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Abstract—Emerging reconfigurable nanotechnologies allow the
implementation of self-dual functions with a fewer number of
transistors as compared to traditional CMOS technologies. To
achieve better area results for Reconfigurable Field-Effect Transis-
tors (RFET)-based circuits, a large portion of a logic representa-
tion must be mapped to self-dual logic gates. This, in turn, depends
upon how self-duality is preserved in the logic representation
during logic optimization and technology mapping. In the present
work, we develop Boolean size-optimization methods–a rewriting
and a resubstitution algorithm using Xor-Majority Graphs (XMGs)
as a logic representation aiming at better preserving self-duality
during logic optimization. XMGs are more compact for both
unate and binate logic functions as compared to conventional logic
representations such as And-Inverter Graphs (AIGs) or Majority-
Inverter Graphs (MIGs). We evaluate the proposed algorithm
over crafted benchmarks (with various levels of self-duality) and
cryptographic benchmarks. For cryptographic benchmarks with
a high self-duality ratio, the XMG-based logic optimisation flow
can achieve an area reduction of up to 17% when compared to
AIG-based optimization flows implemented in the academic logic
synthesis tool ABC.

I. INTRODUCTION

Ambipolar nanotechnologies form a class of emerging
nanotechnologies featuring both n- and p-type functionality
from a single transistor. Recently, it has been demonstrated,
that Boolean functions which are self-dual, can be imple-
mented efficiently using Reconfigurable Field-Effect Transis-
tors (RFETs) [20]. In the present work, we explore logic
synthesis methods which can specifically take advantage of the
self-duality of Boolean functions to achieve area improvements.

Within design automation, logic synthesis is an integral
part which optimizes a logic network in terms of a cost
function, typically focusing on the reduction of area or delay.
Recently, novel multi-level logic representations such as Xor-
And Graphs [11] or Xor-Majority Graphs (XMGs) [8, 6]
have been proposed, which enrich conventional And-Inverter
Graphs (AIGs) [3] and Majority-Inverter Graphs (MIGs) [2]
with an additional Xor primitive. These new logic representations
offer more compactness and enable better runtimes for logic
optimization and minimization flows [8, 23]. Particularly in
the context of RFET-based circuits, the logic primitives used
in XMGs— Majority and Xor gates, can better preserve self-
duality as both, the majority-of-three and the odd-input Xor
function, are self-dual.

In the present work, we explore the usage of XMGs in logic
optimization methods to achieve area reduction after technology
mapping for RFET-based circuits. The two contributions are
summarized as follows:

1) Conventional logic representations such as AIGs or
MIGs suppress self-duality during logic optimization. We
propose an XMG-based logic synthesis flow that allows

preserving the self-duality during logic optimization.
This flow enables better area reductions after technology
mapping for RFET-based circuits in comparison to state-
of-the-art logic optimization flows. In an experimental
evaluation over crafted benchmarks with varying levels
of self-duality, we achieve area reductions of up to
6.59%, 3.24%, 3.63%, and 5.95% as compared to state-
of-the-art logic optimization flows rewrite;resub (until
convergence), compress2rs, dc2 and dch, respectively.
Over cryptographic benchmarks, using the proposed XMG-
based flow, area reductions up to 17% are achieved for
benchmarks with high self-duality.

2) We propose state-of-the-art resubstitution and rewriting
algorithms for XMGs. Our resubstitution algorithm uses
a new filtering rule for 3-input Xor gates (Xor3). This
filtering rule reduces the average runtime for resubstitution
over the EPFL benchmarks by 46.13% while preserving
the quality. Our rewriting algorithm for XMGs, called
exact XMG rewriting, uses cut enumeration, NPN canon-
ization, and exact synthesis. In contrast to the previous
XMG rewriting approaches, the algorithm uses structural
hashing to utilize existing logic and can achieve size
reduction even if a smaller subnetwork is replaced with a
larger one.

II. BACKGROUND

A. Reconfigurable nanotechnologies

Ambipolarity, as a phenomenon is observed at lower technol-
ogy nodes, but often suppressed using process techniques [13].
The class of emerging nanotechnologies which aims to exploit
this ambipolarity is often termed as emerging reconfigurable
nanotechnology and the devices are called reconfigurable field-
effect transistors (RFETs). These devices demonstrate both n-
and p-type functionality from a single device on application of
an external bias. Multiple device geometries based on various
materials like silicon [9, 13], germanium [28], carbon [12]
etc. have been proposed which exhibit near to full electrical
symmetry in both n- and p-type functionality. This electrical
symmetry is shown as V-shaped curve in Fig. 1. Logic gates
based on these devices are able to exhibit more than one
functionalities [17, 19, 18] as shown in Fig. 2.

