’s objectives. So, while each leaf node
encodes a set of choices for all the decisions, every non-leaf node encodes a subset of such choices.
As shown in Fig. 4(a), each of the leaf nodes can be categorized as feasible (FEAS) or infeasible
(INFEAS) depending upon whether it satisfies the problem-specific constraints. While finding any
FEAS leaf node is sufficient for a Constraint Satisfaction Problem (CSP), minimization problems also
search for the OPTIMAL leaf node, the best among the FEAS nodes. Exhaustive search approaches
such as Breadth First Search (BFS) and Depth First Search (DFS), as shown in Fig. 4(b) and Fig. 4(c)
respectively, look to expand all the leaf nodes iteratively while storing a portion of the search tree
in memory. The arrows in the figure indicate the general direction in which the nodes of the search
tree are expanded. Although exhaustive search methods guarantee finding the optimal solution,
such methods are too costly for large design problems. For instance, as seen in Fig. 4(b), the BFS
approach needs to store all the nodes in the tree, except the last level, in order to start expanding
even the first leaf node.

Alternatively, heuristics-based search methods aim to reach the optimal leaf node by expanding as
few nodes of the search tree as possible. As shown in Fig. 4(d), such methods aim to use information
regarding each expanded node as a guide to moving towards the OPTIMAL leaf node. For instance,
A-star search [7] involves designing some problem-specific heuristics to traverse the search tree
more intelligently than expanding every possible node. Monte Carlo Tree Search (MCTS) is one
such heuristics-based search method where the problem-specific heuristics are derived from random
simulations of pending decisions. So, the quality of each non-leaf node is estimated from the quality

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

AxOTreeS: A Tree Search Approach to Synthesizing FPGA-based Approximate Operators 1:11

TREE

POLICY

DEFAULT

POLICY

Selection Expansion Simulation
Back-

propagation

Fig. 5. MCTS stages [3]

of the leaf node obtained by such Monte Carlo simulations over the duration of the search. MCTS
includes the following processes, as shown in Fig. 5:
• Tree policy: It involves selecting the appropriate non-leaf node to perform the Monte Carlo
simulations from. It encodes the consideration of the trade-offs between exploration and
exploitation to determine the best node to expand.
• Expansion: It refers to the process of adding a new node based selected by the Tree policy.
• Default policy: It refers to the rollout or Monte Carlo simulation from any expanded node to
a leaf node.
• Backpropagation: It entails estimating the quality of the leaf node resulting from a rollout
and updating the rewards for nodes upstream from the rollout node.

Although fairly recent, MCTS-based search optimization is already being used in EDA prob-
lems [28]. However, most of such approaches are limited to using either standard problem-agnostic
MCTS or introducing some form of parallelism into the rollouts. In contrast, we focus on improv-
ing the guided search from existing characterization data, and the AxOTreeS approach can the
combined with complementary approaches such as parallel MCTS [11, 27].

4.3 MCTS-based DSE
4.3.1 Modelling DSE as a TTP. Based on the operator model for the approximation of the 3-bit
unsigned adder shown in Fig. 2, Fig. 6(a) shows the set of all possible approximate LUT configu-
rations. It includes the accurate configuration (111) and the 7 approximate configurations. In the
tree, the sequence of decisions from the root node is as follows: Configure LUT:0→ for each of
the decision (1→ use, 0→ remove), Configure LUT:1→ Configure LUT:2 for each configuration
decision of LUT:1. While for the small design, we could list out all the possible configurations, for
a larger design, for example, the 36 configurable LUTs in a signed 8 × 8 multiplier, it would be
infeasible to do so. Therefore, within a given computational budget, we would be able to expand the
search tree only partially. It must be noted that for any arbitrary non-leaf node (say Nx) the sub-tree
downstream to it denotes the exploration of other decisions given the decision already encoded in
Nx. Therefore, in a partially expanded search tree the LUT that we decide to configure first, say
LUT:0, would also denote the maximum exploration of design decisions for each configuration of
LUT:0.
Since we do not have any prior information regarding the optimal order in which the LUTs

should be configured, we include the decision regarding the same, as part of the tree search.
Consequently, Fig. 6(b) shows the completely expanded search tree for the 3-bit adder with this
decision tree model. As seen in the figure, the design decisions in the search tree alternate between
selecting the LUT to configure next and what configuration to use for the selected LUT. As can
be seen from the figure, it results in a much larger search tree and the number of leaf nodes is 6
times that of the original search tree. The redundant configurations are shown in different colors
in the table at the bottom of the figure. It must be noted that this approach of using the Select as an

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:12 Sahoo, Ullah and Kumar

R

L:0

0 1

L:1

C0

L:2

11110000

11001100

10101010

L:0
L:1

L:2

0 0

0 0 0 0

1 1

1111

(a) Config

2:Config

1:Select

3:Select

R

L:1

0 1 0 1 0 1

0 1 0 1 0 1 0 1
L
:
2

L
:
2

L
:
1

L
:
1

L
:
2

L
:
2

L
:
1

L
:
1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1

0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1

0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

L:0

L:1

L:2

L
:
2

L
:
2

L
:
0

L
:
0

L
:
2

L
:
2

L
:
0

L
:
0

L
:
1

L
:
1

L
:
0

L
:
0

L
:
1

L
:
1

L
:
0

L
:
0

5.Select

6.Config

4.Config

C1 C2 C3 C4 C5 C6Redundant sets of leaf node configurations:

(b) Select & Config

Fig. 6. Decision trees for approximating a 3-bit unsigned adder implementation (a) The decision includes
how to Configure each LUT and follows a fixed/randomized order among the LUTs (b) The decisions include
Selecting the LUT to be configured next and Configuring the LUT to be used/removed in the approximate
operator implmentation

Algorithm 1. MCTS [3]
1: functionMCTS-SEARCH(𝑠0)
2: create root node 𝑛0 with state 𝑠0
3: loop
4: while within computational budget do
5: 𝑛𝑙 ← 𝑇𝑟𝑒𝑒𝑃𝑜𝑙𝑖𝑐𝑦 (𝑛0)
6: 𝑟𝑙 ← 𝐷𝑒𝑓 𝑎𝑢𝑙𝑡𝑃𝑜𝑙𝑖𝑐𝑦 (𝑠 (𝑛𝑙))
7: 𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 (𝑛𝑙 , 𝑟𝑙)
8: end while
9: end loop
10: return 𝑎(𝐵𝑒𝑠𝑡𝐶ℎ𝑖𝑙𝑑 (𝑛0))

Fig. 7. Approximate partial product generation
in signed 4x4 multiplier

additional design decision results in a much larger search tree. However, as we shall show from the
experiments, following a fixed order (similar to the search tree in Fig. 6(a)) can result in degraded
search results for larger designs.

