
Bitwise Systolic Array Architecture for
Runtime-Reconfigurable Multi-precision Quantized

Multiplication on Hardware Accelerators
Yuhao Liu1,3 , Student Member, IEEE, Salim Ullah2 , Akash Kumar2,3 , Senior Member, IEEE

1Dresden University of Technology, Germany 2Ruhr University Bochum, Germany
3Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI Dresden/Leipzig), Germany

Email: yuhao.liu1@tu-dresden.de, {salim.ullah, akash.kumar}@rub.de

Abstract—Neural network accelerators have been widely applied
to edge devices for complex tasks like object tracking, image
recognition, etc. Previous works have explored the quantization
technologies in related lightweight accelerator designs to reduce
hardware resource consumption. However, low precision leads
to high accuracy loss in inference. Therefore, mixed-precision
quantization becomes an alternative solution by applying different
precision in different layers to trade off resource consumption and
accuracy. Because regular designs for multiplication on hardware
cannot support the precision reconfiguration for a multi-precision
Quantized Neural Network (QNN) model in runtime, we propose
a runtime reconfigurable multi-precision multi-channel bitwise
systolic array design for QNN accelerators. We have implemented
and evaluated our work on the Ultra96 FPGA platform. Results
show that our work can achieve 1.3185× to 3.5671× speedup in
inferring mixed-precision models and has less critical path delay,
supporting higher clock frequency (250MHz).

I. INTRODUCTION

Recent research of edge hardware devices widely applied Neu-
ral Networks (NN) on state-of-the-art applications, such as
autonomous driving, the Internet of Things, wearable devices,
voice and image recognition, etc. Considering the conflict
between limited resources on the edge device and continually
extending sizes of neural network models, related works
explored the Quantized Neural Network (QNN) to reduce
storage and hardware resource consumption by applying lower
precision. For instance, NVDLA [1] and Vitis DPU [2] support
the INT8 8-bit quantization in their deep learning processor
designs. FINN [3, 4], HLS4ML [5], LogicNets [6], etc. pro-
posed different frameworks to generate specialized inference
accelerator designs on FPGA for the given low-precision
trained (< 8 bits) QNN models to reduce the on-chip resource
consumption. However, various prior works have presented
a higher accuracy loss in lower-precision quantized network
models. For instance, the 1-bit quantized Multilayer Perceptron
(MLP) model shown in work [7] of Su et al. has an 8×
higher memory saving rate than the 8-bit quantized model
applying the same network structure. However, the error of
1-bit models is about 32.7% higher than the 8-bit model.
Therefore, to trade off the low resource consumption and high
accuracy loss in QNN hardware accelerator designs, the works
from HAQ [8], Chen et al. [9], Tang et al. [10], etc. explored
mixed-precision quantization by using different precision in
different layers. Compared to uniform quantization schemes

TABLE I: Inference Accuracy of Quantized Network Models
Applying Unified-Precision and Mixed-Precision Schemes

Network Type Precision Settings in Four Layers of TFC and TCV models
1/1/1/1 2/2/2/2 1/2/4/8 4/1/2/8 4/4/4/4 8/8/8/8 Float

TFC Accuracy/% 92.29 96.37 95.91 - 97.55 97.36 97.89
Weights/Byte 7376 14752 9984 - 29504 59008 236032

TCV Accuracy/% 96.26 98.96 - 98.79 99.10 99.14 99.14
Weights/Byte 29848 59696 - 55712 119392 238784 955136

TABLE II: Comparison of Unified- and Mixed-Precision Quan-
tized MLPs Inferred on FPGA-based NN Accelerator

Design Precision LUT FF BRAM Frequency Latency Accuracy

Vivado IP 8/8/8/8 24090 22175 135 150MHz 137.654us 97.74%
1/2/4/8 131.059us 95.96%

across all layers (either high or low precision), mixed-precision
quantized networks have middle-level inference accuracy and
memory consumption for weight storage. We trained six tiny
MLPs and six tiny Convolution Neural Networks (CNNs) models
based on the Brevitas [11] with different precision to evaluate
the accuracy loss and memory saving. Tiny MLP (TFC) and Tiny
CNN (TCV) models are trained with the MNIST dataset [12, 13].
The TFC models comprise four layers with 64, 64, 64, and 10
neurons, respectively. TCV models have two convolution layers,
each followed by a 2×2 max pooling layer. Following the final
pooling layer are two fully connected layers. Each convolution
layers have 64 3× 3 kernels, while two fully connected layers
have 64 and 10 neurons, respectively. To achieve maximum
compression of network weights, we apply lower precision to
layers with a higher number of weights. Therefore, as shown
in Table I, TFC applies 1/2/4/8-bit quantization, and TCV applies
4/1/2/8-bit quantization, respectively, as their mixed-precision
schemes. Results show that 8-bit quantized models have the
highest accuracy, similar to 32-bit floating-point-based networks.
The two 1-bit models have the lowest accuracy with the least
memory storage for weights. Meanwhile, two mixed-precision
have balanced accuracy and memory requirements.

A. Motivation

Mixed-precision QNNs show the potential to achieve a better
and more flexible trade-off between resource consumption
and accuracy loss. Prior works explored the design of related
accelerators better to support the inference of mixed-precision

https://orcid.org/0000-0002-7281-2126
https://orcid.org/0000-0002-9774-9522
https://orcid.org/0000-0001-7125-1737

BB BB BB BB

BB BB BB BB

BB BB BB BB

BB BB BB BB

In
p

ut

In
p

ut

Partial Sum

Partial SumWeight

F-PE F-PE F-PE F-PE

F-PE F-PE F-PE F-PE

F-PE F-PE F-PE F-PE

F-PE F-PE F-PE F-PE

In
p

ut

In
p

ut

Partial Sum

Partial SumWeight

F-
P

E

F-
P

E

F-
P

E

F-
P

EIn
p

ut

In
p

ut

Partial Sum

Partial SumWeight

F-PE

In
p

ut

In
p

ut

Partial Sum

Partial SumWeight

1.a) Fusion Unit Created with 16
BitBricks (BBs)

1.b) 16 2x2-bit Fusion Processing
Elements

1.c) 4 2x8-bit or 4x4-bit Fusion
Processing Elements

1.d) 1 8x8-bit Fusion Processing
Element

MUL MUL

MUL MUL

<<2

<<4

<<0

<<2
+

2) Sub-Multiplier Architecture

Matrix
Buffer

Matrix
Buffer

AND Popcount Shift

Neg. Accu.