B. Self-dual functions

A logic function f(x1, . . . , xn) is said to be self-dual [26] if

f(x1, . . . , xn) = f̄(x̄1, . . . , x̄n) (1)

By complementing the function, an equivalent self-dual
formulation is f̄(x1, . . . , xn) = f(x̄1, . . . , x̄n). For a particular
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Fig. 1: A generic RFET showing two gate terminals: The
program (signal P) and the control gate (signal A) [19]. The
adjacent curve shows the V-shaped curve representing electrical
symmetry for n- and p-type functionality.
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Fig. 2: (a) Reconfigurable logic gate Xor3 demonstrated in [9,
19]. It shows how functionality changes with value of P. (b)
Truth-Table for Xor3 logic gate. The truth-table is split over
the value of x1 which is the reconfigurable input.

instance of x1, . . . , xn, f(x1, . . . , xn) and f̄(x̄1, . . . , x̄n) are
dual to each other.

Fig. 2b shows an RFET-based 3-input Xor function which is
a self-dual function. Here, when the truth-table is divided over
the value of x1 (or any other arbitrary literal), the two halves
of the Xor3 truth-table (Xor2 and XNor2 functions) are dual to
each other.

In [20], the authors showed that self-dual functions are
the logical abstraction for reconfigurable nanotechnology. The
multiple functionality exhibited by RFET-based logic gates are
due to the interchangeable pull-up and pull-down networks
as shown in Fig. 2. The switching of polarities of individual
transistors in their respective pull-up and pull-down networks
is caused by changing the potential at the program gate as
shown in Fig. 2a. This change in potential at the program gate
causes the PFET to become NFET and vice-versa causing the
pull-up and pull-down networks to flip as shown in Fig. 2.
This corresponding switch in electrical behavior is abstracted
conveniently in a self-dual function as shown by two parts of the
truth-table of Fig. 2b. The two parts of the truth-table represent
the interchangeable pull-up and pull-down networks.

C. Terminology

We introduce some terminologies here, which will be used
through the rest of the paper.

1) Density of self-duality: We define the term density of self-
duality for a circuit or logic network as the ratio of total number
of self-dual nodes to the total number of nodes.

2) Trivial and non-trivial self-dual functions: Self-dual
functions are fewer (square root of total number of functions)

as compared to non-self-dual functions [25]. Moreover, among
two-input functions, self-duality exists in those functions which
are equivalent to either of the inputs or to their complements
(for example, f(a, b) = f(a)). Such functions are implemented
in circuits as wires (or use a single inverter) and hence their
implementation requires very few transistors. Thus, two-input
self-dual functions are termed here as trivial functions as they
have little impact on the overall area of the circuit.

For functions with more than two inputs, their implementation
with RFETs require fewer number of transistors as compared
to their CMOS counterpart. These functions will have a direct
impact on the area of the circuit. Hence, 3 or more input
functions which are self-dual are termed as non-trivial functions.

D. Earlier works on XMG

Xor-Majority Graphs in their current format, were first
introduced in [8] as a means for underlying logic representation
for exact synthesis. As exact synthesis uses SAT solving or
enumeration, its runtime directly depends upon the size of the
logic representation. Since XMGs have both binate (Xor) as
well as unate (Maj) nodes, it gives a size-proportional logic
representation for both n-input unate and binate functions
as compared to the poor representation of binate logic (Xor-
based logic) by MIGs or AIGs [6]. Algebraic optimizations for
XMGs were proposed in [6]. They explored Boolean algebraic
optimizations for Xor and Xor-Maj logic and were able to
achieve depth optimizations.

In the present work, we explore logic synthesis in order to
maximize the self-duality within a circuit so that they can be
efficiently mapped to RFETs. Since our objective is primarily
post-mapping area, we are focusing on size optimization and
hence, have not considered algebraic optimizations in the present
work.