4.3.2 General MCTS-based DSE. The general MCTS algorithm is shown in Algorithm 1. We use
the accurate implementation of the signed 4 × 4 multiplier, presented in [35], to demonstrate
the various steps and different types of MCTS methods discussed in this article. Fig. 7 shows an
approximate version of the partial product generator used in the same design. In the configuration
shown in the figure, 3 of the 10 LUTs in the accurate version are configured to be not used, as
depicted by the shaded LUTs. Similarly, any approximate configuration would be generated by a
different combination of the usage of the 10 LUTs, a total of 1024 designs. Fig. 8 shows the search
tree generated from the first 30 iterations of using the general MCTS algorithm in the search for
corresponding approximate configurations.
In MCTS, for each iteration, the algorithm starts from the root node, denoting the state where

no decisions regarding the usage of the LUTs have been finalized. Fig. 8(a) shows the search tree
after the first 10 iterations. These 10 iterations are used to expand one node for each of the 10
possible LUTs that can be used to select the first LUT to configure. The rectangular boxes show
the leaf node generated from each iteration, as a result of the rollout from the newly expanded
node in that iteration. The red and green color indicates configurations as infeasible and feasible

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

AxOTreeS: A Tree Search Approach to Synthesizing FPGA-based Approximate Operators 1:13

e0

e1

0

e2

1

e3

2

e4

3

e5

4

e6

5

e7

6

e8

7

e9

8

e10

9

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9

(a) # Iterations: 10

e0

e1

0

e2

1

e3

2

e4

3

e5

4

e6

5

e7

6

e8

7

e9

8

e10

9

l0 l1

e11

0

e12

1

l2

e13

0

e14

1

l3 l4 l5 l6 l7 l8 l9l10 l11

e15

0

l12 l13l14

(b) # Iterations: 15

e0

e1

0

e2

1

e3

2

e4

3

e5

4

e6

5

e7

6

e8

7

e9

8

e10

9

e11

0

e12

1

e13

0

e14

1

e30

0

e17

0

e15

0

e16

1

e19

2

e20

4

e21

5

e22

6

e23

7

e24

8

e25

9

e18

0

e26

0

e27

1

e28

0

e29

0

(c) # Iterations: 30
Fig. 8. Progression of the flatMCTS-based search tree

P
P
A

→

BEHAV →

D1

R

D2

TOT_HV({𝐃_𝟏 , 𝐃_𝟐})

EX_HV(𝐃𝟏) EX_HV(𝐃𝟐)

(a) Hypervolume

P
P
A

→

BEHAV →

F(BF,PF)

I1(B1,P1)

I2(B2,P2)

I3(B3,P3)

R(BR,PR)

(b) Reward Model
Fig. 9. Reward model used in MCTS-based DSE of AxOTreeS. (a) Hypervolume measures: Total hypervolume
(TOV_HV) and Exclusive hypervolume (EX_HV) (b) Reward/Penalty for feasible and infeasible solutions

respectively, based on the PPA and BEHAV constraints of the problem. For a given leaf node, which
denotes a complete configuration of the 10 LUTs, ML-based estimators are used to estimate the
PPA and BEHAV metrics 4. Based on the estimated metrics, a reward is assigned to the leaf node
which is then backpropagated to all the nodes in the path from the root to the newly expanded
node, as shown in Fig. 5. The reward assigned to a leaf node should ideally encode the information
regarding the feasibility of the configuration of the leaf node as well as a measure of the goodness
of the configuration, in order to direct the search towards the OPTIMAL leaf node.

Fig. 9 shows the use of hypervolume metrics in formulating the reward for each leaf node of the
search tree. Hypervolume is one of the more widely used metrics in multi-objective optimization
and can be used in two contexts during DSE— for evaluating each design point in isolation, and
for evaluating a set of design points. Fig. 9(a) shows the measure of hypervolume in each of these
contexts. It plots two design points, 𝐷1 and 𝐷2, in terms of their resulting BEHAV and PPA metrics
(for any arbitrary BEHAV and PPA measure). The exclusive hypervolume of each of these points is
shown as rectangular areas with a dashed outline. It is quantified by the area swept by the design
point and a reference point 𝑅. For more objectives (> 2), it would be measured by the hypervolume
swept by the design point and a reference point. In isolation, the exclusive hypervolume of a design
point denotes the quality of the design point in terms of minimizing both design metrics. For a set
of design points, say {𝐷1, 𝐷2}, Fig. 9(a) also shows the total hypervolume of the set as a six-sided
polygon determined by the area swept by each of the design points in the set. It can be noted
from the figure that computing the total hypervolume does not duplicate the overlapping exclusive
hypervolume and therefore is not impacted by any newly discovered point lying within the existing
hypervolume.

4It should be noted that actual design implementation and characterization can be used instead of ML-based estimation. For
the signed 4× 4 multiplier, we characterized all the 1024 configurations and use that table to determine the PPA and BEHAV
metrics for each leaf node.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:14 Sahoo, Ullah and Kumar

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

T
o
t
a
l

H
y
p
e
r
v
o
l
u
m
e

E
x
c
l
u
s
i
v
e

H
y
p
e
r
v
o
l
u
m
e

Iterations

Isolated Hypervolume Total Hypervolume

(a) flatMCTS

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

T
o
t
a
l

H
y
p
e
r
v
o
l
u
m
e

E
x
c
l
u
s
i
v
e

H
y
p
e
r
v
o
l
u
m
e

Iterations

Isolated Hypervolume Total Hypervolume

(b) descMCTS

Fig. 10. Progression of the hypervolume for the General MCTS-based search trees

Fig. 9(b) shows the reward model used in the current article. We use the exclusive hypervolume
of the leaf node design as the reward metric. The point 𝑅(𝐵𝑅, 𝑃𝑅) denotes the constraints imposed
by 𝐵𝐸𝐻𝐴𝑉𝑀𝐴𝑋 and 𝑃𝑃𝐴𝑀𝐴𝑋 . So, for any feasible design point, 𝐹 (𝐵𝐹 , 𝑃𝐹), the area swept between
𝐹 and 𝑅 denotes the exclusive hypervolume. For infeasible design points, similar to 𝐼1(𝐵1, 𝑃1),
𝐼2(𝐵2, 𝑃2), and 𝐼3(𝐵3, 𝑃3), we use the negative of the area swept between 𝑅 and the infeasible point
as the reward. Therefore, the sign of the reward serves as the indicator of the feasibility of the
design point. Similarly, the magnitude of the reward value serves as the indicator of the goodness of
the design point. Together, the sign and the magnitude should direct the search toward leaf nodes
that are feasible and have higher exclusive hypervolume.

Fig. 8(b) shows the search tree expanded after the next 5 iterations (11 to 15) along with all the 15
leaf nodes. As can be seen, 5 new nodes are expanded. Since all possible decisions at the root node
(which LUT to select for deciding its configuration) have been expanded in the first 10 iterations.
The decision regarding which note to expand is based on the Tree policy. Fig. 8(c) shows only the
expanded modes of the search tree after 30 iterations. It contains 30 expanded nodes (excluding the
root node) and the tree is expanded asymmetrically (neither BFS nor DFS). Fig. 10(a) shows the
progression of the hypervolume values from the leaf nodes across the 30 iterations. The negative
values denote the exclusive hypervolume of the infeasible points (3 within the first 10 iterations).
The total hypervolume denotes the Pareto-front hypervolume of the leaf node designs accumulated
after each iteration.
As shown in Fig. 8, in the progression of the search tree in the MCTS algorithm described

above, the traversal in each iteration starts at the root node. We shall refer to this algorithm as the
flatMCTS method. Alternatively, Fig. 11 shows another approach where the 30 iterations are evenly
split into 3 stages of 10 iterations each. The first stage is similar to that in flatMCTS. However, after
the first stage, the best child node from the root node is selected as the root node for all iterations in
the second stage. This process is repeated after each stage. The three sub-figures in Fig. 11 show the
10 expanded nodes and the leaf nodes for each stage. This process is similar to making decisions for
each move in a game where the next move is based on the current game-state instead of the initial
stage of the game where no moves have been made, which is equivalent to the flatMCTS approach.
We shall refer to this method as the descending MCTS (descMCTS). Fig. 10(b) shows the progression
of exclusive and total hypervolume of designs for descMCTS method with the 3 stages demarcated
by dashed vertical lines.

