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Abstract—With the rising variation and complexity of embedded work-
loads, FPGA-based systems are being increasingly used for many appli-
cations. The reconfigurability and high parallelism offered by FPGAs are
used to enhance the overall performance of these applications. However,
the resource constraints of embedded platforms can limit the performance
in multiple ways. In recent years, Approximate Computing has emerged
as a viable tool for improving the performance by utilizing reduced
precision data structures and resource-optimized high-performance arith-
metic operators. However, most of the related state-of-the-art research has
mainly focused on utilizing approximate computing principles individually
on different layers of the computing stack. Nonetheless, approximations
across different layers of computing stack can substantially enhance
the system’s performance. To this end, we present a framework to
enable the intelligent exploration and highly accurate identification of
the feasible design points in the large design space enabled by cross-layer
approximations. Our framework proposes a novel polynomial regression-
based method to model approximate arithmetic operators. The proposed
method enables machine learning models to better correlate approximate
operators with their impact on an application’s output quality. We use a
2D convolution operator as a test case and present the results for FPGA-
based approximate hardware accelerators.

Index Terms—Approximate Computing, Embedded Systems, Cross-
layer System Design, FPGA, High-level Synthesis

I. INTRODUCTION

The paradigm of Approximate Computing has shown promising
capabilities for designing energy-efficient computing systems for error-
resilient applications. A broad spectrum of applications in the domain
of computer vision, data mining, and machine learning possess an in-
trinsic error-resilience to the inexactness of the computing algorithms,
their corresponding implementations, and the data being processed.
The error-tolerant elements of these applications are also, on average,
the main contributors to the overall resource utilization, critical path
delay, and energy consumption of the application [1]. The approximate
computing paradigm leverages the error-resilience of these applica-
tions by trading the output accuracy of an application to realize
computing systems with better resource utilization, performance, and
energy efficiency [2].

The approximate computing paradigm encompasses different layers
of the computation stack. For example, loop perforation [3], precision
scaling [4], and utilization of inexact hardware blocks [5] are the
commonly investigated techniques at the software, architecture, and
circuit levels, respectively. At any layer of the computation stack,
the deployed approximation techniques have a limited impact on the
resulting output quality of the application and the corresponding per-
formance gains of the implementation. However, depending upon the
application, a specific computational layer, or a combination of layers,
may prove a better candidate for approximations than other layers
in the computation stack. For example, consider a 3× 3 convolution
kernel sliding over a 5×5 image in Fig. 1. The sliding step size of the
kernel is defined by the Stride parameter of the convolution operation.
For each position of the kernel, nine element-wise multiplications
followed by an addition are performed to compute a single value of the
output image. For Stride = 1, a total of 81 multiplications are per-
formed to compute a 3×3 output image. As convolution is a commonly
used operation in the error-resilient applications such as deep neural
networks and image processing, the performance and energy efficiency
of the convolution operation can be improved by utilizing approximate
multipliers. However, the utilization of only approximate arithmetic
units (circuit-level approximation) may not be feasible for resource-
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Fig. 1: Convolution operation using a 3 × 3 kernel (a) Stride = 1
(b) Stride = 2 (c) Accuracy/Energy trade-off for the Gaussian Image
Smoothing filter using 2 DoFs

constrained embedded systems. To improve the overall performance
of the convolution operator in Fig. 1, it is advantageous to examine
other layers of the computation stack for feasible approximations.
For example, the total number of energy-consuming multiplication
operations can be reduced by making Stride = 2 (algorithmic-
level approximation). The utilization of approximate multipliers for
the reduced number of operations can further improve the energy
efficiency of the convolution operation.