3) Bit-Serial Architecture in BISMO

A
N

D
 A

rr
ay

M
as

k
A

rr
ay

2-
b

it
Sh

if
ti

ng
2-

b
it

O
ut

p
ut

4-
b

it
Sh

if
ti

ng
4-

b
it

O
ut

p
ut

8-
b

it
Sh

if
ti

ng
8-

b
it

O
ut

p
ut

O
ut

p
ut

 M
U

X

4) Bitshifter Architecture

In
p

ut
 L

o
ad

er

Input Loader

P P P P P P P P
P P P P P P P P
P P P P P P P P
P P P P P P P P
P P P P P P P P
P P P P P P P P
P P P P P P P P
P P P P P P P P

<< << << << << << << <<

<<

<<

<<

<<

<<

<<

<<

5) BitSys Architecture

Fig. 1: Architectures of Prior Works and BitSys

networks on hardware. Results report that utilizing fixed-
precision multipliers diminishes the performance advantages
of mixed-precision accelerators. As shown in Table II, one
previous work of Liu et al. [14] implemented one single-layer
NN accelerator on Ultra96-V2 FPGA platform with 64 8-bit
integer Vivado multiplier IPs to infer one 8-bit quantized MLP
and one 1/2/4/8-bit mixed-precision quantized MLP trained
by Brevitas [11] with MNIST dataset [12, 13]. Both MLPs
have four layers with 64, 64, 64, and 10 neurons, respectively.
Table II listed the average inference latency of one MNIST
input, computed by averaging the total latency of 1000 times
inputs. The results indicate that the inference speed of the
mixed-precision MLP has not significantly improved compared
to the uniformly 8-bit quantized network. Because the input
width of 8-bit Vivado multiplier IP cannot be reconfigured
as 1/2/4-bit in runtime, all input data must be unified and
extended to the largest precision, 8 bits. As a result, the inference
acceleration of the mixed-precision model can only benefit
from the transmission speedup between off-chip memory and
FPGA based on low-precision data, not from the computation.
Therefore, if multipliers can reconfigure the input precision
and channel number in runtime, for instance, reset a single-
channel 8-bit input as a dual-channel 4-bit input for signed 8/4-
bit quantized layers, the inference of mixed-precision network
models can be sped up on hardware.

B. Contributions

Prior works, such as PIR-DSP [15], BitFusion [16], Multiplier-
Tree [14], Bitshifter [14], etc., explored the designs of multi-
precision multipliers. Extending on our abstract in [17], we
proposed a Bitwise Systolic Array Architecture (BitSys) in
this manuscript supporting quantized multi-precision multi-
channel runtime reconfigurable multiplication for neural network
accelerator designs. The key features and contributions of this
work are:

• We implemented one systolic-array-based multiplier, BitSys,
based on the bitwise (1-bit) processing element and

optimized it with LUT primitive for FPGA. Our design sup-
ports runtime reconfiguration for signed/unsigned 8/4/2/1-
channel 1/2/4/8-bit multiplication. Moreover, this multiplier
is specially designed to support the XNOR multiplication
for the Binarized Neural Network (BNN) in FINN [3, 4].

• We extended our multiplier as a Multiply-Accumulator
(MAC) to implement one single-layer accelerator and one
systolic array accelerator and evaluate them for the mixed-
precision model inference acceleration.

We evaluated our multipliers, MAC, and accelerator imple-
mentations on the Ultra96-V2 FPGA platform and compared
them with previous works. The synthesis and implementation
report in Vivado shows our designs have low critical path delay
from 1.357ns to 1.719ns. The measurement result proves that
our systolic array accelerator is 1.3185× to 3.5671× faster in
the inference of mixed-precision networks than previous works.

C. Organization

This manuscript is structured as follows: Section II compares
our BitSys design with related works. Section III introduces
implementations of BitSys architecture. Section IV shows the
evaluation results on Ultra96-V2 platform compared with related
works. Section V concludes the contents of this paper.

II. BACKGROUND

A. Classification of Prior Multi-precision Multiplier Designs

Previous work explored different schemes for multi-precision
multiplier designs, which can be classified by bit-serial/bit-
parallel architectures and fixed/variable input widths.

Bit-serial multipliers execute the bitwise processing for
multiplication in serial, such as BISMO [22], the work of Ienne et
al. [23], the work of Shafer et al. [24], etc. For example, as shown
in Figure 1.3, BISMO loads the inputs with the batch size of k-
bit to execute the pipelined processing in serial. For m-bit inputs,
it takes m

k clock cycles to complete the multiplication. As a
result, low-precision multiplication consumes fewer clock cycles
than high-precision. Therefore, this design scheme can support
temporal reconfiguration for different precision in runtime by

TABLE III: Differences between the BitSys Architecture and Previous Works

Work Platform Accu. or No Signed or Available Precision
Approx. DSP Unsigned 1× 1 2× 2 4× 4 4× 16 8× 8 8× 16 9× 9 16× 16 18× 27 24× 24 32× 32

Guo et al. [18] FPGA Approx.
√

Signed × × ×
√

×
√

× × × × ×
Neda et al. [19] FPGA Approx.

√
Signed × × × ×

√
× ×

√
× × ×

Shun et al. [20] FPGA Accu.
√

Signed × × × ×
√

× ×
√

×
√ √

Pfänder et al. [21] FPGA Accu.
√

Both × × × ×
√ √

×
√

×
√ √

PIR-DSP [15] FPGA Accu. × Both ×
√ √

× × ×
√

×
√

× ×
Multiplier-Tree [14] FPGA Accu.

√
Both

√ √ √
×

√
× ×

√
× ×

√

Bitshifter [14] FPGA Accu.
√

Both
√ √ √

×
√

× ×
√

× ×
√

BitSys (Ours) FPGA Accu.
√

Both
√ √ √

×
√

× × × × × ×

completing more multiplications for lower precision in m clock
cycles. However, for n times inputs, this scheme requires n×m
cycles in computation, which leads to a high inference latency
in hardware accelerators.

Therefore, most prior works are designed as bit-parallel archi-
tectures based on sub-multiplier schemes as shown in Figure 1.2,
which generate one output per clock cycle, such as the works
of Neda et al. [19], Guo et al. [18], Liu et al. [14], Pfänder et
al. [21], and PIR-DSP [15]. For 2n × 2n-bit multiplication,
A × B = A0B0 × 22n + (A1B0 + A0B1) × 2n + A1B1,
if two inputs are split as four n-bit data, A0, A1, B0, and
B1, the multiplication result is computed by summing the
products of four n × n-bit sub-multiplier results by 22n,
2n, and 1 separately, which can be converted as 2n/n/0-bit
preset left-shifting. Therefore, if we bypass the outputs of two
sub-multipliers with n-bit left shifting, the sum of four sub-
multipliers is dual-channel n× n-bit multiplication. Otherwise,
the result is single-channel 2n× 2n-bit multiplication.

However, bypassing two sub-multipliers leads to low hardware
efficiency. The works of Li et al. [25], Dai et al. [26],
and BitFusion [16] explored another scheme to utilize all sub-
multipliers in different precision. For instance, the BitFusion
architecture shown in Figure 1.1 implemented sixteen 2-bit
multipliers, BitBricks (BBs), as the basic processing elements,
F-PE, to organize a systolic array. Based on the principle of
sub-multiplier architecture designs, sixteen 2-bit multipliers
in BitFusion can create four 4-bit multipliers and one 8-bit
multiplier. The major difference is, as shown in Figure 1.1c,
BitFusion applies the reconfigurable, not preset, left-shifters.
Therefore, four 2-bit multipliers created a large F-PE to support
both 2× 8-bit and 4× 4-bit multiplications to utilize all BBs
with different input widths as 10 and 8 bits. The variable input
width complicates the data streaming control designed as a
series of multiplexers and registers. In principle, the BitFusion
presents a multi-precision systolic array, not a multi-precision
multiplier. Only the F-PE in in Figure 1.1c is the reconfigurable
multiplier. For instance, as shown in Figure 1.1b, c, and d,
BitFusion works as a 4×4, 1×4, 1×1 systolic array separately.
This design limited the scenario of BitFusion architecture as
the tensor processing unit.