III. MOTIVATION

Due to their device-level reconfigurability, RFETs allow
efficient implementations of non-trivial self-dual logic functions
in terms of the number of transistors [20] as compared to CMOS.
For example, a 3-input Xor logic gate (shown in Fig. 2) needs
4 + 2 (for P and P′) transistors when realized with RFETs
as compared to 22 transistors when realized in the CMOS
technology [19]. This implies that circuit implementations with
RFETs lead to area reductions, if they have a higher density of
non-trivial (3 or more input functions) self-dual gates. Hence, to
take advantage of this property, it is imperative that self-duality
in a logic representation is preserved by logic optimizations.
From logic representation perspective, if we consider AIGs
(consisting of two-input And gates with complement-edge
attributes), a non-trivial self-dual function will be decomposed
into multiple AIG nodes and, hence, during logic optimization,
self-duality may be lost. Similarly for MIG, parity-based self-
dual functions cannot be represented in a compact manner using
Maj nodes alone, which can again result in a loss of self-duality
during logic optimization [6].

In contrast, XMGs use Xor and Maj nodes as logic primitives.
Every Majority and odd-input Xor function is self-dual, such
that using XMGs can better preserve self-duality during logic
optimization as compared to other logic representations. This
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Fig. 3: Different logic representations for the function, f =
〈x1, x2, (x3 ⊕ x4)〉. One can notice that the number of nodes
and edges are the least in case of XMGs. The dot represents
complemented edges.

can be easily seen in Fig. 3. The figure shows three logic
representations of the same function f = 〈x1, x2, (x3 ⊕ x4)〉.
The logic representation as AIG requires 8 nodes, while the
same function has 4 and 2 nodes when represented as MIG
and XMG respectively. In the example, the number of edges in
AIG or MIG representation is also much higher as compared
to XMG representation. This leads to an increase in the
number of competing structural cuts of the logic network in
logic optimization and technology mapping phase. Keeping in
mind the above advantages, we develop an XMG-based logic
optimization flow which addresses these issues and helps to
achieve area reductions for RFET-based circuits.

IV. LOGIC SYNTHESIS TECHNIQUES

While the earlier works [8, 6] introduced the basic logic
optimizations using XMGs, we extend the support of XMGs
with advanced Boolean resubstitution method as well as NPN-
based cut-rewriting techniques.

A. Boolean XMG resubstitution and filtering

Boolean resubstitution is a logic optimization method that
re-expresses the function of a node n in a logic network N
using nodes, called divisors, already present in N . Nodes that
are exclusively used by n and are not required by any other
logic in the logic network become free and can be removed.
A resubstitution leads to a size reduction if the number k of
newly added nodes to re-express a node’s function is less than
the number l of removed nodes in its maximum fanout-free
cone (MFFC, [15]).

Resubstitution algorithms are available for different multi-
level logic representations including AIGs [14, 15], MIGs [24,
23], and logic networks [16]. Computing three-input Xor (Xor3
is a self-dual logic gate) resubstitutions is particularly time-
consuming because divisor filtering techniques developed for
And and Or operations cannot be applied. To substitute a node
n in a network with logic function fn(x) by a three-input Xor
operation, three divisor nodes d1, d2, and d3 have to be found,
such that

fn(x) = fd1(x)⊕ fd2(x)⊕ fd3(x) (2)

for all assignments to the primary inputs x, where fd1
, fd2

, fd3

are the divisor functions, respectively.

Algorithm 1: Boolean filtering and resubstitution
Data: Window W in a logic network with root node n
Result: Node resubstitute for n or ⊥ if no resubstitution has

been found
1 Set M ←W.computeMFFC(n);
2 Set D ←W.collectDivisors(n)\M ;
3 Set TT ←W.simulate();
4 sortByDBP(D,TT, n);
5 for i← 0 to |D| do
6 if 3 ·DBP(D[i]) < DBP(n) then
7 return ⊥;
8 for j ← i+ 1 to |D| do
9 if DBP(D[i]) + 2 ·DBP(D[j]) < DBP(n) then

10 break;
11 for k ← j + 1 to |D| do
12 if f = TT [i]⊕ TT [j]⊕ TT [k] then
13 return W.xor3 resub(n,D[i], D[j], D[k]);
14 if f = ¬TT [i]⊕ TT [j]⊕ TT [k] then
15 return W.xor3 resub(n,D[i], D[j], D[k]);

16 return ⊥;

State-of-the-art Boolean resubstitution algorithms over-
approximate the node functions using windowing to apply
scalable truth-table computations. The algorithms have to iterate
over all triples of nodes in a window of a root node n (excluding
the root node’s MFFC) to test if Eq. 2 holds. The first substitution
possible that reduces the network’s size is accepted. In the
worst case, if no resubstitution can be accepted, O(w3) tests
are required for a window with w nodes.