Fig. 1(c) shows the performance trade-offs from such a Cross-
layer Approximation approach by comparing the peak signal-to-noise
ratio (PSNR) and energy consumption values of a Gaussian Image
Smoothing filter having a 3 × 3 convolution kernel using accurate
(Ac) and approximate (Ax) multipliers1 for two different values of the
Stride parameter. The convolution operation using Stride = 1 and
accurate multipliers (Ac:1) produces an output image with the highest
PSNR and energy consumption values. The convolution operation
utilizing algorithmic- and circuit-level approximations (Stride = 2
with approximate multipliers Ax:2) produces the most energy-efficient
output, albeit with a low PSNR value. Such a cross-layer approach
presents the designer with multiple tuning knobs for application-
specific optimizations across multiple degrees of freedom (DoFs) in
each layer.

However, each DoF and the available choices for it expand the
design space exponentially. For instance, increasing the choice of mul-
tipliers for each operation, in Fig. 1(c), from two to three increases the
possible design points from 2×29 to 2×39. Therefore, efficient design
space exploration (DSE) frameworks, that enable the joint analysis of
multiple DoFs across layers, are necessary to implement cross-layer
approximations. Further, the required DSE technique should provide
methods for the fast and accurate estimations of the applications’
output accuracy and their performance parameters.

Most state-of-the-art works in the domain of approximate computing
have focused on harvesting the performance gains by designing and
utilizing approximation techniques at a single layer of the design
stack. For example, the work presented in [7] utilizes a data sampling
technique to process only a subset of input data. The authors of [8]
have used reduced precision of data to decrease the application’s
computational complexity. Techniques presented in [3], [9], [10] utilize
loop perforations and task skipping to bargain output accuracy of
applications with performance gains. Many works, such as [5], [6],
[11], employ approximate arithmetic blocks for realizing energy-

1mul8s_1KVL from [6] has been used.
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Fig. 2: CLAppED proposed framework

efficient hardware accelerators. The work presented in [12] has focused
on the circuit-level approximations by performing fast estimations of
the optimal design points for implementing area-efficient approximate
hardware accelerators.

Some recent related works, such as [3], [13]–[16] have presented
the opportunities offered by the cross-layer approximations. However,
most of these works, such as [13], discuss approximation techniques
on various layers of computation stack in isolation. These works do
not exploit the challenges and opportunities offered by approxima-
tions on a combination of layers. The authors of [3] have explored
approximations at the algorithm-, architecture- and circuit-levels of
design abstraction to implement a processor, with 1.2x to 5x energy
efficiency, for the recognition and mining (RM) applications. However,
their work does not consider utilizing already available open-source
approximate arithmetic modules for circuit-level approximation. Fur-
ther, they do not consider the fast estimations of the feasible design
points for their RM processors. The authors of [14] and [15] have
proposed simulators for evaluating the impact of three DoFs (low
bit-width quantization schemes, activations pruning, and approximate
multipliers) on the output accuracy of a deep neural network (DNN).
The work in [16] has also considered these three DoFs for energy-
efficient approximate DNNs. However, these works do not consider
the thorough exploration of the design space and fast estimations
of the feasible design points provided by various available DoFs.
Further, to the best of our knowledge, none of the related works
provide a solution for analyzing the application-level impact of a new
approximate arithmetic unit without the time- and resource-consuming
process of actual behavioral (or synthesis) testing of the application.

Towards this end, we present an efficient exploration framework,
referred to as CLAppED, that incorporates a joint analysis of tuning the
DoFs across multiple layers of the computation stack. Fig. 2 presents
the various stages of the CLAppED framework. The related novel
contributions are:
Contributions:

• We propose a novel polynomial regression-based characterization
of approximate arithmetic units. Compared to the traditional
distribution-based models, we report significant reductions in
estimation errors.

• We provide a behavioral framework that utilizes various machine
learning models for analyzing the impact of various DoFs on
an application’s output accuracy. The polynomial regression-
based coefficients enable machine learning models to correlate
an approximate arithmetic operator’s impact on an application’s
output quality. This behavior allows the trained machine learning
models to characterize the application-level impact of new unseen
approximate arithmetic units.