Differing from the designs mentioned above, Liu et al. [14]
proposed a Bitshifter architecture inspired by the BISMO [22]
converting the multiplication as the combination of bitwise AND
and left-shifting. This is a bit-parallel multi-precision multiplier
with a fixed input width. The result of N -bit multiplication,
A×B =

∑n−1
i=0

∑n−1
j=0 2i+jaibj , is the sum of 2i+jaibj . ai and

bj are the bit values of A and B, aibj is the bitwise AND, and
2i+j can be converted as the preset left-shifting. Therefore, as
shown in Figure 1.5, Bitshifter architecture computes all aibj
with bitwise AND first, then filters the unnecessary results with
the mask for different precision and applies the corresponding
left-shifting to compute partial products.

B. Comparison between the BitSys and Previous Works

Considering the motivation in section IA, we target to explore
a multi-precision multiplier design to speed up the computation
of mixed-precision QNN models on hardware. To this end, we
exclude the bit-serial multiplier scheme in our scope because
of its long computation latency. To simplify the data steaming
control and deploy our multiplier in variable scenarios of the
existing hardware designs, such as the systolic array, single-
layer accelerator, etc., we have not adopted the architecture
similar to the BitFusion and works of Li et al. [25] and Dai
et al. [26]. Therefore, our BitSys architecture presented a bit-
parallel and input-width-fixed multi-precision multiplier design,
inspired by BitShifter [14] and BitFusion [16] by converting
the multiplication with bitwise operation with partial product
mask and computing them with a systolic array. Table III
compared it with related works. In this table,

√
and × mean

the selected features, like available precision, are applied in the
corresponding works or not:

• Both two inputs of BitSys support multi-channel reconfig-
uration for variable precision. The work of Guo et al. [18]
only supports 1/2-channel 2N/N ×M -bit multiplication.

• Our work supports accurate computing, not the approximate
designs of Neda et al. [19] and Guo et al. [18].

• Shun et al. [20] proposed an accurate multi-precision
multiplier based on Radix-4 Booth multiplier. However,
it is designed for 8/16/24/32-bit multiplication, which is
unsuitable for the 1/2/4/8-bit multiplication we targeted for
low-precision QNN models.

• Pfänder et al. [21] extended the work of Shun et al. [20] as
serial processing to reduce resource consumption. In con-
trast to this work, BitSys adopts the bit-parallel architecture
to speed up computation in hardware accelerators.

• PIR-DSP [15] focuses on designing multi-precision multi-
pliers based on DSP slices of FPGA. However, the input
widths of DSP48/DSP58 resources in Xilinx FPGA are
wider than 1/2/4/8-bit QNN models. Meanwhile, DSP
slices cannot process the XNOR multiplication in BNN.
Therefore, DSP slices are inefficient and unsuitable in
designing our BitSys architecture.

8 bits x 8 bits Multi-Precision Multiplication

Pi+j ���� (� = 0 → 7, � = 0 → 7) left bitshift
1bit 2bit 4bit 8bit sum

P0 �0�0 0 0 0 0 0
P1 �1�0 �0�1 1 1 1 1 1
P2 �0�2 �1�1 �2�0 0+2 2 2 2 2
P3 �3�0 �2�1 �1�2 �0�3 1+2 3 3 3 3
P4 �4�0 �3�1 �2�2 �1�3 �4�0 0+4 0+4 4 4 4
P5 �5�0 �4�1 �3�2 �2�3 �1�4 �0�5 1+4 1+4 5 5 5
P6 �6�0 �5�1 �4�2 �3�3 �2�4 �1�5 �0�6 0+6 2+4 6 6 6
P7 �7�0 �6�1 �5�2 �4�3 �3�4 �2�5 �1�6 �0�7 1+6 3+4 7 7 7
P8 �7�1 �6�2 �5�3 �4�4 �3�5 �2�6 �1�7 0+8 0+8 0+8 8 8
P9 �7�2 �6�3 �5�4 �4�5 �3�6 �2�7 1+8 1+8 1+8 9 9
P10 �7�3 �6�4 �5�5 �4�6 �3�7 0+10 2+8 2+8 10 10
P11 �7�4 �6�5 �5�6 �4�7 1+10 3+8 3+8 11 11
P12 �7�5 �6�6 �5�7 0+12 0+12 4+8 12 12
P13 �7�6 �6�7 1+12 1+12 5+8 13 13
P14 �7�7 0+14 2+12 6+8 14 14

1-bit Sub-Partial Products Mask 2-bit Sub-Partial Products Mask 4-bit Sub-Partial Products Mask

�7 �6 �5 �4 �3 �2 �1 �0 �7 �6 �5 �4 �3 �2 �1 �0 �7 �6 �5 �4 �3 �2 �1 �0

�7 1 0 0 0 0 0 0 0 �7 1 1 0 0 0 0 0 0 �7 1 1 1 1 0 0 0 0

�6 0 1 0 0 0 0 0 0 �6 1 1 0 0 0 0 0 0 �6 1 1 1 1 0 0 0 0

�5 0 0 1 0 0 0 0 0 �5 0 0 1 1 0 0 0 0 �5 1 1 1 1 0 0 0 0

�4 0 0 0 1 0 0 0 0 �4 0 0 1 1 0 0 0 0 �4 1 1 1 1 0 0 0 0

�3 0 0 0 0 1 0 0 0 �3 0 0 0 0 1 1 0 0 �3 0 0 0 0 1 1 1 1

�2 0 0 0 0 0 1 0 0 �2 0 0 0 0 1 1 0 0 �2 0 0 0 0 1 1 1 1

�1 0 0 0 0 0 0 1 0 �1 0 0 0 0 0 0 1 1 �1 0 0 0 0 1 1 1 1

�0 0 0 0 0 0 0 0 1 �0 0 0 0 0 0 0 1 1 �0 0 0 0 0 1 1 1 1

Fig. 2: 1/2/4/8 Channels 8/4/2/1 bits Multiplication and Corre-
sponding Partial Products Masks

0 0 0 0 0 0 0 ���

0 0 0 0 0 0 ��� ���

0 0 0 0 0 ��� ��� ���

0 0 0 0 ��� ��� ��� 0

0 0 0 ��� ��� ��� 0 0

0 0 ��� ��� ��� 0 0 0

0 ��� ��� ��� 0 0 0 0

��� ��� ��� 0 0 0 0 0

��� ��� 0 0 0 0 0 0

��� 0 0 0 0 0 0 0

Loader
Output

Loader
Buffer

B B B B B B B B

B B B B B B B B

B B B B B B B B

B B B B B B B B

B B B B B B B B

B B B B B B B B

B B B B B B B B

B B B B B B B B

a0

a1

a2

a3

a4

a5

a6

a7

b
0

b
1

b
2

b
3

b
4

b
5

b
6

b
7

Data Loader

D
at

a
Lo

ad
er

Fig. 3: Bitwise Systolic Array (left) and Input Loader (right)

• As shown in Figure 1.4 and Figure 1.5, we fused the AND
array and Mask array in Bitshifter [14] as a bitwise systolic
array inspired by BitFusion [16] for higher throughputs.
The left shifters and output generation stages for different
precision are fused as output generation pipelines in BitSys.