Filtering techniques help to reduce the number of tests
required and significantly speed-up the performance of resub-
stitution algorithms in practice. We develop a new filtering
rule for three-input Xors guiding the search for divisors using
distinguishing bit-pairs [4]: a resubstitution of a target node n
with function f(x) and divisors nodes d1, d2, d3 with functions
fd1

(x), fd2
(x), fd3

(x) over common window inputs x exists if
and only if for any pair x̂i 6= x̂j of input assignments

f(x̂i) 6= f(x̂j) =⇒
∨

1≤a,b≤3,a 6=b

da(x̂i) 6= db(x̂j). (3)

Utilizing Eq. 3, we sort all divisor nodes in a window
by the number of bit-pairs distinguished by the divisor with
respect to the root node’s target function. We define the
absolute distinguish bit power DBP(n) of the root node n
as the number of pairs (x̂i, x̂j) of input assignments for which
fn(xi) 6= fn(xj), and we define the relative distinguishing
bit power DBPn(d) of a divisor d as the number of pairs
(x̂i, x̂j) of inputs assignments for which fn(x̂i) 6= fn(x̂j) and
fd(x̂i) 6= fd(x̂j).

Algorithm 1 shows our Boolean filtering and resubstitution
algorithm as pseudo code. The divisors are sorted (line 4)
by their relative distinguishing bit power—higher relative
distinguishing bit power will more likely lead to a possible
resubstitution. We further leverage the relative distinguishing
bit power to filter insufficient divisor triples. Given a sorted list
D = d1, ..., dw of divisors such that DBPn(di) ≥ DBPn(dj)
for all i < j, a single divisor d can never be completed to divisor
triple that passes the test in Eq. 2 if 3 · DBPn(d) < DBP(n)
(line 6). Since the list is sorted, no remaining divisor will pass
this test either such that the algorithm can terminate (line 7).



For a similar reason, no divisor pair di, dj , i < j, can be
completed to a divisor triple that passes the test in Eq. 2 if
DBPn(di)+2 ·DBPn(dj) < DBP(n) (line 9). In this case, the
algorithm can proceed by selecting another candidate divisor
di (line 10).

B. Exact XMG rewriting

Boolean rewriting is a logic optimization method that selects
small parts of a logic network and replaces them with more
compact implementations to reduce its number of nodes. State-
of-the-art rewriting algorithms either rely on a database of pre-
computed size-optimum subnetworks for all Boolean functions
up to 5 inputs [15] or compute size-optimum subnetworks on-
the-fly using exact synthesis [22, 21]. DAG-aware rewriting [15],
fast cut enumeration techniques [7], NPN canonization [10] of
Boolean functions, and efficient caching [21] enable scalability.

Rewriting XMGs has been first proposed in [8] using a two-
step approach: (1) A logic network is mapped into a network
of k-feasible lookup-tables (LUTs); (2) the k-feasible LUTs
are resynthesized into size-optimum XMGs. By repeating the
two steps until convergence, substantial size reduction can be
achieved.

We propose an improved XMG rewriting approach, called
exact XMG rewriting, that integrates both steps into one
algorithm. For each node, in the logic network, the set of
all k-feasible cuts is enumerated, each cut is simulated to
obtain its Boolean functions, and the functions are resynthesized
using exact synthesis. In contrast to the previous approach,
our algorithm takes advantage of structural hashing to utilize
the existing logic within the network, such that a global size
reduction can be achieved even if a locally smaller subnetwork
is replaced with a larger subnetwork. The algorithm can be
parameterized with a set of gate primitives and supports
synthesis of multiple candidates per cut function. A conflict
limit in exact synthesis allows to limit the maximum synthesis
effort per function.

V. CREATING SELF-DUAL BENCHMARKS

In order to evaluate the efficacy of our approach as compared
to the state-of-the-art logic synthesis approaches, for RFET-
based standard cell mapping, we generate benchmarks with
varying density of self-dual logic gates within the circuit. We
propose a metric called a self-duality index to vary the density of
self-duality within a circuit. The rationale behind this is that if
we have a larger number of self-dual components in the circuit,
then more self-dual logic gates can be utilized during mapping.
This leads to an improved area results for RFET-based circuit.