• Although primarily focused on behavioral analysis, we present
a complete framework for enabling cross-layer approximation-
aware DSE. CLAppED utilizes behavioral error-analysis and
accelerator’s performance estimates to provide design points that
offer better trade-offs between application error and hardware
performance.

II. ERROR-ANALYSIS OF APPROXIMATE ARITHMETIC UNITS

For our current work, we have considered only the approximate
multipliers to describe the proposed error analysis. However, a similar
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Fig. 3: Proposed behavioral Error analysis of approximate multipliers with
results shown for mul8s_1KR3 approximate multiplier from [6]

analysis is also valid for other types of approximate circuits, such as
adders and dividers. Further, due to the significance of signed numbers
in various modern applications, such as machine learning, we have
examined the open-source signed multipliers provided by [6] and [11].
Traditionally, statistical error metrics like Average Relative Error, Error
Probability, and Mean Error Distance [17] are used to characterize
approximate circuits. However, as observed in [18], the approximate
arithmetic units are static non-linear systems and may violate several
fundamental arithmetic principles such as commutativity and associa-
tivity. Further, the utilization of a statistical error metric to estimate
an approximate circuit’s impact on an application’s output accuracy
is mostly unknown. This lack of correlation between statistical error
metrics and the corresponding quality of an application’s output makes
it difficult to select an approximate arithmetic unit out of many
available choices. The problem is exacerbated in scenarios where a
machine learning model is trained to predict an application’s final
output with a given configuration of approximations and performs
poorly on novel approximate circuits. Towards this end, we perform
an error-analysis of approximate signed multipliers to represent each
component by a set of parameters that can be utilized to estimate the
approximate result of a multiplier for an arbitrary input dataset. These
parameters are utilized in our high-level behavioral framework to train
machine learning models for fast estimation of an application’s output
quality for a given configuration of cross-layer DoFs.

A. Application Independent Error-analysis of Approximate Multipliers

We have considered Curve Fitting and Polynomial Regression (PR)
techniques, as shown in Fig. 3, to represent each approximate multi-
plier by a set of unique parameters. The curve fitting-based technique
utilizes the non-linear least-squares method to fit a function ‘f’ to
the results of an approximate multiplier for all input combinations.
The function ‘f’ utilizes a set of parameters to reduce the error
between actual approximate products and the fitted results. Due to
the various types of approximations in the available multipliers, a
single function cannot be fitted to estimate all multipliers accurately.
To identify feasible fitting functions, we perform distribution fitting
of all approximate multipliers using several data distributions and
evaluate their efficacy using Kolmogorov-Smirnov’s (K-S) fitness
metric (a commonly used technique to compare a sample with a
reference probability distribution) [19]. We select five top distributions
to implement the corresponding fitness functions for each approximate
multiplier. For example, the distribution fitting subfigure in Fig. 3
shows the top-5 distributions for the multiplier mul8s_1KR3 from
[6]. However, as shown by the Mean Absolute Error (MAE) graph
in Fig. 3, the fitting of the normal distribution-based function ‘f’
significantly mismatches the actual error value. Similar results with
large disparities between actual and estimated statistical error metrics
are observed for other multipliers with various fitting functions.

The error plot in Fig. 3 shows that the Polynomial Regression
(PR)-based technique can better estimate the approximate results of
mul8s_1KR3. The PR technique utilizes the ‘degree’ parameter to
show the number of coefficients utilized for estimating the target
function. For example, for an approximate multiplier with inputs ‘x’
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Fig. 4: Comparison of estimation-induced errors for multipliers modeled
using Curve Fitting and Polynomial Regression techniques

and ‘y’, a degree 2 PR generates six coefficients (c0 — c5), as
represented by Eq. (1). The fitting of a PR-based model trains these
coefficients to minimize the sum of squared errors between actual and
estimated outputs for all input combinations of a multiplier. For each
approximate multiplier, the PR-based model is trained separately to
compute the corresponding coefficients.

f(x, y) = c0 + c1x+ c2y + c3x
2 + c4xy + c5y

2 (1)

We have also evaluated the PR-based models’ efficacy on the 8-bit
approximate adders from [6]. In this regard, we report as low as 18%
estimation errors (MAE) with PR-based models compared to 84%
estimation errors (MAE) with the curve fitting-based technique.