4.4 Problem-specific adaptations
The flatMCTS and descMCTS methods described above represent standard MCTS algorithms and
do not encode any problem-specific adaptations. They are similar to general game-playing agents
that learn the requisite skill for each game through trial and error only. In this section, we propose

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

AxOTreeS: A Tree Search Approach to Synthesizing FPGA-based Approximate Operators 1:15

e0

e1

0

e2

1

e3

2

e4

3

e5

4

e6

5

e7

6

e8

7

e9

8

e10

9

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9

(a) # Iterations: 10

e0

e1

0

e2

1

e3

0

l0

e4

0

e5

1

e6

3

e7

4

e8

5

e9

6

e10

7

l1l2 l3 l4 l5 l6 l7 l8 l9

(b) # Iterations: 20

e0

e1

0

e2

1

e3

3

e4

4

e5

5

e6

6

e7

7

e8

8

e9

9

l0 l1 l2 l3 l4

e10

0

l5 l6 l7 l8l9

(c) # Iterations: 30
Fig. 11. Progression of the descMCTS-based search tree

some problem-specific adaptations to the MCTS-based search for FPGA-based AxOs. The proposed
adaptations stem from the drawbacks observed from the experiments with the standard MCTS
methods as discussed next.

4.4.1 Enabling deeper search tree expansion. In both the general MCTS methods, all the possible
child nodes are expanded before exploring the sub-tree associated with any single child node. This
approach does not have much of an adverse impact in case of fewer possible design decision choices,
for example for the 0/1 choices for the Configure LUT decisions. However, for a larger number of
choices, this translates to most of the leaf nodes being generated from a longer rollout. For instance,
in the case of the signed 8 × 8 multiplier with 36 configurable LUTs, all 36 choices of the Select LUT
for configuration decision have to be expanded before moving to the next level of decision making.
Similarly, every time the search method encounters a node where the next decision is Select LUT,
all the possible child nodes are expanded first before exploring further design decisions for any
single child node. As a result, most of the leaf nodes are generated with a majority of the design
decisions being taken by randomization rather than by learned heuristics.

In order to alleviate this issue, we use two potential solution approaches. The first one involves
limiting the maximum number of child nodes for the Select LUT decisions. While this limits the
exploration of all the design decision choices at the higher levels (closer to the root node) we
leverage the fact that with the proposed modeling there are multiple paths from the root node to
any leaf node configuration, as was shown in Fig. 6(b). In fact, Fig. 6(a) and 6(b) represent the corner
cases of this method as we can vary the maximum child nodes from 1 to the number of LUTs that
are being configured in the design. Additionally, we also explore the method of pre-configuring a
subset of the LUTs to 0s or 1s prior to the MCTS-based search. This is equivalent to starting the
game from a non-initial state and helps in enabling deeper searches in the tree.

4.4.2 Using LUT-specific statistical information. Both methods/modifications described above allow
the use of LUT-specific prior knowledge in the tree search. Specifically, the order in which we
explore the choices for the Select LUT decision determines the impact of which LUT’s configuration
is being explored more in the search tree. We use a combination of the PPA- and BEHAV-related
feature importance (correlation coefficients or SHAP values) metric of the LUTs to generate this
ordering. The combination could be the maximum of the PPA and BEHAV metrics or a weighted
sum of the same, as was shown in Eqs. (6), (7). It must be noted that using such problem-specific
adaptations introduces additional hyperparameters in the DSE methodology. While determining
the appropriate configuration for these hyperparameters is beyond the scope of this article, we
evaluate the impact of the variations of the hyperparameters in the next section. Also, given
sufficient computation resources, sweeping across these hyperparameters can provide approximate
configurations that would potentially result in better-quality of solutions than those obtained
through random sampling.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:16 Sahoo, Ullah and Kumar

Table 2. ML-based estimator design results

Design Operator: Signed 8x8 Mult

Metric,

Model

PDPLUT,

Neural Network

AVG_ABS_ERR,

CatBoost

Metric TRAIN TEST TRAIN TEST

MSE 21306485 34957179 0.00216 0.15873

MAE 3531 4465 0.03504 0.27673

R2 0.9936 0.98986 0.99998 0.99857

Application: ECG

PDPLUT,

LinReg

1-Accuracy,

XGBoost

TRAIN TEST TRAIN TEST

8.57E+12 8.54E+12 1.00E-05 0.00051

2321377 2308061 0.00097 0.01156

0.82811 0.83909 0.99698 0.89285

Application: GAUSS

PDPLUT,

LinReg

AVG_PSNR_RED,

CatBoost

TRAIN TEST TRAIN TEST

2.3E+14 2.65E+14 0.07485 0.21495

11781306 12819703 0.17331 0.28081

0.9765 0.9726 0.98819 0.96595

Table 3. Top-5 ranked LUTs based on each metric

Rank CorrPPA CorrBEHAV MaxScaledCORR SumScaledCorr ShapPPA ShapBEHAV MaxRelSHAP SumRelSHAP

1 lut_25 lut_34 lut_25 lut_25 lut_25 lut_34 lut_25 lut_34
2 lut_29 lut_35 lut_29 lut_29 lut_32 lut_35 lut_34 lut_25
3 lut_34 lut_33 lut_34 lut_31 lut_29 lut_33 lut_32 lut_33
4 lut_33 lut_26 lut_33 lut_24 lut_30 lut_26 lut_29 lut_35
5 lut_31 lut_32 lut_31 lut_28 lut_28 lut_32 lut_30 lut_32

5 EXPERIMENTS AND RESULTS
5.1 Experiment Setup
For the statistical analysis, the approximate design configurations of signed 8 × 8 multiplier for
training were generated, from the data provided in [36]. These configurations are implemented in
VHDL and synthesized for the 7𝑉𝑋330𝑇 device of the Virtex-7 family using Xilinx Vivado 19.2.
The synthesis and implementation of each configuration involved multiple executions where we
updated the critical path constraint according to the previously achieved critical path slack to
obtain highly precise CPD and dynamic power consumption values for each design. The dynamic
power is computed by recording the dynamic switching activity for all possible input combinations
of the multiplier configurations. For this purpose, we have used Vivado Simulator and Power
Analyzer tools. The MCTS and DSE methods are implemented in Python, utilizing packages such
as PyGMO [2] and Scikit [20] among others.