We generate multiple benchmarks using Algorithm 2. We
start with an empty logic network and take four parameters as
inputs– number of Primary Inputs (PIs) (num pis), number of
levels (levels), number of nodes per level (nodes per level)
and self-duality index (sdIndex, whose value has to be between
1 and 10). Depending upon the value of self-duality index, for
every 10 nodes added in the logic network, number of self-dual
nodes added, is equal to self-duality index (line 9) and the
remaining (10− self-duality index) (line 11) nodes are normal
nodes. By normal nodes, we mean adding logic nodes using
AND, OR, XOR or constants while self-dual nodes implies

Algorithm 2: Populating benchmarks with varying level
of self-duality

Data: num pis, levels, nodes per level, sdIndex
Result: XMG network N

1 Set signalList ← [];
2 Set sd or normal← 0;
3 for k ← 0 to num pis do
4 signalList.add(N .create pi());
5 for i← 0 to levels do
6 for j ← 0 to nodes per levels do
7 fanins← signalList.randSubSet();
8 if sd or normal < sdIndex then
9 node ← N .create selfdual gate(fanins);

10 else
11 node ← N .create normal gate(fanins);
12 signalList.add(node);
13 sd or normal ← (sd or normal + 1)

mod 10 ;
14 for o ∈ signalList.not used() do
15 N .create po(o);
16 return N

adding Majority or 3-input XOR logic nodes. We maintain a
signal list SL where we keep adding all the newly created
nodes (line 12). We then randomly select nodes from the signal
list SL to add to the circuit (line 7). The code for generating
crafted benchmarks and the generated benchmarks are uploaded
at https://github.com/shubhamrai26/iwls2020 experiments

VI. EXPERIMENTS AND DISCUSSION

In this section, we evaluate our approach with various
experiments. All the implementations are integrated in the
logic network library mockturtle from the EPFL logic synthesis
libraries [27]. We extend the XMG network with the proposed
Boolean methods such as XMG resubstitution and exact XMG
rewriting.

A. Methodology

We first evaluate the speedup in runtime due to the filtering
rule integrated in the XMG resubstitution algorithm. We then
apply our XMG-based flow to the crafted benchmarks and the
cryptography benchmarks. To produce area results, we use the
standard mapper of the academic logic synthesis tool, ABC
using the logic gates proposed in [19]. Further, we compare
our XMG-based flow with the state-of-the-art synthesis scripts
rewrite and resub, compress2rs, dc2, and dch implemented in
ABC.

B. Runtime improvement with filtering rule

In order to measure the runtime improvement of the Xor3-
based filtering rule, we run XMG resubstitution (with and
without filtering) once on all arithmetic EPFL benchmarks.
The third and the forth column in TABLE I show the runtime
of the XMG resubstitution algorithm for both runs of the
resubstitution command. On average, a runtime improvement
of 46% is achieved with an average size penalty of ∼2%.



TABLE I: Runtime improvement using our filtering rule

Benchmark Runtime
without filter (in sec)

Runtime
with filter (in sec)

Improvement
%

adder 0.31 0.21 32.26
bar 2.34 0.90 61.54
div 58.85 35.58 39.54
hyp 391.29 321.19 17.92
log2 28.38 16.26 42.71
max 1.39 0.89 35.97
multiplier 33.53 13.44 59.92
sin 7.49 3.34 55.41
sqrt 29.77 13.64 54.18
square 17.77 6.78 61.85

Average 46.13
TABLE II: Comparison of final area for crafted benchmarks
with respect to ABC scripts of rw;rs, compress2rs, dc2 and dch

Sd-index sd-ratio init area
(geomean)

xmg-rwrs xmg-c2rs
(%)

xmg-dc2
(%)

xmg-dch
(%)

1 36.14 662953.00 -3.59 0.10 -1.72 -3.74
2 40.23 658231.50 -1.18 1.83 0.16 -1.13
3 44.24 654716.00 -5.91 2.50 0.78 0.15
4 48.82 651544.50 1.17 3.09 1.59 1.05
5 53.41 645854.00 1.92 3.20 2.01 1.73
6 58.52 640258.50 2.62 3.22 2.34 2.32
7 64.53 636013.50 3.40 3.24 2.68 3.17
8 71.37 631824.00 4.02 3.00 2.94 3.67
9 79.35 625668.00 4.95 2.78 3.18 4.48