As shown by the error analysis results in Section V, all the
trained coefficients, for a particular degree, do not have comparable
significance, and the number of actually employed coefficients can
be varied to deliver acceptable estimates with a reduced number of
trained coefficients. During our error analysis, we have observed that
the PR-based technique produces better estimates of the approxi-
mate multipliers than the curve fitting-based technique. For example,
Fig. 4 presents the error distributions (the difference between the
actual approximate and the estimated results) of mul8s_1KR3 (a
highly approximate multiplier) and mul8s_1KVA (a highly accurate
multiplier) from [6] for all input combinations. For mul8s_1KR3,
the logistic-based model2 produces slightly smaller estimation errors
than the norm-based model. For mul8s_1KVA, the norm-based model
produces better results than the logistic-based model. However, for
both multipliers, the PR-based models produce fewer and smaller
estimation errors than the curve fitting-based models. For example,
for mul8s_1KVA, the PR-based model generated estimation errors
range from −4 to +2. We have observed similar efficacy of the
PR-based models for other approximate multipliers. Therefore, we
have considered only the PR-based models for application-level error
analysis and training of machine learning models for accuracy and
performance predictions.

B. Application Specific Error Analysis

The behavioral error estimation constitutes the most application-
specific analysis stage in CLAppED. Although in the current work,
CLAppED is tested with one application—Gaussian Smoothing—
the proposed framework is application-agnostic in principle. With
appropriate interfaces between the generic DSE method and the

2The logistic- and norm-based models for these multipliers have been
decided based on the corresponding distribution fitting ranking.
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Fig. 5: Accelerator Performance Estimation

application-specific estimation methods, the proposed framework can
be used for any arbitrary application. For instance, in the behavioral
error estimation for Gaussian Smoothing, we implemented a version
of the two-dimensional (2D) convolution that integrates the impact of
different DoFs such as scaling, stride-length variation—with and with-
out downsampling3, convolution mode (2D or 1D-Horizontal(1DH) →
1D-Vertical(1DV)) and using different approximate multipliers. Con-
sequently, the impact of any arbitrary configuration across these DoFs
can be evaluated directly by executing the corresponding executable
over a set of images.

Further, we also provide an interface where a supervised machine
learning (ML)-based model, that has been trained over a set of
randomly generated configurations, can be used to predict the appli-
cation’s output quality for newer cross-layer approximation configu-
rations. In this regard, we use the various available DoFs, as shown
in Fig. 2, to produce input configurations for generating training and
testing data for our machine learning models. A configuration denotes
an arbitrary combination of the various DoFs. For each configuration
in the training and testing set, we implement the applications’ behav-
ioral functions to generate corresponding true labels (actual outputs).
The approximate multipliers in the applications’ behavioral functions
can be implemented by either using the multipliers’ behavioral models
or the PR coefficients-based estimates. These methods can be used
for finding the appropriate feasible cross-layer approximation-based
designs for any arbitrary application.

III. ACCELERATOR PERFORMANCE ESTIMATION

Accelerator performance estimation constitutes the architecture-
specific design method of CLAppED. Fig. 5 shows the various stages
in this method. Stage 1 involves designing the various accelerators
that can be used for the application. This stage should consider the
effect of only those DoFs that can result in different accelerator
architectures and not the operator-level approximations. For instance,
in the example of 2D convolution for Gaussian smoothing, varying the
window size or the mode of convolution results in different numbers
and types of accelerators. For the current work, we implemented
the line-buffer-based sliding window [20] accelerators for 2D, 1DH,
and 1DV operations. Further, the High-level Synthesis (HLS)-based
designs support the variation in odd-numbered window sizes and
different stride-lengths, resulting in varying accelerator designs. The
second stage, 2 , considers the effect of using operator-specific
approximations in the accelerator. For our current work, we include the
accelerator characterization with approximate signed multipliers from
[5], [6]. It must be noted that, in our current work, we do not use the
proposed framework for exploring the impact of HLS directives. We
limit the exploration to configuring the approximate multipliers and
other application-specific DoFs. Prior works such as [21], [22] present
exploration methodologies for HLS and can be used alongside ours.