• The processing elements in BitSys execute 1-bit operations,
supporting higher clock frequency with lower critical path
delay. Moreover, the XNOR multiplication in Bitshifter [14]
is computed in an individual module. We fused it in our
1-bit processing elements to save the hardware resources.

• We implemented the single-layer accelerator and systolic
array accelerator based on BitSys to show its potential to
be applied in different designs.

III. IMPLEMENTATION

A. Mathematics Principle

For N -bit multiplication, A × B =
∑n−1

i=0

∑n−1
j=0 2i+jaibj ,

(0 ⩽ i, j ⩽ n − 1), ai and bj are the bit value of A and
B, 2i+j can be replaced as left shifting, ≪ (i + j), and aibj
is the bitwise AND. As shown in Equation 1, if we define
aibj as sub-partial products, for N -bit multiplication, we can
reorganize all sub-partial products as 2N − 1 groups. Each
group applies the same left-shifting value M , (0 ⩽ M ⩽
2N − 2). Therefore, we can define the sum of one group as the

partial products, PM =
∑

M=i+j aibj . Therefore, all aibj are
organized as the triangular-aligned structure shown in Figure 2.
The bold parts in Equation 1 represent the sign bit with ± in the
multiplication. When it is negative, the multiplication is signed.
Therefore, by switching to add or subtract the AND results of
akbn−1 and an−1bk (0 ⩽ k < n− 1) from partial products, the
multiplication can be reconfigured as signed/unsigned computing.
After applying the corresponding left-shifting value for each
partial product, their sum is the product of N -bit multiplication.

Based on the basic mathematics principle mentioned above, as
shown in Figure 2, we extend it for runtime reconfigurable multi-
channel multi-precision multiplication: Using 8× 8-bit multi-
precision multiplication as an example, Pi+j (0 ⩽ i ⩽ 7, 0 ⩽
j ⩽ 7) are the partial products in this computation, which are the
sum of corresponding sub-partial products, aibj , shown in the
same row of Pi+j in the second column of Figure 2. For different
precision, three sub-partial product masks shown in Figure 2
select the desired sub-partial products, aibj , for 8/4/2 channel
1/2/4-bit multiplications. For instance, for the dual-channel 4×4-
bit multiplication, two green squares in the 4-bit sub-partial
products mask of Figure 2 select the desired aibj in computation.
The filtered aibj are set as zero, and one green square in the 4-bit
sub-partial products mask selects the aibj for one channel. Based
on the same principle, the four orange and eight blue squares
in 2/1-bit masks select the desired sub-partial products for
corresponding 4/8 channels. All aibj are used to compute single-
channel 8× 8-bit multiplication. Therefore, we can compute all
sub-partial products first, reconfigure the mask in runtime to
filter the undesired aibj for different precision and channels, and
then compute the sum of filtered aibj as partial products, Pi+j .
Considering the lower hardware utilization efficiency when
more sub-partial products are filed as zero in lower precision,
compared with the disabled sub-multipliers in the previous works
shown in the Figure 1.2 of section II, this is a common trade-
off to achieve the multi-precision reconfiguration for related
bit-parallel input-width-fixed multiplier designs.

A×B =⟨an−1an−2...a1a0⟩bin × ⟨bn−1bn−2...b1b0⟩bin
=(±2n−1an−1 + 2n−2an−2 + ...+ 21a1 + 20a0)

× (±2n−1bn−1 + 2n−2bn−2 + ...+ 21b1 + 20b0)

=[(an−1bn−1) ≪ 2n− 2]

+[(±an−1bn−2 +±an−2bn−1) ≪ 2n− 3]

+...

+[(a1b0 + a0b1) ≪ 1]

+[(a0b0) ≪ 0]

(1)

After we get the value of partial products, Pi+j , the multiplier
needs to apply the corresponding left shifting to Pi+j and sum
them as the multi-channel results. Therefore, as shown in the left
bitshift column of Figure 2, for example, when the multiplier
executes 8-channel 1-bit multiplication, each channel needs two
partial products and applies 0/1-bit left shifting separately. For
instance, the result in the first channel of 1-bit multiplication
is (P0 ≪ 0) + (P1 ≪ 1). Actually, the 1-bit operation only
needs one Pi in each channel, such as P0 for the first channel.
However, to keep the output as 8-channel-2-bit, the P1 is used

�� �� �� �� �� �� �� ��
�� I II

III

IV

1. Region I is avaiable for

�� II I 8-channel 1-bit multiplication

��
III

I II 2. Region I, II are avaiable for

�� II I 4-channel 2-bit multiplication

��

IV

I II
III

3. Region I, II, II are avaiable for

�� II I 2-channel 4-bit multiplication

��
III

I II 4. Region I, II, II, IV are avaiable for

�� II I 1-channel 8-bit multiplication

Fig. 4: Bitwise Processing Element Location in Systolic Array

in_0

in_1

pattern

in_0_valid

in_1_valid

result

result
_valid

in_0

in_1

pattern

in_0_valid

in_1_valid

result

AND

AND

AND

result
_valid

AND

AND

M
U

X

XNOR

LUT5_1

1’b1

M
U

X result

result
_valid

in_0

in_1

pattern

in_0_valid

in_1_valid

LUT6_2

a) Bitwise Processing Element Type. I b) Bitwise Processing Element Type. II

c) Bitwise Processing Element based on Look-Up Table Resources (LUT) on FPGA

LUT5_1

Fig. 5: Design of Bitwise Processing Element

as a placeholder, and its a1b0 and a0b1 are filtered as 0 by
1-bit sub-partial product masks. Based on the same principle,
for instance, we can infer that P3 is also a placeholder partial
product for the 1st channel of 2-bit multiplication. Considering
the total output width of this 8-bit multiplier is 16 bits, the
output widths of one channel in 1/2/4-bit modes are 2/4/8 bits.
Therefore, in the final output, each 2/4/8-bit output from the
i-th channel in 1/2/4-bit multiplication needs a channel offset
by left-shifting to (i− 1)× 2, (i− 1)× 4, and (i− 1)× 8 bits
to avoid conflict with the (i− 1)-th channel. As shown in the
sum of left bitshift column in Figure 2, for each partial product,
Pk (0 ⩽ k ⩽ 14), the sums of partial product left shifting
(black numbers in left bitshift column) and channel offset left
shifting (red numbers in left bitshift column) are always k in all
1/2/4/8-bit multiplication modes. Therefore, differing from the
individual three left shifting stages in Bitshifter architecture [14]
shown in Figure 1.4, our BitSys applied the same left shifting
for each partial product in all 1/2/4/8-bit modes. In conclusion,
the computation of the runtime reconfigurable multi-precision
multiplication in our work can be converted into four steps:

1) Computing all aibj (0 ⩽ i ⩽ n− 1, 0 ⩽ j ⩽ n− 1).
2) Filtering to get the desired aibj with corresponding sub-

partial products mask for different precision.
3) Computing the partial products, Pk (0 ⩽ k ⩽ 2n − 2),

and applying k-bit left shifting.
4) Computing the sum of Pk as the final output.