10 100.00 614186.00 6.95 1.66 3.63 5.95

C. Crafted self-dual benchmarks

Within this experiment, we use Algorithm 2 to populate
multiple benchmarks with varying numbers of PIs, numbers of
levels and numbers of nodes per levels. The self-duality index is
taken care by the variable sdIndex whose value is iterated from
1 to 10 to populate 10 benchmarks for a single set of parameters.
We apply exact XMG rewriting and resubstitution over XMG
till convergence, and then carry out standard-cell mapping using
RFET-centric generic library [19]. For comparison, we first
compare our XMG-based flow with a similar ABC script of
of rewrite;resub until convergence and then with other state-
of-the-art scripts compress2rs, dc2 and dch implemented in
ABC. Since our approach converges after one iteration, it is fair
enough to compare with the above three scripts from ABC.

TABLE II shows the comparison of post-mapping area carried
out using different scripts for our crafted benchmarks. The first
column shows the value of sd-index which signifies how many
self-dual nodes have been added for every 10 nodes. The next
column (sd-ratio) is the density of self-duality for the RFET-
based circuit after optimization using Boolean methods proposed
in Section IV. This is followed by a column of geometric mean
of the initial area for the variants of the benchmark generated.
Finally, the columns xmg-rwrs, xmg-c2rs, xmg-dc2, and xmg-
dch show how the final area using XMG-based optimization
compares with the ABC logic optimization flows. The numbers
are in percentage where a positive value means that XMG gives
better numbers as compared to the ABC scripts and vice-versa.
For XMG-based flow one can notice a direct correlation between
the improvements in area and the higher values for self-duality
ratios. As compared to the ABC flow of rewrite;resub (until
convergence) which directly compares with our flow, we can
notice that as the self-duality increases, the improvement also
increases. Among other powerful optimization ABC scripts,
compress2rs script gives the closest result across the sd-index.
Hence, this experiment shows that with increase in the sd-index,

XMG based optimization gives better numbers as compared to
the state-of-the-art ABC scripts.

D. Cryptography protocol benchmarks

While the previous experiment was conducted on crafted
benchmarks, we now evaluate our approach on cryptography
benchmarks to establish our conjecture that an increase in self-
duality within an RFET-based circuit can be better optimized
with XMGs. These benchmarks were taken from high-level
cryptography protocols such as Fully Homomorphic Encryption
(FHE) and secure Multy-Party Communication (MPC) [1]1. The
benchmark suite contains circuits ranging from block ciphers
(AES and DES) and hash functions such as (MDA-5 and SHA)
to arithmetic functions (adders and comparators).

The results are shown in TABLE III. As in the case of earlier
benchmarks, here also we compare the post-mapping area. The
first column shows the sd-ratio after carrying out optimization
using algorithms as mentioned in Section IV. The column
xmg area shows the area using our XMG-based approach.

E. Discussion

We can see that our XMG-based approach achieves better
area numbers in case of benchmarks with higher self-duality as
compared to ABC scripts. This can be ascertained to the fact
that most of the benchmarks from the cryptography domain have
a high density of self-dual gates. They also have high density of
parity functions, as parity functions are integral logic functions
in any cryptographic applications. For the benchmarks, md5,
SHA-1 and SHA-256, our XMG-based approach outperforms
other ABC-based scripts. This is also coherent with their high
sd-ratio values. For small benchmarks, such as adder, all flows
reach the optimal area results.

Certain interesting observations can be made here—firstly,
circuits such as AES which has a low density of self-duality
returns better area with our approach. This is due to the fact that
it has a high parity function density which is better optimised
by XMG as compared to other flows. Secondly, in a one-to-
one comparison, our XMG-based rewriting and resubstitution
techniques lead to more powerful optimization as compared
to ABC rewrite; resub scripts. This is apparent as our XMG-
based approach achieves upto 17% (in case of md5) better area.
Another observation is that for benchmarks such as comparator,
our XMG-based approach returns inferior results. We noticed
here, that some of the cuts were not mapped optimally to
logic gates (or combinations of logic gates). The reason can be
ascertained to the fact that, since ABC technology mapper is
used, it decomposes three-input Majority primitives and Xor
primitives to multiple two-input And primitives as is evident
from Fig. 3. During technology mapping, ABC carries out cut-
enumeration which in case of the XMG-based approach, leads to
thrice the number of competing cuts as compared to technology
mapping after logic optimization script (compress2rs, dc2 and
dch) within ABC.