While the accurate characterization of the accelerators with varying
DoFs provides high-quality results, the actual performance estimation
using synthesis tools is very time-consuming. For instance, the charac-
terization of a 2D convolution accelerator of 3× 3 window size takes
around 15 minutes. To this end, stage 3 in Fig. 5 shows an ML-based

3Downsampling refers to not using any values for the skipped pixels, leading
to reduced output image size.
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performance prediction method to estimate the hardware metrics. For
2D convolution, the dimensions of the model for each performance
metric are a subset of the following features–the input image size,
the stride-length, a down-sampling flag, and the precision and type of
each multiplier operation in the design. Similar to the behavioral error
analysis, the actual and the ML-based approaches provide alternative
methods of varying result quality and estimation time to the DSE
methodology of CLAppED.

IV. DSE METHODOLOGY

The error and accelerator performance estimation methods described
earlier can be used for DSE with any randomized algorithm-based
optimization, such as Genetic Algorithms and Simulated Annealing.
However, these methods usually involve the evaluation of a large
number of configurations. Hence, if the fitness function has a large
evaluation time, it can lead to large DSE times as well. In contrast,
Bayesian Optimization [23] provides a more directed search method
and can also benefit from faster design point evaluations. In our
current work, we implement a Multi-objective Bayesian Optimization
(MBO) as the DSE method in CLAppED. Every iteration of Bayesian
optimization can be divided into three major stages. The first stage
involves using a true Objective Function to evaluate the metrics under
consideration for some initial random samples. The results of this
evaluation function form the training set for the second stage. In
the second stage, the training data is used to design the Surrogate
Function, which is a probabilistic prediction model. This prediction
model is used in the third stage by the Acquisition Function to generate
new candidate configurations to be evaluated by the Objective Function
in the next iteration. This step completes one iteration of the search
process. This process is repeated over multiple iterations to generate
the final design points.

It can be noted that MBO is a well-established optimization method,
and we do not claim novelty regarding the implementation. However,
we model the cross-layer approximation design as an optimization
problem and implement a framework that allows the novel ML-
based estimation methods to be used as low-cost fitness functions
required for faster DSE. In our current work, we generate multiple
probabilistic models, one for each design objective. For instance, in
the joint optimization for application accuracy and the LUT utilization,
the Surrogate Function consisted of separate probabilistic models for
both the objectives. The implementation of the Acquisition Function
involved generating random cross-layer approximation configurations,
followed by predicting their objective metrics with the corresponding
probabilistic models in the Surrogate Function and ranking the samples
based on their exclusive hypervolume contributions. A fixed number
of the top-ranked samples are added to the configurations set for the
next iteration.

The previous two sections present both true and ML-based esti-
mation methods. The true estimation involved reporting the metrics
from actual implementation of an accelerator with the cross-layer
approximation configurations. Both true and ML-based methods serve
as alternatives for the Objective Function only. Although the Surrogate
Function is also based on a probabilistic model, unlike the ones used
in the Objective Function, it is independent of the application under
test. The proposed framework allows the designer to choose either of
the methods (true/ML-based) independently for error and hardware
performance estimation during Objective Function evaluation. In case
of using ML-based methods, the DSE results can be used in a
neighborhood search with the actual evaluation to further improve
the quality of results.