B. Bitwise Systolic Array Architecture for Multi-precision
Multiplier

To execute the first two steps mentioned above, we imple-
mented a bitwise systolic array as shown in Figure 3 (left) and
the input loader as shown in Figure 3 (right). The input loader
works to prepare the inputs for the bitwise systolic array. For
instance, in an 8-bit multiplier, the input loader implements a
tiny FIFO buffer with eight 8-bit registers, loading one new
input in the diagonal (blue bits) and pushing the data from the
bottom to the top as the loader outputs (yellow part). One bitwise
systolic array requires two input loaders. The bitwise systolic
array we implemented in Figure 3 (left) consists of bitwise
processing elements, which fused the sub-partial products mask
and 1-bit arithmetic operations. Considering the multiplication
in the BNN presented in FINN [3, 4] is the XNOR operation,
which represents the -1 as ’0’ and +1 as ’1’, we need two
kinds of bitwise processing elements as shown in Figure 5a
and Figure 5b: Type.I element switches between 1-bit XNOR
and AND operation for 1-bit or 2/4/8-bit multiplication. Type.II
element switches between 1-bit AND operation and zero output
according to the sub-partial product mask in variable precision.
Figure 4 presents the location mapping of bitwise processing
elements and when they are available for different precision
according to the sub-partial product masks: Type.I elements are
located in Region I and Type.II elements are located in Region
II/III/IV. For instance, when the multiplier works in 1-bit mode,
the processing elements in Region I output the results of 1-bit
XNOR, and other elements output 0. When precision is 4-bit, the
processing elements in Region I/II/III output the results of 1-bit
AND, and other elements output 0. One pattern signal generated
according to the current precision controls the output switching
of one bitwise processing element. Furthermore, because when
two inputs of the 1-bit XNOR are ’0’, the output is ’1’, the
bitwise processing element needs input and output a valid signal
for the following adder to avoid mistake accumulation when no
input is loaded. Therefore, as shown in Figure 5c, we define
one bitwise processing element as 6-bit input and 2-bit output
module: 2-bit input, 2-bit input valid, 1-bit pattern switching,
1-bit input is always ’1’ to enable 2-bit output, 1-bit output,
and 1-bit output valid signal. Therefore, one bitwise processing
element for both types can be implemented as one LUT6 2
primitive in Xilinx FPGA.

For the second two steps in the computation of our BitSys,
the multiplier needs to compute the value of partial products,
Pk (0 ⩽ k ⩽ 2n− 2), apply the left-shifting to them, and add
all Pk as the final output. As shown in Figure 6 (left), numbers
in this figure are the left-shifting bits applied to the outputs
of their located bitwise processing elements. Therefore, the
sum of the bitwise processing element results with the same
left-shifting bits, which are in the same diagonal, is a partial
product. Considering the signed multiplication in Equation 1, the
numbers in Figure 6 (right) represent that, in which precision,
the outputs of bitwise processing elements they located need to
be subtracted from partial products. For instance, a7b6 needs
to be subtracted in 2/4/8-bit multiplication because a7 is a
sign bit in this precision. a7b7 needs to be subtracted in 1-

Left Shifting Bits Number in Each Elements

 �� �� �� �� �� �� �� ��
 �� 14 13 12 11 10 9 8 7

 �� 13 12 11 10 9 8 7 6

 �� 12 11 10 9 8 7 6 5

 �� 11 10 9 8 7 6 5 4

 �� 10 9 8 7 6 5 4 3

 �� 9 8 7 6 5 4 3 2

 �� 8 7 6 5 4 3 2 1

 �� 7 6 5 4 3 2 1 0

Sign Bits Location for 1/2/4/8-bit

 �� �� �� �� �� �� �� ��
 �� 1

2 4
8

4 8 4 8 8 8 8 8

 ��
2 4
8

1

 �� 4 8 1 2

 �� 4 8 2 1

 �� 8 1 2 4 4 4

 �� 8 2 4 1

 �� 8 4 1 2

 �� 8 4 2 1

Fig. 6: Left-Shifting of Diagonal & Signed Elements

D0

<<0

D6

<<6

Add

D5

<<5

Add

D4

<<4

Add

D3

<<3

Add

D2

<<2

Add

D11

<<11

Add

D10

<<10

Add

D9

<<9

Add

D8

<<8

Add

D7

<<7

Add

D1

<<1

Add

D12

<<12

Add

D13

<<13

Add

D14

<<14

Add

O
ut
p
ut

CUT CUT CUT CUT

CUTCUTCUT

Fig. 7: Design of Output Generator Pipeline

In0

In1

In2

In3

In4

In5

In6

In7

In8

In9

In10

In11

In12

In13

In14

In15

<<1

<<1

<<1

<<1

<<1

<<1

<<1

<<1

Neg.

Neg.

Neg.

Neg.

Neg.

Neg.

Neg.

Neg.

ADD

ADD

ADD

ADD

ADD

ADD

ADD

ADD

<<2

<<2

<<2

<<2

ADD

ADD

ADD

ADD

<<4

<<4

ADD

ADD <<8 ADD

ACCU Input

Adder and Left Shifter Tree of
Accumulation Input Converter

Fig. 8: Multi-Precision Accumulator Input Converter

bit multiplication because the XNOR output is signed output,
representing -1 as ’0’ and +1 as ’1’. Moreover, because both a7
and b7 are sign bits in 2/4/8-bit multiplication, a7b7 does not
need to be subtracted. After finishing the computation of partial
products, Pk, our BitSys multiplier loads them as the inputs, Dk,
of the output generator pipeline shown in Figure 7 to apply k-bit
left-shifting and sum the left-shifted partial products as final
output. Considering the sum of signed partial products generates
the carry bits in computation and influences the result in the
next channel, we insert the carry-cutter modules in the output
generator pipeline to limit the output width. For instance, in 1-bit
multiplication, all carry-cutters are enabled to limit the output
width of 8 channels; in 2-bit multiplication, only the carry-cutters
after D3,7,11 are enabled to limit the output width of 4 channels.
Because the bitwise systolic array generates the partial product
from P0 to P14 sequentially and executes multiple computations
simultaneously, our output generator pipeline is designed for
pipelined parallel processing. For instance, in the 1st cycle,
the bitwise systolic array outputs the D0 of MUL0, and the
output generator pipeline left-shifts it to 0-bit. In the 2nd cycle,
the bitwise systolic array outputs the D0 of MUL1 and D1

of MUL0. The output generator pipeline applies the 0/1-bit
left-shifting on them separately and adds the D0 and 1-bit
left-shifted D1 of MUL0 together for the next step.