5.2 Statistical Analysis
5.2.1 Estimator Design. Table 2 shows the MLmodels used for the PPA and BEHAVmetrics for both
operator-level and application-specific DSE. As mentioned earlier, we use the signed 8×8multiplier
as a test case to evaluate the proposed methods. Similarly, the ECG peak detection (employing 1D
convolution for LPF in an accelerator) and gaussian image smoothing (using a line buffer-based
2D convolution accelerator) were used for evaluating application-specific DSE. It must be noted
that we use the two applications using the signed 8 × 8 multiplier only to test the methods and the
accelerator designs are not contributions of the current article. As mentioned before, AutoML [22]
was used to select the specific estimators. It can be noted that the PPA estimators report large
regression error values. This can be attributed to the PDPLUT being the product of three different
PPA metrics and therefore has large values. We train the models with the hyperparameters provided
by the AutoML tool and the only input into the modeling involved efforts to attain similar R2 scores
for the training and testing dataset along with reduced RMSE values for both.

5.2.2 Feature Importance. In addition to generating the ML-based estimators, we used the charac-
terization data to generate LUT-wise significance metrics. The dataset was used directly to generate
the correlation coefficients between each LUT’s usage and the PPA and BEHAV metrics, similar to
that shown in Fig. 1. Further, we used the trained ML models to generate the global SHAP values

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

AxOTreeS: A Tree Search Approach to Synthesizing FPGA-based Approximate Operators 1:17

1

6

11

16

21

26

31

36

R
A
N
K
I
N
G

lut_0 lut_1 lut_2 lut_3 lut_4 lut_5 lut_6 lut_7 lut_8

lut_9 lut_10 lut_11 lut_12 lut_13 lut_14 lut_15 lut_16 lut_17

lut_18 lut_19 lut_20 lut_21 lut_22 lut_23 lut_24 lut_25 lut_26

lut_27 lut_28 lut_29 lut_30 lut_31 lut_32 lut_33 lut_34 lut_35

lut_34

lut_25

lut_35

lut_30

lut_28

lut_33

lut_32

lut_29

lut_31

lut_16

lut_24

lut_14

lut_15

lut_13

lut_12

lut_17

lut_10

lut_7

lut_27

lut_20

lut_11

lut_21

lut_23

lut_8

lut_19

lut_2

lut_6

lut_5

lut_9

lut_26

lut_22

lut_3

lut_4

lut_18

lut_1

lut_0

Fig. 12. Ranking LUTs based on LUT-wise significance metrics

1

5

9

13

17

21

25

29

33

1

5

9

13

17

21

25

29

33

1

5

9

13

17

21

25

29

33

1

6

11

16

21

26

31

36

OP APP

Correlation: PPA Correlation: BEHAV SHAP: PPA SHAP: BEHAV

OP APP OP APP OP APP

Fig. 13. Comparing LUT-wise significance for operator and application level

for each LUT. These LUT-specific statistics were used to rank the LUTs and resulting the ranking
data was used in different scenarios. Fig. 12 shows the bump-chart of the LUTs ranking under
different criteria such as correlation coefficient with PPA (CorrPPA) and BEHAV (CorrBEHAV), the
maxima of both (MaxScaledCorr), the sum of scaled correlation values (scaled between 0 and 1),
(SumScaledCorr) and similar metrics with SHAP values. As can be seen from the figure, from data
corresponding to the signed 8× 8multiplier’s operator-level metrics, the importance of LUTs varies
widely between PPA and BEHAV metrics. Table 3 lists the top-5 ranked LUTs based on each criteria.
It can be noted that LUTs 25 and 29, and, 34,35, and 33 rank highly in PPA- and BEHAV-related
statistics respectively. The slope-chart shown in Fig. 13 compares the ranking of LUTs, using the
same statistical LUT-wise significance metric, for the operator- and application-level PPA and
BEHAV metrics. The ECG data were used for the application-specific (APP) rankings. Only the
SHAP values for BEHAV show some consistency among the top-ranked LUTs. The wide variation
shown in the figure also motivates the need for the application-specific AxO design.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:18 Sahoo, Ullah and Kumar

0

500

1000

1500

2000

2500

3000

3500

4000

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1 2 3 4 5 6 7 8 9 10 12 15 20 25 30

T
o
t
a
l

D
S
E

t
i
m
e

(
i
n

s
)

R
e
l
a
t
i
v
e

M
a
x
i
m
u
m

H
y
p
e
r
v
o
l
u
m
e

Descending Levels

Rel Max HV(0.5,0.5) Rel Max HV(0.8,0.8)

Rel Max HV(1.2,1.2) DSE_TIME(0.5,0.5)

DSE_TIME(0.8,0.8) DSE_TIME(1.2,1.2)

(a) flatMCTS vs. descMCTS

0

200

400

600

800

1000

1200

1400

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

T
o
t
a
l

D
S
E

t
i
m
e

(
i
n

s
)

R
e
l
a
t
i
v
e

M
a
x
i
m
u
m

H
y
p
e
r
v
o
l
u
m
e

Preset LUTs

Max HV(0.5,0.5) Max HV(0.8,0.8)

Max HV(1.2,1.2) DSE_TIME(0.5,0.5)

DSE_TIME(0.8,0.8) DSE_TIME(1.2,1.2)

(b) Presetting LUT usage to 1
Fig. 14. Comparison of maximum hypervolume (relative) and DSE execution times for different variations of
the proposed AxOTreeS methods in the search for approximate signed 4× 4multipliers. The figures show the
comparison of results for three different problems, one for each set constraint scaling factor (0.5,0.5), (0.8,0.8),
(1.2,1.2) (a) Relative hypervolume w.r.t. the maximum hypervolume reported across different numbers of
descending levels for each problem. (b) Relative hypervolume w.r.t. the maximum hypervolume reported
across different numbers preset LUTs for each problem.

5.3 MCTS Analysis
MCTS, similar to other randomized algorithms, uses random sampling. Therefore, to provide a better
evaluation of the effectiveness of MCTS and the proposed methods, we executed the DSE search
for signed 4× 4 approximate multipliers 50 times for 600 iterations each. Since it provides a smaller
problem size (10 LUTs compared to 36 in 8 × 8 multiplier), we could perform multiple executions of
the related search. Further, we used a scaling factor of the maximum PPA and BEHAV values in
the training dataset, as constraints to the optimization problem. In the rest of the discussion, the
scaling factors are often shown as tuples comprising PPA and BEHAV scaling factors.

For instance Fig. 14(a) compares the maximum hypervolume obtained by flatMCTS and descM-
CTS under a varying number of descending levels for the constrained searches with scaling factors
of 0.5x, 0.8x, and 1.2x for the signed 4 × 4 multiplier. The secondary vertical axis also reports the
total elapsed time for the 50 runs of 600 iterations each. The data for the number of descending
levels equal to 1 denotes the flatMCTS. As evident from the figure, using more levels results in
increasing maximum hypervolume obtained during the search. This can be attributed to the deeper
searches possible with descMCTS. However, at very high values, the quality of the resulting design
points starts to reduce. This is due to very few simulations being used to determine the best child
for the next stage. For instance, with 5 levels, 120 simulations are used in each stage. However, only
20 simulations are used to determine the best child in the case of 30 levels. Fig. 14(b) shows the
effect of presetting some LUTs, based on the ordering as per SumScaledCorr. As can be seen from
the figure, having more LUTs preset reduces the random sampling required during the rollout and
hence requires less time. However, except for a few number of LUTs being preset, the hypervolume
reported from the search reduces considerably.
Fig. 15 shows the effect of the number of levels and the presets on the progress of the search

method for constraints with a scaling factor of 1.2x for both PPA and BEHAV. As seen in Fig. 15(a),
the search with 5 levels improves the hypervolume even after 500 iterations while the one with 30
levels flattens out after around 300 iterations. Similarly, having preset LUTs results in the search
beginning with good quality designs (better hypervolume) but cannot find better designs in further
iterations as the preset LUTs can curtail the exploitable design space. For instance, having 3 preset
LUTs begins with a better hypervolume than with zero, but flattens out after around 100 iterations.