V. EXPERIMENTS AND RESULTS

A. Experiment Setup

The implementation of CLAppED involved both probabilistic anal-
ysis as well as hardware design. The HLS-based accelerator designs
were implemented in C++ and synthesized with Xilinx Vivado Design
Suite. All designs have been implemented for Xilinx Zynq UltraScale+
MPSoC (xczu3eg-sbva484-1-e device). The probabilistic analysis for
curve fitting, polynomial regression (PR), application-level ML-based
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modeling, and the MBO-based DSE methodology were implemented
in Python using multiple packages, including scikit-learn, Tensor-
Flow [24], PyGMO [25].
B. Behavioral Analysis

A PR model’s efficacy to predict an approximate multiplier’s output
is computed using the model’s coefficient of determination denoted as
R2. A large value of R2 (≈ 1) denotes a good fitting of the model
to predict the actual outputs. As shown in Eq. (1), the complexity
of a PR model is defined by its degree parameter. During the error
analysis of the approximate multipliers from [6] and [11], we have
observed that PR models with at least degree 3 produce significantly
accurate estimations of the actual approximate results. Further, all the
generated coefficients for a PR model (after training the model) do
not have equal significance. We can analyze the generated coefficients
of all multipliers, under consideration, for a specific degree-based PR
model and rank their overall significance. Based on the ranking of
coefficients, we can remove the less significant coefficient for each
multiplier. For example, Fig. 6 compares the actual and estimated
(using degree 3 PR models) average absolute relative errors of five
approximate multipliers from [6]. The Clipped_8, Clipped_6, and
Clipped_5 bars in the figure show the utilization of only 8, 6, and 5
trained coefficients for PR models to estimate approximate multipliers.
The PR models provide significantly accurate estimates of the actual
average relative error values, on average a difference of 15%. The
Clipped_5 graphs show, on an average, only a 0.06% degradation in
the estimated values for the multipliers under consideration.

Utilizing the trained coefficients’ ranking, we can also implement
custom PR models that are retrained with a reduced number of
coefficients. For example, Fig. 7 compares the average relative and
maximum errors of mul8s_1KR3, from [6], using different numbers
of coefficients (C2 — C9) based retraining. The Predicted bar in the
figure shows the estimation utilizing all the trained coefficients. As
shown by the results, PR models with only 2 and 3 coefficients (C2
and C3 respectively) produce large deviations from the corresponding
approximate results. Due to the reduced number of coefficients, these
models behave like accurate multipliers. However, PR models having
more than three coefficients produce high R2 values and efficiently
represent the approximate multiplier. For example, for the actual
average relative error (1.36) and maximum absolute error (8001), a
C4-based PR model produces 1.34 and 5012 for these error metrics,
respectively. Further, increasing the number of coefficients beyond 6
has no impact on the PR-model’s accuracy for mul8s_1KR3. The fine-
grained control on utilizing an only appropriate number of coefficients
also helps in reducing the complexity of ML-models for estimating
applications’ behavioral accuracy.

To predict the impact of various DoFs on an application’s output
accuracy, we have used a multi-layer perceptron (MLP)-based model.
The model is used to predict accuracy of achieving noise-removal with
random configurations of cross-layer approximation DoFs, compared
to that obtained by a golden configuration. The model is trained and
tested by providing an input dataset of 2000 configurations. These
configurations contain various uniformly distributed combinations of
the considered DoFs. Our model utilizes randomly selected 80% con-
figurations of the input dataset for training the model. The remaining
20% of the input dataset is employed for testing the trained model.
Further, the model uses 20% of the training dataset for validation
during the training phase. For this work, we have modeled a 3 × 3
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Fig. 8: Mean average error (MAE) of training and testing an MLP for
a 3× 3 kernel-based Gaussian Image Smoothing filter utilizing different
number of coefficients for multipliers from [6] and [11].

kernel-based Gaussian Image Smoothing filter. To represent the nine
multipliers in the convolution kernel of the application, we have used
index-, error metrics-, and polynomial regression coefficients-based
methods. In the index-based method, each multiplier is assigned a
unique random value for its identification. In the error metrics-based
method, we have utilized each multiplier’s four statistical error metrics
(maximum absolute error, average relative error, error probability and
mean squared error) for its identification. We refer to this configuration
as M4 in our experiments. We have also experimented with using
only one single statistical error metric, referred to as M1, for the
identification of multipliers in the MLP model. Such single values-
based identification is used in [12], which utilizes the weighted mean
error distance (WMED) of a multiplier for its identification. However,
our application-level error analysis reveals that PR coefficients-based
representation of a multiplier performs better than other techniques.