C. Single-Layer and Systolic Array Accelerator Implementation
based on BitSys

To evaluate the multiplier based on our BitSys architecture,
we implemented one single-layer accelerator and one systolic
array accelerator as shown in Figure 9 and Figure 10. Both
accelerators consist of four components: 1) Input Loader

(Orange), 2) BitSys Multiplier (Yellow), 3) Accumulator (Green),
and 4) Activation Module (Gray). Both accelerators contain
64 multipliers. The single-layer accelerator implements these
multipliers as 8 neurons. Each neuron consists of 8 multipliers
and 16 input loaders. The systolic array accelerator implements
these multipliers as an 8×8 systolic array with 16 input loaders.
Both single-layer and systolic array accelerators implemented
a state machine to control the inference of network models,
which loads and stores the layer settings, like input length and
precision, in a FIFO of FPGA. To reconfigure the multipliers
for different layer precision, the state machine uses three clock
cycles to load the precision data from FIFO and rewrite the
registers for multiplier settings.

Considering the output of BitSys multiplier is multi-channel,
if we implement the corresponding accumulator and activation
module for all channels, one multiplier needs to connect with
eight accumulators and eight activation modules at maximum
(for 1-bit mode). However, when the multiplier works on higher
precision, the required accumulators and activation modules are
less than 1-bit mode because of fewer output channels, leading to
low hardware efficiency. Therefore, we connect each multiplier
with one accumulator and activation module in both accelerators.
To this end, we implemented a tree-structure-based pipelined
input converter shown in Figure 8 for the accumulator to sum
all channels of multiplier output: Multiplier outputs 16-bit data
to this input converter as in0−15. The left-shifters (Orange)
in Figure 8 apply the bit weight, 2i, to ini by passing through
four shifting-and-adding layers in this tree structure. Because if
A is a signed value, A = −2n−1an−1 +

∑n−2
i=0 2iai. ai is the

bit value of A and an−1 is the sign bit. Therefore, we insert
one value inverter (Neg. Block) in the first shifting-and-adding
layer to negate the left-shifted sign bit. For different precision,
different numbers of value inverters are enabled. For instance,
for 8-bit dual-channel input, only the inverters connected with
in7 and in15 are enabled. Furthermore, we applied the Multi-
Thresholds activation function from FINN [3, 4] to design
our activation module, which fused the activation and output
re-quantization as multi-thresholds. This activation function
required 1/3/15/255 thresholds to generate 1/2/4/8-bit output.
The number of thresholds smaller than the accumulator output is
the final output. Therefore, to reduce resource consumption and
improve hardware efficiency, we only implement one comparator
in each activation module, sequentially loading the thresholds
to compare with the accumulator output.

M M M M M M M M M ... M M M M

A A A A A A A A A ... A A A A

Q Q Q Q Q Q Q Q Q ... Q Q Q Q

Output FIFO

Input FIFO

Si
ng

le
 L

ay
er

 A
cc

el
er

at
o

r
C

o
nt

ro
lL0

...
L1

L0

L1

L0

L1

L0

L1

L0

L1

L0

L1

L0

L1

L0

L1

L0

L1

L0

L1

L0

L1

L0

L1

L0

L1

Fig. 9: BitSys-based Single-Layer Accelerator

L

M

L

L

L

L

L

L

L

L L L L L L L L

M M M M M M M

M M M M M M M M

M M M M M M M M

M M M M M M M M

M M M M M M M M

M M M M M M M M

M M M M M M M M

M M M M M M M M

Multiplier Systolic Array

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

A A A A A A A A

Accumulator Array

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Activation & Quantization Array

Thresholds Control

Input FIFO Output FIFOBitSys Control

Fig. 10: BitSys-based Systolic-Array Accelerator

IV. EVALUATION

A. Experiment Setup

We evaluate the Multiplier (MUL), Multiply-Accumulator
(MAC), and accelerator instances of our BitSys architecture
on Ultra96-V2 FPGA platform (Zynq UltraScale+ ZU3EG).
Considering the discussion in section II-B, we selected the
works of Liu et al. [14] as the baseline. All accelerators are
evaluated by the TFC models we trained as the same as the
network used in [14] with the Brevitas and MNIST dataset,
which have been introduced in section I.

B. Multiplier and Multiply-Accumulator Comparison

Table IV shows the implementation results from Vivado:
we implemented six instances, including one pure-Verilog-
designed and one LUT-primitive-optimized variant, BitSys-base
and BitSys-LUT, for 1/2/4/8-bit signed/unsigned MULs and
MACs of our BitSys. As the baseline, we implement the MUL
and MAC instances of Multiplier-Tree and Bitshifter from Liu et
al. [14] as MTee-base and Bitshifter-base, supporting 1/2/4/8-bit
signed/unsigned reconfigurable multiplication, and insert the
registers between the sub-multipliers of Multiplier-Tree and
AND/Mask/Shifting stages of Bitshifter as shown in Figure 1.2
and Figure 1.4 to create their pipelined instances, MTee-pipe
and Bitshifter-pipe, for higher clock frequency.

For MUL comparison, two Bitshifter instances consume fewer
LUTs with less total path delay than Multiplier-Tree instances.
The pipelined Multiplier-Tree and Bitshifter instances, MTee-
pipe and Bitshifter-pipe, consume more LUTs and FFs than their
basic instances, MTee-base and Bitshifter-base, with significant
decrease in total path delay. Compared with these baseline
instances, both MULs of BitSys have the lower total path
delay: the lowest total path delay belongs to BitSys-LUT,
which is 65.36%, 44.97%, 62.18%, and 33.51% of Bitshifter-
pipe, Bitshifter-base, MTee-pipe, and MTee-base. The LUT-
primitive-optimization of BitSys-LUT instances decreased the
resource consumption and total path delay compared with
BitSys-base. The LUT consumption of BitSys-LUT shows
no advantages with the same or higher numbers than MTee-
base, Bitshifter-base, and Bitshifter-pipe as 100.00%, 101.45%,
and 103.86%.However, we discussed the Area Delay Products
(ADPs) in Table IV, which are the products between LUT
consumption and total path delay. The lowest ADP of BitSys

instances implies that our work achieved an efficient design with
a good balance between performance and resource utilization.
Based on the post-implementation timing simulation in Vivado,
we analyzed the power consumption of all MUL instances
with 16000 times random multiplication under the highest
available clock shown in Table IV. Our BitSys instances have
the highest power consumption. However, their Power Delay
Products (PDPs) are lower than the other four instances, which
are the products between power and total path delay. This means
that our design has better power efficiency and achieves a good
balance between minimizing power usage and maximizing speed.
Moreover, the Computation Cycles column in Table IV shows
that BitSys architecture has a longer pipeline path in computation
than other instances, which explains the low total path latency
and high FF consumption of our work. Differing from the
MUL instances, MAC instances of Multiplier-Tree cost less
LUT than Bitshifter because we fused the accumulator input
converter design of Multiplier-Tree by summing the results of
sub-multipliers and passing it to higher precision multipliers. The
output of this multiplier is the sum of all channels. Following
the same trend as MULs, The MAC instances of our BitSys
consume more resources and power than other instances with
less total path delay, lower ADP, and lower PDP. The low
power consumption of MACs compared with MULs is caused
by the different testbench and longer pipeline as shown in
Computation Cycles column. We simulated the MACs with
4096 times random multiplication and accumulation for each
precision. Before starting the next round of computation for
another precision, MACs need to wait to finish the accumulation
of the current precision. In summary, our BitSys architecture has
a better design optimization between the balance of hardware
consumption, power usage, and processing speed, supporting
the highest clock frequency with the lowest total path delay.