Fig. 16 shows the impact of using the proposed problem-specific adaptations in the DSE for signed
8 × 8 approximate multipliers. Fig. 16(a) shows the relative hypervolume (compared to maximum)

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

AxOTreeS: A Tree Search Approach to Synthesizing FPGA-based Approximate Operators 1:19

0.94

0.95

0.96

0.97

0.98

0.99

1

0 100 200 300 400 500 600

A
v
e
r
a
g
e

T
o
t
a
l

H
y
p
e
r
v
o
l
u
m
s

(
r
e
l
a
t
i
v
e
)

Iterations

Levels: 1 # Levels: 5

Levels: 10 # Levels: 20

Levels: 25 # Levels: 30

(a) flatMCTS vs. descMCTS

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

5 25 45 65 85 105 125 145

A
v
e
r
a
g
e

T
o
t
a
l

H
y
p
e
r
v
o
l
u
m
s

(
r
e
l
a
t
i
v
e
)

Iterations

Presets: 0 # Presets: 1 # Presets: 2

Presets: 3 # Presets: 4 # Presets: 5

(b) Presetting LUT usage to 1
Fig. 15. Comparison of the progress of the DSE in terms of the hypervolume (relative) for variations of the
proposed AxOTreeS methods in the search for approximate signed 4× 4multipliers. (a) The values are relative
to the maximum final total hypervolume obtained across the DSE runs with varying numbers of descending
levels. (b) The values are relative to the maximum final total hypervolume obtained across the DSE runs with
varying numbers of preset LUTs.

as the limit on the maximum possible child nodes for Select LUT decisions is varied from 1 to 36 in
the flatMCTS approach. The bound of 36 essentially translates to General MCTS. The line plots
correspond to varying constraint scaling values (equal for both PPA and BEHAV). As seen in the
figure, the best hypervolume is usually obtained at lower bounds on the expansion, specifically for
tighter constraints. Also, the reduced quality of hypervolume for the upper-bound of 1, shows the
limitations of not using the Select LUT decision as part of the search tree. Similarly, Fig. 16(b) shows
the relative hypervolume when using the MaxRelSHAP as the ranking metric, while using different
expansion limits for varying constraints. The relative hypervolume is compared to that using no
ordering/ranking information. As shown in the figure, oven even for flatMCTS with no limits (up to
36 expandable nodes for Select LUT), using the ordering information improves the hypervolume (up
to 1.6x), specifically for tighter constraints (0.2x). Therefore the proposed methods of integrating
LUT-wise significance information in the search can improve the DSE results significantly.

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1 11 21 31

R
e
l
a
t
i
v
e

H
y
p
e
r
v
o
l
u
m
e

Maximum Nodes Limit

CONST: 0.2 CONST: 0.5

CONST: 0.8 CONST: 1.2

CONST: 1.5

(a) flatMCTS with bounded expansion

0

0
.
1
7

0
.
3
5

0
.
0
2

1
.
6

1
.
1
2

0
.
9
3

0
.
9
9

1
.
1
5

0
.
9
5

1
.
0
1

0
.
9
3

0
.
9
7

1
.
0
1

1
.
0
4

0
.
9
7

0
.
9
9

1 1
.
0
3

10
.
9
8

0
.
9
9

0
.
9
8

0
.
9
8

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 6 12 18 36

R
e
l
a
t
i
v
e

H
y
p
e
r
v
o
l
u
m
e

Maximum Nodes Limit

CONST: 0.2
CONST: 0.8

CONST: 0.5
CONST: 1.2

CONST: 1.5

(b) Search using LUT importance information
Fig. 16. Comparison of relative hypervolume for proposed methods of limiting the number of expansion nodes
for Select LUT decision and using ordering/ranking information in the search. The results correspond to the
DSE for signed 8 × 8 approximate multipliers. (a) Changing maximum (relative) hypervolume with changing
upper-bound on the number of child node expansion. The values are relative to the maximum hypervolume
reported for each problem (with a different constraint scaling factor for PPA and BEHAV) across a varying
number of maximum child nodes (b) Relative hypervolume in an importance-aware search compared to one
without using any LUT-wise significance metrics. The values are relative to the hypervolume reported with a
DSE search not using any LUT-wise significance metric, for each problem.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:20 Sahoo, Ullah and Kumar

TRAIN AppAxO EvoApprox AxOTreeS

Const: (0.5,0.5) Const: (0.8,0.8) Const: (1.2,1.2) Const: (1.5,1.5)

Fig. 17. Comparing the Pareto-front hypervolume of signed 8 × 8 multipliers generated with AxOTreeS to
that in the training set and related works. Const: (𝑥 ,𝑥) refers to the constraints set to 𝑥 times the maximum
PPA and BEHAV metric in the TRAIN dataset.

Const: (0.5,0.5) Const: (0.8,0.8) Const: (1.2,1.2)

TRAIN
All Points

Pareto-Front

AppAxO

All Points

Pareto-Front

EvoApprox

All Points

Pareto-Front

AxOTreeS
All Points

Pareto-Front

Fig. 18. Comparing the separate Pareto-fronts of signed 8 × 8 multipliers generated with AxOTreeS to that
in the training set and related works. Const: (𝑥 ,𝑥) refers to the constraints set to 𝑥 times the maximum PPA
and BEHAV metric in the TRAIN dataset.

5.4 Comparing with State-of-the-art
5.4.1 Operator-level DSE. Fig. 17 shows the comparison of the Pareto-front hypervolume (total
hypervolume) of the signed 8×8multiplier AxOs reported by AxOTreeS , that in the training dataset
(TRAIN) and those reported in AppAxO [36] and EvoApprox [16]. Each set of bar plots refers to the
solutions generated for a problem with the 𝐵𝑀𝐴𝑋 and 𝑃𝑀𝐴𝑋 in Eq. (3) set by the constraint scaling
factors (Const) and the maximum PPA and BEHAV value in the training dataset. By varying the
constraint scaling, we can evaluate the efficacy of the DSE method for different types of problems.
Better results at lower values of Const signify a method’s ability to find design points that minimize
both objectives considerably. Similarly, the performance of the method for loosely-constrained
problems shows the ability of the method to exploit large tolerances to error in generating low-cost
implementations. As shown in Fig. 17, with AxOTreeS , we report improved hypervolume than
TRAIN and AppAxO across all problems. 161 new approximate operators were characterized to
obtain the results for AxOTreeS. Fig. 18 shows the separate Pareto-fronts obtained with each method
for the different problems. As evident from the figure, both AppAxO and AxOTreeS obtain additional
design points by increasing the AVG_ABS_REL_ERR, obtained by removing additional LUTs from
the implementation, resulting in lower PDPLUT. While EvoApprox results in a better Pareto-front,
it is limited to a fixed library of designs and cannot generate more designs to leverage higher error
tolerances. As was reported in AppAxo, the current operator model suffers from the lack of the

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

AxOTreeS: A Tree Search Approach to Synthesizing FPGA-based Approximate Operators 1:21

Const: (0.5,0.5) Const: (0.8,0.8) Const: (1.2,1.2) Const: (1.5,1.5)

TRAIN AppAxO EvoApprox AxOTreeS

Fig. 19. Comparing the Pareto-front hypervolume of signed 8×8multipliers generated for ECG peak detection
with AxOTreeS to that in the training set and related works. Const: (𝑥 ,𝑥) refers to the constraints set to 𝑥
times the maximum PPA and BEHAV metric in the TRAIN dataset.