Fig. 8 compares the training and testing accuracy of the utilized
MLP model. The M1-based representation shows the mean squared
error-based identification. The C2 — C10 shows the number of utilized
PR coefficients to represent each multiplier in the training and testing
datasets. The index-based method produces the highest mean average
errors (MAE) for both the training and the testing phases, 6.37 and
13.12, respectively. Clearly, the model cannot identify the correlation
between multipliers’ indices and the impact of utilized approximate
multipliers on the output quality degradation. The M1- and M4-based
techniques produce lower MAE values than the index-based method.
For example, M4-based representation produces 3.5 and 5.0 MAE
values for training and testing datasets, respectively. However, the
utilization of PR coefficients-based representation improves the MLP
model’s accuracy significantly. For example, the C4-based represen-
tation (four PR coefficients) generates only 1.4 and 2.4 MAE values
for training and testing datasets, respectively. However, increasing the
number of coefficients to represent a multiplier directly impacts the
total number of trainable parameters of the MLP model. For an MLP
model with a high number of trainable parameters, a large dataset is
required to train the model. For the given dataset, the C7- to C10-based
representation of multipliers result in reducing the output accuracy of
the model due to insufficient training data.

To further evaluate the performance of the MLP model, we have
used the fidelity metric [12]. The fidelity metric denotes the rela-
tionship (=, <,>) between the input configurations and their cor-
responding actual and predicted values. Fig. 9 shows the percentage
fidelity of the MLP model on training and testing sets using various
representations for the multipliers. As previously observed in Fig. 8
for MAE analysis, the index-based method produces the minimum
fidelity. The C4 to C6 based representations of multipliers produce
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Fig. 9: Fidelity of training and testing an MLP for a 3× 3 kernel-based
Gaussian Image Smoothing filter utilizing different number of coefficients
for multipliers from [6] and [11].
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Fig. 10: Efficacy of MLP-based estimation of a Gaussian Image Smooth-
ing filter (a) Impact of utilizing different number of coefficients on the
MAE and average estimation time (b) Estimation accuracy on test data
having new unseen multipliers

the best training and testing fidelity, 99.2% and 98.9%, respectively.
To understand the relationship between the number of PR coef-

ficients and the corresponding inference time of the MLP model,
Fig. 10(a) compares the MAE and average inference time for 1000
iterations of the testing dataset. On average, the MAE decreases, and
the inference time increases by utilizing more coefficients to represent
multipliers in the MLP model. For the given MLP model and the
testing dataset, C4 (employing 4 PR coefficients to show a multiplier)
produces the best result in terms of low MAE and inference time.

The utilization of PR coefficients to represent multipliers enables the
MLP model to correlate approximate multipliers and their impact on an
application’s output accuracy. This correlation enables the MLP model
to predict an application’s output quality for new multipliers (not
included in the training and validation datasets). Fig. 10(b) shows the
training and testing MAEs of an MLP model for two cases. In the first
experiment, the testing dataset configurations also include a multiplier
that is not present in any configuration of the training dataset. In
the second experiment, the testing dataset has two such multipliers
that are not available to any configuration of the training dataset. As
shown by the results, the PR coefficients-based representation of the
approximate multipliers has enabled the MLP model to produce high
output accuracy even for unseen new multipliers (with up to 98.4%
fidelity).