To investigate the above observation, we started with a smaller
subcircuit, where the mapping for the XMG-based approach

1The benchmarks were obtained from
https://homes.esat.kuleuven.be/nsmart/MPC/



TABLE III: Comparison of mapped area for the cryptography benchmarks using XMG optimization as compared to ABC scripts

Benchmarks sd-ratio init area c2rs area dc2 area dch area rwrs area ABC best xmg area impr best impr rwrs

AES-expanded 256 17.59 94661.50 85270.50 89073.00 88622.00 88988.50 85270.50 84342.50 1.09 5.22
AES-non-expanded 1536 17.09 118531.50 104173.00 111344.00 110196.00 110702.00 104173.00 104338.50 -0.16 5.75
DES-expanded 128 35.62 42437.50 39912.50 41682.50 41454.50 39417.50 39417.50 45266.50 -14.84 -14.84
DES-non-expanded 832 36.07 42718.50 40633.50 41711.50 41395.50 39397.00 39397.00 45198.00 -14.72 -14.72
adder 32bit 85.29 270.00 270.00 270.00 270.00 270.00 270.00 270.00 0.00 0.00
adder 64bit 81.43 542.00 542.00 542.00 542.00 542.00 542.00 542.00 0.00 0.00
adder 128bit 72.30 1666.00 1086.00 1086.00 1086.00 1086.00 1086.00 1086.00 0.00 0.00
comparator 32bit signed lt 44.86 295.00 244.00 243.50 241.00 242.50 241.00 302.50 -25.52 -24.74
md5 47.86 113198.50 113451.50 115374.00 115377.50 120937.50 113198.50 100380.50 11.32 17.00
mult 32x32 40.62 10964.00 10885.00 9632.50 10141.50 11643.00 9632.50 12447.50 -29.22 -6.91
sha-1 60.07 161321.50 158645.00 165201.00 166241.00 172729.00 158645.00 146005.50 7.97 15.47
sha-256 69.44 274680.00 285680.50 281488.00 280742.00 282895.00 274680.00 254327.00 7.41 10.10

requires additional Minority gates. Although the two code
snippets are functionally equivalent, the mapping result of the
first code snippet is more than the second by 1 unit. Such
mapping leads to poor area results for XMG-based approach.
This is particularly more pronounced in cases, where circuits
have very low density of parity logic.

/ * Code s n i p p e t 1 * /
a s s i g n w1 = x2 & ˜ x4 ;
a s s i g n w2 = ( x1 & x3 ) | ( x1 & ˜ w1 ) |

( x3 & ˜ w1 ) ;
a s s i g n w3 = w1 & w2 ;
/ * Code s n i p p e t 2 * /
a s s i g n w1 = x1 & x2 & x3 & ˜ x4 ;

The reason behind the above finding is that, the two code
snippets have different subject graphs and the mapping within
ABC can suffer from structural bias [5]. We also applied
our approach to EPFL benchmarks and found out that EPFL
benchmarks have low self-duality density and hence they are
not very representative of our approach. Additionally, the above
investigation is seen in various benchmarks (for example—
arbiter and bar). One of the possible solutions to mitigate
the above issue is to design an XMG-based technology mapper
which does not decompose individual XMG nodes to smaller
primitives. However, development of such a technology mapper
is beyond the scope of this work.

VII. SUMMARY AND CONCLUSION

This work explores logic synthesis from an emerging nan-
otechnology perspective. Keeping in mind that self-dual logic
functions are implemented efficiently with RFETs, we have
explored XMGs as logic representation to exploit self-duality in
circuits because (i) they provide a compact logic representation
and (ii) majority and odd-input parity functions are self-dual and
can efficiently be represented by XMGs. We have developed
advanced Boolean methods such as resubstitution and rewriting
techniques for XMGs to enable powerful optimizations. We have
shown that circuits with a high density of self-duality achieve
better area results for XMG-based approaches as compared to
the state of the art.
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