Const: (0.5,0.5) Const: (0.8,0.8) Const: (1.2,1.2)

TRAIN All Points

Pareto-Front
AppAxO All Points

Pareto-Front
EvoApprox

All Points

Pareto-Front AxOTreeS
All Points

Pareto-Front

Fig. 20. Comparing the separate Pareto-fronts of signed 8 × 8 multipliers generated for ECG peak detection
with AxOTreeS to that in the training set and related works. Const: (𝑥 ,𝑥) refers to the constraints set to 𝑥
times the maximum PPA and BEHAV metric in the TRAIN dataset.

LUT’s init configuration as a DoF and hence performs poorly compared to EvoApprox. However, the
limited DoF is still sufficient to extract beneficial PPA-BEHAV trade-offs for application-specific
DSE primarily by leveraging loosely constrained behavioral accuracy requirements.

5.4.2 Application-specific DSE. Similar to Fig. 17 for operator-level DSE, Fig. 19 and Fig. 21 show
the comparison of the separate Pareto-front hypervolume for application-specific DSE for ECG and
GAUSS respectively. The results for these are derived from 97 and 69 new approximate configu-
rations of signed 8 × 8 multipliers respectively for ECG and GAUSS. For ECG, where AxOs were
used in the LPF of peak detection, EvoApprox shows better results only for the tightly constrained
problem–Const:(0.5,0.5). For all other cases, LUT-level optimization-based approaches, AppAxO and
AxOTreeS, perform better, with AxOTreeS showing higher hypervolume than AppAxO across all
cases. As seen in the Pareto-fronts in Fig. 20, for loosely-constrained problems, AxOTreeS generates
new design points at the cost of behavioral accuracy.
In the case of Gaussian smoothing, as seen in Fig. 21, AxOTreeS reports considerably higher

hypervolume than EvoApprox across all problems. Only two design points of EvoApprox are present
on the separate Pareto-front estimations, as seen in Fig. 22. Fig. 23 shows the combined Pareto-
front design points, where the design points across the methods are collected together and the
contribution of points from each method is shown. As seen in the figure, all points of EvoApprox
are subsumed by the LUT-level optimization methods, AppAxO and AxOTreeS, and hence do not
show on the combined Pareto-fronts. The application-specific DSE results highlight the importance

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:22 Sahoo, Ullah and Kumar

Const: (0.5,0.5) Const: (0.8,0.8) Const: (1.2,1.2) Const: (1.5,1.5)

TRAIN AppAxO EvoApprox AxOTreeS

Fig. 21. Comparing the Pareto-front hypervolume of signed 8×8multipliers generated for Gaussian Smoothing
with AxOTreeS to that in the training set and related works. Const: (𝑥 ,𝑥) refers to the constraints set to 𝑥
times the maximum PPA and BEHAV metric in the TRAIN dataset.

Const: (0.5,0.5) Const: (0.8,0.8) Const: (1.2,1.2)

TRAIN
All Points

Pareto-Front

AppAxO

All Points

Pareto-Front

EvoApprox

All Points

Pareto-Front

AxOTreeS
All Points

Pareto-Front

Fig. 22. Comparing the separate Pareto-fronts of signed 8 × 8 multipliers generated for Gaussian Smoothing
with AxOTreeS to that in the training set and related works. Const: (𝑥 ,𝑥) refers to the constraints set to 𝑥
times the maximum PPA and BEHAV metric in the TRAIN dataset.

Const: (0.5,0.5) Const: (0.8,0.8) Const: (1.2,1.2)

TRAIN All Points

Pareto-Front
AppAxO All Points

Pareto-Front
EvoApprox

All Points

Pareto-Front AxOTreeS
All Points

Pareto-Front

Fig. 23. Comparing the combined Pareto-fronts of signed 8× 8multipliers generated for Gaussian Smoothing
with AxOTreeS to that in the training set and related works. Const: (𝑥 ,𝑥) refers to the constraints set to 𝑥
times the maximum PPA and BEHAV metric in the TRAIN dataset.

of a platform-aware design methodology to extract the most usable benefits from approximate
computing. A methodology that can generate novel designs tailored for an application/use case
would always be more beneficial than selecting just from already existing design points.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

AxOTreeS: A Tree Search Approach to Synthesizing FPGA-based Approximate Operators 1:23

6 CONCLUSION
The current article proposes a methodology for leveraging the statistical analysis of design char-
acterization data for improving the efficacy of the DSE for FPGA-based approximate computer
arithmetic. The proposed approach improves upon the traditional usage of characterization data
just for the design of regression models to predict the PPA and BEHAV metrics during iterative
optimization searches. The proposed methodology uses MCTS as the optimization algorithm of
choice. Although MCTS is primarily envisaged as a problem-agnostic optimization algorithm,
AxOTreeS introduces problem-specific adaptations to MCTS. The LUT-wise significance results,
derived from the statistical analysis of the characterization data, drive these adaptations and, as
reported in the article, result in improved quality of designs from the corresponding DSE. We also
report improved quality of results than those reported in related works for both operator-level
and application-specific DSE, especially for more loosely constrained optimization problems. It
must be noted that, although tested with a specific operator model, the contributions of the article
are orthogonal to the operator model and its complexity. The problem-agnostic nature of generic
MCTS and the proposed statistical analysis methods make the approach in AxOTreeS complimen-
tary to any operator model that allows automated synthesis from an approximate configuration
representation. However, the proposed methods also introduce multiple hyperparameters such
as the depth of the descMCTS method, the number of LUTs to be preset, the upper bound of the
expansion stage for the choice of the next LUT to configure, etc. Similar to other metaheuristic
optimization methods, finding the appropriate combination of hyperparameters poses a challenge.
The current article focuses primarily on the following aspects - adapting MCTS for problem-

specific improvements and using the characterization data more effectively in the DSE. Further
research related to the first aspect could involve developing heuristics for deciding the appropriate
set of hyperparameters for a problem. Similarly, research into the second aspect may include
using the recent advances in AI/ML methods such as generative AI, explainable AI5, and other
data analysis methods to extract additional knowledge from the characterization data. A rather
straightforward extension of the current work may entail initializing a partial search tree for MCTS
from the already existing characterization data. Further, parallel MCTS can be implemented for the
current problem statement.

ACKNOWLEDGEMENT
This work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the X-ReAp project
(Project number 380524764).