C. Accelerator Performance Estimation

Similar to the behavioral analysis, we implemented MLP-based
models for predicting the performance of accelerators. Fig. 11 shows
the results from the experiments for a 2D convolution accelerator.
The bar-graphs in the figure show the prediction accuracy, in terms of
fidelity of results, for four different metrics– Power Delay Product
(PDP), Latency (the number of clock cycles needed for the 2D
convolution over an image), the FPGA’s LUT utilization and the
accelerator’s power dissipation. 1000 designs were used for training
the MLP models and 200 design points were used for the testing.

The accuracy on training and testing datasets is reported for two ap-
proaches – IDX, where each multiplier is represented by an index value
and EXP, an expanded representation, where we tested different com-
binations of DoFs for determining the dimensions of the corresponding
MLP model. TABLE I shows the resulting dimensions for each model,
categorized as accelerator- and multiplier-level dimensions. The set of
dimensions for the EXP-based model was chosen based on its testing
accuracy. It can be noted from the table that the model for latency has
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Fig. 11: Accelerator performance estimation using MLP-based model

TABLE I
MLP DIMENSIONS FOR ACCELERATOR PERFORMANCE MODELING
Performance

metric→ PDP LUTs Latency Power
Dissipation

Accelerator
Dimensions

Image Size,
Stridelength,

Downsampling

Image Size,
Stridelength,

Downsampling
Image Size

Image Size,
Stridelength,

Downsampling

Multiplier
Dimensions

Critical Path Delay,
Total Power
Dissipation

LUT Utilization – Signal Power,
Logic Power

the least parameters with the highest prediction accuracy. Since latency
depends primarily on the image size, multiplier-specific parameters
were not used in the model. It can be observed that using the EXP-
based approach leads to higher accuracy for both training and testing
datasets.

D. DSE Performance

The directed search capability of Bayesian Optimization is espe-
cially beneficial for problems with costly fitness function evaluation—
similar to the actual estimation of accelerator performance. Although
we provide a faster ML-based approach for the same, the search
capability of the optimization algorithm determines the quality of
results. Fig. 12(a) compares the progress of a similar search for
application-level error and LUT utilization trade-offs, using MBO and
random search. The plot shows the hypervolume obtained with an
increasing number of design point evaluations. Both methods use the
ML-based estimation of application-level error and LUT utilization. It
can be observed that using MBO obtains better quality results much
faster. The data in the figure was obtained from an optimization run
that evaluates 10 new samples in each iteration, selected from 50
random samples that are generated by the Acquisition Function.

Fig. 12(b) shows the results from the analysis of the design points
obtained from MBO-based DSE. In this search for Error-LUT trade-
offs, the MBO-based search using MLP models generated 23 Pareto-
front design points, shown as MBO_MLP_PARETO in the figure. It
must be noted that only one among those 23 points, shown as A ,
used a configuration where all the 9 multipliers (for a 3×3 window)
were of the same type. This reinforces our motivation of the need for
searching among the vast number of possible multiplier permutations
in an application. Further, 3 points had a stride length of 2 compared to
1 for the others, and 12 points had downsampling enabled. Similarly,
image scaling values 3, 2, and 1 were observed for 2, 19, and 2 design
points, respectively. These results further demonstrate the need for
cross-layer exploration across multiple types of DoFs. We evaluated
the 23 points with actual hardware synthesis, and the resulting points
are plotted in Fig. 12(b) (ACTUAL_EVAL). It can be observed that
the true points are close to those obtained using the MLP-based model.

VI. CONCLUSION

Approximate computing presents an attractive path for achieving
low-cost execution for a large variety of applications. Further, a cross-
layer approach allows the design of application-specific approxima-
tions with more availability of DoFs. In this article, we present
CLAppED, a framework for enabling such a design approach. The
proposed behavioral analysis allows the designer to create application-
specific models for exploring existing arithmetic operators (with up to
98.9%) and predicting new unseen ones’ efficacy (with up to 98.42%
fidelity). Further, the fast accelerator performance estimation methods
and the MBO-based DSE methodology enable the search for high-
quality designs.
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