C. Neural Network Accelerator Comparison

Table V is the implementation and real measurement re-
sults of accelerators we implemented on Ultra96-V2 platform,
including six single-layer accelerator based on Vivado IP, MTee-
base, MTee-pipe, Bitshifter-base, Bitshifter-pipe, and BitSys-
LUT, and one systolic array accelerator based on BitSys-LUT
to compare the difference between single-layer accelerator
architecture and systolic array architecture. The column of

TABLE IV: Resource Consumption of Multipliers (MUL) and Multiply-Accumulators (MAC)

Design Instance Setting Resource Consumption Frequency Total Delay Area-Delay Dynamic Power PDP Compuation Cycles
Type Precision Signed/Unsigned Accurate/Approximate LUT FF (ns) Products (mW) (mW × ns) BIN 2-bit 4-bit 8-bit

MTree-base [14]

MUL 1/2/4/8 Both Accurate

383 42 250MHz 3.820 1463.06 87 332.34 1 1 1 1
MTree-pipe 429 282 375MHz 2.282 978.98 125 285.25 5 5 5 5

Bitshifter-base [14] 345 37 300MHz 3.156 1088.82 107 337.69 1 1 1 1
Bitshifter-pipe 337 339 375MHz 2.171 731.627 122 264.86 1 9 9 9
BitSys-base 416 463 500MHz 1.433 596.128 156 223.55 22 22 22 22
BitSys-LUT 350 525 500MHz 1.419 496.65 159 225.62 22 22 22 22

MTree-base [14]

MAC 1/2/4/8 Both Accurate

398 199 250MHz 3.397 1352.01 79 268.36 6 6 6 6
MTree-pipe 495 388 250MHz 2.828 1399.86 102 288.46 10 10 10 10

Bitshifter-base [14] 505 198 300MHz 3.084 1425.27 102 314.57 6 6 6 6
Bitshifter-pipe 538 506 375MHz 2.164 1164.23 109 235.88 6 14 14 14
BitSys-base 597 633 375MHz 2.072 1236.98 103 213.42 27 27 27 27
BitSys-LUT 541 689 500MHz 1.716 928.36 134 229.94 27 27 27 27

TABLE V: Resource Consumption of Previous and BitSys Accelerators on Ultra96V2 FPGA Platform

Design Type Precision LUT FF BRAM Frequency Latency/µsNumber Rate Number Rate Number Rate

Vivado IP [19] Single-Layer 8/8/8/8 24090 34.14% 22175 15.71% 135 62.50% 150MHz
137.654

1/2/4/8 131.059

MTree - base [19] Single-Layer 1/2/4/8 37020 52.47% 22500 15.94% 138 63.89% 100MHz 69.27
Bitshifiter - base [19] Single-Layer 1/2/4/8 42952 60.87% 22486 15.93% 138 63.89% 125MHzz 56.658

MTree - pipe Single-Layer 1/2/4/8 47163 66.84% 42100 29.83% 138 63.89% 150MHz 48.443
Bitshifiter - pipe Single-Layer 1/2/4/8 50212 71.16% 50393 35.71% 138 63.89% 150MHz 48.799

BitSys - LUT Single-Layer 1/2/4/8 46570 66.00% 54352 38.51% 138 63.89% 150MHz 49.057
BitSys - LUT Systolic Array 1/2/4/8 44468 63.02% 64176 45.48% 139.5 64.58% 250MHz 36.741

Latency/µs is the single frame inference delay by averaging the
total inference latency of 1000 MNIST inputs.

Vivado IP-based single-layer accelerator consumes the least
LUTs and FFs with the longest single-frame inference latency
compared with other accelerators because it does not support
multi-precision multiplication. Both Bitshifter accelerators cost
more hardware resources than Multiplier-Tree. The pipelined
accelerator of both Multiplier-Tree and Bitshifter support higher
clock frequency than their basic accelerators. According to the to-
tal path delay of MUL and MAC shown in Table IV, in principle,
the single-layer accelerators of BitSys-LUT and Bitshifter-pipe
should support higher clock frequency than MTee-base, MTee-
pipe, and Bitshifter-base. However, because the single-layer
accelerator contains one more complex state machine than the
systolic array for data streaming control to load the activations
and weights from DDR to neurons and schedule the computation
with a limited number of neurons and multipliers, 150MHz is
the highest frequency that can be supported in our current single-
layer accelerator architecture. The systolic array accelerator
implemented with BitSys-LUT consumes 95.49% of LUTs but
118.07% of FFs with 250MHz compared with its single-layer
accelerator. Comparing the two structures shown in Figure 9
and Figure 10, systolic array accelerator of BitSys-LUT requires
much fewer input loaders that single-layer accelerator, which
causes the LUT consumption decreasing shown in Table V. For
the average inference latency, all accelerators implemented with
multi-channel multi-precision multiplier have a high speed-up
compared with Vivado IP-based accelerator. The single-layer
accelerators of Bitshifter-pipe and MTee-pipe are 116.1% and
142.99% faster than Bitshifter-base and MTee-base because of
higher clock frequency. Compared with the single-layer acceler-
ator of Bitshifter-pipe and MTee-pipe, and BitSys-LUT, BitSys-
LUT instance is 0.53% and 1.25% slower than Bitshifter-pipe
and MTee-pipe with same frequency. Considering the Compu-

tation Cycles shown in Table IV, BitSys-LUT instance infers
slower because of its long pipeline path. For the same reason,
the single-layer accelerator of Bitshifter-pipe is 0.73% slower
than MTee-pipe. However, because the systolic array structure
simplified the data streaming control in a single-layer accelerator,
the inference latency of BitSys-LUT benefits both from the
higher clock frequency and denser computation, which can
highly efficiently utilize the fully pipelined design in our BitSys
architecture. Therefore, the systolic array accelerator of BitSys-
LUT supports 250MHz and is 356.71%, 188.54%, 148.77%,
131.85%, 132.82%, and 133.52% faster than the single-layer
accelerators of Vivado IP, MTee-base, MTee-pipe, Bitshifter-
base, Bitshifter-pipe, and BitSys-LUT with mixed-precision TFC
network.