REFERENCES
[1] Sara Achour and Martin C Rinard. 2015. Approximate computation with outlier detection in topaz. Acm Sigplan

Notices 50, 10 (2015), 711–730.
[2] Francesco Biscani and Dario Izzo. 2020. A parallel global multiobjective framework for optimization: pagmo. Journal

of Open Source Software 5, 53 (2020), 2338. https://doi.org/10.21105/joss.02338
[3] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling, Philipp Rohlfshagen,

Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree Search
Methods. IEEE Transactions on Computational Intelligence and AI in Games 4, 1 (2012), 1–43. https://doi.org/10.1109/
TCIAIG.2012.2186810

[4] Vincent Camus, Christian Enz, and Marian Verhelst. 2019. Survey of Precision-Scalable Multiply-Accumulate Units
for Neural-Network Processing. In 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems
(AICAS). 57–61. https://doi.org/10.1109/AICAS.2019.8771610

[5] Vinay Kumar Chippa, Debabrata Mohapatra, Kaushik Roy, Srimat T Chakradhar, and Anand Raghunathan. 2014.
Scalable effort hardware design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22, 9 (2014), 2004–2016.

5SHAP analysis used here forms a part of explainable AI

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.21105/joss.02338
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/AICAS.2019.8771610

1:24 Sahoo, Ullah and Kumar

[6] Siddharth Gupta, Salim Ullah, Kapil Ahuja, Aruna Tiwari, and Akash Kumar. 2020. Align: A highly accurate adaptive
layerwise log_2_lead quantization of pre-trained neural networks. IEEE Access 8 (2020), 118899–118911.

[7] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the Heuristic Determination of Minimum
Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4, 2 (1968), 100–107. https://doi.org/10.1109/TSSC.
1968.300136

[8] Soheil Hashemi, R Iris Bahar, and Sherief Reda. 2015. DRUM: A dynamic range unbiased multiplier for approximate
applications. In 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 418–425.

[9] Hou-Jen Ko and Shen-Fu Hsiao. 2011. Design and Application of Faithfully Rounded and Truncated Multipliers With
Combined Deletion, Reduction, Truncation, and Rounding. IEEE Transactions on Circuits and Systems II: Express Briefs
58, 5 (2011), 304–308. https://doi.org/10.1109/TCSII.2011.2148970

[10] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. 2011. Trading Accuracy for Power with an Underdesigned
Multiplier Architecture. In 2011 24th Internatioal Conference on VLSI Design. 346–351. https://doi.org/10.1109/VLSID.
2011.51

[11] Anji Liu, Yitao Liang, Ji Liu, Guy Van den Broeck, and Jianshu Chen. 2020. On effective parallelization of monte carlo
tree search. arXiv preprint arXiv:2006.08785 (2020).

[12] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model Predictions. In Advances in
Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Eds.). Curran Associates, Inc., 4765–4774. http://papers.nips.cc/paper/7062-a-unified-approach-to-
interpreting-model-predictions.pdf

[13] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie Enright Jerger. 2015. Doppelgänger: a cache for
approximate computing. In Proceedings of the 48th International Symposium on Microarchitecture. 50–61.

[14] Sparsh Mittal. 2016. A Survey of Techniques for Approximate Computing. ACM Comput. Surv. 48, 4, Article 62 (March
2016), 33 pages. https://doi.org/10.1145/2893356

[15] Vojtech Mrazek, Muhammad Abdullah Hanif, Zdenek Vasicek, Lukas Sekanina, and Muhammad Shafique. 2019.
AutoAx: An Automatic Design Space Exploration and Circuit Building Methodology Utilizing Libraries of Approximate
Components. In Proceedings of the 56th Annual Design Automation Conference 2019 (Las Vegas, NV, USA) (DAC ’19).
Association for Computing Machinery, New York, NY, USA, Article 123, 6 pages. https://doi.org/10.1145/3316781.
3317781

[16] Vojtech Mrazek, Radek Hrbacek, Zdenek Vasicek, and Lukas Sekanina. 2017. EvoApprox8b: Library of Approximate
Adders and Multipliers for Circuit Design and Benchmarking of Approximation Methods. In Design, Automation Test
in Europe Conference Exhibition (DATE), 2017. 258–261. https://doi.org/10.23919/DATE.2017.7926993

[17] Vojtech Mrazek, Syed Shakib Sarwar, Lukas Sekanina, Zdenek Vasicek, and Kaushik Roy. 2016. Design of Power-
Efficient Approximate Multipliers for Approximate Artificial Neural Networks. In Proceedings of the 35th International
Conference on Computer-Aided Design (Austin, Texas) (ICCAD ’16). Association for Computing Machinery, New York,
NY, USA, Article 81, 7 pages. https://doi.org/10.1145/2966986.2967021

[18] Vojtech Mrazek, Lukas Sekanina, and Zdenek Vasicek. 2020. Libraries of Approximate Circuits: Automated Design and
Application in CNN Accelerators. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 10, 4 (2020),
406–418. https://doi.org/10.1109/JETCAS.2020.3032495

[19] Jiapu Pan and Willis J. Tompkins. 1985. A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical
Engineering BME-32, 3 (1985), 230–236. https://doi.org/10.1109/TBME.1985.325532

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V.
Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[21] Nicola Petra, Davide De Caro, Valeria Garofalo, Ettore Napoli, and Antonio G. M. Strollo. 2010. Truncated Binary
Multipliers With Variable Correction and Minimum Mean Square Error. IEEE Transactions on Circuits and Systems I:
Regular Papers 57, 6 (2010), 1312–1325. https://doi.org/10.1109/TCSI.2009.2033536

[22] Aleksandra Płońska and Piotr Płoński. 2021. MLJAR: State-of-the-art Automated Machine Learning Framework for
Tabular Data. Version 0.10.3. https://github.com/mljar/mljar-supervised

[23] Bharath Srinivas Prabakaran, Vojtech Mrazek, Zdenek Vasicek, Lukas Sekanina, and Muhammad Shafique. 2020.
ApproxFPGAs: Embracing ASIC-Based Approximate Arithmetic Components for FPGA-Based Systems. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). https://doi.org/10.1109/DAC18072.2020.9218533

[24] Bharath Srinivas Prabakaran, Semeen Rehman, Muhammad Abdullah Hanif, Salim Ullah, Ghazal Mazaheri, Akash
Kumar, and Muhammad Shafique. 2018. DeMAS: An efficient design methodology for building approximate adders
for FPGA-based systems. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE). 917–920. https:
//doi.org/10.23919/DATE.2018.8342140

[25] Rohit Ranjan, Salim Ullah, Siva Satyendra Sahoo, and Akash Kumar. 2023. SyFAxO-GeN: Synthesizing FPGA-Based
Approximate Operators with Generative Networks. In Proceedings of the 28th Asia and South Pacific Design Automation

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1109/TCSII.2011.2148970
https://doi.org/10.1109/VLSID.2011.51
https://doi.org/10.1109/VLSID.2011.51
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://doi.org/10.1145/2893356
https://doi.org/10.1145/3316781.3317781
https://doi.org/10.1145/3316781.3317781
https://doi.org/10.23919/DATE.2017.7926993
https://doi.org/10.1145/2966986.2967021
https://doi.org/10.1109/JETCAS.2020.3032495
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1109/TCSI.2009.2033536
https://github.com/mljar/mljar-supervised
https://doi.org/10.1109/DAC18072.2020.9218533
https://doi.org/10.23919/DATE.2018.8342140
https://doi.org/10.23919/DATE.2018.8342140

AxOTreeS: A Tree Search Approach to Synthesizing FPGA-based Approximate Operators 1:25

Conference (Tokyo, Japan) (ASPDAC ’23). Association for Computing Machinery, New York, NY, USA, 402–409.
https://doi.org/10.1145/3566097.3567891

[26] Semeen Rehman, Walaa El-Harouni, Muhammad Shafique, Akash Kumar, Jorg Henkel, and Jörg Henkel. 2016.
Architectural-space exploration of approximate multipliers. In 2016 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 1–8. https://doi.org/10.1145/2966986.2967005

[27] Kamil Rocki and Reiji Suda. 2011. Large-Scale Parallel Monte Carlo Tree Search on GPU. In 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd Forum. 2034–2037. https://doi.org/10.1109/IPDPS.
2011.370

[28] Siva Satyendra Sahoo and Akash Kumar. 2021. Using Monte Carlo Tree Search for EDA – A Case-study with Designing
Cross-layer Reliability for Heterogeneous Embedded Systems. In 2021 IFIP/IEEE 29th International Conference on Very
Large Scale Integration (VLSI-SoC). 1–6. https://doi.org/10.1109/VLSI-SoC53125.2021.9606987

[29] Ilaria Scarabottolo, Giovanni Ansaloni, and Laura Pozzi. 2018. Circuit carving: A methodology for the design of
approximate hardware. In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). 545–550. https:
//doi.org/10.23919/DATE.2018.8342067

[30] Muhammad Shafique, Waqas Ahmad, Rehan Hafiz, and Jörg Henkel. 2015. A Low Latency Generic Accuracy Config-
urable Adder. In Proceedings of the 52nd Annual Design Automation Conference (San Francisco, California) (DAC ’15).
Association for ComputingMachinery, NewYork, NY, USA, Article 86, 6 pages. https://doi.org/10.1145/2744769.2744778

[31] Muhammad Shafique, Theocharis Theocharides, Vijay Janapa Reddy, and Boris Murmann. 2021. TinyML: Current
Progress, Research Challenges, and Future Roadmap. In 2021 58th ACM/IEEE Design Automation Conference (DAC).
1303–1306. https://doi.org/10.1109/DAC18074.2021.9586232

[32] Salim Ullah and Akash Kumar. 2023. Introduction: Approximate Arithmetic Circuit Architectures for FPGA-based Systems.
Springer International Publishing, Cham, 1–26. https://doi.org/10.1007/978-3-031-21294-9_1

[33] Salim Ullah, Sanjeev Sripadraj Murthy, and Akash Kumar. 2018. SMApproxlib: Library of FPGA-Based Approximate
Multipliers. In Proceedings of the 55th Annual Design Automation Conference (San Francisco, California) (DAC ’18).
Association for Computing Machinery, New York, NY, USA, Article 157, 6 pages. https://doi.org/10.1145/3195970.
3196115

[34] Salim Ullah, Tuan Duy Anh Nguyen, and Akash Kumar. 2020. Energy-efficient low-latency signed multiplier for
FPGA-based hardware accelerators. IEEE Embedded Systems Letters 13, 2 (2020), 41–44.

[35] Salim Ullah, Semeen Rehman, Muhammad Shafique, and Akash Kumar. 2021. High-Performance Accurate and
Approximate Multipliers for FPGA-based Hardware Accelerators. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (2021), 1–1. https://doi.org/10.1109/TCAD.2021.3056337

[36] Salim Ullah, Siva Satyendra Sahoo, Nemath Ahmed, Debabrata Chaudhury, and Akash Kumar. 2022. AppAxO:
Designing Application-specific Approximate Operators for FPGA-based Embedded Systems. ACM Transactions on
Embedded Computing Systems (TECS) (2022).

[37] Salim Ullah, Siva Satyendra Sahoo, and Akash Kumar. 2023. CoOAx: Correlation-Aware Synthesis of FPGA-Based
Approximate Operators. In Proceedings of the Great Lakes Symposium on VLSI 2023 (Knoxville, TN, USA) (GLSVLSI ’23).
Association for Computing Machinery, New York, NY, USA, 671–677. https://doi.org/10.1145/3583781.3590222

[38] Salim Ullah, Hendrik Schmidl, Siva Satyendra Sahoo, Semeen Rehman, and Akash Kumar. 2021. Area-Optimized
Accurate and Approximate Softcore Signed Multiplier Architectures. IEEE Trans. Comput. 70, 3 (2021), 384–392.
https://doi.org/10.1109/TC.2020.2988404

[39] Swagath Venkataramani, Srimat T Chakradhar, Kaushik Roy, and Anand Raghunathan. 2015. Computing approximately,
and efficiently. In 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 748–751.

[40] E. GeorgeWalters. 2014. Partial-product generation and addition for multiplication in FPGAs with 6-input LUTs. In 2014
48th Asilomar Conference on Signals, Systems and Computers. 1247–1251. https://doi.org/10.1109/ACSSC.2014.7094659

[41] E. George Walters. 2016. Array Multipliers for High Throughput in Xilinx FPGAs with 6-Input LUTs. Computers 5, 4
(2016). https://doi.org/10.3390/computers5040020

[42] Shibo Wang and Pankaj Kanwar. 2019. BFloat16: The secret to high performance on Cloud TPUs. Google Cloud Blog
(2019).

[43] Rong Ye, Ting Wang, Feng Yuan, Rakesh Kumar, and Qiang Xu. 2013. On reconfiguration-oriented approximate adder
design and its application. In 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 48–54.
https://doi.org/10.1109/ICCAD.2013.6691096

[44] Shihui Yin, Gaurav Srivastava, Shreyas K Venkataramanaiah, Chaitali Chakrabarti, Visar Berisha, and Jae-sun Seo.
2017. Minimizing area and energy of deep learning hardware design using collective low precision and structured
compression. In 2017 51st Asilomar Conference on Signals, Systems, and Computers. IEEE, 1907–1911.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1145/3566097.3567891
https://doi.org/10.1145/2966986.2967005
https://doi.org/10.1109/IPDPS.2011.370
https://doi.org/10.1109/IPDPS.2011.370
https://doi.org/10.1109/VLSI-SoC53125.2021.9606987
https://doi.org/10.23919/DATE.2018.8342067
https://doi.org/10.23919/DATE.2018.8342067
https://doi.org/10.1145/2744769.2744778
https://doi.org/10.1109/DAC18074.2021.9586232
https://doi.org/10.1007/978-3-031-21294-9_1
https://doi.org/10.1145/3195970.3196115
https://doi.org/10.1145/3195970.3196115
https://doi.org/10.1109/TCAD.2021.3056337
https://doi.org/10.1145/3583781.3590222
https://doi.org/10.1109/TC.2020.2988404
https://doi.org/10.1109/ACSSC.2014.7094659
https://doi.org/10.3390/computers5040020
https://doi.org/10.1109/ICCAD.2013.6691096

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Approximate Computing
	2.2 DSE for Approximate Operators

	3 Problem Formulation
	3.1 Operator Model
	3.2 Design Space Exploration

	4 AxOTreeS
	4.1 Statistical Analysis
	4.2 Monte Carlo Tree Search
	4.3 MCTS-based DSE
	4.4 Problem-specific adaptations

	5 Experiments and Results
	5.1 Experiment Setup
	5.2 Statistical Analysis
	5.3 MCTS Analysis
	5.4 Comparing with State-of-the-art

	6 Conclusion
	References