V. CONCLUSION

In this manuscript, we present one multiplier design based
on fully pipelined bitwise systolic array architecture, BitSys,
supporting the runtime reconfigurable multi-precision multi-
channel multiplication. The evaluation shows that our BitSys
architecture has a low critical path delay to support higher clock
frequency compared with previous works. In the acceleration of
the mixed-precision network model, our work is more than
131.85% faster than original Multiplier-Tree and Bitshifter
architecture and about 356.71% faster compared with Vivado-
IP-based accelerator. For our future work, we plan to explore the
ASIC implementation of our BitSys architecture with emerging
memory technologies, such as Racetrack Memory (RTM).

VI. ACKNOWLEDGEMENTS

This work is supported by the Center for Scalable Data
Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig
and Deutsche Forschungsgemeinschaft (DFG) under the X-ReAp
project (Project number 380524764).

REFERENCES

[1] Gaofeng Zhou, Jianyang Zhou, and Haijun Lin. “Research on NVIDIA
Deep Learning Accelerator”. In: 2018 12th IEEE International Confer-
ence on Anti-counterfeiting, Security, and Identification (ASID). 2018,
pp. 192–195.

[2] Vinod Kathail. “Xilinx Vitis Unified Software Platform”. In: Pro-
ceedings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. FPGA ’20. New York, NY, USA: Associ-
ation for Computing Machinery, 2020, 173–174.

[3] Yaman Umuroglu et al. “Finn: A framework for fast, scalable binarized
neural network inference”. In: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 2017,
pp. 65–74.

[4] Michaela Blott et al. “FINN-R: An end-to-end deep-learning framework
for fast exploration of quantized neural networks”. In: ACM Transactions
on Reconfigurable Technology and Systems (TRETS) 11.3 (2018), pp. 1–
23.

[5] Farah Fahim et al. “hls4ml: An Open-Source Co-Design Workflow
to Empower Scientific Low-Power Machine Learning Devices”. In:
Research Symposium on Tiny Machine Learning. 2021.

[6] Yaman Umuroglu et al. “LogicNets: Co-Designed Neural Networks
and Circuits for Extreme-Throughput Applications”. In: 2020 30th In-
ternational Conference on Field-Programmable Logic and Applications
(FPL). IEEE. 2020, pp. 291–297.

[7] Jiang Su et al. “Accuracy to throughput trade-offs for reduced precision
neural networks on reconfigurable logic”. In: International Symposium
on Applied Reconfigurable Computing. Springer. 2018, pp. 29–42.

[8] Kuan Wang et al. “HAQ: Hardware-Aware Automated Quantization
With Mixed Precision”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). June 2019.

[9] Weihan Chen, Peisong Wang, and Jian Cheng. “Towards Mixed-
Precision Quantization of Neural Networks via Constrained Optimiza-
tion”. In: CoRR abs/2110.06554 (2021). arXiv: 2110.06554.

[10] Chen Tang et al. “Mixed-Precision Neural Network Quantization
via Learned Layer-Wise Importance”. In: European Conference on
Computer Vision. Springer. 2022, pp. 259–275.

[11] Alessandro Pappalardo. Xilinx/brevitas. 2023.
[12] Yann LeCun et al. “Gradient-based learning applied to document

recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.
[13] Li Deng. “The mnist database of handwritten digit images for machine

learning research”. In: IEEE Signal Processing Magazine 29.6 (2012),
pp. 141–142.

[14] Yuhao Liu et al. “High Flexibility Designs of Quantized Runtime
Reconfigurable Multi-Precision Multipliers”. In: IEEE Embedded
Systems Letters (2023), pp. 1–1.

[15] SeyedRamin Rasoulinezhad et al. “PIR-DSP: An FPGA DSP Block
Architecture for Multi-precision Deep Neural Networks”. In: 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 2019, pp. 35–44.

[16] Hardik Sharma et al. “Bit Fusion: Bit-Level Dynamically Com-
posable Architecture for Accelerating Deep Neural Network”. In:
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). 2018, pp. 764–775.

[17] Yuhao Liu, Salim Ullah, and Akash Kumar. “BitSys: Bitwise Systolic
Array Architecture for Multi-precision Quantized Hardware Accel-
erators”. In: 2024 IEEE 32nd Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). 2024,
pp. 220–220.

[18] Chuliang Guo et al. “A Reconfigurable Approximate Multiplier for
Quantized CNN Applications”. In: 2020 25th Asia and South Pacific
Design Automation Conference (ASP-DAC). 2020, pp. 235–240.

[19] Negar Neda et al. “Multi-Precision Deep Neural Network Acceleration
on FPGAs”. In: 2022 27th Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE. 2022, pp. 454–459.

[20] Zhou Shun et al. “A VLSI architecture for a Run-time Multi-precision
Reconfigurable Booth Multiplier”. In: 2007 14th IEEE International
Conference on Electronics, Circuits and Systems. 2007, pp. 975–978.

[21] Oliver A. Pfänder et al. “Configurable Blocks for Multi-precision
Multiplication”. In: 4th IEEE International Symposium on Electronic
Design, Test and Applications (delta 2008). 2008, pp. 478–481.

[22] Yaman Umuroglu, Lahiru Rasnayake, and Magnus Själander. “Bismo: A
scalable bit-serial matrix multiplication overlay for reconfigurable com-
puting”. In: 2018 28th International Conference on Field Programmable
Logic and Applications (FPL). IEEE. 2018, pp. 307–3077.

[23] P. Ienne and M.A. Viredaz. “Bit-serial multipliers and squarers”. In:
IEEE Transactions on Computers 43.12 (1994), pp. 1445–1450.

[24] Andrew G. Shafer, Lyndsi R. Parker, and Earl E. Swartzlander. “The
fully-serial pipelined multiplier”. In: 2011 Conference Record of the
Forty Fifth Asilomar Conference on Signals, Systems and Computers
(ASILOMAR). 2011, pp. 1817–1822.

[25] Kai Li et al. “A Precision-Scalable Energy-Efficient Bit-Split-and-
Combination Vector Systolic Accelerator for NAS-Optimized DNNs
on Edge”. In: 2022 Design, Automation and Test in Europe Conference
and Exhibition (DATE). 2022, pp. 730–735.

[26] Liuyao Dai et al. “An Energy-Efficient Bit-Split-and-Combination
Systolic Accelerator for NAS-Based Multi-Precision Convolution Neural
Networks”. In: 2022 27th Asia and South Pacific Design Automation
Conference (ASP-DAC). 2022, pp. 448–453.

https://arxiv.org/abs/2110.06554

	Introduction
	Motivation
	Contributions
	Organization

	Background
	Classification of Prior Multi-precision Multiplier Designs
	Comparison between the BitSys and Previous Works

	Implementation
	Mathematics Principle
	Bitwise Systolic Array Architecture for Multi-precision Multiplier
	Single-Layer and Systolic Array Accelerator Implementation based on BitSys

	Evaluation
	Experiment Setup
	Multiplier and Multiply-Accumulator Comparison
	Neural Network Accelerator Comparison

	Conclusion
	Acknowledgements

